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Early Life Stress, Neuroinflammation,
and Psychiatric Illness of Adulthood 6
Sang Ho Shin and Yong-Ku Kim

Abstract

Stress exposure during early stages of life elevates the risk of developing
psychopathologies and psychiatric illness in later life. The brain and immune
system are not completely developed by birth and therefore continue develop
after birth; this post birth development is influenced by several psychosocial
factors; hence, early life stress (ELS) exposure can alter brain structural develop-
ment and function. A growing number of experimental animal and observational
human studies have investigated the link between ELS exposure and increased
risk of psychopathology through alternations in the immune system, by
evaluating inflammation biomarkers. Recent studies, including brain imaging,
have also shed light on the mechanisms by which both the innate and adaptive
immune systems interact with neural circuits and neurotransmitters, which affect
psychopathology. Herein, we discuss the link between the experience of stress in
early life and lifelong alterations in the immune system, which subsequently lead
to the development of various psychiatric illnesses.
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6.1 Introduction

Both positive and negative experiences in early life can have profound effects on
mammalian brain development. In particular, early life stress (ELS) is associated
with increased risk of both mental and physical health deterioration throughout life
[1–3]. Approximately 12% of youth, from infancy to age 18 years, experiences ELS
to such an extent that they will have mental and physical health discrepancies
throughout life [4, 5]. These individuals who account for almost half of all mental
disorders [6] experience approximately 44% increase in strokes and heart attacks [7]
and elevated risk of death by age 50 years [8, 9].

Generally, two main criteria, namely, the developmental age range of early life
and the characteristics of stressful events, should be considered when defining ELS.
Previous studies have considered an upper age limit between 12 and 18 years as early
life. Regarding the stress criterion, various models have proposed that stress is
experienced when an individual faces a threatening situation for which adequate
coping skills are not available. Disruption to physiological homeostasis also induces
stress responses. A certain event occurring within a defined developmental term may
be classified as ELS. Thus, ELS can be defined as an injury, potential of injury, or
threat of injury generally caused by a child’s caregiver [10]. This definition includes
different stressful experiences, such as the death of a caregiver, neglect, bullying,
emotional maltreatment, and physical and sexual abuse. However, emotional and
physical abuse and neglect are the most common patterns of harm reported [11].

The most major forms of ELS in individuals are neglect (physical or emotional),
abuse (physical, emotional, or sexual), and parental loss (death, or separation). The
number of abused children reached approximately 520,000 in the United Kingdom
in 2011, which has since increased [12]. According to a large-scale epidemiological
study on adverse childhood events, approximately 65% of individuals in the United
States have been exposed to at least one event, while 12.5% have been exposed to as
many as four [13]. Adults reporting ≥4 ELS are 4.6 times more likely to experience
depression and 12.2 times more likely to attempt suicide compared to those with no
ELS exposure. Gilbert et al. found that children self-reporting physical and emo-
tional abuse is estimated at up to 29% and 33%, respectively, in Eastern Europe [14].

Approximately 8% of males and 20% of females experience childhood sexual
abuse, with the highest prevalence in Africa (34.4%), followed by Asia, America
(10.1%), and Europe (9.2%) [15]. Physical abuse, the intentional use of physical
force that harms the child’s development, survival, or dignity, is estimated at 17.6%
[16]. Meanwhile, psychological abuse, the failure to give children enough support-
ive environment, may also be more than physical and sexual abuse but is more
difficult to estimate [17]. Neglect, the failure of a caregiver to provide for a child’s
basic needs, is the most major ELS affecting 78.5% of children in the general
population. Other forms of ELS include natural disasters, physical diseases,
surgeries, accidents, and events such as terrorism or war. Less salient experiences
with significant distress on children include poverty, unstable families, poor parental
care, and dysfunctional relationships between parent and children. ELS can be often
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complex, with different forms simultaneously coexisting and can happen as chronic
or ongoing stress.

ELSs are associated with an elevated risk of noncommunicable diseases in
adulthood [18–21] and premature mortality [22], possibly mediated by a dysfunc-
tional immune system, particularly chronic low-grade inflammation [23–25]. The
dysregulated immune responses could be prone to developmental programming
attributed to ELS exposure that only trigger an excessive stress response at onset,
but also influencing long-term stress responses, leading to chronic low-grade inflam-
mation [26, 27]. The immune system responds to foreign invaders [28], and both
human and animal researches have shown that ELS can cause persistent inflamma-
tion, which could develop psychiatric problems through effects on brain develop-
ment and response to stressors [29].

The brain and immune system are not fully developed at birth, yet have minimal
functions in newborns that enable adjustment to limited and expected stimuli. The
ongoing maturity of the immune system throughout infant and childhood indicates
that environmental effects and stimulation during childhood can seriously affect the
immune system. Therefore, the brain and immune system experience during early
postnatal development progressively increases their repertoire to maximize adapta-
tion to stimuli specific to the individual’s own environment [1, 30, 31]. Notably, ELS
gives rise to various aberrations in brain circuitry, cognitive function, and general
health [32–34] and the immune system may also play a unifying role in the
pathophysiology of these multifactorial diseases related to ELS. Herein, we provide
an overview of the current evidence connecting ELS to elevated inflammation and
subsequent risk of psychiatric disorders.

