Group Action on Fuzzy Ideals of Near Rings

347

Asma Ali, Ram Prakash Sharma, and Arshad Zishan

Abstract In this paper, we introduce the group action on a near ring \mathcal{N} and with it we study group action on fuzzy ideals of \mathcal{N} , \mathcal{G} -invariant fuzzy ideals, finite products of fuzzy ideals, and \mathcal{G} -primeness of fuzzy ideals of \mathcal{N} .

Keywords Fuzzy ideals \cdot Prime fuzzy ideals $\cdot \mathcal{G}$ -invariant fuzzy ideals $\cdot \mathcal{G}$ -prime fuzzy ideals

2010 Mathematics Subject Classification. 16N60 · 16W25 · 16Y30

1 Introduction

A set \mathcal{N} with two binary operations '+' and '.' is known as left near ring if (i) $(\mathcal{N}, +)$ is a group (not necessarily abelian), (ii) (\mathcal{N}, \cdot) is a semigroup, (iii) $\alpha(\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma \forall \alpha, \beta$ and γ in \mathcal{N} . Analogously, \mathcal{N} is said to be a right near ring if \mathcal{N} satisfies $(iii)' (\beta + \gamma)\alpha = \beta \cdot \alpha + \gamma \cdot \alpha \forall \alpha, \beta$ and γ in \mathcal{N} . A near ring \mathcal{N} with $0x = 0, \forall x \in \mathcal{N}$, is known as zero symmetric if 0x = 0, (left distributively yields that x0 = 0). Throughout the paper, \mathcal{N} represents a zero symmetric left near ring; for simplicity, we call it a near ring. An ideal of near ring $(\mathcal{N}, +, \cdot)$ is a subset \mathcal{M} of \mathcal{N} such that (i) $(\mathcal{M}, +) \triangleleft (\mathcal{N}, +)$, (ii) $\mathcal{N}\mathcal{M} \subset \mathcal{M}$, (iii) $(n_1 + m)n_2 - n_1n_2 \in \mathcal{M} \forall m \in \mathcal{M}$ and $n_1, n_2 \in \mathcal{N}$. Note that if \mathcal{M} fulfils (i) and (ii), it's referred to as a left ideal of \mathcal{N} . It is termed a right ideal of \mathcal{N} if \mathcal{M} satisfies (i) and (iii). A mapping $\phi : \mathcal{N} \to \mathcal{N}$ from near ring \mathcal{N} to near ring \mathcal{N} is said to be a homomorphism if (i)

A. Ali · A. Zishan (🖂)

R. P. Sharma Department of Mathematics, Himachal Pradesh University, Shimla, India

Department of Mathematics, Aligarh Muslim University, Aligarh, India e-mail: arshadzeeshan1@gmail.com

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 R. K. Sharma et al. (eds.), *Frontiers in Industrial and Applied Mathematics*, Springer Proceedings in Mathematics & Statistics 410, https://doi.org/10.1007/978-981-19-7272-0_25

 $\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta)$ (ii) $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta) \forall \alpha$ and $\beta \in \mathcal{N}$. A homomorphism $\phi : \mathcal{N} \to \mathcal{N}$ which is bijective is said to be an automorphism on \mathcal{N} . The set of all automorphism of \mathcal{N} denoted by $Aut(\mathcal{N})$ forms a group under the operation of composition of mappings.

The study of group actions on rings led to the establishment of the Galois theory for rings. Lorenz and Passman [12], Montgomery [14], and others researched the skew grouping approach in the context of the Galois theory, as well as the groupring and fixed ring. The link between the \mathcal{G} -prime ideals of \mathcal{R} and the prime ideals of skew groupring \mathcal{RG} was identified by Lorenz and Passman [12]. Montgomery [14] investigated the relationship between the prime ideals of \mathcal{R} and $\mathcal{R}^{\mathcal{G}}$, leading him to broaden the scope of the action of a group to spec \mathcal{R} .

Fuzzy sets were introduced independently by L.A. Zadeh and Dieter Klaua in 1965 as an extension of the classical notion of set. Liu [11] studied fuzzy ideals of a ring and many researchers [4, 6, 7, 20] extended the concepts. The concept of fuzzy ideals and related features have been applied to a variety of fields, including semigroups, [8–10, 18, 19], distributive lattice [2], BCK-algebras [16], and near rings [22]. Kim and Kim [5] defined the exact analogue of fuzzy ideals for near rings.

Sharma and Sharma [19] recently investigated the action of group on the fuzzy ideals of the ring \mathcal{R} and found a relationship between the \mathcal{G} -prime fuzzy ideals of \mathcal{R} and the prime fuzzy ideals of \mathcal{R} . We define the action of group on a near ring \mathcal{N} and investigate the action of group on fuzzy ideals and \mathcal{G} -invariant fuzzy ideals of \mathcal{N} , finite products of fuzzy ideals, and \mathcal{G} -primeness of fuzzy ideals of \mathcal{N} . As a result, we extend Sharma and Sharma's conclusions to near ring \mathcal{N} .

2 Preliminaries

Definition 1 ([22]) If \mathcal{N} is a near ring, then a fuzzy set \tilde{F} in \mathcal{N} is a set of ordered pair $\tilde{F} = \{(n, \eta_{\tilde{F}}(n)) | n \in \mathcal{N}\}, \eta_{\tilde{F}}(n)$ is called membership function.

Definition 2 ([22]) Let η and μ be two fuzzy subsets of a near ring \mathcal{N} . Then $\eta \cap \mu$ and $\eta \circ \mu$ are defined as follows:

$$\eta \cap \mu(m) = \min\{\eta(m), \mu(m)\}.$$

And product $\eta \circ \mu$ is defined by

$$\eta \circ \mu(m) = \begin{cases} \sup_{m=m_1m_2} \{\min(\eta(m_1), \mu(m_2))\} & \text{if } m = m_1m_2 \\ 0 & \text{if } m \neq m_1m_2. \end{cases}$$
(1)

Definition 3 ([22]) Let $(\mathcal{G}, +)$ be a group and η be a fuzzy subset of \mathcal{G} . Then η is fuzzy subgroup if (i) $\eta(g_1 + g_2) \ge \min(\eta(g_1), \eta(g_2)), \forall g_1, g_2 \text{ in } \mathcal{G}$,

(ii) $\eta(g) = \eta(-g), \forall g \text{ in } \mathcal{G}.$

Definition 4 ([22]) A fuzzy subset η of a near ring \mathcal{N} is said to be a fuzzy subnear ring of \mathcal{N} if η is a fuzzy subgroup of \mathcal{N} with respect to the addition '+' and is a fuzzy groupoid with respect to the multiplication '.', i.e.,

(i) $\eta(x - y) \ge \min(\eta(x), \eta(y))$ and (ii) $\eta(xy) \ge \min(\eta(x), \eta(y)) \forall x, y \in \mathcal{N}$.

