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Abstract This paper investigates the effect of viscosity on the propagation of spher-
ical shock waves in a dusty gas with a radiation heat flux and a density that grows
exponentially. It is assumed that the dusty gas is a blend of fine solid particles and ideal
gas. In a perfect gas, solid particles are uniformly distributed. To obtain several sig-
nificant shock propagation properties, the solid particles are treated as a pseudo-fluid,
and the mixture’s heat conduction is neglected. The flow’s equilibrium conditions
are expected to be maintained in an optically thick gray gas model, and radiation is
assumed to be of the diffusion type. The effects of modifying the viscosity parameter
and time are explored, and non-similar solutions are found. The formal solution is
determined by assuming that the shockwave’s velocity is variable and its total energy
is not constant.
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1 Introduction

Numerous authors have investigated the propagation of shock waves in a medium
with exponentially changing density [1–5]. Radiation’s repercussions have not been
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taken into consideration by these authors. Several researchers [6–9] have developed
similar or non-similar solutions for the propagation of a shock wave with radiation
heat transfer effects in an exponential medium. The propagation of a strong shock
wave through a material whose density changes with distance from the point of the
explosion was examined by [10, 11].

Inmany disciplines of science and engineering, the study of shockwaves propaga-
tion in a dusty gas is significant due to their vast range of applications(see [12–14]).
Pai et al. [15] have obtained a similarity solution for the propagation of a shock
wave in dusty gas with constant density. Vishwakarma [16] then explored the prop-
agation of shock waves with exponentially varying density in a dusty gas using a
non-similarity method. Singh and Vishwakarma [17] explored shock wave propaga-
tion with exponentially changing density and radiation heat flux in a dusty gas. The
consequences of viscosity have not been considered by these authors.

In the thin transition zone through which the gas travels from its initial state of
thermodynamic equilibrium to its final, also equilibrium state, flow variables such as
pressure, density, and particle velocity rapidly change. The shock front is the ther-
modynamic equilibrium inside this region, and it can be significantly affected. As
a result, dissipative processes due to viscosity must be considered when analyzing
shock wave propagation behind the shock front. Rankine [18], Rayleigh [19], and
Taylor [20] explored the dissipative processes caused by viscosity and thermal con-
duction in the beginning. Henderson et al. [21] investigated the effects of thermal
conductivity and viscosity on shock waves in argon. Simeonides [22] investigated
the influence of viscousness on hypersonic flow. In a compressible gas, Huang et al.
[23] explored viscous shock waves. It’s worth noting that many previous research
has remained focused on viscous shocks in a perfect gas. Nevertheless, it is widely
recognized that the viscosity in a non-ideal gas, as compared to that in an ideal gas,
plays a major role in the characterization of shocks.

To the best of the authors’ knowledge, no research on the effects of viscosity on
shock wave propagation has yet been reported. For this purpose, in the current work,
we develop a non-similar solution taking viscosity into account for the propagation
of a shock wave.

It is believed that the dusty gas is gray and opaque and that the shock is isother-
mal. Radiation energy and pressure are thought to be insignificant in comparison to
material energy and pressure, hence only the radiation flux is taken into account.
The non-linear dissipative mechanism due to viscosity q is assumed to be negligibly
small, except in the neighborhood of the shock, and is taken as the function of flow
variables and their derivatives as in von Neumann and Richtmyer [24]. Small solid
particles are treated as a pseudo-fluid to accomplish some fundamental shock propa-
gation properties, with the heat conduction of the mixture considered to be minimal
and the flow field preserving the equilibrium flow state (see [25]).
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2 Basic Equations and Boundary Conditions

The governing equations incorporating the viscosity term proposed, for the spheri-
cally symmetric, one-dimensional unsteady flow with radiation heat flux in a dusty
gas, can be written as [9, 16, 24]
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where t and r are the independent time and space coordinates, respectively, p—
pressure of the mixture, u—radial direction flow velocity, ρ—density of the mixture,
em—internal energy per unit mass of the mixture, F—radiation heat flux, and q—
artificial viscosity.

The expression for artificial viscosity q is given by ([26] also see the references
within)

q = 1

2
K 2ρr2
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)
(2)

where K is a constant parameter that can be modified easily in any numerical exper-
iment.

