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Abstract Particle displacements and stresses are calculated for studying elastic
wave propagation in a transversely isotropic homogeneous medium. A mesh con-
sisting of rectangular elements is considered for discretization of two-dimensional
domain. The spectral element method is applied through the non-uniformly dis-
tributedGauss-Lobatto-Legendre nodes. The tensor product of highorderLagrangian
interpolation polynomials is used as shape functions. Lagrangian interpolation poly-
nomials along with Gauss-Lobatto-Legendre quadrature rule for numerical integra-
tion results in diagonalmassmatrixwhich leads to an efficient fully explicit solver for
time integration. Second order accurate, central differencemethod is applied for time
discretization. The displacements and stress components are exhibited through time
series at a point and snapshots in the domain. The influence of absorbing boundary
conditions is demonstrated on the displacement components at different times. The
validation of numerical solution is ensured through its comparison with known ana-
lytical solution for the two dimensional homogeneous transversely isotropic model.

Keywords Transversely isotropic · Wave propagation · Absorbing boundary
conditions · Spectral element method · Lagrange type shape function ·
Gauss-Lobatto-Legendre nodes

1 Introduction

The formulation of elastic wave problems is generally done under the assumption of
homogeneity, perfect elasticity and isotropy. The reason being the lesser parameters
in model description, simpler constitutive equations and easier solutions. But, in
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more realistic studies, the assumption on isotropy is relaxed to take anisotropy of
the medium into account. A transversely isotropic (TI) medium is considered to be a
simpler and the most common anisotropic model in wave propagation studies. Such
amedium possess a plane of isotropy, with normal along the single axis of symmetry.

The transient propagation of elastic waves is a reality in numerous fields of science
and technology including earthquake and exploration seismology. The governing
equations of motion are a system of partial differential equations with initial and/or
boundary conditions which are posed in infinite space-time domain. Analytic solu-
tions are difficult to find in these problems as they require application of advanced
mathematical techniques. Generally, the standard numerical methods, such as FEM,
are developed for solutions in bounded space-time domain. Thus, any model for the
bounded region of interest may involve the reflections of elastic waves at the bound-
aries. But, for these superimposed reflections, the actual solution for wave motion
becomes inaccurate. To tackle this situation numerically, an artificial boundary is con-
sidered to truncate the unbounded domain of the problem. This imagined boundary
is placed at some distance away from the region of the interest. To make the prob-
lem well posed, an absorbing boundary condition (ABC) is devised at the truncating
boundary, which can absorb the incident waves. The numerical solution obtained
for the bounded domain may serve as the solution for original unbounded domain,
provided appropriate boundary conditions are applied on truncating boundary.

For solving the equations of elastodynamics numerically, the finite element
method (FEM) is a prominently used method. This technique has been used widely
in elastic wave propagation modeling [8, 9, 17]. Although conventional FEM can
simulate elastic wave propagation in arbitrary geometry domain, its cost of computa-
tion becomes high. Hence, in recent years, researchers have tried to implement new
variants of FEM.

Spectral Element Method (SEM) was first proposed by Patera [10] for the model-
ing of liquid flow in computational fluid dynamics. This method is a variant of FEM
which uses specific high order shape functions. The idea behind its development was
to combine the accuracy and rapid convergence of Pseudo Spectral Method (PSM)
with geometrical flexibility of FEM. The main advantage of SEM over FEM is its
high accuracy of approximation of solution through a smaller number of elements.
Interpolating polynomial was taken as Chebychev polynomial in Patera [10]. Maday
and Patera [11] developed SEM further by introducing Lagrange polynomial in com-
bination of Gauss-Lobatto-Legendre (GLL) quadrature rule, which led to a diagonal
mass matrix.

