
Chapter 10
Iron and Subarachnoid Hemorrhage

Anika Zainab and Aneeqa Hamid

1 Introduction to Subarachnoid Hemorrhage (SAH)

SAH has been recognized as the most lethal form of stroke. SAH might not be the
prevalent of all strokes but it is significantly responsible for all-stroke associated
mortality and disability. High mortality and morbidity rates are frequently associated
with the incidence of SAH. These devastating consequences result in prolonged or
permanent disability. The patient leads a poor quality of life and it affects the
socioeconomic structure of the society (Yu et al., 2021; Heinsberg et al., 2020a).

2 Epidemiology

Previous studies exhibit the prevalence of SAH to be 5% among all types of strokes.
SAH relatively affects men in young ages while after 55 years of age, it seems to
affect women (de Rooij et al., 2007).

The reported incidences of SAH are found to be 9.1 per 100,000 person years in
number (Nieuwkamp et al., 2009). The recorded incidence of subarachnoid hemor-
rhage (SAH) is comparatively less than that of acute ischemic stroke. In fact, SAH is
the rare type of all stroke and accounts for only 1–6% of all incidences of stroke. It is
linked to high mortality and morbidity rate. It has poor prognosis and the patient
leads a poor quality of life (Veremakis, 1991). In 80% of the cases reported, SAH
occurs due to rupture of aneurysm. The other reasons behind this occurrence are;
vascular irregularities and vasculitis (Lawton & Vates, 2017).
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3 Signs and Symptoms

Patients with SAH frequently report “the worst headache of their life”. This is the
classic manifestation of subarachnoid hemorrhage (Connolly et al., 2012).

The presentation of patients after the onset of SAH is highly dependent upon the
magnitude and the great speed at which the hemorrhage diffuses in various regions
of the brain.

The early manifestations are Jacksonian epilepsy and after sometime, hemiparesis
takes place due to mechanical pressure exerted on motor cortex. These findings are
not present when the pressure is localized in the base of brain. The manifestations are
intermittent because the blood travels from one region to another rapidly. The late
manifestations are nausea, vomiting, headache, dizziness and disorientation and
there is chance of falling into coma. These late presentations occur due to raised
intracranial pressure. A rupture of a small cerebral vessel leads to unconsciousness
(Campbell, 1932).

The classic manifestations observed due to extravasated blood are neck rigidity,
headache in the occipital region, pain that originates from the back and travels
towards limbs, moderate fever with chills and Kernig’s sign (the patient is unable
to extend his knee or there is pain on extension of the knee (Alyssa et al., 2022). This
presentation is typically seen in basal meningitis (Campbell, 1932).

4 Introduction to Iron

Iron holds immense importance as a nutrient in the body as it engages in various
biological processes that includes redox reactions in the cells, formation of myelin,
cell multiplication and DNA synthesis. It remains vital to maintain the levels of iron
in equilibrium in the brain. The balance is maintained by the delicate process
of homeostasis (Kühn, 2015). Although Iron has essential physiological function
i.e., formation of myelin and neurotransmitter, electron transport chain and nervous
tissue development but free iron in the body leads to disastrous consequences. Free
iron causes oxidative stress, production of free radicals and neuronal injury (Helbok
et al., 2021).

5 Overview of the Anatomy of Brain

The brain is protected by three coverings namely dura matter, arachnoid matter and
pia matter. Dura matter is the outer fibrous tough covering whereas pia matter is the
inner most thin fragile covering of the brain. Arachnoid matter is the middle covering
which comprises of filaments of connective tissue. These filaments of connective
tissue are known as arachnoid trabeculae and they build a connection between pia



matter and arachnoid matter. They also form subarachnoid space which is filled with
cerebrospinal fluid. Cerebral vessels travel through this space.
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6 Homeostasis of Iron in the Brain

Iron can be largely found in the brain in its non-heme form. This indicates increased
level of metabolic activity in the brain linked to iron. Substantia nigra pars compacta
(SN) and basal ganglia contain high concentration of iron. The Blood Brain Barrier
is an intricate one cell thick endothelial cell layer which is polarized and it is held by
tight junctions. This molecular structure tightly regulates the transport of iron into
the brain from rest of the system.

