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Abstract In this paper, we introduce a class of novel C1-rational quartic spline
zipper fractal interpolation functions (RQS ZFIFs) with variable scalings, where
rational spline has a quartic polynomial in the numerator and a cubic polynomial in
the denominator with two shape control parameters. We derive an upper bound for
the uniform error of the proposed interpolant with aC3 data generating function, and
it is shown that our fractal interpolant has O(h2) convergence and can be increased to
O(h3) under certain conditions. We restrict the scaling functions and shape control
parameters so that the proposed RQS ZFIF is positive, when the given data set is
positive. Using this sufficient condition, some numerical examples of positive RQS
ZFIFs are presented to support our theory.
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1 Introduction

To find a nice interpolation curve with various attributes is an active area of research
in numerical analysis, approximation theory, wavelets, classical and discrete geom-
etry, engineering design, civil engineering and computer science. From the last
many decades, researchers have come up with various types of interpolants that
have advantages over one another. Polynomial interpolations are preferred when the
original function is sufficiently smooth. For some fixed order of smoothness, differ-
ent types of spline (polynomial/trigonometric/exponential/rational) interpolants are
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used. Rational spline interpolants with shape parameters are more flexible over other
type of spline interpolants, and hence popular in geometric modelling problems for
discrete data visualization. These have been utilized from animated films to simu-
lated surgery. For the classical positivity preserving rational splines one can see [1,
15, 16, 23, 25, 33]. Schmidt and Heß in [25] discussed positive interpolation with
quadratic and rational quadratic spline and observed that rational quadratic splines
have an advantage over quadratic splines. Sakai and Schmidt in [23] presented a class
of C2 positivity-preserving rational spline using two local control parameters with
the cubic numerator and linear denominator. Using cubic numerator and quadratic
denominator, Abbas et al. in [1] constructed a C2 rational cubic spline with three
shape parameters. They derived the shape feature of data using a single shape param-
eter and the other two shape parameters were left free for the designer to adjust the
shape of positive curves as per industrial requirements. Hussain and Sarfraz in [16]
constructed a C1 piecewise rational cubic spline with four parameters to visualize
positive data set. Two parameters are constrained for the presentation of positive
curves through positive data while the other two provide extra freedom to vary the
curve shape as needed. Han in [15] presented a piecewise rational spline with the
quartic numerator and quadratic denominator. He derived the shape-preservation
properties like positivity, monotonicity and convexity of the interpolant. But these
non-recursive classical interpolants are either smooth or piecewise smooth and con-
sequently, they are not differentiable at the finite number of points. But if the data
is taken from an irregular and non-smooth function, these classical interpolants are
not good approximants for it.

Non-smooth and irregular curves such as profiles of mountain ranges, tops of
clouds, lightning, ECG curves, turbulence, etc. cannot be interpolated by classical
interpolants. The term fractal was given byMandelbrot [19] to unify the irregular and
complex structures.After thatmany researchersworkedon it and expand its theory.To
construct fractals, Hutchinson [17] introduced the concept of iterated function system
(IFS). The fractal-based theory is a new tool to analyse various non-linear complex
phenomena in nature, sciences and engineering. With the help of some parameters,
we can easilymodelmost of these complex phenomena byusing self-referential rules.
Using the theory of IFS, Barnsley [5] created fractal interpolation functions (FIFs)
to generate non-smooth and irregular curves from their data points [6] and proved
the existence and uniqueness of fractal interpolation function for a hyperbolic IFS
with fixed parameters. Barnsley andHarrington [7] constructed r -times differentiable
polynomial splinewith fixed type of boundary conditions to interpolate functions that
have fractality in their higher-order derivatives. For all kinds of boundary conditions,
Chand and Kapoor [8] constructed cubic spline FIFs using moments. For application
of FIF in data visualization, Chand and collaborators have proposed shape-preserving
fractal interpolants, see for instance [9, 10, 12, 18, 29, 30]. Akhtar et al. in [20]
introduced a group of fractal functions on the unit sphere through a linear bounded
fractal operator and presented some approximation properties. Balasubramani et al.
[4] constructed rational cubic spline α-fractal functions with three shape parameters
that can preserve positivity and monotonicity. They have also found the conditions
on the IFS parameters so that the proposed interpolant is constrained between two
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piecewise linear functions. But most of the development in shape-preserving FIF
theory, the authors have used constant scaling factors, whereas fractal functions with
variable scalings provide more flexibility. Using variable scaling, Wang and Shan
[32] generated FIFs to approximate functions with less self-similarity and studied
their analytical properties such as smoothness, stability and sensitivity. Gowrisankar
and Guru Prem Prasad [14] investigated Riemann-Liouville fractional calculus of
quadratic FIF with constant as well as variable scaling factors.

