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Abstract In firms, maintaining the quality of the product with carbon emission
reduction is a big concern. To ensure the good quality of the product, so many
retailers segregate perfect items from imperfect ones and made an attempt to reduce
carbon emissions through green technologies. In the proposed model, the discount
price of imperfect items is examined and the retailer’s joint decisions have been
analyzed on reclamation of inventory and investment in reducing carbon emission
under three environmental regulations such as carbon cap, carbon tax, and carbon cap-
and-trade. These regulations and understanding of the customer for greener products
invigorate retailers to invest in green technology. The total cost is minimized with
respect to the optimal order quantity and annual investment on carbon emission
reduction. Numerical examples and sensitive analysis are represented to understand
the sturdiness of the model.

Keywords Imperfect items · Green technology investment · Carbon regulations ·
Economic order quantity

1 Introduction

Economic order quantity is the quantity that is used to minimize total costs. Ford
W. Haris and R.H. Wilson developed this model in 1913. Bouchery and Dallery [1]
consider sustainability in the classical inventory model. Arslan and Turkay [2] have
contributed to the Economic order quantity model by including sustainability con-
siderations which embrace environmental and social criteria with standard economic
consideration. Wang et al. [3] developed an EOQ model with renewal reward theory
to derive the expected total profit per unit time. Lee et al. [4] developed a model
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for sustainable economic order quantity with stochastic lead time and multi-model
transportation options. Sheikh et al. [5] developed two EOQmodels with andwithout
shortages and considered purchasing and holding costs constant.

Carbon emission is increasing day by day and many firms are working to reduce
carbon emissions. The government has also taken many steps to reduce emissions
such as carbon tax, cap, and offset. Therefore,Wang andHua [6] investigate manage-
ment of carbon footprints in firms under carbon emission tradingmechanism.Benjaa-
far et al. [7] developed a model to investigate how far carbon reduction requirements
can be addressed by operational adjustments as a supplement to costly investments
in carbon-reducing. Chen, Benjaafar, and Elomri [8] provide a model a condition in
which emission can be reduced by modifying order quantity. Toptal et al. [9] extend
an EOQmodel to show that in addition to carbon regulations such as carbon cap, tax,
and cap-and-trade to reduce emission, emission reduction investment further reduces
the emission while reducing costs. Mittal et al. [10] provide an economic production
model to elaborate on human errors’ effect on emission cost, transportation cost,
and expected total profit of the retailer. Daryanto et al. [11] introduced an Economic
order quantity model which includes the effect of defective rates, different sources of
carbon emission, different demand rates, selling price and holding cost for defective
products, and shortages backorder.

Since there are perfect quality items as well as defective items, therefore, in 2000,
Salameh and Jaber [12] proposed EPQ/EOQ model in which a production/inventory
situationwhereitems,received/produced,areofimperfectqualityandextendsthestan-
dard EOQ/EPQ model for imperfect items. Chang [13] introduces a model with the
complete screening process and imperfect quality items are sold as a single batchwith
discount before receiving the next shipment. Jaggi andMittal [14] developed amodel
for spoilable items inwhich there is constant deterioration and the demand rate is time
dependent under inflation andmoneyvalue. Jaggi andKhanna [15] developed amodel
to formulate an inventory policy for a retailer dealing with imperfect quality items of
deteriorating nature under inflation and permissible delay in payments. Jaggi andMit-
tal [16] developed a model for deteriorating items with imperfect quality and also an
assumption has been made that the screening rate is more than demand. Jaber et al.
[17] reviewed the model of Salameh and Jaber (2000) and elongate it by making an
assumption that shipment is coming fromadistant supplier and thus it is not feasible to
imperfect itemswithanadditionalordertothesamesupplier.Mittaletal. [18]discussed
about themethodfor redesigning theorderingpolicybyincorporating thecross-selling
effect and also compared ordering policy for imperfect items developed by applying
rules derived from apriori algorithm. Mittal, Jaggi, Khanna, Reshu, and Yadav [19–
21] developed models for imperfect items under different conditions and Jayaswal et
al. [22] discussed a fiscal construction feature model for imperfect quality items with
trade credit policy analyzed under the effects of learning.