Using Rosseland’s diffusion approximation and assuming local thermodynamic
equilibrium, we have

F = −cμ

3

∂

∂r

(
aT 4

)
(3)

where c—velocity of light, μ—mean free path of radiation, and ac/4—Stefan-
Boltzmann constant.

The mean free path of radiation μ which is a function of absolute temperature T
and density ρ is given by Wang [27] as

μ = μ0ρ
α�

T β�

(4)

where α�,β� are constants.
The dusty gas equation of state is as follows: (Pai [28])

p = 1 − Kp

1 − Z
ρR�T (5)

where R�—gas constant, Z—volume fraction of solid particles in the mixture, and
Kp—mass concentration of solid particles.
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Z and Kp are related as

Kp = Zρsp

ρ
(6)

where ρsp—solid particle species density. For an equilibrium flow, Kp is constant
throughout the flow.

The mixture’s internal energy em can be expressed as follows:

em = [
KpCsp + (1 − Kp)Cv

]
T = CvmT (7)

where Cvm—mixture’s specific heat at constant volume, Cv—specific heat of a gas
at a constant volume, and Csp—specific heat of solid particles. The specific heat at
constant pressure process is

Cpm = KpCsp + (1 − Kp)Cp (8)

where Cp—specific heat of the gas at constant pressure process.
The ratio of the specific heats of the mixture is given by (see [28])

Γ =
γ

(
1 + σβ′

γ

)

1 + σβ′ (9)

where

γ = Cp

Cv

σ = Kp

1 − Kp
β′ = Csp

Cv

. (10)

Therefore, the internal energy em is given by

em = p(1 − Z)

ρ(Γ − 1)
. (11)

The propagation of a spherical shock wave into a resting medium with a small
constant counter pressure is investigated. Further, the medium’s initial density is
assumed to follow the exponential law

ρ = Aeαr (12)

where A,α are the constants which are positive.
The jump conditions across the shock are as follows:

u2 = (1 − β) V

ρ2 = ρ1
β
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p2 = (1 − Z1 − 4K 2(1 − β)2
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where R is the distance between the shock front and the point of symmetry,U = dR

dt
is the shock velocity, suffices “1” and “2” are the values just ahead and behind the
shock, and F1 = 0 (see [7]). Also, the expression for β is given by

β = Z1 + 1 − Z1

Γ M2
e

(14)

where

M2
e = V 2

a21
a21 = Γ P1

ρ1(1 − Z1)
(15)

Me stands for the shock-Mach number, which refers to the sound speed a1 in the
dusty gas.

In general, Z1, the solid particles’ volume fraction at the initial state is not constant.
However, because solid particles have a much higher density than gas (Miura and
Glass [13]), the volume occupied by solid particles is extremely small, and Z1 can
be assumed to be a small constant. Z1 is expressed as (Naidu et al. [29])

Z1 = Kp

G(1 − Kp) + Kp
. (16)

Here, G is the solid particles density divided by the initial gas density.
Let the solution to Eqs. (1), (2), and (3) be of the form

u = t−1U (η), ρ = tγ
�

D(η), p = tγ
�−2P(η), F = tγ

�−3Q(η), q = tγ
�−2S(η)

(17)

where
η = teδ�r δ� �= 0 (18)

and γ�, δ� are the constants that will be determined subsequently. The shock surface
is chosen to be

η0 = constant (19)

as a result of which the velocity is given by



374 R. Revathi et al.

V = − 1

δ�t
. (20)

As a result, it is self-evident that δ� < 0. In the form of (17), the solutions of the
equations (1),(2), and (3) are compatible with the shock conditions only if

α� = 1, β� = −5

2
, γ� = 2, δ� = −α

2
. (21)

The Mach number Me of the shock is given by

M2
e = V 2

a21
= −4(1 − Z1)A

Γ p1α2η0
= constant

For a very strong shock, as Me is a constant, and p1 is of order zero, we assume
that the shock holds its enormous strength over a long period of time. As a result,
the solutions in the following section are valid whenever t > τ until Z1 stays small,
where τ is the duration of the initial impulse. It can be obtained from Eqs. (20) and
(21) that

R = 2

α
log

t

τ
. (22)

