
An Improvised Algorithm for a Dynamic
Key Generation Model

D. V. Guru Saran and Kurunandan Jain

Abstract Datamay be kept private, secure, and authentic via cryptography. Compu-
tational resources and communication channel performance impede the development
of an efficient key generation model in IoT devices for encryption and decryption
applications. Most IoT networks encode information with session keys, which are
less secure than dynamic key encryption used in communication channels. Further-
more, because of the resource limitations of most IoT networks, it is impractical
to use the current dynamic key generation approaches. To solve these problems, a
dynamic key generator model has been designed that continuously generates unique
keys in the range of 1000–10,000,000. We also discuss our proposed model’s secu-
rity and performance analysis to validate the feasibility of its operation in such a
resource-constrained IoT environment.

Keywords IoT · Dynamic key · Cryptography · Security

1 Introduction

It is only a matter of time until the Internet of Things (IoT) becomes an increasingly
crucial part of our everyday lives, thanks to the arrival of 5G technology. A new
security danger is created, or malicious attackers can get into the information and
equipment that are supposed to be secured [1]. Certificate-based encryption and
public key distribution are adequate to assure data confidentiality, integrity, and
validity at OSI network layer levels. These services are unsuitable for IoT devices due
to their memory, computational power, energy consumption, and equipment space
limitations [2]. In addition to standard network security weaknesses, the Internet of
Things offers new security challenges due to its unique features and the fact that it

D. V. G. Saran (B) · K. Jain
Center for Cyber Security Systems and Networks, Amrita School of Engineering, Amritapuri
Campus, Vallikavu, Kerala, India
e-mail: amenp2csn20010@am.students.amrita.edu

K. Jain
e-mail: kurunandanj@am.amrita.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Smys et al. (eds.), Inventive Computation and Information Technologies, Lecture Notes
in Networks and Systems 563, https://doi.org/10.1007/978-981-19-7402-1_43

607

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7402-1_43&domain=pdf
mailto:amenp2csn20010@am.students.amrita.edu
mailto:kurunandanj@am.amrita.edu
https://doi.org/10.1007/978-981-19-7402-1_43


608 D. V. G. Saran and K. Jain

includes several sensor nodes. Data transiting through the Internet of Things (IoT)
network is protected by lightweight cryptographic algorithms [3].

Data confidentiality, integrity, and authenticity may all be ensured by using cryp-
tography. The information must be kept private to prevent it from being accessed or
misused by others. Authenticity ensures that data cannot be disputed, whereas data
integrity ensures that it is trustworthy and reliable information being carried across
the network [4].

Cryptographic keys are used for encryption and decryption to ensure security.
These keys encrypt the data by converting plaintext to ciphertext. A cryptographic
key can be created in one of two ways. Symmetric and asymmetric keys are two sorts
of keys. In symmetric key encryption, the very same secret is used to encode and
decode the message. In asymmetric keys, one encrypts the message with one key
and decodes it with another key [1, 5]. While dynamic keys are used once for each
message transmitted, session keys are used to encrypt and decrypt the information
in a session to ensure session security. The system’s security is enhanced because
dynamic keys are utilized for every data transmission [6].

In the IoT network context, malicious users can target the data or devices that
generate the data. Active and passive attacks on an IoT network/system are two types
of attacks. Passive attacks include the attacker listening to and analyzing traffic passed
between objects without altering it. This enables the attacker to ascertain sensitive
data like credentials or keys shared, which can be abused to perform cyberattacks.
During cyberattacks, the attacker alters, deletes, or replaces transmitted data with
malicious messages [7]. It can also impersonate a legitimate node, engage in the
key formation procedure, or replay valid messages to gain the system’s trust to steal
sensitive data such as cryptographic keys.