Many researchers have worked on reducing carbon emissions including imperfect
items. Nobil et al. [23] proposed a model to calculate the optimal reorder point for
the inventory model in Salameh and Jaber(2000) by which the appropriate timing of
an order can be determined. Sarkar et al. [24] developed a three-echelon sustainable
supply chainmodelwith a single-supplier, singlemanufacturer, andmultiple retailers.
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Also, control the carbon emission and reduce the imperfect items to maintain the
sustainability. Daryanto et al. [25] considered the EOQmodel with carbon emissions
from transportation and warehouse operations. Furthermore, include imperfect items
and complete backordering is assumed.

2 Problem Definition

In this paper, investment on the reduction of carbon emission by retailers and deci-
sion of reclamation of inventory is taken according to the government regulations on
carbon emissions. The standard EOQmodel has been used under different conditions
and includes imperfect items. Carbon emission is increased due to ordering, inven-
tory holding, and manufacturing. In this study, three emission policies have been
considered that is carbon cap, carbon tax, and cap-and-trade. Under the cap policy, a
retailer’s emission per year cannot exceed the carbon emission cap. Under tax policy,
there will be a tax pe units for unit carbon emission. Under the cap-and-trade policy,
for cpe units, retailer deals a unit carbon emission.

2.1 Notations and Assumptions

1. Demand rate is considered constant throughout the model and shortages are not
allowed.

2. Lead time is constant and known, and instantaneous replenishment is considered.
3. Each inventory containing defective items with percentage i with probability

density function P(i) is known.
4. Imperfect items have been sold as a single batch with a discount on price.
5. Maximum reduction in carbon emission attainable due to investment decisions is

less thanminimum emission attainable due to ordering decisions per year. That is,

√
4 ÂĥM D + k̂ D >

α2

4β

where M = (1−i)2

2 + i D
x , α gives the efficiency of green technology in emission

reduction, and β is a decreasing return parameter(For G monetary units, carbon
emission may be decreased in an amount of (αG − βG2).

6. In cap policy, there are values of the investment that can reduce carbon emission
per year below carbon capacity. Therefore, we can write

√
4 ÂĥM D + k̂ D − α2

4β
< C
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where C is the carbon cap.

Q Order quantity (per cycle)
k Unit variable cost ($ per unit)
A Fixed cost per ($ per unit)
i Percentage of defective items in Q
P(i) Probability density function of i
x Screening rate, x > D
d Unit screening cost($ per unit)
T Cycle length
h Holding cost ($ per unit)

Â Emission associated with ordering (per unit)

ĥ Emission associated with inventory holding (per unit)

k̂ Emission associated with production/purchasing (per unit)
D Demand per year
G Amount invested on carbon emission reduction per year

3 Carbon Cap

Inthisstudyunder thecarboncappolicy, retailer’scarbonemissionsperyearshouldnot
exceed carbon capC . Thus, the retailer has tofinda feasible solution for order quantity
and investment to reduce emissions. Therefore, this problem can be shown as follows:
Minimize

Total cost per unit time = T CU (Q,G) = AD
Q + (k + d)D + h

[
(1−i)2

2

+ i D
x

]
Q + G

Subject to

Total emission per unit time = T EU (Q,G) = ÂD
Q + k̂ D + ĥ

[
(1−i)2

2 + i D
x

]

Q − αG + βG2 ≤ C .

If we consider G = 0, then the optimal solution for this problem lies between the
global interval Q1, Q2 when T E = C ,

Q1, Q2 = Ĉ ±
√

Ĉ2 − 4 Âĥ DM

2ĥM

where Ĉ = C − k̂ D and M =
[
(1−i)2

2 + i D
x

]
. The feasible solution exists if C ≥

2
√

ÂĥM D + k̂ D.
Under cap policy, two cases can be considered such as

(1) C ≥ 2
√

ÂĥM D + k̂ D.