6.2 Early Life Stress and Inflammation

6.2.1 Experimental Animal Studies

The first report for the effect of ELS on the immune system came to light from
experimental animal models more than half a century ago. Mouse handled before the
process of weaning exhibited a decreased rate of development in transplanted tumor
[35] and elevated serum antibody titer in response to the bacterial protein flagellin
[36]. These results attracted interest in the area of developmental psychoneuroim-
munology [37–39], which facilitated subsequent studies on the association between
ELS and immune functioning in later life in rats and nonhuman primates [40, 41].

Experimental animal models have expanded our understanding of the relationship
between ELS and immune system abnormalities and allowed for invasive
procedures to investigate immune function since components in the immune system
can be targeted with drugs during and after ELS to determine the adverse health
outcomes. ELS in rats has been manipulated through various experimental models
with heterogeneous effects on parental caregiving behavior, such as nursery rearing,
maternal separation (MS), maternal deprivation, neonatal handling, and dexametha-
sone exposure. Measures of immune function range from pro-inflammatory
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cytokines and chemokines in the plasma and antigen-specific immune response to
pro-inflammatory gene expression in the brain and gut microbiota.

MS has been commonly used in animal models of ELS. In nonhuman primates,
MS increased macrophage activity [42] and upregulated long-term pro-inflammatory
gene transcription in monocytes [43]. In rats, MS elevated core temperature [40] and
pro-inflammatory cytokines in the plasma [44, 45]. These findings demonstrated the
association between MS and inflammatory processes in later life.

Using a mouse model, a previous study has reported that MS results in a loss of
prefrontal cortex (PFC) interneurons [46], underlying a supposed mechanism of
schizophrenia associated with inflammatory and excitotoxic damage [47]. In an
animal model undergoing repeated MS (RMS), elevated hippocampal interleukin-
1β (IL-1β) mRNA levels approximately 20 times that of the control have been
reported [48]. One study also showed elevated NF-α expression in the PFC of
animals sacrificed on the day of their final MS episode [49], while another reported
that MS animals sacrificed immediately after their final episode had higher hypotha-
lamic tumor necrosis factor-α (TNF-α) than those with a single episode of MS
sacrificed simultaneously [48]. In animals sacrificed on the final day of MS, elevated
interleukin-10 (IL-10) expression was identified in the PFC and small intestine but
not the hippocampus or serum [49, 50].

In pubs, MS during brain development is associated with reduced
lipopolysaccharide-binding protein expression in the hippocampus [51] and
decreased microglial cell numbers in the midbrain [52]. In contrast, early MS in
adult animals increases synaptic levels of pro-inflammatory cytokine interleukin-1
(IL-1) receptor [53], elevates the number and motility of cortical microglial pro-
cesses [54], and exacerbates microglial activation [55]. Moreover, mice
experiencing MS have a higher elevation in body core temperature after a second
MS, increased cytokine expression followed by viral infection [56], and greater
cortical microglial activation following exposure to chronic food-restriction stress
[55]. Although the peripheral response to ELS may not be mostly activated or
suppressed, ELS-linked early immune programming seems to sensitize later pro-
inflammatory processes and result in higher risk to depression and anxiety in
adulthood [57]. Increased heart rate and inflammatory responses to a physiological
stressor [58], as well as elevated TNF-α and interferon-γ (IFN-γ) and corticosterone
levels, and anxiety-like behavior [59] in maternally deprived rodents have been
shown.

ELS studies have recently reported overall increases in activation and number of
microglial cells in various brain regions. Microglial cells sensitized in early life
could show a dysregulated response and morphological changes in later life
[60]. ELS may therefore convert a neuroprotective state to a pro-inflammatory
state in microglia [48]. Moreover, microglial activation and increases could facilitate
brain maturation [61]. Ex vivo studies on the early MS-induced damage on microglia
have reported an overall elevation in the proportion of cells with an activated
morphology in the hippocampus [48, 62, 63] and medulla [64]. Furthermore,
using captured microglial cells in vivo, one study showed that somatosensory
stimulation in adulthood caused a significantly higher increase in microglial motility
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in MS mice compared to controls which could also affect microglia–synapse
interactions and neuronal function [54].

Psychosocial stressors other than immune stimuli can also provoke a microglial
response that may induce different responses to threats [65]. Gong et al. reported that
1 day of brief social isolation at postnatal day (P)14 elevated microglial density in the
hippocampus, presumably by facilitating increases of these cells [66]. Four days
following isolation (P14–17), the number of cells was restored to normal levels. In
contrast, a week of brief social isolation (P14–21) in adulthood decreased microglial
cell number in the dentate gyrus of the hippocampus. Concordantly, social defeat in
adolescent mice triggers early increase of ionized calcium-binding adapter molecule
(IBA-1) in the hippocampus and a following decrease in microglial cells and IBA-1
expression in adulthood [67, 68]. Furthermore, a milder social defeat paradigm
adopted during the adolescent stage elevated microglia number, IBA-1 expression,
and the size of soma in the ventral tegmental area of pups [69]. Adult mice
experiencing repeated social defeat show significant elevation in neutrophils and
CD11b+LyC6high monocytes in the spleen and circulation [70, 71]. Splenic dendritic
cells from mice experiencing repeated social defeat have shown greater surface
expression of major histocompatibility complex class I, CD80, and CD44,
suggesting an activated state [72]. Exposure to repeated social defeat in mice and
low socioeconomic status in humans can also lead to a relative expansion of a
transcriptional protein associated with immature pro-inflammatory monocytes in
peripheral blood mononuclear cells [73]. Therefore, various types of social stressors
in early life independently impact the development of the immune system, although
the dysfunctional relationship between mother and infant may negatively affect
health outcome.