The SEM has been used for the study of seismic wave propagation as well. Pri-
olo and Seriani [13] used SEM with Chebychev polynomials for simulation of one
dimensional wave propagation. The same technique has been extended to study the
propagation of elastic waves in 2D and 3D media for different geological applica-
tions ([6, 14, 15]). Basabe [5] used Lagrange interpolation polynomial to apply SEM
for the simulation of wave propagation in 2D isotropic elastic media. Seriani et al.
[16] studied the propagation of elastic waves in 2D transversely isotropic medium
with vertical symmetry axis using Chebychev SEM. But, this Chebychev formula-
tion leads to a non-diagonal mass matrix, whose inversion takes a lot of computation
time.
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In the present work, SEM has been used to study the two dimensional elastic wave
propagation in transversely isotropic media. The higher order Lagrange interpolating
polynomial in combination with GLL nodes has been used as shape function. This
choice yields a diagonal mass matrix due to orthogonality of approximation func-
tions. It is easier to find inverse of the diagonal matrix as one has to just reciprocate
the diagonal elements. Further, the ability to store elements of diagonal mass matrix
as a one-dimensional vector leads to reduction in memory requirements. Thus, diag-
onal mass matrix results in a very efficient fully explicit scheme for integration over
time. This is a significant advantage over classical FEM. The GLL quadrature rule
for numerical integration is used to evaluate entries of elemental mass and stiffness
matrix. The unbounded domain is simulated by introducing artificial boundaries on
which absorbing conditions are enforced. The accuracy of method is demonstrated
graphically by comparing numerical solution with analytical solution for a homoge-
neous transversely isotropic medium as mentioned in Carcione [12], Payton [2].

2 Elastic Moduli in Transversely Isotropic Material

The elastic properties of a medium are represented by its elastic stiffness tensor,
ci jkl . In the linear elasticity, this stiffness tensor relates the components of stress
tensor (σi j ) and strain tensor (εkl). The relevant relations are given according to the
generalized Hooke’s law as

σi j = ci jklεkl, (i, j = 1, 2, 3) . (1)

The stiffness tensor obey the symmetry relations ci jkl = c jikl = ci jlk = ckli j ; (i, j, k,
l = 1, 2, 3). Consequently, the number of independent components in this ten-
sor reduce to 21, which are arranged in 6 × 6 symmetric matrix {CI J }, (I, J =
1, 2..., 6). The Kronecker tensor (δi j ) is used to relate the two set of indices as I =
iδi j + (9 − i − j)(1 − δi j ), J = kδkl + (9 − k − l)(1 − δkl); (i, j, k, l = 1, 2, 3).

In an anisotropic medium, there are 21 independent elastic constants. A trans-
versely isotropic (TI) medium has only 5 independent elastic constants. The consti-
tutive relations for a transversely isotropic elastic material, with axis of symmetry
lying along vertical z axis are written as Lubarda [7]
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where C66 = 1
2 (C11 − C12) and CI J is as defined above.

For two dimensional transversely isotropic elastic solid in x-z plane with symmetry
axis lying along the vertical z axis, elastic stiffness matrix C can be written as

C =
⎛

⎝
C11 C13 0
C13 C33 0
0 0 C44

⎞

⎠ . (3)

In two dimensional case, number of independent elastic constants reduces to 4.

3 Mathematical Formulation

3.1 Elastic Wave Equation in Two Dimensions
in a Transversely Isotropic Medium

The governing equations for a dynamical system in the presence of external force
are given by Achenbach [1] as

σi j, j + fi = ρüi in Ω × (0, T ] (4)

where Ω ⊂ R2 is the physical domain with boundary �, (0, T ] is the time domain
σi j is the stress tensor, ρ is density of medium, fi = fi (x, t) is the force vec-
tor component and ui is displacement vector component. The comma preceding an
index in the subscript denotes derivative w.r.t. space partially and over dot represents
partial time differentiation. Repetition of index means sum over that index following
Einstein convention. In orthogonal Cartesian coordinate system, displacement vec-
tor (ux , uz) at a point (x, z) defines the motion of material particle. Using general
definition of divergence of a tensor field S as ∇.S = ∂Ski

∂xk
ei , the expression σi j, j in

(4) can be expressed as

[
∂x 0 ∂z

0 ∂z ∂x

]
⎡

⎣
σxx

σzz

σxz

⎤

⎦ = DTσ (5)

where D =
⎡

⎣
∂x 0
0 ∂z

∂z ∂x

⎤

⎦ is the differential operator.