Aseev [2] conceptualized the notion of the zipper, which is the generalization of
the IFS. Several interesting topological and structural properties of zipper are studied
related to dendrites and self-similar continua byTetenov and his group [3, 24, 26–28].
Similar to fractal interpolants, zipper fractal interpolant as an attractor of a suitable
zipper can give details on arbitrarily small scales. Chand et al. [11] introduced affine
zipper fractal interpolants. They constructed affine zipper interpolants inscribed in
a rectangle and found a basis for the affine zippers fractal interpolation function
for a prescribed data set. Zipper fractal interpolants can be non-differentiable in a
dense set of an interval. The construction of smooth zipper FIFs is proposed recently
in Reddy [22], where certain derivative of smooth zipper FIF is a typical fractal
function. Thus, zipper fractal interpolants can be smooth or non-smooth, and smooth
zipper fractal interpolants may be used to generalize traditional non-recursive spline
interpolants. In this work, we have come up with a novel C1-rational quartic spline
zipper fractal interpolation function with variable scaling functions and studied its
positivity preserving property.

The main points of our work are as follows: First, we formulate a class of novel
C1-rational quartic spline (RQS) with two families of shape control parameters with
the help of a binary vector, and then using that RQS and the theory of zipper, we
derive a new type of fractal interpolant with variable scaling functions named rational
quartic spline zipper fractal interpolation function (RQS ZFIF) in Sect. 2. In Sect. 3,
we glean that our RQS and RQS ZFIF converge to aC3 data generating function with
the order O(h2) as h → 0, and under additional assumptions on IFS parameters, we
can increase the order of convergence up to O(h3). To get a strictly positive RQS
ZFIF or RQS for a strictly positive data set, we derive sufficient conditions on the
shape control parameters and the variable scaling functions in Sect. 4 and give some
numerical examples to reinforce our theory. In Sect. 5, we summarize our work.

2 Construction of RQS ZFIFs

In this section, we will construct a new type of C1-rational quartic spline using a
binary vector called a signature, and then we will construct a class of novel C1-RQS
ZFIF with the help of our new rational quartic spline and the theory of the zipper.

Follows are some notation for this paper: Let I := [a, b] ⊂ R. For j ∈ N, let
N j := {1, 2, 3, . . . , j}, and N

0
j := {0, 1, 2, 3, . . . , j}. For j ∈ N ∪ {0}, C j (I ) is the

Banach space of real valued functions having j continuous derivatives defined on
I , and for g ∈ C j (I ), ‖g‖ j := max{‖g(r)‖∞ : r = 0, 1, 2, . . . , j}. For g ∈ C(I ),
‖g‖∞ := max{|g(x)| : x ∈ I }.
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Let a set of interpolation points {(xi , yi ) ∈ I × R : i ∈ NN } with increasing
abscissae be given with a = x1 and b = xN . Let [k1, k2] be a large compact interval
in R such that yi ∈ [k1, k2]∀i ∈ NN . For a binary vector ε := (ε1, ε2, . . . , εN−1) ∈
{0, 1}N−1, let Li : I → Ii := [xi , xi+1], i = 1, 2, . . . , N − 1, be contractive home-
omorphisms such that

Li (x1) = xi+εi , Li (xN ) = xi+1−εi ,

|Li (x) − Li (x
∗)| ≤ r |x − x∗|, ∀x, x∗ ∈ I,

(1)

for some 0 ≤ r < 1.
For 0 ≤ θ := x−x1

xN−x1
≤ 1 and Qi (θ) = wi (1 − θ)3 + (wi + ui )(1 − θ)2θ +

(wi+1 + ui+1)(1 − θ)θ2 + wi+1θ
3, where wi and ui are the shape control param-

eters, let

Pi1(θ) = wi (1 − θ)3 + (wi + ui )(1 − θ)3θ + (wi+1 + ui+1)(1 − θ)2θ2

Qi (θ)
,

Pi2(θ) = (wi + ui )(1 − θ)2θ2 + (wi+1 + ui+1)(1 − θ)θ3 + wi+1θ
3

Qi (θ)
,

Pi3(θ) = wi (1 − θ)3θ

Qi (θ)
, Pi4(θ) = −wi+1(1 − θ)θ3

Qi (θ)
, i ∈ NN−1,

(2)

Then, for each j ∈ N4, Pi j ∈ C1(I ) and satisfies

Pi1(0) = 1, Pi1(1) = 0, P ′
i1(0) = 0, P ′

i1(1) = 0,

Pi2(0) = 0, Pi2(1) = 1, P ′
i2(0) = 0, P ′

i2(1) = 0,

Pi3(0) = 0, Pi3(1) = 0, P ′
i3(0) = 1, P ′

i3(1) = 0,

Pi4(0) = 0, Pi4(1) = 0, P ′
i4(0) = 0, P ′

i4(1) = 1.

(3)

Let hi := xi+1 − xi , |I | := xN − x1, and h∗
i := xi+1−εi − xi+εi . Now consider the

function

Pε(Li (x)) = Pi1(θ)yi+εi + Pi2(θ)yi+1−εi + h∗
i Pi3(θ)di+εi + h∗

i Pi4(θ)di+1−εi = Pi (θ)

Qi (θ)
, (4)

where

Pi (θ) =
4∑

k=0

Aik(1 − θ)4−kθk,

Ai0 = wi yi+εi , Ai1 = ui yi+εi + wi (2yi+εi + h∗
i di+εi ),

Ai2 = (ui + wi )yi+1−εi + (ui+1 + wi+1)yi+εi ,

Ai3 = ui+1yi+1−εi + wi+1(2yi+1−εi − h∗
i di+1−εi ), Ai4 = wi+1yi+1−εi .

