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Preface

To support the needs of ever-growing cloud-based services, the number of servers
and network devices in data centers is increasing exponentially, which in turn results
in high complexities and difficulties in network optimization. To address these
challenges, both academia and industry turn to artificial intelligence technology
to realize network intelligence. To this end, a considerable number of novel and
creative machine learning-based (ML-based) research works have been put forward
in recent few years. Nevertheless, there are still enormous challenges faced by
the intelligent optimization of data center networks (DCNs), especially in the
scenario of online real-time dynamic processing of massive heterogeneous services
and traffic data. To the best of our knowledge, there is a lack of systematic
and original comprehensive investigations with in-depth analysis on intelligent
DCN. To this end, in this book, we comprehensively investigate the application
of machine learning to data center networking and provide a general overview and
in-depth analysis of the recent works, covering flow prediction, flow classification,
load balancing, resource management, energy management, routing optimization,
congestion control, fault management, and network security. In order to provide
a multi-dimensional and multi-perspective comparison of various solutions, we
design a quality assessment criteria called REBEL-3S to impartially measure the
strengths and weaknesses of these research works. Moreover, we also present
unique insights into the technology evolution of the fusion of data center networks
and machine learning, together with some challenges and potential future research
opportunities.

Shanghai, P.R. China Ting Wang
March 2022 Bo Li

Mingsong Chen
Shui Yu
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Chapter 1
Introduction

As the storage and computation progressively migrate to the cloud, the data
center (DC) as the core infrastructure of cloud computing provides vital technical
and platform support for enterprise and cloud services. However, with the rapid
rise of the data center scale, the network optimization, resource management,
operation and maintenance, and data center security have become more and more
complicated and challenging. What’s more, the burgeoning development of 5G
has spawned numerous complex, real-time, diversified, and heterogeneous service
scenarios [4, 9], such as enhanced mobile broadband (eMBB) (e.g., ultra-high
definition adaptation, augmented reality, virtual reality), ultra reliable low latency
communication (uRLLC) (e.g., internet of vehicles, industrial automation, mission-
critical applications), and enhanced machine-type communication (eMTC) (e.g.,
Internet of Things, smart grid, smart cities). The emergence of these new services
poses new standards and higher requirements for data centers [28, 32], such as high
concurrency, low latency, and micro-burst tolerance.

In terms of data center network (DCN) automation, benefiting from software
defined networks (SDNs), data centers have initially achieved automation in some
areas, such as automated installation of network policies and automated network
monitoring. However, the implementation of such automation typically depends
on predefined policies. Whenever the predefined policies are exceeded, the system
lacks adaptive processing capability through autonomous learning, and human
intervention must be involved. In the face of these challenges and issues, the tra-
ditional solutions [1, 5, 23, 35, 37, 39, 44] have become inefficient and incompetent.
Moreover, with data availability and security at stake, the issues of data centers
are more critical and challenging than ever before [45, 46]. Driven by these factors,
about the last decade both academia and industry have conducted extensive research
in improving the intelligence level of DCNs by leveraging machine learning (ML)
techniques [3, 18, 19, 21, 29–31].

It is universally acknowledged that data-driven ML technologies have made
tremendous progress around the last decade [12, 42, 47]. A quantity of academic
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2 1 Introduction

research has primarily demonstrated that ML could make more effective decisions
and optimizations in the ever-changing network environment. With ML technolo-
gies, the vast amount of data accumulated in the network can be well exploited to
assist the system in dealing with the complex network problems. The substantial
increase in computer storage and processing power (e.g., graphics processing unit
(GPU) [7], tensor processing unit (TPU) [8]) also provides a strong guarantee for
ML implementation in DCNs. The introduction of ML technology will greatly help
the data center network to improve the network service quality and the efficiency
of operation and maintenance (O&M), so as to cope with the new challenges
brought by the increasingly complex network management and dynamic flexible
services. With regards to this, various standardization organizations, industries,
open-source organizations, and equipment vendors have begun to invest and practice
in ML-assisted intelligent data center networking. International standardization
organizations such as CCSA and ETSI have started relevant research projects
[10, 43]. Open-source organizations such as the Linux Foundation have released
several network intelligence related open-source projects. The major operators and
equipment vendors have increased their investments and research efforts in network
intelligence, and put forward a series of new intelligent networking concepts, such
as Juniper’s Self-Driving Network [36], Gartner’s Intent-Based Network System
(IBNS) [20], Cisco’s Intent-Based Network (IBN) [16] and Huawei’s Intent-Driven
Network (IDN) [17].

Although the research on intelligent data center networking has made great
progress, it is still confronted with many challenges. On the one hand, the strategy of
data collection and processing plays an important role in the effectiveness of data-
driven ML-based models. In particular, the way of data collection, the impact of the
traffic and computation overhead caused by data collection, and the potential for
data leakage are essentially critical. On the other hand, the research on intelligent
data center networking is still in the initial stage, where limited by various factors
and constraints, the intelligent solutions in some fields are not mature yet, and
some intelligence processes are not complete as well. For example, flow prediction
plays a crucial role in DCN optimization, which servers as a priori knowledge in
routing optimization, resource allocation and congestion control. It can grasp the
characteristics and trends of network flow in advance, providing necessary support
for relevant service optimization and decision-making. Nevertheless, the huge scale
of network and the diversity of services impose great challenges in dealing with such
flows with irregular and random distributions in both time and space dimensions.
Flow classification, like flow prediction, is widely used as a priori knowledge
for a variety of optimization modules, including flow scheduling, load balancing,
and energy management. Regarding the quality of service (QoS), dynamic access
control, and resource intelligent optimization, accurate categorization of service
flows is critical. According to our research (as shown in Chap. 3), the current ML-
based traffic classification schemes also have much room for improvement in the
fineness of granularity, time efficiency, and robustness. Meanwhile, the goal of load
balancing is to guarantee a balanced distribution of flows over multiple network
routing paths in order to reduce latency, enhance bandwidth usage, and minimize
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flow completion time. The problem of load balancing is commonly stated as a
multi-commodity flow (MCF) problem, which has been proven to be NP-hard.
Undoubtedly, the highly dynamic data center (DC) traffic brings great challenges
to the load balancing of intra-DC or inter-DC, which requires an efficient grasp
of the characteristics of network traffic. Simultaneously, resource management,
as one of the most important optimization problems in the data center, involves
the allocation, scheduling, and optimization of computing, storage, network, and
other resources, which has a direct impact on the data center’s overall resource
utilization efficiency and resource availability, as well as the user experience and
revenue of service providers. However, with the increasing complexity of network
infrastructure, the explosive growth of the number of hardware devices, and the
growing demand for services, the traditional unintelligent solutions can no longer
effectively deal with these problems, and there is an urgent need for some intelligent
resource management solutions. Homoplastically, routing optimization is also one
of the most important research areas and has aroused some discussions in both
academia and industry. Routing optimization can benefit from SDN by getting a
global view of the network and conveniently deploying techniques, however typical
SDN-based solutions cannot sensitively react to real-time traffic changes in data
center networks. [2, 15, 22, 38, 40, 41]. Notably, the resource management and
routing optimization should fully consider the diversity of resources and service
requirements, whose multi-objective optimization is usually an intractable problem.
Last but not least, the congestion control mechanism of the network also needs
further research in terms of model stability, convergence speed, and robustness.
The complexity and diversity of service scenarios and finer granularity of flow
demands have made congestion control more complicated in data centers. For
instance, some applications require high micro-burst tolerance [33, 34], while some
applications demand low latency [27] or high throughput [14]. Besides, the diverse
applications and computing frameworks with different characteristics in data centers
further produce a variety of traffic patterns, such as one-to-one, one-to-many,
many-to-one, many-to-many, and all-to-all traffic patterns. However, the traditional
transmission control protocol-based (TCP-based) solutions are struggle to match all
of these diverse traffic patterns’ requirements at the same time [11, 13], resulting in
queuing delays, jitter incast, throughput collapse, longer flow completion times, and
packet loss [6, 24, 25]. Above all, the high networking complexity, highly dynamic
environment, diverse traffic patterns and diversified services all may make it not so
easy to directly employ ML techniques to data center. Here we summarize four key
challenges encountered in current research, as follows.

• Data processing: The ability of data processing and feature engineering directly
impacts the performance of ML algorithms. However, the massive volume of
real-time data generated in data centers poses a significant challenge to data
processing.

• ML model selection: The optimization tasks in data centers are complex and
diverse, whereas there is no one-size-fits-all ML model than can efficiently deal
with all scenarios. Therefore, how to choose the appropriate ML algorithm for
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different scenarios and different optimization tasks is a necessary but challenging
thing.

• Collaborative optimization: Currently, the existing intelligent data center net-
working solutions usually follow the principle of “one model for one problem”.
However, the optimization tasks in data centers are numerous with different
objectives. Thus, for the scenario of multi optimization tasks, how to achieve
an efficient collaborative optimization among multiple intelligent models is a
challenging problem.

• Standardization: The industry and academia are eagerly waiting for a univer-
sally applicable implementation standard to promote DCN intelligence, as many
intelligent standards, such as Knowledge-Defined Network (KDN) [26], have not
yet been prototyped.

In this survey, we comprehensively investigate the research progress of ML-
based intelligent data center networking. Figure 1.1 shows the organization of this
book. We classify the existing research work into nine different fields, namely,
flow prediction, flow classification, load balancing, resource management, energy

Fig. 1.1 Conceptual map of survey
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management, routing optimization, congestion control, fault management, and
network security. These existing intelligent DCN solutions in each network area
will be analyzed and compared from different dimensions. Furthermore, in-depth
insights into the current challenges and future opportunities of ML-assisted DCN
will be provided subsequently. The main contributions of this book are summarized
as follows:

1. To the best of the authors’ knowledge, this is the first comprehensive survey about
the application of ML in DCNs. We review the peer-reviewed literature published
in recent decade, which are of great influence and well received by peers. The
diversity of techniques of machine learning is fully respected to ensure a strong
support for the subsequent fair comparisons.

2. We provide enlightening discussions on the usage of ML algorithms in DCNs.
We analyze the effectiveness of ML technologies in DCNs from different aspects.
In order to provide a multi-dimensional and multi-perspective comparison of
various solutions, we innovatively propose our REBEL-3S quality assessment
criteria.

3. We extend the study to introduce some new intelligent networking concepts
proposed by the leading high tech companies (e.g., Huawei, Cisco, and Juniper),
which provides a broad vision of possible research directions in AI-assisted
intelligent DCN.

4. We identify a number of research challenges, directions and opportunities
corresponding to the open or partially solved problems in the current literature.

The rest of this book is organized as follows. First, we briefly introduce some
background knowledge about ML and DCNs in Chap. 2. Then we discuss the
wide range of applications of ML in DCNs and provide a comparative analysis
from different aspects in Chap. 3. In Chap. 4, we provide insights into DCN’s
intelligence accompanying by some challenges as well as opportunities. Finally,
the book concludes in Chap. 5.
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Chapter 2
Fundamentals of Machine Learning
in Data Center Networks

In this chapter, we will briefly review the common learning paradigms of ML and
some preliminary knowledge about data collection and processing. Furthermore, to
better assess the strengths and weaknesses of the existing research work, we design a
multi-dimensional andmulti-perspective quality assessment criteria, called REBEL-
3S.

2.1 Learning Paradigm

Machine learning paradigms can be generally classified into three categories:
supervised learning, unsupervised learning, and reinforcement learning. With the
in-depth research and development of ML, some new learning paradigms such as
deep learning and deep reinforcement learning have been derived for more complex
scenarios.

Supervised learning is a simple and efficient learning paradigm, but it requires
data to be labeled, where the manual labeling task is usually complex and time-
consuming with a considerable workload. This learning paradigm is mainly used
to finish simple tasks, e.g., fault prediction and flow classification. The typical
representative supervised models are random forests, SVM, KNN, and decision
trees. Unsupervised learning can mine potential hidden structures in unlabeled
datasets but are relatively fragile and sensitive to data quality. It is more prone to the
interference of anomalous data, and the final learning effect is difficult to quantify.
Therefore, few research works applied unsupervised learning in DCNs.

Compared with the former two learning paradigms, deep learning is differen-
tiated and characterized by the depth of learning, where it is expected to find the
intrinsic association among data through continuous iterative feature extraction,
convolution, pooling and other necessary operations. CNN, RNN, LSTM, and GRU
are the most common deep learning models used in data center networks. Although
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accompanied by long training time and slow convergence rate which limit its
applicability in some scenarios with high real-time requirements, they are widely
used owing to their excellent performance [3, 5, 6, 13].