In previous research [8], we created and implemented a method for generating
discrete, transitory keys known as dynamic keys, which are used to determine the
delivery time of numerous packets in data transmission or the delivery time of a
single packet. Using symmetric key encryption, the suggested dynamic key gener-
ation mechanism is developed to work in IoT environmental system. In this inves-
tigation, we assume that every individual message transmission between commu-
nicative parties uses the dynamic key created by our technique. In comparison with
conventional dynamic key generation approaches, we provide a robust system for
cryptanalytic assaults while using fewer resources. Three steps comprise the key
generation algorithm of the cyclic dynamic key generator (CDKG). It utilizes an
input pair of secret and seed to create dynamic keys without a key distribution center
(KDC) intervention.

This paper redesigns the algorithm to boost efficiency while preserving strong
resilience to cryptanalytic attacks. Furthermore, we replace the SHA256 hash with
theBlake2b hash becauseBLAKE2 ismuchmore efficient in software overmost plat-
forms than SHA256.When hashing 64 bytes, for example, it is often twice as efficient
as SHA256 on ARM devices [9]. BLAKE2 includes potentially valuable security
features such as protection against length extension, a common technique of keying,
“personalization tags” to ensure domain separation, etc. In addition, we implemented
configuration stage and random stage, which will be discussed in Sect. 3.



An Improvised Algorithm for a Dynamic Key Generation Model 609

The following are the main contributions for this paper:

1. Redesign and enhance the model’s performance for dynamic key generation
intended for use in an IoT ecosystem.

2. Analyze the efficiency and safety of the suggested method for protecting IoT
devices.

2 Literature Survey

Most key management solutions prefer to encrypt and decode messages with session
keys. Using session keys to encrypt data is vulnerable to eavesdropping or compro-
mising the data. Using a session key for more than one session may compromise the
data, so dynamic keys are used because they are one-time use keys employed per
message instead of per session. Dynamic keys are preferred over session keys due to
their security resilience [6], whereas session keys are preferred for computation and
storage purposes.

In this research, Thanh Nha Dang [10] suggested an improved AES scheme that
creates dynamic keys. A 16-byte data packet was delivered in a numerically indexed
pattern. Based on the pattern, the key in an Internet of Things (IoT) system was
dynamically updated with encrypted data.

At the PHY layer, the researchers researched, assessed, and uncovered flaws in
OFDM-based encryptionmethods [11]. It is been discovered that frequency response
encryption reduces the effects of channel fading and improves bit rate error perfor-
mance. A new method for altering encryption blocks for input OFDM frames and
a dynamic secret key mechanism has been presented to strengthen the security of
OFDM-based encryption systems.

Uchiteleva’s method dynamically updated the secret key on both endpoints of
a network connection by using pseudo-random (PR) [12] sequences produced at
the physical layer of wireless transmitters throughout the data transmission. In an
Industrial Internet of Things (IIoT) setting, this method is adaptable and suited for
large network nodes with limited computational power.

Utilizing a Diophantine variant of the nonlinear equation [13], Thirumalai’s
suggested solution repurposes the RSA technique for storage efficiency. In addi-
tion, this technique worked exceedingly well due to its sole use of an RSA public
key. MEMK does not involve a multiplicative inverse function or extended Euclid’s
method. To acquire a test result for MEMK PKC key generation, encryption, and
decryption phases, they ultimately increased the N-bit modulo bits from 1 to 10 K.

Moosavi [14] provided two ECG-based cryptographic key generation algorithms.
They first suggested using the Fibonacci linear feedback shift register (LFSR)
pseudo-random number generator to generate a sequential set of APIs. Second, they
demonstrated a key generation mechanism that is both highly secure and low cost.
Researchers discovered that traditional IPI-based solutions take 12.3% and 41.2%
more time when comparing key generation execution times.



610 D. V. G. Saran and K. Jain

Fig. 1 General overview of key generation methodology

This research proposed the generalized triangle-based security algorithm [15] as
an energy source, resource data encryption algorithm with an acceptable encryp-
tion generation mechanism (G-TBSA). The proposed G-TBSA is implemented in
constrained Wi-Fi wireless sensor networks (WSNs). The key generation process is
at the algorithm’s core because it requires low resources to produce keys, reducing
algorithm complexity and improving energy efficiency.

