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Abstract The aim of the present study is to develop an iterative scheme of high con-
vergence order with minimal computational cost. With this objective, a three-step
method has been designed by utilizing only two Jacobian matrices, single matrix
inversion, and three function evaluations. Under some standard assumptions, the
proposed method is found to possess the sixth order of convergence. The iterative
schemes with these characteristics are hardly found in the literature. The analysis
is carried out to assess the computational efficiency of the proposed method, and
further, outcomes are compared with the efficiencies of existing ones. In addition,
numerical experiments are performed by applying the method to some practical non-
linear problems. The entire analysis remarkably favors the new technique compared
with existing counterparts in terms of computational efficiency, stability, and CPU
time elapsed during execution.
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1 Introduction

The systems of nonlinear equations arise by virtue of modeling the most of the physi-
cal processes or practical situations. The constructed models are generally expressed
in mathematical form as

F(x) = O, (1)
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where O ∈ R
m represents the zero vector, F : Ω ⊆ R

m → R
m is a nonlinear map-

ping which is commonly represented as ( f1(x), f2(x), . . . , fm(x))T , x = (x1, . . . ,
xm)T ∈ Ω , and fi : R

m → R (i = 1, . . . , m) are nonlinear scalar functions.
Knowledge about the solution of the constructed nonlinear model plays an impor-

tant role in forecasting the future developments of the corresponding physical prob-
lem. But, as amatter of fact, obtaining the analytical solutions of nonlinear systems is
generally not feasible. To deal with this challenge, iterative methods [8, 13] offer the
numerical solution up to the desired precision. The working process of an iterative
method is based on the fixed point iteration theory, under which it locates the solu-
tion, x∗ ∈ Ω , of the given system (1), as a fixed point of a mapping φ : R

m → R
m ,

so that
x (k+1) = φ(x (k)), k = 0, 1, 2, . . . . ,

where, x (0) is the initial estimate to the solution, and the mapping φ is constrained
to satisfy some prescribed assumptions.

The most widely applied iterative procedure to find the solution to nonlinear
equations is Newton’s method

x (k+1) = φ(x (k)) = x (k) − F ′(x (k))−1F(x (k)), k = 0, 1, 2, . . . , (2)

where F(x) is continuously differentiable in some neighborhood of its solution, and
F ′(x) ∈ L(Rm, R

m) is a linear operator which is generally represented as a Jacobian

matrix
[

∂ fi

∂x j

]
m×m

. This method approximates the simple solution of (1) with the

quadratic rate of convergence. To improve the convergence rate of the method (2),
numerous iterative schemes have been presented in the literature (see [2, 4–6, 10–12,
14] and references therein). As it is evident that Newton’s scheme utilizes evaluation
of a function (F), a Jacobian matrix (F ′), and a matrix inversion (F ′−1) per iteration.
An attempt to increase the rate of convergence of an iterative method generally leads
to a technique that involves one or more additional evaluations per iteration than its
predecessor. For instance, the Potra and Pták method [9], having cubic convergence,
is one of the simplest improvements of themethod (2), which is expressed as follows:

y(k) = x (k) − F ′(x (k))−1F(x (k)),

x (k+1) = y(k) − F ′(x (k))−1F(y(k)). (3)

Clearly, the above-presented two-step scheme utilizes an additional function evalu-
ation over Newton’s method.

The practice of designing an iterative scheme, by utilizing additional evaluations,
accelerates the convergence order but it certainly increases the computational cost
per iteration in terms of mathematical operations. Optimizing the computational cost
with the improving convergence speed leads to the construction of computationally
efficient techniques. The measure of efficiency is formulated in [8, 13] to analyze
and further compare the efficiencies of iterative techniques. In addition, the necessary
parameters havebeen introduced in [11] for the thorough investigationof this concept.
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Taking into account the above discussion, in the next section, we shall present a
simple and efficient iterative method showing the sixth order of convergence. The
computational efficiency of the developedmethod is determined, analyzed, and com-
pared with the efficiencies of existing methods in Sect. 3. Numerical performance is
investigated in Sect. 4, and concluding remarks are given in Sect. 5.

2 Development of Method

The primary objective here is to design an iterative scheme that improves the con-
vergence speed of the Potra and Pták method (3) without utilizing any additional
inverse operator. In what follows, we shall present a three-step iterative method
involving undetermined parameters, which are to be chosen in order to maximize the
convergence order. In view of this, we consider the iterative scheme of type,

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) − F ′(x (k))−1F(y(k)),

x (k+1) = z(k) − [
aI + F ′(x (k))−1F ′(y(k))(bI + cF ′(x (k))−1F ′(y(k)))

]

× F ′(x (k))−1F(z(k)) (4)

where a, b, and c are the parameters.
Before proceeding to the convergence analysis, a preliminary result (see [7]) is

stated below, which will be followed by the main theorem to show the sixth-order
convergence for scheme (4).

Lemma 1 Assume that the mapping F : Ω ⊆ R
m → R

m is n-times Fréchet differ-
entiable in a convex neighborhood Ω ∈ R

m, and let x, t ∈ Ω , then the following
expansion holds:

F(x + t) = F(x) + F ′(x)t + 1

2! F ′′(x)t2 + . . . + 1

(n − 1)! F (n−1)(x)tn−1 + Rn,

where t i = (t, i−t imes. . . . . ., t), F (i)(x) ∈ L(Rm× i−times. . . . . . ×R
m, R

m) for each i = 1, 2, . . .,
and

‖Rn‖ ≤ 1

n! sup
0<h<1

‖F (n)(x + ht)‖ ‖t‖n.