Unlike the previous models, reinforcement learning is designed to self-learn
through continuous interactions with the external environment. The actions per-
formed by the agent can adjust themselves according to the feedback (reward or
punishment) given by the environment so as to achieve the global optimal effect.
In view of the strong adaptive self-learning ability of reinforcement learning, it has
been broadly applied to solve complex problems such as congestion control, routing
optimization, and flow scheduling.However, reinforcement learning also has its own
problems: (1) The learning model tends to fall into local optimal solutions. (2) The
learning model usually requires a long training time, challenging to meet the need of
real-time requirements. (3) The learning results may have overfitting phenomenon,
which will result in poor model generalization ability in the face of new complex
environment.

Deep learning has strong perception ability, but it lacks certain decision-making
ability, while reinforcement learning has decision-making ability, yet it has nothing
to do with perception problems. Therefore, deep reinforcement learning is proposed
by combining the complementary advantages of two learning paradigms, to enable
the model with both perceptual ability and decision-making ability. Unfortunately,
deep reinforcement learning still retains the problems of poor stability and complex
reward functions.

It can be seen that different learning paradigms have specific limitations, and
how to adaptively select appropriate ML models for complex optimization tasks
with different objectives in data centers is extremely vital and is much difficult.

2.2 Data Collection and Processing

Data collection and processing is regarded as the first step to realize the intelligence
of ML-assisted data centers, while the quality of source data directly determines
the performance of ML models. However, in the complex and dynamic data center
network environment, the massive data generated in real time are usually transient,
multidimensional, heterogeneous and diversified, which brings great challenges to
the data collection and processing. In this section, we will present our investigation
findings and analysis of data collection and processing in data centers from three
aspects, namely, data collection scenarios, data collection techniques, and feature
engineering. Finally, we will provide our insights into the open problems and
challenges in this field.
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2.2.1 Data Collection Scenarios

Data collection scenarios in DCNs can be divided into four categories: service data
collection, protocol data collection, network performance data collection, and basic
network data collection. The service data includes the information of service SLA,
and service topology. The service SLA can be further divided into flow-level SLA
and service-level SLA. Flow-level SLA measurement is mainly conducted through
IFIT (In-situ Flow Information Telemetry) and eMDI. Service-level SLA data can be
collected through TWAMP/Y.1731. The protocol data includes protocol stack states,
routing information, and delay statistics. The network performance data collection
typically consists of interface statistics, queue statistics, and network element health
data. The basic network data collection mainly gathers the information of the
physical topology, alarms, and logs.

2.2.2 Data Collection Techniques

In the dynamic data center environment, the decision-making of network optimiza-
tion strategies has strict requirements on the timeliness and quality of the collected
data, which also poses a great challenge to the data collection techniques. Empiri-
cally, different scenarios have different quality requirements of data collection, thus
different data collection techniques will be adopted, accordingly. Generally, the data
collection techniques can be grouped into three categories: real time data collection,
protocol data collection, and basic data collection. The real-time data collection
techniques mainly include Telemetry, IFA, Netflow, sFlow and OpenFlow, which
collect the data with a time granularity of seconds reflecting the real time network
status. The protocol data collection techniques target at collecting the routing
protocol (e.g., BGP) data as well as the topology information, where the typical
representatives are BGP-LS and BMP. The SNMP and Syslog are usually employed
as the basic data collection techniques to provide basic network information, such
as network log, and alarm.

2.2.3 Feature Engineering

Feature engineering refers to the process of transforming the original raw data into
the training data, and it directly determines the effectiveness of one ML model,
where it can reduce the dimension of data lowering the computing cost. Its essential
goal is to improve the performance of the model by acquiring better features of the
training data. The feature engineering actions primarily include feature selection
and feature extraction. Comparatively, the feature selection plays a more vital
role, where high-quality feature selection is helpful to remove redundant irrelevant



12 2 Fundamentals of Machine Learning in Data Center Networks

features and improve the accuracy of ML models. Similar to the backbone internet
scenario [1, 4, 9], in DCN scenario, feature engineering can be divided into three
different granularity levels: packet-level, flow-level, and application stream-level.

The most fine-grained packet-level features collect packet information and
statistics. The flow-level features are generally represented as a 5-tuple, i.e. <source
IP address, source port number, destination IP address, destination port number,
transport layer protocol>, and flows at this level are usually classified according
to the transport layer protocol. The application stream-level is characterized by the
number of flows in the Bag of Flow (BoF) level [11, 12], which can be represented as
a 3-tuple, i.e., <source IP address, destination IP address, transport layer protocol>.
It is suitable for studying the long-term flow statistics of the backbone network at
a coarser granularity, but the collection of such high-quality data can increase the
computational overhead of the data center.

Feature selection should be adapted to service scenarios. However, in data
centers, feature selection strategies are usually not deterministic or invariant. Even
for the same problem in the same scenario, features may be inconsistent across
different solutions. For example, on the issue of reducing the energy consumption
of the data center, Sun et al. [7] simply took the temperature of the chassis
as the feature input, while Yi et al. [10] considered the interaction between the
average utilization, temperature, and energy consumption of the processor, further
expanding the number of key features and effectively exploring the relationship
between the features. In conclusion, there are various strategies for feature selection,
and the differentiated features will have a direct impact on the final results of the
model.

2.2.4 Challenges and Insights

Through the above investigation and analysis, we have summarized the following
challenges in current data collection and processing.

• Data collection load: The volume of data in DCN has been growing explosively
in recent years [8], which already reached 403 exabytes in 2021 [2]. Suchmassive
data bring many problems to data acquisition. For example, whether collecting
large volume of data will cause congestion within the collection devices, and
whether the data with critical features can be accurately collected. When the data
are distributed on different paths, the same data will be collected multiple times
on different links if collection points are deployed on all links. Thus, effectively
reducing the duplicate sampling of data can help relieve the burden and economic
overhead of data collection, and data collection should minimize the impact on
the network.
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• Data collectionmethods: The dynamic, diversified, complex and real-time DCN
environment imposes great challenges to the data collection. Although there are
many kinds of data collection methods, they cannot be always well aligned with
the collection needs. To put it in practical terms, due to technical implementation
limitations, Netstream can only analyze the basic 5-tuple information, and
changes beyond the IP header cannot be collected and analyzed. At the same
time, the visual display of network data collection results deserve more profound
research.

• Data security and privacy: The security and privacy of the collected data have
become the primary focus of data center networks. A series of behaviors such as
data desensitization, access control, and leakage prevention are major issues in
the current data center networks.

2.3 Performance Evaluation of ML-Based Solutions in DCN

The performance evaluation of a model should fully consider its specific application
scenarios. To provide a multi-dimensional and multi-perspective comparison of
various intelligent solutions in the DCN scenario, we propose a quality assessment
criteria named REBEL-3S, as illustrated in Table 2.1. “R” stands for reliability,
which refers to the robustness and availability of a solution, including the capa-
bilities of failure detection, fault tolerance, and self-healing, etc. “E” stands for
energy efficiency, which refers to whether the solution considers the energy cost.
“B” and “L” represent bandwidth utilization and latency, respectively. “3S” means
security, stability, and scalability of the network, i.e., whether to consider security
and privacy against anonymous attacks and abnormal flows, whether to consider
network fluctuations and seasonal variation of flows, and whether to consider
scalability performance of the solution. It will be marked “YES” to indicate that
the solution has taken the above evaluation dimensions into account and vice versa
with “NO”.

Table 2.1 The meaning of
the REBEL-3S

Abbreviations Properties

R Reliability
E Energy Efficiency

B Bandwidth Utilization

L Latency
3S Security, Stability, Scalability
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Chapter 3
Machine Learning Empowered
Intelligent Data Center Networking

Machine learning has been widely studied and practiced in data center networks,
and a large number of achievements have been made. In this chapter, we will
review, compare, and discuss the existing work in the following research areas:
flow prediction, flow classification, load balancing, resource management, energy
management, routing optimization, congestion control, fault management, network
security, and new intelligent networking concepts.

3.1 Flow Prediction

Flow prediction plays a crucial role in DCN optimization, and servers as a priori
knowledge in routing optimization, resource allocation and congestion control. It
can grasp the characteristics and trends of network flow in advance, providing
necessary support for relevant service optimization and decision-making. However,
the huge scale of network and the diversity of services impose great challenges
in dealing with such flows with irregular and random distributions in both time
and space dimensions. For instance, the flow estimation methods based on the flow
gravity model [304, 305] and network cascade imaging [110, 203] are challenging to
cope with a large number of redundant paths among the massive number of servers
in data centers.

The current research work can be generally divided into classical statistical
models and ML-based prediction models. The classical statistical models usually
include autoregressive models (AR), moving average models (MA), autoregressive
moving average models (ARMA) [17], and autoregressive synthetic moving average
models (ARIMA) [80]. These models cannot cope with high-dimensional and
complex nonlinear relationships yet, and their efficiency and performance in
complex spaces are fairly limited. ML-based prediction models can be trained
based on historical flow data information to find potential logical relationships
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in complex and massive data, explaining the irregular distribution of network
flow in time and space. According to the flow’s spatial and temporal distribution
characteristics, we classify ML-based prediction solutions into temporal-dependent
modeling and spatial-dependent modeling. Next, we will discuss and compare the
existing representative work of these two schemes from different perspectives,
followed by our insights into flow prediction.

3.1.1 Temporal-Dependent Modeling

The temporal-dependent modeling focuses on the temporal dimension inside the
data center. Flow forecasting is usually achieved by using one-dimensional time
series data. Liu et al. [154] proposed an elephant flow detection mechanism. They
first predicted future flow based on dynamical traffic learning (DTL) algorithm
and then dynamically adjusted the elephant flow judgment threshold to improve
detection accuracy. However, the frequent involvement of the controller causes
extra computational and communication overhead. Beyond these, researchers have
also made great efforts to optimize the prediction accuracy with a finer granularity.
Szostak et al. [242] used supervised learning and deep learning algorithms to predict
future flow in dynamic optical networks. They tested six ML classifiers based on
three different datasets. Hardegen et al. [107] collected about 100,000 flow data
from a university DCN and used deep learning to perform a more fine-grained
predictive analysis of the flow. Besides, researchers [6, 156, 172, 269] have also
carried on a lot of innovative work on the basic theoretical research of artificial
intelligence. However, some of the experiments to verify the effectiveness of these
intelligent schemes are not sufficient. For example, Hongsuk et al. [293] only
conducted experimental comparisons on the effectiveness with different parameter
settings, lacking the cross-sectional comparisons as aforementioned.

3.1.2 Spatial-Dependent Modeling

The spatial-dependent modeling focuses on both temporal and spatial dimensions
across data centers. Nearly 67% of these intelligent solutions compare with the
classical statistical models and other ML-based prediction models. The spatial-
dependent modeling greatly improves the feasibility and accuracy of solutions, but it
also increases the complexity and the operational cost of network O&M. According
to our investigations, Over 45% of commercial data center traffic prediction schemes
adopt spatial-dependent modeling. Li et al. [142] studied flow transmission schemes
across data centers, combined wavelet transform technique with a neural network,
and used the interpolation filling method to alleviate the monitoring overhead caused
by the uneven spatial distribution of data center traffic. Its experiments conducted
in Baidu data center showed that the scheme could reduce the prediction error by
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5–30%. We also note that the about 70% of intelligent flow prediction solutions
used real-world data. Pfülb et al. [194] based on the real-world data obtained from
a university data center that had been desensitized and visualized, the authors used
deep learning to predict the inter-DC traffic.

3.1.3 Discussion and Insights

The comprehensive comparisons of the existing approaches are detailed in Table 3.1.
Some of our insights into flow prediction are as below.

• Prior knowledge. ML algorithms such as Support Vector Regression (SVR)
[50] and Random Forest Regression (RFR) [126], compared to classical sta-
tistical models, can handle high-dimensional data and obtain their nonlinear
relationships well. Nevertheless, their performance in exceptionally complex
spatio-temporal scenarios is still limited, partially because they require additional
expert knowledge support, where the model learns through the features pre-
designed by the experts. However, these features usually can not fully describe
the data’s essential properties.

• Quality of source data. The performance of flow prediction heavily depends
on the quality of source data, with respect to authenticity, validity, diversity, and
instantaneity. Not only for flow prediction, the quality of source data also plays
a crucial role in other optimization scenarios of intelligent data center network,
which we will explain in Sect. 4.1.2.

• Anti-interference ability. The network upgrading, transformation and failures
typically can cause sudden fluctuation of traffic, and these abnormal data will
interfere with the ultimate accuracy of the model. In order to improve the
accuracy of traffic prediction, it is suggested to provide an abnormal traffic
identification mechanism to identify the abnormal interference data and eliminate
them when executing traffic predictions.

3.2 Flow Classification

Similar to flow prediction, flow classification is also widely used as a priori
knowledge for many other optimization modules such as flow scheduling, load
balancing, and energy management. Accurate classification of service flows is
essential for QoS, dynamic access control, and resource intelligent optimization.
The daily operation and maintenance also require accurate classification of unknown
or malicious flows. Moreover, a reasonable prioritized classification ordering can
help enterprise network operators optimize service applications individually and
meet the resource management requirements and service needs. Nevertheless,
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the highly dynamic and differentiated traffic, and complex traffic transmission
mechanism greatly increases the difficulty of traffic classification.