3 Solution

By solving equations (1), (2), and (3), the flow variables in the flow field behind the
shock front will be obtained. Equations (17), (20), and (21) provide us

∂u

∂t
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∂ p

∂t
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. (23)

Using the above Eq. (23) and considering the transformations

r ′ = r

R
u′ = u

V
p′ = p

p2

ρ′ = ρ

ρ2
F ′ = F

F2
q ′ = q

q2
(24)

in basic equations (1), (2), and (3), we get
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where

N = 4acμ0α

3
√
R�

3

is a non-dimensional radiation parameter and
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√
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The shock conditions get the following form in terms of dimensionless variables

r ′ = 1, p′ = 1, ρ′ = 1, F ′ = 1, q ′ = 1, u′ = 1 − β. (30)

The solution to our problem is given by Eqs. (25)–(29) along with the boundary
conditions (30). Due to the fact that the motion behind the shock can be calculated
only when a certain time is supplied, the resulting solution is non-similar.

4 Results and Discussion

From the shock front r ′ = 1, we begin the numerical integration of Eqs. (25)–
(29) along with boundary conditions (30) and work our way inwards to acquire
the solutions. At specified instants when t/τ = 2 or 4, distributions of flow vari-

ables ρ′ = ρ

ρ2
, p′ = p

p2
, u′ = u

u2
are obtained. For the sake of numerical integra-

tion, values of Kp, γ,G, M2
e , N ,χ, and K are assumed to be Kp = 0, 0.2, 0.4; γ =

1.4;G = 10, 50 (see [15]), M2
e = 20, N = 10 (see [9]), χ = 1 (see [13]), and

K = 0, 0.0349, 0.349 (see [26]).
Figures 1, 2, and 3 depict the variation of ρ′, p′, and u′ with reduced distance r ′

for varied values of viscosity parameter K at different times t/τ for fixed values of
N , Kp, and G.

Density ρ′ and pressure p′ decline as we travel inwards from the shock front, as
seen in Figs. 1 and 2. Further, from Fig. 3, it can be seen that the reduced flow velocity
u′ increases when K = 0 , whereas, it decreases when K �= 0. In the presence of
viscosity, the nature of reduced flow variables(concave upwards) is in contrast with
the case of no viscosity K = 0(concave downwards). It can be further observed that
when K = 0, the values of ρ′, p′, and u′ tend to be the same with the values of Singh
and Vishwakarma [17] work.

An increase in the viscosity parameter K causes the density ρ′, the pressure p′,
and the velocity u′ to decrease as well as the slopes of ρ′ and p′ to decrease at any
point in the flow behind the shock front. An increase in time t/τ causes density ρ′,
pressure p′ to decline, and the flow velocity u′ to rise.

Figures 4, 5, and 6 illustrate the reduced flow variables variation with reduced
distance for varied values of solid particle mass concentration Kp and the ratio of
solid particle density to initial gas density G for given values of N , K , and t/τ .
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Fig. 1 Reduced density ρ′ variation behind the shock front when N = 10,G = 50, and Kp = 0.2
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Fig. 2 Reduced pressure p′ variation behind the shock front when N = 10,G = 50, and Kp = 0.2
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Fig. 3 Reduced flow velocity u′ variation behind the shock front when N = 10,G = 50, and
Kp = 0.2
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Fig. 4 Reduced density ρ′ variation behind the shock front when N = 10, K = 0.349, and t/τ = 2
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It can be observed from Figs. 4, 5, and 6 that reduced density ρ′, reduced pressure
p′, and reduced velocity decrease as onemoves inside from the shock front.Whereas,
the nature of reduced velocity u′ (concave downwards) is opposite to those of density
ρ′ and pressure p′ (concave upwards). When shock travels through a dusty gas, the
values of density ρ′, pressure p′ increase; however, the shock speed u′ drops when
compared to a perfect gas (Kp = 0) or a dusty gas with a larger Kp. The existence
of solid particles in dusty gas is accountable for this phenomenological behavior.

For given K , N , andG values, increasing themass concentration of solid particles
Kp increases ρ′, p′ and decreases u′, as well, increases the slopes of density, pressure
profiles. Also, an increase in the ratio of solid particle density to initial gas density
G for fixed values of N , K , and Kp results in the decrease of density, pressure and
an increase in fluid velocity.
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