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Abstract Real-lifemulti-attribute decision-making (MADM)has somemajor issues
related to the space of the problem, inter-dependency among attributes, flexibility in
the aggregation process, etc. So, our objective is to deal with these issues by adopt-
ing suitable tools and techniques like the q-rung orthopair fuzzy set (q-ROFS) for
handling space-related difficulty. Dual Muirhead mean (DMM) is applied to address
the inter-dependency among attributes, and for a flexible aggregation process, the
Hamacher t-norm (TN) and t-conorm (TCN) are utilised.By fusing these approaches,
this paper proposes two novel aggregation operators (AOs) named q-rung orthopair
fuzzy Hamacher dual Muirhead mean (q-ROFHDMM) and q-rung orthopair fuzzy
Hamacher weighted dual Muirhead mean (q-ROFHWDMM) operators. The essen-
tial properties of these AOs and special cases are explored as well. Finally, the
q-ROFHWDMM operator has been used to construct a MADM method. The study
also examines a practical example of selecting an enterprise resource planning (ERP)
system, as well as sensitive and comparative analysis.

Keywords Dual Muirhead mean · Hamacher t-norm and t-conorm ·
Multi-attribute decision-making · q-Rung orthopair fuzzy set

1 Introduction

MADM is a prominent technique that is used to find the best option from a set of
available options that depends on various attributes. SeveralMADM techniques exist
in the literature to handle real-life MADM problems. Most of the real-life MADM
problems have some common issues that need to be resolved formeaningful and real-
istic decision-making (DM). Among many, two major challenges faced by decision-
makers are (i) expressing the assessment values of an alternative with respect to
multiple attributes and (ii) considering the interactional behaviour of these attributes
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in the DM process. To address the first problem, Zadeh introduced the notion of the
fuzzy set [1], which assigns amembership degree to every element in order to express
the impreciseness and vagueness of that element in the set. But the Zadeh fuzzy set
does not address the sense of dissatisfaction. As a result, Atanassov [2] introduced
intuitionistic fuzzy set (IFS) in 1986, which used both membership degree(μ) and
non-membership degree (ν) with conditions μ, ν ∈ [0, 1], 0 ≤ μ + ν ≤ 1. In 2013,
Yager discovered that the condition 0 ≤ μ + ν ≤ 1 (IFS) on μ and ν is violated
in many real-life DM problems. To overcome this drawback, Yager [3] extended
the space of intuitionistic fuzzy numbers and proposed the Pythagorean fuzzy set
(PFS) by making use of the conditions 0 ≤ μ, ν ≤ 1; 0 ≤ μ2 + ν2 ≤ 1. Further, it
is observed by many researchers that there are still many real-life DM problems in
which assessment values (μ, ν) violate the PFS condition. For example, if (0.8, 0.7)
is the assessment data provided by the decision-maker, then we get 0.82 + 0.72 ≥ 1.
Therefore, more extended decision space is required. To further extend the decision
space of fuzzy information (μ and ν), a generalised orthopair fuzzy set, i.e. q-ROFS,
has been introduced by Yager in 2017 [4] . Its membership and non-membership
degrees satisfy the conditions μ, ν ∈ [0, 1]; 0 ≤ μq + νq ≤ 1; q ≥ 1. As the AOs-
based MADM approaches provide both comprehensive values and ranking orders of
the alternatives, and also the DM process of these approaches is more intuitive than
the classical ones such as TOPSIS, AHP, TODIM, PROMETHEE, etc [5]. Several
AOs and their utilisation provide variousMADMmethods for q-rung orthopair fuzzy
numbers (q-ROFNs). For instant, Liu and Wang [6] developed weighted geometric
(WG) and weighted average (WA) operators; Liu and Liu [7] proposed Bonferroni
mean (BM) and geometric BM (GBM) operators; Wei et al. [8] introduced gener-
alised Heronian mean and geometric Heronian mean operators; Wei et al. [9] devel-
oped Maclaurin symmetric mean (MSM) and geometric MSM (GMSM) operators.
Rawat and Komal recently used Muirhead mean (MM), Hamacher TN and TCN for
q-ROFNs and introduced some AOs as well as a MADM approach based on them.
TheMMandDMMare aggregation functions which address the inter-dependency of
multiple attributes through the correlation of their arguments for every permutation
[11]. Various well-knownmeans, like arithmetic mean (AM), geometric mean (GM),
GBM and GMSM, are some special cases of DMM [12]. Hamacher TN and TCN
are conjunctive and disjunctive aggregation functions [13]. Also, they are strictly
decreasing and increasing with parameter γ , respectively, which helps to model con-
junction and disjunction among arguments and provides flexibility in the aggregation
process [14]. Consequently, many researchers utilisedHamacher TN and TCN-based
arithmetic operations to develop some AOs for various fuzzy numbers like intuition-
istic fuzzy numbers (IFNs), Pythagorean fuzzy numbers (PFNs), complex IFNs and
q-ROFNs [15–18].

The focus of this article is to develop some novel Hamacher TN and TCN-based
DMM operators for generalised orthopair fuzzy numbers. This fusion of Hamacher
norms and DMM operator provides both interrelationship among multiple attributes
and flexible aggregation process due to the additional parameter γ in Hamacher
norms. The structure of the paper is as follows: In Sect. 2, definitions of q-ROFS,
Hamacher TN and TCN, MM and DMM operators are discussed briefly. Section
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3 introduces the q-ROFHDMM and q-ROFHWDMM operators with their essential
properties and special cases. Further, in Sect. 4, the q-ROFHWDMM operator-based
MADMapproach has been developed, and a real-lifeDMproblemhas been examined
through this. This section also provides sensitive and comparative analyses. Finally,
some concluding remarks are given in Sect. 5.