Theorem 1 Assume that a nonlinear mapping, F : Ω ⊆ R
m → R

m, is continuously
differentiable sufficient number of times in some neighborhood of its simple zero x∗,
contained in an open convex region Ω . Further, suppose that F ′(x) is non-singular
and continuous in that neighborhood, and the initial approximation x (0) is sufficiently
close to x∗. Then, the sequence of iterates generated by the method (4) converges to
x∗ with the sixth order of convergence, provided a = 7

2 , b = −4, and c = 3
2 .
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Proof Let e(k) = x (k) − x∗ be the error obtained at the kth iteration of (4). Then,
as a consequence of Lemma 1, and the fact that F(x∗) = O , Taylor expansions of
F(x (k)) and F ′(x (k)), about x∗, are developed as

F(x (k)) = F ′(x∗)[e(k) + A2e(k)2 + A3e(k)3 + A4e(k)4 + A5e(k)5 + A6e(k)6]
+ O(e(k)7), (5)

F ′(x (k)) = F ′(x∗)[I + 2A2e(k) + 3A3e(k)2 + 4A4e(k)3 + 5A5e(k)4 + 6A6e(k)5 ]
+ O(e(k)6), (6)

where e(k)i = (e(k), i−times. . . . . ., e(k)), and Ai = 1
i ! F ′(x∗)−1F (i)(x∗), i = 2, 3, . . . , and

consequently,

F ′(x (k))−1 = [I + B1e(k) + B2e(k)2 + B3e(k)3 + B4e(k)4 + B5e(k)5 ]F ′(x∗)−1 + O(e(k)6 ),

(7)
where B1 = −2A2, B2 = −3A3 + 4A2

2, B3 = −4A4 + 6A2A3 + 6A3A2 − 8A3
2, B4 = −5A5 +

8A2A4 + 9A2
3 + 8A4A2 − 12A2

2A3 − 12A2A3A2 − 12A3A2
2 + 16A4

2, and B5 = −6A6 + 10A2A5 +
12A3A4 + 12A4A3 + 10A5A2 − 16A2

2A4 − 18A2A2
3 − 16A2A4A2 − 18A3A2A3 − 18A2

3A2 −
16A4A2

2 + 24A3
2A3 + 24A2

2A3A2 + 24A2A3A2
2 + 24A3A3

2 − 32A5
2.

Denoting e(k)
y = y(k) − x∗ as the error at the first step of method (4), and using

Eqs. (5)–(7), we have that

e(k)
y = C1e(k)2 + C2e(k)3 + C3e(k)4 + C4e(k)5 + C5e(k)6 + O(e(k)7), (8)

where C1 = A2, C2 = 2(A3 − A2
2), C3 = 3A4 − 4A2 A3 − 3A3 A2 + 4A3

2, C4 = 4A5 − 6A2

A4 − 6A2
3 − 4A4 A2 + 8A2

2 A3 + 6A2 A3 A2 + 6A3 A2
2 − 8A4

2, and C5 = 5A6 − 8A2 A59A3 A4 −
8A4 A3 − 5A5 A2 + 12A2

2 A4 + 12A2 A2
3 + 8A2 A4 A2 + 12A3 A2 A3 + 9A2

3 A2 + 8A4 A2
2 − 16A3

2

A3 − 12A2
2 A3 A2 − 12A2 A3 A2

2 − 12A3 A3
2 + 16A5

2.

Using the expression (8), Taylor developments of F(y(k)) and F ′(y(k)), about x∗,
is given by

F(y(k)) = F ′(x∗)[K1e
(k)2 + K2e(k)3 + K3e(k)4 + K4e(k)5 + K5e(k)6 ] + O(e(k)7),

(9)

F ′(y(k)) = F ′(x∗)[I + L1e(k)2 + L2e(k)3 + L3e(k)4 + L4e(k)5 ] + O(e(k)6), (10)

where K1 = A2, K2 = 2(A3 − A2
2), K3 = 3A4 − 4A2A3 − 3A3A2 + 5A3

2, K4 = 4A5 − 6A2A4 −
6A2

3 − 4A4A2 + 10A2
2A3 + 8A2A3A2 + 6A3A2

2 − 12A4
2, K5 = 5A6 − 8A2A5 − 9A3A4 − 8A4

A3 − 5A5A2 + 15A2
2A4 + 16A2A2

3 + 11A2A4A2 + 12A3A2A3 + 9A2
3A2 + 8A4A2

2 − 24A3
2A3 −

19A2
2A3A2 − 19A2A3A2

2 − 11A3A3
2 + 28A5

2, L1 = 2A2
2, L2 = 4(A2A3 − A3

2), L3 = 6A2A4 −
8A2

2A3 − 6A2A3A2 + 3A3A2
2 + 8A4

2, and L4 = 8A2A5 − 12A2
2A4 − 12A2A2

3 − 8A2A4A2 +
6A3A2A3 + 6A2

3A2 + 16A3
2A3 + 12A2

2A3A2 + 12A2A3A2
2 − 12A3A3

2 − 16A5
2.

