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Abstract AconformingVirtual ElementMethod alongwith a variational discretiza-
tion concept for solving the optimization problem governed by an elliptic interface
problem is presented. Elements with small edges and hanging nodes occur naturally
while numerically solving interface problems. Conforming Finite Element Methods
cannot handle these difficulties naturally. VEM has the attractive feature that it can
tackle hanging nodes and is even robust with respect to small edges. We use these
features of VEM to design a method that can tackle these difficulties naturally. The
state, adjoint and control estimates have been derived in suitable norms. Numerical
results verify our theoretical findings and show the robustness and flexibility of the
proposed method.

Keywords Virtual element method · Optimal control problem · Elliptic interface
problem · Variational discretization · Numerical analysis

1 Introduction

There are numerous applications of interface problems in applied sciences and engi-
neering. For example, in material sciences, problems involve discontinuous material
coefficients across the interface, such as conductivity in heat transfer, permeability
in porous media flow. Optimizing these physical processes lead to optimal con-
trol problems governed by partial differential equations (PDEs) with interfaces. To
numerically solve these problems, one of the standard practices is to use a finite
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element method (FEM) (cf. [4, 7]), which has element boundaries coincident with
the interface (see [2] and references therein). These methods are categorized as fitted
methods. In this group of methods, the meshing of the domain depends on the loca-
tion of the interface. One faces several difficulties in generating a mesh that resolves
the interface. For example, aligning the element edges coincidentally at the interface
is not trivial when meshing domains on either side of the interface. The relaxation
of the edge alignment condition on the mesh can naturally lead to meshes that have
arbitrarily small edges. The attractive properties of VEMmake it robust under small
edges and allow it to handle hanging nodes; we present a conforming virtual element
method (VEM) along with the variational discretization concept presented in [3] for
the discretization of the continuous optimization problem governed by an elliptic
problem with a polygonal interface which can tackle these difficulties naturally. Our
approach allows for greater flexibility in meshing since we can use different meshes
on either side of the interface (see Fig. 1). Moreover, we also show that using the
same feature of VEM, we can generate background fitted meshes independent of the
location of the interface (see Fig. 1). Thus, it is easier to generatemeshes as compared
to conforming FEM. Our numerical experiments show that the original linear VEM
stabilization presented in [5] will generate small but visible oscillations in the solu-
tion (see Fig. 2). This motivates us to use the boundary stabilization presented in [6],
which smoothens these oscillations at the interface (see Fig. 3). The model problem
is to find the distributed control z and the associated state y = y(z) satisfying

min
z∈Zad

J (y, z) := 1

2
‖y − yd‖20,Ω + λ

2
‖z‖20,Ω , (1)

subject to

−∇ · (β ∇ y) = z + f, in Ω,

y = 0, on ∂Ω, (2)

[y] = 0,

[
β

∂y

∂n

]
= g on Γ,

za ≤ z ≤ zb for a.e. in Ω.

We define the jump of a function ζ across Γ by [ζ] (x) := ζ1(x) − ζ2(x), ∀ x ∈ Γ ,
where ζ1 and ζ2 are restrictions of ζ on Ω1 and Ω2, respectively, n denotes the unit
outward normal vector to the interface. The coefficient β is assumed to be piecewise
constant and positive and is defined as β1 in Ω1 and β2 in Ω2. Let za, zb ∈ R with
za < zb, yd ∈ L2(Ω) is the desired state andλ > 0 is the regularization or the penalty
parameter. The admissible set of controls is defined as follows:

Zad := {
z ∈ L2(Ω) : za ≤ z ≤ zb a.e. in Ω

}
.
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Define the space X := H 1(Ω) ∩ H 2(Ω1) ∩ H 2(Ω2) equipped with the norm

‖ζ‖X = ‖ζ‖1,Ω + ‖ζ‖2,Ω1
+ ‖ζ‖2,Ω2

, ∀ ζ ∈ X.

Sobolev embedding theorem dictates that for any ζ ∈ X , we have ζ ∈ W 1,p(Ω) for
all p > 2. The regularity of the state equation (2) is given by the following Lemma
(see Theorem 2.1, [2])

Lemma 1 Assuming f, z ∈ L2(Ω) and g ∈ H 1/2(Γ ). We have that the problem (2)
has a unique solution y ∈ X which satisfies

‖y‖X � ‖ f ‖0,Ω + ‖z‖0,Ω + ‖g‖1/2,Γ
Using the standard techniques employed in PDE optimal control, we can find that
the optimal control satisfies the following variational inequality also known as the
first-order necessary optimality condition

(λz + p, w − z) ≥ 0, ∀ w ∈ Zad ,

where p is the adjoint variable or the co-state variable and solves the subsequent
adjoint equation

−∇ · (β ∇ p) = y − yd , in Ω,

p = 0, on ∂Ω,

[p] = 0,

[
β

∂ p

∂n

]
= 0 on Γ.

