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Abstract The interaction of surface and interface waves with a thin horizontal plate
submerged in the lower layer of a two-layer fluid is studied under linearised theory
of water waves. The associated boundary value problem is solved here by Fourier
integral transform by reducing it to an integral equation involving the potential dif-
ference function across the plate. Application of multi-term Galerkin method to the
solution of the integral equation leads to a simple, rapidly convergent numerical
scheme and suitable expressions for different hydrodynamic quantities of interest.
Numerical results for the reflection coefficients and the hydrodynamic force on the
plate are presented to study the effect of different physical parameters. The present
method is verified by recovering the published numerical results for a limiting case
and through an energy balance relation.
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1 Introduction

The study of water wave interaction with obstacles has sparked enormous attention
for a variety of applications in coastal and marine environments. Also, obtaining a
less cost-effective clean renewable energy by extracting energy from ocean waves
has received considerable attention from researchers. One of the best developments
in extracting wave energy is to construct a line of submerged bodies that would act
like a lens and focus the diverging waves to converge waves. In Norway, they have
developed many such constructions like shore-based horizontal tapered channels,
oscillating water columns, phase controlled wave power buoys, etc. McIver [1] con-
sidered a horizontal flat plate moored to seabed which would act like such a lens,
while Mehlum [2] considered a circular cylinder. Using Fourier integral transform
together with a Galerkin method, Porter [3] investigated the oblique water wave
interaction with a horizontal thin plate submerged in a single layer fluid.

In the study of the propagation of water waves in a two-layer fluid having a free
upper surface in the upper layer, Lamb [4] established that for a given frequency,
there exist two linearwave systems of differentwavenumbers. These twowavemodes
mainly propagate along the free surface and the interface of the fluids. As a result,
if wave fields interact with obstacles, some transformation of wave energy from one
mode to another may occur. This makes the wave interaction problems in a two-layer
fluid more interesting. Linton and McIver [5] developed the linear scattering theory
for two-dimensional wave motion in a two-layer fluid comprised of an infinite lower
layer and a finite upper layer with a free surface to investigate the problem of wave
scattering by a horizontal circular cylinder with the help of multipole expansion
method. Using hypersingular integral equations method, Dhillon et al. [6] and Islam
and Gayen [7] investigated the scattering of water waves by a thin vertical and
inclined plate in a two-layer fluid, respectively. Based on themethod of eigenfunction
expansion, Medina-Rodríguez and Silva [8] considered two thick horizontal plates
submerged in a two-layer fluid and analysed the reflection energies of interface and
surface waves.

In the present article, a thin horizontal rigid plate submerged in the lower layer of a
two-layer-fluid is proposed and investigated in the context of linear potential theory.
Here, both the fluids are considered to be of finite depth. The coupled boundary
value problem is solved here by Fourier integral transform to obtain an integral
equation involving the unknown potential difference function across the plate. Then
using Galerkin method we find this potential difference function numerically and
with this solution, we compute the different physical quantities. The correctness of
the present analysis is established by checking the energy identity relation and by
comparing the obtained numerical results for limiting case with one of the previous
results available in the literature. New results are presented graphically illustrating
the effects of various parameters on the hydrodynamic quantities.
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2 Formulation of the Problem

Figure1 depicts the geometry of a horizontal plate Γ submerged in the bottom layer
of a two-layer fluid. The depths of the upper and lower layer fluids are h and H ,
respectively. A Cartesian coordinate system is considered in which z = 0 represents
the rest common interface of the two fluids, z = −h represents the free surface,
and z-axis is measured vertically downwards from the undisturbed interface. Let the
plate be submerged at a depth d from the undisturbed interface of the two fluids
and extends horizontally from −b to b. Assuming time harmonic incident waves
of angular frequency σ making an angle θ with the positive x-axis, the motion
in the upper layer fluid (of density ρ1) and lower layer fluid (of density ρ2) can
be represented by Re