Recent studies on the gut microbiota found that MS in rodent and nonhuman
primate models also has transient and long-term effects on gut microbiota
[59, 74]. ELS-induced changes of the microbiome in murine models continue during
adulthood [75–77] and are linked to anxiety-like behaviors and activation of systems
involved in stress [78]. Rats exposed to stress show inflammation, altered gastroin-
testinal function and leaky gut, and disturbances of immune activity [78]. Moreover,
gut microbiota and dysregulated inflammation in rats or mice exposed to stress can
regulate the metabolism of tryptophan to kynurenine or 5-hydroxytryptamine (5-HT)
[79–81]. Inflammatory cytokines such as IFN-γ and interleukin-6 (IL-6) enhance
indoleamine-2,3-dioxygenase (IDO) production, which subsequently metabolizes
tryptophan to kynurenine, increasing kynurenine production and decreasing 5-HT
levels [80]. Elevated kynurenine/tryptophan ratios have been recognized in rats with
depression-like behavior, together with elevated pro-inflammatory cytokines and
altered gut microbiota [81]. Furthermore, a study on Flexibacter and Prevotella, in
connection with colitis, revealed that they were more abundant in the gut of MS rats
[82], and concordantly, Wong et al. showed that caspase-1 inhibition, an
inflammasome factor, restored stress-induced gut microbiota alterations [83].
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6.3 Early Life Stress and Inflammation

6.3.1 Observational Human Studies

ELS can affect the immune system at the time of exposure [57, 84] and alter its
normal developmental trajectory [85]. The exaggerated effects of ELS on the
immune system are long term, resulting in chronic low-grade inflammation through-
out life [86]. A large population-based study of almost 12,000 participants observed
an association between increased white blood cell counts and ELS [87].

A meta-analysis demonstrated that adults with ELS have higher levels of C-reac-
tive protein (CRP) and the major pro-inflammatory cytokines IL-6 and TNF-α as
compared to adults without ELS [88]. Another meta-analysis reported a significant
correlation between ELS and inflammatory markers, with effect sizes being greatest
for TNF-α, followed by IL-6 and CRP. A recent meta-analysis showed a relationship
between ELS and IL-1β, IL-6, TNF-α, and CRP, but not interleukin-2 (IL-2),
interleukin-4 (IL-4), interleukin-8 (IL-8), IL-10, or fibrinogen [89]. Moreover,
Baumeister et al. reported that various types of ELS exposure differentially resulted
in alterations of inflammatory markers [88]. Notably, physical and sexual abuse were
associated with significantly elevated TNF-α and IL-6, but not CRP, which is mainly
associated with parental absence during the early developmental period. Although
the underlying pathophysiology remains nebulous, factors such as situation and
duration of stress exposure may interact with individual stress types to regulate
immune response.

Furthermore, a meta-analysis of 27 studies conducted by Kuhlman et al.
evaluated the relation between ELS and inflammation in those under 18 years of
age [90] and found small associations between ELS and inflammation that were
statistically significant only for CRP. Meanwhile, other longitudinal studies have
reported an association between ELS and elevated inflammatory markers in early
adulthood [91, 92], thereby providing evidence for the relationships between ELS
and increased peripheral CRP levels, particularly profound in those who develop
subsequent depression in adult life [93, 94]. Danese et al. reported elevated inflam-
mation levels in abused children who had depression at the age of 12 years compared
to normal controls [95]. Increased CRP levels were also identified in 10-year-old
children with recent onset of maltreatment and a genotype predisposing to elevated
CRP levels [93]. Exposure to stressful events before the age of 8 years is associated
with increased CRP at 10 and 15 years old [25]. Peripheral low-grade inflammation
may describe the relationships between early-life stress and various physical or
mental health outcomes [96–98]. To the best of our knowledge, there has been one
study investigating the relationship between ELS and inflammation in preschool-
aged children (3–5 years) which showed increased IL-1β levels in connection with
ELS [99]. In healthy community samples, ELS has been related to elevated IL-6, in
response to the Trier Social Stress Test [100] and IL-1β, interleukin-12 (IL-12), and
TNF-α levels [101]. Furthermore, recent findings suggest that repeated exposure to
ELS is connected with significant increases in soluble urokinase plasminogen
activator receptor (suPAR) in young adulthood [102] and mid-adulthood
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[92]. During activated immune and pro-inflammatory states, suPAR is discharged
into the systemic bloodstream by cleavage of the membrane-bound urokinase
receptor (uPAR) [103, 104] expressed on endothelial cells and immune cells
[105]. While CRP and IL-6 are influenced by acute fluctuations in inflammation,
such as during infections [106, 107], suPAR reflects a person’s overall immune
activity level and is predicted to be involved in low-grade chronic inflammation,
tissue and organ damage [108, 109], development and progression of disease,
adverse clinical outcomes, and mortality [110, 111] and thus is an effective and
additional measure of persistent inflammatory response. Concordantly, suPAR is
associated with ELS [92, 102] and adult stressful life events [112], whereas IL-6 and
CRP are not persistently related to these kinds of stressors.