A unique p ∈ X exists, which solves the adjoint equation follows from (Theorem
2.1, [2]). We can rewrite the first-order necessary optimality condition as a pointwise
projection formula

z = PZad

(
− 1

λ
p

)
.

If we introduce a control-to-state map S defined as Sz = y, then the problem (1)–(2)
reduces to

min
z∈Zad

j (z) = min
z∈Zad

J (Sz, z),

then the optimal control satisfies the following coercivity condition

j ′′(z)(w,w) ≥ λ ‖w‖2L2(Ω) , ∀ w ∈ Z := L2(Ω). (3)

Define a(·, ·) : H 1(Ω) × H 1(Ω) −→ R such that a(ζ, η) := ∫
Ω

β ∇ζ · ∇η. Now
the optimality system corresponding to (1)–(2) is to find (y, p, z) ∈ V (:= H 1

0 (Ω)) ×
V × Zad such that
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a(y, v) = (z + f, v) + 〈g, v〉Γ , ∀ v ∈ V (4)

a(p, q) = (y − yd , q), ∀ q ∈ V (5)

(λz + p, w − z) ≥ 0, ∀ w ∈ Zad . (6)

We adopt the standard Sobolev space notations. Additionally, we have the notation
a � b, which represents that a is less than or equal to some positive constant (inde-
pendent of the mesh parameter) times b. An outline of the manuscript is as follows.
In Sect. 2, a VEMdiscretization of the continuous problem is proposed. In Sect. 3, we
give the convergence analysis for the proposed scheme under suitable norms. After-
ward, in Sect. 4, we conduct two numerical experiments to analyse the behaviour of
the solution and verify the theoretical results proved in Sect. 3.

2 Discrete Formulation

Let Th be the triangulation of Ω into simple polygons K with discretization param-
eter h := maxK∈τh hK ∈ (0, 1], where hK is the diameter of K . Γ is the polygonal
interfacewhich is resolved byTh .T ∗

h := {K ∈ τh : K ∩ Γ �= ∅} is the set of interface
polygons. Then Th satisfies:
(A1) Ω̄ = ∪K∈Th K .
(A2) If K1, K2 ∈ Th are two distinct polygons, then either their intersection is empty

or they share a common vertex or edge.
(A3) Each polygon either lies in Ω1 or Ω2 and has at most two vertices lying on the

interface.

Moreover, we introduce the following relaxed assumptions which allow small edges
on any polygon K ∈ τh ,

(A4) Any K ∈ Th is star-shaped w.r.t. disc BK ⊂ K with radius ρK hK where, and
there exists ρ ∈ (0, 1), such that ρK ≥ ρ for all K ∈ Th .

(A5) There exists N ∈ Z
+ independent of the mesh parameter such that |EK | ≤ N ,

where EK denotes the set of all edges of K .

2.1 Discretization of State and Adjoint Equations

Following [1], the linear local virtual element space V (K ) ⊂ H 1(K ) is defined as
follows:

V (K ) := {
ζ ∈ H 1(K ) : ζ|∂K ∈ P1(∂K ), −�ζ ∈ P1(K ),

(ζ − Π∇
1,K ζ, q)K = 0 ∀ q ∈ M∗

0(K ) ∪ M∗
1(K )

}
.

where
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M∗
r (K ) :=

{
m|m =

(
x − xK
hK

)s

for s ∈ N
2 with |s| = r

}
.