Components of strain tensor are related to displacement field as

ε = Du . (6)
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Stresses and strains are related according to generalised Hooke’s law

σ = Cε (7)

where C is elastic stiffness matrix as defined by (3). σ = {σxx ,σzz,σxz}T , ε =
{εxx , εzz, 2εxz}T are the stress and strain vectors respectively, defined through usual
components σi j of stress and εi j of strain tensors. Equations of motion (4) can be
written in vector form as

DTσ + f = ρü . (8)

3.2 SEM Formulation

The first step in the SEM formulation is to obtain the weak formulation. For this,
the product of governing equations and the test function is integrated over the space
domain Ω . Integration by parts is performed and Gauss divergence theorem is used
to reduce the order of the spatial derivatives. The advantage of the weak formulation
is that the free surface boundary conditions are naturally satisfied. In case of free
surface boundary conditions, the weak formulation of (8) is obtained by introducing
the space of admissible displacement field and the space of admissible test function
respectively as

X = {φ : Ω × (0, T ] → R2|φ ∈ H 1(Ω),∀t ∈ (0, T ]}

and
δX = {ψ : Ω → R2|ψ ∈ H 1(Ω)}

where H 1 (Ω) is the space of functions, which together with their first order partial
derivatives, are square integrable over the domain Ω .

We search for u ∈ X such that for any test function w ∈ δX and ∀t ∈ (0, T ], we
have

∂t t (w, ρu)Ω + a(w,u)Ω = (w, f)Ω . (9)

The symbols a(., .)Ω , and (., .)Ω are defined as

a(w,u)Ω =
∫

Ω

wTDTσdΩ =
∫

Ω

(Dw)TCεdΩ =
∫

Ω

(Dw)TCDudΩ (10)

(w, f)Ω =
∫

Ω

wT fdΩ (11)
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(w, ρu)Ω =
∫

Ω

wT ρudΩ . (12)

3.3 Discretization in Space

The space discretization of (9) is performed by approximating displacement field in a
finite-dimensional subspaceXh = Xh × Xh of original spaceX. This approximation
transforms (9) into a system of ordinary differential equations.

Approximating u as uh ∈ Xh given by linear combination

uh (x, z, t) =
[
Ux

j (t)φ j (x, z)
Uz

j (t)φ j (x, z)

]

. (13)

where Ux
j (t) and Uz

j (t) are SEM approximations coefficients in horizontal and
vertical displacements respectively.φ j denote shape functions for each node position.

Substituting w = (φi , 0)T for the test function, (9) can be simplified as

∂t t

∫

Ω

ρ[φi , 0]
[
Uj

x (t)φ j

U j
z(t)φ j

]

dΩ+

∫

Ω

[
∂xφi 0 ∂zφi

]

⎡

⎣
C11 C13 0
C13 C33 0
0 0 C44

⎤

⎦

⎡

⎣
∂x 0
0 ∂z

∂z ∂x

⎤

⎦

[
Ux

j (t)φ j

U z
j (t)φ j

]

dΩ

=
∫

Ω

[φi , 0]

[
fx
fz

]

dΩ . (14)

Simplifying it further, we get equation of the form

Mi j∂t tU
x
j + K 1

i jU
x
j + K 2

i jU
z
j = Fx

i (15)

where

Mi j =
∫

Ω

ρφiφ j dxdz (16)

K 1
i j =

∫

Ω

(
C11φi,xφ j,x + C44φi,zφ j,z

)
dxdz (17)
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K 2
i j =

∫

Ω

(
C13φi,xφ j,z + C44φi,zφ j,x

)
dxdz (18)

Fx
i =

∫

Ω

fxφi dxdz . (19)

Similarly, on substituting w = (0,φi )
T in (9), we get one more system of equations

Mi j∂t tU
z
j + K 3

i jU
x
j + K 4

i jU
z
j = Fz

i (20)

where

K 3
i j =

∫

Ω

(
C13φi,zφ j,x + C44φi,xφ j,z

)
dxdz (21)

K 4
i j =

∫

Ω

(
C33φi,zφ j,z + C44φi,xφ j,x

)
dxdz (22)

Fz
i =

∫

Ω

fzφi dxdz . (23)

Equations (15) and (20) are combined in block matrix form as

A∂t tU + BU = F, U = (
Ux (t) ,Uz (t)

)T
(24)

where A =
[
M 0
0 M

]

is the assembled mass matrix.

B =
[
K1 K2

K3 K4

]

is the assembled stiffness matrix.

F = (Fx,Fz)T is the global force vector.
These assembled matrices and vector are formed by assembly of all elemental

level matrices and vectors respectively. Equation (24) is in semi-discretized form
wherein partial differential equation has been discretized with respect to space only.