{
φ1(x, z)e−iστeiνy

}
and Re

{
φ2(x, z)e−iστeiνy

}
respectively,

where τ indicates the time and ν is the wavenumber along the y direction. The
functions φ j (x, z) satisfy

(∇2 − ν2)φ j (x, z) = 0, in the respective fluid region. (1)

Linearized free surface, interface and the bottom boundary conditions are

Kφ1 + φ1z = 0 on z = −h, (2)

φ1z = φ2z on z = 0, (3)

s(Kφ1 + φ1z) = Kφ2 + φ2z on z = 0, (4)

φ2z = 0 on z = H , (5)

where s = ρ1/ρ2, K = σ2/g , g being the acceleration due to gravity.
The boundary condition on the horizontal plate is

φ2z(x, d
±) = 0, | x |< b, (6)

φ2(x, d
+) − φ2(x, d

−) = P(x), | x |< b. (7)

Fig. 1 Schematic diagram
for horizontal plate
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In a two-layer fluid, the progressive waves propagating at the free surface and the
interface can be expressed by

f1(v, z)e±i(v2−ν2)1/2x (−h < z < 0), f2(v, z)e±i(v2−ν2)1/2x (0 < z < H)

with

f1(v, z) = sinh vH

K cosh vh − v sinh vh
[ v cosh v(h + z) − K sinh v(h + z)] ,

f2(v, z) = cosh v(H − z)

where v is real, positive and satisfies the dispersion equation

�(v) ≡ (1 − s)v2 + K 2(s + coth vh coth vH) − vK (coth vh + coth vH) = 0.
(8)

Equation (8) has exactly two positive real roots, m and M (K < m < M). Thus,
there exist two wave systems with two different wavenumbers. As a result, if a wave
train of mode m is obliquely incident on the horizontal plate at angle θ with the
positive x-axis, the far-field behaviours of φ j ( j = 1, 2) are given by

φ j (x, z) →
{

φI
jm(x, z) + rmφI

jm(−x, z) + RmφI
jM(−x, z) as x → −∞,

tmφI
jm(x, z) + TmφI

jM(x, z) as x → ∞,
(9)

where
φI

jv(x, z) = f j (v, z)ei(v
2−ν2)1/2x . (10)

In (9), for an obliquely incident wave of modem, the unknowns rm and Rm repre-
sent the amplitudes of reflected waves associated with modes m and M respectively,
while tm and Tm represent the amplitude of transmitted waves associated withmodes
m and M respectively. Similarly, for an incident wave of mode M with incident wave
angle θ < sin−1(m/M) the far-field behaviours of φ j ( j = 1, 2) can be expressed as

φ j (x, z) →
{

φI
jM(x, z) + RMφI

jM(−x, z) + r MφI
jm(−x, z) as x → −∞,

T MφI
jM(x, z) + t MφI

jm(x, z) as x → ∞.

(11)
Here, for an obliquely incident wave of mode M , the unknowns r M and RM repre-

sent the amplitudes of reflected waves associated with modes m and M respectively,
while t M and T M denote the amplitudes of transmitted waves associated with modes
m and M respectively.



Propagation of Water Waves in the Presence of a Horizontal … 431

3 Method of Solution

Let a wave train of modem making an angle θ(0 ≤ θ ≤ π/2)with the positive x-axis
be incident on the plate. Then, we must have ν = m sin θ.

Now, we define the Fourier transform of the scattered potential function by

φ j (k, z) =
∫ ∞

−∞

(
φ j (x, z) − φI

jm(x, z)
)
e−ikxdx, (12)

with the inverse

φ j (x, z) = φI
jm(x, z) + 1

2π

∫ ∞

−∞
φ j (k, z)e

ikxdk, (13)

where the integration contour in the inverse transform will be defined later by incor-
porating the far-field conditions.