2 Preliminaries

2.1 q-Rung Orthopair Fuzzy Set (q-ROFS)

Definition 1 ([4]) The q-ROFS � on a universal set U is defined as

� = {〈x, (μ�(x), ν�(x))〉| x ∈ U } (1)

where μ�(x) : U → [0, 1] is membership and ν�(x) : U → [0, 1] is
non-membership functions that holds, 0 ≤ (μ�(x))q + (ν�(x))q ≤ 1 for all q ≥ 1.
Thedegreeof hesitancyof x in� is defined asπ�(x) = (1 − (μ�(x))q − (ν�(x))q)1/q

and the q-rung orthopair fuzzy number (q-ROFN) can be written as (μ�, ν�).

Definition 2 ([6]) The basic arithmetic operations on any two q-ROFNs, ℵ1 =
(μ1, ν1), and ℵ2 = (μ2, ν2), are as follows:

1. ℵ1 ⊕ ℵ2 = (
(μ

q
1 + μ

q
2 − μ

q
1μ

q
2)

1/q , ν1ν2
)
,

2. ℵ1 ⊗ ℵ2 = (
μ1μ2, (ν

q
1 + ν

q
2 − ν

q
1 ν

q
2 )1/q

)
,

3. λℵ1 = (
(1 − (1 − μ

q
1)

λ)1/q , νλ
1

)
,

4. ℵλ
1 = (

μλ
1, (1 − (1 − ν

q
1 )λ)1/q

)
.

For comparing any two q-ROFNs, we have a score function (S) and an accuracy
function (A) as follows:

Definition 3 ([6]) Let ℵ = (μℵ, νℵ) be a q-ROFN, then the score value of ℵ is
obtained by S(ℵ) ∈ [−1, 1] which is defined as

S(ℵ) = μ
q
ℵ − ν

q
ℵ (2)

The accuracy value of ℵ is obtained by A(ℵ) ∈ [0, 1] which is defined as

A(ℵ) = μ
q
ℵ + ν

q
ℵ (3)

Definition 4 For any two q-ROFNs say ℵ = (μℵ, νℵ) and κ = (μκ, νκ):

1. If S(ℵ) > S(κ), then ℵ � κ

2. If S(ℵ) = S(κ), then

(a) If A(ℵ) > A(κ), then ℵ � κ;
(b) If A(ℵ) = A(κ), then ℵ = κ .
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2.2 Hamacher t-Norm (TN) and t-Conorm (TCN)

Hamacher TN (T ) as product (⊗) and Hamacher TCN (T ∗) as sum (⊕) are defined
as follows [13]:

T (ı, j) = ı ⊗ j = ıj

γ + (1 − γ )(ı + j − ıj)
,

T ∗(ı, j) = ı ⊕ j = ı + j − ıj − (1 − γ )ıj

1 − (1 − γ )(ıj)
; γ > 0.

For γ = 1, the Hamacher TN and TCN becomes algebraic TN and TCN:

T (ı, j) = ı ⊗ j = ıj, T ∗(ı, j) = ı ⊕ j = ı + j − ıj.

Similarly, for γ = 2, the Hamacher TN and TCN becomes Einstein TN and TCN:

T (ı, j) = ı ⊗ j = ıj

1 + (1 − ı)(1 − j)
, T ∗(ı, j) = ı ⊕ j = ı + j

1 + ıj
.

2.3 Hamacher Operations for q-ROFNs

If ℵ1 = (μ1, ν1) and ℵ2 = (μ2, ν2) are any two q-ROFNs and γ > 0, then the fol-
lowing arithmetic operations for q-ROFNs are defined using Hamacher TN and TCN
[19]:

ℵ1 ⊕ ℵ2 =
((

(μ1)
q + (μ2)

q − (μ1)
q(μ2)

q − (1 − γ )(μ1)
q(μ2)

q

1 − (1 − γ )(μ1)q(μ2)q

)1/q

,

ν1ν2

(γ + (1 − γ ) ((ν1)q + (ν2)q − (ν1)q(ν2)q))
1/q

)

ℵ1 ⊗ ℵ2 =
(

μ1μ2

(γ + (1 − γ ) ((μ1)q + (μ2)q − (μ1)q(μ2)q))
1/q ,

(
(ν1)

q + (ν2)
q − (ν1)

q(ν2)
q − (1 − γ )(ν1)

q(ν2)
q

1 − (1 − γ )(ν1)q(ν2)q

)1/q
)
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λℵ1 =
((

(1 + (γ − 1)μq
1)

λ − (1 − μ
q
1)

λ

(1 + (γ − 1)μq
1)

λ + (γ − 1)(1 − μ
q
1)

λ

)1/q

,

(γ )1/qνλ
1(

(1 + (γ − 1)(1 − ν
q
1 ))λ + (γ − 1)(νq

1 )λ
)1/q

)

ℵλ
1 =

(
(γ )1/qμλ

1(
(1 + (γ − 1)(1 − μ

q
1))

λ + (γ − 1)(μq
1)

λ
)1/q ,

(
(1 + (γ − 1)νq

1 )λ − (1 − ν
q
1 )λ

(1 + (γ − 1)νq
1 )λ + (γ − 1)(1 − ν

q
1 )λ

)1/q
)

For γ = 1 Hamacher operations becomes algebraic operations and for γ = 2 they
changes to Einstein operations.

2.4 Muirhead Mean (MM)

Definition 5 ([11]) The MM operator for n numbers say ς1, ς2, ..., ςn and a param-
eter vector P = (p1, p2, ..., pn) ∈ �n is defined as

MMP(ς1, ς2, ..., ςn) =
⎛

⎝ 1

n!
∑

π∈Sn

n∏

j=1

ς
p j

π( j)

⎞

⎠

1∑n
j=1 p j

(4)

where Sn is the symmetric group of degree n.