Traditional traffic classification schemes are usually based on the information
of port, payload, and host behaviors. In the early stages of the Internet, most pro-
tocols used well-known port numbers assigned by the Internet Assigned Numbers
Authority (IANA) [224]. However, protocols and applications began to use random
or dynamic port numbers so as to hide network security tools. Some experimental
results further show that port-based classification methods are not very effective,
for example, Moore et al. [177] observed that the accuracy of the classification
techniques based on IANA port list does not exceed 70%. To overcome the limi-
tations of the above classification techniques, the payload-based flow classification
method was proposed as an alternative. The payload-based approach, also known as
deep packet inspection (DPI), classifies flows by examining the packet payload and
comparing it with the protocols’ known signatures [82, 85, 93, 223]. Common DPI
tools include L7 filter [19] and OpenDPI [38]. However, such DPI-based solutions
incur high computation overhead and storage cost though they can achieve higher
accuracy of traffic classification than port-based solutions. Although the accuracy
is improved compared to the previous methods, the complexity and computational
effort are significantly higher. Furthermore, dealing with the increasingly prominent
network privacy and security issues also brings high complexity and difficulty to
DPI-based techniques [34, 77]. Thus, some researchers put forward a new kind of
flow classification technique based on host behaviors. This technique uses the hosts’
inherent behavioral characteristics to classify flows, overcoming the limitations
caused by unregistered or misused port numbers and high loads of encrypted
packets. Nevertheless, the location of the monitoring system largely determines the
accuracy of this method [41], especially when the observed communication patterns
may be affected by the asymmetry of routing.

In the face of such dilemma of traditional solutions, ML-based flow classification
techniques can address the mentioned limitations effectively [65, 286]. Based on
the statistical characteristics of data flows, they complete the complex classification
tasks with a lower computational cost. Next, we will introduce and discuss different
ML-based flow classification techniques according to the types of machine learning
paradigms, and followed by our insights at the end.

3.2.1 Supervised Learning-Based Flow Classification

Supervised learning can achieve higher accuracy of classification among applica-
tions. Despite of the tedious labeling work, many supervised learning algorithms
have been applied in flow classification, including decision trees, random forests,
KNN, and SVM. Trois et al. [255] generated different image textures for different
applications, and they classified the flow matrix information using supervised
learning algorithms, such as SVM and random forests. Zhao et al. [310] applied



3.2 Flow Classification 23

supervised learning algorithms to propose a new classification model that achieved
an accuracy of about 99% in a large supercomputing center.

3.2.2 Unsupervised Learning-Based Flow Classification

Unsupervised learning-based flow classification techniques do not require labeled
datasets, eliminating the difficulties encountered in supervised learning and provid-
ing higher robustness. In contrast to supervised learning, the clusters constructed by
unsupervised learning need to be mapped to the corresponding applications. How-
ever, the large gap between the number of clusters and applications makes it more
challenging to classify flows. As investigated in the work of Yan et al. [288], many
existing flow classification schemes have adopted unsupervised learning algorithms
[24, 35, 76, 270, 307]. Xiao et al. [281] focused on the imbalance characteristics of
elephant and mice flows in DCNs and proposed a flow classification method using
spectral analysis and clustering algorithms. Saber et al. [214] had a similar research
concern and proposed a cost-sensitive classification method that can effectively
reduce classification latency. Deque-torres et al. [74] proposed a knowledge-defined
networking (KDN) based approach for identifying heavy hitters in data center
networks, where the efficient threshold for the heavy hitter detection was determined
through clustering analysis. Unfortunately, the scheme was not compared with other
intelligent methods, thus failing in proving its superiority.

3.2.3 Deep Learning-Based Flow Classification

The service data and traffic data generated in the data center networks are typically
massive, multidimensional, and interrelated. It’s very challenging to explore the
valuable relationship between these data. To this end, deep learning (e.g., CNN,
RNN and LSTM) is introduced to DCN as a promising way to find the potential
relationship between these massive and interrelated data. Compared with the former
two ML-based classification techniques, the deep learning based schemes have no
advantage in training time and classification speed. To this end, Wang et al. [273]
focused on the speed of classification and implemented a high-speed online flow
classifier via field programmable gate array (FPGA), where the authors claimed that
it can guarantee an accuracy of more than 99% while reducing the training time
to be one-thousandth of the CPU-based approach. Liu et al. [159] implemented
a more fine-grained flow classification method based on GRU and reduced flow
monitoring costs. In addition, Zeng et al. [302] proposed a lightweight end-to-end
framework for flow classification and intrusion detection by deeply integrating flow
classification and network security.
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3.2.4 Reinforcement Learning-Based Flow Classification

Reinforcement learning agent iteratively interacts with the environment aiming to
find a global optimal classification scheme according to the feedback reward and
punishment of feedback in a network scenario. To handle the highly dynamic
network conditions in DCNs, Tang et al. [244] proposed a new reinforcement
learning-based flow splitter that effectively reduced the average completion time
of flows, especially for delay-sensitive mice flows. Whereas, as the reinforcement
learning tends to fall into local optimal solution and takes a longer training time,
this paradigm has not been widely used in traffic classification.

3.2.5 Discussion and Insights

The ML can overcome the limitations and constraints of traditional flow classifica-
tion schemes. In view of this, numerous ML-based intelligent traffic classification
schemes have been proposed. Table 3.2 summarizes and compares these existing
work from various perspectives. Through systematic investigations and in-depth
analysis, in this book we summarize a general flow classification workflow, as
shown in Fig. 3.1, ranging from different levels of feature collections, data pre-
processing, model training, to model inference outputting classification results.
Furthermore, we have summarized several key concerns that need to be addressed,
as listed below.

• Fine granularity. The complex diverse DCN service scenarios, high require-
ments on flow control, and more precise network management are driving
the flow classification techniques toward a more fine-grained direction. A
fine-grained and accurate classification scheme can allocate network resources
efficiently, ensuring a better user experience. However, most of the traditional and
intelligent classification schemes are only based on a rough general classification
scale, for example, singly based on the network protocol or a single function of
the application, which can not provide better QoS. In some simplified scenarios,
even if the fine-grained classification has been achieved, the computational over-
head, monitoring overhead, stability and feasibility also need to be considered.

• Flexibility and robustness. To meet various service needs, flow classification
should consider the timeliness and effectiveness of classification, which could
help services meet their SLAs. Using FPGA is a feasible way to improve the
response speed of classification and avoid the influence of abnormal conditions
on the classification efficiency. When encountering the common network anoma-
lies such as jitter, packet loss, and retransmission, the efficiency of a robust flow
classification solution should not degrade. Moreover, the quality of extracted
data features can also significantly affect the final result of classification,
and redundant features will reduce the accuracy of the algorithm along with
additional computational overhead [230].
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Feature Selection

Package-level Flow-level Application Stream-level

Real-world / Simulated Data
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ML Training
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Classification Moudel

Classification Result
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Fig. 3.1 The general system workflow of flow classification, ranging from different levels of
feature collections, data pre-processing, model training, to the final model inference outputting
classification results

3.3 Load Balancing

The purpose of load balancing is to ensure the balanced distribution of flows on
different network routing paths, so as to minimize flow completion time, improve
bandwidth utilization and reduce latency. The load balancing problem is usually
formulated as a multi-commodity flow (MCF) problem, which has been proved to
be NP-hard. The traffic in data centers usually changes in milliseconds or even
microseconds, however, traditional unintelligent solutions lack the flexibility of
dynamic adjustment according to the real-time network environment status, which
may lead to imbalanced load distribution or even network congestion [306]. As
for the performance evaluation and effectiveness verification, there are a variety of
metrics. Generally speaking, solutions are usually evaluated in terms of the average
link utilization, scalability, robustness, and energy efficiency, which is consistent
with the evaluation dimension of REBEL-3S.
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3.3.1 Traditional Solutions

Empirically, the decision-making of load balancing largely depends on the real-time
collected network running status data. According to the way of data acquisition,
traditional unintelligent solutions can be divided into two categories: centralized
and distributed. Centralized solutions, such as DENS [133], Hedera [9], and Mahout
[63] make decisions based on the global network knowledge acquired through a
centralized controller. However, the centralized schemes typically inevitably result
in additional communication overhead between the controller and the data plane,
which poses extra traffic burden on the network. Besides, the centralized schemes
usually require dedicated and customized hardware (e.g. OpenFlow supported),
which are cross vendor incompatible. Distributed solution is difficult to make the
best decision without a global view. Although the topology of DCNs is often
symmetrical in design, it is still difficult to deal with the network failure caused by
the damage to hardware devices. Alizadeh et al. [14] insisted that an efficient load
balancing scheme must address the asymmetry issue caused by network failures
which are highly disruptive. Importantly, traditional approaches are difficult to learn
from the historical traffic data and automatically adjust the strategies to achieve
network optimization.

3.3.2 Machine Learning-Based Solutions

Facing the ever-changing network environment, ML can help the network self-
learning, realize the self-decision of flow scheduling strategy, and self-adaptation
to the network environment. Zhao et al. [309] proposed two ML-assisted flow
aggregation schemes to achieve low latency and high bandwidth. They improved
network throughput through specifically designed optical cross-connect switches,
and deployed ML algorithms (such as DT, KNN, and SVM) with relaxed accuracy
requirements to edge nodes to reduce latency. The Wavelength Division Multi-
plexing (WDM) technology was used to improve the scalability of the optical
network, but the FPGA board was installed on each ToR to perform feature
sampling, increasing the hardware cost. Wang et al. [271] used supervised learning
algorithms, such as C4.5, to classify network flows with different characteristics
and developed a priority-aware scheduling algorithm for packet switching. The
simulation experiments showed that their scheduling algorithm was superior to the
classical RR algorithm [103] with respect to the average delay and packet loss
rates. Compared with the former two kinds of learning paradigms, deep learning
algorithms have better applicability and more and more researchers prefer to use
them. Li et al. [141] designed a GNN-based optimizer for flow scheduling to
reduce the flow completion time (FCT). However, GNN brings a more complex
network structure and increases computational costs. Prevost et al. [200] devoted
to the energy consumption problem caused by the imbalanced load. They proposed
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a new DNN-based framework to achieve load demand prediction and stochastic
state transfer. With the increasing difficulty of optimization goal, more and more
researchers consider using reinforcement learning and deep reinforcement learning
to deal with the dynamic network environment. Tang et al. [244] employed a
modified DDPG algorithm for high-performance flow scheduling. Compared to
the native DDPG and traditional unintelligent methods, their solution significantly
reduced the FCT of delay-sensitive flows.

3.3.3 Discussion and Insights

To avoid the difficulty of collecting real-world data, 90% of the intelligent solutions
were tested based on simulation-generated data. Due to the diversity and complexity
of DCN application scenarios and the differences in data sources and scenarios, it
is not easy to make a fair comparison between intelligent schemes. As a result,
over 76% of the solutions lack comparisons to other ML-based solutions. Besides,
inheriting the advantages of traditional unintelligent solutions, more than 40% of
intelligent solutions adopt SDN architecture to collect network data and make
decisions based on a centralized controller (Table 3.3).

The details of the existing intelligent solutions are listed in Table 3.4, and
the assessment results of each solution based on REBEL-3S are summarized
in Table 3.3. Clearly, most solutions consider bandwidth utilization and latency,
account for 94 and 88% respectively, while few solutions take security and reliability
into account, account for 6 and 12% respectively. In addition to the issues and
challenges discussed above, the following two concerns need to be considered.

• Compatibility of network stacks. According to the work of Wang et al. [274],
one of the necessary conditions for many traditional research work is to be
compatible with different network protocol stacks [12, 13, 26, 51, 112, 278]. With
the advent of new network protocols such as .D2TCP [262] and DCTCP [11], the
unequal distribution of network bandwidth among different network users due
to stack incompatibility has attracted considerable attention [62, 109]. Intelligent
solutions should focus on compatibility between different network protocols and
prevent unfair resource allocation caused by the different protocol parameters.