(5)
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Then, the RQS Pε ∈ C1(I ) and satisfies Pε(Li (x1)) = yi+εi , Pε(Li (xN )) = yi+1−εi ,
P ′

ε(Li (x1)) = di+εi , and P ′
ε(Li (xN )) = di+1−εi . From (1), we can easily obtain that it

also interpolates the given data, i.e.∀i ∈ N, Pε(xi ) = yi , and P ′
ε(xi ) = di for arbitrary

signature ε, where di ’s are called derivative parameters. If the given data set {(xi , yi ) :
i ∈ NN } is without the derivative parameters, then theymust be calculated either from
the data or by some appropriate methods. The arithmetic mean method (amm) and
the geometric method (gmm) are popular choices for calculating derivatives from
data. For details of these methods, see [10].

Remark 1 (i) If our shape control parameters wi and ui for i ∈ N, are fixed and
wi �= wi+1 for i ∈ NN−1, then we can generate 2N−1 different rational quartic spline
interpolation functions using different signatures for N numbers of data points.
(ii) If εi = 0, for all i ∈ NN−1, then our rational quartic spline Pε(x) reduces to the
rational quartic spline R(x) defined in [33].

Definition 1 A zipper with vertices (v1, v2, . . . , vN ) and signature ε = (ε1, ε2, . . . ,
εN−1) ∈ {0, 1}N−1 is a collection of some non-surjectivemapswith a completemetric
space is denoted by� := {X;Wi : i ∈ NN−1}, where for each i ∈ NN−1,Wi satisfies
Wi (v1) = vi+εi and Wi (vN ) = vi+1−εi .

If there exists a compact set Γ ⊂ X such that

Γ = N−1∪
j=1

Wj (Γ ),

then Γ is called the attractor or fractal corresponding to the zipper �.
Let H := I × [k1, k2]. Construct N − 1 continuous functions Fi : H → R such

that
Fi (x, y) = αi (x)y + (Pε(Li (x)) − αi (x)Bi (x)),

where αi ∈ C1(I ) such that ‖αi‖1 < 1, and Bi ∈ C1(I ) such that

Bi (x) = Pi1(θ)y1 + Pi2(θ)yN + |I |Pi3(θ)d1 + |I |Pi4(θ)dN = P∗
i (θ)

Qi (θ)
,

P∗
i (θ) =

4∑

k=0

A∗
ik(1 − θ)4−kθk,

A∗
i0 = wi y1, A∗

i1 = ui y1 + wi (2y1 + |I |d1),
A∗
i2 = (ui + wi )yN + (ui+1 + wi+1)y1,

A∗
i3 = ui+1yN + wi+1(2yN − |I |dN ), A∗

i4 = wi+1yN .

(6)

Now, for each i ∈ NN−1, Bi satisfies Bi (x1) = y1, Bi (xN ) = yN , B ′
i (x1) = d1, and

B ′
i (xN ) = dN . Therefore, we have

Fi (x1, y1) = yi+εi , Fi (xN , yN ) = yi+1−εi ,

|Fi (x, y) − Fi (x, y
∗)| ≤ ‖αi‖∞|y − y∗|, ∀x ∈ I, y, y∗ ∈ [k1, k2], (7)
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Now define mappings Wi : H → Ii × R, i = 1, 2, . . . , N − 1 by

Wi (x, y) = (Li (x), Fi (x, y)), ∀(x, y) ∈ H.

Therefore, {H ;Wi : i ∈ NN−1} is a zipper with vertices ((x1, y1), (x2, y2), . . . , (xN ,

yN )) and signature ε = (ε1, ε2, . . . , εN−1). For each i ∈ NN−1, αi (x) is called the
variable scaling function corresponding to themapWi and Bi is called a base function.
Now we will construct a C1-RQS ZFIF using the zipper {H ;Wi : i ∈ NN−1} for the
given Hermite data {(xi , yi , di ) : i ∈ NN }.
Theorem 1 Let {(xi , yi , di ) : i ∈ NN } be a given set of interpolation data such that
x1 < x2 < · · · < xN . Let the signature ε ∈ {0, 1}N−1 be fixed. For i ∈ NN−1, let
Li (x) = ai x + bi satisfies (1), and Fi (x, y) = αi (x)y + Pε(Li (x)) − αi (x)Bi (x),
where Pε and Bi are as defined in (4) and (6) respectively. Ifαi ∈ C1(I ) and ‖αi‖1 <
|ai |
2 for all i ∈ NN−1, then the zipper {H ; (Li (x), Fi (x, y)) : i ∈ NN−1} determines
a rational quartic spline zipper fractal interpolation function Pα

ε ∈ C1(I ).