Then, applying (12) to (1)–(7) produces

(
d2

dz2
− β2)φ j = 0, j = 1, 2, (14)

Kφ1 + φ1z = 0 on z = −h, (15)

φ1z = φ2z on z = 0, (16)

s(Kφ1 + φ1z) = Kφ2 + φ2z on z = 0, (17)

φ2z = 0 on z = H, (18)

φ2z(k, d
+) = φ2z(k, d

−), (19)

φ2(k, d
+) − φ2(k, d

−) =
∫ b

−b
P(x)e−ikxdx ≡ P(k), (20)

where β2 = k2 + ν2.
Solving (14) subjected to the boundary conditions (15)–(18), we get

φ1(k, z) = K P(k) sinh β(H − d)[K sinh β(h + z) − β cosh β(h + z)]
sinh βh sinh βH�(β)

,−h < z < 0, (21)

φ2(k, z) =
{

P(k) sinh β(H−d)[sinh βh cosh βz((1−s)β2+K 2s)−Kβ cosh β(h+z)+K 2 cosh βh sinh βz]
sinh βh sinh βH�(β)

, 0 < z < d,

P(k) cosh β(H−z)[sinh βh cosh βd((s−1)β2−K 2s)+Kβ sinh β(h+d)−K 2 cosh βh cosh βd]
sinh βh sinh βH�(β)

, d < z < H.
(22)

Taking inverse transforms of the representations (21) in (−h < y < 0) and (22)
in 0 < y < d, we get
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φ1(x, z) = φI
1m (x, z)

+ 1

2π

∫ ∞
−∞

K P(k) sinh β(H − d)[K sinh β(h + z) − β cosh β(h + z)]
sinh βh sinh βH�(β)

eikxdk, (23)

φ2(x, z) = φI
2m (x, z) + 1

2π

∫ ∞
−∞

P(k)H(z, β)eikxdk, (24)

where

H(z, β) = sinh β(H − d)[sinh βh cosh βz((1 − s)β2 + K 2s) − Kβ cosh β(h + z) + K 2 cosh βh sinh βz]
sinh βh sinh βH�(β)

. (25)

In order to obtain the reflection and transmission coefficients, we find the far-field
form for φ1(x, z). There are poles on the real k-axis at k = ±α1 and k = ±α2 where
α1 = m cos θ, α2 =

√
M2 − m2 sin2 θ. Thus, in order to meet the radiation con-

dition that φ1 − φI
1m is outgoing, the contour of the integration in equation (23)

is taken to pass under the poles at k = α1,α2 and over the poles at k = −α1,−α2.
Thus, capturing the residues at the poles k = ±α1,±α2, the contour can be deformed
into either the upper-half or lower-half k-plane by letting x → ±∞ in (19), and this
yields

φ1(x, z) →

⎧
⎪⎪⎨

⎪⎪⎩

φI
1m (x, z) − imμ1P(−α1) sinhm(H − d)φI

1m (−x, z) − iMμ2P(−α2) sinh M(H − d)φI
1M (−x, z)

as x → −∞,
(
1 − imμ1P(α1) sinhm(H − d)

)
φI
1m (x, z) − iMμ2P(α2) sinh M(H − d)φI

1M (x, z) as x → ∞.

(26)
Comparing (26) with (9), we get

tm − 1 = −imμ1P(α1) sinhm(H − d), Tm = −iMμ2P(α2) sinhM(H − d),

rm = −imμ1P(−α1) sinhm(H − d), Rm = −iMμ2P(−α2) sinhM(H − d),

(27)
where μ1 and μ2 are defined as

μ1 = K (K coshmh − m sinhmh)

α1 sinhmh sinh2 mH�
′
(m)

, μ2 = K (K coshMh − M sinh Mh)

α2 sinh Mh sinh2 MH�
′
(M)

.