The transport of iron into the brain is controlled by two pathways namely Tf-TfR
and DMT1-Fpn pathways. Fpn carries Fe2+ and it is released at the basolateral side
of the endothelial cells. Cp expressed on astrocytes foot processes which lines the
endothelial layer. Cp oxidizes Fe+2 to Fe+3. The Fe+3 is arrested by Tf which is
found in CSF and interstitial fluid of the brain. Citrate, ascorbate and ATP also
transport considerable quantity of iron in the brain. An unknown receptor on the
apical side of the endothelial cells is also responsible for the transport of iron into the
brain as ferritin (Bradbury, 1997; Guo et al., 2016; Moos et al., 2007; Rouault &
Cooperman, 2006).

7 Early Brain Injury Post-SAH

Early brain injury (EBI) and cerebrovascular spasm are the fatal consequences of
SAH (Liu et al., 2019). Several mechanisms and pathways have been identified that
are responsible for these appalling consequences. EBI results in nervous tissue
damage, neuronal injury, BBB disruption (blood brain barrier), cerebral edema,
cerebral ischemia and hypoxia and significant exposure to oxidative stress. There
is complex pathophysiology involved in the development of EBI. There is a dire
need to determine accurate pathways associated with EBI so that therapeutic targets
can be recognized. As a result, significant detrimental morbidity and mortality linked
to SAH can be prevented (Cahill & Zhang, 2009).

8 Cerebral Vasospasm Post-SAH

The most commonly occurring complication of SAH is cerebral vasospasm. This
leads to devastating consequences i.e., cerebral hypoxia and ischemia (Bederson
et al., 1995). Endothelin(s) are known as the active vasoconstrictors and play a
primary role in causing cerebral vasospasm post-SAH (Bickford et al., 2014). Iron



bound heme is responsible for causing vasospasm (Joerk et al., 2014). Nitric oxide a
vasodilator opposes the vasoconstrictive effects of endothelin. Iron from the heme
attaches to NO, the inhibitory effect NO on endothelin is lost and as a result,
vasospasm occurs (Pluta & Oldfield, 2008; Stow et al., 2011) (Garton et al., 2016).
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9 Role of Iron after SAH

Scientists believe that the initial brain damage occurs within 72 hours of incidence of
SAH. Blood builds up in the subarachnoid space which means Hb levels increase in
the brain. The bleeding activates heme–hemopexin scavenging system that removes
all the extra Hb accumulated in the brain. The activation of this system is signifi-
cantly involved in the buildup of intracellular iron and subsequently cause damage to
the brain after the event of SAH. The expression of CD91; the receptor of hemopexin
increases when iron deposits in the brain tissue (Garton et al., 2016).

Three studies prove relationship between iron toxicity and brain damage after
SAH. SAH created in a lab setting in the monkeys showed prominent increase in the
levels of heme oxygenase-1 in the microglia and iron induced oxidation in the
neuron leads to permanent DNA damage. This results in neuronal death and ultimate
brain damage (Ono et al., 2000).

The preliminary data obtained from cerebrospinal fluid samples of 12 patients
diagnosed with aneurysmal subarachnoid hemorrhage revealed the presence of free
iron and iron mediating proteins (Gomes et al., 2014).

SAH induced rats were studied, significant increase in the expression of heme
oxygenase 1 was seen in the acute phase after SAH. The expression of iron
regulating proteins such as Transferrin factor and Transferrin factor receptor also
increase. These proteins are responsible for transportation and storage of iron within
the basal region of the brain. Thus, iron toxicity takes place which means generation
of oxidative radicals and permanent cell damage (Lee et al., 2010).

Once inside the cell, the oxidative radicals enter the mitochondria. The integrity
of the cell is compromised and cell death pathway gets activated. Caspases, a
protease primarily involved in programmed cell death, is released from the mito-
chondria. The process of programmed cell death is called apoptosis. Consequently,
programmed neuronal death takes place. Therefore, it can be said that buildup of iron
after the SAH event induces apoptosis and ultimately leads to severe brain damage
(Garton et al., 2016).

10 Body’s Defense against Unbound Heme

Blood brain barrier provides protection to the brain against various harmful sub-
stances. The structure of BBB consists of endothelial cells, pericytes, basement
membrane and astrocytes end-foot It plays a prominent role in the stabilization of



