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Abstract We present the solution of linear and nonlinear ordinary differential equa-
tions using collocation on finite elements. A heptic (septic) basis is derived and
its properties are discussed. The phenomenon of superconvergence at the nodes is
illustrated. An investigation of the global and nodal rates of convergence reveals
remarkable agreement with a theorem proved by Carl R. de Boor in 1973.
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1 Introduction

Orthogonal Collocation (OC) is an approximation method for solving differential
equations. It is similar to the Pseudospectral Method (PS) and is also referred to as
the Differential Quadrature Method (DQ). In contrast to finite difference methods,
the solution by OC is defined as a continuous or piecewise continuous function.

The collocation method is employed in two different ways, either globally or
locally. In the global collocation method, the method finds the solution for various
numbers of collocation points. In the local collocation method, the domain is divided
into equal-width subintervals called finite elements, and each element has a fixed
number of collocation points within its boundaries. The solutions are then computed
from the collocation points within each element.

The collocation method was introduced in the 1930s [1–4]. It was named the
interpolation method by Kantorovich [1]; Lanczos called it the method of selected
points [3] while Frazer et al. called it collocation [2]. From these three names, it can
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be inferred that the method interpolates the residual to zero at chosen points. The
most attractive feature of the method is that it is easier to implement, since it does
not require integration to determine the unknown coefficients.

The collocation might lead to the Runge phenomenon [5] because it is primarily
a residual interpolation method. Bert and Malik [6] provided several examples of
problems related to collocation with equal intervals.

Lanczos used Chebyshev polynomials for the basis functions and collocated at the
zeros of Chebyshev polynomials of the second kind. Wright [7] chose to collocate at
the zeros of Chebyshev polynomials of the first kind. The application of Chebyshev
roots was a great improvement because the Runge phenomenon does not occur.

Another advancement to themethodwas the usage ofGaussian or Lobatto quadra-
ture points by Villadsen and Stewart [8]. These are simply the roots of Jacobi polyno-
mials. They referred to this as Orthogonal Collocation. By constructing the method
with nodal values they further enhanced it. These adjustments gave rise to finite
difference-like methods.

The phenomenon of collocation method in the 1970s happens in three branches,
namely Orthogonal Collocation (OC), Pseudospectral (PS), and Differential Quadra-
ture (DQ). Villadsen and Stewart introduced the OC branch in their paper, and further
improvements to the method which outline collocation at Gauss, Radau, and Lobatto
points were mentioned in Villadsen [8], Finlayson [9], and Villadsen and Michelsen
[10]. It was proved that the numerical quadrature of the method of moments is equiv-
alent to collocation at Gauss points.

They further applied the method for problems symmetric about an axis, using
cylindrical, spherical, and planar coordinates. They exclusively used the nodal dif-
ferentiation matrices. Early papers indicated that the method compared favourably
with finite differences [11–14].

Orzagwas thefirst to start thePseudospectral thread [15]whichwas later improved
by Gottlieb and Orzag [16]. Although the pseudospectral method is similar to col-
location, it is seldom used to refer to approximations of integration in MWR. Orzag
solved periodic problems using trigonometric basis functions. His work includes col-
location at the zeros of Chebyshev polynomials of the second kind for non-periodic
first-order linear hyperbolic problems. He showed that collocation can accurately
approximate the Galerkin method. Here, he used Chebyshev trial functions and did
not consider nodal approximations. His main contribution was the application of fast
Fourier transforms (FFT) to perform calculations.

The Differential Quadrature Method thread was initially presented in Bellman
and Casti [17], Bellman et al. [18], and Bellman [19]. Here Bellman et al. introduced
the idea of a nodal differential matrix applied to first- and second-order differential
equations. Although the paper does not give much details with respect to boundary
condition treatment. The idea to apply a nodal differentiation matrix was not new,
it has been applied before. In Bellman et al. [18], Bellman proposed the method
of differentiation matrices based on collocation at Gauss points. In Nielson [20],
the formulas for the nodal differentiation matrix with arbitrary nodal locations were
introduced. The method was adopted for the solution of engineering problems.
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When one uses a global polynomial, the solution is represented by a single poly-
nomial on the domain. This approach is fairly accurate when low-order polynomials
can represent the solution.

Finite elementmethods can accurately represent complex geometries. The interest
in finite element methods erupted in the 1970s [21–23]. There was a huge interest
for other applications because of the initial success in structural mechanics. The idea
by Villadsen and Stewart of using quadrature points globally was extended to finite
elements.