Now with the help of the values of tm , Tm , rm and Rm , we can write (24) as the
sum of Cauchy principal value-integral and contributions from the four poles. Thus,
φ2(x, z) given in (24) can be expressed as

φ2(x, z) = 1

2
(tm + 1)φI

2m(x, z) + rm

2
φI
2m(−x, z) + 1

2
[Tmeiα2x + Rme−iα2x ]

+ 1

2π

∫
−

∞

−∞
H(z,β)P(k)eikxdk. (28)

We note that, for 0 < z < d,
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H(z,β) → 1

2
e−|k|(d−z), as |k| → ∞. (29)

We also note the following identity (cf. [9]) for d − z > 0

log
√

(x − w)2 + (d − z)2 = 1

2

∫ ∞

−∞
e|k| − e|k|(d−z)eik(x−w)

| k | dk. (30)

Thus, making use of the relations (20), (29) and (30), we re-write (28) as

φ2(x, z) = 1

2
(tm + 1)φI

2m(x, z) + rm

2
φI
2m(−x, z) + 1

2
[Tmeiα2x + Rme−iα2x ]

+ 1

2π

∂

∂z

∫ b

−b
P(w) log

√
(x − w)2 + (d − z)2dw

+ 1

2π

∫
−

∞

−∞
[H(z,β) − 1

2
e−|k|(d−z)]eikx

∫ b

−b
P(w)e−ikwdwdk. (31)

Now we apply the plate condition (6) in (31) and this gives

(tm + 1) f+(x) + rm f−(x) + Tmg+(x) + Rmg−(x) = − 1

π

d2

dx2

∫ b

−b
P(w) log | x − w | dw

+ 1

2π

∫
−

∞
−∞

Eν (k)eikx
∫ b

−b
P(w)e−ikwdwdk (32)

for | x |< b, where

f±(x) = −m sinhm(H − d)e±iα1x and g±(x) = −M sinh M(H − d)e±iα2x

(33)
and

Eν (k) = 2β sinh β(H − d)[sinh βh sinh βd((s − 1)β2 − K 2s) + Kβ sinh β(h + d) − K 2 cosh βh cosh βd]
sinh βh sinh βH�(β)

+ |k|.
(34)

It may be noted that to obtain (32) we have used

(
∂2

∂x2
+ ∂2

∂z2

)
log

√
(x − w)2 + (d − z)2 = 0 (35)

to alter from z to x-axis before applying the plate condition on z = d.
Now, we define the integro-differential operator K by

(KP)(x) = − 1

π

d2

dx2

∫ b

−b
P(w) log | x − w | dw + 1

2π

∫
−

∞

−∞
Eν(k)e

ikx

∫ b

−b
P(w)e−ikwdwdk (36)
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and let P±(x), Q±(x) satisfy

(KP±,KQ±) (x) = ( f±, g±) (x), | x |< b. (37)

Hence it follows from (32) that

P(x) = (tm + 1)P+(x) + rm P−(x) + TmQ+(x) + RmQ−(x). (38)

Using (33) and the definition (20) in (27) results in

tm − 1 = iμ1〈P, f+〉, Tm = iμ2〈P, g+〉,
rm = iμ1〈P, f−〉, Rm = iμ2〈P, g−〉, (39)

where the operation 〈p, q〉 denotes the inner product as defined by

〈p, q〉 =
∫ b

−b
p(x)q∗(x)dx (40)

with asterisk denoting complex conjugate.
Substitution of (38) in (39) gives

tm − 1 = iμ1(t
m + 1)S+,+ + iμ1r

mS−,+ + iμ1T
mX+,+ + iμ1R

mX−,+
Tm = iμ2(t

m + 1)W+,+ + iμ2r
mW−,+ + iμ2T

mL+,+ + iμ2R
mL−,+

rm = iμ1(t
m + 1)S+,− + iμ1r

mS−,+ + iμ1T
mX+,− + iμ1R

mX−,−
Rm = iμ2(t

m + 1)W+,− + iμ2r
mW−,− + iμ2T

mL+,− + iμ2R
mL−,−

(41)

where W±,± = 〈P±, g±〉, L±,± = 〈Q±, g±〉, S±,± = 〈P±, f±〉, X±,± = 〈Q±, f±〉
with the first ’±’s in the left-hand side corresponding to the first in the right hand
side and so on.