Granulocyte function, evaluated by ex vivo killing of Staphylococcus aureus, is
decreased by 20% in children with divorced parents [113], which is in line with the
findings of elevated vulnerability to Staphylococcus aureus in children exposed to
acute or chronic family stress [114]. Moreover, reduced natural killer (NK) cell
activity was related to stressful events in adolescents with depression or conduct
disorder [115] and adult females with breast cancer [116]. However, increased NK
cell activity has been identified in children whose parents showed more chronic
stress, which is also associated with greater rates of febrile diseases in childhood,
while this was not associated with NK cell activity [117]. Furthermore, Wyman et al.
studied a younger population undergoing immune assessment [117] and observed an
elevation in NK cell activity [118]. Meanwhile, Ayaydin et al., in a relatively small
number of participants, also showed no significant difference in NK cell activity
between control and sexually abused adolescents [119]. Sexual or physical abuse is
associated with lower salivary IgA levels in young females, even though adult sexual
victimization appeared to mediate this relationship [120].

Evidence of the relationship between ELS and increased reactive oxygen species
(ROS) production, oxidative stress, and mitochondrial activity, which are associated
with pro-inflammatory cytokine from different immune cells, has been reported
[121]. Dysfunctional cellular immunity caused by repeated viral infections and
reactivation of viruses elevates inflammatory markers including IL-6 and CRP
[122]. Also, individuals exposed to ELS showed increased immune activation with
higher CD25 expression, major histocompatibility complex, class II, DR (HLA-DR),
or implicating CD8 T cells [123]. Moreover, adolescents exposed to ELS have
decreased NK and NK T cells and increased circulating and senescent T cells with
the activation markers CD3+/CD69+ and CD2+/CD4+/CD25+ [124, 125].

Positron emission tomography (PET) imaging of the mitochondrial translocator
protein (TSPO) can provide insights on the microglial activation in the human brain.
One study found that after peripheral lipopolysaccharide (LPS) injection, TSPO
expression uniformly increased across the brain [126]. These findings allow for
deeper assessment of neuroinflammatory markers to investigate microglial activation
during brain injury and neurodegeneration. Interestingly, only one study has
investigated microglial activation using TSPO-PET in individuals exposed to ELS
[71, 127]; therefore, further investigations on the relationship between ELS and
microglial activation are warranted.
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Also, in line with findings from animal studies, results from human studies
suggest that females may have higher sensitivity to stressful events in provoking a
pro-inflammatory response than males [128, 129]. Moreover, evidence from an
environmental risk study indicates that the levels of inflammation were already
increased in children exposed to ELS who developed depression at the age of
12 years as compared to controls [95], while sex differences may influence the
susceptibility to cause a pro-inflammatory state post ELS exposure [130]. CRP
concentrations in 18-year-old females were significantly correlated with childhood
victimization, yet no such correlation was observed in their male counterparts.
According to the study by Entringer et al., the relationship between CRP levels
and maltreatment was significantly mediated by child sex and were higher in the
maltreated girls compared to the control group which was stable over the 2-year
follow-up period, whereas no relationship between maltreatment and CRP levels
was shown, suggesting that following ELS exposure at a very young age in girls, the
effect of maltreatment may immediately emerge in an inflammation process and
exacerbate over time.

In summary, peripheral inflammation caused by ELS can influence the brain and
change neural activity through various routes, such as humorally via active transport
of cytokines stimulated by the release of second messenger or cellular routes
involving macrophage-like cells residing in circumventricular organs. Microglia
can be activated by peripheral inflammation that enter the brain across the blood-
brain barrier (BBB) with different routes [131]. Subsequently, microglia cells affect
cell proliferation and survival in the brain based on their inflammatory state
[126]. Microglial cells can undergo several alterations [132] such as pro-inflamma-
tory cytokine production and expression of cell surface antigens related to oxidative
stress in the brain. Peripheral LPS injection, used for immune challenge in primates,
can increase TSPO expression uniformly across the brain. Recently, alterations in
the gut microbiome have been reported in adults with ELS-induced PTSD
[133]. Children exposed to ELS have also been reported in a study to exhibit gut
microbiome alterations, with gut bacteria levels associated with PFC activation in an
emotional face experiment [134]. Generally, the association between ELS-linked gut
dysbiosis and inflammation is likely bidirectional [135, 136].

6.4 Inflammation and Psychiatric Illness

6.4.1 Experimental Animal Studies

Animal models are beneficial to investigate the pathophysiology due to their flexi-
bility in randomly assigning animals to different rearing environments and allow for
directly investigating the brain and immune system using techniques thought to be
too invasive in humans. Inflammation can increase animals’ responses to rewarding
stimuli with reinforcers such as food or electrical stimulation [137]. Initial findings
linking the immune function and psychiatric etiology, particularly mood disorders,
originated from studies involving humans and animals with acute infection showing
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stereotypical behaviors as featured by anhedonia, anorexia, and reduced grooming
[138]. In line with the hypothesis of this “sickness behavior” with evolutionarily
inflammatory origins, gene knockout models in rodents have been strongly benefi-
cial in emphasizing the causal relationship of inflammatory cytokines (including
IL-1β and TNF-α) in developing social withdrawal, sickness behaviors, and anhedo-
nia [137]. Also, the development of sickness behavior led by a pro-inflammatory
state is attenuated by treatment with IL-10 and aggravated in mice that are IL-10-
deficient [137]. An elevation in cytokine serum levels may correspondingly elevate
oxidative stress and reduce availability of serotonin and other neurotransmitters,
along with activities of the hypothalamic-pituitary-adrenal (HPA) axis in the brain
[137, 139]. Acute induction of pro-inflammatory agents, such as LPS or typhoid
vaccination, can trigger transient and similar symptoms [140]. Rodents exposed to
MS show dysfunction in PFC-mediated behaviors including social interactions
[141], learned helplessness [142], and cognitive function [46] in adolescence and
elevated peripheral inflammatory cytokines IL-β and IL-6 [45]. Findings in rodents
have suggested that this immune-to-brain traffic can control the cortico-amygdala
circuitry involved in threat processing and is connected with enhanced anxiety-like
behaviors [143–145]. Pigs with MS show sickness-like behavior that is buffered
with anti-inflammatory treatment [146, 147], indicating that pro-inflammatory pro-
cesses can influence early responses to ELS. Social withdrawal, lethargy, and
anhedonia related to exposure to pro-inflammatory agents may be part of the
organism’s evolutionary effort to use all its resources for fighting foreign invaders
and overcoming diseases [148]. Giovanoli et al. have investigated if an anti-
inflammatory medication with minocycline in early life during peripubertal adversity
exposure could prevent the following occurrence of adult behavioral problems
[149]. Notably, rats deficient in the inflammasome NLRP3 showed improvement
in both pro-inflammatory state and cognitive function and reduced both systemic
inflammation and functional decline during aging [150].