• Dynamic of network flow. In respect of the dynamic of network traffic, it is
necessary and beneficial to adjust the threshold and priority of flows in time. It
is suggested to pay attention to the local and overall benefits, especially for the
mixed flow scheduling problem in the scheduling process.
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Table 3.3 Assessment of load balancing schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Ruelas et al.
[212]

NO NO YES YES NO NO YES

Tosounidis et al.
[253]

NO NO YES YES NO YES YES

Doke et al. [69] NO NO YES YES NO NO NO

Hashemi et al.
[108]

YES NO YES YES NO YES NO

Zhou et al. [311] NO NO YES YES NO YES NO

Tang et al. [244] NO NO YES YES NO YES YES

Liu et al.
[148, 162]

NO NO YES YES NO YES YES

Yu et al. [297] YES NO YES YES NO YES YES

Zhao et al. [309] NO NO YES YES NO YES YES

Liu et al. [158] NO NO YES NO NO YES YES

Francois et al.
[84]

NO NO YES YES YES YES YES

Scherer et al.
[220]

NO NO YES YES NO NO NO

Prevost et al.
[200]

NO YES NO NO NO NO NO

Sun et al.
[239, 240]

NO YES YES YES NO YES YES

Lin et al. [147] NO NO YES YES NO YES NO

Wang et al.
[271]

NO YES YES YES NO YES YES

Li et al. [141] NO NO YES YES NO NO YES

3.4 Resource Management

As one of the most critical optimization problems in data center, resource manage-
ment involves the allocation, scheduling, and optimization of computing, storage,
network and other resources, which directly affects the overall resource utilization
efficiency and resource availability of data center, and further affects the user
experience and the revenue of service providers. However, with the increasing
complexity of network infrastructure, the explosive growth of the number of
hardware devices, and the growing demand for services, the traditional unintelligent
solutions can no longer effectively deal with these problems, and there is an urgent
need for some intelligent resource management solutions. Studies reveal that ML-
assisted intelligent resource allocation can maximize the profit of service providers,
provide better quality of experience (QoE) for tenants, and effectively reduce energy
costs.
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There has been a wide variety of resource management solutions, such as
multi-level queues [129], simulated annealing [189], priority-based [236], and
heuristic algorithms [36]. The advent of virtualization allows virtual machines
(VMs), virtual containers (VCs), and virtual networks (VNs) to be implemented
on a shared physical server. Whereas, the association between various hardware
resources (such as CPU, memory and disk space) and virtual resources is highly
dynamic throughout the life cycle of services, which is difficult to grasp clearly. The
preliminary research findings demonstrated that traditional unintelligent resource
management methods can not mine the potential relationships between complex
parameters quickly and dynamically. Besides, multi-objective optimization also
increases the difficulty of network optimization, such as considering QoS, energy
cost and performance optimization at the same time. Furthermore, in a large-scale
data center, the complex configuration is also a challenging and destructive problem,
where once the configuration error occurs, it will cause incalculable damage to
network services, especially for latency-sensitive services. ML can make up for
the deficiency of traditional unintelligent methods by learning historical data to
dynamically make appropriate management strategies adaptively. Therefore, many
researchers have begun to study in this direction, and the solution combined with
machine learning came into being. The work of Fiala and Joe [81] explored the
application of ML techniques for resource management in the cloud computing area,
and Murali et al. [180] focused on a distributed NN-based ML approach to achieve
efficient resource allocation.

In data center networks, the types of network resources are rich and diverse. At
the network level, it can be a physical hardware resource (server, switch, port, link,
CPU, memory) or an abstract software resource (virtual network, virtual node, vir-
tual link, virtual switch). In addition, network resources can be task/job-oriented or
QoS-oriented. From the perspective of the resource life cycle, resource management
can also focus on resource prediction or resource utilization optimization. In view
of the diversity of resource management methods and the difference of optimization
objectives, we divide ML-based resource management schemes into the follow-
ing five categories: task-oriented, virtual entity-oriented, QoS-oriented, resource
prediction-oriented, and resource utilization-oriented resource management.

3.4.1 Task-Oriented Resource Management

In data centers, there are various special tasks with different particular performance
requirements, such as compute-intensive tasks and latency-sensitive tasks, which
require that the resource management solutions can be customized for different
tasks. Tesauro et al. [247] used reinforcement learning to optimize the allocation of
computing resources by global arbitration, allocated efficient server resources (such
as bandwidth and memory) for each web application, and solved the limitations of
reinforcement learning by queuing model policy. Marahatta et al. [170] classified
tasks into failure-prone and failure-prone tasks by DNN and executed different
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allocation policies for different types of tasks. In addition, resource management can
also help reduce the energy consumption of the data center. Yi et al. [294] scheduled
the load of computationally intensive tasks based on deep reinforcement learning to
minimize the energy cost.

3.4.2 Virtual Entities-Oriented Resource Management

Virtualization allows tasks with different service and performance requirements to
share a series of resources. Generally speaking, virtualized entities include virtual
machines (VMs), virtual containers (VCs), and virtual networks (VNs), and we
define the solutions that allocate resources for virtualized entities as virtual entities-
oriented resource allocation management.

In order to ensure network performance while minimizing power consumption,
Caviglione et al. [45] applied a DRL algorithm, named Rainbow DQN, to solve the
multi-objective VM placement problem. Their model was based on the percentages
of network capacity, CPU, and disk, with full consideration of energy cost, network
security, and QoS. Liu et al. [152] applied Q-learning algorithm to distributed
management of resources, and their proposed hierarchical network architecture can
provide resource allocation and power management of VMs. Experiments showed
that when the physical server clusters are set to 30, for 95,000 jobs, the proposed
hierarchical framework can reduce the network energy consumption and latency by
16.12 and 16.67% respectively, compared with the DRL-based resource allocation.
It can be seen that in addition to the resource allocation for tasks, the resource
allocation for virtual entities also greatly affects the operation efficiency and power
consumption of the data center. Elprince et al. [75] designed a dynamic resource
allocator, which allocated resources through different machine learning techniques
(such as REPTree and Linear Regression), and dynamically adjusted the allocated
resources through a resource fuzzy tuner. Experiments showed that their solutions
can guarantee SLA well and meet differentiated service requirements between
various customers. Jobava et al. [125] managed VM resources through flow-aware
consolidation. The AL algorithm was used to divide the virtual clusters to reduce the
total communication cost, and then simulated annealing algorithmwas employed for
intelligent allocation of VM clusters. Both phases were traffic aware.

3.4.3 QoS-Oriented Resource Management

Resource management optimization research has improved the overall QoS of the
service by optimizing resource allocation, although this is not the primary key
objective. The two typical representative research work aiming at QoS are as
follows. Wang et al. [275] proposed an on-demand resource scheduling method
based on DNN to ensure the QoS of delay-sensitive applications. Wadwadkar et al.
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[287] leveraged SVM to perform resource prediction and meet QoS requirements
with a performance-aware resource allocation policy. As for the uncertainty of
prediction, they introduced the concept of confidence measure to mitigate this
problem.

3.4.4 Resource Prediction-Oriented Resource Management

Resource prediction plays an essential role in resource management. Timely and
accurate resource forecasting can make the data center achieve more effective
resource scheduling, and further improve the overall performance of the data center
network. However, although virtualization and other technologies greatly enrich the
types of resources and improve service efficiency, it also increases the difficulty of
resource prediction. Besides, Aguado et al. [5] implied that the prediction accuracy
of traditional unintelligent algorithms cannot be guaranteed on account of diversity
of services and bandwidth explosion. Moreover, to cope with the unpredictable
resource demand, traditional resource management mechanisms usually over-
allocate resources to ensure the availability of resources, which is harmful to the
overall resource utilization of data centers. How to deal with the differentiated
requirements of various workloads and precisely predict resources still remains
a challenge. Yu et al. [295] proposed a deep learning-based flow prediction and
resource allocation strategy in optical DCNs, and experimental results demonstrated
that their approach achieved a better performance compared with a single-layer
NN-based algorithm. Iqbal et al. [121] proposed an adaptive observation window
resizing method based on a 4-hidden-layer DNN for resource utilization estimation.
The work of Thonglek et al. [251] predicted the required resources for jobs by a
two-layer LSTM network, which outperformed the traditional RNN model, with
improvements of 10.71 and 47.36% in CPU and memory utilization, respectively.

3.4.5 Resource Utilization-Oriented Resource Management

Resource utilization is regarded as an intuitive and important metric to evaluate
a resource management mechanism. This type of resource management schemes
typically improve the resource utilization through task scheduling, VM migration
and load balancing algorithms. It is worth noting that dynamic change of resource
demand in data centers requires the algorithm being able to automatically optimize
resource utilization according to the changing network environment. However, the
traditional unintelligent solutions are difficult to cope with the high variability of the
network environment. Therefore, a few researchers have begun to apply machine
learning to solve these problems. Che et al. performed task scheduling based on the
actor-critic deep reinforcement learning algorithm to optimize resource utilization
and task completion time [48]. Telenyk et al. [246] used the Q-learning algorithm for



3.4 Resource Management 39

global resource management, and realized resource optimization and energy saving
through virtual machine scheduling and virtual machine aggregation. In addition
to improving resource utilization through scheduling and consolidation, Yang et al.
[291] focused their research on the optimization of storage resource, that is, how
to efficiently store data. They used distributed multi-agent reinforcement learning
methods to achieve joint optimization of resources, which effectively improved
network throughput and reduced stream transmission time.

3.4.6 Discussion and Insights

The current resource management system in today’s data centers is complex and
multifaceted. Along with the expansion of service scenarios, the resource schedul-
ing among various virtualized entities is getting more complicated. Increasingly,
researchers adopt deep learning or deep reinforcement learning aiming to achieve a
more intelligent resource management. We list the details of each intelligent solution
in Table 3.5. Then, we evaluate these solutions with respect to each dimension of
REBEL-3S, as shown in Table 3.6. It reveals that more than half of the solutions
take the energy efficiency into account in resource management [45, 163, 246], and
most of them consider the impact of network stability. Here, we summarize several
key concerns, as below, which deserve to be further studied and addressed.

• Stability and scalability of models. Taking reinforcement learning as an exam-
ple, primary decisions may have relatively poor consequences due to a lack of
domain knowledge or good heuristic strategies [247]. When the agent performs
tentative actions, it may fall into local optimal solutions if not appropriately
trained. Besides, reinforcement learning may lack good scalability in large
DCNs.

• Adaptability to Multi-objective and multi-task. Whether it is a traditional
resource allocation scheme (such as priority-based VM allocation [236],
heuristic-based resource allocation [36]), or an intelligent resource allocation
scheme, their performance is usually evaluated in a specific single scenario.
Whereas, one qualified intelligent solution should fully consider the richness of
scenarios and requirements, and be able to adapt to multi-scenario and multi-task
network environment.

• Security of resource allocation. The flexibility of virtualized resources can
make vulnerability or fault propagation faster, and fault recovery and fault source
tracing more difficult. Padhy et al. [187] disclosed that vulnerabilities were found
in VMware’s shared folder mechanism, which could allow the users of guest
systems to read and write to any part of the host file system, including system
folders and other security-sensitive files.

• Perspective of resource lifecycle. The allocation, utilization, and recycling
of resources occur frequently. Current intelligent solutions focus more on the
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Table 3.6 Assessment of resource management schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Wang et al. [275] YES NO YES YES NO YES NO
Che et al. [48] NO NO NO YES NO YES NO
Liu et al. [152] NO YES YES YES NO YES NO
Tesauro et al. [247] NO NO YES YES NO YES NO
Liu et al. [155, 157] YES YES YES YES NO YES YES
Yang et al. [291] NO NO YES YES NO YES YES
Iqbal et al. [121] NO NO YES YES NO NO NO
Elprince et al. [75] NO NO YES YES NO NO YES
Caviglione et al. [45] NO YES YES YES YES YES NO
Yi et al. [294] NO YES YES YES NO YES YES
Li et al. [163] NO YES YES NO NO NO NO
Thonglek et al. [251] NO NO YES NO NO YES NO
Xu et al. [285] NO YES YES NO NO YES NO
Zerwas et al. [303] NO YES YES YES NO NO NO
Chen et al. [55] NO NO YES YES NO YES NO
Yu et al. [295] NO NO YES YES NO NO NO
Yadwadkar et al. [287] YES YES YES YES NO YES YES
Telenyk et al. [246] NO YES YES YES NO YES NO
Jobava et al. [125] YES YES YES YES NO YES YES
Marahatta et al. [170] YES YES YES NO NO YES NO
Wang et al. [265, 268] YES YES YES NO NO NO YES
Rayan et al. [208] NO YES YES NO NO NO NO

prediction of resource allocation and maximization of benefits in the process of
resource allocation, but lack related studies on resource collection and recycling.

3.5 Energy Management

With the rapid rise of cloud-based service needs, both the computing load and traffic
load of data centers increase exponentially. In this case, any kind of unreasonable
resource planning (e.g. unbalanced load, over-provisioned resources, non-energy-
aware routing, etc.) will result in serious energy waste. Therefore, energy efficiency
optimization has become an urgent and crucial issue for sustainable data centers,
and many researchers have conducted considerable research in power conservation
of data centers.