Definition 5 ([22]) A fuzzy subset η of a near ring N is said to be a fuzzy ideal of N if η satisfies following conditions:

- (i) η is fuzzy subnear ring,
- (ii) η is normal fuzzy subgroup with respect to '+',
- (iii) $\eta(rs) \ge \eta(s)$; for all r,s in \mathcal{N} ,

(iv) $\eta((r+t)s - rs) \ge \eta(t); \forall r, s \text{ and } t \text{ in } \mathcal{N}.$

If η satisfies (i),(ii), and (iii), then it is called a fuzzy left ideal of \mathcal{N} . If η satisfies (i),(ii), and (iv), then it is called a fuzzy right ideal of \mathcal{N} .

Definition 6 ([1]) Let \mathcal{G} be a group and \mathcal{Z} be a set. Then \mathcal{G} is said to act on \mathcal{Z} if there is a mapping $\phi : \mathcal{G} \times \mathcal{Z} \to \mathcal{Z}$, with $\phi(a, z)$ written a * z, such that (*i*) a * (b * z) = (ab) * z, $\forall a, b \in \mathcal{G}, z \in \mathcal{Z}$. (*ii*) e * z = z. $e \in \mathcal{G}, z \in \mathcal{Z}$. The mapping ϕ is called the action of \mathcal{G} on \mathcal{Z} , and \mathcal{Z} is said to be a \mathcal{G} -set.

Definition 7 ([1]) Let \mathcal{G} be a group acting on a set \mathcal{Z} , and let $z \in \mathcal{Z}$. Then the set

$$\mathcal{G}z = \{az | a \in \mathcal{G}\}$$

is called the orbit of \mathcal{Z} in \mathcal{G} .

Proposition 1 Let \mathcal{N} be a near ring and $\mathcal{G} = Aut(\mathcal{N})$, group of all automorphism of \mathcal{N} . Then \mathcal{G} acts on \mathcal{N} via following map

 $\phi: \mathcal{G} \times \mathcal{N} \to \mathcal{N}$ which is defined by $\phi(h, a) = h(a)$ or say h * a = h(a).

Proof Take (h_1, a_1) and (h_2, a_2) such that

$$(h_1, a_1) = (h_2, a_2).$$

This implies that $h_1 = h_2$ and $a_1 = a_2$. Thus, we have

$$h_1(a_1) = h_2(a_1)$$

or

$$\phi(h_1, a_1) = \phi(h_2, a_2).$$

Hence, ϕ is well defined. Furthermore, we show that ϕ is the action of \mathcal{G} on \mathcal{N} . Take any $g_1, g_2 \in \mathcal{G}$ and $b \in \mathcal{N}$. Then

$$g_1 * (g_2 * b) = g_1 * (g_2(b)) = g_1(g_2(b))$$
(2)

$$(g_1 \circ g_2) * b = (g_1 \circ g_2)(b) = g_1(g_2(b)).$$
(3)

From (2) and (3), we get

$$(g_1 \circ g_2) * b = g_1 * (g_2 * b).$$

Also, we have

$$e * x = x$$
.

Hence, ϕ is the action of \mathcal{G} on \mathcal{N} .

Motivated by the definition of the group action of a finite group on fuzzy ideals of a ring [19], we define a \mathcal{G} -fuzzy ideal of \mathcal{N} as follows:

Definition 8 Let \mathcal{G} be a group. Then fuzzy set η of \mathcal{N} is a \mathcal{G} -set or \mathcal{G} act on η if

$$\eta^g(r) = \eta(r^g), \quad g \in \mathcal{G}$$

where r^g denotes g acts on $r, r \in \mathcal{N}$.

Example 1 Let $\mathcal{N} = \{0, 1, 2\}$ be a set. Then under following two binary operations \mathcal{N} forms a zero symmetric near ring:

$+ 0\ 1\ 2$	· 0 1 2
0 0 1 2	0000
1 1 2 0	1 0 1 2
2 2 0 1	2 0 1 2

 $Aut(\mathcal{N}) = \{f | f : \mathcal{N} \to \mathcal{N} \text{ is isomorphism}\}.$

There are only two automorphisms (i) identity map and (ii) the map g defined as follows:

$$g(0)=0, g(1)=2, and g(2)=1.$$

We know that $Aut(\mathcal{N})$ forms a group. Define a map $\lambda : \mathcal{N} \to [0, 1]$ by

$$\lambda(a) = \begin{cases} 0.9 & a = 0\\ 0.8 & a = 1, 2. \end{cases}$$

 λ is a fuzzy ideal. By Definition 8, $\lambda^g : \mathcal{N} \to [0, 1]$ is defined as $\lambda^g(r) = \lambda(r^g)$, i.e.,

$$\lambda^{g}(0) = \lambda(0^{g}) = \lambda(0) = 0.9$$

$$\lambda^{g}(1) = \lambda(1^{g}) = \lambda(2) = 0.8$$

$$\lambda^{g}(2) = \lambda(2^{g}) = \lambda(1) = 0.8.$$

This implies that

$$\lambda^g = \{(0, 0.9), (1, 0.8), (2, 0.8)\}$$
 and (4)

$$\lambda^{e} = \lambda = \{(0, 0.9), (1, 0.8), (2, 0.8)\}.$$
(5)

This shows that λ^g is a fuzzy ideal of \mathcal{N} , since $\lambda = \lambda^g$.

3 Prime Fuzzy Ideals

Definition 9 ([19]) Let Q be a fuzzy ideal of N. Then Q is said to be a prime ideal in N if Q is not a constant function and for any fuzzy ideals η and μ in N, $\eta \circ \mu \subset Q$ implies that either $\eta \subset Q$ or $\mu \subset Q$.