Unlike the global method, a finite element method divides the domain into a
collection of subdomains, with a polynomial representation over each subdomain.
The two methods are identical when using a single element hence the finite element
method ismore general. The degree of continuity at the element boundaries is denoted
by Cn .

There are two alternatives to dealing with the continuity conditions at the bound-
ary of the elements. Firstly we could enforce the continuity of the trial functions
at the boundary of the elements. This also applies to the continuity of the deriva-
tives depending on the smoothness requirement. Alternatively, we could choose trial
functions like the Hermite polynomials which have built-in continuity. The latter
approach results in fewer unknowns to solve for. To a large extent the solution of
chemical engineering problems, namely two point boundary value problems have
been achieved by the Galerkin finite element method [24, 25] with far greater accu-
racy than the collocation method, though with slightly more numerical effort. For
the solution of reaction-diffusion models, see [26, 27].

C1 Collocation at Gauss Points This was described by de Boor and Swartz [28] and
Douglas and Dupont [29]. Carey and Finlayson [30] employed a Lagrange basis.

C0 Collocation at Lobatto Points This method based on Lobatto points is also used
in the finite element approach. One method is C0, which uses Lagrange basis func-
tions and called theHybrid-Collocation-Galerkinmethod [31–33]. Another approach
described in Gray [34], Young [35], Young [36], Hennart [37], and Leyk [38, 39]
uses a Lagrange basis and a simple Galerkin method with integration effected using
Lobatto quadrature. Young called this the Lobatto-Galerkin method. Gray and Hen-
nart only used quadratic trial functions with integration using Simpson’s rule. This
was referred to as the hp Spectral element in Maday and Patera [40], Canuto et al.
[41], Karniadakis and Sherwin [42], and Vosse and Minev [43].

Convergence Rate and Efficiency The approximate solution for orthogonal colloca-
tion and the finite element methods they approximate have the same convergence
and superconvergence rates. Finite element methods and collocation at Gauss points
require much less numerical effort than the contrasting Galerkin method when using
the same trial functions especially in several dimensions.
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2 Heptic Hermite Basis Functions

We seek a basis forP7, the vector space of polynomials of degree ≤ 7 on the interval
[xi , xi+1]. There are eight such functions and we denote them by Hk, k = 1, 2, ..., 8.
We further stipulate their function and derivative values at the end points xi and xi+1

as follows:

H (p)
k (xi ) = δk,p+1

h p
, H (p)

k (xi+1) = 0, H (p)
k+4(xi ) = 0, H (p)

k+4(xi+1) = δk,p+1

h p
, (1)

where k, p + 1 ∈ S = {1, 2, 3, 4} and δi, j is thewell-knownKronecker delta symbol.
It is convenient to transform to the variable z ∈ [0, 1] defined by

z = (x − xi )

(xi+1 − xi )
= (x − xi )

h
(2)

where h is the uniform interval length. As x varies from xi to xi+1, z varies from 0
to 1. The interpolatory conditions in (1) transform naturally in the variable z to

H (p)
k (0) = δk,p+1, H

(p)
k (1) = 0, H (p)

k+4(0) = 0, H (p)
k+4(1) = δk,p+1 k, p + 1 ∈ S.

These conditions enable the unique derivation of the Hk(z), k = 1, 2, ..., 8.The poly-
nomial H3(z) has a zero of multiplicity four at z = 1 and a zero of multiplicity two
at z = 0 and therefore has the form of H3(z) = (Az + B)z2(z − 1)4. The remain-
ing conditions H

′′
3 (0) = 1 and H

′′′
3 (0) = 0 are used to evaluate A and B. Using this

approach, the polynomials H1(z), H2(z), H3(z), and H4(z) are derived and displayed
in Eqs. (3)–(6).