2.5 Dual Muirhead Mean (DMM)

Definition 6 ([11]) TheDMMoperator for n numbers sayς1, ς2, ..., ςn and a param-
eter vector P = (p1, p2, ..., pn) ∈ �n is defined as

DMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
∏

π∈Sn

n∑

j=1

p jςπ( j)

⎞

⎠

1
n!

(5)

where Sn is the symmetric group of degree n. Some special cases of the DMM
operator for different values of P are as follows [12]:

1. If P = (1, 0, 0..., 0), then the DMM operator becomes the GM operator
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DMMP(ς1, ς2, ..., ςn) =
(

n∏

i=1

ςi

) 1
n

.

2. If P = (1, 1, ..., 1) or (1/n, 1/n, ..., 1/n), then the DMM operator becomes the
AM operator

DMM(1,0,0,...,0)(ς1, ς2, ..., ςn) = 1

n

n∑

i=1

ςi .

3. If P = (p1, p2, 0, 0, ..., 0), then the DMM operator becomes the GBM operator

DMM(p1,p2,0,0,...,0)(ς1, ς2, ..., ςn) = 1

p1 + p2

n∏

i, j=1 i �= j

(p1ςi + p2ς j )
1

n(n−1) .

4. If P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), then theDMMoperator becomes theGMSMoper-

ator

DMM(

k︷ ︸︸ ︷
1, 1, ..., 1,

n−k︷ ︸︸ ︷
0, 0, ..., 0)(ς1, ς2, ..., ςn) = 1

k

⎛

⎝
∏

1≤i1≤...≤ik≤n

k∑

j=1

ςi j

⎞

⎠

1
Ck
n

.

3 q-Rung Orthopair Fuzzy Hamacher Dual Muirhead
Mean Operators

3.1 The q-ROFHDMM Operator

Definition 7 Let ςi = (μi , νi ) be any q-ROFN and P = (p1, p2, ..., pn) ∈ �n be
a parameter vector such that

∑n
j=1 p j > 0, then q-ROFHDMM operator on such n

q-ROFNs is defined as

q-ROFHDMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
⊗

π∈Sn

n⊕

j=1

(p jςπ( j))

⎞

⎠

1
n!

(6)

where Sn is the symmetric group of degree n.

Theorem 1 For any collection {ς1, ς2, ..., ςn} of q-ROFNs, the aggregated value on
applying the q-ROFHDMM operator is also a q-ROFN and it is defined as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

−

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

+(γ−1)

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

+(γ−1)

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where
φ2 = ∏n

j=1(1 + (γ − 1)μq
π( j))

p j ,
ϕ2 = ∏n

j=1(1 − μ
q
π( j))

p j ,

ψ2 = ∏n
j=1

(
1 + (γ − 1)(1 − ν

q
π( j))

)p j ,
χ2 = ∏n

j=1(ν
q
π( j))

p j .

Proof The Eq. (7) is proved using mathematical induction and Hamacher operations
of q-ROFNs, as discussed in Sect. 2.3:

p jςπ( j) =
⎛

⎝
(

(1 + (γ − 1)μq
π( j))

p j − (1 − μ
q
π( j))

p j

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)(1 − μ
q
π( j))

p j

)1/q

,

γ 1/qν
p j

π( j)
(
(1 + (γ − 1)(1 − ν

q
π( j)))

p j + (γ − 1)(νq
π( j))

p j

)1/q

⎞

⎟
⎠

Supposewe have two q-ROFNsςπ(1) = (μπ(1), νπ(1)) andςπ(2) = (μπ(2), νπ(2)), then

p1ςπ(1) ⊕ p2ςπ(2)

=
⎛

⎝
(

(1 + (γ − 1)μq
π(1))

p1 − (1 − μ
q
π(1))

p1

(1 + (γ − 1)μq
π(1))

p1 + (γ − 1)(1 − μ
q
π(1))

p1

)1/q

,

γ 1/qν
p1
π(1)

(
(1 + (γ − 1)(1 − ν

q
π(1)))

p1 + (γ − 1)(νq
π(1))

p1
)1/q

⎞

⎟
⎠

⊕
⎛

⎝

(
(1 + (γ − 1)μq

π(2))
p2 − (1 − μ

q
π(2))

p2

(1 + (γ − 1)μq
π(2))

p2 + (γ − 1)(1 − μ
q
π(2))

p2

)1/q

,
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γ 1/qν
p2
π(2)

(
(1 + (γ − 1)(1 − ν

q
π(2)))

p2 + (γ − 1)(νq
π(2))

p2
)1/q

⎞

⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎜⎜
⎝

2∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
2∏

j=1

(1 − μ
q
π( j))

p j

2∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
2∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟
⎟⎟
⎠

1/q

,

γ 1/q
2∏

j=1

ν
p j

π( j)

⎛

⎝
2∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
2∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

Assuming that it is also true for j = n − 1,

n−1∑

j=1

p jςπ( j) =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n−1∏

j=1

(1 − μ
q
π( j))

p j

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n−1∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟⎟⎟
⎠

1/q

,

γ 1/q
n−1∏

j=1

ν
p j

π( j)

⎛

⎝
n−1∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n−1∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

Now, the target is to show that this is also true for j = n.

n−1∑

j=1

p jςπ( j) ⊕ pnςπ(n)

=

⎛

⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎜⎜⎜
⎜⎜
⎝

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n−1∏

j=1

(1 − μ
q
π( j))

p j

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n−1∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟
⎟⎟
⎠

1/q

,
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γ 1/q
n−1∏

j=1

ν
p j

π( j)

⎛

⎝
n−1∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n−1∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

⊕
⎛

⎝

(
(1 + (γ − 1)μq

π(n))
pn − (1 − μ

q
π(n))

pn

(1 + (γ − 1)μq
π(n))

pn + (γ − 1)(1 − μ
q
π(n))

pn

)1/q

,

γ 1/qν
pn
π(n)