Let us denote e(k)
z = z(k) − x∗, then using Eqs. (7)–(9), the second step of method

(4) yields
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e(k)
z = M1e(k)3 + M2e(k)4 + M3e

(k)5 + M4e(k)6 + O(e(k)7), (11)

where M1 = 2A2
2, M2 = 4A2 A3 + 3A3 A2 − 9A3

2, M3 = 6A2 A4 + 6A2
3 + 4A4 A2 −

18A2
2 A3 − 14A2 A3 A2 − 12A3 A2

2 + 30A4
2, and M4 = 8A2 A5 + 9A3 A4 + 8A4 A3 +

5A5 A2 − 27A2
2 A4 − 28A2 A2

3 − 19A2 A4 A2 − 24A3 A2 A3 − 18A2
3 A2 − 16A4 A2

2 + 60A3
2 A3 +

47A2
2 A3 A2 + 43A2 A3 A2

2 + 38A3 A3
2 − 88A5

2.

Taylor expansion of F(z(k)), using Eq. (11), is established as

F(z(k)) = F ′(x∗)[P1e(k)3 + P2e(k)4 + P3e(k)5 + P4e(k)6 ] + O(e(k)7), (12)

where P1 = 2A2
2, P2 = 4A2 A3 + 3A3 A2 − 9A3

2, P3 = 6A2 A4 + 6A2
3 + 4A4 A2 − 18A2

2 A3 −
14A2 A3 A2 − 12A3 A2

2 + 30A4
2, and P4 = 8A2 A5 + 9A3 A4 + 8A4 A3 + 5A5 A2 − 27A2

2 A4 −
28A2 A2

3 − 19A2 A4 A2 − 24A3 A2 A3 − 18A2
3 A2 − 16A4 A2

2 + 60A3
2 A3 + 47A2

2 A3 A2 +
43A2 A3 A2

2 + 38A3 A3
2 − 84A5

2.

Consequently, the error equation at the (k + 1)th iteration is derivedby substituting
the expressions of (7), (10), (11), and (12) in the final step of method (4), which is
given by the expression

e(k+1) = x (k+1) − x∗ = Q1e
(k)3 + Q2e(k)4 + Q3e

(k)5 + Q4e(k)6 + O(e(k)7), (13)

where Q1 = 2(1 − a − b − c)A2
2, Q2 = (1 − a − b − c)(4A2 A3 + 3A3 A2) − (9 − 13a −

17b − 21c)A3
2, Q3 = (1 − a − b − c)(6A2 A4 + 6A2

3 + 4A4 A2) − 2(9 − 13a − 17b −
21c)A2

2 A3 − 2(7 − 10a − 13b − 16c)A2 A3A2 − 6(2 − 3a − 4b − 5c)A3A2
2 + 2(15 − 28a −

47b − 70c)A4
2, and the expression of Q4, being lengthy, is not shown explicitly here.

Ultimately, there should be an optimum selection of parameters’ values so as to
achieve the maximum possible convergence speed for the proposed scheme. In that
sense, if we choose a = 7

2 , b = −4, and c = 3
2 , then the coefficients Q1, Q2, and Q3

in Eq. (13) vanish. Further, the error equation is reduced to

e(k+1) = 2(A2 A3A2
2 − 3A3A3

2 + 18A5
2)e

(k)6 + O(e(k)7).

Hence, the sixth order of convergence is proved for the iterative method (4). �

The proposed sixth-order iterative method is finally presented below.

y(k) = x(k) − F ′(x(k))−1F(x(k)),

z(k) = y(k) − F ′(x(k))−1F(y(k)),

x(k+1) = z(k) −
[
7

2
I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2]

× F ′(x(k))−1F(z(k)). (14)
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Clearly, the proposed method utilizes three function evaluations, two Jacobian
matrices, and one Jacobian inversion per iteration. For the further reference in this
study, the technique (14) is denoted as φ1.

3 Computational Efficiency

Solving nonlinear systems using iterative procedures involves a significantly large
number of mathematical calculations or operations. Apart from achieving the high
convergence order, an iterative algorithm shall also be evaluated on the basis of its
computational aspects. The term computational efficiency relates to the investigation
of algorithmic characteristics that how much computing resources it utilizes during
its implementation. In what follows, the concept of computational efficiency shall be
investigated thoroughly, and further, the analysis shall be carried out in this context
for the comparison of the new iterative method with the existing counterparts.

For locating the solution of a nonlinear system using an iterative method, initially,
an approximation is selected in the neighborhood of the solution. Then, the iterative
process is terminated using a specific criterion, which is generally prescribed as

||x (k) − x∗|| ≤ ε = 10−d ,

where ‘k’ is the iteration index, ‘ε’ is the desired precision, and ‘d’ is the number
of significant decimal digits of the obtained approximation. To estimate the num-
ber of iterations which are required to achieve the desired accuracy, it is assumed
that ||x (0) − x∗|| ≈ 10−1. Then, after the ‘k’ number of iterative steps, we have
the approximation: 10−d ≈ 10−rk

, and that simply provides the required estimation
k ≈ log d/ log r , where r is the convergence order. Further, let the computational cost
per iteration be represented by ‘C’, then the completed iterative process constitutes
the total computational cost which is equal to ‘kC’. The measure of computational
efficiency, conventionally known as the efficiency index, is formulated in various
manners in the literature. Ostrowski in [8] and Traub in [13] have independently pro-
vided this measure in different ways. But, defined in any way, the efficiency index
always indicates reciprocal relation with the cost of computation. Therefore, taking
into consideration the reciprocal relationship, the efficiency index be evaluated as