Traditional energy management solutions can be divided into model-based and
state-based solutions [161]. Model-based solutions require designing corresponding
mathematical models for each hardware module, such as the air supply temperature
of the air conditioning mainframe, the CPU power consumption of the server,
and the cooling ducts’ inlet and outlet temperatures. Most model-based solutions
are based on computational fluid dynamics (CFD) for simulation, which can find
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the optimal approximate solution, however, it requires high computing power
and memory capacity, and is very time-consuming. Additionally, the modeling
parameters also need to be adaptively updated in line with the network conditions.
Toulouse et al. [254] proposed the potential-flow-based compact model as an
alternative to CFD. However, it only retained the most basic physical mechanisms
in the flow process and could not meet the need for real-time control. Besides,
these representative schemes were based on a relatively stable premise and may not
perfectly fit real-world scenarios of data center networks. State-based solutions are
more suitable for real-time control, which take the historical state information of the
device as input and use machine learning algorithms to control power consumption.
Parolini et al. [192] introduced a state-space model to predict temperature changes
dynamically. Based on the air conditioning supply temperature and rack power, Tang
et al. [243] constructed an abstract heat flow model to calculate the temperature
distribution of the rack.

Positively, machine learning provides a promising way to deal with these
challenges faced by the traditional models. The rest of this section will sequentially
introduce the current research on ML-based energy management at the server level,
network level, and data center level, and finally give our insights.

3.5.1 Server Level

The server level energy optimization concentrates on the aggregation of services
leveraging VMmigration, VM mapping, and resource prediction/scheduling, which
pays little attention to network-level performance. Marahatta et al. [169] used deep
neural networks to classify tasks according to the probability of task failure, and
proposed an energy-aware scheduling method based on failure prediction model to
achieve lower energy consumption with high fault tolerance. The data-driven NN-
based framework designed by Uv et al. could perform power prediction based on
server performance data [260]. Yang et al. [289] fully considered the uncertainty of
the network and the diversity of task characteristics, and transformed the economic
energy scheduling problem into a Markov decision process and based on which
an energy-aware resource scheduling scheme was proposed aiming to reduce the
energy consumption in data centers.

3.5.2 Network Level

The key principle of the network level energy management is to calculate a subset of
the network to carry the traffic through flow aggregation, flow scheduling, energy-
aware routing, etc., and shut down the unused network devices so as to maximize the
power savings. Wang et al. [272] were the first group to apply Blocking Island (BI)
paradigm, which is anML-based resource abstraction model, to the decision-making
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process of energy-saving strategies from the perspective of resource allocation and
routing. The experimental results revealed that their approach greatly improved the
computation efficiency and achieved at most 50% power savings while guaranteeing
the network reliability. Sun et al. [240] proposed a flow scheduling method that
employed deep reinforcement learning to reduce network energy consumption while
ensuring FCT. They argued that the optimal flow scheduling scheme in DCNs should
consider the temporal fluctuations and spatial distribution imbalances of flow when
it dynamically merges traffic to fewer active links and devices, so as to improve the
power efficiency. Inspired by these research work, we hold that the goal of energy
conservation solutions can be achieved from two dimensions: local dimension
and overall dimension. The local dimension needs to ensure a fine-grained flow
distribution adjustment policy on each path, while the overall dimension needs to
implement a dynamic traffic adjustment policy and an FCT assurance policy based
on real-time flow fluctuations.

3.5.3 Data Center Level

This level is more complex and systemic. It is dedicated to the energy savings of the
whole data center, including not only network devices and computing equipment,
but also related supporting systems, such as air conditioning cooling systems,
heat dissipation systems, electrical power supply systems, and so forth. Athavale
et al. [21] used cooling system data, such as the computer room air conditioner
(CRAC) blower speed and CRAC return temperature setpoint, to correlate with the
DNN model’s flow and temperature distributions. They claimed that the solution
was able to anticipate temperature and tile flow rate with a normal blunder of
<0.6 .

◦C and 0.7%, respectively. Actually, their DNN model based on a transient
scenario may had lower interpretive prediction errors, but higher extrapolative
prediction errors. Grishina et al. [96] analyzed the Information Technology (IT)
room’s thermal characteristics by clustering them with the K-means algorithm,
effectively circumventing the drawbacks of the traditional temperature measurement
solutions, for example, the difficulty of locating specific nodes causing overheating.
Apart from the assessment of characteristics, researchers also paid attention to the
assessment of risk. Sasakura et al. [218] used the gradient boosting decision tree
(GBDT) and a state space model to predict the temperature and executed different
energy-saving strategies by evaluating the risks associated with the temperature.
Furthermore, to solve the time-consuming problem of the traditional CFD parameter
identification process, Fang et al. [79] performed the relationship mapping between
traffic patterns and model parameters through DNN. Their scheme primarily took
the flow rate, rack power distribution, and air supply temperature of the server
room air conditioner into account for the rapid temperature assessment. Ran et
al. [206] focused on the joint optimization of job scheduling and cooling control
in data centers to further improve energy efficiency. The proposed dual-scale
control mechanism provided a good tradeoff between QoS and energy conservation.
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Table 3.7 Assessment of energy management schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Grishina et al. [96] NO YES YES NO NO YES YES
Fang et al. [79] NO YES YES NO NO YES YES
Liu et al. [161] NO YES YES NO NO YES YES
Sasakura et al. [218] NO YES YES NO NO YES NO
Wang et al. [272] YES YES YES NO NO YES YES
Athavale et al. [21] YES YES YES NO NO YES NO
Yang et al. [289] NO YES YES YES NO YES NO
Ran et al. [206] NO YES YES YES NO YES NO
Kuwahara et al. [134] NO YES YES NO NO YES YES
Uv et al. [260] YES YES YES YES NO YES NO
Marahatta et al. [169] YES YES YES NO NO YES NO
Merizig et al. [174] NO YES YES NO NO NO NO
Haghshenas et al. [102] YES YES YES YES NO YES YES
Jobava et al. [125] YES YES YES YES NO YES YES
Sun et al. [239, 240] NO YES YES YES NO YES YES
Ilager et al. [115] NO YES YES YES NO YES NO
Li et al. [144] NO YES YES YES NO YES NO
Shoukourian et al. [233] YES YES YES YES NO YES NO

Nevertheless, this scheme was specially designed for computing intensive tasks,
and had limitations in application scenarios. Besides QoS, Kuwahara et al. [134]
also regarded the seasonal factor as a constraint in their scheme, where they held
that seasonal climate change was critical to the temperature impact of data centers.
Hereby, they collected power consumption data for about one year and concluded
that the power consumption of PACs varied greatly in summer and winter. Their
solution was based on the CFD model to build the power consumption model of the
device in the early stage, and then used deep learning to predict power consumption.
As the authors claimed, compared with repeatedly building CFD based power
consumption model on a single device to predict power consumption, the process
efficiency and accuracy were improved by 900 and 8%, respectively. However, it
did not work well for on-demand task assignments. Thus, they conducted further
research [135] to improve this situation (Table 3.7).

3.5.4 Discussion and Insights

We presented some of the most representative existing research works under
different categories, and briefly elaborated the key characteristics of each scheme, as
summarized in Table 3.8. Moreover, as revealed in Table 3.7, all these schemes were
further evaluated and compared from various dimensions according to the REBEL-
3S criteria. As for the experimental comparisons and evaluations of these schemes,
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most of them were evaluated and compared in terms of the prediction accuracy
of temperature and power consumption in addition to the effect of energy savings.
Hereby we summarize several key concerns and open issues, as follows.

• Data acquisition. Since most intelligent solutions are data-driven, the impact of
data acquisition process on the performance and security of server and network
cannot be ignored. To mitigate this issue, most of the researchers [21, 125,
134, 169, 206, 239, 289] simply used the offline ready-made or simulated data
sets, which cannot prove the performance in the real world. Therefore, it is
quite necessary to explore an efficient and low cost data acquisition mechanism,
and provide an effective quantitative method to quantify the impact of data
acquisition on related facilities.

• Data analysis. The survey statistics indicate that NN is the most commonly used
model in the existing work. However, there is a lack of relevant research on data
interdependencies and interactions, which are crucial in NN feature engineering.

• Applicability. Hyperparameter tuning is not only an essential but inevitable
procedure in the process of NN training. However, for the dynamics problem
with different configurations in a complex data center system, it is found that it
lacks certain applicability. This is an interesting and significant research topic,
which deserves more attention and research findings.

3.6 Routing Optimization

In DCNs, routing optimization is one of the most important research areas and
has aroused some discussions in both academia and industry. With the advantage
of SDN, routing optimization can get a global view of the network and deploy
strategies conveniently, but the existing traditional SDN-based methods cannot
sensitively adapt the real-time traffic changes in data center networks [16, 99,
149, 266, 267, 282]. For instance, if the routing policies cannot be timely adjusted
according to the dynamic network conditions, the imbalance of network flows may
cause uneven load distribution among network nodes, where some nodes are highly
loaded or even overloaded while some other nodes are underutilized or even idle,
resulting in the waste of resources and the degradation of QoS.

The rise of ML techniques has brought new thinking to this field. Chen et al.
[52, 53] pointed out that ML-based routing schemes can efficiently solve path
optimization problems in complex dynamic network environments, while traditional
unintelligent routing schemes are difficult in achieving similar results under the
same conditions. However, our investigation shows that so far there has been
relatively little research in this field, and most of the existing ML-based routing
solutions in data centers are centralized schemes based on SDN. In this book, we
divide the small amount of existing ML-based research work into intra-DC and
inter-DC routing optimization.
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3.6.1 Intra-DC Routing Optimization

About 80% of researchers paid attention to the routing optimization within a
data center. Bolodurina et al. proposed [40] a routing optimization strategy taking
the SLA into consideration. They pre-classified communication channels based
on unsupervised learning and deep learning to obtain a detailed network feature
set and then performed clustering according to SLA requirements. Finally, the
network feature set and clustering data were used as input for NN training to
obtain a suitable routing strategy. Likewise, Fu et al. [86] also adopted a pre-
classification strategy before using deep Q-learning (DQL) to train different NNs for
elephant flows and mice flows, respectively. They computed optimal routing paths
for different types of flows with the help of SDN, ensuring low latency for mice
flows and high throughput for elephant flows. Nevertheless, this solution suffers
high computation overhead and requires a relatively long time in path calculation.
Yu et al. [296] used the DDPG algorithm for routing decisions and improved the
network performance providing stable and high-quality routing services. It achieved
good convergence and effectiveness while guaranteeing QoS (delay minimization
and throughput maximization). Yao et al. [292] designed a DQN-based energy-
aware routing algorithm to find energy-efficient data forwarding paths and control
paths for switches in data centers.

3.6.2 Inter-DC Routing Optimization

Routing optimization among data centers has also received much attention. Hong
et al. [113] used NN to predict flow load blocking probability and proposed an
efficient routing and a resource allocation policy among data centers. Compar-
atively, Francois et al. [84] proposed a logically centralized cognitive routing
engine (CRE) based on reinforcement learning and deep learning to meet SLAs
through a cognitive routing engine. The CRE can work well even in highly chaotic
environments, where it can leverage RNN with RL to find the efficient overlay paths
with minimal monitoring overhead among geographically dispersed data centers.
Panda and Satyasen [188] combined the adaptive ant colony optimization algorithm
with the neural network to solve the power consumption and routing optimization
problems in the elastic optical data center network (Table 3.9).

3.6.3 Discussion and Insights

We list details of each intelligent solution in Table 3.10, and evaluate each
solution from various dimensions according to REBEL-3S in Table 3.9. Besides,
we summarize a general ML-assisted routing framework based on the investigation
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Table 3.9 Assessment of routing optimization schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Bolodurina et al. [40] NO NO YES YES NO YES NO
Fu et al. [86] NO NO YES YES NO YES NO
Yao et al. [292] NO YES YES YES NO YES NO
Yu et al. [296] NO NO YES YES NO YES NO
Panda [188] NO YES YES YES NO YES NO
Zhou et al. [311] NO NO YES YES NO YES NO
Liu et al. [148, 162] NO NO YES YES NO YES YES
Liu et al. [158] NO NO YES NO NO YES YES
Hong et al. [113] NO NO YES NO NO YES NO
Francois et al. [84] NO NO NO YES YES YES YES

results (as shown in Fig. 3.2). The intelligent routing decision module is mainly
implemented in the centralized controller. The control plane collects real-time
network operation data and performance data through the OpenFlow protocol, and
then take advantage of ML to train and calculate the efficient routing policies.
Finally, these network policies are distributed to the network devices for execution
through the SDN southbound interface. Based on the limited research work in
this area, we summarize the following several concerns as well as some potential
research opportunities.

• Multi-objective optimization. Considering the diversity of traffic types with
different priorities, how to provide differentiated routing optimization policies
is deemed as a challenging task. What’s more, the decision making of routing
policies may also depend on the preliminary results of some other optimization
models, such as traffic identification and classification schemes, where it will
involve collaborative optimizations of multiple learning models for multiple
tasks, which further increases the difficulty of optimization. In addition, the
optimization objectives are often diverse as well, and even need to be satisfied
at the same time (such as high throughput, low latency, high reliability, load
balancing, high link utilization, fault tolerance/burst tolerance, and even high
energy efficiency, etc.), which poses a great challenge to the optimality of the
solutions (global optimal or local optimal) and the computational complexity of
algorithms.