(
(1 + (γ − 1)(1 − ν

q
π(n)))

pn + (γ − 1)(νq
π(n))

pn
)1/q

⎞

⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

n∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n∏

j=1

(1 − μ
q
π( j))

p j

n∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟⎟⎟
⎠

1/q

,

γ 1/q
n∏

j=1

ν
p j

π( j)

⎛

⎝
n∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

=
n∑

j=1

p jςπ( j)

Then, taking the product of for all permutations, we get



96 S. S. Rawat and Komal

∏

π∈Sn

n∑

j=1

p jςπ( j)

=

⎛

⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

γ
∏

π∈Sn
(φ2 − ϕ2)

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2) + (γ − 1)

∏

π∈Sn
(φ2 − ϕ2)

⎞

⎟
⎟
⎠

1/q

,

⎛

⎜⎜
⎝

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2) −

∏

π∈Sn
(ψ2 − χ2)

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2) + (γ − 1)

∏

π∈Sn
(ψ2 − χ2)

⎞

⎟⎟
⎠

1/q⎞

⎟⎟⎟
⎠

and

⎛

⎝
∏

π∈Sn

n∑

j=1

ς
p j

π( j)

⎞

⎠

1
n!

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

γ

⎛

⎝
∏

π∈Sn
(φ2 − ϕ2)

⎞

⎠

1
n!

⎛

⎝
∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

π∈Sn
(φ2 − ϕ2)

⎞

⎠

1
n!

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

1/q

,

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝
∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2)

⎞

⎠

1
n!

−
⎛

⎝
∏

π∈Sn
(ψ2 − χ2)

⎞

⎠

1
n!

⎛

⎝
∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

π∈Sn
(ψ2 − χ2)

⎞

⎠

1
n!

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

1/q⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

Finally,

1
∑n

j=1 p j

⎛

⎝
∏

π∈Sn

n∑

j=1

(p jςπ( j))

⎞

⎠

1
n!
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=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(φ2 − ϕ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(φ2 − ϕ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(φ2 − ϕ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(φ2 − ϕ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

1/q

,

⎛

⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

γ

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(ψ2 − χ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(ψ2 − χ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(ψ2 − χ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

1/q

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

(8)

which illustrates that Eq. (7) holds.
Now, to show that Eq. (7) or (8) is a q-ROFN, we will prove the following:

(i) 0 ≤ μ′ ≤ 1
(ii) 0 ≤ ν ′ ≤ 1
(iii) 0 ≤ (μ′)q + (ν ′)q ≤ 1
where μ′ is the membership degree and ν ′ is the non-membership degree of Eq. (8).

Proof (i) and (ii). For any γ > 0, q ≥ 1 and P ∈ �n s.t.
∑n

j=1 p j > 0, we have
φ2, ϕ2, ψ2, χ2 ≥ 0 with φ2 ≥ ϕ2, ψ2 ≥ χ2 and the q-ROFN (μ′, ν ′) can be written

as

((
E∗−F∗

E∗−F∗+γ F∗

)1/q
,
(
1 − G∗−H∗

G∗−H∗+γ H∗

)1/q
)
. where

E∗ =
((∏

π∈Sn (φ2 + (γ 2 − 1)ϕ2)
) 1

n! + (γ 2 − 1)
(∏

π∈Sn (φ2 − ϕ2)
) 1

n!
) 1∑n

j=1 p j ,

F∗ =
((∏

π∈Sn (φ2 + (γ 2 − 1)ϕ2)
) 1

n! − (∏
π∈Sn (φ2 − ϕ2)

) 1
n!
) 1∑n

j=1 p j ,

G∗ =
((∏

π∈Sn (ψ2 + (γ 2 − 1)χ2)
) 1

n! + (γ 2 − 1)
(∏

π∈Sn (ψ2 − χ2)
) 1

n!
) 1∑n

j=1 p j ,

H∗ =
((∏

π∈Sn (ψ2 + (γ 2 − 1)χ2)
) 1

n! − (∏
π∈Sn (ψ2 − χ2)

) 1
n!
) 1∑n

j=1 p j .

Since E∗, F∗, G∗, H∗ ≥ 0 s.t. E∗ ≥ F∗ and G∗ ≥ H∗. Therefore, it is easy to
show that μ′ and ν ′ satisfy the conditions (i) and (ii), respectively.

Proof (iii). Conditions (i) and (ii) ⇒ 0 ≤ (μ′)q + (ν ′)q . For (μ′)q + (ν ′)q ≤ 1, we
know that μ

q
π( j) + ν

q
π( j) ≤ 1 or μ

q
π( j) ≤ 1 − ν

q
π( j). Now by using μ

q
π( j) ≤ 1 − ν

q
π( j)

and Eq. (8) for μ′ and ν ′, we will get

(μ′)q + (ν ′)q ≤ 1. Q.E.D

Some important properties such as idempotency, monotonicity, boundedness and
commutativity of the q-ROFHDMM operator are given below.

Property 1 (Idempotency) If all the considered q-ROFNs are equal, that is, ςi =
ς = (μ, ν) for all i = 1, 2, ..., n, then

q-ROFHDMMP(ς1, ς2, ..., ςn) = ς = (μ, ν).
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Property 2 (Monotonicity) If ςi = (μi , νi ) and ς ′
i = (μ′

i , ν
′
i ) for i = 1, 2, ..., n are

any two collection of q-ROFNs s.t. μi ≤ μ′
i , νi ≥ ν ′

i for all i , then

q-ROFHDMMP(ς1, ς2, ..., ςn) ≤ q-ROFHDMMP(ς ′
1, ς

′
2, ..., ς

′
n).

