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Abstract In this manuscript, an upper bound estimate for the maximum modulus
of a general class of polynomials with restricted zeros on a circle |z| = L , L ≥ 1, is
obtained in terms of the maximum modulus of the same polynomials on |z| = 1. It
is observed that a result of Hussain [J. Pure Appl. Math., (2021) (https://doi.org/10.
1007/s13226-021-00169-7)] is sharpened by our result. Also, this result generalizes
and sharpens some other previously proved result.
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1 Introduction

Let b(z) be a polynomial of degree m and let

‖b‖ = max|z|=1
|b(z)|, M(b, L) = max|z|=L

|b(z)|.

For a polynomial b(z), there is a simple deduction from the Maximum Modulus
Principle [11, p. 158] that for L ≥ 1,

M(b, L) ≤ Lm‖b‖. (1)

Equality is obtained in (1) for b(z) = λzm with λ �= 0, λ ∈ C.
For a polynomial b(z) having all its zeros outside |z| < 1, it was shown byAnkeny

and Rivlin [1] that for L ≥ 1,
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M(b, L) ≤
(
Ln + 1

2

)
‖b‖. (2)

Equality holds in (2) for b(z) = α + βzm , where |α| = |β|.
Govil [6] understood that equality in (2) holds only for polynomials b(z) = α +

βzm , |α| = |β|, which satisfy

|coe f f icient o f zm | = 1

2
‖b‖, (3)

and it would be possible to refine the bound in (2) for polynomials which do not hold
the condition given in (3). In an attempt to solve this problem, he [6] could obtain that

for polynomial b(z) =
∑m

v=0
wvz

v having all its zeros outside |z| < 1 and L ≥ 1,
we have

M(b, L) ≤ (Lm + 1)

2
‖b‖ − m

2

(‖b‖2 − 4|wm |2
‖b‖

)

×
[
(L − 1)‖b‖
‖b‖ + 2|wm | − ln

{
1 + (L − 1)‖b‖

‖b‖ + 2|wm |
}]

. (4)

Recently, Hussain [8, Corollary 2] proved a generalization and extension of
inequality (4) that

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖ b ‖ − m

1 + s1

(
(‖ b ‖)2 − (1 + s1)2|wm |2

‖ b ‖
)

×
{

(L − 1) ‖ b ‖
‖ b ‖ +(1 + s1)|wm | − ln

(
1 + (L − 1) ‖ b ‖

‖ b ‖ +(1 + s1)|wm |
)}

, (5)

where

s1 = kμ+1(
μ
m

|wμ|
|w0| k

μ−1 + 1)
μ
m

|wμ|
|w0| k

μ+1 + 1
, (6)

where b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m} is a polynomial such that b(z) �=
0 in |z| < k, k ≥ 1.

Remark 1 Whenμ = m, the polynomialb(z) = w0 +
∑m

v=μ
wvz

v becomesb(z) =
w0 + wmzm . Therefore, by simple calculation, we have

M(b, L) = max|z|=L
|w0 + wmz

m | = |w0| + Lm |wm |. (7)

However, for μ = m, inequality (5) reduces to
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M(b, L) ≤
(
Lm + s3
1 + s3

)
‖ b ‖ − m

1 + s3

(
(‖ b ‖)2 − (1 + s3)2|wm |2

‖ b ‖
)

×
{

(L − 1) ‖ b ‖
‖ b ‖ +(1 + s3)|wm | − ln

(
1 + (L − 1) ‖ b ‖

‖ b ‖ +(1 + s3)|wm |
)}

, (8)

where

s3 = |wm
w0

|k2m + km+1

|wm
w0

|km+1 + 1
. (9)

The estimate of M(b, L) given by inequality (8) for μ = m is not required as we
could easily get the exact value of it by a simple calculation given by (7).

2 Main Results

In this manuscript, we obtain a result which is a refinement and a generalization of
inequality (5) of Hussain [8].