We denote by xK the centroid of K , the space of all polynomials of degree ≤ 1 is
denoted by P1(K ). The degrees of freedom of V (K ) consist of the values of v at the
vertices of K . Ritz projection operator Π∇

1,K : H 1(K ) −→ P1(K ) satisfies

((Π∇
1,K ζ, q)) = ((ζ, q)) ∀ q ∈ P1(K ), (7)

where the inner product ((ζ, w)) := (∇ζ,∇w) + (
∫
∂K ζ ds)(

∫
∂K w ds). Moreover,

(7) is equivalent to

∫
K

∇(Π∇
1,K ζ) · ∇q dx =

∫
K

∇ζ · ∇q dx;
∫

∂K
Π∇

1,K ζ ds =
∫

∂K
ζ ds. (8)

Π0
1,K is the projection from L2(K ) onto P1(K ). P1

h represents the space of discon-
tinuous piecewise polynomials of degree ≤ 1. Then the global projection operators
Π∇

1,h : H 1(Ω) −→ P1
h , Π0

1,h : L2(Ω) −→ P1
h , are understood in the sense of their

local counterparts as

(Π∇
1,hv)|K = Π∇

1,K (v|K ), (Π0
1,hv)|K = Π0

1,K (v|K ).

We glue to the local virtual element spaces to write the following global virtual
element space

Vh = {ζ ∈ H 1
0 (Ω) : ζ|K ∈ V (K ) ∀ K ∈ Th}.

The mesh dependent norm is defined as |v|h,1 :=
(∑

K∈τh
|v|2H 1(K )

) 1
2
. We define the

discrete bilinear form as follows:

ah(w, v) =
∑
K∈τh

aK
h (w, v)

=
∑
K∈τh

[
aK (Π∇

1,Kw,Π∇
1,K v) + SK (w − Π∇

1,Kw, v − Π∇
1,K v)

]
, (9)

aK (w, v) =
∫
K

β|K∇w · ∇v dx,

Note that supp(β − β|K ) ∩ K = {0} for all K ∈ τh . The two choices of local stabi-
lization bilinear forms are defined as follows:

SK (ζ, v) =
{
SK
1 (ζ, v) := ∑

ϕ∈B∂K
ζ(ϕ)v(ϕ),

SK
2 (ζ, v) := hK (∂ζ/∂s, ∂v/∂s)0,∂K .
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Here, B∂K denotes the set of nodes of K . and ∂ζ/∂s is the tangential derivative of ζ
along ∂K . From ((3.55) in [1]), we have for all u ∈ V (K ) the following inequality

|u|21,K � |Π∇
1,K u|21,K + hK

∥∥∂(u − Π∇
1,K u)/∂s

∥∥2

0,∂K
, (10)

with a hidden constant depending on ρK and the degree of the polynomial. Also from
((3.56) in [1]) for all u ∈ V (K ), we have

|u|21,K � |Π∇
1,K u|21,K + ln (1 + τK )

∥∥u − Π∇
1,K u

∥∥2

∞,∂K )
, (11)

with the constant depending on |EK | along with ρK and the degree of the polyno-
mial. Here, τK := maxe∈EK he/mine∈EK he. On combining (10) and (11), we get the
following stability estimate for ah(·, ·),

|v|2H 1(Ω) � αhah(v, v) ∀ v ∈ Vh, (12)

where

αh =
{
ln

(
1 + maxK∈τh τK

)
if SK (·, ·) = SK

1 (·, ·),
1 if SK (·, ·) = SK

2 (·, ·). (13)

The source term is discretized using Π0
1,h operator as follows

(Π0
1,h f, v) := ( f,Π0

1,hv) =
∑
K∈τh

∫
K
f Π0

1,K vh .

2.2 Variational Discretization

In this approach, we discretize the control variable implicitly. Thus the discrete
admissible set of controls coincides with Zad . Following the optimize-then-discretize
approach, we can write the discrete optimality system as follows: Find (yh, ph, zh) ∈
Vh × Vh × Zad such that

ah(yh, vh) = (
Π0

1,h( f + zh), vh
) + 〈g, vh〉Γ ∀ vh ∈ Vh (14)

ah(ph, qh) = (
Π0

1,h(yh − yd), qh
) ∀ qh ∈ Vh (15)(

λzh + Π0
1,h ph, w̃ − zh

) ≥ 0 ∀ w̃ ∈ Zad . (16)

The discrete variational inequality (16) is rewritten as a discrete projection formula

uh |K = PUad

(
− 1

λ
(Π0

1,h ph)|K
)

∀ K ∈ τh . (17)
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The stability estimate (12) implies that the discrete state Eq. (14) and discrete adjoint
Eq. (15) are well-posed.