Property 3 (Boundedness) For any collection ςi = (μi , νi ) for i = 1, 2, ..., n of

q-ROFNs, if ς− =
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
and ς+ =

(
n

max
i=1

(μi ),
n

min
i=1

(νi )

)
, then

ς− ≤ q-ROFHDMMP(ς1, ς2, ..., ςn) ≤ ς+.

Property 4 (Commutativity) For any permutation of ςi (i = 1, 2, ..., n) say ς ′
i (i =

1, 2, ..., n), the aggregated value remains unaffected. That is

q-ROFHDMMP(ς ′
1, ς

′
2, ..., ς

′
n) = q-ROFHDMMP(ς1, ς2, ..., ςn).

Now, some special cases of the q-ROFHDMM operator w.r.t γ and P are discussed
hereafter.

1. For γ = 1, q-ROFHDMM operator becomes q-rung orthopair fuzzy dual Muir-
head mean(q-ROFDMM) operator.

2. For γ = 2, q-ROFHDMMoperator becomes q-rung orthopair fuzzy Einstein dual
Muirhead mean(q-ROFEDMM) operator.

3. For P = (1, 0, 0, ..., 0), q-ROFHDMMoperator becomes q-rung orthopair fuzzy
Hamacher geometric averaging(q-ROFHG) operator.

4. For P = (1, 1, ..., 1) or P = (1/n, 1/n, ..., 1/n), q-ROFHDMM operator
becomes q-rung orthopair fuzzy Hamacher arithmetic averaging(q-ROFHA)
operator.

5. For P = (1, 1, 0, 0, ..., 0), q-ROFHDMM operator becomes q-rung orthopair
fuzzy Hamacher geometric Bonferroni mean(q-ROFHGBM) operator.

6. For P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), q-ROFHDMMoperator becomeq-rungorthopair

fuzzy Hamacher geometric Maclaurin symmetric mean(q-ROFHGMSM) opera-
tor.

3.2 The q-ROFHWDMM Operator

Definition 8 Consider a set of q-ROFNs {ς1, ς2, ..., ςn}, a parameter vector P =
(p1, p2, ..., pn) ∈ �n such that

∑n
j=1 p j > 0, and a weight vector ω = (ω1, ω2, ...,

ωn)
T , where ωi ∈ [0, 1] corresponding to ςi such that

∑n
i=1 ωi = 1. The

q-ROFHWDMM operator is thus defined as
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q-ROFHWDMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
⊗

π∈Sn

n⊕

j=1

(
p jς

nwπ( j)

π( j)

)
⎞

⎠

1
n!

where Sn is the symmetric group of degree n.

Theorem 2 For any collection {ς1, ς2, ..., ςn} of q-ROFNs, the aggregated value
using q-ROFHWDMM operator is also a q-ROFN and it is defined as

q-ROFHWDMMP(ς1, ς2, ..., ςn) =
⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 + (γ 2 − 1)ϕ′
2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 − ϕ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 + (γ 2 − 1)ϕ′
2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(φ′

2 − ϕ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 + (γ 2 − 1)ϕ′
2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 − ϕ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ′

2 + (γ 2 − 1)ϕ′
2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(φ′

2 − ϕ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

1/q

,

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

γ

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ ′

2 + (γ 2 − 1)χ ′
2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(ψ ′

2 − χ ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ ′

2 + (γ 2 − 1)χ ′
2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(ψ2 − χ ′

2 )

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

+(γ−1)

⎛

⎜⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(ψ ′

2 + (γ 2 − 1)χ ′
2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
(ψ ′

2 − χ ′
2 )

⎞

⎟
⎠

1
n!

⎞

⎟⎟
⎠

1
n∑

j=1

p j

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

1/q

⎞

⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

where
φ′
2 = ∏n

j=1

((
1 + (γ − 1)(1 − μ

q
π( j))

)nwπ( j) + (γ 2 − 1)
(
μ
q
π( j)

)nwπ( j)
)p j

,

ϕ′
2 = ∏n

j=1

((
1 + (γ − 1)(1 − μ

q
π( j))

)nwπ( j) −
(
μ
q
π( j)

)nwπ( j)
)p j

,

ψ ′
2 = ∏n

j=1

((
1 + (γ − 1)νq

π( j)

)nwπ( j) + (γ 2 − 1)
(
1 − ν

q
π( j)

)nwπ( j)
)p j

,

χ ′
2 = ∏n

j=1

((
1 + (γ − 1)νq

π( j)

)nwπ( j) −
(
1 − ν

q
π( j)

)nwπ( j)
)p j

.

Corollary 1 The q-ROFHDMM is a specific case of the q-ROFHWDMM operator.
That is, for w = (1/n, 1/n, ..., 1/n)T , the q-ROFHWDMM operator reduces to q-
ROFHDMM operator.

The two fundamental properties, monotonicity and boundedness, of the q-
ROFHWDMM operator are discussed hereafter.

Property 5 (Monotonicity) If ςi = (μi , νi ) and ς ′
i = (μ′

i , ν
′
i ) for i = 1, 2, ..., n are

any two collection of q-ROFNs s.t. μi ≤ μ′
i , νi ≥ ν ′

i for all i , then

q-ROFHWDMMP(ς1, ς2, ..., ςn) ≤ q-ROFHWDMMP(ς ′
1, ς

′
2, ..., ς

′
n).