Example 2 Take $Z_4 = \{0, 1, 2, 3\}$ the zero symmetric left near ring under binary operations addition modulo 4 and for any $a, b \in Z_4$ multiplication is defined as

$$a \cdot b = \begin{cases} b \ a \neq 0\\ 0 \ a = 0 \end{cases}$$

Define two maps $\eta_1, \eta_2 : Z_4 \to [0, 1]$ by $\eta_1(z_1) = \begin{cases} 0.9 \ z_1 = 0 \\ 0.8 \ z_1 \neq 0, \end{cases}$ and $\eta_2(z_2) = 0.9$ for all $z_1, z_2 \in Z_4$. It shows that $\eta_1 \circ \eta_2 \subseteq \eta_1$ and $\eta_1 \subseteq \eta_1$ but $\eta_2 \not\subset \eta_1$. As η_1 is non-constant function so η_1 is a prime fuzzy ideal.

Proposition 2 If η is a fuzzy ideal of N, then η^g is a fuzzy ideal of N. Moreover, primeness of η as a fuzzy ideal implies the primeness of fuzzy ideal η^g of N.

Proof Assume that η is a fuzzy ideal of \mathcal{N} . Then we show that η^g is also a prime fuzzy ideal of \mathcal{N} , i.e., we will show that η^g satisfies following conditions:

Let $r, s \in \mathcal{N}$. Since η is a fuzzy ideal of \mathcal{N} , then we have

$$\eta^g(r-s) = \eta(r-s)^g = \eta(r^g - s^g) \ge \min(\eta(r^g), \eta(s^g)),$$

i.e.,

$$\eta^g(r-s) \ge \min(\eta^g(r), \eta^g(s)) \tag{6}$$

and

$$\eta^g(rs) = \eta(rs)^g = \eta(r^g s^g) \ge \min(\eta(r^g), \eta(s^g)),\tag{7}$$

i.e.,

$$\eta^g(rs) \ge \min(\eta(r^g), \eta(s^g)). \tag{8}$$

Equations (6) and (7) imply that η^g is a fuzzy subnear ring of \mathcal{N} .

Again $r, s \in \mathcal{N}$ and η is fuzzy ideal of \mathcal{N} , we have

$$\eta^g(r+s) = \eta(r+s)^g = \eta(r^g+s^g) \ge \min(\eta(r^g), \eta(s^g)),$$

i.e.,

$$\eta^g(r+s) \ge \min(\eta(r^g), \eta(s^g)). \tag{9}$$

Applying ([5], Lemma 2.3), we obtain

$$\eta^{g}(r) = \eta(r^{g}) = \eta(-r^{g}) = \eta^{g}(-r).$$

Also,

$$\eta^{g}(r) = \eta(r^{g}) = \eta(s^{g} + r^{g} - s^{g}) = \eta(s + r - s)^{g},$$

i.e.,

$$\eta^g(r) = \eta^g(s+r-s). \tag{10}$$

Since η^g satisfies all conditions of normal subgroup, η^g is a normal fuzzy subgroup of $(\mathcal{N}, +)$. For $r, s \in \mathcal{N}$, we have

$$\eta^g(rs) = \eta(rs)^g = \eta(r^g s^g) \ge \eta(s^g),$$

i.e.,

$$\eta^g(rs) \ge \eta^g(s). \tag{11}$$

This implies that η^g is a fuzzy left ideal of \mathcal{N} . Now, for r, s and $t \in \mathcal{N}$, we have

$$\eta^g((r+t)s-rs) = \eta((r^g+t^g)s^g-r^gs^g) \ge \eta(t^g),$$

i.e.,

$$\eta^g((r+t)s - rs) \ge \eta^g(t). \tag{12}$$

This implies that η is a right fuzzy ideal. Thus, η is a fuzzy ideal(left fuzzy ideal as well as right fuzzy ideal) of \mathcal{N} .

Now we prove that η^g is a prime fuzzy ideal of \mathcal{N} . Let \mathcal{A} and \mathcal{B} be two fuzzy ideals of \mathcal{N} such that $\mathcal{A} \circ \mathcal{B} \subset \eta^g$. Then $\mathcal{A}^{g^{-1}}$ and $\mathcal{B}^{g^{-1}}$ are also fuzzy ideals of \mathcal{N} , since $g^{-1} \in \mathcal{G}$ and as proved in η^g , we claim that $\mathcal{A}^{g^{-1}} \circ \mathcal{B}^{g^{-1}} \subset \eta$. Let $n \in \mathcal{N}$ and

$$(\mathcal{A}^{g^{-1}} \circ \mathcal{B}^{g^{-1}})(n) = \sup_{n=n_1n_2} \{\min(\mathcal{A}^{g^{-1}}(n_1), \mathcal{B}^{g^{-1}}(n_2))\}$$
$$= \sup_{n^{g^{-1}}=n_1^{g^{-1}}n_2^{g^{-1}}} \left\{\min(\mathcal{A}(n_1^{g^{-1}}), \mathcal{B}(n_2^{g^{-1}}))\right\}$$
$$= (\mathcal{A} \circ \mathcal{B})(n^{g^{-1}})$$
$$\leq \eta^g(n^{g^{-1}}) = \eta((n^{g^{-1}})^g)$$
$$= \eta(n).$$

So, $\mathcal{A}^{g^{-1}} \circ \mathcal{B}^{g^{-1}} \subset \eta$. Since η is a prime fuzzy ideal, then we have $\mathcal{A}^{g^{-1}} \subset \eta$ or $\mathcal{B}^{g^{-1}} \subset \eta$. Suppose that $\mathcal{A}^{g^{-1}} \subset \eta$. Then for all $n \in \mathcal{N}$, we have

$$\mathcal{A}(n) = \mathcal{A}((n^g)^{g^{-1}}) = \mathcal{A}^{g^{-1}}(n^g) \le \eta(n^g) = \eta^g(n).$$

Thus $\mathcal{A} \subset \eta^g$. This implies that η^g is a prime fuzzy ideal of \mathcal{N} .

Now we define a \mathcal{G} -invariant fuzzy ideal of a near ring.