the internal environment of the brain tissue by maintaining the hemostasis. It usually
does that by controlling the transport of various substances inside and outside the
brain. It defends the brain tissue from neurotoxic substance i.e., unbound heme, iron
etc. (Chen et al., 2020).
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A traumatic event like SAH disrupts this barrier and it results in accumulation of
heme in the subarachnoid space. Human body has two protective scavenging
systems against extracellular heme and iron toxicity namely; Heme-Hpx complex
and haptoglobin-CD163-heme oxygenase-1 pathway. Haptoglobin-CD163-heme
oxygenase-1 pathway is the major scavenger system and it is known as the first
line of defense mechanism against unbound iron toxicity. Haptoglobin has high
affinity for Hb dimers. The expression of CD163 (a phagocytic receptor) increases at
cellular level and binds avidly with the hemoglobin-haptoglobin complex. CD163
mediates Haptoglobin-heme complex transport into the macrophage and endosomal
degeneration occurs. Haptoglobin is recycled. Heme-hpx pathway is the alternative
iron scavenging pathway. When haptoglobin becomes concentrated with hemoglo-
bin after SAH, the rate of recycling does not match with the rate of consumption of
haptoglobin. As a result, exhaustion of haptoglobin reserves occur and there is no
haptoglobin left to clear the extravascular hemoglobin. During this time, the backup
hemoglobin scavenging system gets activated. The hemopexin-hemoglobin pathway
is known as the second line of defense against iron toxicity. Hemopexin-hemoglobin
complex formation neutralizes the redox toxicity produced by unbound heme. The
uptake of this complex is facilitated by plasma member receptor called CD91 via
endocytosis. (Chen-Roetling et al., 2018a, b; Garland et al., 2016; Kinner-Bibeau
et al., 2018).

11 SAH Markers

11.1 Hepcidin

Patient outcomes after SAH events are poor and variable. There is a need to explore
and investigate authentic and reliable biomarkers in patients who show poor
response. As a result, supportive treatment for these patients can be improved.
Two studies have been done studying relationship between iron related genotypes
and poor outcome of the patients (Heinsberg et al., 2020a, b).

Hepcidin is a major player in controlling iron hemostasis in the brain tissue. It
maintains optimum levels of iron in the brain tissue. A study investigating the
pathophysiology of early brain injury in SAH induced rats revealed that iron
accumulation in the subarachnoid space cause increased expression of hepcidin.
The increased expression of hepcidin intracellularly gives rise to apoptosis and iron
dependent oxidative injury. All of these catastrophic events occur via
downregulation of iron handling proteins i.e., ceruloplasmin and ferroportin-1.
These proteins are involved in the removal of iron from the brain tissue (Tan
et al., 2016).
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Previous literature has established that increased expression hepcidin in the brain
is responsible for the poor prognosis of patients with aSAH (aneurysmal subarach-
noid hemorrhage). Hepcidin antimicrobial peptide gene (HAMP) holds instruction
for the production of hepcidin. One study presents a hypothesis that the ability to
handle iron buildup depends on genetic variability in HAMP. The genetic variability
in HAMP is established by DNA methylation. Therefore, genetic variability of
HAMP DNA methylation can determine outcome of patients with aSAH. HAMP
DNA methylation can be detected in the CSF. Additionally, HAMP can be used as
therapeutic target to improve the prognosis of these patients after aSAH. This
indicates that hepcidin can be used as a reliable and stable biomarker to predict the
poor outcome of patients following SAH event (Heinsberg et al., 2020b).

11.2 Haptoglobin

Haptoglobin is an iron handling protein that binds to the free iron. This way it
prevents the damaging oxidative effects of iron. Increased levels of haptoglobin have
been observed in patients who suffered from vasospasm after SAH event. Hapto-
globin is responsible for the uptake and clearance of hemoglobin. It is also known as
acute phase protein. Acute phase proteins produced by the hepatocytes as a body’s
response mechanism to systemic disturbance. Therefore, it can be said that hapto-
globin modulates the process of inflammation in the body.

11.3 Haptoglobin Genotype

A meta-analysis of six studies reveals that HP1 and HP2; genotypes of haptoglobin
have opposite effect on the outcome of SAH. Short-term outcomes and long-term
outcomes were investigated. Short-term outcomes include cerebrovascular spasm
and delayed cerebral ischemia. Long-term outcomes include functional status assess-
ment through the modified Rankin Scale (mRS) or the Glasgow Outcome Scale.
Short-term outcomes are the reason for prolonged hospital stays and prominent
disability after SAH. The association between HP2 allele and the high risk of
cerebrovascular spasm have been observed. This allele also has associations with
cerebral salt wasting and poor functional outcomes. On the other hand, HP1 allele
has shown protective effect against early cerebral injury after SAH event. Therefore,
the goal of scientists must be to produce therapeutic interventions directed at HP1
allele. To prove the reliability and validity of this hypothesis larger prospective
studies (Gaastra et al., 2018; Bulters et al., 2018).
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11.4 Total Iron Binding Capacity

The analysis of 366 patients who undertook iron studies has shown that low total
iron binding capacity is linked to aSAH. It was also found that serum ferritin levels
were high in the short-term post-SAH. One possible explanation for these higher
levels is that ferritin is released in the acute phase of inflammatory process. It is
necessary to identify biomarkers for ruptured aSAH so that mortality and neurolog-
ical deficits associated with aSAH can be reduced (Can et al., 2019; Northrop-
Clewes, 2008).