Property 6 (Boundedness) For any collection ςi = (μi , νi ) for i = 1, 2, ..., n of

q-ROFNs, if ς− =
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
and ς+ =

(
n

max
i=1

(μi ),
n

min
i=1

(νi )

)
, then

ς− ≤ q-ROFHWDMMP(ς1, ς2, ..., ςn) ≤ ς+.
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4 Application of the Proposed AOs on MADM

4.1 MADMMethod Based on the q-ROFHWDMM Operator

Now we’ll develop a MADM method that uses the q-ROFHWDMM operator. To
implement this, let us take � = {�1,�2, ...,�m} be the set of all feasible alterna-
tives, which are being evaluated on the basis of n-attributes {ζ1, ζ2, ..., ζn} with
the weight vector ω = {ω1, ω2, ..., ωn} such that ω j ∈ [0, 1] and ∑w

j=1 ω j = 1. Let
� = (ℵi j )m×n be the decision matrix, where ℵi j = (μi j , νi j ) is an assessment value
(as q-ROFN) of an alternative �i with respect to the attribute ζ j .

The step-by-step approach of this generalised orthopair fuzzy MADM method is
given hereafter.
Step 1. Normalisation of �:
Generally, two types of attributes are involved in any decisionmatrix: cost and benefit
types. To consider these attributes simultaneously, we need to normalise the decision
matrix as follows:

ℵi j = (μi j , νi j ) =
{

(μi j , νi j ), for benefit attributes ζ j

(νi j , μi j ), for cost attributes ζ j

Step 2. Evaluate comprehensive values:
To get a comprehensive value ℵi for each alternative �i , apply the proposed q-
ROFHWDMMoperatorwhich aggregates the assessment valuesℵi j ( j = 1, 2, ..., n).

ℵi = q-ROFHWDMM(ℵi1,ℵi2, ...,ℵin)

Step 3. Find the score and accuracy values:
First, compute the S(ℵi ) for each ℵi (i = 1, 2, ...,m). Now if any two or more score
values match, then calculate their accuracy values A(ℵi ) according to the Eqs. (2)
and (3), respectively.
Step 4. Rank the alternatives:
Now use definition 4 to rank the alternatives (�i ) and choose the most appealing one.

4.2 An Illustrative Example

Now, a practical MADM problem adopted from [8] is presented to illustrate the
applicability of the developedMADM technique. The target of this MADM problem
is to help an organisation install an ERP system. For that, five viable ERP systems
have been chosen by the project team. �i (i = 1, 2, 3, 4, 5) i.e. 5-alternatives and 4-
attributes ζ j ( j = 1, 2, 3, 4) that are (1) function and technology ζ1; (2) strategic fit-
ness ζ2; (3) vendor’s ability ζ3; (4) vendor’s reputation ζ4 andω = (0.2, 0.1, 0.3, 0.4)



Novel q-Rung Orthopair Fuzzy Hamacher … 101

Table 1 Decision matrix (�) taken from [8]

Alternative Attributes

ζ1 ζ2 ζ3 ζ4

�1 (0.5, 0.8) (0.6, 0.3) (0.3, 0.6) (0.5, 0.7)

�2 (0.7, 0.5) (0.7, 0.2) (0.7, 0.2) (0.4, 0.5)

�3 (0.6, 0.4) (0.5, 0.7) (0.5, 0.3) (0.6, 0.3)

�4 (0.8, 0.1) (0.6, 0.3) (0.3, 0.4) (0.5, 0.6)

�5 (0.6, 0.4) (0.4, 0.8) (0.7, 0.6) (0.5, 0.8)

Table 2 Final results of all �i

Alternatives Comprehensive values Score values Ranking

�1 (0.6118, 0.5381) 0.0732 4

�2 (0.7275, 0.3030) 0.3572 1

�3 (0.6210, 0.3863) 0.1818 3

�4 (0.7033, 0.2781) 0.3264 2

�5 (0.6240, 0.6010) 0.0258 5

denotes the weight vector of these qualities. The associated information of these five
alternative with respect to four attributes is given in the form of a decision matrix
� = (ℵi j )5×4 of q-ROFNs as provided in the Table 1.

In order to achieve the most suitable alternative, we utilised the MADM method
given in Sect. 4.1.

Step 1. Normalisation of �:
Here, the given decision matrix (�) does not need to be normalised, as all four ζ j are
benefit type.
Step 2. Evaluate comprehensive values:
Now apply q-ROFHWDMMoperator and compute the comprehensive valuesℵi (i =
1, 2, 3, 4, 5) for all alternatives�i (i = 1, 2, 3, 4, 5) using decisionmatrix� (Table 1),
for q = 3, γ = 1, and P = (1, 1, 1, 1). The comprehensive values are presented in
column 2 of Table 2.
Step 3. Find the score and accuracy values:
For each ℵi (i = 1, 2, 3, 4, 5), compute score value S(ℵi ). Computed score values
are presented in column 3 of Table 2.
Step 4. Ranking of alternatives:
Finally, based on the calculated S(ℵi ), rank the alternatives �i as discussed in step 4
of section 4.1 and result are presented in column 4 of Table 2. From Table 2, it’s clear
that alternative A2 is the best alternative among possible potential ERP systems. The
final choice of alternative may depend on the parameters’ values q, γ, P and AOs
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applied. Therefore, it is obvious to investigate the efficiency of the proposed method
corresponding to the parameters’ values selected and AOs used. Therefore, sections
4.3 and 4.4 discusses sensitivity analysis and comparative analysis, respectively.

4.3 Sensitivity Analysis

To investigate flexibility and capability of the proposedMADMmethod, a sensitivity
analysis has been carried out by changing the parameter q, γ and then P one by one.
The effects on the final result due to these variations are analysed and discussed
hereafter.