Proof Let D(I ) := {g ∈ C1(I ) : g(x1) = y1, g(xN ) = yN , g′(x1) = d1, and g′(xN )

= dN }. Then D(I ) is a complete metric space with respect to norm ‖.‖1. Now, define
the Read-Bajraktarević operator T α : D → D such that

T αg(Li (x)) = Pε(Li (x)) + αi (x)(g(x) − Bi (x)), x ∈ I, i = 1, 2, . . . , N − 1.
(8)

Since the functions Pε, Bi , and αi belong to C1(I ), T αg ∈ C1(xi , xi+1) for each
i ∈ NN−1. We know, for i ∈ NN−2, xi+1 ∈ I j for j = i, i + 1. Since Li and Li+1

satisfy (1), therefore we have

xi+1 =
{
Li (xN ) εi = 0
Li (x1) εi = 1,

and xi+1 =
{
Li+1(x1) εi+1 = 0
Li+1(xN ) εi+1 = 1.

(9)

By putting (9) in (8), we have

T αg(xi+1) =
{
Pε(Li (xN )) εi = 0
Pε(Li (x1)) εi = 1,

and T αg(xi+1) =
{
Pε(Li+1(x1)) εi+1 = 0
Pε(Li+1(xN )) εi+1 = 1.

(10)
=⇒ lim

x→x−
i+1

(T αg)(x) = lim
x→x+

i+1

(T αg)(x) = yi+1

Similarly, after differentiating (8) once and using (9), we can obtain

(T αg)′(xi+1) =
{
P ′

ε(Li (xN )) εi = 0
P ′

ε(Li (x1)) εi = 1,
and (T αg)′(xi+1) =

{
P ′

ε(Li+1(x1)) εi+1 = 0
P ′

ε(Li+1(xN )) εi+1 = 1.
(11)

=⇒ lim
x→x−

i+1

(T αg)′(x) = lim
x→x+

i+1

(T αg)′(x) = di+1. (12)
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Now, for i = 1, N − 1, from (8) we can easily get that T αg(x1) = y1, T αg(xN ) =
yN , (T αg)′(x1) = d1, and (T αg)′(xN ) = dN . Therefore, the operator T α is well-
defined, i.e. T αg ∈ D. Now, for x ∈ Ii ,

(T αg)(x) − (T αg∗)(x) = αi (L
−1
i (x))(g − g∗)(L−1

i (x)),

which implies

|(T αg)(x) − (T αg∗)(x)| ≤ ‖αi‖∞‖g − g∗‖∞ ≤ ‖αi‖1‖g − g∗‖1.

Similarly,

|(T αg)′(x) − (T αg∗)′(x)| ≤ |a−1
i |(‖α′

i‖∞‖g − g∗‖∞ + ‖αi‖∞‖g′ − g∗′‖∞)

≤ 2|a−1
i |‖αi‖1‖g − g∗‖1.

So, if for all i ∈ NN−1, ‖αi‖1 < s |ai |
2 for some 0 ≤ s < 1, then we have ‖T αg −

T αg∗‖1 < s‖g − g∗‖1, i.e. T α is a contraction map on D. Therefore, by Banach
fixed point theorem T α has a unique fixed point say Pα

ε ∈ C1(I ), and Pα
ε satisfies

the recurrence relation

Pα
ε (Li (x)) = Pε(Li (x)) + αi (x)(P

α
ε (x) − Bi (x)), x ∈ I, i = 1, 2, . . . , N − 1.

(13)

Pα
ε is the desired rational quartic spline zipper α-fractal function corresponding to

the function Pε. For more details on α-fractal functions, see [5, 21].

Remark 2 (i) If αi (x) = 0, for all x ∈ I and for all i ∈ NN−1, then our RQS ZFIF
Pα

ε reduces to the RQS Pε defined in (4).
(ii) If αi (x) = 0 and εi = 0, for all x ∈ I and for all i ∈ NN−1, then the proposed
RQS ZFIF Pα

ε reduces to the rational quartic spline R(x) defined in [33].
(iii) For the fixed shape control parameters and the fixed non-zero variable scaling
functions, we can get 2N−1 different RQS ZFIFs using different values of signature
for the N numbers of data points.

3 Convergence Analysis

In this section, we will derive an upper bound for the uniform error of the RQS ZFIF
with a C3 data generating function, and we will show that our RQS ZFIF has O(h2)
convergence and can be increased to O(h3) under certain conditions.

We fix these notation for this section: �i := yi+1−yi
hi

, t := x−xi
hi

, h := max{hi : i ∈
NN−1}, |y|∞ := max{|yi | : i ∈ NN }, |d|∞ := max{|di | : i ∈ NN },wi∗ := min{wi , wi+1},
ui∗ := min{ui , ui+1}, w∗

i := max{wi , wi+1}, u∗
i := max{ui , ui+1}, w∗ := min{wi :

i ∈ NN },w∗ := max{wi : i ∈ NN },u∗ := min{ui : i ∈ NN },u∗ := max{ui : i ∈ NN },
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B∗ := max{‖Bi‖∞ : i ∈ NN−1}, α(x) := (α1(x),α2(x), . . . ,αN−1(x)), ‖α‖∞ :
= max{‖αi‖∞ : i ∈ NN−1}, and ‖α‖1 := max{‖αi‖1 : i ∈ NN−1}.