3.1 Numerical Method

To solve the system of equations given in (41) for Rm , Tm , rm and tm , we must
compute the inner products; hence we need to solve for P±, Q±. For this, we apply
the Galerkin method (cf. Porter [3]) to find the solution for (37). The method is
described below.
We take

(P±, Q±) (x) =
∞∑

n=0

(
A±
n , B±

n

)
pn(x/b), | x |≤ b, (42)

where A±
n , B

±
n are unknown coefficients to be determined and
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pn(w) = einπ/2

π(n + 1)
(1 − w2)1/2Un(w), (43)

where Un are second kind Chebyshev polynomials of order n.
Substitution of (42) into (37), multiplication with p∗

l (x/b) and integration over
−b < x < b results in the infinite system of equations for the unknown coefficients
A±
n and B±

n :

− 1

2π(l + 1)

(
A±
l , B±

l

) +
∞∑

n=0

(
A±
n , B±

n

)
Kl,n = (

F±
l ,G±

l

)
, l = 0, 1, 2, ..., (44)

where

Kl,n = 1

2π

∫
−

∞

−∞
Eν(k)

k2
Jn+1(kb)Jl+1(kb)dk, (45)

and

F±
l = −m sinhm(H − d)(±1)l

Jl+1(bα1)

α1
, G±

l = −M sinhM(H − d)(±1)l
Jl+1(bα2)

α2
. (46)

It is noted that Kl,n = 0 if l + n is odd. This indicates that we can decouple (44) into
its symmetric and antisymmetric parts for

(
A±
2n, B

±
2n

)
and

(
A±
2n+1, B

±
2n+1

)
. Thus, we

have the following real symmetric systems of linear equations:

− 1

2π(2l + ξ + 1)

(
A±
2l+ξ, B

±
2l+ξ

)
+

∞∑

n=0

(
A±
2n+ξ, B

±
2n+ξ

)
K2l+ξ,2n+ξ =

(
F±
2l+ξ,G

±
2l+ξ

)
,

l = 0, 1, 2, ..., ξ = 0, 1. (47)

Again, F+
l = (−1)l F−

l and G+
l = (−1)lG−

l imply that A+
l = (−1)l A−

l and B+
l =

(−1)l B−
l and thus it is sufficient to find just the solutions of (47) for

(
A+
l , B+

l

)
.

Using (42) and (46), we have

W±,± =
∞∑

n=0

A±
n G

±
n , L±,± =

∞∑

n=0

B±
n G

±
n , S±,± =

∞∑

n=0

A±
n F

±
n , X±,± =

∞∑

n=0

B±
n F±

n .

(48)
Thus, it follows that

W+,+ = W−− =
∞∑

n=0

A±
2nG

±
2n +

∞∑

n=0

A±
2n+1G

±
2n+1 and

W+,− = W−+ =
∞∑

n=0

A±
2nG

±
2n −

∞∑

n=0

A±
2n+1G

±
2n+1 (49)

and similarly for L±,±, S±,± and X±,±.
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The energy identity comprising reflection and transmission coefficients can be
derived using Green’s integral theorem as

|rm |2 + |Rm |2 + J (|tm |2 + |Tm |2) = 1; J = JM

Jm
, (50)

with

Jλ = iλ

[
s
∫ 0

−h
{ f (λ, z)}2dz +

∫ H

0
{cosh λ(H − z)}2dz

]
, λ = m, M. (51)

The vertical hydrodynamic force acting on the plate can be obtained by integrating
the dynamic pressure difference across the plate and is given as

Fm = iσρ2

∫ b

−b

(
φ2(x, d

+) − φ2(x, d
−)

)
dx = iσρ2

∫ b

−b
P(x)dx . (52)

Thus using (38) we have

Fm = iσρ2
(
(tm + 1)S+,0 + rmS−,0 + TmX+,0 + RmX−,0

)
(53)

where S±,0 = 〈P±, f0〉, X±,0 = 〈X±, f0〉 and f0 = 1. Since f0 = 1 = U0(x/b), it
follows that S±,0 = (1/2)bA+

0 and X± = (1/2)bB+
0 .