Table 3 shows the variation in score values by assigning different integer values to
q ∈ [2, 10] and fixing the values of γ = 1 and P = (1, 1, 1, 1). Similarly in Table 4,
γ varies from 1 to 10; however, the other two parameters q and P are fixed as 3 and
(1, 1, 1, 1), respectively. From Tables 3 and 4, it is observable that, on increasing the
value of parameters q (Table 3) and γ (Table 4), the score values and ranking results
of some alternatives changes accordingly, which reflects the influence of these two
parameters (q andγ ) on thefinal decision. Theparameterq not just provides the larger
assessment spacebut also influences thefinal results.Similarly, theγ parametermakes
theaggregationprocessmoreflexibleandaffectsthefinalresults.However,forthestud-
iedMADMproblem, the best alternative obtained through all considered variations is
unanimously �2. Further, to examine the effect of interrelationship among attributes,
different valuesof theparametervector P wereanalysedonfixing thevaluesofparam-
etersq andγ as 3 and1 respectively, and evaluated score values and ranking results are
shown in Table 5. In this case, Table 5 shows that, on considering the interdependency
ofmultiple attributes, the ranking results are slightly different from those in the case of
no interaction.But thebest alternative for all the consideredvariationsof P ofmultiple
interrelationships is�2.

4.4 Comparative Analysis

To demonstrate the compatibility of the developed AOs, this section compares six
existing AOs, q-ROFWA and q-ROFWG [6], q-ROFWBM [7], q-ROFGWHM and
q-ROFWGHM [8], q-ROFWMSM [9], and one proposed AO (q-ROFHWDMM)
under sameq-ROFNs environmentwithq = 3. The q-ROFWAandq-ROFWGhas no
additional parameter other than q [6]. The q-ROFWBM operator takes into account
the correlation between any two attributes [7], and its additional parameters are
set to s = 1, t = 1. The selected values of their extra parameters for applying q-
ROFGWHM and q-ROFWGHM operators are φ = 1, ϕ = 1, and they assess the
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Table 3 Results by varying q in q-ROFHWDMM operator

q Score values (S(ℵi )) Ranking
orders

2 S(ℵ1) =
0.0663

S(ℵ2) =
0.4201

S(ℵ3) =
0.2260

S(ℵ4) =
0.3873

S(ℵ5) =
0.0315

�2 � �4 �
�3 � �1 �
�5

3 S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

4 S(ℵ1) =
0.0749

S(ℵ2) =
0.2899

S(ℵ3) =
0.1362

S(ℵ4) =
0.2658

S(ℵ5) =
0.0226

�2 � �4 �
�3 � �1 �
�5

5 S(ℵ1) =
0.0709

S(ℵ2) =
0.2326

S(ℵ3) =
0.0994

S(ℵ4) =
0.2150

S(ℵ5) =
0.0196

�2 � �4 �
�3 � �1 �
�5

6 S(ℵ1) =
0.0636

S(ℵ2) =
0.1869

S(ℵ3) =
0.0720

S(ℵ4) =
0.1742

S(ℵ5) =
0.0164

�2 � �4 �
�3 � �1 �
�5

7 S(ℵ1) =
0.0551

S(ℵ2) =
0.1511

S(ℵ3) =
0.0521

S(ℵ4) =
0.1416

S(ℵ5) =
0.0132

�2 � �4 �
�1 � �3 �
�5

8 S(ℵ1) =
0.0467

S(ℵ2) =
0.1230

S(ℵ3) =
0.0379

S(ℵ4) =
0.1156

S(ℵ5) =
0.0103

�2 � �4 �
�1 � �3 �
�5

9 S(ℵ1) =
0.0389

S(ℵ2) =
0.1009

S(ℵ3) =
0.0276

S(ℵ4) =
0.0945

S(ℵ5) =
0.0079

�2 � �4 �
�1 � �3 �
�5

10 S(ℵ1) =
0.0322

S(ℵ2) =
0.0833

S(ℵ3) =
0.0202

S(ℵ4) =
0.0775

S(ℵ5) =
0.0059

�2 � �4 �
�1 � �3 �
�5

correlation between any two attributes [8].The q-ROFWMSM operator takes into
account interactions amonganynumber of attributes [9], and its granularity parameter
is set to k = 2, allowing it to consider correlation between two any attributes for that
very same interactional behavior. To maintain the same operational behavior for the
developed AO (q-ROFHWDMM) also, the selected values of γ and P are 1 and
(1, 1, 0, 0) respectively. Table 6 suggested that the best alternative and the worst
alternative obtained from all the different operators under investigation are almost
the same.
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Table 4 Results by changing γ in q-ROFHWDMM operator