3 Proposed System

3.1 General Overview of the Key Generation System

Figure 1 depicts a broad overviewof the key generation approach. The three functions
use logical and bitwise operations to produce random keys supplied as an input to
the Blake2b cryptographic hash function. Using the Blake2b hashing technique, a
256-bit hash is generated. The result generates the dynamic key from the specified
secret and salt. There are four stages of operation in the key generation scheme:
the initialization stage, the configuration stage, the randomness stage, and the cyclic
stage.

3.2 Initialization Stage

Figure 2 depicts the broad operational perspective of the initialization stage. Two
pre-shared alphanumeric values are required as inputs for this stage: a secret and
a seed. Only Function A, the configuration stage, and BLAKE are active at this
level. The configuration stage is contained inside Function A. After completing the
configuration stage, it executes logical and bitwise operations to generate a new
secret. The freshly generated secret is sent to Function C or Function B alongwith the
Blake2b hashingmethod. Blake2b combines the pre-shared salt and freshly produced
secret to construct a 256-bit dynamic key. The key generation algorithm then moves
on to the cyclic and random stages.



An Improvised Algorithm for a Dynamic Key Generation Model 611

Fig. 2 Initialization stage

3.3 Configuration Stage

This stage is implemented in Function A. Instead of sending the input directly to
logical and bitwise operations, it performs mathematical operations on the secret
and seed pair, as shown in Fig. 3. Two pre-shared alphanumeric values are inputs in
the configuration stage, i.e., a secret and seed, combined and stored in the input. The
combined input is divided into six equal groups by padding with zero. Apply mod
6 to these six equal groups and make adjustments such that S1, S2, S3, S4, S5, and
S6 are obtained. After the configuration stage, the divided input performs logical
and bitwise operations in Function A, yielding a new secret as an output. The newly
created secret is sent into Function C/Function B and the Blake hash algorithm.

3.4 Randomness Stage

The general workings of the randomness stage are indicated in Fig. 4. This stage
is implemented in Function C. The stage requires a secret generated from Function
A and a key generated from the previous result, i.e., a dynamic key. Function C
performs logical and bitwise operations on the secret generated from Function A
and the key generated from the previous result to generate a new secret. The new
secret is supplied to function B as an input. If there is no previous result stored in
memory, the new secret generated from Function A is directly passed to Function B.
By implementing this stage, for the same secret and key, we generate different sets
of random keys.

3.5 Cyclic Stage

Figure 5 depicts the main functioning overview of the cyclic stage. At this level,
all modules are operational (Function A, Function C, Function B, and BLAKE).
Function A aims to create new secrets from Function B’s output pairs. Function C’s



612 D. V. G. Saran and K. Jain

Fig. 3 Configuration stage

purpose is to give Function B a secret. From the outputs of Function A and Function
C, Function B tries to create fresh secrets and seeds for Function A. The secrets
created by Functions A and B are continuously fed into the 256-bit dynamic key
generating Blake hash function.

4 Key Generation Methodology

This section provides a detailed summary of each function. Table 1 gives each
function’s terms and notation used in this section.



An Improvised Algorithm for a Dynamic Key Generation Model 613

Fig. 4 Randomness stage

Fig. 5 Cyclic stage

Table 1 Terms and notations Symbol Notation

XOR Bitwise exclusive

LCS Left circular shift

RCS Right circular shift

LRS Logical right shift

LLS Logical left shift

4.1 Function A

Figure 6 depicts the inner workings of Function A in detail. The secret and seed are
first transferred to the configuration stage. The detailed working of the configuration
stage is indicated in Fig. 3. After the configuration stage, the input divides the secret
into six parts: S1, S2, S3, S4, S5, and S6; S5 and S6 undergo the left and right circular
shift operations, respectively. The circularly shifted S5 and S6 perform an Exclusive
OR operation with S3 and S4, resulting in S7 and S8. Similarly, S3 and S4 perform
the left and right circular shift operations, respectively. The circularly shifted S3 and



614 D. V. G. Saran and K. Jain

S4 perform an Exclusive OR operation with S1 and S2, yielding S9 and S10. S7, S8,
S9, and S10 are subjected to a logical right shift operation, with the resulting outputs
combined together to generate a new secret.