3 Convergence Analysis

This section is dedicated to deriving the error estimates for the state, adjoint and
control variable under variational discretization of control. We begin by considering
the following auxiliary equations: For any arbitrary control z̃ ∈ L2(Ω), let yh(z̃) ∈ Vh

solve
ah(yh(z̃), vh) = (Π0

1,h(z̃ + f ), vh) + 〈g, vh〉Γ ∀ vh ∈ Vh, (18)

and for any arbitrary ỹ ∈ H 1
0 (Ω), let ph(ỹ) ∈ Vh solve

ah(qh, ph(ỹ)) = (Π0
1,h(ỹ − yd), qh) ∀ qh ∈ Vh . (19)

Let us define the following notations yh := yh(zh), ph := ph(yh). For the subsequent
analysis we will need the following Lemma.

Lemma 2 For any arbitrary z̃i ∈ L2(Ω), and ỹi ∈ H 1
0 (Ω), let yh(z̃i ) and ph(ỹi ),

i = 1, 2 solve (18) and (19), respectively. Then

|yh(z̃1) − yh(z̃2)|1,Ω � αh ‖z̃1 − z̃2‖0,Ω ,

|ph(ỹ1) − ph(ỹ2)|1,Ω � αh ‖ỹ1 − ỹ2‖0,Ω ,

where αh is as defined in (13).

Proof Test (18) with yh(z̃1) and yh(z̃2) to get,

ah(yh(z̃1) − yh(z̃2), vh) = (Π0
1,h(z̃1 − z̃2), vh).

Now using the stability estimate (12) along with vh = yh(z̃1) − yh(z̃2), the stability
of Π0

1,K operator and the consequence of Poincaré-Friedrichs inequality we have,

|yh(z̃1) − yh(z̃2)|21,Ω � αh ‖z̃1 − z̃2‖0,Ω
∥∥Π0

1,h(yh(z̃1) − yh(z̃2))
∥∥
0,Ω

,

� αh ‖z̃1 − z̃2‖0,Ω
∑
K∈τh

∥∥Π0
1,K (yh(z̃1) − yh(z̃2))

∥∥
0,K

,

� αh ‖z̃1 − z̃2‖0,Ω
∑
K∈τh

‖yh(z̃1) − yh(z̃2)‖0,K ,

� αh ‖z̃1 − z̃2‖0,Ω |yh(z̃1) − yh(z̃2)|1,Ω,

� αh ‖z̃1 − z̃2‖0,Ω .
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Similarly, test (19) with ph(ỹ1) and ph(ỹ2) along with qh = ph(ỹ1) − ph(ỹ2) and
follow the same steps to get the second desired inequality. �

Estimates corresponding to the auxiliary problems (18) and (19) can be proved using
the techniques of [1] and [2] in the following Lemma.

Lemma 3 Let y(z̃) and yh(z̃) be the solutions of (4) and (18), respectively. Let
p(ỹ) and ph(ỹ) be the solutions of (5) and (19), respectively. Let f, yd ∈ L2(Ω)

and g ∈ H 1/2(Γ ) and αh is as defined in (13). Then

|y(z̃) − yh(z̃)|1,Ω + |p(ỹ) − ph(ỹ)|1,Ω � αh h.

Additionally, if f, yd ∈ H 1(Ω) then

‖y(z̃) − yh(z̃)‖0,Ω + ‖p(ỹ) − ph(ỹ)‖0,Ω � αh h2.

Moreover, for z̃ = zh,

‖p(zh) − ph(zh)‖L2(Ω) � αhh
2.

Following the arguments of Lemma 2.1 in [2] and the standard approximation prop-
erty of Π0

1,K given in [1], we have

∥∥ζ − Π0
1,hζ

∥∥
0,Ω

� h2 ‖ζ‖X ∀ ζ ∈ X. (20)

Now we derive the error estimates for the state, adjoint and control variables under
variational discretization of control.

Theorem 1 Let (y, p, z) solve the continuous optimality system (4)–(6). Let
(yh, ph, zh) solve the discrete optimality system (14)–(16). Then under the assump-
tions of Lemma 2 and Lemma 3, then following estimate holds

‖z − zh‖L2(Ω) � αh h2,

where αh is as defined in (13).

