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Abstract The arrival and service data for a season was gathered from Sugar Mill
in Meham, Haryana, to improve the service facilities for farmers and reduce queue
waiting time through simulation.A suitable simulationmodelwas developedutilizing
the Monte Carlo technique to analyze the queue characteristics. Simulation revealed
a significant reduction of 60% in waiting time with a marginal rise in the mill’s
sugarcane crushing limit.
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1 Introduction

Queuing theory is widely used to investigate and manage queue characteristics in a
variety of settings, including bank counters, railway counters, super markets, agri-
culture markets, and sugar mills, among others. The majority of queuing models are
built on the assumption that customer arrival rates are lower than the system’s service
rate. This condition ensures the steady state solution of the governing equations for
the model. But there are situations where steady state solution cannot be achieved
or does not exist. For example, at a doctor’s clinic, where patients are seen for a set
length of time, such as 9:00 a.m. to 3:00 p.m. Because the consultation or service
process does not last for a long period, the system’s long-term behavior cannot be
analyzed. In the following scenario, as well as many others, it is possible that the
arrival rate exceeds the service rate, causing the system to collapse in the long run
and leaving no stable solution. These types of problems can be handled by either
limiting the queue system’s capacity or increasing the number of servers.

The analysis of non-steady state queue system was accomplished in [1] and the
result was achieved by developing computation formula from both symbolic and
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numeric exact where results are tested against Monte Carlo simulation. Another
simple queue model (M/M/1/∞) was implemented in [2] in bank service to improve
the optimal service rate.

Complex queues can be solved using simulation. Simulation can be defined as a
process of designing amathematical or artificial model of a real system. The behavior
of real system can be examined by performing experiments with the developedmodel
[3]. TheMonteCarlo simulation technique converts uncertainties of input variables in
themodel into probability distributions [4]. To re-form the opportunity distribution in
this simulation, you’ll need a random number generator [5]. A few of the applications
of Monte Carlo queuing system can be found in the hospital [6], in fuzzy queuing
theory [7], in traffic light simulation [8], in finance [9], etc. Since the results are
derived after performing the repeated experiments based on random numbers, Monte
Carlo simulation is very effective and widely accepted for true results.

Arrival and service data for the season 2020–21 (Nov 2020 to May 2021) was
collected from The Meham Co-Op. Sugar Mills Ltd., Meham, Haryana. There were
no symmetries between arrival and service pattern as shown in Fig. 1.

The zigzag nature of the arrival and service rates can easily be recognized, indi-
cating that a basic queue model (M/M/1) could not be utilized to describe the queue
characteristics. In addition, both the average arrival rate and the average service rate
were the same, i.e., 146 trolleys each day. The Monte Carlo simulation approach is
used to deal with such a circumstance.

Section 2 discusses the Monte Carlo simulation approach and algorithm used to
determine queue characteristics. Section 3 contains the simulation findings. Section 4
discusses the potential for improvement by increasing mill crushing, as well as the
consequences. Section 5 contains the work’s conclusion.

Fig. 1 Arrival and service pattern on seasonal days
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2 Methodology

According to data collected from the Meham sugar mill for the entire season, a total
of 28,128 trolleys carrying 3,168,923.80 qtl of sugarcane arrived and were unloaded
between November 19, 2020 and May 30, 2021. There were 193 crushing days in
total. Note that the arrival was low in May 2021, and hence the crushing or service
was likewise low. So actual performance of mill could not be determined from the
data includingmonth ofMay 2021. For better simulation of mill system, this month’s
data was omitted and the data of 162 days from November 21, 2020 to May 01, 2021
was utilized. During this period, a total of 3,035,082.6 qtl sugarcane was crushed,
with an average of 18,735 qtl each day.

The average daily arrival was 161.42 trolleys, or 6.73 per hour, with an average
of 112.44 qtl sugarcane each trolley. Figure 2 shows a day-by-day summary of the
weight of sugarcane crushed during these days.

Figure 2 shows that on January 6, 2020 (Day 49) and March 22, 2021(Day 124),
therewas substantially less crushing. Themaximumcrushing of 22,906 qtl sugarcane
was done on Dec 01, 2020. The mill’s full crushing capacity of 25,000 qtl per day
has never been reached.