Thus, the dimensionless hydrodynamic force acting on the horizontal rigid thin
plate is defined as

F̂m = Fm

2ρ2σb coshmh
= 1

4

{
((tm + 1) + rm)A+

0 + (Tm + Rm)B+
0

}
. (54)

Following the similarmathematical analysis as described above, for awave train of
mode M obliquely incident at an angle θ, the solutions for the reflection coefficients,
transmission coefficients and wave load on the plate can be obtained and analysed.
Thus in the present paper, we only depict the numerical results for the case of incident
wave of mode m.

4 Numerical Results and Discussions

The numerical results for different hydrodynamic quantities are computed after trun-
cating the infinite series (42) to a finite number N . After some numerical examina-
tions, it is found that the value of N = 4 is enough to produce sufficiently accurate
numerical results.

Table1 represents the validation of computed numerical values of the reflec-
tion and transmission coefficients against the energy balance relation. In this table,
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Table 1 A numerical check on energy identity relation

mb |rm | |Rm | |tm | |Tm | J |rm |2 +
|Rm |2 +
J (|tm |2 +
|Tm |2)

0.1507 6.808e−3 1.814e−3 0.99981 6.808e−3 14.773 0.99977

0.6460 4.843e−3 1.420e−3 0.99702 6.808e−3 817.92 1.00013

0.5947 6.233e−2 1.641e−4 0.99783 6.808e−3 3.024e4 1.00114

0.8406 3.860e−6 5.960e−6 0.99920 6.808e−3 7.670e5 1.00008

Fig. 2 Comparisons
between the present results
and the results obtained by
Gradshteyn and Ryzhik [9]

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Present Results
Porter(2015)

we present the variations of rm, Rm, tm, Tm and |rm |2 + |Rm |2 + J (|tm |2 + |Tm |2)
for few values of mb with other parameters as s = 0.5, d/b = 2, h/b = 2, H/b =
4, θ = 00. It is visible from Table1 that the reflection and the transmission coef-
ficients satisfy the energy identity relation (50) accurately and this proves partial
correctness of our numerical results.

Here we note that by letting s = 1 and h → 0, we can reduce the two-layer fluid
to a single layer fluid of depth H . Through Fig. 2, we validate the newly developed
method by comparing the numerical results for reflection coefficient (R) with those
obtained by Porter [3] where he studied water wave scattering by a horizontal rigid
thin plate in a single layer fluid. Fig. 2 is generated considering d/H = 0.1, b/H =
0.5, s = 1, h → 0, θ = 0◦. This graph demonstrates that the present results agree
very well with those in Porter [3], and this provides additional validation on the
numerical results obtained by the current analysis.

In Fig. 3a and b, for an incident wave train of mode m, we show the variations of
the reflection coefficients |rm | and |Rm | against the dimensionless wavenumber mb
for different values of dimensionless submergence depth d/b(= 0.5, 1, 1.5). Here
the values of other fixed parameters are s = 0.5, h/b = 2, H/b = 4, θ = 0◦. These
two figures show that as the submergence depth increases the reflection coefficients
decrease. This may illustrate the fact that as the submergence depth increases, the
interface and surface waves find more regions to pass the other side of the plate. It
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Fig. 3 Reflection coefficients as a function ofmb for various values of d/b with s = 0.5, h/b = 2,
H/b = 4, θ = 0◦
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Fig. 4 Reflection coefficients as a function ofmb for various values of h/bwith s = 0.5, H/b = 4,
d/b = 2, θ = 0◦

also demonstrates that the reflection coefficients diminish to zero beyond a certain
value of dimensionless wavenumber.