γ Score values(S(ℵi )) Ranking
orders

1 S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

2 S(ℵ1) =
0.0606

S(ℵ2) =
0.3533

S(ℵ3) =
0.1929

S(ℵ4) =
0.3184

S(ℵ5) =
0.0288

�2 � �4 �
�3 � �1 �
�5

3 S(ℵ1) =
0.0508

S(ℵ2) =
0.3490

S(ℵ3) =
0.1968

S(ℵ4) =
0.3099

S(ℵ5) =
0.0299

�2 � �4 �
�3 � �1 �
�5

4 S(ℵ1) =
0.0425

S(ℵ2) =
0.3451

S(ℵ3) =
0.1980

S(ℵ4) =
0.3021

S(ℵ5) =
0.0297

�2 � �4 �
�3 � �1 �
�5

5 S(ℵ1) =
0.0353

S(ℵ2) =
0.3415

S(ℵ3) =
0.1981

S(ℵ4) =
0.2951

S(ℵ5) =
0.0288

�2 � �4 �
�3 � �1 �
�5

6 S(ℵ1) =
0.0290

S(ℵ2) =
0.3384

S(ℵ3) =
0.1976

S(ℵ4) =
0.2889

S(ℵ5) =
0.0275

�2 � �4 �
�3 � �1 �
�5

7 S(ℵ1) =
0.0234

S(ℵ2) =
0.3355

S(ℵ3) =
0.1970

S(ℵ4) =
0.2833

S(ℵ5) =
0.0261

�2 � �4 �
�3 � �5 �
�1

8 S(ℵ1) =
0.0183

S(ℵ2) =
0.3329

S(ℵ3) =
0.1962

S(ℵ4) =
0.2782

S(ℵ5) =
0.0247

�2 � �4 �
�3 � �5 �
�1

9 S(ℵ1) =
0.0137

S(ℵ2) =
0.3305

S(ℵ3) =
0.1954

S(ℵ4) =
0.2736

S(ℵ5) =
0.0233

�2 � �4 �
�3 � �5 �
�1

10 S(ℵ1) =
0.0095

S(ℵ2) =
0.3284

S(ℵ3) =
0.1945

S(ℵ4) =
0.2694

S(ℵ5) =
0.0218

�2 � �4 �
�3 � �5 �
�1

5 Conclusions

In the light of the interrelationship between multiple attributes in MADM problems,
this paper proposes two novel AOs that are q-ROFHDMM and q-ROFHWDMM
operators. These are Hamacher TN and TCN-inspired DMM operators under the q-
ROFN environment. The advantage of combining Hamacher TN and TCN-inspired
arithmetic procedures with DMM in proposed AOs is that they can capture not only
the correlation between multiple attributes but also provide a flexible aggregation
process due to γ and P in AOs. Some essential properties of these AOs are also given
in the paper. The generality of the developed AOs is investigated through some spe-
cial cases. Further, utilising the proposedAO (q-ROFHWDMM), aMADMapproach
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Table 5 Results by altering P in q-ROFHWDMM operator

Parameter
vector(P)

Score values (S(ℵi )) Ranking
results

(1, 0, 0, 0) S(ℵ1) =
−0.2377

S(ℵ2) =
0.0953

S(ℵ3) =
0.1019

S(ℵ4) =
−0.0027

S(ℵ5) =
−0.1826

�3 � �2 �
�4 � �5 �
�1

(2, 0, 0, 0) S(ℵ1) =
−0.2813

S(ℵ2) =
0.0467

S(ℵ3) =
0.0815

S(ℵ4) =
−0.0710

S(ℵ5) =
−0.2462

�3 � �2 �
�4 � �5 �
�1

(1, 1, 0, 0) S(ℵ1) =
−0.1366

S(ℵ2) =
0.2682

S(ℵ3) =
0.1456

S(ℵ4) =
0.1570

S(ℵ5) =
−0.0531

�2 � �4 �
�3 � �5 �
�1

(1, 1, 1, 0) S(ℵ1) =
−0.0516

S(ℵ2) =
0.3236

S(ℵ3) =
0.1688

S(ℵ4) =
0.2814

S(ℵ5) =
−0.0139

�2 � �4 �
�3 � �5 �
�1

(1, 1, 1, 1) S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(2, 2, 2, 2) S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(3, 3, 3, 3) S(ℵ1) =
0.0732

S(ℵ2) =
0.3850

S(ℵ3) =
0.1819

S(ℵ4) =
0.3479

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(4, 4, 4, 4) S(ℵ1) =
0.0732

S(ℵ2) =
0.3850

S(ℵ3) =
0.2395

S(ℵ4) =
0.3479

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(1, 2, 3, 4) S(ℵ1) =
−0.0316

S(ℵ2) =
0.3114

S(ℵ3) =
0.1650

S(ℵ4) =
0.2693

S(ℵ5) =
−0.0279

�2 � �4 �
�3 � �5 �
�1

has been developed. To show the applicability of the proposed approach, a MADM
problem related to the selection of an ERP system has been solved. Sensitivity anal-
ysis for different variations and comparative analysis with six existing AOs have also
been done to demonstrate the efficiency and compatibility of the proposed AOs. Our
analysis and results conclude that the developed AOs are more flexible and general
and can solve a wide range of real-life MADM problems. In future research, the
proposed AOs may be further extended in various directions, including changing the
uncertain environment, considering the heterogeneous relationship among attributes
and so on.
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Table 6 Score and ranking results for different AOs
AOs Score values (S(ℵi )) Ranking

order

q − ROFW A [6] S(ℵ1) =
−0.1443

S(ℵ2) =
0.2015

S(ℵ3) =
0.1394

S(ℵ4) =
0.1635

S(ℵ5) =
−0.0515

�2 � �4 �
�3 � �5 �
�1

q − ROFWG [6] S(ℵ1) =
−0.2377

S(ℵ2) =
0.0953

S(ℵ3) =
0.1019

S(ℵ4) =
−0.0027

S(ℵ5) =
−0.1826

�3 � �2 �
�4 � �5 �
�1

q − ROFW BM1,1 [7] S(ℵ1) =
−0.6917

S(ℵ2) =
−0.4263

S(ℵ3) =
−0.4687

S(ℵ4) =
−0.4372

S(ℵ5) =
−0.6853

�2 � �4 �
�3 � �5 �
�1

q − ROFGWHM1,1 [8] S(ℵ1) =
−0.3070

S(ℵ2) =
0.0635

S(ℵ3) =
0.0412

S(ℵ4) =
0.0055

S(ℵ5) =
−0.2345

�2 � �4 �
�3 � �5 �
�1

q − ROFWGHM1,1 [8] S(ℵ1) =
−0.0821

S(ℵ2) =
0.2208

S(ℵ3) =
0.2241

S(ℵ4) =
0.1228

S(ℵ5) =
−0.0044

�3 � �2 �
�4 � �5 �
�1

q − ROFWMSMk=2 [9] S(ℵ1) =
0.4898

S(ℵ2) =
0.6936

S(ℵ3) =
0.6421

S(ℵ4) =
0.6254

S(ℵ5) =
0.5812

�2 � �3 �
�4 � �5 �
�1

q − ROFHWDMM(1,1,0,0) S(ℵ1) =
−0.1366

S(ℵ2) =
0.2682

S(ℵ3) =
0.1456

S(ℵ4) =
0.1570

S(ℵ5) =
−0.0531

�2 � �4 �
�3 � �5 �
�1
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