Fig. 2 Per day crushing during the season 2020–21
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2.1 Monte Carlo Technique

There were three shifts of workers in the sugar mill in Meham: shift 0, shift 1, and
shift 2. Shift 0 ran from 6:00 a.m. to 2:00 p.m., shift 1 from 2:00 p.m. to 10:00 p.m.,
and shift 2 from 10:00 p.m. to 2:00 a.m. Based on the number of arrivals and services
in each shift, the possible 40 values of inter-arrival time ranging from 3 to 240 min
and the possible 23 values of service time ranging from 6 to 480 min for the trolleys
were achieved.

To overcome the problem, an algorithm for Monte Carlo simulation was created
as follows:

1. Based on the number of arrivals and services in each shift, determine the inter-
arrival time and service time for each trolley.

2. Determine the frequency of inter-arrival times and service durations.
3. Calculate the probability of each value of the inter-arrival and service times.
4. Determine the cumulative probability as well as the boundary/random number

interval.
5. For arrivals and services, generate random numbers in the interval (0, 1)

uniformly.
6. Calculate arrival time, waiting time, time to enter service, service time, and queue

length, etc.
7. Determine the expected values of queue characteristics.
8. Repeat the above process 1000 times for better estimation of queue characteris-

tics.

Figure 3 depicts a flow chart of the steps.
The inter-arrival timing, frequency, probability distribution, and random number

intervals were determined using the arrival and service data, as shown in Table 1.
Similarly, the service time, frequencies, probability distribution, and random

number intervals were determined as shown in Table 2.

3 Results and Discussion

The trial rows of 26,150 trolleys (arrived in season 2020–21 over the study period)
were formed using the random number intervals for cumulative probability of inter-
arrival and service time estimated in Tables 1 and 2. We applied the Monte Carlo
technique to get the inter-arrival time between two trolleys and the service time of
each trolley by uniformly generating 26,150 random numbers in the interval (0, 1).
Each of the random number was lying in some of the random interval in the last
column of Table 1. Inter-arrival time corresponding to those random intervals was
assigned to 26,150 trolleys. Similar procedure was applied to get service time of each
trolley. Note that values to the first trolley were not assigned according to random
numbers since there was no queue to cause delays in its unloading and other services.
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Fig. 3 Flowchart of Monte Carlo simulation

Other characteristics of the queues were calculated using the achieved inter-arrival
and service times. A few rows from the beginning and finish of the trial rows of
26,150 trolleys were shown in Table 3.

The aforementioned experiment was repeated 1000 times, with the results
displayed in Figs. 4 and 5, respectively, for estimated waiting time (in hours) and
expected queue length.
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Table 1 Random number interval generation for inter-arrival time

Inter-arrival time
(min), x

Frequency f (x) p(x) = f (x)∑
x f (x) Cumulative

probability
Random number
interval

3 1188 0.0454 0.0454 0–0.0454

4 5958 0.2278 0.2733 0.0454–0.2733

5 4145 0.1585 0.4318 0.2733–0.4318

6 2443 0.0934 0.5252 0.4318–0.5252

7 1508 0.0577 0.5829 0.5252–0.5829

8 2027 0.0775 0.6604 0.5829–0.6604

9 1971 0.0754 0.7358 0.6604–0.7358

10 1815 0.0694 0.8052 0.7358–0.8052

11 1090 0.0417 0.8468 0.8052–0.8468

12 681 0.0260 0.8729 0.8468–0.8729

13 335 0.0128 0.8857 0.8729–0.8857

14 136 0.0052 0.8909 0.8857–0.8909

15 380 0.0145 0.9054 0.8909–0.9054

16 120 0.0046 0.9100 0.9054–0.9100

17 226 0.0086 0.9187 0.9100–0.9187

18 343 0.0131 0.9318 0.9187–0.9318

19 100 0.0038 0.9356 0.9318–0.9356

20 72 0.0028 0.9384 0.9356–0.9384

21 46 0.0018 0.9401 0.9384–0.9401

22 176 0.0067 0.9468 0.9401–0.9468

23 42 0.0016 0.9485 0.9468–0.9485

24 80 0.0031 0.9515 0.9485–0.9515

25 133 0.0051 0.9566 0.9515–0.9566

27 216 0.0083 0.9649 0.9566–0.9649

28 51 0.0020 0.9668 0.9649–0.9668

30 128 0.0049 0.9717 0.9668–0.9717

32 60 0.0023 0.9740 0.9717–0.9740

34 112 0.0043 0.9783 0.9740–0.9783

37 65 0.0025 0.9808 0.9783–0.9808

40 72 0.0028 0.9835 0.9808–0.9835

44 88 0.0034 0.9869 0.9835–0.9869

48 130 0.0050 0.9919 0.9869–0.9919

53 36 0.0014 0.9932 0.9919–0.9932

60 64 0.0024 0.9957 0.9932–0.9957

69 14 0.0005 0.9962 0.9957–0.9962

(continued)
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Table 1 (continued)