E = 1

kC
= 1

log d

log r

C
. (15)

Consider am-dimensional function, F : R
m → R

m , F(x) = ( f1(x), ..., fm(x))T ,
where x = (x1, x2, ..., xm)T , then the estimation of computational cost per iteration
is given by the formulation,

C(m, η0, η1,μ) = N0(m)η0 + N1(m)η1 + N (m,μ), (16)
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where N0(m) and N1(m) represent the number of evaluations of scalar functions in
the computation of F and F ′, respectively, and N (m,μ) stands for the number of
product or quotient evaluations per iteration. The ratios η0 > 0 and η1 > 0, which
interrelate the costs of products and functional evaluations, and a ratio μ > 1, inter-
relating costs of products and quotients, are the necessary parameters in order to
express C(m, η0, η1,μ) in terms of product units. Let us note that evaluations of m
and m2 scalar functions are required, respectively, to compute a function F and a
derivative F ′. Additionally, to compute an inverse linear operator, and eventually
to evaluate F ′−1F , the technique of LU decomposition is employed that involves
m(m − 1)(2m − 1)/6 products and m(m − 1)/2 quotients, which is followed by
the resolution of two triangular linear systems requiring m(m − 1) products and m
quotients. Further, m products for scalar-vector multiplication and m2 products for
matrix-vector multiplication must be taken into account.

With the purpose to analyze and compare the efficiency of the developed method,
we have included the existing sixth-order methods developed by Bahl et al. [2],
Cordero et al. [4], Esmaeili and Ahmadi [5], Lofti et al. [6], Soleymani et al. [12],
and Wang et al. [14]. For the ready reference, these methods are expressed below,
which are denoted by φi , where i = 2, 3, . . . , 7.

Method by Bahl et al. (φ2):

y(k) = x(k) − 2

3
F ′(x(k))−1F(x(k)),

z(k) = x(k) −
[

I + 3

4
[I − F ′(x(k))−1F ′(y(k))] + 9

8
[I − F ′(x(k))−1F ′(y(k))]2

]

× F ′(x(k))−1F(x(k)),

x(k+1) = z(k) − 2[3F ′(y(k)) − F ′(x(k))]−1F(z(k)).

Method by Cordero et al. (φ3):

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) − F ′(x (k))−1[2I − F ′(y(k))F ′(x (k))−1]F(y(k)),

x (k+1) = z(k) − F ′(y(k))−1F(z(k)).

Method by Esmaeili and Ahmadi (φ4):

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) + 1

3

[
F ′(x (k))−1 + 2[F ′(x (k)) − 3F ′(y(k))]−1

]
F(x (k)),

x (k+1) = z(k) + 1

3

[ − F ′(x (k))−1 + 4[F ′(x (k)) − 3F ′(y(k))]−1
]
F(z(k)).

Method by Lofti et al. (φ5):
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y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = x (k) − 2[F ′(x (k)) + F ′(y(k))]−1F(x (k)),

x (k+1) = z(k) −
[
7

2
I − 4F ′(x (k))−1F ′(y(k)) + 3

2
(F ′(x (k))−1F ′(y(k)))2

]

× F ′(x (k))−1F(z(k)).

Method by Soleymani et al. (φ6):

y(k) = x(k) − 2

3
F ′(x(k))−1F(x(k)),

z(k) = x(k) − 1

2
[3F ′(y(k)) − F ′(x(k))]−1[3F ′(y(k)) + F ′(x(k))]F ′(x(k))−1F(x(k)),

x(k+1) = z(k) −
[
1

2
[3F ′(y(k)) − F ′(x(k))]−1[3F ′(y(k)) + F ′(x(k))]

]2

× F ′(x(k))−1F(z(k)).

Method by Wang et al. (φ7):

y(k) = x (k) − 2

3
F ′(x (k))−1F(x (k)),

z(k) = x (k) − [6F ′(y(k)) − 2F ′(x (k))]−1[3F ′(y(k)) + F ′(x (k))]F ′(x (k))−1F(x (k)),

x (k+1) = z(k) − 1

2
[3F ′(y(k))−1 − F ′(x (k))−1]F(z(k)).

Denoting the computational costs and the efficiency indices, respectively, by Ci

and Ei , i = 1, 2, . . . , 7, and then taking into account the mathematical operations
or computations described above, the computational costs and the corresponding
efficiency indices are expressed as follows:

C1 = 3mη0 + 2m2η1 + m

6
(2m2 + 39m − 11 + 3μ(9 + m)) and E1 = 1

D

log 6

C1
.

C2 = 2mη0 + 2m2η1 + m

3
(2m2 + 18m + 4 + 3μ(3 + m)) and E2 = 1

D

log 6

C2
.

C3 = 3mη0 + 2m2η1 + m

3
(2m2 + 12m − 8 + 3μ(3 + m)) and E3 = 1

D

log 6

C3
.

C4 = 2mη0 + 2m2η1 + m

3
(2m2 + 12m + 1 + 3μ(3 + m)) and E4 = 1

D

log 6

C4
.

C5 = 2mη0 + 2m2η1 + m

3
(2m2 + 18m − 2 + 3μ(4 + m)) and E5 = 1

D

log 6

C5
.