(2) 2
√

ÂĥM D + k̂ D − α2

4β < C < 2
√

ÂĥM D + k̂ D. The next theoremwill provide
the optimal order quantity and investment decisions with different cases. (Q∗,G∗)
will represent the feasible solution.
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Theorem 1 Let

Q3, Q4 = (Ĉ − βG2
3 + αG3) ±

√
(Ĉ − βG2

3 + αG3)2 − 4 Âĥ DM

2ĥM

and

G3 = (AD − hM Q2
3)α − (− ÂD + ĥM Q2

3)

(AD − hM Q2
3)2β

,

G4 = (AD − hM Q2
4)α − (− ÂD + ĥM Q2

4)

(AD − hM Q2
4)2β

.

Then under carbon cap the feasible solution is

If C ≥ 2
√

ÂĥM D + k̂ D, then

(Q∗,G∗) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Qc, 0) if Q2 ≤ Qc ≤ Q1

(Q1, 0) if Qα < Q1 < Qc

(Q3,G3) if Qem < Q3 ≤ Qα

(Q2, 0) if Qc < Q2 < Qα

(Q4,G4) if Qα ≤ Q4 < Qem

(1)

and if 2
√

ÂĥM D + k̂ D − α2

4β < C < 2
√

ÂĥM D + k̂ D, then

(Q∗,G∗) =

⎧
⎪⎨

⎪⎩

(Q3,G3) if Qem < Q3 ≤ Qα

(Q4,G4) if Qα ≤ Q4 < Qem

(Q5,G5) if otherwise

(2)

where Q5 = Qem and G5 = α−
√

α2−4β(−Ĉ+2
√

ÂĥM D
2β . Also, Qα =

√
(Aα+ Â)D
hα+ĥ)M

.

Remark 1 When A
h = Â

ĥ
then Qc = Qem . Also, when C ≥ 2

√
ÂĥM D + k̂ D then

G∗ = 0 and C < 2
√

ÂĥM D + k̂ D then G∗ > 0. The next corollary represents the
minimum emission due to the retailer’s optimal solution in the above theorem.

Corollary 1 Under carbon cap, the minimum emission due to retailer’s feasible
solution is

Em(Q∗,G∗) =
√

DM

AD
( Âh + Aĥ)

when Q2 ≤ Qc ≤ Q1 and otherwise Em(Q∗,G∗) = C. Now, there will be a lemma
which shows the influence of using investment on emission reduction to reduce
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retailer’s carbon emission with a certain cap C. Thus, there will be two considerations
such as Em(Q∗(0), 0) − Em(Q∗,G∗) and T C∗(Q∗(0), 0) − T C∗(Q∗,G∗), where
Q∗(0) is the retailer’s optimal order quantity under cap policy and the investment
amount is zero.

Lemma 1 Investment amount to reduce emissions does not affect the carbon emis-
sion level under the certain cap per year, nevertheless it can reduce the total cost
per year for the retailer. Therefore, we have Em(Q∗(0), 0) − Em(Q∗,G∗) = 0 and
T C∗(Q∗(0), 0) − T C∗(Q∗,G∗) ≥ 0

In the next lemma, there will be a comparison of emissions per year with and without
the carbon cap. Additionally, the effect of total cost per year with and without carbon
cap.

Lemma 2 Carbon emission reduces after applying the carbon cap policy but total
cost per year is not less than when there is no cap policy. Therefore, T C∗(Q∗,G∗) ≥
T C(Qc, 0) and Em(Q∗,G∗) ≤ E(Qem, 0).

Lemma 3 If we consider two investment options, first with α1 and β1 and second
with α2 and β2, then solution that exists using the first investment will give the same
emission level per year without costs.

4 Carbon Tax

In this section, the penalty of pe unit tax will be paid by the retailer per unit carbon
emission. Therefore, the total cost and emission will be as follows:

T CUpe (Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]

Q + G + peT EU (Q,G)

and

T EUpe(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2.

With Q ≥ 0 and G ≥ 0.
In the next theorem, the total cost has beenminimized under the carbon tax policy.