Inter-arrival time
(min), x

Frequency f (x) p(x) = f (x)∑
x f (x) Cumulative

probability
Random number
interval

80 66 0.0025 0.9987 0.9962–0.9987

96 20 0.0008 0.9995 0.9987–0.9995

120 8 0.0003 0.9998 0.9995–0.9998

160 3 0.0001 0.9999 0.9998–0.9999

240 2 0.0001 1 0.9999–1

Total 26,150 1

Table 2 Random number interval generation for service time

Service Time
(min), y

Frequency f (y) p(y) = f (y)∑
y f (y) Cumulative

probability
Random number
interval

6 985 0.0365 0.0365 0–0.0365

7 6370 0.2360 0.2725 0.0365–0.2725

8 9999 0.3704 0.6429 0.2725–0.6429

9 4730 0.1752 0.8181 0.6429–0.8181

10 2322 0.0860 0.9041 0.8181–0.9041

11 919 0.0340 0.9382 0.9041–0.9382

12 722 0.0267 0.9649 0.9382–0.9649

13 223 0.0083 0.9732 0.9649–0.9732

14 242 0.0090 0.9821 0.9732–0.9821

15 96 0.0036 0.9857 0.9821–0.9857

16 30 0.0011 0.9868 0.9857–0.9868

17 86 0.0032 0.9900 0.9868–0.9900

18 105 0.0039 0.9939 0.9900–0.9939

19 50 0.0019 0.9957 0.9939–0.9957

21 23 0.0009 0.9966 0.9957–0.9966

25 19 0.0007 0.9973 0.9966–0.9973

28 34 0.0013 0.9986 0.9973–0.9986

40 12 0.0004 0.9990 0.9986–0.9990

53 9 0.0003 0.9993 0.9990–0.9993

69 7 0.0003 0.9996 0.9993–0.9996

96 5 0.0002 0.9998 0.9996–0.9998

120 4 0.0001 0.9999 0.9998–0.9999

480 2 0.0001 1 0.9999–1

Total 26,994 1
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Table 3 Monte Carlo simulation

Trolley Uniformly
distributed
random
numbers
for arrival

Inter-arrival
time
(Minutes)

Arrival
time

Uniformly
distributed
random
numbers
for service
time

Service
time
(Minutes)

Time to
enter
service

Waiting
time

Queue
length

R1 R2

1 0.9206 0 0 0.7633 9 0 0 0

2 0.8379 11 11 0.6488 9 11 0 0

3 0.4271 5 16 0.7178 9 20 4 1

4 0.9555 25 41 0.4206 8 41 0 0

5 0.1829 4 45 0.0185 6 49 4 1

6 0.0469 4 49 0.1106 7 55 6 1

7 0.0917 4 53 0.2535 7 62 9 2

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

26,144 0.1703 4 233,550 0.5511 8 233,661 111 14

26,145 0.4044 5 233,555 0.1434 7 233,669 114 15

26,146 0.2230 4 233,559 0.7451 9 233,676 117 15

26,147 0.9196 18 233,577 0.6165 8 233,685 108 14

26,148 0.0112 3 233,580 0.1367 7 233,693 113 15

26,149 0.6113 8 233,588 0.3048 8 233,700 112 15

26,150 0.6776 9 233,597 0.8671 10 233,708 111 15

To determine the final parameters of the queuing system, an average of the esti-
mated waiting time and expected queue lengths was taken. The average of all 1000
experiments was as under.

Averagewaiting time in queue = 3.2891 ∼ 3 h and 17min

Average queue length = 23.1416 ∼ 23 trolleys

The average of all the probabilities of associated variables from all 1000 exper-
iments was used to obtain the probability distribution of waiting time and queue
length. Figure 6 depicts the cumulative probability distributions of both waiting time
and queue length. It also shows that there is a 90% chance that the wait time would
be less than 9 h and the queue length will be fewer than 57 trolleys at any given time.
The system’s average usage is 0.9770. This suggests that the system will be busy for
about 98% of the time and free for only about 2% of the time.
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Fig. 4 Repetition of average queue length Lq

Fig. 5 Repetition of average waiting time in queue

Table 4 shows the queue characteristics and performance measures. In the mill,
the average number of trolleys was one higher than the average number of trolleys
in the queue. In addition, the average waiting time in the system was the sum of
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Fig. 6 Cumulative probability distribution of waiting time and queue length