Theorem 1 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, .....,m − 1}, is a polynomial

having all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)s1m∗

(1 + s1)km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (N , s1), (10)

where

s1 = kμ+1(
μ
m |wμ

w0
|kμ−1 + 1)

μ
m |wμ

w0
|kμ+1 + 1

(11)

and

f (N , s1) =
(
L − 1

)
−

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

}

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or N = 1, (12)
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f (N , s1) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}N−1

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or N ≥ 2 (13)

and here and in the entire paper

m∗ = min|z|=k
|b(z)|. (14)

Remark 2 From Lemma 3, f (N , s1) given by (12) and (13) of Theorem 1 is a
monotonically increasing function of N , N ≤ m, hence, taking N = m, we obtain
the best bound in Theorem 1.

Further, consider b(z) to be a polynomialwhose degreem = 1. Then, by a straight-
forward calculation, we obtain

M(b, L) = max|z|=L
|b(z)| = max|z|=L

|w0 + Lw1| = |w0| + L|w1|. (15)

Hence, we present the exact value of M(b, L) for m = 1 which is given by (15).

From the preceding dicussion, Theorem 1 assumes

Corollary 1 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,

M(b, L) = |w0| + L|w1| f or m = 1 (16)

and

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)s1m∗

(1 + s1)km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1), (17)

where
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f (m, s1) =
(
Lm − 1

m

)

+
m−1∑
v=1

(
Lm−v − 1

m − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}v−1

+ (−1)m
{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

}{
(1 + s1)|wm |
‖b‖ − s1m∗

km

}m−1

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or m ≥ 2 (18)

and s1 is as defined in (11).

Remark 3 If k = 1, s1 = 1, then Theorem 1 reduces to the succeeding result which
refines and generalizes the result of Dewan and Bhat [3].

Corollary 2 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {12, .....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1, and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + 1

2

)
‖b‖ −

(
Lm − 1

2

)
m∗ − m

(‖b‖ − m∗

2
− |wm |

)
f (N , 1),

(19)
where

f (N , 1) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + 2|wm |

‖b‖ − m∗

} {
2|wm |

‖b‖ − m∗

}v−1

+ (−1)N
{
1 + 2|wm |

‖b‖ − m∗

} {
2|wm |

‖b‖ − m∗

}N−1

× ln

{
1 + (L − 1)(‖b‖ − m∗)

(‖b‖ − m∗) + 2|wm |
}
. (20)

Remark 4 Since for 1 ≤ N , f (1, 1) ≤ f (N , 1) and hence, substituting the value
of f (1, 1), inequality (19) becomes the result of Dewan and Bhat [3].

Remark 5 For N = 1, Theorem 1, in particular, becomes the following interesting
result.

Corollary 3 If b(z) = w0 +
∑m

v=μ
wvz

v, μ ∈ {12, .....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,
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M(b, L) ≥
(
Lm + s1
1 + s1

)
‖b‖ −

(
Lm − 1

1 + s1

)
s1m∗

km

− m

1 + s1

{
(‖b‖ − s1m∗

km )2 − |wm |2(1 + s1)2

‖b‖ − s1m∗
km

}

×
[

(L − 1)(‖b‖ − s1m∗
km )

‖b‖ − s1m∗
km + (1 + s1)|wm | − ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

‖b‖ − s1m∗
km + (1 + s1)|wm |

}]
,

where s1 is as defined in (11).

Remark 6 By Lemma 8, we have

(
‖b‖ − s1m∗

km

)2

− (1 + s1)
2|wm |2 ≥ 0 (21)

and ln(1 + x) < x for positive values of x and hence the bound given by Corollary 3
improves and generalizes inequality (2) proved byAnkeny and Rivlin [1].