• ML model selection. Choosing an appropriate and effective ML model is the
first and most important step towards intelligent routing optimization. However,
in view of the particularity of the data center scenario, in most cases, the existing
ML models can not be applied directly to the network routing optimization. For
instance, the original Q-learning algorithm, which can only deal with discrete
action problems, cannot handle the continuous dynamic changes in the network,
and the complex and diverse network states may lead to excessive storage space
for Q-table. In consideration of the fact that the research work on ML-based
routing optimization is still relatively little, the types of ML models used in
the existing schemes are relatively few. As of now the investigation shows that
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Fig. 3.2 A general ML-assisted routing framework

deep reinforcement learning is still the mainstream paradigm for solving routing
optimization problems. Thereby, it is deemed that more effective ML models
need to be explored and validated, which is of great necessity and importance.

3.7 Congestion Control

The complexity and diversity of service scenarios and finer granularity of flow
demands have made congestion control more complicated in data centers. For
instance, some applications require high micro-burst tolerance [225, 226], while
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some applications demand low latency [176] or high throughput [88]. Besides, the
diverse applications and computing frameworks with different characteristics in data
centers further produce a variety of traffic patterns, such as one-to-one, one-to-many,
many-to-one, many-to-many, and all-to-all traffic patterns. However, the traditional
TCP-based solutions can hardly meet all the requirements of these different traffic
patterns at the same time [70, 83], which often result in queueing delay, jitter incast,
throughput collapse, increased flow completion time, and packet loss [58, 164, 167].

Admittedly, congestion control (CC) is the core of the TCP algorithm, which
determines the data transmission efficiency. Although the research on CC has
spanned more than three decades, the vast majority of CC solutions in data center
network scenarios have followed a conservative strategy. It starts transmission at
a slow sending rate and then uses certain strategies (e.g., AIMD) to adjust the
sending rate during subsequent transmissions, which is normally agnostic to the
flow deadline and network congestion and cannot well cope with the micro-burst
scenario as well [57, 127]. For instance, when multiple synchronous servers send
data to a single receiver simultaneously, the shallow-buffered switches at the last hop
are prone to be overwhelmed by the bursty traffic resulting in increased queueing
delay or even packet loss, which is known as the TCP incast problem [237].
Explicit Congestion Notification (ECN) is the most common congestion handling
mechanism, and MQ-ECN [25] is the first protocol to enable multi-queue scenarios
in data centers, guaranteeing queue independence to ensure no loss of network
latency and throughput. Nevertheless, the traffic is inherently bursty in DCNs, and
MQ-ECN is only applicable to round-based scheduling mechanisms.

Recently, ML has attracted researchers’ interest, and some ML-based CC
algorithms have been proposed. From the perspective of the decision-making mode
of CC policies, we divide the existing ML-based solutions into centralized and
distributed congestion control.

3.7.1 Centralized Congestion Control

The centralized scheme detects, avoids, and mitigates network congestion through
unified scheduling and centralized management of decentralized network resources.
The centralized allocation of network resources can maximize overall network
resource utilization, but it may also pose some problems. The transmission of
relevant network logs will take up additional bandwidth and memory, and the
relatively long response time of network policy decisions will have an adverse
impact on the latency sensitive applications. What’s more, in order to achieve
efficient congestion control, many solutions require to customize hardware, which
has lost the generality and practicality. More importantly, the centralized congestion
control scheme typically suffers from the scalability issue, where the centralized
controller usually becomes the bottleneck, which is difficult to adapt to large-scale
data center network.
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Jin et al. [124] designed two congestion control methods based on the improved
Q-learning algorithm and Sarsa algorithm, respectively, with the help of a central-
ized SDN controller. They believed that the congestion control algorithm should
consider the temporal and spatial characteristics of the flows and focused on
the path of the current flow when selecting the action. However, the improved
algorithms were not competent to adapt to complex data center networks [123].
It is necessary to further optimize the design of the reward function (for example,
adding delay, power consumption, fairness, reliability, and other factors into the
evaluation dimension), and to test under more complex network environment. Ruffy
et al. [213] proposed Iroko, a scalable and modular simulation simulator based on
deep reinforcement learning that supported various congestion control algorithms.
However, Iroko is still not suitable for large-scale networks, and it cannot adapt to
undefined network topologies, where the topology needs to be manually specified,
which is not practical in real world scenarios.

3.7.2 Distributed Congestion Control

Compared with centralized schemes, distributed schemes decentralize the decision-
making authorities and focus more on end-to-end congestion control, concentrating
the collaborative algorithm design on distributed network devices and hosts. Majidi
et al. used deep learning to improve the processing capability of switches, and
to separate elephant flows and mice flows through dual-coupled queues to meet
different FCTs [168]. In addition, the ECN threshold of each queue was dynamically
tuned to absorb micro-bursts. Nie et al. [185] proposed a TCP-RL system based
on reinforcement learning, which used different learning processes and congestion
control strategies for long and short flows to reduce RTT and maximize the overall
network throughput. The scheme has been deployed to one of the worldwide top
search engines for many years. Whereas, this approach was only evaluated and
compared in a static network condition rather than a dynamic DCN (Table 3.11).

3.7.3 Discussion and Insights

A comparative analysis of some typical representative research works is sum-
marized in Table 3.12, and the Table 3.11 shows the evaluation results of each
solution according to REBEL-3S. In the light of investigation and evaluation
results, we summarize several key problems that could hinder the improvement and
implementation of congestion control schemes, as below.

• Latency. According to reports provided by cloud service providers [202], slight
service delays can cause a dramatic drop in user experience, resulting in
significant revenue loss. Therefore, ML-based solutions should maximize the
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Table 3.11 Assessment of congestion control schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Jin et al. [124] NO NO YES NO NO YES YES
Liao et al. [145, 146] NO NO YES YES NO YES YES
Liu et al. [155, 157] YES YES YES YES NO YES YES
Majidi et al. [168] NO YES YES YES NO YES YES
Nie [185] NO NO YES YES NO YES YES
Ruffy et al. [213] NO NO YES YES NO YES YES
Thiruvenkatam et al.
[250]

NO NO YES YES NO YES YES

Sun et al. [239, 240] NO YES YES YES NO YES YES
Rastegarfar et al. [207] YES YES YES YES NO YES YES
Xiao et al. [283] YES NO YES YES NO YES YES

user experience by speeding up convergence speed (e.g., using asynchronous
components, distributed solutions) and shortening latency as much as possible.

• Stability of ML algorithms. The flexibility of ML algorithms is a double-edged
sword. Despite its ability to achieve good learning for network fluctuations,
it may also become a potential incentive to make the solutions not robust.
Furthermore, the instability of ML algorithms may deteriorate the network
fluctuations [252].

• Scheme evaluation. The experimental evaluations of most existing schemes are
based on simulations lacking of verification in real network environment and
the network scale is relatively small with simple topologies, which makes the
experimental results less convincing.

• Micro-burst tolerance. Micro-burst is a common traffic pattern in modern data
centers, which can exacerbate the problem of network congestion [122, 195,
225, 261]. Reasonable absorption of micro-burst traffic can effectively improve
the overall robustness of the network, and performs better than adjusting the
congestion window. Unfortunately, there are few ML-based congestion control
schemes considering the mitigation of micro-burst, which is believed to be a
valuable research topic and a good research opportunity [315].

All in all, the current research in this field is still quite limited, and the modeling,
algorithm design, experimental method and applications are still in primary research
phase, and there is still considerable research value in applyingML to the congestion
control.

3.8 Fault Management

A typical data center is usually composed of hundreds or thousands of various
devices, which are typically not 100% reliable with occasional failures. Thereby,
fault management has become an important but complex O&M problem for a large
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scale data center network [27, 114, 196, 198, 221]. The current data center network
O&M model is still passive and overly dependent on manual operations, which
is inefficient and not intelligent. Thus, the new generation data center needs to
draw support from new technologies to improve the O&M efficiency. Fortunately,
artificial intelligence technology provides an effective way to tackle this challenging
problem, and therefrom the ML-based intelligent O&M has naturally become a
research hotspot in academia and industry. In the traditional data center reactive
O&M model, fault prediction is mainly done by extracting the characteristics of
system component messages [215] and correlation between logs and faults [276].
Salfner et al. [217] used Hidden Semi-markov Model (HSMM) to analyze message
logs for fault prediction. Guo et al. [98] implemented end-to-end fault detection
through TCP proxy. Herodotou et al. [111] utilized statistical data mining techniques
for fault location, but their proposed probabilistic path model assumed only one
link fault could occur, which may lead to anomalous fault reports. In the rest
of this section, we will discuss and analyze the existing work with respect to
different stages of the fault management life-cycle, including fault prediction, fault
monitoring, fault location, and fault self-healing.

3.8.1 Fault Prediction

The large amount of alarm information, logs, and service impairment information
generated in the network facilitate network failure prediction, and how to effectively
extract critical information with fast sensing capability has been the primary concern
of current research. Predicting the time period of the next failure and reacting to it
in advance is deemed as the most feasible solution to improve data center reliability.
As the key advantage of machine learning lies in prediction, thus numerous ML-
based fault prediction algorithms have been put forward in recent years. Lee et al.
argued that the prediction of failures should have the lowest possible computational
latency [137]. They addressed the imbalance between normal and fault events
through a two-stage fault prediction framework. The experimental results showed
it achieved a 39.45% improvement in .F3-score [199] compared with multi-class
SVM and logistic regression, and realized a fast fault prediction with the prediction
time less than 9 ms, which could well meet the requirements of industrial data
centers. Zhang et al. [308] took a different approach by incorporating data noise
(irrelevant log information) into the optimization scheme and solving the imbalance
problem by extracting the modularity of system log information. They observed that
before the failure occurs the failure model of the same switch has some common
syslog characteristics, which are further explored in this work based on a machine
learning algorithm (i.e., Random Forest) to predict switch failures. Whereas, the
above schemes have the same drawbacks as traditional statistical methods, which
cannot deal with sequence data well in cloud data centers. Gao et al. [89] proposed
a multilayer bidirectional LSTM based fault prediction model and adjusted the
weights of input features by data classification, which has better applicability in
cloud data centers.
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3.8.2 Fault Detection

Fault detection is not only an important means to perceive network failures, but
also one of the key technologies of fault management. Nevertheless, the large-
scale nature of data center network and high richness of network data (e.g., log
files, virtualization information, and regular network traffic) make fault detection
extremely challenging in data centers. Bambharolia et al. [31] constructed a
semi-supervised learning model to predict and detect faults, and subsequently
employed one dimensionality reduction technique named Relevance Deduction to
reduce the number of features in a large dataset. Garg et al. [91] improved the
existing Gray Wolf Optimization algorithm (a meta-heuristic algorithm based on
evolutionary computation, abbreviated as GWO) and CNN, and the improved GWO
and improved CNN algorithms are responsible for the extraction of network features
and the classification of network anomalies for fault detection, accordingly. The
hybrid model achieved good results, realizing improvements of 3 to 8% in detection
rate, false alarm rate, and accuracy compared to the standard GWO with CNN.

3.8.3 Fault Location

After a network fault has been detected, it is necessary to accurately locate the
fault before adopting further fault self-healing or fault tolerance mechanisms.
However, likewise fault detection, accurate fault localization is also a very complex
and difficult problem, which has been proved to be an NPC problem [61]. Our
investigations show that there is very little work in this field in recent years. The only
existing research work we found is Yang et al. [290], which indicates that traditional
non-ML fault location methods are typically limited by the search capability and
usually fall into local optimal solutions, which have a loss in location accuracy.
Thus, they introduced DNN to improve the global search capability and proposed
an accurate fault location method applicable to large-scale alarm scenarios. Their
improved fault propagation model and threshold mechanism are used to reduce the
fault range and noise. Finally, the precise fault coordinates are derived from the
sub-NN generated by cross-variance.

3.8.4 Fault Self-Healing

The ultimate goal of network O&M is to troubleshoot and maintain service
continuity. Therefore, how to achieve rapid self-recovery after the occurrence of
a failure and ensure that the service is not affected is the last but very important
step of network O&M life cycle. Unfortunately, there are no existing relevant
research works found yet, expect some preliminary attempts for fault self-healing.
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Table 3.13 Assessment of fault management schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Garg et al. [91] YES NO YES NO YES YES YES
Ganguly et al. [87] YES NO YES NO NO YES YES
Yang et al. [290] YES NO NO YES YES YES YES
Lee et al. [137] YES NO YES YES NO YES YES
Marahatta [169, 170] YES YES YES NO NO YES NO
Bambharolia et al. [31] YES NO NO NO NO YES NO
Xie et al. [284] YES NO YES NO NO YES YES
Liu et al. [151] YES NO YES NO NO YES NO
Zhang et al. [308] YES NO YES NO YES YES YES
Kimura et al. [132] YES NO YES NO NO YES NO
Liu et al. [160] YES NO NO NO NO YES YES
Gao et al. [89] YES NO YES YES NO YES NO

For example, Zhang et al. [308] proposed a fault prevention mechanism to advance
service reversal by predicting faults. Precisely, the authors predicted faults by using
supervised learning-based models. When a fault is predicted to occur soon, they
actively cut the link in advance and employ specific load balancing mechanisms to
bypass the failure point and repair the failure point manually (Table 3.13).