H1(z) = (20z3 + 10z2 + 4z + 1)(z − 1)4 (3)

H2(z) = z(10z2 + 4z + 1)(z − 1)4 (4)

H3(z) = z2

2
(4z + 1)(z − 1)4 (5)

H4(z) = z3

6
(z − 1)4. (6)

By using symmetry/antisymmetry, one can show that

H5(z) = H1(1 − z) (7)

H6(z) = −H2(1 − z) (8)

H7(z) = H3(1 − z) (9)

H8(z) = −H4(1 − z). (10)
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From (7)–(10), we may write

H (p)
j+4(z) = (−1) j−1+pH (p)

j (1 − z), j = 1, 2, 3, 4. (11)

The uniqueness of the interpolatory conditions ensures that the polynomials Hi (z)
are independent. Consider p = 0, if Hj (z) is shifted to the (i + 1)st interval the
equation of the curve becomes Hj (z − 1). When evaluated at z = 1 we get Hj (0).
Now Hj+4(1) = (−1) j−1Hj (0) and for j = 1, 3 Hj+4(1) = Hj (0), also for j =
2, 4 we have Hj+4(1) = −Hj (0) = 0 = Hj (0). Similar relationships apply for the
derivatives of order up to three. Hence Hj+4(z) and its derivatives up to order three
are continuous at the element boundary with Hj (z) and its derivatives of order up
to three in the (i + 1)st interval. If we write H5(z)) = H1(−(z − 1)), then we note
that H5(z) is a reflection of H1(z) about the vertical axis together with a shift of one
unit to the right. H7(z) is similarly related to H3(z). Also, H6(z) may be interpreted
as H2(z) rotated by 180◦ anticlockwise and then shifted one unit to the right. H8(z)
is also related to H4(z) in a similar manner.

3 Collocation on Finite Elements

Consider solving a fourth-order linear ordinary differential equation in one spatial
variable, x , and on the domain [a, b]. Firstly, the domain [a, b] is divided into N
subintervals or elements of spacing h = b−a

N , by placing the dividing points or nodes
xi , i = 1, 2, ..., N + 1, as illustrated in Fig. 1. We shall refer to this discretization as
the mesh Δ.

Here x1 = a and xN+1 = b coincide with the left and right hand boundaries,
respectively. This differs from global orthogonal collocation where the domain is
not subdivided and instead higher order polynomials are used to achieve greater
accuracy. The ith element [xi , xi+1] is mapped to [0, 1] by using a transformation of
the form (2). We assume that the approximate solution in the ith element is given by

Ui (x) = Ui (z) =
8∑

k=1

C (i)
k Hi

k (z)

Fig. 1 Mesh points on the global domain
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and is represented in the (i + 1)st element by

Ui+1(x) = Ui+1(z) =
8∑

k=1

Ci+1
k Hi+1

k (z).

The continuity of the basis functions and their first three derivatives have some inter-
esting consequences on the coefficients of the solutions in the successive elements.
In order to obtain a smooth solution that is C3 continuous, we enforce the condition

Ui (xi+1) = Ui+1(xi+1),

which is equivalent, in the variable z, toUi (1) = Ui+1(0). This implies that Ci+1
1 =

Ci
5. The continuity of the derivative at xi+1 is equivalent to

dU

dz

(i)∣∣∣
z=1

= dU

dz

(i+1)∣∣∣
z=0

and this yields Ci+1
2 = Ci

6. Similarly, the continuity of the second derivative at xi+1

yieldsCi+1
3 = Ci

7 and that of the third derivative yieldsC
i+1
4 = Ci

8. Thus, the first four
coefficients in interval i + 1 are a repetition of the last four coefficients in interval i .
Thus, we can write the trial solution as

U (z) =
8∑

k=1

Ck+4(i−1)Hk(z), (12)

where we write Hk(z) for Hi
k (z) bearing in mind that Hk(z) is a function of i and we

have dropped the superscript i fromUi (z). With this labelling of the coefficients, we
are automatically ensuring that the solution and its first, second, and third derivatives
are continuous at the nodes.

Remark 1 Substituting z = 0 and z = 1 into (12), its derivative, its second and its
third derivative, we can show that U (xi ) = C4i−3, hU ′(xi ) = C4i−2, h2U ′′(xi ) =
C4i−1, and h3U ′′′(xi ) = C4i , i = 1, 2, ..., N + 1. Thus, every fourth coefficient
beginning from C1 is an approximation to the solution at the nodes. Similarly, every
fourth coefficient beginning from C2 scaled by h is an approximation to the deriva-
tive at the nodes. Likewise, every fourth coefficient beginning from C3 scaled by h2

represents an approximation to the second derivative at the nodes, and every fourth
coefficient beginning from C4 scaled by h3 represents an approximation to the third
derivative at the nodes.