Definition 10 A fuzzy ideal η of N is called a G-invariant fuzzy ideal of N if and only if

$$\eta^{g}(r) = \eta(r^{g}) \ge \eta(r), \, \forall \, g \in \mathcal{G}, \, r \in \mathcal{N}.$$

$$\eta(r) = \eta((r^g)^{g^{-1}}) \ge \eta(r^g).$$

Example 3 Let \mathcal{X} be a near ring. Then

$$N = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \middle| x, y, 0 \in X \right\}$$

is near ring with regard to matrix addition and matrix multiplication. Let

$$I = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix} \middle| y, 0 \in X \right\}.$$

Then \mathcal{I} is a fuzzy ideal of \mathcal{N} . Define a map $\eta : \mathcal{N} \to [0, 1]$ by

$$\eta(z) = \begin{cases} 0.9 \ z = 0\\ 0.8 \ z \neq 0 \end{cases}$$

Consider

$$\mathcal{G}(\subseteq Aut(\mathcal{N})) = \{f \mid f : \mathcal{N} \to \mathcal{N} \text{ is an isomorphism}\}$$

There are only two automorphisms that are identity map and the map $g:\mathcal{N}\to\mathcal{N}$ defined by

$$g\begin{pmatrix} x & 0\\ 0 & y \end{pmatrix} = \begin{pmatrix} y & 0\\ 0 & x \end{pmatrix}.$$

Since $\eta^g(r) = \eta(r^g) = \eta(r)$ for all $g \in \mathcal{G}$ and $r \in \mathcal{N}$, we get η is \mathcal{G} -invariant fuzzy ideal in \mathcal{N} .

Theorem 1 Let η be a fuzzy ideal of \mathcal{N} and $\eta^{\mathcal{G}} = \bigcap_{g \in \mathcal{G}} \eta^{g}$. Then $\eta^{\mathcal{G}}(r) = \min\{\eta(r^{g}), g \in \mathcal{G}\}$. Moreover, fuzzy ideal η contains largest \mathcal{G} -invariant fuzzy ideal $\eta^{\mathcal{G}}$ of \mathcal{N} .

Proof Assume that

$$\eta^{\mathcal{G}}(s) = \bigcap_{k \in \mathcal{G}} \eta^{k}$$
$$= min\{\eta^{k}(s), \ k \in \mathcal{G}\} = min\{\eta(s^{k}), \ k \in \mathcal{G}\}.$$

We prove that $\eta^{\mathcal{G}}$ is a fuzzy ideal of \mathcal{N} .

Let $r, s \in \mathcal{N}$. Then

$$\eta^{\mathcal{G}}(r-s) = \min\{\eta(r-s)^g, g \in \mathcal{G}\}\$$

= $\min\{\eta(r^g - s^g), g \in \mathcal{G}\}\$
= $\min\{\min(\eta(r^g), \eta(s^g)), g \in \mathcal{G}\}.$

Since η is a fuzzy ideal, we have

$$\eta^{\mathcal{G}}(r-s) \ge \min\{\min(\eta(r^g), g \in \mathcal{G}), \min(\eta(s^g), g \in \mathcal{G})\}\$$

= $\min\{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.$

This implies that

$$\eta^{\mathcal{G}}(r-s) \ge \{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.$$
(13)

Also for any $r, s \in \mathcal{N}$

$$\eta^{\mathcal{G}}(rs) = \min\{\eta(rs)^g, g \in \mathcal{G}\}$$

= $\min\{\eta(r^g s^g), g \in \mathcal{G}\}$
= $\min\{\min(\eta(r^g), \eta(s^g)), g \in \mathcal{G}\}.$

Since η is a fuzzy ideal of \mathcal{N} , we have

$$\eta^{\mathcal{G}}(rs) \ge \min\{\min(\eta(r^g), g \in \mathcal{G}), \min(\eta(s^g), g \in \mathcal{G})\}\$$

= min{\mathcal{\mu}^G(r), \mathcal{\mu}^G(s)}.

Thus,

$$\eta^{\mathcal{G}}(rs) \ge \{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.$$
(14)

$$\eta^{\mathcal{G}}(s+r-s) = \min\{\eta(s+r-s)^g, g \in \mathcal{G}\}$$
$$= \min\{\eta(s^g + r^g - s^g), g \in \mathcal{G}\}$$
$$= \min\{\eta(r^g), g \in \mathcal{G}\}$$
$$= \eta^{\mathcal{G}}(r).$$

Therefore,

$$\eta^{\mathcal{G}}(s+r-s) = \eta^{\mathcal{G}}(r).$$
(15)

Now,

$$\eta^{\mathcal{G}}(rs) = \min\{\eta(rs)^g, g \in \mathcal{G}\}\$$
$$= \min\{\eta(r^g s^g), g \in \mathcal{G}\}.$$

Again since η is fuzzy ideal, we can write for $r, s \in \mathcal{N}$

$$\eta^{\mathcal{G}}(rs) \ge \min\{\eta(s^g), g \in \mathcal{G}\}.$$

= $\eta^{\mathcal{G}}(s),$

i.e.,

$$\eta^{\mathcal{G}}(rs) \ge \eta^{\mathcal{G}}(s) \tag{16}$$

$$\eta^{G}((r+t)s - rs) = \min\{\eta((r+t)s - rs)^{g}, g \in \mathcal{G}\}$$

$$= \min\{\eta((r+t)^{g}s^{g} - r^{g}s^{g}), g \in \mathcal{G}\}$$

$$= \min\{\eta((r^{g} + t^{g})s^{g} - r^{g}s^{g}), g \in \mathcal{G}\}$$

$$\geq \min\{\eta(t^{g}), g \in \mathcal{G}\}.$$

$$= \eta^{G}(t)$$

$$\eta^{\mathcal{G}}((r+t)s - rs) \ge \eta^{\mathcal{G}}(t).$$
(17)

Since η^G is the left and right fuzzy ideals of \mathcal{N} , then η^G is the fuzzy ideal of \mathcal{N} . It is still necessary to show that it is a \mathcal{G} -invariant fuzzy ideal of \mathcal{N} .

$$\eta^{\mathcal{G}}(r^{g}) = \min\{\eta((r^{g})^{k}), k \in \mathcal{G}\}$$
$$= \min\{\eta(r^{gk}), k \in \mathcal{G}\}$$
$$= \min\{\eta(r^{g'}), g' \in \mathcal{G}\}$$
$$= \eta^{\mathcal{G}}(r).$$

Now we prove that η^G is the largest. Assume that μ is any \mathcal{G} -invariant fuzzy ideal of \mathcal{N} such that $\mu \subseteq \eta$. Then for any $g \in \mathcal{G}$

$$\mu(r^g) = \mu(r) \le \eta(r).$$

Also,

$$\mu(r^g) = \mu(r) = \mu((r^g)^{g^{-1}}) \le \eta(r^g).$$

This implies that

$$\mu(r) \le \min\{\eta(r^g), g \in \mathcal{G}\} = \eta^{\mathcal{G}}(r).$$

Thus,

 $\mu \subseteq \eta^{\mathcal{G}}.$

Hence, $\eta^{\mathcal{G}}$ contained in η as the largest \mathcal{G} -invariant fuzzy ideal of \mathcal{N} .