Fig. 6 Function A



An Improvised Algorithm for a Dynamic Key Generation Model 615

4.2 Function C

Figure 7 illustrates the innerworkings of FunctionA in great detail. The stage requires
a secret produced by Function A and a key produced by the preceding result. This
function C is valid if it returns the previous value. If there is no prior result, Function
A immediately passes the newly produced secret to Function B. The method divides
the secret and the key into four parts: S’1, S’2, S’3, and S’4. K’1 and K’3 suffer
circular shifts to the left and right, respectively. Circularly shifted K’1 and K’3 are
subjected to an Exclusive OR operation, with S’1 and S’3 producing S’6 and S’5.
S’2 and S’4 suffer circular shifts to the left and right, respectively. S’8 and S’7 are
created when S’2 and S’4 are circularly moved. The outputs of the logical right shift
operation performed on S’5, S’6, S’7, and S’8 are concatenated to produce a new
secret.

4.3 Function B

It is shown in Fig. 8 how Function B works from a high-level perspective. S"1 to S"4
are the four components of the secret that the algorithm divides into and the seed into
two parts (K1 and K2). Shifts in the direction of left and right circular motion occur
for K1 and K2. As a result of this process, K4 is generated. A left circularly shifted
K1 conducts an Exclusive OR operation with S"3 to create K3 as a consequence of
the Exclusive OR operation with S"1. K3 and the result of S"2’s left circular shift
is supplied as input to an Exclusive OR operation, which generates the output. S"6.
Using Exclusive OR, the result of the right circular shift operation on S"1 and K4
is used to produce the desired output. S"5. Like S"3, the result of Exclusive ORing
S"2 and a right circularly shifted S"3 is produced by S"3. S"7. An Exclusive OR
operation on S’1 with a left circular shift is carried out S"4 is responsible for the final
product. S"8. After performing a logical left shift operation on each S5, S6, and S7,
the outputs are appended together to form a new secret. Logical right shift is applied
to K3 and K4, and the outputs are appended together to form a new seed.

5 Security Methodology

This section goes through the numerous attack vectors used against the proposed
approach key system. These tests demonstrate that the proposed approach key system
is resistant to different attacks that an attacker might attempt to reveal the keys.



616 D. V. G. Saran and K. Jain

Fig. 7 Function C

5.1 Chosen Plaintext Attack

A cryptanalysis attack can result in illegitimate access to sensitive data due to the
compromised symmetric keys. The adversary sends plaintexts of his or her choosing
to the encryption oracle to get comparable cipher messages. The adversary attempts
to deduce the keys used by the oracle based on the plaintext–ciphertext pairs retrieved.
Figure 9 depicts the general attack scenario. Due to the exposure of symmetric keys,
this attack may result in unauthorized access to sensitive data.



An Improvised Algorithm for a Dynamic Key Generation Model 617

Fig. 8 Function B

Fig. 9 Chosen plaintext attack



618 D. V. G. Saran and K. Jain

Fig. 10 Brute force attack

5.2 Brute Force Attack

The term “exhaustive key search methodology” refers to this cryptanalysis method.
In this attack, the decryption of ciphertext using all possible key spaces determines
the key used to encrypt the data. The strength of the algorithm’s cryptographic keys
may be evaluated using this attack. The key to one message on the transmission
medium can be used to decode all other messages if the attacker is successful. As
seen in Fig. 10, the general assault scenario. An attacker cannot use the same key to
decode many messages in the same transmission medium because of the dynamic
key. There must be a way for an attacker to brute force an initial seed or secret, in
addition to being able to authenticate message decryption using the dynamic key
generation method.

5.3 Preimage Attack

The attack puts the hashing technique to the test against preimage resistance. This
attack vector has two variants: the first and second preimage attacks. A first preimage
attack allows the attacker to identify a message with a hash length of less than 2N .
Resistance to the first preimage assault indicates that it is impossible to identify any
second input, i.e., given messageM. It is impossible to create a second preimageM ′
�= M such that H(M) = H(M ′).