Remark 7 By Lemma 10, k ≤ s1 for k ≥ 1, where s1 is as defined in (11), therefore,
we have for m∗ ≥ 0

m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)
≤ m

1 + s1
‖b‖. (22)

Applying Lemma 4 to (22), we have for r ≥ 1,

rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)
− m|wm |

)
(r − 1)

m|wm | + r

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)

)
⎫⎪⎪⎬
⎪⎪⎭

{
m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)

}

≤ rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − m|wm |

)
(r − 1)

m|wm | + rm
1+s1

‖b‖

⎫⎪⎪⎬
⎪⎪⎭

m

1 + s1
‖b‖. (23)

On integrating (23) from both sides with respect to r from 1 to L and following similar simpli-
fication of the RHS of (73) to inequality (74) in the proof of Theorem 1, we get

Lm − 1

1 + s1

(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

)
(1 − e)

R∫
1

(r − 1)rm−1

r + e
dr

≤ Lm − 1

1 + s1
‖b‖ − m

1 + s1
‖b‖(1 − g)

L∫
1

(r − 1)rm−1

r + g
dr, (24)

where e = |wm |(1+s1)

‖b‖− s1m
∗

km

and g = |wm |(1+s1)‖b‖ .

The expression
∫ L
1

(r−1)r N−1

r+g dr ≥ 0 and is amonotonically increasing function of N for N ≤ m,
therefore, we have
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L∫
1

(r − 1)r N−1

r + g
dr ≤

L∫
1

(r − 1)rm−1

r + g
dr. (25)

Since m∗ ≥ 0, by Lemma 8, we have

|wm |(1 + s1)

‖b‖ ≤ 1, (26)

and hence

1 − g = 1 − |wm |(1 + s1)

‖b‖ ≥ 0. (27)

We see that 1 − g ≥ 0 and using Lemma 2 for the values of the integrals of inequality (24), we
have

(
Lm − 1

1 + s1

)(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

) {
1 − (1 + s1)|wm |

‖b‖ − s1m∗
km

}
f (m, s1)

≤
(
Lm − 1

1 + s1

)
‖b‖ − m‖b‖

1 + s1

{
1 − (1 + s1)|wm |

‖b‖
}
h∗(N ), (28)

where f (m, s1) is as defined in (18) and

h∗(N ) = (L − 1) −
{
1 + (1 + s1)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N = 1, (29)

h∗(N ) =
(
LN − 1

m

)

+
m−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖
}{

(1 + s1)|wm |
‖b‖

}N−1

× ln

(
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
)

f or N ≥ 2. (30)

Adding ‖b‖ on both sides of (28), we have
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km
− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1)

≤
(
Lm + s1
1 + s1

)
‖b‖ − m

1 + s1
{‖b‖ − (1 + s1)|wm |} h∗(N ), (31)

which clearly shows that Corollary 1 refines the next result which further deduces to inequality (5)
due to Hussain [8].

Corollary 4 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,
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M(b, R) ≤
(
Lm + s1
1 + s1

)
‖b‖ − m

1 + s1
{‖b‖ − (1 + s1)|wm |} h∗(N ), (32)

where

s1 = kμ+1(
μ
m |wμ

w0
|kμ−1 + 1)

μ
m |wμ

w0
|kμ+1 + 1

(33)

and

h∗(N ) =
(
L − 1

)
−

{
1 + (1 + s1)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N = 1, (34)

h∗(N ) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}N−1

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N ≥ 2. (35)

Remark 8 By Lemma 3, it is noted that h∗(N ) ≥ 0 as defined in (34) and (35) of
Corollary 4 and is a monotonically increasing function of N for N ≥ 1 and therefore
h∗(1) ≤ h∗(N ).Noting this andLemma8 that {‖b‖ − (1 + s1)|wm |} ≥ 0,Corollary4
reduces to inequality (5) due toHussain [8]

Remark 9 By Lemma 10, k ≤ s1 for k ≥ 1, where s1 is as defined in (11), therefore,
by Lemma 11, we have

m

1 + s1
‖b‖ ≤ m

1 + k
‖b‖. (36)

Since m ≥ 0 and 1 ≤ k ≤ s1, inequality (36) implies

m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)
≤ m

1 + k
‖b‖. (37)

Applying Lemma 4 to (37), we have for r ≥ 1,
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rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)
− m|wm |

)
(r − 1)

m|wm | + r

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)

)
⎫⎪⎪⎬
⎪⎪⎭

{
m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)