Remark 1 If a fuzzy ideal η of \mathcal{N} satisfies $\eta = \eta^{\mathcal{G}}$. Then η is called as \mathcal{G} -invariant fuzzy ideal of \mathcal{N} and vice versa.

4 Union of Fuzzy Ideals of Near Ring

The following example demonstrates that the union of fuzzy ideals of a near ring \mathcal{N} need not be a fuzzy ideal in \mathcal{N} .

Example 4 Let Q be a near ring. Then

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & p \\ 0 & q \end{pmatrix} \middle| \ p, q \ 0 \in \mathcal{Q} \right\}$$

is a near ring with regard to matrix addition and matrix multiplication. Let

$$\mathcal{I}_1 = \left\{ \begin{pmatrix} 0 & p \\ 0 & 0 \end{pmatrix} \middle| \ p, \ 0 \in \mathcal{Q} \right\}$$

and

$$\mathcal{I}_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix} \middle| q, 0 \in \mathcal{Q} \right\}.$$

We can check that \mathcal{I}_1 and \mathcal{I}_2 are ideals of \mathcal{N} . Define maps

$$\eta_1: \mathcal{N} \to [0, 1] \quad and \quad \eta_2: \mathcal{N} \to [0, 1]$$

by

$$\eta_1(x) = \begin{cases} 0.5 \ x \in \mathcal{I}_1 \\ 0 \ x \notin \mathcal{I}_1 \end{cases}$$

and

$$\eta_2(x) = \begin{cases} 0.6, \ x \in \mathcal{I}_2\\ 0, \ x \notin \mathcal{I}_2. \end{cases}$$

Then η_1 and η_2 are fuzzy ideals of \mathcal{N} . However

$$(\eta_1 \cup \eta_2)(x) = \begin{cases} max\{0.5, 0.6\}, & x \in \mathcal{I}_1 \cup \mathcal{I}_2\\ 0, & x \notin \mathcal{I}_1 \cup \mathcal{I}_2 \end{cases}$$

is not a fuzzy ideal of \mathcal{N} , since for $m = \begin{pmatrix} 0 & p \\ 0 & 0 \end{pmatrix} n = \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix}, m - n = \begin{pmatrix} 0 & p \\ 0 & -q \end{pmatrix} \notin \mathcal{I}_1 \cup \mathcal{I}_2$. We see that $\eta_1 \cup \eta_2(m - n) = 0$, $\eta_1 \cup \eta_2(m) = 0.6$, and $\eta_1 \cup \eta_2(n) = 0.5$. Thus,

$$\eta_1 \cup \eta_2(m-n) = 0 \neq \max\{\eta_1 \cup \eta_2(m), \eta_1 \cup \eta_2(n)\}$$
$$\neq \max\{0.6, 0.5\}$$
$$\neq 0.6.$$

Hence, $\eta_1 \cup \eta_2$ is not a fuzzy ideal of \mathcal{N} .

Proposition 3 Let $C = \{\eta_k\}$ be a chain of fuzzy ideals of \mathcal{N} . Then for any $m, n \in \mathcal{N}$

$$\min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\}) = \sup_{k} \{\min(\eta_k(m), \eta_k(n))\}.$$

Proof We can easily see that

$$\sup_{k} \{\min(\eta_k(m), \eta_k(n))\} \leq \min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\}).$$

Now, assume that

$$\sup_{k} \{\min(\eta_k(m), \eta_k(n))\} = I.$$

And

$$I < \min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\})$$

Then

$$\sup_{k} \{\eta_k(m)\} > I, \quad or \quad \sup_{k} \{\eta_k(n)\} > I.$$

 η_r and η_s exist in such a way that

$$\eta_r(m) > I$$
, & $\eta_s(n) > I$

or

$$\eta_r(m) > I \ge \min(\eta_r(m), \eta_r(n)) \tag{18}$$

and

$$\eta_r(n) > I \ge \min(\eta_s(m), \eta_s(n)).$$
(19)

Since, $\eta_r, \eta_s \in C$, so without loss of generality, we may assume that $\eta_r \subseteq \eta_s$ and $\eta_s(n) \ge \eta_s(m)$ Therefore, from (18) and (19), we get

$$I < \eta_r(m) \le \eta_s(m) = \min(\eta_s(m), \eta_s(n))$$

This contradicts the fact that

$$I = \sup_{k} \{\min(\eta_k(m), \eta_k(n))\}$$

Hence,

$$\min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\}) = \sup_{k} \{\min(\eta_k(m), \eta_k(n))\}.$$

Corollary 1 Assume that $C = \{\eta_k\}$ is a chain of fuzzy ideals of N. Then for each $x_1, x_2, ..., x_m \in N$,

$$\min_{k} (\sup_{k} \{\eta_{k}(x_{1})\}, \sup_{k} \{\eta_{k}(x_{2})\}, \dots, \sup_{k} \{\eta_{k}(x_{m})\}) = \sup_{k} \{\min(\eta_{k}(x_{1}), \eta_{k}(x_{2}), \dots, \eta_{k}(x_{m}))\}.$$

Theorem 1 Let $C = \{\eta_k\}$ be a chain of fuzzy ideals of \mathcal{N} . Then $\bigcup_k \eta_k$ is a fuzzy ideal of \mathcal{N} .