6.5 Inflammation and Psychiatric Illness

6.5.1 Observational an Experimental Human Studies

Experimental findings suggest that inflammation can decrease neural activity to
reward circuit, as shown by studies that induced inflammation with low-dose
bacterial stimuli [151] or investigating the effects of immune-activating treatments
on neural reward circuit [152]. Induction of pro-inflammatory states in humans
produces a clinical response similar to major depression [153]. Patients with some
types of cancer or hepatitis C treated with interferon-α (IFN-α) also develop depres-
sive symptoms within weeks [140, 154]. Additional experimental evidence related to
the inflammation as the pathophysiology of mood disorders comes from the antide-
pressant effects of anti-inflammatory medications. These experimental human stud-
ies proposed that inflammation can modulate neural circuit activity linked to rewards
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independently in different processes that may lead inflammation in those exposed
to ELS.

Recently, a meta-analysis showed that cytokine inhibitors and nonsteroidal anti-
inflammatory drugs can have small to moderate antidepressant effects [155]. More-
over, patients administered minocycline exhibited a greater decrease in negative
symptoms in two clinical trials comparing minocycline versus placebo
[156, 157]. Pro-inflammatory cytokines may also reduce executive control-related
processes associated with PFC in the brain where it is linked to decision making,
executive control, and regulation of reward and threat-related predisposition
[158, 159]. Cytokine increase may alternate microglia in the cortex, thereby causing
structural and functional changes, which increases the risk of mental illness
[160]. Concordantly, alterations in microglial activation have been observed in
several psychiatric disorders including schizophrenia [161], depression [162], and
anxiety [163].

Microglia plays a major role in the adaptive immune response in the central
nervous system (CNS) that can modulate neuronal function not only during inflam-
mation but also in synaptic pruning [164] and plasticity during development
[165, 166]. A recent TSPO-PET study showed elevated microglial activity in
patients with schizophrenia and persons who are even at ultrahigh risk of psychosis.
Moreover, increased microglial activity was positively associated with greater
symptom severity in the high-risk population [167], suggesting a relationship
between neuroinflammation and psychotic symptoms.

In line with these findings, human observational studies over the past 30 years
have emphasized the role of the immune function in the pathophysiology of several
psychiatric disorders, including schizophrenia, depression, bipolar affective disorder
[168, 169], obsessive–compulsive disorder [170, 171], and posttraumatic stress
disorder (PTSD), along with an increase of suicidal attempt [172]. A meta-analysis
controlling the effect of antipsychotics in schizophrenia showed persistently
increased levels of several immune proteins released from macrophages, such as
IL-12, TNF-α, and IFN-α [97]. Interestingly, cell cultures from patients with schizo-
phrenia also produce greater levels of circulating IL-1 and IL-8, thereby confirming
the role of immunity-related pathophysiology in schizophrenia. Studies on
obsessive–compulsive disorder reported polymorphisms in the TNF-α gene [173]
and elevation in plasma TNF-α cytokine levels [174–176]; based on the individual,
cytokine gene polymorphisms may manifest differently [173]. Other prospective
studies also showed that elevated IL-6 and CRP were significantly associated with
depressive symptoms later in life. Longitudinal studies have found that increase
inflammatory levels in patients with depression likely result from a bidirectional
relationship between inflammation and depression over time [177]. A meta-analysis
of clinical studies found that patients with depression show a slight elevation in
several inflammatory biomarkers [178]. Concordantly, longitudinal associations
between inflammation and subsequent psychopathology were shown in participants
with psychosis [179], depression [171], and PTSD [180, 181].

Associations between inflammation and psychopathology have been best
investigated in depression [182]. Patients with depression show immune cell profiles
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featured by systemic low-grade inflammation [183]. A cross-sectional meta-analysis
investigated alterations in inflammation in depressed adults and characterized
depression by a small increase of serum inflammatory markers [178]. Anti-
inflammatory medications showed antidepressant effects in a subset of depressed
patients with elevated baseline levels of inflammation [184]. Group differences
between inflammation in patients with depression and controls likely attributed to
the bidirectional relationship between depression and inflammation
[29, 177]. Increased levels of pro-inflammatory cytokines, such as IL-6 and TNF-
α, are associated with depressed mood [185–187], and decreased levels of the anti-
inflammatory cytokine IL-10 have been shown in depression [188]. A meta-analysis
demonstrated increased TNF-α and IL-6 in patients with depression [189]. Moreover,
a study by Miller and Cole showed that the transition to depression was associated
with relative increases in CRP and IL-6 levels in individuals exposed to ELS,
indicating that ELS can potentially enhance a phenotype wherein depression and
inflammation occurred simultaneously [190].