}

≤ rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+k ‖b‖ − m|wm |
)
(r − 1)

m|wm | + r

(
m

1+k ‖b‖
)

⎫⎪⎪⎬
⎪⎪⎭

(
m

1 + k
‖b‖

)
. (38)

Inequality (38) is integrated on both sides with respect to r from 1 to L and following similar
simplification of the RHS of inequality (73) to inequality (74) in the proof of Theorem 1, we get

Lm − 1

1 + s1

(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

)
(1 − e)

L∫
1

(r − 1)rm−1

r + e
dr

≤ Lm − 1

1 + k
‖b‖ − m‖b‖

1 + k
(1 − c)

L∫
1

(r − 1)rm−1

r + c
dr, (39)

where e = |wm |(1+s1)

‖b‖− s1m
∗

km

and c = |wm |(1+k)
‖b‖ .

The expression
∫ L
1

(r−1)r N−1

r+c dr ≥ 0 and is amonotonically increasing function of N for N ≤ m,
we have

L∫
1

(r − 1)r N−1

r + c
dr ≤

L∫
1

(r − 1)rm−1

r + c
dr. (40)

Since m∗ ≥ 0, by Lemma 9, we have

|wm |(1 + k)

‖b‖ ≤ 1, (41)

and hence

1 − c = 1 − |wm |(1 + k)

‖b‖ ≥ 0. (42)

Since 1 − c ≥ 0 and using Lemma 2 for the values of the integrals in (39), we get

(
Lm − 1

1 + s1

)(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

) {
1 − (1 + s1)|wm |

‖b‖ − s1m∗
km

}
f (m, s1)

≤
(
Lm − 1

1 + k

)
‖b‖ − m‖b‖

1 + k

{
1 − (1 + k)|wm |

‖b‖
}

g∗(N ), (43)

where f (m, s1) is as defined in (18) and

g∗(N ) = (L − 1) −
{
1 + (1 + k)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N = 1,
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g∗(N ) =
(
LN − 1

m

)

+
m−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}N−1

× ln

(
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
)

f or N ≥ 2. (44)

Adding ‖b‖ on both sides of (43), we have
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km
− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1)

≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k
{‖b‖ − (1 + k)|wm |} g∗(N ). (45)

Hence, it is verified that Corollary 1 improves the succeeding result.

Corollary 5 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k

(
‖b‖ − (1 + k)|wm |

)
g∗(N ), (46)

where

g∗(N ) = (L − 1) −
{
1 + (1 + k)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N = 1, (47)

g∗(N ) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}N−1

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N ≥ 2. (48)

Remark 10 For N = m, it can be easily verified that the result of Mir et al. [10,
Corollary 1] is obtained from Corollary 5.
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Remark 11 By Lemma 3, it is observed that g∗(N ) ≥ 0 as defined in (47) and (48)
of Corollary 5 and is a monotonically increasing function of N for N ≥ 1 and hence
g∗(1) ≤ g∗(N ). With this fact and Lemma 9, Corollary 5 gives a result which is a
generalization of inequality (4) of Govil [6].

Corollary 6 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,

M(b, L) ≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k

{‖b‖2 − (1 + k)2|wm |2
‖b‖

}

×
[

(L − 1)‖b‖
‖b‖ + (1 + k)|wm | − ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}]

. (49)

Remark 12 Also for k = 1, inequality (49) of Corollary 6 reduces to inequality (4)
of Govil [6].

3 Lemmas

We require the following lemmas.

Lemma 1 Let b(z) =
∑m

v=0
wmz

m be a polynomial. Then for |z| = L ≥ 1,

|b(z)| ≤ Lm

{
1 − (‖b‖ − |wm |)(L − 1)

|wm | + L‖b‖
}

‖b‖. (50)

Lemma 1 is due to Govil [6].

Lemma 2 Let

J (N ) =
L∫

1

(r − 1)r N−1

r + x
dr, x > 0 . (51)

Then for N ≥ 2,

J (N ) =
(
LN − 1

N

)
+

N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v(x + 1)xv−1

+ (−1)N (x + 1)xN−1 ln

(
L + x

1 + x

)
, (52)

and for N = 1,

J (1) = (L − 1) − (1 + x) ln

(
1 + L − 1

1 + x

)
. (53)
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Lemma 2 is due to Dalal and Govil [2, Lemma 3.6].