Proof Let $r, s \in \mathcal{N}$, and η_k be a fuzzy ideal of \mathcal{N} , where k is a natural number. Then

$$(\bigcup_{k} \eta_{k})(r-s) = \sup_{k} (\eta_{k}(r-s))$$
$$\geq \sup_{k} \{\min(\eta_{k}(r), \eta_{k}(s))\}.$$

Using Corollary 1, we get

$$(\bigcup_{k})(r-s) \ge \min\{\sup_{k}(\eta_{k}(r)), \sup_{k}(\eta_{k}(s))\},\$$

i.e.,

$$(\bigcup_{k} \eta_{k})(r-s) \ge \min\{(\bigcup_{k} \eta_{k})(r), (\bigcup_{k} \eta_{k})(s)\}.$$
(20)

Also,

$$(\bigcup_{k} \eta_{k})(rs) = \sup_{k} (\bigcup_{k} (rs))$$

$$\geq \sup_{k} \{\min(\eta_{k}(r), \eta_{r}(s))\}.$$

Again from Corollary 1, we have

$$(\bigcup_{k} \eta_{k})(rs) \ge \min\{\sup_{k} (\eta_{k}(r)), \sup_{k} (\eta_{k}(s))\}$$

i.e.,

$$(\bigcup_{k} \eta_{k})(rs) \ge \min\{(\bigcup_{k} \eta_{k})(r), (\bigcup_{k} \eta_{k})(s)\}.$$
(21)

Now

$$(\bigcup_{k} \eta_{k})(s+r-s) = \sup_{k} (\eta_{k}(s+r-s))$$
$$= \sup_{k} \{\eta_{k}(r)\}.$$

Since η_k is a fuzzy ideal in \mathcal{N} , we obtain

$$(\bigcup_k \eta_k)(s+r-s) = (\bigcup_k \eta_k)(r),$$

i.e.,

$$(\bigcup_{k} \eta_{k})(s+r-s) = (\bigcup_{k} \eta_{k})(r).$$
(22)

$$(\bigcup_{k} \eta_{k})(rs) = \sup_{k} (\eta_{k}(rs))$$
$$\geq \sup_{k} \{\eta_{k}(s)\}.$$

Again using the fact that η_k is fuzzy ideal, we get

$$(\bigcup_{k} \eta_{k})(rs) \ge (\bigcup_{k} \eta_{k})(s)$$
(23)

$$(\bigcup_{k} \eta_{k})((r+t)s - rs) = \sup_{k} (\eta_{k}((r+t)s - rs))$$
$$\geq \sup_{k} \{\eta_{k}(t)\}.$$

Also,

$$(\bigcup_{k} \eta_{k})((r+t)s - rs) \ge (\bigcup_{k} \eta_{k})(t).$$
(24)

Hence, $(\bigcup_k \eta_k)$ is a fuzzy ideal of \mathcal{N} .

5 G-Prime Fuzzy Ideals of a Near Ring

Motivated by the definition of \mathcal{G} -prime fuzzy ideals of the rings [19], we define \mathcal{G} -prime fuzzy ideals in a near ring as follows.

Definition 11 Let the fuzzy ideal η of \mathcal{N} be \mathcal{G} -invariant and non-constant. If $\mu \circ \lambda \subseteq \eta$ implies that either $\mu \subseteq \eta$ or $\lambda \subseteq \eta$ for any two \mathcal{G} -invariant fuzzy ideals μ and λ of \mathcal{N} , then η is a \mathcal{G} -prime fuzzy ideal.

Example 5 Take $Z_3 = \{0, 1, 2\}$ which is a zero symmetric left near ring under binary operations addition modulo 3 and for any $r, s \in Z_3$ multiplication is defined as follows:

$$r \cdot s = \begin{cases} s & r \neq 0\\ 0 & r = 0. \end{cases}$$

Aut(Z_3) = {f|f: Z_3 \rightarrow Z_3 is isomorphism}.

We can check that there are only two automorphisms on Z_3 ; one is the identity map and the other is the map g defined by

$$g(0)=0, g(1)=2 \text{ and } g(2)=1.$$

Aut (Z₃) forms a group under the composition of mappings. Now we define two maps $\eta_1, \eta_2 : Z_3 \to [0, 1]$ by $\eta_1(r) = \begin{cases} 0.9 & r = 0 \\ 0.8 & r \neq 0, \end{cases}$ and $\eta_2(s) = 0.9$ for all $r, s \in Z_3$. By Definition 8, $\eta_1^g : Z_3 \to [0, 1]$ is defined as $\eta_1^g(r) = \eta_1(r^g)$, i.e.,

$$\begin{aligned} &\eta_1^g(0) = \eta_1(0^g) = \eta_1(0) = 0.9 \\ &\eta_1^g(1) = \eta_1(1^g) = \eta_1(2) = 0.8 \\ &\eta_1^g(2) = \eta_1(2^g) = \eta_1(1) = 0.8. \end{aligned}$$

This implies that

$$\eta_1^g = \{(0, 0.9), (1, 0.8), (2, 0.8)\}$$
(25)

and

$$\eta_1^e = \eta_1 = \{(0, 0.9), (1, 0.8), (2, 0.8)\}.$$
(26)

Also, we can see that η_2 is a \mathcal{G} -invariant fuzzy ideal of Z_3 . Since $\eta_1 \circ \eta_2 \subseteq \eta_1$ and $\eta_1 \subseteq \eta_1$ but $\eta_2 \not\subset \eta_1$, so it follows that η_1 is \mathcal{G} -prime fuzzy ideal as η_1 is non-constant function.

The following proposition is an extension of Lemma 2.6 of [22] in case of near rings:

Proposition 4 If N is near ring and $\lambda_1, \lambda_2, ..., \lambda_n$ are fuzzy ideals of N, then

$$\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n \subset \lambda_1 \bigcap \lambda_2 \bigcap \cdots \bigcap \lambda_n.$$

Proof Let $\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = 0$. Then, there is nothing to demonstrate. Otherwise

$$\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = \sup_{x=x_1 x_2 \cdots x_n} \{\min(\lambda_1(x_1), \lambda_2(x_2), \dots, \lambda_n(x_n))\}.$$

Since λ_i is a fuzzy ideal of \mathcal{N} , we get

$$\lambda_i((x+z)y - xy) \ge \lambda_i(z).$$

Since \mathcal{N} is zero symmetric, we have

$$\lambda_1(x) = \lambda_1(x_1 x_2 \cdots x_n) = \lambda_1((0+x_1)x_2 \cdots x_n - 0 \cdot x_1 x_2 \cdots x_n).$$

$$\geq \lambda_1(x_1),$$

i.e.,

$$\lambda_1(x) \ge \lambda_1(x_1).$$

Also, λ_2 is a fuzzy ideal; hence,

$$\lambda_2(x) = \lambda_2(x_1 x_2 \cdots x_n) \ge \lambda_2(x_2 x_3 \cdots x_n) = \lambda_2((0+x_2)x_3 \cdots x_n - 0 \cdot x_2 x_3 \cdots x_n).$$
$$\ge \lambda_2(x_2),$$

i.e.,

$$\lambda_2(x) \ge \lambda_2(x_2).$$

In a similar manner, we can prove that

$$\lambda_3(x) \ge \lambda_3(x_3),$$

 $\lambda_4(x) \ge \lambda_4(x_4),$
...