5.4 Replay Attack

This is a version of the Man-In-The-Middle (MITM) attack, in which attackers
capture network communication packets and retransmit tampered but genuine
packets to impersonate the legitimate user. This form of attack is frequent when



An Improvised Algorithm for a Dynamic Key Generation Model 619

Fig. 11 Replay attack

a legitimate system uses reusable authentication keys. This attack may allow an
adversary to gain access to system resources. Attack scenarios are depicted in Fig. 11.

5.5 Session Hijacking

After acquiring the stolen session key or token, an adversary operating as a
gateway can get unauthorized access to sensitive information and applications in
devices/services/networks. This attack can be carried out by either stealing or
guessing an authentic session key to acquire unauthorized access to the system.
Figure 12 depicts the general attack scenario. This attack methodology can aid in
determining whether a suggested scheme for session monitoring is possible.

6 Performance Analysis

The suggested dynamic key scheme’s performance measures are outlined in this
section. Randomness, storage, and computation requirements assess if the algorithm
can work in an IoT environment.



620 D. V. G. Saran and K. Jain

Fig. 12 Session hijacking attack

6.1 Test Configuration

The key generation scheme was tested on the Raspberry Pi 4 Model B, a tiny single-
board device commonly used in IoT networks [16, 17]. Table 2 lists the hardware
specifications for this single-board computer.

Before transmitting data across the network, this single-board computer may
process raw data obtained from different sensor feeds and execute cryptographic
procedures. The suggested approach is intended to produce dynamic keys spanning
from 1000 to 10,000,000, and various performance features in compute, and storage
requirements are tested. The prototype was built using Python 3, an interpreted, high-
level, general-purpose programming language. All Python libraries required for the
prototype’s proper operation are supported by the Raspberry Pi OS, which runs on
the hardware.

Table 2 Raspberry Pi 4
model B hardware
specifications

Version Type

Instruction set ARMv8 (64/32-bit)

SoC Broadcom BCM2711

FPU Neon-FP-ARMv8

CPU 4 X Cortex-A72 @ 1.5 GHz

GPU Broadcom VideoCore VI 500 MHz

Memory (SDRAM) 1 GB



An Improvised Algorithm for a Dynamic Key Generation Model 621

6.2 Randomness Analysis

Randomness analysis assures that the output created by an algorithm is pattern less.
This analysis helps to confirm that the produced keys are unique. The National Insti-
tute of Standards and Technology (NIST) proposed several to verify the randomness
of generated dynamic keys [18, 19]. These tests use conventional normal and chi-
square (χ 2) distributions as reference distributions. If the pattern under analysis
is not random, the resulting test statistic will be in the extremes of the reference
distribution. Table 3 provides an overview of the test completed.

7 Results and Discussions

This section describes the proposed dynamic key generation scheme’s security
features and the results of several testing.

7.1 Security Features

1. Mutual Authentication: Mutual authentication happens when both sides of a
communications connection, rather than simply one, authenticate one others
identity. Most IoT devices require a connection to a remote server to work
correctly. They may also be required to connect to other IoT devices. IoT devices
must communicate via an untrustworthy network (the Internet). Mutual authen-
tication decreases the possibility of attackers compromising their connections
by guaranteeing that the data they receive is trustworthy and from a legitimate
source.

2. Session keys security: In each communication session, dynamic keys are limited
to a fixed amount of messages ranging from one to hundreds. On the other hand,
session keys are utilized for the duration of the communication session. The
maximum number of messages that can be encrypted with a single dynamic
key exceeds the maximum number of messages that may be exchanged in a
communication session.

3. Perfect forward secrecy: Forward secrecy (FS) is a cryptographic primitive that
changes the keys used to encrypt and decrypt data automatically and frequently.
Even if themost recent key is compromised, just a small amount of necessary data
is released due to this ongoing process. Even if the server’s private key is compro-
mised, absolute forward secrecy helps protect session keys. Since dynamic keys
could only be used once in messages in a single communication session, they
add an extra layer of protection to secrecy.