12 Other Markers

After SAH, hemoglobin, heme, ferritin and iron levels in the CSF (cerebrovascular
fluid) increases. Elevated levels of hemopexin in the CSF have also been observed
after SAH. Hemopexin is a glycoprotein and it plays a role in the removal of free
heme intracellularly and extracellularly. It transports free heme to the liver where it is
broken down into stable products. This indicates that hemopexin provides protection
against oxidative and damaging effects of iron (Latunde-Dada, 2016). In a study
with 30 patients with SAH and 20 control individuals at tertiary care hospital raised
levels of hemopexin have shown worst outcome (Garland et al., 2016).

13 Heme-Oxygenase 1

A link between higher levels of HO-1 (heme oxygenase 1) and higher chance of
cerebrovascular spasm was found (Pyne-Geithman et al., 2005). These elevated
levels were also associated with reduced functionality in the patient and the study
concluded that at Day 7 after SAH event, heme oxygenase-1 levels (HO-1) in the
CSF can be used as a biomarker for the indication of poor outcome in the patients
with Fischer Grade III aSAH (K. C. Wang et al., 2014). A prospective study
conducted on 39 patients with SAH revealed that metabolites of HO-1, ferritin and
bilirubin levels were not related to cerebral vasospasm in the hospital setting (Suzuki
et al., 2003). These conflicting results warrant further research with larger cohorts in
a clinical setting to determine both favorable and unfavorable effects of HO-1
after SAH.

In a study conducted in SAH-induced rats, aerobic capacities and their response
to EBI were investigated through MRI, behavioral testing and brain examination.
Greater BBB disruption, ventricular damage and brain edema was observed in rats
with low aerobic capacities. Upregulation and increased expression of CD163 and
HO-1 was seen in the brain tissue of low aerobic capacity rats. This also indicates
high neuronal stress in the brain after SAH. Identifying risk factors i.e., aerobic



capacity can help to determine therapeutic targets. These risk factors are significantly
associated with increased incidence of EBI and consequently, lead to worse neuro-
logical and functional outcome in the patient with SAH (Toyota et al., 2021). This
study is relevant to human subjects as in a retrospective cohort of more than 60,000
revealed that cardiorespiratory fitness is linked to reduced occurrences of all forms of
stroke (al Rifai et al., 2020). In a prospective population-based study with long-term
follow up observed that physical activity reduces the incidence of aSAH in both
genders and exercise is particularly beneficial in smokers (Lindbohm et al., 2019).
Another prospective general population-based study conducted in Norway failed to
show any correlation between physical activity and SAH (Lindbohm et al., 2019).
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14 Ferroptosis

Several other cellular death pathways have been identified that may be involved in
the EBI. The known cell death processes identified after a hemorrhagic stroke are;
autophagy, apoptosis, pyroptosis, necrosis, necroptosis and ferroptosis etc. (Fricker
et al., 2018). The most accepted cell death pathway via mitochondrial caspases has
been associated with neuronal demise in EBI post SAH. Previously, apoptosis,
necrosis and autophagy were detected neuronal death pathways in EBI. In animal
study, melatonin was proposed as therapeutic agent that can be used to attenuate
autophagy and apoptosis in EBI. Therefore, melatonin can prevent neuronal death
during EBI post SAH (Edebali et al., 2014; Shi et al., 2018).

A newly emerging cell death pathway has come into spotlight namely ferroptosis.
Ferroptosis is a cellular death pathway which is nonapoptotic in nature. The mech-
anism is iron and lipid oxidative species dependent (Y. Sun et al., 2020).