3.4 Discretization in Time

The equation of motion in semi-discretized form is expressed as

AÜ + BU = F (25)
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along with the initial conditions
U (0) = U0 = 0
U̇ (0) = U̇0 = 0
where the vectorU represents the values of approximate solutionuh at all global nodes
for each degree of freedom. Equation (25) is a second order ordinary differential
equation in time. Explicit central difference method or implicit Newmark method
are mostly used methods for time discretization. The choice of Lagrange polynomial
at GLL collocation points as shape function along with GLL quadrature rule results
in diagonal mass matrix A. Due to diagonal mass matrix, explicit time integration
methods are most effective because these methods become truely explicit. That is
a system of equations is not required to be solved for each time step. Inverse of
mass matrix can be calculated easily which makes computational algorithm less
expensive. Explicit time integration scheme used here is central difference method.
This method is second order accurate and conditionally stable. Time step stability
limit of this method is highest among all second order methods. Time discretization
of (25) is obtained by discretizing the time variable t in [0, T ] as tn = n�t ,�t = T

NT
,

where NT is the number of time steps. At time tn , solution U (tn) is simply denoted
as Un .

In central difference method, we write

Ün = Un+1 − 2Un + Un−1

(�t)2
. (26)

Substituting the value in (25) at time t = tn

A
[
Un+1 − 2Un + Un−1

(�t)2

]

+ BUn = Fn

AUn+1 = 2AUn + (�t)2(Fn − BUn) − AUn−1 .

Substituting A, B, Fn , Un and simplifying

Un+1
x = 2Un

x − Un−1
x + (�t)2[Fn

x − K 1Un
x − K 2Un

z ]
M

(27)

Un+1
z = 2Un

z − Un−1
z + (�t)2[Fn

z − K 3Un
x − K 4Un

z ]
M

. (28)

Displacements at present time step in x and z directions are calculated from
displacements at two previous time steps using (27) and (28) respectively. The dis-
placements thus calculated are used to compute the strain components through (6).
These strains are further used along with the material elastic moduli to solve for
stress components using (7).
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4 Computational Algorithm

4.1 Domain Decomposition and Mapping of Geometry

Physical domain is divided into non-overlapping elementsΩe, e = 1, 2 . . . ne, where
ne is the total number of elements. For a 2D problem, the elements are quadrilaterals.
The integrals of the weak form (9) are evaluated separately for each element domain
Ωe. The computation of the integral over an element is simplified by means of an
invertible transformation between the general element Ωe and reference element Ω̂ .
The reference element is expressed by natural coordinates (ξ, η) where 0 ≤ ξ ≤ 1
and 0 ≤ η ≤ 1. The element geometry is mapped from natural coordinates (ξ, η) to
physical coordinates (x, z). Tensor product of linear Lagrange polynomial has been
used for the purpose of this mapping. Four bilinear Lagrange type functions used in
this mapping for the quadrilateral element are

ψ1 = (1 − ξ) (1 − η) , ψ2 = ξ (1 − η) , ψ3 = (1 − ξ) η, ψ4 = ξη .

(29)
The points on reference domain and physical domain are related as follows

x(ξ, η) =
4∑

i=1

ψi (ξ, η)xei , z(ξ, η) =
4∑

i=1

ψi (ξ, η)zei . (30)

where xei , zei are x and z coordinates respectively of local node i of element e.

4.2 Interpolation of Field Variables Using Shape Functions

In SEM, higher order Lagrange interpolation polynomials are used for expressing
field variables on the elements. Let {ξi }ki=0 be the nodes on ξ side of the reference
square Ω̂ with ξ0 = 0 and ξk = 1 and {l j }kj=0 be the interpolating Lagrange polyno-
mial with the condition l j (ξi ) = δi j , where δi j is the Kronecker’s delta. Lagrange
polynomial for each ξi is defined as

li (ξ) = (ξ − ξ0) . . . (ξ − ξi−1)(ξ − ξi+1) . . . (ξ − ξk)

(ξi − ξ0) . . . (ξi − ξi−1)(ξi − ξi+1) . . . (ξi − ξk)
, i = 0, 1.., k . (31)

Using polynomials (31), the shape function for each node position in unit square
element is given by

φq(ξ, η) = li (ξ)l j (η) , (i, j = 0, 1, ...k) (32)

where q = (k + 1) j + i . Range of q = 0, 1, . . . (k + 1)2 − 1.
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These shape functions are referred to as tensor product Lagrange shape functions. A
scalar function f on a general elementΩe is approximated by these shape functions as

f (x(ξ, η)) =
k∑

i, j=0

li (ξ)l j (η) fi j . (33)

The horizontal and vertical displacements throughout the element are interpolated
using shape functions and nodal displacements as

ux =
(k+1)2−1∑

i=0

φi (ξ, η) uex,i , uz =
(k+1)2−1∑

i=0

φi (ξ, η) uez,i . (34)

Tensor product of kth order Lagrange polynomial is taken as shape function φi .
uex,i , uez,i are x and z components of displacement respectively of local node i of
element e.