4. User Anonymity: Intruders continuously look for security weaknesses and sensi-
tive data such as passwords and user IDs. Intruders can use these credentials



622 D. V. G. Saran and K. Jain

Table 3 NIST test overview

Name of the test Description

Frequency test There should be an approximately equal amount of
ones and zeros in a series, which is what the test
measures

Frequency test within a block Ones in an M-bit block are being tested to check if
their frequency equals M/2

Run test The number of one- and zero-runs of varying
durations is tested to see if the random distribution
using the runs test. With this test, you can see if the
rate of change between 0 and 1 s is too rapid or too
sluggish

Test for the longest run of ones in a block Tests if the longest run of ones in the tested sequence
is consistent with the longest run anticipated in a
random distribution

Binary matrix rank test Tests if fixed length subsequences of the original
sequence are correlated linearly

Discrete Fourier transform test Assuming randomness is the assumption, this
approach checks the analyzed sequence for periodic
characteristics (i.e., recurrent sequences that are near
together). We are looking for a noticeable difference
between 95 and 5% in peak counts, surpassing that
requirement

Non-overlapping template Matching test With this test, we are trying to determine which
generators create an abnormally high number of
non-periodic (aperiodic) patterns we have defined

Overlapping template matching test A pre-specified objective string’s frequency is
examined using the overlapping template matching
test. To distinguish this from the non-overlapping
matching test, the window only advances one bit
before the search is resumed when the pattern is
found. This is the sole difference between the two

Maurer’s universal statistical test With this test, we are looking to see whether there is
any way to reduce sequence size without sacrificing
quality dramatically. It is possible to reduce the size
of a non-random sequence considerably

Linear complexity test Determines if the sequence is sufficiently
complicated to be considered random. Longer
LFSRs can distinguish random sequences. An LFSR
that is too short shows non-randomness

Serial test We will examine if the 2 m m-bit overlapping
patterns appear as frequently as would be anticipated
from a random sequence in this test

(continued)



An Improvised Algorithm for a Dynamic Key Generation Model 623

Table 3 (continued)

Name of the test Description

Approximate entropy test The topic of this test is the frequency of all
conceivable overlapping m-bit patterns in the whole
sequence. With this test, we are looking to see how
often blocks of lengths m and m + 1 overlap with
the predicted frequency of random blocks

Cumulative sums test In order to identify if the examined sequence
contains too many or too few component sequences,
a test is conducted. The overall cost is about the
same as going on a walk at random. For some
non-random sequences, the random process’s
deviations from zero will be considerable

Random excursion test This test aims to examine if the frequency of a
certain state’s occurrence in a cycle differs from the
random sequence. There are eight tests in this
assessment, one for each of the states: −4, −3, −2,
−1 and + 1, + 2, + 3, + 4. There are eight tests in
this evaluation (and conclusions)

Random excursion variant test This experiment aims to see if the unpredictability of
the number of trips to different states differs from
what is predicted. Each state −9, −8,…, −1 and +
1, + 2,…, + 9 is represented by one of the eighteen
tests included in this study (and the conclusions
drawn from them)

to carry out MITM and impersonation attacks. We can keep specific network
identities hidden when exchanging messages using dynamic keys.

5. Key dynamics:When you utilize a fixed key for an extended period, the likelihood
of breaking it increases. This method generates a new key each time it starts,
recognizing the dynamics of the key and significantly increasing its security.

6. Full randomness test pass: The redesigned model passed all the series of
randomness tests given by NIST

7.2 Security Test

1. Cryptanalysis andBrute force attacks: The algorithmgenerates a one-timemaster
key that is used to secure individual messages rather than entire sessions. It func-
tions similarly to a one-time pad. The attacker never finds the keys using the
ciphertext attack because analyzing encrypted messages with many unique keys
is difficult. The breach of a single key reveals only one message; it is impervious
to cryptanalysis assaults. A critical space of 1.1579209e + 77 is required to
brute force a 256-bit key. In theory, it would take 3.671052 years for a supercom-
puter with a speed of 100 petaflops to deplete all 256-bit key space. Rendering



624 D. V. G. Saran and K. Jain

this type of attack against the redesigned key generation mechanism is infea-
sible. However, this situation is only applicable to fetching a single dynamic key.
Because the key space is the same size, the amount of computing required to brute
force the input seed and secret pair and validate the decryption of individual infor-
mation increases nearly 10 million times to decipher a complete communication
session correctly.