Theorem 2 The feasible solution under carbon tax is given by

(Q∗∗,G∗∗) =
(√

(A + pe Â)D

(h + peĥ)M
,
αpe − 1

2peβ

)
.
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It can be seen that Q∗∗ and G∗∗ are increasing when A
h > Â

ĥ
and decreasing when

A
h < Â

ĥ
. Also, when A

h = Â
ĥ
there is no effect on Q∗∗.

5 Carbon Cap-and-Trade

In this section, there is a restriction of carbon cap C, and if total emission exceeds
carbon cap C, then there is no penalty but the firm can buy carbon permits equal to its
demand of carbon emission at the market price of cpe units per unit carbon emitted.
Also, if the emission by the retailer is less than the carbon cap, then they can sell the
carbon capacity at the same price cpe . Then the problem can be stated as follows:

T CUcpe
(Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]
Q + G − cpe X

and

T EUcpe
(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2 + X = C

with Q ≥ 0, G ≥ 0, where X denotes the amount of carbon that the retailer trades
per year. In the next theorem, a feasible solution will be found out for the above-
formulated problem.

Theorem 3 The optimal solution to minimize the total cost under cap-and-trade
policy is given by

(Q∗∗∗,G∗∗∗) =
(

√√√√ (A + cpe Â)D

(h + cpe ĥ)M
,
αcpe − 1

2cpeβ

)
.

Also, X∗ = C − T EUcpe
(Q∗∗∗,G∗∗∗), where X∗ is the retailer’s optimal amount of

carbon traded per year.

It can be seen that Q∗∗∗ and G∗∗∗ are increasing when A
h > Â

ĥ
and decreasing when

A
h < Â

ĥ
. Also, when A

h = Â
ĥ
, there is no effect on Q∗∗∗.

6 Numerical Analysis

In this section, there will be a comparison of values between two cases, i.e., A
h > Â

ĥ

and A
h < Â

ĥ
. We will consider two sets of examples:
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(1) A = 100, h = 3, Â = 4 and ĥ = 3.
(2) A = 10, h = 4, Â = 100 and ĥ = 8,
where D = 500, k = 6, k̂ = 2, d = 0.5, and i = 0.02 will remain same throughout.
Also, since it is known that percentage defective random variable i is uniformly
distributed and can have any value within the range [γ, δ]where γ = 0 and δ = 0.04.

Probability density function for i is

P(i) =
{
25, 0 ≤ i ≤ 0.04

0, otherwise.
Now, from the first case, we have Qc = 186.3, Qem = 37.26, Qα = 167.463,

T C(Qc, 0) = 3786.77, and T E(Qc, 0) = 1279.12, and from the case 2, Qc =
51.02, Qe = 114.085, Qα = 77.935, T C(Qc, 0) = 3446, and T E(Qc, 0) = 2176.01

6.1 Numerical Analysis for Cap Policy

In Fig. 1, there are two figures (a) and (b) showing the changes in values of
T C(Q∗,G∗) with respect to cap C for both sets of examples. In both of the cases,
T C(Q∗,G∗) strictly decreases with respect to the increasing values of C .

Whenever the value of carbon cap C increases, the emission reduction investment
G decreases, and therefore, the T C(Q∗,G∗) decreases. But from the table, it can
be seen that the total cost before the investment is less than or equal to the total
cost after the investment. Because in the first case, i.e., A

h > Â
ĥ
when C = 1270 and

in the second case that is A
h < Â

ĥ
when C = 2110, T C(Qc, 0) < T C(Q∗,G∗) =

T C(Q∗, 0), and T E(Qc, 0) > T E(Q∗,G∗) = T E(Q∗, 0). Therefore, in this policy,
total emission is decreasing and the total cost is increasing.