Lemma 3 J (N ) defined in Lemma 2 is a non-negative increasing function of N for
N ≥ 1.

Proof (Proof of Lemma 3) Dalal and Govil [2, Lemma 3.7] has done this proof, but,
we present another proof of it using the method of differentiation under the integral
sign.

By the method of differentiation under the integral sign, we obtain

d

dN
J (N ) =

L∫
1

(r − 1)(r N−1)

r + x
ln rdr. (54)

Since, for r ∈ [1, L], (r−1)r N−1

r+x ln r ≥ 0, therefore, we have

L∫
1

(r − 1)r N−1

r + x
ln rdr ≥ 0. (55)

From equality (54),
d

dN
J (N ) ≥ 0, f or N ≥ 1. (56)

Hence, J (N ) is an increasing function of N for N ≥ 1.
Further,we see that (r−1)r N−1

r+x is non-negative for N ≥ 1which implies that J (N ) ≥
0 for N ≥ 1,
and hence Lemma 3 is proved. �

Lemma 4 For polynomial b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m} and r ≥ 1,

the function

t (y) =
{
1 − (y − m|wm |)(r − 1)

m|wm | + r y

}
y (57)

is an increasing function of y for y > 0.

Proof of Lemma 4. The proof simply follows by using the derivative test and we
omit it.

The next lemma is due to Qazi [12, Remark 1].

Lemma 5 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a polynomial with all

its zeros outside |z| < k, k ≥ 1, then

μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ ≤ 1. (58)
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Lemma 6 If b(z) =
∑m

v=0
wvz

v is a polynomial with all its zeros outside |z| < k,
k ≥ 1, then

‖b′‖ ≤ m

1 + k
‖b‖. (59)

Lemma 6 is due to Malik [9].

Lemma 7 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial with
no zero in |z| < k, k ≥ 1, then

‖b′‖ ≤ m

1 + s1
‖b‖ − m

km

(
1 − 1

1 + s1

)
m∗, (60)

where s1 is as defined in (11).

Lemma 7 is due to Dewan et al. [4].

Lemma 8 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial with
no zero in |z| < k, k ≥ 1, then

|wm | ≤ 1

1 + s1

(
‖b‖ − m∗s1

km

)
, (61)

where s1 is as defined in (11).

Proof (Proof of Lemma 8)

For a polynomial b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m − 1}, then we get

b′(z) =
∑m

v=μ
vwvz

v−1.

Using Cauchy’s inequality to b′(z) on |z| = 1, we have

∣∣∣∣ d
m−1

dzm−1
b′(z)

∣∣∣∣
z=0

≤ (m − 1)!max|z|=1
|b′(z)|. (62)

That is,
|mwm | ≤ ‖b′‖. (63)

Combining inequality (60) of Lemma 7 and (63), we have inequality (61) of Lemma 8
and this completes the proof of Lemma 8. �

Lemma 9 If b(z) =
∑m

v=0
wvz

v is a polynomial with no zero in |z| < k, k ≥ 1,
then

|wm | ≤ 1

1 + k
‖b‖. (64)
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Proof (Proof of Lemma 9) This lemma is proved in similar ways as that of Lemma 8,
but we apply inequality (59) of Lemma 6 in place of (60) of Lemma 7 andwe omit the
details �.

Lemma 10 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m}, is a polynomial with no
zero in |z| < k, k ≥ 1, then

s1 ≥ k, (65)

where s1 is as defined in (11).