Concordantly, patients with bipolar disorder also have increased levels of inflam-
mation [191], TLR-mediated intracellular signaling [45], and toll-like receptors
(TLRs) in peripheral monocytes and lymphocytes. Moreover, elevated NLRP3
levels were found in the frontal cortex of patients with bipolar disorder, which is
associated with elevated levels of IL-6, IL-1, TNF-α, and IL-10 [192]. Meta-analyses
of clinical studies found that patients with bipolar disorder have small to moderate
elevation of both pro-inflammatory cytokines [193] and CRP [194] levels compared
to controls. An elevated inflammation state can predict poor treatment prognosis in
bipolar disorder [195]. These relationships can reflect the negative outcomes in
individuals exposed to ELS [29]. Systemic inflammation in patients with bipolar
disorder can be identified not only during active episodes, but also in euthymic
phases [194], indicating that inflammation may be a trait marker rather than a state
marker for bipolar disorder.

Although there have been limited findings from cross-sectional human studies,
increased IL-6 and CRP levels is associated with psychosis [3, 196], as supported by
longitudinal studies involving the general population, including the Avon
Longitudinal Study of Parents and Children birth cohort. Furthermore, greater levels
of pro-inflammatory cytokines in childhood are associated with an elevated risk for
psychosis in adolescence and young adulthood [179, 197]. A meta-analysis
controlling antipsychotics persistently showed increased TNF-α, interleukin-12
(IL-12), and IFN-γ in patients with schizophrenia [97]. Furthermore, schizophrenic
patients show a moderate to large increase in pro-inflammatory cytokines [97] and
CRP [198]. Initial evidence also suggests that elevated baseline inflammatory levels
can be predictive of poor treatment response in first-episode psychosis [126]. Indeed,
a study on both chronic psychotic disorders and first-episode psychosis showed that
several inflammatory markers appear to be trait markers and showed no reduction
following antipsychotic medication [97, 198].

Patients with PTSD also exhibited increased inflammation levels. A meta-
analysis suggests that patients with PTSD have moderate to large elevation in several
pro-inflammatory cytokines [199] after controlling the effect of comorbid depression
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[199]. Genetic [181] and longitudinal [180] studies have suggested that inflamma-
tion can be a preexisting susceptibility factor for patients with PTSD exposed to ELS
rather than a simple correlation of disease severity, subjective distress, or dysfunc-
tional coping strategies after PTSD development.

6.6 Early Life Stress and Psychiatric Illness

6.6.1 Experimental Animal Studies

Animal studies of ELS on psychiatric disorders found that associations between
early contexts of stress and later emotional and behavioral abnormalities are likely
causal in nature [200–206]. Studies using mouse [202, 205] and nonhuman primate
models [203, 204, 206] have found that ELS from MS can negatively influence the
emotional and behavioral development and impair cognitive functioning, in line with
the seminal studies of clinical observations by Spitz [207] and Bowlby [208] on the
effects of MS on psychiatric disorders. Indeed, animals exposed to ELS show
behavioral despair and learned helplessness [200], dysfunctional fear conditioning
[200], and avoidant behaviors. Surprisingly, sensitization in guinea pigs was first
identified when two, 3-h separations at a 24-h interval increased the number of 1-min
intervals that guinea pig pups spent showing a passive, depressive-like response on
the second day of separation [40]. Although the effects of induced ELS can be
different based on the protocol used and the animals’ gender and age, the findings of
these experimental studies strongly indicate a causative role of ELS in psychopa-
thology in the late stage.

6.7 Early Life Stress and Psychiatric Illness

6.7.1 Observational Human Studies

Individuals exposed to ELS are 1.3–3.1 times more likely to result in lifetime major
depressive disorder or dysthymia, based on the frequency, type and severity, and
stressful events [209–211]. Although exposure to ELS can increase the risk of many
psychiatric disorders, the relationship between ELS and various types of psychiatric
etiology have not been clarified [6, 212–215]. One study showed that ELS predicts
several psychiatric disorders, including schizophrenia, depression, bipolar disorder,
and PTSD [216–218]. ELS from childhood neglect has also been related to later
changes in reward function in individuals [219]. Activation of the nucleus
accumbens [220] and other basal ganglia regions [221] associated with the reward
system decreases in teenagers exposed to ELS. Therefore, individuals exposed to
ELS have an increased lifelong risk of major depression including an early-onset and
elevated comorbidity [213, 222]. Individuals with present depression and a history
of ELS are also more likely to show high levels of high-sensitivity CRP compared to
controls. Notably, this association is not likely to be suggested by retrospectively
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biased reports of individuals in depression at the time of ELS assessment as the
evidence is persistent with those from official records and prospective evaluations of
maltreatment investigated in childhood [223]. Moreover, this is also unlikely to be
described by the effects confounded genetically because a higher risk of depression
in individuals exposed to ELS has been identified within twin studies [209].

Also, a history of ELS is highly associated with patients with bipolar disorder and
can predict an unfavorable illness course and clinical symptoms such as higher
severity of manic, psychotic, and depressive symptoms, a higher suicidal attempt,
higher risk of comorbid substance use disorders, anxiety disorders, elevated risk of
rapid cycling, and increased occurrence of depressive and manic episodes
[224]. Moreover, ELS predicts an increased number of psychotic disorders such as
schizophrenia or schizoaffective disorder later in life [217] Furthermore, ELS is
related to an elevated risk of PTSD [218] and is associated with more complex
symptoms including dysfunctional interrelationship, dysregulated emotion, and poor
self-concept [225].