3.8.5 Discussion and Insights

We present and compare the existing solutions with details under different categories
in Table 3.14, and evaluate each solution from various aspects according to REBEL-
3S in Table 3.13. Through the research, we summarize the general situation and
critical points of ML in fault management. Supervised learning and deep learning
are the primary models that are used in fault management, while reinforcement
learning or deep reinforcement learning are less used.

• False negative samples. The false negative samples will seriously deteriorate the
precisions of machine learning models. Taking fault prediction as an example, if
the actual situation is a fault, but it is predicted to be normal, it will result in
huge recovery cost to the network. Thus, the probability of false alarms should
be minimized.

• Data imbalance distribution. The number of normal and fault events shows a
high imbalance. According to Lee et al., only 8,957 out of every 104 million
events were related to machine failure [137]. This proportion accounts for less
than 1%, so the accuracy of intelligent solutions is difficult to be expressed
intuitively by the prediction results.

• Noise disturbances. Fault management, especially the precise localization of
faults, requires filtering irrelevant information to improve the ability of resistance
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Table 3.15 Assessment of network security schemes based on REBEL-3S

Energy Bandwidth
Ref Reliability efficiency utilization Latency Security Stability Scalability

Zeng et al. [302] YES NO YES NO YES YES NO
Schueller et al. [222] YES YES YES YES YES YES YES
Garg et al. [91] YES YES YES NO YES YES YES
Zekri et al. [301] YES YES NO YES YES YES YES
Xiao et al. [280] YES YES NO NO YES YES YES
Satheesh et al. [219] YES YES YES YES YES YES YES
Abubakar et al. [3] YES YES YES NO YES YES YES
Chen et al. [56] YES NO YES NO YES YES YES
Baek et al. [23] YES NO NO NO YES YES YES
Chen et al. [54] YES NO YES YES YES YES YES

to interference [191, 204]. Typically, a single fault may lead to a chain reaction
that causes multiple devices to generate alarm messages. The number of alarm
messages provides little help to the alarm’s effectiveness, on the contrary, false
alarm messages can even reduce the accuracy of fault localization.

• Complex dynamic environments. Inevitably, there is diversity in management
methods and data among different vendors and devices in large data center
systems, and many ML methods cannot perform well for heterogeneous device
data sets.

All in all, the current research in this field is still in its infancy, and the number of
existing work is comparatively small. Moreover, most of these existing approaches
only consider single fault scenario and lack effective means for fault root cause
analysis and fault self-healing, resulting in that the closed-loop system of end to end
intelligent O&M has not yet been formed in academia (Table 3.15).

3.9 Network Security

As cloud tenants pay more and more attention to user privacy and data security,
cloud DC network security has become a key issue in the field of cloud computing.
However, the complexity, heterogeneity and dynamics of cloud data center network
pose great challenges to network security. The vulnerabilities in the network not
only can cause leakage of users’ private data, but also may be exploited by some
malicious attackers, who will invade the network infrastructure through distributed
denial of service (DDoS) and other means, resulting in massive disruption of
network service. In the Uptime Institute’s 2020 Data Center Industry Survey [2],
security was highlighted as one of the key influences driving demand for enterprise
data centers. According to the investigations of Cisco visual network index (VNI)
[201], there have been nearly 17 million DDoS intrusions by 2020, which is three
times of 2015. In response to this critical issue, many researchers and scholars have
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begun to explore the security protection mechanisms of data center network, as
well as the design scheme of security system such as Network Intrusion Detection
Systems (NIDS). Kawahara et al. [130] proposed a flow statistics-based IDS
scheme. Mai et al. [166] proposed a detection algorithm for non-volume-dependent
anomalies based on anomaly statistics and sampling. Xiang et al. [279] used generic
entropy and information distance to detect low-speed DDoS attacks, but the scheme
requires the control of all routers. Although these traditional schemes, to some
extent, have made some improvements to the data center network security, they still
suffer from low accuracy, high false alarm rate, and high memory consumption.
Coupled with the heterogeneity and diversity of DC network environment, the
traditional techniques will no longer be suitable for data center network.

Recently, the machine learning based network anomaly detection technology has
attracted extensive attention of researchers [238]. Empirically, machine learning can
be effectively used in the design of NIDS to improve the detection accuracy [90]
and achieve low false alarm rate [173]. Previous research efforts have conducted a
rich and detailed investigation but have not explored for DCN intelligent scenarios
[42, 90, 256]. In the work [280], Xiao et al. proposed a CKNN-based DDoS attack
detection method and a grid-based low-cost data reduction method, which not only
improves the classification accuracy but also reduces training cost by exploring
the correlation between training data. In the next three years, supervised learning
started to be gradually applied to the network security in DCN scenarios. Zekri et
al. [301] combined C4.5 algorithm and signature detection techniques to achieve
automatic and effective detection of signature attacks. Baek et al. [23] performed
anomaly detection by using a supervised machine learning algorithm based on
assumed clustering labels. Schueller et al. [222] proposed a lightweight and scalable
hierarchical Intrusion Detection System (IDS) architecture based on support vector
machine (SVM). In recent few years, with the rise of deep learning, researchers
have also begun to explore a new application paradigm of deep learning in the field
of data center network security. Zeng et al. [302] proposed a lightweight end-to-
end framework for flow classification and intrusion detection based on DL with
excellent performance on two public datasets. Garg et al. [91] performed network
anomaly detection and classification by GWO and CNN.

Our research findings together with some key features of the investigated intelli-
gent solutions are summarized in Table 3.14, and the Table 3.13 lists the evaluation
results of each solution according to the REBEL-3S criteria. Additionally, we also
put forward some insights and observations for reference, as listed below (Table
3.16).

• Distributed detection. Currently, the exiting security detection schemes mainly
work in a centralized way, which usually results in a high cost in both network
monitoring and intrusion detection [257]. Therefore, most of the existing solu-
tions consider the monitoring overhead in their optimization models. To solve
the high-cost problem of centralized solution thoroughly, we contend that it
would be preferable to adopt a distributed detection scheme so as to relieve the
pressure on a single centralized controller and avoid the single point of failure
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problem as well. Admittedly, there are also some key concerns to be addressed in
distributed solutions, such as the relatively high complexity of distributed system,
the consistency problem, and how to avoid falling into local optimization, etc.

• Computing Overhead. In these ML-based intelligent security schemes, ML
techniques are usually leveraged to distinguish network attacks based on flow
characteristics, where data acquisition and statistics are necessarily required.
However, the constant data acquisition and processing will potentially bring
considerable computing overhead to the controller in a large and complex DC
network [92]. Especially for persistent network attacks, the responsiveness of the
controller is further degraded. Thus, how to mitigate the computing overhead
introduced by ML related operations still remains an open problem to be
addressed.

• False alarm rates. Ideally, ML algorithms must avoid high false alarm rates.
A high false alarm rate can cause a waste of network resources and seriously
affect the overall network performance. Therefore, the selection and design of
ML algorithms used in security schemes need to take the false alarm rate into
account.

3.10 New Intelligent Networking Concepts

With the booming development of ML applications in the fields mentioned above,
the data center network design is enabled to realize some functions that were impos-
sible before, thereby the data center network continues to evolve from the network
softwarization to the network intelligentization. According to our investigation,
most of the existing intelligent solutions adopt SDN to achieve a global network
control and optimization, where the ML-based intelligence modules are centrally
implemented in the SDN controller. However, many hardware vendors contradict
SDN’s original intention and try to establish a closed system through vendor lock-
in, which will inhibit the development of network intelligence in the long term.
Besides, the performance and scalability problem of SDN controllers will also
hinder the promotion of network intelligence to a certain extent. Additionally, the
current multi-controller mechanisms (e.g. dual-master or master-standby) targeting
at avoiding the single point of failure of controllers still have problems in real-
time failing over, state synchronization and policy consistency. To this end, on the
one hand, both the academia and industry are making efforts to further study and
improve the ML-assisted SDN technologies, on the other hand, they are also trying
new technology development breakthrough direction, and put forward a series of
new intelligent network systems, which push the network intelligence to a new
stage. In this section, we will briefly introduce some newly proposed representative
intelligent networking concepts, as listed in Table 3.17.
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Table 3.17 List of new intelligent networking concepts

Originator New networking concepts Year of release

David Lenrow et al. [139] Intent-driven network (IDN) 2015

Mestres et al. [175] Knowledge-defined network (KDN) 2017

Juniper [249] Self-driving network (SDN) 2017

Gartner [140] Intent-based network (IBN) 2017

Cisco [118] Intent-based network (IBN) 2017

Huawei [120] Intent-driven network (IDN) 2018

3.10.1 Intent-Driven Network

The basic idea of IDN was first revealed in a draft by David Lenrow [139],
chair of the Open Networking Foundation’s Northbound Interface Working Group.
Likewise, Intent-driven network (IDN) is a self-driven network as well. An intent
implies the desired network properties and functionalities that we want the network
to offer, and can be described as high-level semantic statements of their macro-
level behaviors. IDN aims to automate such intents of applications by utilizing a
closed-loop system together with the decoupled network control logic. Drawing
support from artificial intelligence technology, it realizes the transformation from
passive network O&M to intelligent active O&M, the predictability of the network,
early identification of network faults, and active network optimization according to
application intents.

Nevertheless, IDNs are still facing severe challenges [190], such as continuous
closed-loop verification and automated deployment. Furthermore, a unified and
precise definition of IDN has not yet been formed. In practical terms, Gartner
proposed an intent-based networking system (IBNS), Cisco launched an implemen-
tation called Intent-based Network (IBN), and Huawei launched a program directly
called IDN.

3.10.2 Knowledge-Defined Network

The KDN was initially inspired by the concept proposed by Clark et al. in 2003 [60]
and finally formalized by Mestres et al. in 2017 [175]. Unlike the SDN with a flat
structure, the KDN can be simply summarized as a fusion of SDN with network
analysis and artificial intelligence.

As shown in Fig. 3.3, the KDN has four main components, namely Data Plane
(DP), Control Plane (CP), Management Plane (MP), and Knowledge Plane (KP).
The main functions of DP and CP are similar to the corresponding modules (data
plane and control plane) in SDN. MP has three prominent responsibilities. First,
to ensure reliable network operation and performance meeting the specific require-
ments of network topology and network device configuration. Comparatively, in
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Fig. 3.3 KDN planes

DATA

CONTROL

MANAGEMENT

KNOWLEDGE

SDN paradigm this functionality is implemented in the control plane. Second,
to provide efficient network monitoring and network analysis. Third, to collect
historical data on demand in due course of time. The KP implements decision-
oriented behavioral models and reasoning mechanisms by employing deep learning
to transform the collected historical data into knowledge (useful information), which
is further utilized to make decisions.

3.10.3 Self-Driving Network

As the field of self-driving vehicles surges forward, the network researchers believe
that what they have learned from the successful experience of self-driving vehicles
can be applied to the network to realize an automatic driving network. With this aim,
Juniper proposed the Self-Driving Network (SDN) [249]. Juniper regarded the Self-
Driving Network as an autonomous network that can predict and adapt to dynamic
environments to implement network configuration, monitoring, management, and
security defense with little or even no human intervention. With the Self-Driving
Network, the network performance problems can be anticipated before they affect
the user experience. The implementation of Self-Driving Network requires three
main automation strategies, as described below.

1. Reduce operational complexity by simplifying and abstracting the network.
2. Accelerate the deployment of network services.
3. Improve network resource utilization and network resiliency using deep remote

sensing techniques.

Moreover, the above automation strategies require the technical support of
telemetry [128], automation, ML [18] and declarative programming. Inspired by the
concept of Self-Driving Network, Huawei has also proposed a similar new concept,
named Autonomous Driving Network (ADN), which is though implemented in a
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Fig. 3.4 Huawei ADN system panorama. Image from Huawei ADN Solution White Paper

different way, but has similarity in philosophy. According to the Huawei ADN
Solution White Paper released by Huawei in 2020 [4], the core idea of ADN
is similar to Self-Driving Network but it provides more specific details about
implementations and has launched commercial ADN products. The panorama of
Huawei’s ADN system is shown in Fig. 3.4.