Let Φ ∈ C3(I ) be a data generating function, i.e. Φ(xi ) = yi , ∀i ∈ NN . Let di ’s
are chosen derivatives at xi , for all i ∈ NN . Now, for θ = x−x1

xN−x1
, let t∗ := L−1

i (θ),

i.e. t∗ = x−xi+εi
xi+1−εi −xi+εi

. Therefore, for x ∈ Ii ,

Pε(x) = 1

Qi (t∗)

4∑

k=0

Aik(1 − t∗)4−k t∗k, (14)

where t∗ =
{
t εi = 0
1 − t εi = 1,

and Aik’s are as defined in (5).

Case I: Let x ∈ Ii and εi = 0, then

Pε(x) = 1

Qi (t)

4∑

k=0

Aik(1 − t)4−k tk,

Ai0 = wi yi , Ai1 = ui yi + wi (2yi + hidi ),

Ai2 = (ui + wi )yi+1 + (ui+1 + wi+1)yi ,

Ai3 = ui+1yi+1 + wi+1(2yi+1 − hidi+1), Ai4 = wi+1yi+1,

Qi (t) = wi (1 − t)3 + (wi + ui )(1 − t)2t + (wi+1 + ui+1)(1 − t)t2 + wi+1t
3.

(15)
Now from [13, 33], for x ∈ Ii and εi = 0, choosing wi , wi+1 > 0 and ui , ui+1 ≥ 0,
we have

|Φ(x) − Pε(x)| ≤ h3i
96

‖Φ(3)‖∞ + hi
4
max

{|Φ ′(xi ) − di |, |Φ ′(xi+1) − di+1|
}

+ hi
2
√

wiwi+1 + min{ui , ui+1}
[ 27

256
|ui (�i − di ) − wi (2�i − di − di+1)|

+ 1

16
|(wi+1 − wi )(2�i − di − di+1) + ui+1(�i − di ) + ui (di+1 − �i )|

+ 27

256
|wi+1(2�i − di − di+1) + ui+1(di+1 − �i )|

]
.

(16)
Case II: Let x ∈ Ii and εi = 1, then
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Pε(x) = 1

Qi (1 − t)

4∑

k=0

Aikt
4−k(1 − t)k,

Ai0 = wi yi+1, Ai1 = ui yi+1 + wi (2yi − hidi+1),

Ai2 = (ui + wi )yi + (ui+1 + wi+1)yi+1,

Ai3 = ui+1yi + wi+1(2yi + hidi ), Ai4 = wi+1yi ,

Qi (1 − t) = wi t
3 + (wi + ui )t

2(1 − t) + (wi+1 + ui+1)t (1 − t)2 + wi+1(1 − t)3.
(17)

After interchanging wi and wi+1, ui and ui+1, (17) becomes equivalent to (15).
Therefore, using similar analysis, for x ∈ Ii and εi = 1, choosing wi , wi+1 > 0 and
ui , ui+1 ≥ 0, we have

|Φ(x) − Pε(x)| ≤ h3i
96

‖Φ(3)‖∞ + hi
4

max
{|Φ ′(xi ) − di |, |Φ ′(xi+1) − di+1|

}

+ hi
2
√

wi+1wi + min{ui+1, ui }
[ 27

256
|ui+1(�i − di ) − wi+1(2�i − di − di+1)|

+ 1

16
|(wi − wi+1)(2�i − di − di+1) + ui (�i − di ) + ui+1(di+1 − �i )|

+ 27

256
|wi (2�i − di − di+1) + ui (di+1 − �i )|

]
.

(18)

Now, if the derivative parameters di ’s are chosen such that

d1 = �1 − h1
h1 + h2

(�2 − �1),

dN = �N−1 + hN−1

hN−1 + hN−2
(�N−1 − �N−2),

di = hi
hi−1 + hi

�i−1 + hi−1

hi−1 + hi
�i , i = 2, 3, . . . , N − 1,

(19)

then by using Peano kernel analysis, we can easily get following results:

Φ ′(x1) − d1 = 1

6
h1(h1 + h2)Φ

(3)(ζ1), di − Φ ′(xi ) = 1

6
hi−1hiΦ

(3)(ζi ),

Φ ′(xN ) − dN = 1

6
hN−1(hN−1 + hN−2)Φ

(3)(ζN ), �1 − d1 = 1

2
h1Φ

(2)(χ2),

�i − di = 1

2
hiΦ

(2)(χi ), di+1 − �i = 1

2
hiΦ

(2)(χi+1),

dN − �N−1 = 1

2
hN−1Φ

(2)(χN−1), 2�1 − d1 − d2 = 0,

dN−1 + dN − 2�N−1 = 0, di + di+1 − 2�i = 1

6
hi (hi−1 + hi + hi+1)Φ

(3)(χ∗
i ),

(20)
where ζ1 ∈ (x1, x3), ζi ∈ (xi−1, xi+1), ζN ∈ (xN−2, xN ), χi ∈ (xi−1, xi+1), i = 2,
3, . . . , N − 1 and χ∗

i ∈ (xi−1, xi+2), i = 2, 3, . . . , N − 2. Therefore, using (20) in
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(16) and (18), we have

|Φ(x) − Pε(x)| ≤ h3

96
‖Φ(3)‖∞ + h3

12
‖Φ(3)‖∞

+ h2

2wi∗ + ui∗

[ 43

256

(
u∗
i ‖Φ(2)‖∞ + hw∗

i ‖Φ(3)‖∞
)]