6.8 Discussion

In this chapter, we provided an overview of the literature on early-life stress,
inflammation, and psychiatric illness. This section reviews how ELS affects the
psychopathology of psychiatric illness via inflammation. In the past, the brain is
thought to be immune-privileged with highly controlled innate and adaptive immu-
nity, especially inflammation in the blood-brain barrier. It has increasingly become
evident that the immune-privileged property of the brain is complicated and not
absolute [226]. The brain immune system is not only associated with the peripheral
immune system [137] but also actively contributes to normal brain development and
functioning [227]. The immune system in the brain has different cells, such as T cells
and microglia, and proteins such as chemokines or cytokines that play essential roles
to maintain homeostasis in the CNS resting state. Microglia monitor the surrounding
extracellular space during the resting state for infection and eliminate cellular debris
as well as maintain neurogenesis and inactive or dysfunctional synaptic structures.
Conversely, during a pro-inflammatory state, microglia produce inflammatory
cytokines and other molecules and clean up triggering foreign invaders through
phagocytosis. T cells originating from the lymphoid hematopoietic cell scan and
detect signals cascaded from brain into the CSF during the resting state. Meanwhile,
during the pro-inflammatory state, T cells release cytokines (e.g., IL-4) that stimulate
astrocytes to lead the production of brain-derived neurotrophic factor (BDNF) and
control inflammatory activity in parenchymal and meningeal myeloid cells such as
microglia and induce a protective immune response that may be associated with
aggravated results for brain function. Moreover, cytokines accumulating in the
microglia and T cells at the resting states play a critical role in hippocampus-linked
learning and memory processes, putatively via supporting long-term potentiation,
whereas cytokines during the pro-inflammatory state enhance neuroinflammation
and decrease monoaminergic transmission and trigger glutamate transmission and
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the HPA axis–mediated neuroendocrine stress response. Furthermore, a higher level
of cytokines inhibits BDNF and cholinergic transmission [137, 227]. Notably, there
are various routes through which inflammatory cytokines can increase synaptic
monoamine availability; these routes can play a fundamental role in the mechanism
underlying the pathophysiology of psychiatric illness [228]. An increased level of
IDO is also associated with cytokine-induced monoamine neurotransmitter changes
by converting the metabolism of tryptophan more into the kynurenine pathway but
less into the 5-hydroxyindoleacetic acid, thereby reducing serotonin production.
Subsequently, the neurotoxic metabolite quinolinic acid from microglia, monocytes,
and macrophages in the CNS originates from kynurenine [229, 230]. Quinolinic acid
stimulates N-methyl-D-aspartate receptors for glutamate and glutamate release by
astrocyte and blocks glutamate reuptake by astrocytes [231], which directly affect
glutamate metabolism to ultimately increase excitotoxicity and decrease efficient
neurogenesis, finally resulting in increased glutamate both inside and outside the
synapse. Therefore, elevated glutamate also increases excitotoxicity and decreases
the production of BDNF [232].

Concordantly, high levels of nitric oxide (NO) [233] released from microglia in
the inflammatory state can promote more neuronal cytotoxicity and apoptosis
[234, 235] and contribute to neuronal loss in schizophrenia and Alzheimer’s diseases
[236–238]. Thus, ELS sensitize microglial activation resulting in a lower threshold
for a reactive state and subsequently increasing inflammatory cytokine levels and
dysregulated neurotransmission, which can explain psychopathologies of psychiat-
ric illness caused by ELS.

As mentioned above, previous studies have linked the peripheral immune system
and the brain immune system; researchers have recognized that the immune-
privileged property of the brain is complicated and not absolute. The humoral
pathway refers to the cytokine passage through regions such as the circumventricular
organs with increased permeability in the BBB and elevated binding of cytokines to
saturable transport molecules on the BBB. The neural pathway [137] refers to the
binding of peripheral cytokines to peripheral afferent nerve fibers, such as the vagus
nerve, which subsequently triggers ascending catecholaminergic fibers in the CNS
and/or brings back cytokine signals in the central part [139]. The signal transduction
pathway refers to the triggering by peripheral cytokines from cell surface receptors
on endothelial cells and astrocytes in the brain that maintain the BBB, subsequently
stimulating more cytokine production by these cells. The transmembrane pathway
refers to the active transport of cytokines (TNF-α, IL-6, IL-1) through saturable
carrier proteins to enter the BBB. Finally, the cellular pathway refers to the traffick-
ing of activated immune cells, typically monocytes, to the brain vasculature and
parenchyma. Through these pathways, peripheral inflammation can trigger
neuroinflammation in the brain [137, 239]. For example, peripheral induction of
LPS in rodents increases the production of pro-inflammatory cytokines [240] and
microglia activation and inhibited adult neurogenesis in the brain [241].

Chronic stress in early life causes repeated and prolonged HPA overactivation,
which can subsequently cause less compensation in reduced signaling through
epigenetic alterations in the glucocorticoid receptor [242] and promote resistance
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to the function of cortisol to control the inflammatory state. Experimental human
studies have found that traumatic experiences during childhood are associated with
allele-specific DNA demethylation related to glucocorticoid response elements
(FKBP5 gene), which is related to the subsequently reduced sensitivity of peripheral
blood immune cells to the inhibitory function of glucocorticoids on LPS-induced
production of IL-6 in vitro [243]. A longitudinal study also showed that adolescents
exposed to harsh familial treatment showed decreased sensitivity of glucocorticoid
over time and elevated ex vivo cytokine responses to LPS administration [244].