Ferroptosis is linked to deposits of iron in the brain tissue and it is also triggered
by lipid peroxides. The intriguing results found in the experimental SAH study
exhibit that ferroptosis is involved in EBI post SAH. This detrimental process
initiates due to several reasons namely; accumulation of iron in the tissues, reduction
and deactivation of glutathione and glutathione peroxidase respectively, and lipid
oxidative species buildup. Fer-1 is a compound that penetrates into the cell and it
minimizes the buildup of lipid peroxides. As a result, it blocks the process of
ferroptosis and brain tissue demise. It has been determined that ferroptosis partici-
pates in the EBI. Subsequently, avoiding EBI in patients with SAH can improve the
prognosis and functional outcome (Li et al., 2021).

Another has also suggested ferroptosis as therapeutic target post-SAH. Fer-1
increases the expression of cysteine-glutamate antiporter SLC7A11 and GPX4
which prevents neuronal damages. Combined data of this study revealed that
activation of p53 is also involved in the process of ferroptosis. Deactivation of p53
can inhibit ferroptosis (Kuang et al., 2021).
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15 Biomarker for Ferroptosis

ACSL4 has been suggested to be the biomarker of ferroptosis. This marker can be
used to detect and investigate this pathway for research and therapeutic purposes in
future (Yuan et al., 2016). Another recent study has detected human transferrin
receptor 1 protein as ferroptosis biomarker (Feng et al., 2020). No absolute bio-
marker has been recognized till this date to detect the mechanism of ferroptosis.
Transmission electron microscopy is the most accepted method of detection for this
pathway (Stockwell et al., 2017).

16 Ferroptosis and GPX4

It has been observed that raised iron level and inhibition of glutathione peroxidase
4 (GPX4) induce and enhance the process of ferroptosis (Dixon et al., 2012). An
experimental SAH animal study has demonstrated that decreased expression of
GPX4 after 24 hours of SAH leads raised levels of lipid peroxidation and cell injury.
Thus, an increased expression of GPX4 can prevent radical formation and subse-
quently, neuronal injury. GPXP4 has also shown to reduce neurological deficit and
brain edema 24 hours post-SAH. GPX4 is an antioxidant enzyme and it blocks lipid
peroxidation. Lipid peroxidation occurs in the process of ferroptosis which basically
is iron dependent regulated cell death pathway. Ferroptosis has been determined to
play a significant role in post-SAH brain cell injury. Prominent GPX4 expression has
been identified in the animal brain and neuronal cultures. The expression of GPX
undergoes many changes due to activation of several inflammatory factors i.e.,
tumor necrosis factor-alpha, interleukins-1 beta and radical formation. The clinical
use of GPX4 can be proposed to inhibit ferroptosis which can help to avoid initial
brain injury post SAH. For this reason, this antioxidant can pave a new way to
improve functional outcome and prognosis of SAH (Gao et al., 2020).

17 Ferroptosis and Liproxstatin-1

Liproxastin-1 can also be used for the treatment of SAH. It has the following
beneficial mechanisms and effects

• Terminates the process of lipid peroxidation located in the mitochondria
• reduces the formation of reactive oxidative species
• enhances the activity of glutathione
• re-establish the levels of GPX4 (Fan et al., 2021)
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In a recent single centered prospective study with human subjects found that CSF
lipocalin-2 released in the inflammatory process can be used as prognostic biomarker
in SAH patients (Yu et al., 2021).

18 Intracerebral Iron Accumulation

The volume of blood accumulated in the subarachnoid space and intraventricular
space. This amount is associated with reduced functional status, prolonged hospital
stays and global cerebral ischemia. Additionally, the number of complications also
increase and worse outcome is inevitable (Helbok et al., 2021).

An observational study conducted on 32 patients with poor grade SAH found that
iron can be measured quantitatively in the extracellular space, iron levels are raised
in the white matter, the concentration of iron is associated with intraventricular blood
accumulation and raised levels of iron are correlated with secondary brain injury.
There is buildup of blood in the white matter during the acute phase of SAH, the
patients develop mitochondrial dysfunction in the neurons. The disruption in the
normal functioning of mitochondria is the cause of post-SAH cerebral vascular
constriction (Helbok et al., 2021).