3.10.4 Intent-Based Network (Gartner)

Since the concept of IDN was introduced in 2015, Gartner also released a report
[140] in early 2017, which defined intent-based networking (IBN) and proposed a
corresponding systematized network system called IBNS. The IBN is an intelligent
network scheme that monitors overall network performance, identifies problems and
resolves them automatically without human intervention. The workflow of IBNS is
as depicted in Fig. 3.5. It is worth mentioning that Software Defined Network and
IBNS can be deployed independently or jointly in the network to achieve the best
overall benefit. Gartner’s definition of IBN includes the following four key points.

1. Translation and validation: The system takes higher-level services policies
from the end-user as input and translates them into the executable network
configurations. The system then generates and validates the correctness of the
generated design and configurations.

2. Automated Implementation: Through network automation and network orches-
tration, the system can automatically make appropriate network changes.

3. Network state awareness: The system provides real-time network states for the
systems it manages and controls.
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4. Intent Assured Optimization: The system continuously verifies whether the
original intents are satisfied, and take remedial measures whenever the desired
intents are distorted.

In short, IBN allows network administrators to define the network as what they
want and have an automated network management system (i.e., IBNS) to enforce
policies. At present, many startups have started their services in IBN, including
Apstra, Forward Networks, Waltz, Veriflow, and so on. More and more researchers
also begin to devote their efforts to the research in IBNS [43, 105, 216]. Overall, the
IBN is a nascent technology with a beautiful vision, but some of the technologies
involved are still in infancy and need to be further improved and validated in
practice.

3.10.5 Intent-Based Network (Cisco)

In June 2017, Cisco released a solution called Intent-Based Network [119], claiming
that “IBN is the network that will shape the next 30 years”. Meanwhile, Cisco
has also released software and hardware to build IBNs, such as Software-Defined
Access [235] and Catalyst 9000 switching groups [59]. Cisco insists that the rise of
artificial intelligence can empower the network with a higher level of automation
capabilities and bridge the gap between the original service intents and the final
executed network policies. Specifically, IBN offers five benefits: better service
agility; higher operational efficiency; continuous alignment of the network with
service objectives; better compliance and security; and lower risk.
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Chapter 4
Insights, Challenges and Opportunities

Through systematic research and analysis, we found that ML has been gradually
introduced and applied to various fields of data center network, and has made certain
achievements. However, the current researches are still in its infancy and need to be
further improved in various areas. The survey [1] by the Uptime Institute in 2020
confirms our view, stating that ML will not take over data center operations and
maintenance at this time. In order to further figure out the current progress of ML
application in DCN, in this book we investigate and summarize the popularity of
different ML technologies in different DCN fields from different perspectives, as
shown in Fig. 4.1. Moreover, based on the statistics of the existing work, we make
a further analysis from the aspects of ML technology selection, focuses of DCN
fields, and REBEL-3S assessment, and provide some more in-depth insights.

1. Technology Selection: ML has been carried out in a series of work in various
research areas of DCN. Deep learning has gained the favor of researchers because
of its good comprehensive ability, accounting for over 50% of all solutions.
Supervised learning and deep reinforcement learning are ranked second and
third, respectively. According to our current research, the lack of universality
[7–10] and reproducibility [5] are the important reasons why reinforcement
learning only ranks third up to now. As for the experimental verification of these
schemes, over 35% of schemes were conducted based on simulated data other
than real-world data, which lacks convincing results to prove their effectiveness
in real-world environments.

2. Focuses of DCN Fields: The application progress of ML in different fields of
DCN also varies. Currently, the researchers mainly focus on flow prediction,
resource management, flow classification, flow scheduling, and load balancing,
but pay less attention to route optimization, and congestion control.

3. REBEL-3S Assessment: In order to more accurately assess the current research
status of data center network intelligence, we further analyzed the existing
research work according to the proposed REBEL-3S assessment criteria.
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Fig. 4.1 The current status of intelligence in each research area of DCN. (a) From the perspective
of research fields of DCN. (b) From the perspective of ML algorithms

Besides, we summarize the research progress of ML-based intelligent DCN
and draw a vivid Heatmap on Cartesian, as shown in Fig. 4.2, where the “27” in
the top-left corner, for example, represents that 27% of the research work in the
field of resource management considers RELIABILITY. Clearly, it can be seen
that most of the research work has considered bandwidth utilization and stability,
where the values of both two columns are above 65%. Comparatively, most of the
research work lacks attention to security and reliability, and the results show that
most of the values of these two columns remain below 30%. On the other hand,
Fig. 4.2 also reflects that the research work in the fields of resource management,
flow scheduling and load balancing considers more dimensions of REBEL-3S,
and the solutions are more mature.

Overall, most of the existing work still has some unresolved issues, and there
are still many opportunities to explore and also a lot of room to improve the
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Fig. 4.2 Heatmap on Cartesian of various research fields in accordance with REBEL-3S

level of intelligence. Our view is that the future data center network should be
endogenously embedded with intelligence. It is admitted that up to now ML has
gained much popularity in various industries, especially in the field of data center
network, however, currently its role is more like a tool or module grafted in the
system. Whereas, we insist that the intelligence of the future data center network
should be an intrinsic natural attribute (Fig. 4.3).

In addition, the network intelligence have been discussed for a long time, but
how to define and quantify network intelligence still remains not standardized, and
there is not a recognized measurement criterion as well. Huawei has proposed a
grading scheme of intelligent networks [2], as shown in Fig. 4.4, which defines six
levels of intelligence, ranging from L0 to L5. The L0 intelligence has the ability of
auxiliary monitoring, and the execution of all dynamic tasks still depends on manual
operations, while the highest L5 intelligence realizes a fully autonomous network
with full life cycle closed loop automation capabilities across multiple services
and domains. However, this grading scheme still does not provide a formulaic
quantitative method to directly and accurately quantify the intelligence level of
a network. Therefore, there is still a strong need to further explore a specific
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Fig. 4.3 Huawei’s five-level autonomous driving network
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Fig. 4.4 Huawei’s five-level autonomous driving network (Table modified based on Huawei ADN
Solution White Paper)

quantitative formula for grading the degree of intelligence similar to the Shannon
formula.

Finally, before concluding this book, we will further discuss the challenges
and opportunities of data center network intelligence from four aspects: industry
standards, model design, network transmission and network visualization, as shown
in Fig. 4.3.
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4.1 Industry Standards

4.1.1 Network Intelligence Quantification Standards

As aforementioned, because the research on ML-based intelligent data center is still
in the initial stage, both the academia and industry have not formulated a specific
quantitative standard to assess the network intelligence level. Although some
leading high-tech companies (e.g. Huawei) have proposed some directive principles
for grading network intelligence levels, which only defines the characteristics and
capabilities of the network with different intelligence levels, this is far from being
adequate. The ultimate goal is to design a mathematical formula like intelligence
quantification method with fairness and accuracy, though there is a long way to go.

4.1.2 Data Quality Assessment Standards

The quality of the source data includes authenticity, validity, diversity, and time-
liness. Simulated data lack convincingness, scenario-specific generated data lack
universal validity, data containing only a few feature information is challenging to
improve the accuracy of predictions, and antiquated historical data lose timeliness
having little value. Some existing solutions did not provide any information about
the data source, making it difficult to examine the quality of data sets and the
validity of experiments. It is necessary to call on researchers to develop a data
quality assessment standard as soon as possible, where a quantifiable data quality
assessment standard will greatly help enhance the convincingness of experimental
results and advance the network intelligence process to some extent.

4.2 Model Design

4.2.1 Intelligent Resource Allocation Mechanism

Data center networks need to intelligently perceive scenarios and services, and
reasonably consider the lifecycle of resource management, i.e., resource prediction,
allocation, utilization, integration, and recovery, under the security conditions.
However, most the existing solutions mainly focus on the resource prediction,
allocation and utilization optimization, and there is little research on the resource
fragment integration and resource recovery.
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4.2.2 Inter-DC Intelligent Collaborative Optimization
Mechanism

The inter-DC network optimization is also a very important but more complex
research topic, where the optimization usually requires close collaborations among
multiple data centers. Thereby, how to achieve efficient collaboration among
different intelligent models of different data centers has become a big challenge.
Ideally, all separate models can be globally trained based on a complete set of
all DC’s data, however, normally local data cannot be transferred freely across
data centers due to privacy and bandwidth overhead issues. Hence, it will be
a good research opportunity to explore efficient methods to achieve an efficient
collaboration of inter-DC intelligent models on the premise of ensuring data privacy
and security.

4.2.3 Adaptive Feature Engineering

Feature engineering largely affects the ultimate effect of machine learning models.
Usually, the feature engineering in ML models is specially designed for a single
problem in a specific scenario. However, the richness of data center network
layers makes the data collected at each layer vary greatly, and the diversity of
services also makes the corresponding feature selection different. How to make
feature engineering adaptive to network scenarios and service types under the above
complex environment is a key challenge for feature engineering in DCN.

4.2.4 Intelligent Model Selection Mechanism

Without doubt, there is no one universal learning model that works for all scenarios,
and every model has certain limitations in different scenarios. The highly dynamic
nature of the network environment, the diversity of service requirements, the
heterogeneity of network data, and the inconsistency of optimization goals make it
extremely difficult and time-consuming to select the most suitable machine learning
model. This is also one of the key pain points of the application of artificial
intelligence in data center networks.

4.3 Network Transmission

As the data center service scenarios become more and more complex, the network
scale becomes larger and larger, and the requirements for user experience and
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service quality become higher and higher, the traditional communication protocols
have already not been qualified to cope with these challenges. Thus, the data center
network inevitably requires more efficient and intelligent communication protocols
to ensure fast convergence, high bandwidth, low latency and no packet loss for
network transmissions. However, the new communication protocols proposed in
recent years also fail to meet data center requirements of heterogeneous scenarios
[6] and have compatibility issues with legacy protocols [3, 4]. There is no doubt
that artificial intelligence can help network protocols achieve better responsiveness,
predictability, and self-adjusting ability. However, there is still little research on how
to achieve a more friendly and efficient transmission protocol assisted with ML,
which is an opportunity for future research.

4.4 Network Visualization

Due to the rapid growth of data center networks, the network size has expanded
dramatically and the amount of network data generated has increased greatly.
As a result, the burden of network supervision is getting heavier. A proven way
to accurately monitor and control from the massive amount of data is network
visualization. Network visualization is a comprehensive and concise display of
network data by means of graphics, and its ability to reduce the burden of tradi-
tional network monitoring. Network visualization can help the O&M personnels
accurately perceive the network by explicitly presenting the real-time status of
the network to them. Currently, the data center network still has the following
three aspects of invisibility, which leads to inefficiency of network O&M and
optimization.

• Routing invisible: Invisible routing makes the transmission changes cannot be
reproduced and the changing process cannot be backtracked. This often leads
to a tough situation, that is, the user reported one network fault, but when the
O&M personnel starts to locate the fault, the fault disappears again, and there is
no historical information to query. As a result, the cause of the fault cannot be
diagnosed.

• End-to-end service pipeline invisible: This leads to the inability to see the
actual forwarding path corresponding to the service pipeline, as well as the
performance of the forwarding path. As a result, after the network failure
occurs, we can only locate the failure hop by hop, which is time-consuming and
laborious.

• QoS invisible: The service quality is not visible, resulting in the user experience
cannot be perceived. The traditional network management tools usually can
only provide the performance data of network, but cannot exhibit the quality
of the service contents carried by the network. In other words, the network
performance and service quality are separated without any correlations, resulting
in low efficiency of fault location.
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Overall, the research on applying ML to achieve and intelligent data center
networking is still at an early stage. There are always many opportunities to further
explore the potential and value of applying ML technologies in various fields of
data center networks. It can conclude that the network intelligence will inevitably
become the future trend of data center network development. In the foreseeable
future, ML-based intelligent networking will become the core research direction of
the cloud computing, driving the data center network from SDN-enabled automatic
network to ML-driven intelligent network.
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Chapter 5
Conclusion

As the core infrastructure, data center provides a strong platform support for
cloud computing, and so on. Nevertheless, the rapid growth of its network scale
leads to great challenges in network optimization. Fortunately, artificial intelligence
provides a promising way to deal these challenges, and it has been successfully
employed in various fields of DCNs. Up to now, there have been numerous literature
on ML-assisted intelligent data center networking. However, to the best of our
knowledge, there is a lack of systematic investigations into these research works.
To this end, in this survey book, we comprehensively review the representative
research works with in-depth analysis and discussions from various perspectives
including flow prediction, flow classification, load balancing, resource management,
energy management, routing optimization, congestion control, fault management,
and network security. Notably, to better assess the existing works we creatively
propose the REBEL-3S quality assessment scheme. Finally, we thoroughly explore
the challenges existed in current research and opportunities for future research from
various aspects together with our key insights. To sum up, the research on the
application of artificial intelligence in data center networks is still in its infancy,
but it has aroused the attention of more and more scholars and researchers, and
has achieved preliminary research results in many fields. However, there are still
many problems and deficiencies in the current research, which remain to be further
studied.
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