• • •

$$\lambda_{n-1}(x) \geq \lambda_{n-1}(x_{n-1}).$$

Since λ_n is a fuzzy ideal in \mathcal{N} , we get

$$\lambda_n(x) \geq \lambda_n(x_n).$$

Therefore,

$$\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = \min(\lambda_1(x_1), \lambda_2(x_2), \dots, \lambda_n(x_n))$$

or

$$\underset{1 \le i \le n}{\circ} \lambda_i(x) \le (\bigcap_{1 \le i \le n} \lambda_i)(x)$$

or

$$\underset{1\leq i\leq n}{\circ}\lambda_i\subset\bigcap_{1\leq i\leq n}\lambda_i.$$

Now we will prove the main result.

Theorem 2 If η is a prime fuzzy ideal of \mathcal{N} . Then η^G is a \mathcal{G} -prime fuzzy ideal of \mathcal{N} . Conversely, if λ is a \mathcal{G} -prime fuzzy ideal of \mathcal{N} , then there exists a prime fuzzy ideal η of \mathcal{N} such that $\eta^{\mathcal{G}} = \lambda$, η is unique up to its \mathcal{G} -orbit.

Proof Assume that η is a prime fuzzy ideal of \mathcal{N} and \mathcal{P} , \mathcal{Q} are two \mathcal{G} -invariant fuzzy ideals of \mathcal{N} such that $\mathcal{P} \circ \mathcal{Q} \subseteq \eta^{\mathcal{G}}$. Since $\eta^{\mathcal{G}}$ is the largest \mathcal{G} -invariant fuzzy ideal contained in η , then $\mathcal{P} \circ \mathcal{Q} \subseteq \eta$. Also primeness of η implies that either $\mathcal{P} \subseteq \eta$ or $\mathcal{Q} \subseteq \eta$. Therefore, by Theorem 1 either $\mathcal{P} \subseteq \eta^{\mathcal{G}}$ or $\mathcal{Q} \subseteq \eta^{\mathcal{G}}$. Thus, $\eta^{\mathcal{G}}$ is a \mathcal{G} -prime fuzzy ideal.

Conversely, suppose that λ is a \mathcal{G} -prime fuzzy ideal of \mathcal{N} and consider

 $S = \{\eta, \text{ a fuzzy ideal of } N | \eta^{\mathcal{G}} \subseteq \lambda\}.$

Before using Zorn's lemma on S to get the maximal element(i.e., maximal ideal), we have to show that if $C = \{\eta_k\} \subset S$ is a chain in S, then $\bigcup \eta_k \in S$.

Now, from Theorem 1, $\bigcup_k \eta_k$ is a fuzzy ideal of \mathcal{N} . Since $\eta_k \in S$, we get $\eta_k^{\mathcal{G}} \subseteq \lambda$, and we can take any $r \in \mathcal{N}$ and $\eta_k \in \mathcal{C}$ such that

$$\eta_k^g(r) = \eta_k(r^g) \text{ and } \eta_k^g \subseteq \lambda.$$

Then

 $\eta_k(r^g) = \eta_k^g(r) \le \lambda(r),$

or

$$\min(\eta_k(r^g), g \in \mathcal{G}) \le \lambda(r).$$

This implies that

$$\sup\{\min(\eta_k(r^g), g \in \mathcal{G})\} \le \lambda(r).$$
(27)

Since \mathcal{G} is finite, by Corollary 1, we obtain

$$\min\{\sup(\eta_k(r^g), g \in \mathcal{G})\} = \sup_k \{\min(\eta_k(r^g), g \in \mathcal{G})\}.$$
(28)

From (27) and (28), we have

$$\min_{k} \{ \sup_{k} (\eta_{k}(r^{g}), g \in \mathcal{G}) \} \le \lambda(r)$$

or

$$\min\{(\bigcup_k \eta_k)(r^g), g \in \mathcal{G}\} \le \lambda(r).$$

Now by Theorem 1, we get

$$(\bigcup_k \eta_k)^{\mathcal{G}}(r) \le \lambda(r).$$

Thus, we obtain

$$(\bigcup_k \eta_k)^{\mathcal{G}} \subseteq \lambda.$$

This shows that $(\bigcup_k \eta_l) \in S$, i.e., S has upper bound. Now we use Zorn's lemma on S to choose a maximal fuzzy ideal say η . Let \mathcal{P} , \mathcal{Q} be fuzzy ideals of \mathcal{N} such that $\mathcal{P} \circ \mathcal{Q} \subseteq \eta$. Then

$$(\mathcal{P} \circ \mathcal{Q})^{\mathcal{G}} \subseteq \eta^{\mathcal{G}} \subseteq \lambda.$$
⁽²⁹⁾

Since $\mathcal{P}^{\mathcal{G}}$ and $\mathcal{Q}^{\mathcal{G}}$ are the largest fuzzy ideals contained in \mathcal{P} and \mathcal{Q} , respectively. Now we prove that $\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}} \subseteq \mathcal{P} \circ \mathcal{Q}$ is a \mathcal{G} -invariant,

364

$$(\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}})(r^{g}) = \sup_{r^{g} = ab} \{\min(\mathcal{P}^{\mathcal{G}}(a), \mathcal{Q}^{\mathcal{G}}(b))\}$$
$$= \sup_{r = a^{g^{-1}}b^{g^{-1}}} \{\min(\mathcal{P}^{\mathcal{G}}(a^{g^{-1}}), \mathcal{Q}^{\mathcal{G}}(b^{g^{-1}}))\}$$
$$= \mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}}(r).$$

Hence, by Theorem 1, $(\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}}) \subseteq (\mathcal{P} \circ \mathcal{Q})^{\mathcal{G}} \subseteq \lambda$. Since λ is \mathcal{G} -prime, then we have either $\mathcal{P}^{\mathcal{G}} \subseteq \lambda$ or $\mathcal{Q}^{\mathcal{G}} \subseteq \lambda$. By maximality of η either $\mathcal{P} \subseteq \eta$ or $\mathcal{Q} \subseteq \eta$. This implies that η is prime fuzzy ideal of \mathcal{N} . As $\lambda^{\mathcal{G}} = \lambda$, we have $\lambda \in \mathcal{S}$. But maximality of η gives that $\lambda \subseteq \eta$. Since λ and $\eta^{\mathcal{G}}$ are \mathcal{G} -invariant ideal and $\eta^{\mathcal{G}}$ is largest in η , we get

$$\lambda \subseteq \eta^{\mathcal{G}}.\tag{30}$$

Thus, from (29) and (30), we obtain

$$\eta^{\mathcal{G}} = \lambda.$$

Let there exist another prime fuzzy ideal σ of \mathcal{N} such that $\sigma^{\mathcal{G}} = \lambda$. Then

$$\bigcap_{g \in \mathcal{G}} \eta^g = \eta^{\mathcal{G}} = \sigma^G \subseteq \sigma.$$