C6 = 2mη0 + 2m2η1 + m

3
(2m2 + 24m − 5 + 3μ(4 + m)) and E6 = 1

D

log 6

C6
.
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C7 = 2mη0 + 2m2η1 + m

2
(2m2 + 9m + 1 + μ(5 + 3m)) and E7 = 1

D

log 6

C7
.

Here D = log d.

3.1 Comparison of Efficiencies

Consider a ratio, for the comparison of iterative methods, say φi versus φ j , which is
defined as

Π i
j = Ei

E j
= C j log(ri )

Ci log(r j )
, (17)

where ri and r j , respectively, are the orders of convergence of the methods φi and φ j .
Clearly, if Π i

j > 1 holds, then φi will be more efficient than φ j , and we symbolize
it as φi � φ j . The proposed method, φ1, shall be compared analytically as well as
geometrically with the existing methods, φi (i = 2, 3, . . . , 7), which are already
presented above. The analytical way of comparison is the resolution of inequality
Π1

i > 1 for each i = 2, 3, . . . , 7, and the results obtained are presented geometrically
by projecting the boundary lines Π1

i = 1, in (η1, η0)-plane, corresponding to the
special cases of m = 5, 10, 25, and 50, and fixing μ = 3 in each case. Let us note
here that each line will divide the plane into two parts, where φ1 � φi on one side,
whereas φi � φ1 on the other.

In view of the above discussion, we now present the comparison analysis through
the following theorem:

Theorem 2 For all η0 > 0, η1 > 0, and μ > 1, we have that

(i) E1 > E2, for η0 < 1
6 (2m2 − 3m + 19 + 3μ(m − 3)).

(ii) E1 > E3 for m ≥ 7, and E1 < E3 for m = 2, 3, but otherwise comparison
depends on value of μ.

(iii) E1 > E4, for η0 < 1
6 (2m2 − 15m + 13 + 3μ(m − 3)).

(iv) E1 > E5, for η0 < 1
6 (2m2 − 3m + 7 + 3μ(m − 1)).

(v) E1 > E6, for η0 < 1
6 (2m2 + 9m + 1 + 3μ(m − 1)).

(vi) E1 > E7, for η0 < 1
3 (2m2 − 6m + 7 + 3μ(m − 2)).

Proof φ1 versus φ2 case:
The ratio in this case is

Π1
2 = 2mη0 + 2m2η1 + m

3 (2m2 + 18m + 4 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

By resolving of the inequality Π1
2 > 1, it is straightforward to deduce that η0 <

1
6 (2m2 − 3m + 19 + 3μ(m − 3)), which concludes (i). The boundary linesΠ1

2 = 1,



576 J. R. Sharma and H. Singh

Fig. 1 Boundary lines for
comparison of φ1 and φ2

in (η1, η0)-plane, are displayed in Fig. 1, whereφ1 � φ2 in the sectionwhich is below
the line for each particular case of m.
φ1 versus φ3 case:

The ratio in this case is

Π1
3 = 3mη0 + 2m2η1 + m

3 (2m2 + 12m − 8 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

It is easy to verify that, for η0 > 0, η1 > 0, and μ > 1, the inequality Π1
3 > 1 holds

form ≥ 7, andΠ1
3 < 1 holds only form = 2, 3. For 4 ≤ m ≤ 6, the inequalityΠ1

3 >

1 holds when μ > 2m2−15m−5
9−3m , and this eventually proves (ii). So, we conclude here

thatφ1 � φ3 for allm ≥ 7,whereasφ1 � φ3 form = 2, 3, but otherwise, comparison
depends on the value of μ.
φ1 versus φ4 case:

The ratio in this case is

Π1
4 = 2mη0 + 2m2η1 + m

3 (2m2 + 12m + 1 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

Resolution of the inequality Π1
4 > 1 results into η0 < 1

6 (2m2 − 15m + 13 + 3μ
(m − 3)), which concludes (iii). The boundary lines for this comparison, in (η1, η0)-
plane, are shown in Fig. 2, where φ1 � φ4 on the lower region of line for each case
of m.
φ1 versus φ5 case:

The ratio in this case is

Π1
5 = 2mη0 + 2m2η1 + m

3 (2m2 + 18m − 2 + 3μ(4 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.
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Fig. 2 Boundary lines for
comparison of φ1 and φ4

The inequality Π1
5 > 1 simply resolves into relation η0 < 1

6 (2m2 − 3m + 7 +
3μ(m − 1)), and this proves (iv). In this comparison, the boundary lines are dis-
played in Fig. 3, where φ1 � φ5 holds on the lower section of line for each particular
case.
φ1 versus φ6 case:

The ratio in this case is

Π1
6 = 2mη0 + 2m2η1 + m

3 (2m2 + 24m − 5 + 3μ(4 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

It is straightforward to establish the relation η0 < 1
6 (2m2 + 9m + 1 + 3μ(m − 1))

by resolving Π1
6 > 1, which eventually proves (v). The boundary lines, in this case,

are presented in Fig. 4 with φ1 � φ6 on the lower side of each line.
φ1 versus φ7 case:

The ratio in this case is

Π1
7 = 2mη0 + 2m2η1 + m

2 (2m2 + 9m + 1 + μ(5 + 3m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

Resolution of the inequality Π1
7 > 1 results into the relation η0 < 1

3 (2m2 − 6m +
7 + 3μ(m − 2)). This concludes (vi), and the boundary lines for this case are shown
in Fig. 5, where φ1 � φ7 in the region which is below each boundary line. �

From the above comparison analysis, it can be clearly observed that the proposed
iterative method shows an increase in the efficiency index with the increasing values
ofm. We conclude this section with a note that, as large as the system is, the proposed
sixth-order method exhibits superiority over the existing methods in the subject of
computational efficiency.
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Fig. 3 Boundary lines for
comparison of φ1 and φ5

Fig. 4 Boundary lines for
comparison of φ1 and φ6

Fig. 5 Boundary lines for
comparison of φ1 and φ7
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Table 1 CPU time and computational cost for the execution of elementary operations

Functions x ∗ y x/y
√

x ex log(x) sin(x) cos(x) arctan(x)

CPU
time

0.0172 0.0484 0.0234 1.5562 1.3469 1.6938 1.6896 2.9797

Cost 1 2.81 1.36 90.48 78.31 98.48 98.23 173.24

Here x = √
3 − 1 and y = √

5 (with 4096 digits of accuracy)

4 Numerical Experimentation

In this section, the numerical experimentation shall be executed to assess the perfor-
mance of the developedmethod. The nonlinear problems arising in different physical
situations have been selected for this purpose. Moreover, to arrive at some valid con-
clusion, the outcomes of this testing need to be analyzed and further compared with
the corresponding results of the existing methods. Two of the most significant factors
which contribute toward the numerical performance of an iterative technique are (i)
Stability and (ii) CPU time elapsed during its execution on the digital platform. Let
us note that all the numerical computations, in our case, are being executed using the
software Mathematica [15] installed on the computer equipped with specifications:
Intel(R) Core (TM) i5-9300H processor and Windows 10 operating system.

In what follows, the comparison analysis shall be illustrated by locating the solu-
tions of nonlinear problems, and for the termination of iterations, the stopping crite-
rion being employed is described as follows:

‖x (k) − x (k−1)‖ + ‖F(x (k))‖ < 10−100.

In addition, the approximated computational order of convergence (ACOC) is
required to validate the convergence order established by analytical means, which is
computed by the formula (see [5]),

ACOC = ln
(‖x (k) − x (k−1)‖/‖x (k−1) − x (k−2)‖)

ln
(‖x (k−1) − x (k−2)‖/‖x (k−2) − x (k−3)‖) .

To make connection between the computational efficiency and the performance
of technique, it is necessary to estimate the parameters, η0, η1, and μ, as defined in
Sect. 3. These parameters are essential to express the mathematical operations and
functional evaluations in terms of product units. In order to achieve this, Table1
displays the CPU time elapsed during the execution of elementary mathematical
operations and their estimated cost of computation in units of products. Note that the
estimated cost of division is approximately thrice the cost of the product.

Now, we consider the following nonlinear problems to demonstrate the perfor-
mance analysis and display results in respect of the following: (i) Number of itera-
tions (k), (ii) ACOC, (iii) Computational cost (Ci ), (iv) Efficiency index (Ei ), and
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Table 2 Comparison of performance of methods for Problem 1

Method k ACOC Ci Ei CPU time

φ1 4 5.993 145.58 1230.77 0.0260

φ2 4 5.996 152.58 1174.31 0.0313

φ3 4 5.996 129.58 1382.74 0.0363

φ4 4 5.989 131.58 1361.73 0.0417

φ5 4 5.994 155.01 1155.90 0.0310

φ6 4 5.999 170.01 1053.91 0.0363

φ7 4 5.996 154.01 1163.40 0.0467

(v) Elapsed CPU time (in seconds). To illustrate the efficiency indices of techniques,
we have conveniently chosen D = 10−5 for each of the problems.

Problem 1 Starting with the system of three nonlinear equations:

x2 + y2 + z2 = 1,

2x2 + y2 + 4z = 0,

3x2 − 4y2 + z2 = 0,

the initial estimate is taken as
(− 3

2 ,− 3
2 ,− 3

2

)T
to locate the particular solution,

x∗ = (−0.6982...,−0.6285...,−0.3425...)T .

For this particular problem, the parameters used in the equation (16) are estimated
as (m, η0, η1,μ) = (3, 2.33, 0.67, 2.81). Numerical results for the comparison are
displayed in Table2.

Problem 2 Consider the nonlinear integral equation (see [1]),

u(t) = 7

8
t + 1

2

∫ 1

0
t s u(s)2ds, (18)

where t ∈ [0, 1], and u ∈ C[0, 1], with C[0, 1] being a space of all continuous func-
tions defined on the interval [0, 1].