Table 4 Queue characteristics of existing system

Queue characteristics Performance

Average server utilization (ρ) 97.70% Busy

Average number of trolleys in the queue (Lq) 23 In queue

Average number of trolleys in the system (L) 24 In system

Average waiting time in the queue (Wq) 3.29 Hour

Average time in the system (W) 3.44 Hour

Probability (% of time) system is empty 2.30% Empty

the average waiting time in the queue and the service time. With an average of 166
trolleys unloaded per day, the average service time is 8.64 min. Unloading a trolley
takes about 9 min (0.15 h) on average in a mill.

3.1 Validation of the Model

According to mill data, the average daily arrival rate was 161 trolleys, i.e., 7 trolleys
per hour. In queuing theory and stochastic systems, Little’s formula, L = λW , is
one of the most well-known and useful conservation laws. It asserts that the average
number of units in a system equals the average arrival rate of units multiplied by
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the average time in the system per unit. In the case of a queue, Lq = λWq , i.e., the
expected length of the queue is the expected number of waiting times in the queue
multiplied by the rate of arrival.

Using the observations from simulation,

Average queue length = λ(averagewaiting time in queue)

23 = λ(3.29)

which gives

λ = 23/3.29 = 6.99 ∼ 7 trolleys per hour

Approximately the same arrival rate achieved from the simulation validates the
good fit of the model.

4 Performance Measures of Mill with Enhanced Crushing
Capacity

Meham Mill was established in 1991, and its machinery is nearly 30 years old. As
a result, exceeding the 25,000 qtl maximum crushing capacity restriction may raise
the risk of mechanical failure. This, in turn, will degrade service quality by halting
the mill’s operation. During the peak season, the average crushing rate was 18,735
qtl per day. On December 1, 2020, the maximum crushing of 22,906 qtl sugarcane
was attained. We can simulate the model and find the expected queue characteristics
by assuming the same arrival rate of 6.73 trolleys per hour and increasing the average
crushing capacity of the mill from 20,000 qtl to 24,000 qtl. Table 5 shows the service
rates associated with increased average crushing.

The arrival rate is smaller than the service rate in all of the preceding scenarios,
and the queue characteristics are presented in Table 6 using the M/M/1 queuing
model.

Table 5 Service rate as per different average crushing

Average crushing (qtls per day) 20,000 21,000 22,000 23,000 24,000

Service rate (number of trolleys unloaded per hour) 7.41 7.78 8.15 8.52 8.89
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Table 6 Queue characteristics with enhanced service

Queue characteristics μ = 7.41 μ = 7.78 μ = 8.15 μ = 8.52 μ = 8.89

Average server utilization
(ρ)

90.81% 86.48% 82.55% 78.96% 75.67% Busy

Average number of trolleys
in the queue (Lq)

8.97 5.53 3.91 2.96 2.35 In queue

Average number of trolleys
in the system (L)

9.87 6.40 4.73 3.75 3.11 In system

Average waiting time in
the queue (Wq)

80 49 35 26 21 Minutes

Average time in the system
(W)

88 57 42 33 28 Minutes

Probability (% of time)
system is empty

9.19% 13.51% 17.45% 21.04% 24.33% Empty

5 Conclusion

According to the study based on primary data, average crushing over the season was
16,419 qtl per day, while peak days saw 18,735 qtl per day. The average arrival rate
of trolleys was 161 trolleys per day. The mill was busy 97.70% of the time, with
an average waiting time of 3 h and 17 min for a trolley to be serviced. The average
queue length was 23 trolleys. Keeping in view, the maximum crushing capacity of
25,000 qtl per day, queue characteristics are obtained by simulation for different
average crushing values. Because the mill is roughly 30 years old, it is possible
that the machinery will fail if it is operated at maximum crushing speed. The mill’s
suspension of operations will inevitably result in a reduction in service quality. Even
though the mill crushed more than 20,000qtl sugarcane per day around 40% of the
time, an average of 20,000qtl crushing could be attained. With a crushing capacity of
20,000 qtl, the mill can service 177 trolleys every day, with current average weight
of 112.44 qtl per trolley. The present average waiting time of 3 h, 17 min will be
reduced to 1 h, 20 min, and the average queue length of 23 trolleys will be reduced to
9 trolleys. This increases the probability of an idle scenario from 2 to 9%, implying
that the idle time of service will increase to 7%.
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