,

for x ∈ Ii and εi ∈ {0, 1}.
Now we summarize the above discussions in the following as a theorem:

Theorem 2 Let Φ ∈ C3(I ) be a data generating function such that Φ(xi ) = yi ,
i ∈ NN . For a fixed signature ε ∈ {0, 1}N−1, let Pε be the rational quartic spline
defined in (4). If for all i ∈ NN , we choose our shape control parameters such that
wi > 0, ui ≥ 0 and the derivative parameters as prescribed in (19), then

‖Φ − Pε‖∞ ≤ 9h3

96
‖Φ(3)‖∞ + h2

2w∗ + u∗

[ 43

256

(
u∗‖Φ(2)‖∞ + hw∗‖Φ(3)‖∞

)]
.

(21)

Now we will try to find the upper bound for the difference between RQS Pε

defined in (4) and RQS ZFIF Pα
ε defined in (13). If α �≡ 0, then Pε �= Pα

ε , and
the interpolants Pα

ε and Pε are the fixed points of T α defined in (8) with α �≡ 0 and
α(x) = (0, 0, . . . , 0) respectively.

For i ∈ NN−1 and x ∈ I ,

|Pα
ε (Li (x)) − Pε(Li (x))| = |T αPα

ε (Li (x)) − T 0Pε(Li (x))|
= |Pε(Li (x)) + αi (x)(P

α
ε (x) − Bi (x)) − Pε(Li (x))|

= |αi (x)(P
α
ε (x) − Bi (x))|

≤ ‖αi‖∞‖Pα
ε − Bi‖∞

≤ ‖αi‖∞‖Pα
ε − Pε‖∞ + ‖αi‖∞‖Pε − Bi‖∞

≤ ‖αi‖∞‖Pα
ε − Pε‖∞ + ‖αi‖∞(‖Pε‖∞ + B∗).

As for each i ∈ NN−1, the above inequality holds, hence

‖Pα
ε − Pε‖∞ ≤ ‖α‖∞‖Pα

ε − Pε‖∞ + ‖α‖∞(‖Pε‖∞ + B∗),

i.e.

‖Pα
ε − Pε‖∞ ≤ ‖α‖∞(‖Pε‖∞ + B∗)

1 − ‖α‖∞
. (22)

Now, let us deduce upper bounds for ‖Pε‖∞ and B∗. From (4), for i ∈ NN−1 and
x ∈ I ,

|Pε(Li (x))| ≤ max{|Pi (θ)| : 0 ≤ θ ≤ 1}
min{|Qi (θ)| : 0 ≤ θ ≤ 1} .
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Using inequalities (1 − θ)3θ ≤ 27
256 , (1 − θ)2θ2 ≤ 1

16 , (1 − θ)θ3 ≤ 27
256 , and (1 −

θ)4 + θ4 ≤ 1, we can easily deduce that

|Pi (θ)| ≤ w∗
i (max{|yi |, |yi+1|})

+ 27

128

[
(u∗

i + 2w∗
i )(max{|yi |, |yi+1|}) + w∗

i hi (max{|di |, |di+1|})
]

+ 1

8

[
(u∗

i + w∗
i )(max{|yi |, |yi+1|})

]
,

i.e. |Pi (θ)| ≤
(99
64

w∗ + 43

128
u∗

)
|y|∞ + w∗h|d|∞,

and
|Qi (θ)| ≥ wi (1 − θ)2 + ui (1 − θ)2θ + ui+1(1 − θ)θ2 + wi+1θ

2

≥ wi (1 − θ)2 + wi+1θ
2 ≥ 1

2
wi∗ ≥ 1

2
w∗.

Hence,

‖Pε‖∞ ≤ 2

(
99
64w

∗ + 43
128u

∗
)
|y|∞ + w∗h|d|∞

w∗
.

Similarly,

‖Bi‖∞ ≤ 2

(
99
64w

∗
i + 43

128u
∗
i

)
max{|y1|, |yN |} + w∗

i |I |(max{|d1|, |dN |})
w∗

i

.

Therefore,

B∗ ≤ 2

(
99
64w

∗ + 43
128u

∗
)
max{|y1|, |yN |} + w∗|I |(max{|d1|, |dN |})

w∗
.

Now we will present the main theorem of this section.

Theorem 3 Let Φ ∈ C3(I ) be a data generating function such that Φ(xi ) = yi , i ∈
NN . For a fixed signature ε ∈ {0, 1}N−1, let Pε be the rational quartic spline defined
in (4) and Pα

ε be the proposed rational quartic spline zipper fractal interpolation
function defined in (13). If for all i ∈ NN , we choose our shape control points such
that wi > 0, ui ≥ 0 and the derivative parameters as given in (19), then

‖Φ − Pα
ε ‖∞ ≤ 9h3

96
‖Φ(3)‖∞ + h2

2w∗ + u∗

[ 43

256

(
u∗‖Φ(2)‖∞ + hw∗‖Φ(3)‖∞

)]

+ ‖α‖∞(‖Pε‖∞ + B∗)
1 − ‖α‖∞

.