19 SAH and Acute Seizures

A prospective observation cohort of 554 patients with SAH concludes that lower
levels of hemoglobin were associated with acute seizures. The mechanism behind
the incidence of seizures after aSAH is still not determined yet. The hypothesized
mechanism reveals that post-SAH inflammation and intracranial bleeding disrupts
the levels of iron and induces iron deficiency anemia. There is decreased serum iron
levels and intracranial hypertension. This causes ischemia and hypoxia of cerebral
tissues and eventually, metabolic disturbance and cell injury occur in the neurons
which triggers acute seizures (D.-L. Wang et al., 2019). Previous data shows that in
acute phase of aSAH, the volume of subarachnoid hemorrhage and cerebral vaso-
spasm might give rise to acute seizures (Hart et al., 1981; Ibrahim et al., 2013). Post-
SAH acute seizures are correlated with worse prognosis and neurological deficits.
No specific biomarkers have been identified till date to predict acute seizures after
aSAH. A follow up study has revealed that the volume of cerebral bleeding has been
associated with long-term epilepsy (Huttunen et al., 2015). Therefore, Wang et al.
have proposed the use of prophylactic antiepileptic drugs for anemic patients who
have suffered from an aSAH event (D.-L. Wang et al., 2019).
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20 SAH and Acute Hydrocephalus

9–67% of the patients with SAH have reported the occurrence of hydrocephalus in
the acute phase of aSAH (Graff Radford et al., 1989; Paisan et al., 2018; Shishido
et al., 2016; Zaidi et al., 2015). The mechanism behind this complication is also
linked to iron overload after SAH. Buildup of iron in the arachnoid granulations and
leptomeninges. This leads to development of hydrocephalus which occurs due to
hindrance in the CSF flow when BBB injury takes place along with deposition of
iron from lysed red blood cells (Chen et al., 2017). Zhang et al. in their prospective
observational study concluded that low serum iron levels are associated with hydro-
cephalus after SAH. Low serum iron levels can act as biomarkers to predict the onset
of hydrocephalus. Hence, these low iron levels can predict worse functional out-
comes in patients with SAH (Zhang et al., 2019).

21 MRI-QSM (Magnetic Resonance Imaging—
Quantitative Susceptibility Mapping)

MRI-QSM technology can be used to detect iron deposition located inside the
aneurysmal wall. The iron deposition is basically a micro-hemorrhage. The deposi-
tion of iron causes the aneurysmal wall to undergo several structural modifications.
This gives rise to sentinel headache also called thunderclap headache. The real
incidence of sentinel headache varies from 0–40% in SAH patients (Polmear,
2003; Schwedt et al., 2006).

MRI-QSM can be utilized to diagnosis cases with small aneurysms SAH when
results of lumber puncture and CT scan are negative. This tool can also be useful to
differentiate sentinel headache from all other forms of headache (H. Sun et al.,
2018).

22 Nimodipine and Deferoxamine

In an animal study comparing the efficacy of both drugs in the elimination of
cerebral vasospasm has found both drugs to be neuroprotective in nature.
Nimodipine prevents vasospasm in the acute phase and it fails to improve the
prognosis of SAH. On the other hand, deferoxamine (DFX) an iron chelator,
penetrates the BBB and decreases iron overload in the brain. Subsequently, it
improves cognitive function and prevents neuronal death (Qin et al., 2019).

In another animal study, DFX has shown to target iron deposition and reduced
BBB breakdown. In return, this therapeutic effect has ameliorated brain edema,
cerebral impairment and cognitive abnormality (Lee et al., 2010; Li et al., 2017).



222 A. Zainab and A. Hamid

Fatal lung damage was reported in four patients who were being treated with
persistent administration of DFX in a phase 2 trial documented in 1992 (Tenenbein
et al., 1992). Another study also suggested increased susceptibility of neuronal tissue
to HB with the use of DFX (Peng et al., 2020).

23 Treatment of Neurotoxicity Caused by HB with Vitreous

In an experiment, vitreous consisting of iron deficient transferrin, ferritin,
hyaluronan and selenium provided absolute protection to neuronal cell cultures
from HB toxicity (Chen-Roetling et al., 2018b).

24 Heat Shock Protein (HSP) and SAH

HSP70, HO-1, HSP20 and HSP27 are responsible for cerebral vasospasm. HSP70,
HSP90, HSP20 and HSP27 also play a prominent role in apoptotic cellular death
pathway. HSP70 and HO-1 are neuroprotective in nature and save neuronal tissue
from HB toxicity. These proteins are also cellular stress markers. HSP90 has shown
to cause neurotoxicity and initial EBI (Shao et al., 2019).

25 Conclusion

Keeping in view all the previous and recent findings, it can be said that SAH is a fatal
traumatic event. Patients who recover from this event are left with serious disabil-
ities. The therapeutic advances made to treat SAH have been of little clinical value.
Therefore, more experiments and larger studies are required to pave innovative ways
to treat SAH in its acute phase. In recent times, artificial intelligence has been
showing promising revolution in the early detection, investigation and treatment of
several cerebrovascular diseases.
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