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Abstract The great opportunities of the new technology of artificial intelligence
and the growing computational capacities togetherwith interacting sensor technology
leads to the next industrial revolution called Industry 4.0. In this field the combination
of artificial intelligence with numerical simulation to develop a simplified model of a
given system can be used for establishing a digital twin of the system for better control
andmore efficient performance. In this paper, theArtificialNeuronalNetwork (ANN)
methodology is applied as well as a standard interpolation to develop two different
simplified models of a 3D cavity flow. The problem is analyzed by Computational
Fluid Dynamics (CFD). The CFD simulations are carried out using a commercial
software for a case, for which experimental data from the literature exists. In general,
the combination of CFD and ANN has been performed in different researches on
different applications. Thus, the present paper focuses rather on the comparison of a
standard interpolation procedure to ANN, utilizing two different error calculations.
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1 Introduction

Thefields of theArtificial Intelligence (AI) [1–3] andComputational FluidDynamics
(CFD) [4–8] are experiencing a rather parallel development. Both fields exist for
decades, and due to the increasing computational capabilities, their impact has been
growing rapidly in the recent years. First ideas of combination the technologies of date
back a lot of years, e.g. to 1988, when Andrews [9] published the first review on the
capabilities and problems in combination of AI and CFD. More recent publications
[10–12] show different approaches for the AI-CFD interaction. In Ref. [13] a nice
overview on the newestAI technologies and frameworkswere presented. In problems
with more complex physics, the combination of AI and CFD was demonstrated in
Refs. [14, 15]

Further investigations on the different aspects of the problem in different areas
including digital twins were presented by numerous researches [16–25].

2 The Test Case

For comparison with realistic data from a three dimensional flow with large velocity
variations, a 3D cavity problem is considered. Corresponding experimental was data
found in Ref. [26] (Fig. 1, 2).

For the experimental investigations, different Reynolds numbers have been used
as shown in Table 1 with the calculated velocities for the working fluid of isopropyl
alcohol of density ρ = 0.785 g/cm3 and kinematic viscosity of ν = 0.031 cm2/s.

Fig. 1 Sketch of the experimental setup [26]
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Table 1 Reynolds numbers
used for
simulation/experiment

Case Re Vm (mm/s)

a 2.7 2.64

b 5.6 5.47

c 15.7 15.33

d 32.1 31.34

e 62.8 61.32

f 140.8 137.47

g 288 281.20

h 320 312.44

i 542 529.20

j 650 634.65

Fig. 2 Laser image of the velocity field [26]

3 Mathematical and Numerical Flow Modeling

The computational modeling of the flow has been performed using the simulation
softwareANSYSFluent [27]. To ensure reliable simulation results, amesh sensitivity
study has been performed and the meshes shown in Fig. 3 are used for the further
calculations. Since the Reynolds number was within the laminar flow regime, the
simulation was done with no turbulence model, but for a laminar flow simulation
setup.

For the inlet boundary condition, a fully developed flow is set by an equation for
the velocity.
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Fig. 3 Mesh for the CFD-simulation

Fig. 4 Flow field Reynolds number 140 (left: simulation, right: experiments [26])

The Simulation results show fine agreement with the experimental data as shown
in Fig. 4.

4 Developing a Simplified Model

The numerical simulation following the iterative solution of fluid physics by calcu-
lation of the Navier–Stokes equation system can take a lot of computational effort
and time. Thus, the common CFD approach may not be feasible in cases, where
limitations of resources and time are strict.
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On the other hand, if the flow field is prescribed by a set of coefficients as found
in interpolations of artificial network, this set of coefficients can be solved within
very short time by simple matrix calculations which are very simple for nowadays
computational infrastructure.

So the aim of the given study is to develop two different approaches for the
calculation of the matrices that represent the flow field and to compare both results
for different Reynolds numbers within a given range.

4.1 Simple Interpolation

The first approach is the calculation of a set of coefficients for the solution domain
expressing the variables of interest as functions of the inlet condition following a
regression function, whose coefficients are extracted from the data exported from the
simulations. These coefficients represent the influence of the change of the variable
(here the inlet velocity) to the behavior of the system, for different orders, linear,
quadratic, and more if necessary.

Ya = b0 · 1+ b1 · va + b2 · v2a
Yb = b0 · 1+ b1 · vb + b2 · v2b

...