In SEM, the collocation points ξi (i = 0, 1..., k), which are interpolated by
Lagrange polynomials of degree k are selected as the (k + 1) Gauss-Lobatto-
Legendre (GLL) points. The GLL points are defined as the roots of the equation

(1 − x2)P ′
k(x) = 0 (35)

where P ′
k(x) is the first derivative of kth order Legendre polynomial. This choice of

interpolation points is convenient because it allows one to enforce continuity of field
variables across the element boundaries.

4.3 Computation of Mass and Stiffness Matrices

The evaluation of entries of stiffnessmatrices in Eqs. (17), (18), (21) and (22) requires
the differentiation of shape functions w.r.t physical coordinates. Since, shape func-
tions are expressed in terms of natural coordinates, their derivatives w.r.t. physical
coordinates x and z must be transformed to derivative w.r.t. natural coordinates ξ and
η. The transformation of derivatives from physical coordinate system to natural coor-
dinate system is obtained by chain rule of partial differentiation which is expressible
in matrix form as Carey and Oden [3]

[
∂
∂ξ
∂
∂η

]

=
[

∂x
∂ξ

∂z
∂ξ

∂x
∂η

∂z
∂η

][
∂
∂x
∂
∂z

]

= J

[
∂
∂x
∂
∂z

]

(36)

where J is the two dimensional matrix that denotes the mapping from physical
coordinates (x, z) to the natural coordinates (ξ, η). The determinant of matrix J is
referred to as the Jacobian and is used in transforming the integrals as follows
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∫ ∫

dxdz =
∫ ∫

det (J ) dξdη.

Using (30), we have ∂x
∂ξ

= ∑4
i=1

∂ψi

∂ξ
xei . Similar expressions are derived to get the

entries of matrix J . Inverse of transformation (36) may be written as

[
∂
∂x
∂
∂z

]

= J−1

[
∂
∂ξ
∂
∂η

]

=
[
J11

∗ J12
∗

J21∗ J22∗
][ ∂

∂ξ
∂
∂η

]

. (37)

In (37), matrix with starred entries represents inverse of matrix J which can be com-
puted easily. With the help of (37), we can find derivatives of shape functions w.r.t
physical coordinates in terms of derivatives w.r.t. natural coordinates. Entries of mass
matrix in (16) are computed as

Mi j =
∫

Ω

ρφiφ j dΩ =
ne∑

e=1

∫

Ωe

ρφiφ j dxdz =
ne∑

e=1

1∫

0

1∫

0

ρφiφ j det (J ) dξdη . (38)

For the calculation of entries of element matrices, integration has been performed
numerically using Gauss-Lobatto-Legendre(GLL) quadrature rule for numerical
integration. In GLL quadrature, boundary points of the interval are also included.
GLL quadrature rule on unit interval [0, 1] has been applied for calculation of ele-
mentary integrals.

5 Absorbing Boundary Condition for Unbounded Domain

The accurate modeling of seismic wave propagation requires truncation of the model
in finite domain. A proper boundary condition needs to be applied at the artificial
boundary for elimination of the reflections from the edges. Large number of tech-
niques are developed in order to find a suitable boundary condition which can effec-
tively eliminate reflections from the truncating boundary. Cerjan et al. [4] proposed
to eliminate the reflected wave by setting the damping boundary layer outside the
working area. This type of boundary condition works on the principle of gradually
damping of waves in the neighbourhood of truncating boundary. In this method,
wave amplitude is multiplied by an exponential function in the thin strip in the vicin-
ity of artificial boundary, known as Cerjan sponge boundary layer. This technique
decreases the amplitude of wave in the desired narrow region and thus eliminates
reflections. The method works for large range of incident angles and different geo-
logical models. Due to simple application technique, this method is often used for
numerical simulations [4]. We use slight improvement of Cerjan boundary condition
based on Tian et al. [18].
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The nodal displacements at (n + 1)th time step is generated with the help of dis-
placements at nth and (n − 1)th time steps using (27) and (28). To damp the wave in
the damping area using this absorbing condition, the displacement at (n + 1)th time
step, Un+1, is replaced by Ũn+1 which can be expressed as

Ũn+1 = σ(ωUn+1 + (1 − ω)Un)

where ω = exp(−α( i
N )2) , σ = exp(−β( i

N )2).
Here, N is the damping strip width. Generally, width of damping strip is taken as

20 node for wave propagation problems. The parameter i denotes node positioning
inside the damping strip, starting from i=1 in the interior of strip and increasing
outwards.