Proof (Proof of Lemma 10) Let b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a
polynomial with no zero in |z| < k, k ≥ 1.
From inequality (58) of Lemma 5, we have

0 ≤ μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ ≤ 1. (66)

Since k ≥ 1 and μ = 1, 2, · · · , we have

k − kμ−1 ≤ kμ − 1. (67)

Multiplying (66) and (67) sidewise, we have

kμ

{
μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ−1 + 1

}
≥ μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ+1 + 1, (68)

which is equivalent to

s1 ≥ k,

and hence, Lemma 10 is obtained. �

Lemma 11 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a polynomial having
no zero in |z| < k, k ≥ 1, then

m

1 + s1
‖b‖ ≤ m

1 + k
‖b‖, (69)

where s1 is as defined in (11).

Lemma 11 is due to Qazi [12].
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4 Proof of the Theorem

Proof (Proof of Theorem 1) For each θ, 0 ≤ θ < 2π and 1 ≤ r ≤ L , we have

b(Leiθ) − b(eiθ) =
L∫

1

eiθb′(reiθ)dr, (70)

which implies

|b(Leiθ) − b(eiθ)| ≤
L∫

1

|b′(reiθ)|dr. (71)

Now, applying Lemma 1 to the polynomial b′(z) which is of degree m − 1, we
get

|b(Leiθ) − b(eiθ)| ≤
L∫

1

rm−1
{
1 − (‖b′‖ − m|wm |)(r − 1)

m|wm | + r‖b′‖
}

‖b′‖dr. (72)

Since by Lemma 4, in the integrand of (72), the quantity
{
1 − (‖b′‖−m|wm |)(r−1)

m|wm |+r‖b′‖
}

‖b′‖ is a

monotonically increasing function of ‖b′‖, hence using Lemma 7, we have for 0 ≤ θ < 2π,

|b(Leiθ) − b(eiθ)|

≤
L∫

1

rm−1

⎡
⎢⎢⎣1 −

{
m

1+s1
‖b‖ − m

km

(
1 − 1

1+s1

)
m∗ − m|wm |

}
(r − 1)

m|wm | + r

{
( m
1+s1

)‖b‖ − m
km

(
1 − 1

1+s1

)
m∗

}
⎤
⎥⎥⎦ (73)

×
{

m

1 + s1
‖b‖ − m

km

(
1 − 1

1 + s1

)
m∗

}
dr

=
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

} L∫
1

rm−1dr −
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

×
L∫

1

rm−1

⎡
⎣ ‖b‖ − m∗s1

km − (1 + s1)|wm |
(1 + s1)|wm | + r

{
‖b‖ − m∗s1

km

}
⎤
⎦ (r − 1)dr

= Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}
−

{
m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

× (1 − e)

L∫
1

(r − 1)rm−1

r + e
dr, (74)

where s1 is as defined in (11) and e = |wm |(1+s1)

‖b‖− m∗s1
km

.
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It is observed that
∫ L
1

(r−1)r N−1

r+e dr ≥ 0 and is a monotonically increasing function of N for
N ≤ m, therefore, we have

L∫
1

(r − 1)r N−1

r + e
dr ≤

L∫
1

(r − 1)rm−1

r + e
dr. (75)

We see from Lemma 8 that (1 − e) ≥ 0 and using inequality (75) to (74), we get for every N ,
N ≤ m,

|b(Leiθ) − b(eiθ)| ≤ Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}
−

{
m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

× (1 − e)

L∫
1

(r − 1)r N−1

r + e
dr. (76)

Using Lemma 2 (on replacing x by e) for the value of the integral in (76), we have,

|b(Leiθ) − b(eiθ)| ≤ Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}

−
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}
(1 − e) f (N , s1), (77)

where f (N , s1) is as defined in (12) and (13).
Now, putting the value of e and using the relation

|b(Leiθ)| ≤ |b(Leiθ) − b(eiθ)| + |b(eiθ)|
≤ |b(Leiθ) − b(eiθ)| + ‖b‖ (78)

in (77), we get

|b(Leiθ)| ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (N , s1), (79)

which is equivalent to inequality (10) and hence, Theorem 1 is obtained. �

5 Conclusions

We have improved and generalized inequality (5) proved by Hussain [8] by involving
min|z|=k |b(z)|. Moreover, through Remarks and Corollaries, we have discussed the
implications of Theorem 1 on other well-known results .
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