Proof We know that
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‖Φ − Pα
ε ‖∞ ≤ ‖Φ − Pε‖∞ + ‖Pα

ε − Pε‖∞. (23)

Therefore, using (21) and (22) in (23), we can easily get our desired result.

Remark 3 (i) If we choose ‖α‖1 < min{h2, h
2|I | }, then from Theorem 3, we can

deduce that our proposed zipper fractal interpolant Pα
ε converges to aC3-data gener-

ating function Φ with the order O(h2) as h → 0
on I .
(ii) If we choose ui = 0 for all i ∈ NN and ‖α‖1 < min{h3, h

2|I | }, then u∗ = 0, and
hence from Theorem 3 we can conclude that our proposed zipper fractal interpolant
Pα

ε converges to a C3-data generating function Φ with the order O(h3) as h → 0
on I .

4 Positivity-Preserving RQS ZFIFs

Many real-life problems like monthly rainfall amounts, the half-life of a radioactive
substance, probability distribution functions, speed of winds and the numbers of
covid-19 patients at different intervals of time are based on positivity. So, the problem
is to find a positive interpolant for a given positive data set. In this section, we are
going to construct positive RQS ZFIFs for the given positive data by restricting our
shape control parameters and variable scaling functions.

Theorem 4 Let {(xi , yi ) : i = 1, 2, . . . , N } be a given set of strictly positive data
with increasing abscissae. Suppose di ’s are chosen derivative values at the knots xi ’s.
For the fixed value of signature ε ∈ {0, 1}N−1, if the non-negative variable scaling
functions and shape control points are chosen as

‖αi‖1 <
|ai |
2

, ‖αi‖∞ < min
{ yi+εi

y1
,
yi+1−εi

yN

}
,

wi > 0, wi+1 > 0,

ui ≥ max
{
0,−wi

(
2 + h∗

i di+εi − αi (x)|I |d1
yi+εi − αi (x)y1

)}
,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi − αi (x)|I |dN
yi+1−εi − αi (x)yN

)}
, ∀x ∈ I, ∀i ∈ NN−1,

then the corresponding C1-rational quartic spline zipper fractal interpolation func-
tion Pα

ε defined in (13) will be strictly positive on I .

Proof Since ‖αi‖1 <
|ai |
2 , and αi , Pε, Bi ∈ C1(I ), therefore according to

Theorem 1 the proposed RQS ZFIF Pα
ε ∈ C1(I ), and it satisfies (13). We can rewrite

(13) as

Pα
ε (Li (x)) = αi (x)P

α
ε (x) + (Pε(Li (x)) − αi (x)Bi (x)), i ∈ NN−1, x ∈ I. (24)
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Equation (24) is equivalent to

Pα
ε (Li (x)) = αi (x)P

α
ε (x) + P∗∗

i (θ)

Qi (θ)
, P∗∗

i (θ) =
4∑

k=0

Bik(1 − θ)4−kθk ,

Bi0 = wi (yi+εi − αi (x)y1),

Bi1 = ui (yi+εi − αi (x)y1) + wi (2(yi+εi − αi (x)y1) + h∗
i di+εi − αi (x)|I |d1),

Bi2 = [(ui + wi )(yi+1−εi − αi (x)yN )] + [(ui+1 + wi+1)(yi+εi − αi (x)y1)],
Bi3 = ui+1(yi+1−εi − αi (x)yN ) + wi+1(2(yi+1−εi − αi (x)yN ) − h∗

i di+1−εi + αi (x)|I |dN ),

Bi4 = wi+1(yi+1−εi − αi (x)yN ).

(25)
After choosing wi > 0, wi+1 > 0, ui ≥ 0 and ui+1 ≥ 0, our cubic denomina-
tor Qi (θ) in (25) becomes strictly positive on I . Since Pα

ε is the attractor of
the zipper {H ; (Li (x) = ai x + bi , Fi (x, y) = αi (x)y + Pε(Li (x)) − αi (x)Bi (x)) :
i ∈ NN−1} and defined recursively by (25), therefore to show Pα

ε (x) > 0 on I ,
enough to prove that for all x ∈ I , Pα

ε (Li (x)) > 0 ∀i ∈ NN−1, whenever Pα
ε (x) > 0.

Now, let x ∈ I , Pα
ε (x) > 0, then choosing non-negative scaling functions we have

αi (x)Pα
ε (x) ≥ 0. Therefore, after these assumptions on the shape control parame-

ters and the variable scaling functions, the positivity of Pα
ε (Li (x)) reduces to the

positivity of P∗∗
i (θ), ∀θ ∈ [0, 1]. Now, if Bi j ≥ 0, ∀ j ∈ {0, 1, 2, 3, 4} and Bi j > 0

for j ∈ {0, 4}, then we have P∗∗
i (θ) > 0. Now,

wi > 0, and αi (x) <
yi+εi

y1
=⇒ Bi0 > 0,

ui > max
{
0,−wi

(
2 + h∗

i di+εi − αi (x)|I |d1
yi+εi − αi (x)y1

)}
, and αi (x) <

yi+εi

y1
=⇒ Bi1 ≥ 0,

ui + wi > 0, ui+1 + wi+1 > 0, and αi (x) <
{ yi+εi

y1
,
yi+1−εi

yN

}
=⇒ Bi2 > 0,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi − αi (x)|I |dN
yi+1−εi − αi (x)yN

)}
, and αi (x) <

yi+1−εi

yN
=⇒ Bi3 ≥ 0,

wi+1 > 0, and αi (x) <
yi+1−εi

yN
=⇒ Bi4 > 0.