6 Discussion of Numerical Result

We shall discuss the results for bounded and unbounded domains.

6.1 Bounded Domain

For bounded domain, results are presented for the wave propagation simulation
through a sample of Apatite. This anisotropic material has transverse isotropy with
z axis being the axis of symmetry and with the following elastic moduli
C11 = 16.7, C13 = 6.6, C33 = 14.0, C44 = 6.63, ρ = 3200.

Elasticmoduli are in the unit ofGPa andhence should bemultiplied by1010N/m2.
Density(ρ) is in the units of kg/m3.

Two dimensional domain is taken as a square of size 33cm × 33cm discretized
with a grid of 20 × 20 elements in x − z plane. This is a bounded and connected
domain with boundary conditions applied on boundary �. In the present paper, free
surface boundary conditions has been considered. The order of SEM has been taken
as 7.

Motion is excited by z directional point force f (x, t) = g (x) h (t) applied at the
center of domain. The time history h(t) of the source function is defined by

h(t) = e−0.5 f02(t−t0)
2

cosπ f0(t − t0) (39)

where t0 = 6µs and f0 = 500kHz.
The source function is implemented as a 2D Gaussian in space.
Absorbing boundary conditions are not used for the bounded domain case because

simulation is stopped before propagating wave reaches the mesh limits. Results are
presented in the form of snapshots, which represent the wave field at a particular
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Fig. 1 Snapshot of x component of displacement at (a) t = 10 µs, (b) t = 20 μs and (c) t = 30 µ

instant of time. The standard geophysical package Seismic Unix is used for visu-
alization of snapshots. Figures1 and 2 show snapshots of the x and z components
of displacements at specified times . As it can be seen, wave front shows charac-
teristics predicted by wave front curves as explained in [12]. Point K (16.5, 21.4)
is chosen as observation point to show variation of displacement components and
stress components w.r.t. time. Time history of horizontal displacement ux and verti-
cal displacement uz at point K is plotted in Fig. 3. Figure4 shows variation of stress
components w.r.t time at point K.

Figure5 shows numerical and analytical solution on the same scale. Analytical
solution along symmetry axis for a homogeneous transversely isotropic solid is taken
from [12] and is given in Appendix. Receiver is located at distance 4.9 cm from
source position along symmetry axis. The figure demonstrate exact overlapping of
the numerical and analytical solutions. Total time for simulation is taken to be 40 μ s
and number of time steps are taken as 1250 for the purpose of comparison.

6.2 For Unbounded Domain

For finding the numerical solution in the unbounded domain, we truncate the
unbounded problem domain to a finite computational domain. We choose 100 cm ×
100 cm as truncated domain discretized with a grid of 60 × 60 elements in x − z
plane. Motion is exited by the same z directional point source as in case of bounded

Fig. 2 Snapshot of z component of displacement at (a) t = 10 µs, (b) t = 20 µs and (c) t = 30 µs
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Fig. 3 Time histories of the horizontal and vertical displacements at point K(16.5, 21.4)
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Fig. 4 Time histories of the stress components at point K(16.5, 21.4)

domain applied at the center. Receiver is placed at point (50, 54.9) along symmetry
axis. Total time for simulation is taken to be 160µ s and number of time steps are
taken as 4000 for the purpose of simulation. Simulation is done for larger time period
to demonstrate the effect of absorbing boundary conditions on the reflections at arti-
ficial boundary. In Fig. 6, it can be seen that reflections from the edges are very much
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Fig. 5 Comparison between analytical and numerical solution along symmetry axis at a distance
of 4.9cm from source position
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Fig. 6 Comparison between analytical and numerical solutions (with andwithout absorbing bound-
ary conditions) along symmetry axis at a distance of 4.9cm from source position

reduced in numerical solution with absorbing boundary than in case of numerical
solution without absorbing boundary. Solution with the present method of absorbing
boundary conditions is in good agreement with the analytical solution for unbounded
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Fig. 7 Snapshot of x component of displacement without absorbing boundary at (a) t = 100 µs
and (b) t = 120 µs