Wefind itmore instructive to apply the error bounds derived in [28] and to illustrate
the numerical validity of the bounds in the present context on two examples. Consider
the fourth-order linear differential equation, defined on [a, b], which can be written
in the form Lu(x) = f (x), where the operator L = ∑4

k=0 ak(x)D
k and D denotes

the derivative operator.
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The following theorem establishes the order of convergence for very smooth
solutions [28].

Theorem 1 ([28]) Assume that the coefficients ai (x) of L satisfy ai (x) ∈ C8[a, b]
for all i and that u(x) ∈ C12[a, b]. If the collocation points are chosen as the Gauss
points, then there exists a constant c1 such that

|Dp(u −U )(x j )| � c1h
8, p = 0, 1, 2, 3 (13)

and a constant c2 such that

‖Dp(u −U )‖∞ � c2h
8−p, p = 0, 1, 2, 3, 4. (14)

Here, U (x) represents the collocation approximation of u(x). Similar error bounds
hold for nonlinear ODEs [28] and will be illustrated with an example below.

This effectively means that at the nodes the error of the collocation solution and
its derivatives of order up to three should be O(h8). Also, the infinity norm of the
error and its derivatives of order up to four should be O(h8−p).

4 Numerical Example

Example 1 Consider the fourth-order ODE

u(iv) − (10π)3u = (10π)3(10π − 1) sin(10πx) = f (x) (15)

with analytical solution u(x) = sin(10πx) and boundary conditions u(0) = 0 =
u(1) and u′(0) = 10π = u′(1)

We substitute the trial solution (12) into the differential equation (15) to obtain

8∑

k=1

[
H (iv)

k (z)/h4 − (10π)3Hk(z)
]
Ck+4(i−1) = f (xi + zh), i = 1, 2, ..., N . (16)

The boundary condition u(0) = U (0) = ∑8
k=1 CkHk(0) = 0 yields C1 = 0 while

the boundary condition u(1) = U (1) = ∑8
k=1 Ck+4(N−1)Hk(1) = 0 yields C4N+1 =

0. The boundary condition u′(0) = U ′(0) = 1
h

∑8
k=1 CkH ′

k(0) = 10π yields C2 =
10πh. Similarly, u′(1) = U ′(1) = 1

h

∑8
k=1 Ck+4(N−1)H ′

k(1) = 10π yields C4N+2 =
10πh.

There are 4N + 4 unknowns in Eq. (12). Given that we have two boundary con-
ditions on the left and two boundary conditions on the right, we thus require 4N
conditions in order to solve the problem uniquely. We choose four collocation points
denoted by s1, s2, s3, s4, in each interval. The s j are chosen as the zeros of the fourth
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degree Legendre polynomial, shifted to the interval [0, 1]. These have been shown
to be the optimal choice for the collocation points [28]. This optimal choice arises
due to the orthogonality property of the Legendre polynomials and hence the method
is called orthogonal collocation on finite elements (OCFE). The collocation points
are then substituted into Eq. (16) to give the remaining 4N linear equations. The
matrix-vector system, of size (4N + 4) × (4N + 4), has the form Aa = f , where A
has the form

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

. .

. .

. .

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

with

ai j = 1

h4
H (iv)

j (si ) + (10π)3Hj (si ), i = 1, 2, 3, 4; j = 1, 2, ..., 8, (18)

and f has the form

f j+4i−4 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10π)3(10π − 1) sin(10π(xi + s j h)), i = 1, ..., N , j = 1, 2, 3, 4

0, i = N + 1, j = 1, 3

10πh, i = N + 1, j = 2, 4.
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Fig. 2 Error plot with N = 20 for example 2.1

The non-zero blocks of matrix A are shifted four places to the right and account for
the repetition of the coefficients. The position of the ones accounts for the boundary
conditions. The sparse nature of the matrix and the repetitive pattern can easily be
exploited to solve the linear system efficiently with minimum CPU storage require-
ments.

After solving (17), the solution is constructed on each subinterval using the appro-
priate coefficients and can then be plotted.

Since there is very good agreement between the approximate solution and the
exact solution, we choose to show the error plot in Fig. 2 for N = 20. We point
out that in contrast to global collocation the numerical results are much more
acceptable.