Numerical representation for carbon cap

A
h > Â

ĥ
C Q∗ G∗ T C(Q∗,G∗) T E(Q∗,G∗) T C(Q∗, 0) T E(Q∗, 0)
1070 162.361 50.4026 3842.26 1070 – –
1170 165.6 21.2959 3811.79 1169.99 3878.22 1170
1270 179.696 0 3787.12 1270 3787.12 1270
1370 186.3 0 3786.77 1279.12 3786.77 1279.12
A
h < Â

ĥ
C Q∗ G∗ T C(Q∗,G∗) T E(Q∗,G∗) T C(Q∗, 0) T E(Q∗, 0)
1710 83.531 61.9684 3532.27 3532.27 – –
1910 78.4863 7.27361 3471.74 1910 3474.1 1910
2110 55.8343 0 3446.8 2110 3446.8 2110
2310 2110 0 3446 2176.01 3446 2176.01
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(a) (b)

Fig. 1 Change in value of T C(Q∗,G∗) with respect to C

7 Conclusions

In the proposedmodel, the discount price of imperfect items is examined and retailer’s
joint decisions have been analyzed on reclamation of inventory and investment on
reducing carbon emissions under three environmental regulations such as carbon
cap, carbon tax, and carbon cap-and-trade. This model provides that under cap pol-
icy carbon emission will either remain the same or increases when investment and
imperfect items are included but in the carbon tax and cap-and-trade policy, emis-
sion level decreases. This paper imparts an idea that how a retailer should choose
the reclamation of inventory and the effect of government regulations on reducing
emissions and costs.

8 Appendix

8.1 Proof of Theorem-1

In carbon cap policy, KKT(Karush-Kuhn-Tucker) conditions have been used to find
the optimal solution for emission constraint. A feasible solution exists when there
are constraints such that

ÂD

Q
+ k̂ D + ĥ

[
((1 − i)2)

2
+ i D

x

]
Q − αG + βG2 < C

and
Q,G ≥ 0.

By using KKT conditions, there is global optimality when optimality conditions
have been used. Therefore,
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(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
− ĥM

)
− μ1 = 0 (3)

1 + λ1(−α + 2βG) − μ2 = 0 (4)

λ1

(
C − ÂD

Q
+ k̂ D + ĥM Q − αG + βG2

)
= 0 (5)

μ1Q = 0

μ2G = 0

where M =
(

(1−i)2

2 + i D
x

)
and multipliers λ1, μ1, and μ2 may be greater than or

equal to zero. There could be eight possible cases but the feasible solution can be
attained using the following three.
Case 1. λ1 = 0, μ1 = 0, μ2 > 0

If λ1 = 0, μ1 = 0, then Eq.(3) becomes

(−AD

Q2
+ hM

)
= 0. (6)

Therefore, Q =
√

AD
hM = Qc and since μ2G = 0 and μ2 > 0 then G = 0.

Where Qc is the optimal solution for imperfect items.
To get the optimal solution order quantity must satisfy the

ÂD

Q
+ k̂ D + ĥM Q − αG + βG2 < C.

Using this equation, there will be a global interval [Q1, Q2], where

Q2, Q1 = Ĉ ±
√

Ĉ2 − 4 ÂDĥM

2ĥM
.

For a solution to be feasible Ĉ2 − 4F̂ DĥM ≥ 0 and hence C ≥ k̂ D +
√
4 ÂDĥM .

Thus, if C ≥ k̂ D +
√
4 ÂDĥM and Q1 ≤ Qc ≤ Q2, then Q∗ = Qc and G = 0.

Case 2. λ1 > 0, μ1 = 0, μ2 > 0

From Eqs. (3) and (4), we have

(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
− ĥM

)
= 0 (7)

and
1 + λ1(−α + 2βG) − μ2 = 0. (8)
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Since μ2 > 0 then G = 0. Therefore, from Eq. (8),

1 + (−α) λ1 − μ2 = 0 (9)

Also, λ1 > 0 then from Eq. (5), we have

C −
(

ÂD

Q
+ k̂ D + ĥM Q

)

= 0. (10)

Q1 and Q2 satisfy the above equality. Thus, they must have C ≥ k̂ D +
√
4 ÂDĥM

to get the feasible solution. Further, let us consider two cases as follows:

Case 2.1. C = k̂ D +
√
4 ÂDĥM

In this case, Q1 = Q2 =
√

ÂD
ĥM

= Qem and also, since λ1 > 0 and μ2 >= 0 then

λ1 <
1
α
. Equation (7) exists for any positive value of λ1 and A

h = Â
ĥ
. Thus, if A

h = Â
ĥ

then Q∗ = Qc and G∗ = 0.