(1)

The equations can be put in matrix form as follows

⎡
⎣

1 va v2a
1 vb v2b
· · · · · · · · ·

⎤
⎦ ·

⎡
⎣
b0
b1
b2

⎤
⎦ =

⎡
⎢⎣
Ya
Yb
...

⎤
⎥⎦ (2)

This system can be solved for the whole domain to get the velocity for a given
inlet velocity.

4.2 ANN Model

The next approach is more advanced one, using the ANN framework of Keras with
the CFD simulation results, the coordinates and the boundary conditions as an input
for the neuronal network with randomized order of the points.

The training is done in a sequential class, the relu activation layer an Adam
optimizer with a learning rate of 0.005 and a loss function with Mean AbsouteError.

The architecture was built with four hidden layers with 256 nodes each.
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5 Error Estimation

In estimation of the accuracy of the simulation results, next to the qualitative
comparison of the flow fields, the given project aimed to also find quantitative error
estimation.

Here, it was important to find amethod to calculate the error that takes into account
the differences of the high velocity zones as well as the differences of the zones with
lower velocity also. After some development the decision was made to define two
different error calculations as shown in Eqs. (3) and (4).

Since the Error1 takes the differences of each velocity at a certain point from
the CFD calculation to the model prediction, here the relative error of the small
velocities has a much higher influence compared to the error in the high velocity
field. On the other hand for the Error2, the relative error of the differences of the
sum of all velocities for the CFD calculation to the sum of all velocities of the model
prediction has been calculated and thus, here the differences of the high velocity
areas at the flow field plays a major role.

Error1 =
∑∣∣VCFD(x,y,z) − Vmodel(x,y,z)

∣∣
∑∣∣VCFD(x,y,z)

∣∣ · 100 (3)

Error2 =
∑∣∣VCFD(x,y,z)

∣∣ − ∑∣∣Vmodel(x,y,z)

∣∣
∑∣∣VCFD(x,y,z)

∣∣ · 100 (4)

6 Results

In Fig. 5 the comparison of the results of the interpolation to the CFD calculations
are shown. It is shown that the prediction of the model shows rather big errors in the
area of low Reynolds number but for the higher velocities, the error becomes low
and the quality of the predictions is feasible.

The results of the error calculations for the predictions of the ANN in comparison
to CFD are shown in Fig. 6. As before, the results of the predictions at the low
Reynolds numbers are not good but becomes much better in a range of smaller
than 10% at higher Reynolds numbers. It is interesting to notice that the simple
interpolation algorithm appears to give better results than the more advanced AI
approach.

A further comparison is shown in Fig. 7. As seen in the figure the velocity is
plotted along traversal lines (Line 1 in a and d, line 2 in b and e, line 3 in c and f)
for two different Reynolds numbers (Re = 15 for a, b, c and Re = 140 for d, e, f)
each plot with the direct comparison of the velocity profile for the CFD simulation,
the interpolation and the AI model.
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Fig. 5 Error of the interpolation model

It is seen that the prediction of the fully developed pipe flow for the inlet and outlet
(at line 1 and 3) is quite well for all cases, just in the middle of the cavity, at line 2,
the differences become larger. In b, one can see the difference of the interpolation
to the CFD result is smaller than the difference of the AI predictions. For the higher
Reynolds number (e) the differences become negligible small for both (Interpolation
and AI) in comparison to the CFD simulation.

7 Conclusions

Two different approaches have been developed for using the data of CFD calcula-
tions to train different meta models that are able to predict the three dimensional
flow field of a cavity flow within very short time. The models were using a simple
interpolation model and a more advances AI approach. In this paper both models
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Fig. 6 Error of the AI model

have been compared among each other and both models show acceptable accuracy in
the prediction of the flow field for higher Reynolds numbers but shows difficulty in
the lower Reynolds numbers. Here the interpolation shows even better performance
than the AI approach.

Following developments will be carried out to develop a supervision tool that
performs randomized test simulations and compares them to the predictions and will
form smaller submodels for areas where the prediction shows big differences. Here,
again both approaches shall be compared.
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Re=15 Re=140

(a) (d)

(b) (e)

(c) (f)

Fig. 7 Error of the interpolation and AI models
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