We use the following technique to approximate the convergence order. If the
discrete error at the nodes x j is O(hn) then

∣∣Dp(u −U )(x j )
∣∣(h) = O

(
hn

)
(19)

and
∣∣Dp(u −U )(x j )

∣∣( h
2 ) = O

((
h

2

)n)
. (20)

By taking the ratio of (19)–(20), we obtain

α1 =
∣∣Dp(u −U )(x j )

∣∣(h)

∣∣Dp(u −U )(x j )
∣∣( h

2 )
≈ 2n (21)



562 Z. Mkhize et al.

Table 1 Convergence order n(h) at nodes from (21)

xi p = 0 p = 1 p = 2 p = 3 xi p = 0 p = 1 p = 2 p = 3

0.05 8.3581 8.2630 8.3306 8.2909 0.55 8.7506 8.2487 8.7841 8.2493

0.10 8.3486 8.1682 8.3474 8.2273 0.60 8.3179 8.2433 8.3184 8.8037

0.15 8.3358 9.0963 8. 3618 8.0691 0.65 8.2625 8.4625 8.2502 8.4620

0.20 8.2448 8.2739 8.2377 8.3273 0.70 8.1744 8.7793 8.1824 8.4068

0.25 8.1592 8.3138 8.1167 8.3128 0.75 8.3788 8.2916 8.3458 8.2867

0.30 8.4366 8.5032 8.4341 8.2856 0.80 8.3677 8.2011 8.3593 8.2233

0.35 8.3041 8.1579 8.2915 8.1548 0.85 8.3613 7.8613 8.3673 6.4756

0.40 8.2843 7.9236 8.2846 7.5945 0.90 8.2783 8.2569 8.2282 8.3518

0.45 8.1588 8.3554 8.2455 8.3554 0.95 8.2408 8.2857 8.0558 8.3496

Table 2 Global convergence orders from (22)

p 0 1 2 3 4

n(h) 7.9596 6.8907 5.6224 4.6626 3.7390

from which the order of convergence n(h) ≈ ln(α1)

ln(2) . Similarly, we obtain

α2 =
∥∥Dp(u −U )(x)

∥∥(h)

∞∥∥Dp(u −U )(x)
∥∥( h

2 )

∞
≈ 2n. (22)

These results are summarized in Tables1 and 2. It is seen that the nodal order is
approximately 8, while the global order seems to satisfy (14). The error in the global
convergence order is attributed to the conditioning of the matrix for this problem as
well as the low value of N used. The pointwise error in the domain is least and of
order 8 only at the nodes, a phenomenon known as superconvergence.

Example 2 As a second example, we solve a nonlinear BVP.

u(iv)(x) + u′′′(x) + u′′(x) + u(x)u′(x) = f (x), −2 < x < 2, (23)

with exact solution u(x) = e−x2 .

The right-hand side f (x) and boundary conditions are extracted from the exact
solution. Clearly, the exact solution u(x) satisfies the hypothesis of Theorem (1)
and therefore we expect nodal and global errors of O(h8). If the global error∥∥Dp(u −U )(x)

∥∥N

∞ is O
(
h−n

)
then

α3 =
∥∥Dp(u −U )(x)

∥∥N

∞∥∥Dp(u −U )(x)
∥∥N+1

∞
≈

(
N + 1

N

)n

(24)
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Fig. 3 a Global error order. b Global error

and the global convergence order is given by

n ≈ ln α3

ln
(
N+1
N

) . (25)

We use Eq. (25) to estimate this order as it is computationally inefficient to use (22)
in this case. For a nonlinear problem, the nonlinear solver consumes much CPU
time as the number of equations increases. For example for N = 10, if we had used
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Table 3 Nodal order and error for N = 8

i xi n |(u −U )(xi )|
2 –1.5 8.218 9.73e-8

3 –1.0 11.257 3.75e-8

4 –0.5 8.463 1.32e-7

5 0.0 8.523 2.59e-7

6 0.5 8.929 2.85e-8

7 1.0 7.995 7.21e-8

8 1.5 8.671 6.68e-8

(22) then this will require solving additionally 84 (N = 20) nonlinear equations as
compared to 48 (N = 11) nonlinear equations.

In Fig. 3a, we plot the global order (p = 0) as a function of N for small values
of N . These orders seem to oscillate about the horizontal red line (N = 8). Those
below the line are attributed to numerical errors arising from the Julia nonlinear solver
nlsolve. For larger values of N , the actual global errors are illustrated in Fig. 3b and
agree remarkably with the theoretical bound of Theorem (1).

For (N = 8) the nodal orders using (21) as well as the nodal errors are tabulated
in Table3. Again this reinforces the validity of Theorem (1).
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