2. Replay and Session Hijack Attacks: Replay attacks are common on network
devices that use reused authentication keys. By employing the provided dynamic
approach, the attacker is prevented from using the same access code to get access
to network resources. To prevent replay attacks, a single dynamic key can be used
to generate an access code that can only be verified once. If an attacker obtains
the session key, he or she can take over a user session by intercepting the user’s
session key and impersonating this user to maintain the connection with the
system. This attack strategy is not conceivable in our redesigned model because
session communications are encrypted using dynamic keys.

8 Hardware Consumption

The algorithm is efficient regarding entropy and storage because the prototype and
keys take up only 7KB of code and key storage space, as given in Table 4. Tenmillion
keys were produced from an alphanumeric seed and a secret during the prototype
stage. Figure 13 depicts the rise in time as the number of keys, increases, and we
also compared the redesigned algorithm to the previous algorithm. The process takes
4688 s to produce ten million keys. While creating ten million dynamic keys, the
technique consistently used less than 20 MB of RAM.

Table 5 gives the results of the NIST randomness testing. The test results indicate
that the method generates random output sequences, which correspond to produced
keys being unique.

Table 5 gives the minimum P-Value of all possible states examined for random
excursion and excursion variant testing. The predefined threshold value, i.e., P-Value
≥ 0.01 for all x states indicates that the output is random.

Table 4 Storage key space

Keys 1 K 10 K 100 K 1 M 10 M

Storage 63.5 KB 634.8 KB 6.2 MB 62 MB 619.9 MB



An Improvised Algorithm for a Dynamic Key Generation Model 625

Fig. 13 Comparing performance analysis of previous and redesigned model

9 Conclusion

In conclusion, we describe a cyclic dynamic key generation technique capable of
producing many unique keys. Most cryptanalytic assaults, such as dictionary attacks,
ciphertext-only attacks, brute force, preimage, and replay attacks, are resistant to the
method (and, by extension, the keys). The redesigned algorithm has better perfor-
mance and full randomness compared to the previously designed model. Since
this key generation technique is intended to be deployed in an IoT ecosystem, the
prototype developed for the algorithm operates efficiently in resource-constrained
environments.



626 D. V. G. Saran and K. Jain

Table 5 Randomness test result

S. No Test type Previous model result
(P-Value)

Modified model with
Blake2b (P-Value)

1 Frequency test 0.62202 0.5815

2 Frequency test within a block 0.0261 0.47955

3 Run test 0.6593 0.96586

4 Test for the longest run of
ones in a block

0.6539 0.68468

5 Binary matrix rank test 0.0852 0.45961

6 Discrete Fourier transform
test

0.1661 0.49789

7 Non-overlapping template
matching test

0.0292 0.99986

8 Overlapping template
matching test

NAN 0.06119

9 Maurer’s universal statistical
test

NAN 0.10592

10 Linear complexity test 0.03486 0.08011

11 Serial test 0.0523 0.49896

12 Approximate entropy test 1 1

13 Cumulative sums test
(Forward)

NaN 0.5876

14 Cumulative sums test
(Reverse)

NAN 0.79917

15 Random excursions test 0.0508 0.2109

16 Random excursions variant
test

0.1573 0.58388

a NAN-Not a number. Comparing the NIST randomness testing results of previous and redesigned
model.