Hence, coupling these above restrictions on the shape control parameters and the
scaling functions, we have the desired sufficient conditions for this theorem.

Remark 4 (i) For all i ∈ NN−1 and x ∈ I , if we choose αi (x) = 0 and εi = 0, then
Theorem 4 gives sufficient conditions on the shape control parameters such that
the RQS function R defined in [33] becomes positive for a given positive data set
{(xi , yi ) : i = 1, 2, . . . , N }.
(ii) Let the given data set be strictly positive and αi (x) = 0 for all x ∈ I and for all
i ∈ NN−1. If we choose our shape control parameters such that
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wi > 0, wi+1 > 0, ui ≥ max
{
0,−wi

(
2 + h∗

i di+εi

yi+εi

)}
,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi

yi+1−εi

)}
, ∀i ∈ NN−1.

(26)

Then, Theorem 4 instructs that our corresponding rational quartic spline Pε defined
in (4) satisfies Pε(x) > 0 for all x ∈ I .
(iii) For N (> 2) number of positive data points and the fixed non-zero variable
scaling functions, we can get total numbers of 2N−1 different C1-rational quartic
spline zipper fractal interpolation functions depending on the different values of
signature ε.

Example 1 In Theorem 4, we have provided sufficient conditions on the shape
control parameters and the variable scaling functions such that our corresponding
RQS ZFIF becomes positive on I , whenever our given data set is positive. It can
happen that if we do not choose our parameters as prescribed in Theorem 4, then our
corresponding RQS ZFIF Pα

ε may not be positive on I for a given positive data set,
but after restricting our shape control parameters and variable scaling functions as
prescribed in Theorem 4 our corresponding RQS ZFIF becomes positive on I .

Consider the positive data set {(0, 2,−1), (0.25, 0.6,−3), (0.5, 0.1, 2), (0.75,
0.4,−2), (1, 5, 6)}. For the fixed shape control parameters u = (1, 2, 3, 1, 1) and
w = (1, 0.2, 0.5, 1, 3), Figs. 1(a)-(f) are the plots of RQS ZFIFs generated with
scaling functions and signature {( x217 , ex

25 ,
ex

25 ,
−x
10 ), (1, 0, 1, 0)}, {( ex25 , x

60 ,
1

100 ,
ex

35 ),

(1, 0, 1, 0)}, {( ex25 , x
60 ,

1
100 ,

ex

35 ), (0, 0, 1, 0)}, {(0, 0, 0, 0), (0, 0, 0, 0)}, {(0, 0.01 +
x
120 , 0, 0), (0, 0, 0, 0)}, and {(0, 0, 0, 0), (1, 0, 0, 1)} respectively. For Fig. 1(a), we
do not restrict our scaling functions as recommended by Theorem 4, and the corre-
sponding RQS ZFIF is not positive on I = [0, 1]. But for the other plots, we have
restricted our shape control parameters and scaling functions as recommended by
Theorem 4 and hence the corresponding RQS ZFIFs are positive on I .

To see the effect of signature, we have plotted Fig. 1(b) and (c) with the same
parameters except for ε1, and we have turned up with very different RQS ZFIF on
I1 = [0, 0.25]. Fig. 1(d) is the plot of the classical rational quartic spline defined in
[33]. To see the effect of scaling functions, we have plotted Fig. 1(e) by changing
the scaling function α2 from the parameters used for Fig. 1(d). Fig. 1(f) is the plot
of RQS defined by us in (4) using the binary vector signature ε = (1, 0, 0, 1) and
we can see that the RQS defined by us and classical RQS defined in [33] are not the
same. Thus, the proposed method enlarge the class of rational quartic splines with
fixed shape parameters.
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Fig. 1 Positive RQS ZFIFs

5 Conclusions

Wehavederived anew typeofC1-rational quartic spline using the binary vector called
a signature. For the fixed shape control parameters, we can generate 2N−1 different
new C1-rational quartic spline interpolation functions using different signatures for
the N numbers of data points. Then, by using the fractal techniquewe have introduced
rational quartic spline zipper fractal interpolation functions. It has been shown that
for a data generating function Φ ∈ C3(I ), the proposed RQS ZFIF has the order of
convergence O(h2) as h → 0, and it can be increased to the next order of convergence
as the classical rational quartic spline defined in [33] under suitable assumptions
on the IFS parameters. We have derived sufficient conditions on the shape control
parameters and the variable scaling functions so that our RQS ZFIF (consequently,
the class of RQS) becomes positive for a given positive data set.
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