Since \mathcal{G} is finite, so from Proposition 4, we get

$$\underset{g\in\mathcal{G}}{\circ}\eta^g\subseteq\bigcap_{g\in\mathcal{G}}\eta^g.$$

Or for any $h(\neq g) \in \mathcal{G}$, we have

$$\eta^h \circ (\bigcap_{\substack{g \in \mathcal{G} \\ g \neq h}} \eta^g) \subseteq \bigcap_{g \in \mathcal{G}} \eta^g \subseteq \sigma.$$

By fuzzy primeness either $\eta^h \subseteq \sigma$ or $\bigcap_{\substack{g \in \mathcal{G} \\ g \neq h}} \eta^g \subseteq \sigma$. If $\eta^h \subseteq \sigma$, then $\eta \subseteq \sigma^{h^{-1}}$ and maximality of η with $(\sigma^{h^{-1}})^{\mathcal{G}} \subseteq \lambda$ implies that

$$\eta = \sigma^{h^{-1}}.\tag{31}$$

On the other hand, if $\eta^h \not\subseteq \sigma$, we get $\bigcap_{\substack{g \in \mathcal{G} \\ g \neq h}} \eta^g \subseteq \sigma$. Thus, there exists some $(h \neq)g \in \mathcal{G}$ such that $\eta^g \subseteq \sigma$ and hence $\eta \subseteq \sigma^{g^{-1}}$. Again maximality of η with $(\sigma^{g^{-1}})^{\mathcal{G}} \subseteq \lambda$ yields that

$$\eta = \sigma^{g^{-1}}.\tag{32}$$

Equations (31) and (32) show that η is unique up to its \mathcal{G} -orbit.

Conclusion: In the future, we plan to study partial group action (the existence of g * (h * x) implies the existence of (gh) * x, but not necessarily conversely) on fuzzy ideals of near rings. The theorems that we prove are the following which are generalizations of Theorems 1 and 2.

Open Problem 1. Can we establish relation between \mathcal{G} -invariant fuzzy ideal and largest \mathcal{G} -invariant fuzzy ideal of \mathcal{N} under partial group action?

Open Problem 2. Can we investigate relationship between primeness and \mathcal{G} -primeness of fuzzy ideal if a group \mathcal{G} partially acts on a fuzzy ideal?

Acknowledgements The authors are extremely thankful to the referees for their valuable comments and suggestions.

References

- 1. Bhattacharya, P.B., Jain, S.K., Nagpaul, S.R.: Basic Abstract Algebra. Cambridge University Press(2006)
- Bo, Y., Wangming, W.: Fuzzy ideals on distributive lattice. Fuzzy Sets Syst. 35, 231–240 (1990). https://doi.org/10.1016/0165-0114(90)90196-D
- 3. Clay, J.R.: Nearrings. Geneses and Applications. Oxford, New York (1992)
- Dixit, V.N., Kumar, R., Ajal, N.: On Fuzzy rings. Fuzzy Sets Syst. 49, 205–213 (1992). https:// doi.org/10.1016/0165-0114(92)90325-X
- Kim, S.D., Kim, H.S.: On Fuzzy Ideals of Near-Rings. Bull. Korean Math. Soc. 33, 593–601 (1996). https://www.koreascience.or.kr/article/JAKO199611919482456.page
- Kumar, R.: Certain fuzzy ideals of rings redefined. Fuzzy Sets Syst. 251–260 (1992). https:// doi.org/10.1016/0165-0114(92)90138-T
- Kumar, R.: Fuzzy irreducible ideals in rings. Fuzzy Sets Syst. 42, 369–379 (1992). https:// doi.org/10.1016/0165-0114(91)90116-8
- Kuroki, N.: Fuzzy bi-ideals in semigroups. Comment. Math. Univ. St. Pauli 28, 17–21(1979). https://doi.org/10.14992/00010265
- Kuroki, N.: On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets Syst. 5, 203–215 (1981). https://doi.org/10.1016/0165-0114(81)90018-X
- Kuroki, N.: Fuzzy semiprime ideals in semigroups. Fuzzy Sets Syst. 8, 71–79 (1981). https:// doi.org/10.1016/0165-0114(82)90031-8
- 11. Liu, W.: Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 8, 133–139 (1982). https://doi.org/10.1016/0165-0114(82)90003-3
- Lorenz, M., Passman, D.S.: Prime ideals in crossed products of finite groups: Israel J. Math. 33(2) 89–132 (1979). https://doi.org/10.1007/BF02760553
- 13. McLean, R.G., Kummer, H.: Fuzzy ideals in semigroups. Fuzzy Sets Syst. 48, 137–140 (1992). https://doi.org/10.1016/0165-0114(92)90258-6
- Montgomery, S.: Fixed Rings of Finite Automorphism Groups of Associative Rings. Springer, Berlin (1980)
- Mukherjee, T.K., Sen, M.K.: On fuzzy ideals of a ring I. Fuzzy Sets Syst. 21, 99–104(1987). https://doi.org/10.1016/0165-0114(87)90155-2
- 16. Ougen, X.: Fuzzy BCK-algebras. Math. Japonica 36, 935–942 (1991)
- 17. Pilz, G.: Near-Rings: North-Holland Publishing Company, Amsterdam (1983)

- 18. Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)
- 19. Sharma, R.P., Sharma, S.: Group action on fuzzy ideals. Commun. Algebra 4207–4220 (1998). https://doi.org/10.1080/00927879808826406
- Yue, Z.: Prime L-fuzzy ideals and primary L-fuzzy ideals. Fuzzy Sets Syst. 27, 345–350 (1988). https://doi.org/10.1016/0165-0114(88)90060-7
- Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
- Zaid, S.A.: On fuzzy subnear-rings and ideals. Fuzzy Sets Syst. 44, 139–146 (1989). https:// doi.org/10.1016/0165-0114(91)90039-S