References

1. Kimani K, Oduol V, Langat K (2019) Cyber security challenges for IoT-based smart grid
networks. Int J Crit Infrastruct Prot 25:36–49

2. Samaila M, Neto M, Fernandes D, Freire M, Inácio P (2018) Challenges of securing Internet
of Things devices: a survey. Secur Priv 1:e20

3. Abomhara M, Køien G (2014) Security and privacy in the Internet of Things: Current status
and open issues. In: 2014 international conference on privacy and security in mobile systems
(PRISMS). pp 1–8

4. Kumari S (2017) A research paper on cryptography encryption and compression techniques.
Int J Eng Comput Sci 6:20915–20919

5. Mushtaq M, Jamel S, Disina A, Pindar Z, Shakir N, Deris M (2017) A survey on the
cryptographic encryption algorithms. Int J Adv Comput Sci Appl 8:333–344

6. NgoH,WuX,LeP,WilsonC, SrinivasanB (2010)Dynamic key cryptography and applications.
Int J Netw Secur 10:161–174



An Improvised Algorithm for a Dynamic Key Generation Model 627

7. Singh K, Tomar S, Jain U, Hussain M (2020) Simplified and secure session key sharing
for Internet of Things (IoT) networks. In: International conference on internet of things and
connected technologies. pp 319–332

8. Pothumarti R, Jain K, Krishnan P (2021) A lightweight authentication scheme for 5G mobile
communications: a dynamic key approach. J Ambient Intell Humanized Comput 1–19

9. Aumasson J, Neves S, Wilcox-O’Hearn Z, Winnerlein C (2013) BLAKE2: simpler, smaller,
fast as MD5. In: International conference on applied cryptography and network security. pp
119–135

10. Dang T, Vo H (2019) Advanced AES algorithm using dynamic key in the internet of things
system. In: 2019 IEEE 4th international conference on computer and communication systems
(ICCCS). pp 682–686

11. Melki R, NouraH,MansourM,ChehabA (2018)An efficient OFDM-based encryption scheme
using a dynamic key approach. IEEE Internet Things J 6:361–378

12. Uchiteleva E, Hussein A, Shami A (2020) Lightweight dynamic group rekeying for low-power
wireless networks in iiot. IEEE Internet Things J 7:4972–4986

13. Thirumalai C,KarH (2017)Memory efficientmulti key (MEMK) generation scheme for secure
transportation of sensitive data over cloud and IoT devices. In: 2017 innovations in power and
advanced computing technologies (i-PACT), pp 1–6

14. Moosavi S, Nigussie E, Virtanen S, Isoaho J (2017) Cryptographic key generation using ECG
signal. In: 2017 14th IEEE annual consumer communications networking conference (CCNC).
pp. 1024–1031

15. Ahmed S, Islam M, Nath T, Ferdosi B, Hasan A (2019) G-TBSA: a generalized lightweight
security algorithm for IoT. In: 2019 4th international conference on electrical information and
communication technology (EICT). pp 1–6

16. Akshay S, Vishnukumar B, Mohan V, Anand M (2018) Energy and performance analysis of
raspberry pi with modern computing devices. Int J Eng Technol 7:777–779

17. ZhaoC, Jegatheesan J, Loon S (2015) Exploring iot application using raspberry pi. Int J Comput
Netw Appl 2:27–34

18. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E (2001) A statistical test suite for random and
pseudorandom number generators for cryptographic applications. (Booz-allen, 2001)

19. Bassham III L, Rukhin A, Soto J, Nechvatal J, SmidM, Barker E, Leigh S, LevensonM, Vangel
M, Banks D et al (2010) Sp 800–22 rev. 1a. a statistical test suite for random and pseudorandom
number generators for cryptographic applications. (National Institute of Standards Technology,
2010)


	 An Improvised Algorithm for a Dynamic Key Generation Model
	1 Introduction
	2 Literature Survey
	3 Proposed System
	3.1 General Overview of the Key Generation System
	3.2 Initialization Stage
	3.3 Configuration Stage
	3.4 Randomness Stage
	3.5 Cyclic Stage

	4 Key Generation Methodology
	4.1 Function A
	4.2 Function C
	4.3 Function B

	5 Security Methodology
	5.1 Chosen Plaintext Attack
	5.2 Brute Force Attack
	5.3 Preimage Attack
	5.4 Replay Attack
	5.5 Session Hijacking

	6 Performance Analysis
	6.1 Test Configuration
	6.2 Randomness Analysis

	7 Results and Discussions
	7.1 Security Features
	7.2 Security Test

	8 Hardware Consumption
	9 Conclusion
	References