Fig. 8 Snapshot of x component of displacement with absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

domain. Figure7 shows snapshots of the x components of displacements at specified
times without applying any absorbing boundary condition. The same components
with the application of absorbing boundary condition are shown in Fig. 8. It can be
seen that spurious boundary reflections are considerably reduced with application
of absorbing boundary condition. The comparison for z component of displace-
ment before and after applying absorbing boundary conditions can be seen from
Figs. 9 and 10.
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Fig. 9 Snapshot of z component of displacement without absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

Fig. 10 Snapshot of z component of displacement with absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

7 Conclusion

In this paper, two dimensional elastic wave propagation is modeled in homogeneous
transversely isotropic media by spectral element method. Snapshots generated by
algorithm are in good agreement with predicted wavefront curves for the trans-
versely isotropic media. Accuracy of algorithm has been established by comparing it
with analytical solution along symmetry axis in homogeneous transversely isotropic
media.Absorbing boundary conditions are used to reduce the reflections and simulate
wave propagation in unbounded domain more accurately.

Present algorithm may be extended to problems involving wave propagation
through heterogeneous media where elastic constants vary with position of particles
in domain. Transverse isotropy may be extended to orthotropy or general anisotropy.
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Appendix

Analytic solution for a homogeneous transversely isotropic material
Two dimensional Green’s function uk satisfies following equation of motion in x-z
plane:

ci jkl
∂2uk

∂xl∂x j
+ fi = ρ∂2ui

∂t2 , i, j, k, l = 1, 2

where fi is the impulsive body force.
We define following dimensionless parameters

α = C33
C44

, β = C11
C44

γ = 1 + αβ −
(
C13
C44

+ 1
)2

To simplify notations in the solution, dimensionless variables are defined as

z = z
Vs t

, where Vs =
√

C44
ρ

Following is the analytic solution for class (3) of transversely isotropic materials
(according to the classification done by Payton [12]) along the symmetry axis (z
axis).

For this particular class of TI materials, γ < β + 1 and γ2 − 4αβ < 0

Case I: when impulsive body force f is horizontal

f = (1, 0)δ(x)δ(z)δ(t)

where δ denotes Dirac delta function.
Response to Horizontal body force is given by

uz = 0 and ux =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ t ≤ tp
F1(z̄) tp ≤ t ≤ ts
0 ts ≤ t ≤ t1

F3(z̄) t > t1
where

F1(z̄) = 1
πτ

[
1
4β − 2β(α−z̄2)−{γ−(β+1)z̄2}

4β
√
D

] [−{γ−(β+1)z̄2}+√
D

−2(α−z̄2)(1−z̄2)

] 1
2

F3(z̄) = 1
2πτ

[
1√
β

+
(

α−z̄2

1−z̄2

) 1
2

] [{
γ − (β + 1)z̄2

} + 2
{
β(α − z̄2)(1 − z̄2)

} 1
2

]− 1
2

Here, ts = z/(C44/ρ)
1
2 , tp = z/(C33/ρ)

1
2 t1 =ts/z̄1

The quantity D(z̄) and z̄1 are given by

D(z̄) = {
γ − (β + 1)z̄2

}2 − 4β(α − z̄2)(1 − z̄2) and

z̄1 =
[
γ(β + 1) − 2β(α + 1) + 2{β(1 + αβ − γ)(α + β − γ)} 1

2

] 1
2
/(β − 1)

Case II: when impulsive body force f is vertical

f = (0, 1)δ(x)δ(z)δ(t)
Solution in this case is
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ux = 0 and uz =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ t ≤ tp
G1(z̄) tp ≤ t ≤ ts
0 ts ≤ t ≤ t1

G3(z̄) t > t1

with

G1(z̄) = 1
πτ

[
1
4 − 2(1−z̄2)−{γ−(β+1)z̄2}

4
√
D

] [−{γ−(β+1)z̄2}+√
D

−2(α−z̄2)(1−z̄2)

] 1
2

G3(z̄) = 1
2πτ

[
1√
β

+
(

1−z̄2

α−z̄2

) 1
2

] [{
γ − (β + 1)z̄2

} + 2
{
β(α − z̄2)(1 − z̄2)

} 1
2

]− 1
2

All the quantities are defined as above in case I.
For the comparison of analytical and numerical solution, the above free-space

Green’s function is convolved with the source time function h(t) given by (39).
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