Proof Thediscrete (16) and continuous (6) variational inequalities give the following

(λzh + Π0
1,h ph, z − zh) ≥ 0 ≥ (λz + p, z − zh), (21)

The coercivity condition (3) for z − zh ∈ Z and (21) leads to
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λ ‖z − zh‖20,Ω ≤ (λz + p, z − zh) − (λzh + p(zh), z − zh),

≤ (λzh + Π0
1,h ph, z − zh) − (λzh + p(zh), z − zh)

= (Π0
1,h ph − p(zh), z − zh),

= [
(Π0

1,h(ph − p(zh)), z − zh)

+(Π0
1,h p(zh) − p(zh), z − zh)

]
= TA + TB

In view of the stability ofΠ0
1,K operator, Lemmas 2 and 3, TA is bounded as follows:

TA ≤
∑
K∈τh

∥∥Π0
1,K (ph − p(zh))

∥∥
0,K

‖z − zh‖0,K

≤
∑
K∈τh

‖ph − p(zh)‖0,K ‖z − zh‖0,K

≤
∑
K∈τh

(‖ph − ph(y(zh))‖0,K + ‖ph(y(zh)) − p(zh)‖0,K
) ‖z − zh‖0,K

�
(|ph − ph(y(zh))|1,Ω + ‖ph(y(zh)) − p(zh)‖0,Ω

) ‖z − zh‖0,Ω
�

(
αh ‖yh(zh) − y(zh)‖0,Ω + ‖ph(y(zh)) − p(zh)‖0,Ω

) ‖z − zh‖0,Ω
� αh h2 ‖z − zh‖0,Ω .

The term TB is bounded using (20) as follows

TB ≤
∑
K∈τh

∥∥Π0
1,K p(zh) − p(zh)

∥∥
L2(Ω)

‖z − zh‖L2(Ω) � h2 ‖p(zh)‖X ‖z − zh‖0,Ω .

Combining the bounds of TA and TB leads to the desired estimate. �
Theorem 2 Assuming Theorem 1 holds. Then under variational discretization of
control the following estimates hold

‖y − yh‖0,Ω + ‖p − ph‖0,Ω � αh h2; |y − yh |1,Ω + |p − ph |1,Ω � αh h.

Proof We split the error in state equation using yh(z) as y − yh = (y − yh(z)) +
(yh(z) − yh). Now we use Lemmas 2, 3 and Theorem 1 as follows:

‖y − yh‖0,Ω ≤ ‖y − yh(z)‖0,Ω + ‖yh(z) − yh‖0,Ω
≤ ‖y − yh(z)‖L2(Ω) + αh ‖z − zh‖L2(Ω) � αh h2

|y − yh |1,Ω ≤ |y − yh(z)|1,Ω + |yh(z) − yh |1,Ω
≤ |y − yh(z)|1,Ω + αh ‖z − zh‖0,Ω � αh h.

Following analogous steps andusing the splitting p − ph = (p − ph(y)) + (ph(y) −
ph), we can get the estimates for the adjoint variable. �
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4 Numerical Experiments

In this section, we present two numerical examples to study the behaviour of our
scheme. In Example I, we study the behaviour of the solution at the interface in
the presence of small edges under both the proposed stabilization terms SK

1 (·, ·) and
SK
2 (·, ·). The mesh T 1

h (see Fig. 1) under (A1)–(A5) that we consider arises naturally,
if we mesh the domain Ω either side of the interface Γ with different elements. The
error in control, state, and adjoint variables are illustrated, and the theoretical results
of Sect. 3 are corroborated. In Example II, we employ a segment interface which
is independent of the background fitted mesh T 2

h (see Fig. 1) such that it satisfies
(A1)–(A3). In Fig. 1, the red star markers on the slant interface are the intersection
points of the interface with T 2

h and result in hanging nodes that are repurposed to
generate a fitted mesh; hence the name background fitted mesh. Error in control,
state, and adjoint variables under variational discretization of control is illustrated
which verifies the results obtained in Sect. 3.

Example 1 (Vertical interface) Let Ω be a unit square domain. Consider the
problem (1)–(2). The interface Γ := {x ∈ Ω : x1 − 0.5 = 0} and the following data

λ = 0.1, ua = −0.25, ub = 0.25, β1 = 1, β2 = 10, y(x) = x21 (x1 − 1)x2(x2 − 1),

p(x) = x1(x1 − 1)x2(x2 − 1), z(x) = max(za,min(zb, − 1

λ
p(x))).

The optimal control problem is solved using the variational variant of the projected
gradient algorithm presented in [3]. In our numerical experiment, we observe that
under the classical VEM stabilization choice of S1K (·, ·), the solution of the state and
the adjoint variable exhibits oscillations at the interface under the presence of small
edges; however, the control variable is free of these oscillations under variational
discretization of control (See Fig. 2). The red dotted lines in Fig. 2 represent the
true solution at the interface, and the blue lines represent the approximated solution
on T 2

h .