Furthermore, the alteration of colonization and composition of the gut microbiota
might be influenced by ELS, which could affect immune development as well as
brain development via inflammatory signal transmission through metabolic
alterations or the vagus nerve [135]. Experimental animals findings also showed
that MS during the first year of life causes a significant reduction in fecal lactobacilli
[74] with long-term alterations on the composition of the microbiota in the gut being
apparent in later life [59].

Interestingly, recent meta-analytical findings in animal models showed that ELS
is linked to a small increase in the risk of obesity [19], as individuals with ELS may
be less sensitive to reward and hence may be involved in more dysfunctional
appetitive behaviors, such as eating fast foods or more high-calorie food items.
Also, given that ELS can potentiate HPA axis activation and related unpleasant
feelings, individuals with ELS eat more to decrease HPA axis activation. Elevated
pro-inflammatory cytokines by adipocytes can trigger a systemic inflammatory state
in individuals with obesity [245]. Moreover, individuals with ELS may have dys-
function in hormonal pathways regulating thermogenesis and lipolysis including the
leptin pathway or the HPA axis [19].

Previous studies have also reported that individuals exposed to ELS are at
increased risk of sleep disturbances [246, 247], which showed stronger relationship
for participants with more severe maltreatment exposures [246] regardless of con-
current PTSD or depressive disorders [248] Furthermore, MS in rodents can disrupt
sleep architecture and decrease total sleep; meanwhile, in humans, MS can induce
sleep deprivation and loss, which elevates the expression and levels of pro-inflam-
matory cytokines [249, 250].

In line with the biological and evolutional aspects of the bidirectional associations
between the brain and immune system, the critical targets primary related to inflam-
mation in the brain include those brain regions associated with both motivation and
motor activity such as arousal, anxiety, and alarm. In other words, the main
neurocircuits affected by inflammation involve the reward and anxiety circuits.
Dopamine as a core neurotransmitter plays a critical role in the reward circuit and
inflammatory cytokines have been demonstrated to reduce the production of dopa-
mine in the basal ganglia, which is involved in decreased motivation and activation
of the reward circuit in the ventral striatum [151, 152, 251]. Accumulated imaging
studies such as PET, functional magnetic resonance imaging (fMRI), and magnetic
resonance spectroscopy (MRS) have shown decreases in reward activation in the
striatum, showing strong reproducibility and validity of the cytokine-induced
alterations of the brain in nondepressed individuals peripherally administered LPS,
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typhoid vaccination, or IFN-α [151, 152, 252–254]. Notably, fMRI studies also
found that inflammation-mediated reduction of positive reward activation is related
to elevated sensitivity to negative stimuli and decreased activations in the substantia
nigra in the basal ganglia [254, 255]. According to studies on positive valence
systems, peripheral administration of typhoid vaccine and LPS decreases responses
to reward in the ventral striatum [151, 152]. Inflammatory cytokines in dopaminergic
pathways also induce a state of reduced motivation. Moreover, elevated inflamma-
tion is related to elevated responses to anxiety and threat neurocircuitry, involving
the amygdala, dACC, and insula [155, 256, 257]. Notably, the dACC and amygdala
are regions with elevated responses in patients with depression, anxiety, and neurot-
icism [258]. Thus, elevated oral IL-6 expression is strongly associated with
increased response of the amygdala to social evaluation stressor, with subjects
showing the highest IL-6 responses to stress, indicating greatest functional connec-
tivity within threat circuitry, which involves the dorsomedial PFC and amygdala
[259]. Similarly, elevated concentrations of oral IL-6 and soluble TNF receptor 2 in
response to an induced social anxiety condition, such as a public speaking, are
strongly associated with the activation of the dACC to a social rejection task
[257]. Indeed, these findings are related to the trafficking of monocytes to the
amygdala led by social defeat stress in rodents [145]. Considering negative valence
systems, typhoid vaccine decreases the relationship between the sACC and the
amygdala and elevates the activation in the sACC while processing emotional
faces [158]; peripheral administration of LPS also enhances activation in the amyg-
dala in conditions of socially threatening stimuli [260]. Subsequently, alterations in
reward and threat processing are critical potential mediators led by the effect of
systemic inflammation on behavioral responses.

As immune stimulation also profoundly affects the perinatal brain development
processes involved in cognitive function, some experimental animal studies showed
that infection and systemic inflammation during prenatal or neonatal periods impair
learning, memory, and attention [261–264]. Meanwhile, observational human stud-
ies found a relationship between prenatal exposure to infection and elevated risk of
schizophrenia [265, 266]. Elevated levels of the systemic inflammatory marker IL-6
during childhood are significantly related to an elevated risk of causing psychosis
and depression in young adult [179].

Accumulated experimental and observational studies in animals and humans have
suggested bidirectional relationships between psychiatric illness and inflammation in
peripheral and neuroinflammation over time [177], indicating that susceptibilities
associated with emotional and behavioral symptoms and dysfunctional perception of
distress could elevate inflammatory responses and sensitization over time or vice
versa. Thus, the severities and frequencies of stressful events could be affected by an
individual’s susceptibilities, such as personality traits or attachment style, and their
environmental risk factors, both of which are critical risk factors for ELS [267].
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