Case 2.2. C > k̂ D +
√
4 ÂDĥM

In this case, Q1 �= Q2. Then either Q = Q1 or Q = Q2 to get the feasible solution.
Since λ1 > 0, G = 0 then from Eq. (7), it obtained

λ1 = AD − hM Q2

− ÂD + ĥM Q2

then to get optimality, we must have

0 <
AD − hM Q2

− ÂD + ĥM Q2
<

1

α
. (11)

From the above inequality, there are twopossibilities that is either AD − hM Q2 >

0 and − ÂD + ĥM Q2 > 0 or AD − hM Q2 < 0 and − ÂD + ĥM Q2 < 0.
Thus, let us prove first that both the numerator and denominator are less than zero.

Since, we already know that for optimality C > k̂ D +
√
4F̂ DĥM . It can be

rewritten as
2(C − k̂ D)2 − 8 ÂDĥM > 0

2(C − k̂ D)2 − 2(C − k̂ D)

√
(C − k̂ D)2 − 4 ÂDĥM − 8 ÂDĥM < 0

((C − k̂ D) −
√
(C − k̂ D)2 − 4 ÂDĥM)2

2ĥM
− 2 ÂD < 0



422 G. Raiya and M. Mittal

⎛

⎝
(C − k̂ D) −

√
(C − k̂ D)2 − 4 ÂDĥM

2ĥM

⎞

⎠

2

2ĥM − 2 ÂD < 0

− ÂD + ĥM Q2
1 < 0.

Therefore, according to Eq. (11), we must have AD − hM Q2
1 < 0 and 0 <

AD−hM Q2
1

− ÂD+ĥM Q2
1
< 1

α
. By solving these two equations together, the result can be formu-

lated as Q2 >

√
AD
hM = Qc and Q2 <

√
(A+α Â)D
(h+ĥ)M

= Qα, then Q∗ = Q2 and G∗ = 0.

In a similar manner, we can show that AD − hM Q2
1 > 0, − ÂD + ĥM Q2

1 > 0

and AD−hM Q1

− ÂD+ĥM Q1
< 1

α
. After formulating the above results, the result can be shown as

Q1 <

√
AD
hM = Qc and Q1 >

√
(A+α Â)D
(h+ĥ)M

= Qα, then Q∗ = Q1 and G∗ = 0.

Case 3. λ1 > 0,μ1 = 0,μ2 = 0
Since μ1 = 0 and μ2 = 0 then Eqs. (3) and (4) can be written as

(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
+ ĥM

)
= 0 (12)

1 + λ1(−α + 2βG) = 0. (13)

Now, for λ1 > 0, we rewrite Eq. (5) as

C −
(

ÂD

Q
+ k̂ D + ĥM Q − αG + βG2

)

= 0. (14)

By evaluating the above equation, we obtain

Q3, Q4 = Ĉ + αG − βG2 ±
√

Ĉ + αG − βG2 − 4 ÂĥM D

2ĥM
.

Here, Q3 , Q4 exist only if Ĉ + αG − βG2 − 4 ÂĥM D ≥ 0. Let us consider two
cases as follows.

Case 3.1. Ĉ + αG − βG2 = 4 ÂĥM D

From this equality, Q3(G) = Q4(G) =
√

ÂD
ĥM

= Qem , where Qem is the optimal solu-
tion for emission. We should have from Eq. (13)

0 < G <
α

2β
.
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When Q = Qem then Eq. (12) holds for any positive value of λ1 as long as Â
ĥ

= A
h .