The given integral equation can be transformed into a finite-dimensional problem
by partitioning the given interval [0, 1] uniformly as follows:

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti = t0 + ih, (i = 1, 2, . . . , k − 1),

where h = 1/k is the sub-interval length. Approximating the integral, appearing in
the equation (18), using the trapezoidal rule of integration, and denoting u(ti ) = ui

for each i , we obtain the system of nonlinear equations as
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Fig. 6 Graphical comparison of exact and numerical solution of Problem 2

Table 3 Comparison of performance of methods for Problem 2

Method k ACOC Ci Ei CPU time

φ1 3 6.000 1521.95 117.73 0.141

φ2 3 6.000 1905.30 94.04 0.188

φ3 3 6.000 1695.30 105.69 0.177

φ4 3 6.000 1695.30 105.69 0.162

φ5 3 6.000 1913.40 93.64 0.187

φ6 3 6.000 2103.40 85.18 0.203

φ7 3 6.000 2206.75 81.19 0.235

7

8
ti − ui + hti

2

⎛
⎝1

2
u2

k +
k−1∑
j=1

s j u
2
j

⎞
⎠ = 0, (i = 1, 2, . . . , k), (19)

where ti = si = i/k for each i .
We solve this problem in particular by taking k = 10. Setting the initial approxi-

mation as ( 12 ,
10· · · · · ·, 1

2 )
T , the approximate numerical solution of the reduced system

(19) is obtained as,

x∗ = (0.1001..., 0.2003...,0.3004..., 0.4006..., 0.5008..., 0.6009...,

0.7011..., 0.8013..., 0.9014..., 1.0016...)T .

The numerical solution, so obtained, is compared graphically with the exact solu-
tion in Fig. 6, and further, numerical results are depicted in Table3. Moreover, the
parameters of Eq. (16) are estimated as (m, η0, η1,μ) = (10, 3, 1, 2.81).
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Table 4 Comparison of performance of methods for Problem 3

Method k ACOC Ci Ei CPU time

φ1 4 6.000 6.27E+04 2.86 1.385

φ2 4 6.000 1.06E+05 1.68 2.401

φ3 4 6.000 1.01E+05 1.77 2.271

φ4 4 6.000 1.01E+05 1.77 2.327

φ5 4 6.000 1.06E+05 1.68 2.344

φ6 4 6.000 1.11E+05 1.61 2.250

φ7 4 6.000 1.48E+05 1.21 3.344

Problem 3 Consider the boundary value problem (see [3]), which models the finite
deflections of an elastic string under the transverse load, and it is presented as follows:

u′′(t) + a2(u′(t))2 + 1 = 0, u(0) = 0, u(1) = 0, (20)

where ‘a’ is a parameter. The exact solution of the given problem is u(t) =
1
a2 ln

(
cos(a(t−1/2))

cos(a/2)

)
. We intend to remodel the problem (20) into a finite-dimensional

problem by considering the partition of [0, 1], with equal sub-interval length h =
1/k, as

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti = t0 + ih, (i = 1, 2, . . . , k − 1).

Denoting u(ti ) = ui for each i = 1, 2, . . . , k − 1, and approximating the deriva-
tives involved in (20) by the second-order divided differences,

u′
i = ui+1 − ui−1

2h
, and u′′

i = ui+1 − 2ui + ui−1

h2
,

the system of k − 1 nonlinear equations in k − 1 variables is obtained as

ui−1 − 2ui + ui+1 + a2

4
(ui+1 − ui−1)

2 + h2 = 0, (i = 1, 2, . . . , k − 1),

where u0 = 0 and uk = 0 are the transformed boundary conditions. In particular, set-
ting k = 51, the above system reduces to 50 nonlinear equations. Further, choosing

a = 2, and selecting the initial approximation as (−1,
50· · · · · ·,−1)T , the approxi-

mate numerical solution so obtained, along with the exact solution, is plotted in
Fig. 7. Further, the numerical performance of the methods is displayed in Table4.
The estimated values of parameters, used in Eq. (16), are given as (m, η0, η1,μ) =
(50, 2, 0.078, 2.81).
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Fig. 7 Graphical comparison of exact and numerical solution of Problem 3

Table 5 Comparison of performance of methods for Problem 4

Method k ACOC Ci Ei CPU time

φ1 5 6.000 4.67E+05 0.384 45.53

φ2 5 6.000 7.92E+05 0.226 74.14

φ3 5 6.000 7.89E+05 0.227 75.09

φ4 5 6.000 7.72E+05 0.232 72.88

φ5 5 6.000 7.92E+05 0.226 74.36

φ6 5 6.000 8.12E+05 0.221 75.73

φ7 5 6.000 1.12E+06 0.159 105.05

Problem 4 Now let us take a system of nonlinear equations as follows:

tan−1(xi ) − 1 + 2

⎛
⎝

m∑
j=1, j �=i

x2
j

⎞
⎠ = 0, i = 1, 2, ..., m.

By taking m = 100, we select the initial approximation (1,
100· · · · · ·, 1)T to obtain the

particular solution,

x∗ = (0.06859...,
100· · · · · ·, 0.06859...)T .

The estimated values of the parameters in this problem are (m, η0, η1,μ) = (100,
175.24, 0.048, 2.81). Further, Table5 exhibits the comparison of the performance of
methods.
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Table 6 Comparison of performance of methods for Problem 5

Method k ACOC Ci Ei CPU time

φ1 3 6.000 4.38E+07 4.09E-03 16.34

φ2 3 6.000 8.56E+07 2.09E-03 19.42

φ3 3 6.000 8.52E+07 2.10E-03 21.59

φ4 3 6.000 8.51E+07 2.10E-03 19.16

φ5 3 6.000 8.56E+07 2.09E-03 19.27

φ6 3 6.000 8.61E+07 2.08E-03 20.45

φ7 3 6.000 1.27E+08 1.41E-03 24.33

Problem 5 At last, we consider a large system of equations:

xi + log(2 + xi + xi+1) = 0, i = 1, 2, ..., m − 1,

and xm + log(2 + xm + x1) = 0,

where m = 500. The above given system has a particular solution,

x∗ =
(
−0.3149...,

500· · · · · ·,−0.3149...
)T

,

and to obtain this solution, the initial estimate is taken as
(

1
10 ,

500· · · · · ·, 1
10

)T

. Numeri-

cal results for the performance of methods are depicted in Table6. Further, the values
of parameters are estimated as

(m, η0, η1,μ) = (500, 78.31, 0.0056, 2.81).