Fig. 1 Meshes T 1
h and T 2

h , respectively
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Fig. 2 Solution profile of state, adjoint and control variables, respectively at the interface under
variational discretization of control with SK1 (·, ·) on T 2

h

Fig. 3 Solution profile of state, adjoint and control variables, respectively at the interface under
variational discretization of control with SK2 (·, ·) on T 2

h

We do the same experiment with the boundary stabilization S2K (·, ·) and observe that
the oscillations at the interface have smoothened (see Fig. 3).

Remark 1 It is also observed in our numerical experiments that the oscillations
are sensitive to the parameter β. For example, if we consider the same numerical
example with β1 = 1 and β2 = 0.5, the oscillations with S1K (·, ·) in the state and the
adjoint will be still visible but much smaller.
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Fig. 4 Sequence of meshes T 1
1 , T

1
2 , T

1
3 , T

1
4 and T 1

5 , respectively

Table 1 Error and order of convergence in y, p and u under T 1
1 -T

1
5 and variational discretization

of control in L2-norm and energy norm for Example I
h E0(y) R0(y) E0(p) R0(p) E1(y) R1(y) E1(p) R1(p) E0(z) R0(z)

0.3651 0.002111 – 0.002765 – 0.0386 – 0.0572 – 0 –

0.1847 0.000509 2.08 0.000725 1.96 0.0196 0.99 0.0280 1.04 0.002962 -Inf

0.0910 0.000124 1.98 0.000188 1.90 0.0097 0.98 0.0139 0.98 0.000540 2.40

0.0474 0.000030 2.17 0.000048 2.06 0.0048 1.08 0.0069 1.06 0.000139 2.07

0.0233 0.000007 1.91 0.000012 1.94 0.0023 0.98 0.0034 0.98 0.000030 2.14

Now we compare the error under a sequence of meshes T 1
1 to T 1

5 (see Fig. 4). We
compare the exact solution of the state and co-state variables with the L2-projection
of the discrete state and co-state variables since the virtual element solution is not
known explicitly inside the element. The discrete control is computed using the
discrete projection formula (17). We denote the L2-error as follows

E0(w) =
∑
K∈τh

∥∥w − Π0
1,Kwh

∥∥
0,K

forw = y, p, E0(z) =
∑
K∈τh

‖z − zh‖0,K .

Similarly, we denote the error in the energy norm for the state and the co-state
variable by E1(y) and E1(p), respectively with the help ofΠ∇

1,K operator. We denote
by R0(w) and R1(w) the order of convergence corresponding to the variable w in
the L2 and H 1 norms, respectively. The numerical errors and the corresponding rate
of convergence under T 1

1 -T 1
5 are given in Table1 and corroborate theoretical results

of Theorems 1 and 2. The solution profile on T 1
3 is given in Fig. 5.

Example 2 (Segment interface) Consider the problem (1)–(2) on a unit square
domain with the interface Γ := {x ∈ Ω : x2 = kx1 + b}, where k = −√

3
3 and b =

(6+√
6−2

√
3)

6 and the following data

λ = 1, ua = −0.2, ub = 0.2, β1 = 1, β2 = 1/2, y(x) = x21 (x1 − 1)x2(x2 − 1),

z(x) = max(za,min(zb, − 1

λ
p(x))), p(x) = (x2 − kx1 − b)2(x1(x1 − 1)x2(x2 − 1)).
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Fig. 5 Solution profile of state, adjoint and control variables, respectively on T 1
3 for Example I

Table 2 Error and order of convergence in y, p and u under a sequence of meshes of type T 2
h and

variational discretization of control in energy and L2 norms for Example II
h E0(y) R0(y) E0(p) R0(p) E1(y) R1(y) E1(p) R1(p) E0(z) R0(z)

0.7071 0.006770 – 0.002261 – 0.0589 – 0.0217 – 0.0008842 –

0.3547 0.002619 1.37 0.001169 0.95 0.0346 0.77 0.0160 0.43 0.0001723 2.37

0.1818 0.000617 2.16 0.000338 1.85 0.0179 0.98 0.0087 0.91 0.0000852 1.05

0.0922 0.000156 2.02 0.000087 1.99 0.0090 1.00 0.0044 0.98 0.0000249 1.81

0.0483 0.000038 2.16 0.000020 2.21 0.0045 1.05 0.0022 1.06 0.0000049 2.48

The numerical errors and the corresponding order of convergence under a sequence
of refined meshes of the type T 2

h independent of the interface Γ are given in Table2
and confirm the theoretical results of Theorems 1 and 2.
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