Now, we have Ĉ + αG − βG2 = 4 ÂĥM D then there will be two roots from this
equation but the condition, i.e., 0 < G < α

2β only holds at one value which is given
by

G =
α −

√

α2 − 4β(−Ĉ + 2
√

ĥ ÂM D)

2β
.

We can consider this value as G5. Thus, if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D + k̂ D and Â
ĥ

= A
h , then Q∗ = Qem and G∗ = G5.

Case 3.2. Ĉ + αG − βG2 > 4 ÂĥM D
In this case, Q3(G) �= Q4(G).Now, fromEq. (12),λ1 = AD−hM Q2

− ÂD+ĥM Q2
, and for Q3(G) >

0 and Q4(G) to be optimal, theymust satisfy this inequality. Therefore, it is possible to
show that− ÂD + ĥM Q2

3(G) > 0.Moreover, from this result, Q3(G) > Qem . Simi-
larly, for λ1 > 0, wemust have−AD + hM Q2

3(G) > 0 and therefore Q3(G) < Qc.
Now, use the value of λ1 in Eq. (13), to find the value of G in the form of Q3(G),

then(Q3,G3) is the feasible solution, that is,

G = (AD + hM Q2
3(G))α − (− ÂD + ĥM Q2

3(G))

(− ÂD + ĥM Q2
3(G))2β

. (15)

Since, G ≥ 0 then (AD + hM Q2
3(G))α − (− ÂD + ĥM Q2

3(G)) ≥ 0 and therefore
Q ≤ Qα. Now, there are three inequalities such as Q ≤ Qα, Q3(G) < Qc, and
Q3(G) > Qem . From Qem < Q3(G) < Qc, A

h > Â
ĥ
and therefore, Qα < Qc. Final

result can be expressed as if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D + k̂ D and
Qem < Q3(G) < Qα, the optimal solution is (Q3,G3).

Similarly, (Q4,G4) can be obtained. Here,

G4 = (AD + hM Q2
4(G))α − (− ÂD + ĥM Q2

4(G))

AD + hM Q2
4(G M Q2

4(G))2β
. (16)

Therefore, it can be concluded that if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D +
k̂ D and Qα < Q4(G) < Qem , then the optimal solution is (Q4,G4).

8.2 proof of Theorem-2

Objective function is

T CUpe(Q,G) = AD

Q
+ (k + d)D + hM Q + G + peT EU (Q,G).
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Putting the value of T EU (Q,G) in the above equation, therefore

T CUpe (Q,G) = (A + pe Â)D

Q
+ (k + pek̂)D + d D + (h + peĥ)M Q + G − αpeG + β peG2.

To find the feasible solution for a total cost per year, solve the Hessian matrix, which
gives (

∂2T CUpe

∂G2

)(
∂2T CUpe

∂Q2

)
−

(
∂2T CUpe

∂Q∂G

)2

must be greater than zero.

∂2T CUpe

∂Q2
= (A + pe Â)D

Q3
,

∂2T CUpe

∂G2
= 2peβ

and
∂2T CUpe

∂Q∂G
= 0.

Therefore, (
∂2T CUpe

∂G2

)(
∂2T CUpe

∂Q2

)
−

(
∂2T CUpe

∂Q∂G

)2

> 0.

Then the optimal solution is Q∗∗ =
√

(A+pe Â)D
h+peĥ)M

and G∗∗ = αpe−1
2peβ

.

8.3 Proof of theorem-3

Objective function is

T CUcpe
(Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]
Q + G − cpe X

and

T EUcpe
(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2 + X = C.

Putting the value of X from the above equation in the objective function, thus

T CUcpe (Q,G) = (A + cpe Â)D

Q
+ (k + cpe k̂)D + d D + (h + cpe ĥ)M Q + G − αcpe G + βcpe G2.
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With the similar approach in 8.2, T CUcpe (Q,G) is convex in Q andG. Therefore, Q∗∗∗ =
√

(A+cpe Â)D

(h+cpe ĥ)M

and G∗∗∗ = αcpe −1
2cpe β . Thus, (Q∗∗∗,G∗∗∗) is the feasible solution.
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