The findings of numerical experimentation signify the efficient and stable nature
of the proposed sixth-order method. The results are remarkable with respect to the
efficiency index and CPU time, and certainly favor the new method over its existing
counterparts. Furthermore, computation of ACOC validates the theoretically estab-
lished convergence order.

5 Conclusions

A three-step iterative technique, involving some undetermined parameters, has been
designed for the solution of nonlinear equations. The methodology to design the
technique is based on the objective to accelerate the convergence rate of the well-
known third-order Potra-Pták scheme. Analysis of convergence leads to establishing
the sixth order of convergence for a particular set of parametric values. Utilizing
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only a single Jacobian inversion per iteration, the proposed iterative method exhibits
highly economical nature when analyzed in the context of computational complexity.
This is affirmed by comparing the computational efficiency of the new method, by
analytical as well as visual approach, with the efficiencies of existing methods. Fur-
ther, numerical performance is examined by locating the solutions of some selected
nonlinear problems. The findings of this testing clearly indicate the superiority of the
proposed technique over its existing counterparts, especially for large-scale nonlinear
systems.

References

1. Avazzadeh, Z., Heydari, M., Loghmani, G.B.: Numerical solution of Fredholm integral equa-
tions of the second kind by using integral mean value theorem. Appl. Math. Model. 35, 2374–
2383 (2011). https://doi.org/10.1016/j.apm.2010.11.056

2. Bahl, A., Cordero, A., Sharma, R., Torregrosa, J.R.: A novel bi-parametric sixth order iterative
scheme for solving nonlinear systems and its dynamics. Appl. Math. Comput. 357, 147–166
(2019). https://doi.org/10.1016/j.amc.2019.04.003

3. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Efficient high-order methods based
on golden ratio for nonlinear systems. Appl. Math. Comput. 217, 4548–4556 (2011). https://
doi.org/10.1016/j.amc.2010.11.006

4. Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: Increasing the convergence order of
an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012). https://
doi.org/10.1016/j.aml.2012.07.005

5. Esmaeili, H., Ahmadi, M.: An efficient three-step method to solve system of nonlinear equa-
tions. Appl. Math. Comput. 266, 1093–1101 (2015). https://doi.org/10.1016/j.amc.2015.05.
076

6. Lotfi, T., Bakhtiari, P., Cordero, A., Mahdiani, K., Torregrosa, J.R.: Some new efficient multi-
point iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 92,
1921–1934 (2014). https://doi.org/10.1080/00207160.2014.946412

7. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables.
Academic Press, New York (1970)

8. Ostrowski, A.M.: Solution of Equation and Systems of Equations. Academic Press, New York
(1960)

9. Potra, F.A., Pták, V.: On a class of modified Newton processes. Numer. Funct. Anal. Optim. 2,
107–120 (1980). https://doi.org/10.1080/01630568008816049

10. Sharma, J.R., Gupta, P.: An efficient fifth order method for solving systems of nonlinear equa-
tions. Comput. Math. Appl. 67, 591–601 (2014). https://doi.org/10.1016/j.camwa.2013.12.
004

11. Sharma, R., Sharma, J.R., Kalra, N.: A modified Newton-Özban composition for solving
nonlinear systems. Int. J. Comput. Methods 17, 1950047 (2020). https://doi.org/10.1142/
S0219876219500476

12. Soleymani, F., Lotfi, T., Bakhtiari, P.: A multi-step class of iterative methods for nonlinear
systems. Optim. Lett. 8, 1001–1015 (2014). https://doi.org/10.1007/s11590-013-0617-6

13. Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company,
New York (1982)

14. Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach
spaces. Numer. Algor. 57, 441–456 (2011). https://doi.org/10.1007/s11075-010-9438-1

15. Wolfram, S.: The Mathematica Book. Wolfram Media, USA (2003)

https://doi.org/10.1016/j.apm.2010.11.056
https://doi.org/10.1016/j.amc.2019.04.003
https://doi.org/10.1016/j.amc.2010.11.006
https://doi.org/10.1016/j.amc.2010.11.006
https://doi.org/10.1016/j.aml.2012.07.005
https://doi.org/10.1016/j.aml.2012.07.005
https://doi.org/10.1016/j.amc.2015.05.076
https://doi.org/10.1016/j.amc.2015.05.076
https://doi.org/10.1080/00207160.2014.946412
https://doi.org/10.1080/01630568008816049
https://doi.org/10.1016/j.camwa.2013.12.004
https://doi.org/10.1016/j.camwa.2013.12.004
https://doi.org/10.1142/S0219876219500476
https://doi.org/10.1142/S0219876219500476
https://doi.org/10.1007/s11590-013-0617-6
https://doi.org/10.1007/s11075-010-9438-1

	 A Computationally Efficient Sixth-Order Method for Nonlinear Models
	1 Introduction
	2 Development of Method
	3 Computational Efficiency
	3.1 Comparison of Efficiencies

	4 Numerical Experimentation
	5 Conclusions
	References