For an incidentwave train ofmodem, Fig. 4a and b shows the influence of the inter-
face position on the reflection coefficients |rm | and |Rm | as a function of dimension-
less wavenumbermb by altering the depth of the upper layer fluid(h/b = 0.5, 1, 1.5)
for the following fixed parameters: s = 0.5, H/b = 4, d/b = 2, θ = 0◦. From
Fig. 4a, it is visible that as the interface is moved upwards, the reflection coeffi-
cient at mode m increases, whilst opposite behaviour for the reflection coefficient at
mode M can be observed in Fig. 4b.

For an incident wave train of mode m, the effects of dimensionless plate length
on the values of reflection coefficients |rm | and |Rm | as a function of dimension-
less wavenumber md are depicted in Fig. 5a and b respectively. Here the values of
other fixed parameters are chosen as s = 0.5, h/d = 1.5, H/d = 3, θ = 0◦. These
two graphs demonstrate the fact that as the plate length decreases, the reflection
coefficients also decrease. One obvious explanation for this phenomenon is that a
smaller plate obstructs less amount of waves, resulting in lower reflection.
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Fig. 5 Reflection coefficients as a function ofmd for various values of b/d with s = 0.5, H/d = 3,
h/d = 1.5, θ = 0◦

Fig. 6 The dimensionless
hydrodynamic force |F̂m | for
various values of d/b with
s = 0.5, h/b = 2, H/b = 3
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Figs. 6 and 7 represent the dimensionless hydrodynamic force |F̂m | with respect
to dimensionless wavenumber mb for different values of d/b and h/b respectively.
Fig. 6 is plotted by choosing the values of parameters as s = 0.5, h/b = 2, H/b =
3, θ = 0◦. On the other hand, the Fig. 7 is plotted by choosing the values of parameters
as s = 0.5, H/b = 3, d/b = 2. The two Figs. 6 and 7 indicate that the dimensionless
hydrodynamic force exerted on the plate due to a wave train of mode m decreases
as the submergence depth and depth of the upper layer fluid increase. It is obvious
that as the plate moves deeper into the fluid, the propagating waves experience less
obstruction by the plate resulting in lower vertical force.

5 Conclusions

On the basis of two-dimensional potential theory, we have investigated the prob-
lem of oblique wave scattering by a horizontal thin plate submerged in the lower
layer of a two-layer fluid, comprising of two finite layers of fluids, in which upper
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Fig. 7 The dimensionless
hydrodynamic force |F̂m | for
various values of h/b with
s = 0.5, H/b = 3, d/b = 2
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layer has a free surface. We have adopted the Fourier integral transform to formulate
integral equation involving unknown potential difference function across the plate.
Applying Galerkin method to the solution of this integral equation, we obtain simple
expressions for the reflection coefficients, transmission coefficients and hydrody-
namic force exerted on the plate. We have validated the results obtained for the
present analysis with those in Porter [3]. Also to ensure the validity of our results, we
have calculated the energy identity for an incident wave of modem. The dependence
of various hydrodynamic quantities on the various parameters are depicted through
figures. The reflection coefficients and hydrodynamic force significantly depend on
the submergence depth of the plate and the interface position of the fluids. Reflection
coefficients at the interface mode and surface mode for the incident wave of mode
m increase as the submergence depth of the plate decreases. Also, the dimension-
less hydrodynamic force acting on the plate decreases as the depth of upper layer
fluid increases and increases as the submergence depth of the plate decreases. As
usual, here also increasing plate lengths reflect more amount of wave energy. With
decreasing depth of the upper layer fluid, the effect of the plate on the surface waves
becomes prominent whereas the effect of the plate on the interface waves becomes
suppressed. For the normal incident wave of mode m, the horizontal plate reflects
very less amount of waves incident on it even zero beyond a certain value of dimen-
sionless wavenumber. Thus, the plate can be used to construct as a component of a
lens for the purpose of wave focusing. Moreover, the present method could further
be extended to study the wave interaction problem with more than one horizontal
plate submerged in a two-layer fluid.
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