Group Action on Fuzzy Ideals of Near Rings

347

Asma Ali, Ram Prakash Sharma, and Arshad Zishan

Abstract In this paper, we introduce the group action on a near ring N and with it we study group action on fuzzy ideals of N , G -invariant fuzzy ideals, finite products of fuzzy ideals, and *G*-primeness of fuzzy ideals of *N* .

Keywords Fuzzy ideals \cdot Prime fuzzy ideals \cdot *G*-invariant fuzzy ideals \cdot *G*-prime fuzzy ideals

2010 Mathematics Subject Classification. 16N60 · 16W25 · 16Y30

1 Introduction

A set N with two binary operations '+' and ' \cdot ' is known as left near ring if (i) $(N, +)$ is a group (not necessarily abelian), (ii) (N, \cdot) is a semigroup, (iii) $\alpha(\beta + \gamma) =$ α · β + α · γ \forall α , β and γ in *N*. Analogously, *N* is said to be a right near ring if *N* satisfies $(iii)'$ $(\beta + \gamma)\alpha = \beta \cdot \alpha + \gamma \cdot \alpha \forall \alpha, \beta$ and γ in *N*. A near ring *N* with $0x = 0$ $\forall x \in N$ is known as zero symmetric if $0x = 0$ (left distributively vields) $0x = 0$, $\forall x \in \mathcal{N}$, is known as zero symmetric if $0x = 0$, (left distributively yields that $x0 = 0$. Throughout the paper, N represents a zero symmetric left near ring; for simplicity, we call it a near ring. An ideal of near ring $(N, +, \cdot)$ is a subset M of *N* such that (i) $(M,+)$ ⊲ $(N,+)$, (ii) $\mathcal{NM} \subset \mathcal{M}$, (iii) $(n_1+m)n_2 - n_1n_2 \in \mathcal{M} \forall$ *m* ∈ *M* and n_1, n_2 ∈ *N*. Note that if *M* fulfils *(i)* and *(ii)*, it's referred to as a left ideal of N. It is termed a right ideal of N if M satisfies (*i*) and (*iii*). A mapping $\phi: \mathcal{N} \to \mathcal{N}'$ from near ring $\mathcal N$ to near ring $\mathcal N'$ is said to be a homomorphism if (i)

A. Ali \cdot A. Zishan (\boxtimes)

R. P. Sharma Department of Mathematics, Himachal Pradesh University, Shimla, India

Department of Mathematics, Aligarh Muslim University, Aligarh, India e-mail: arshadzeeshan1@gmail.com

[©] The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 R. K. Sharma et al. (eds.), *Frontiers in Industrial and Applied Mathematics*, Springer Proceedings in Mathematics & Statistics 410, https://doi.org/10.1007/978-981-19-7272-0_25

 $\phi(\alpha + \beta) = \phi(\alpha) + \phi(\beta)$ (ii) $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta)$ $\forall \alpha$ and $\beta \in \mathcal{N}$. A homomorphism $\phi: \mathcal{N} \to \mathcal{N}$ which is bijective is said to be an automorphism on \mathcal{N} . The set of all automorphism of $\mathcal N$ denoted by $Aut(\mathcal N)$ forms a group under the operation of composition of mappings.

The study of group actions on rings led to the establishment of the Galois theory for rings. Lorenz and Passman [\[12\]](#page-19-0), Montgomery [\[14\]](#page-19-1), and others researched the skew grouping approach in the context of the Galois theory, as well as the groupring and fixed ring. The link between the \mathcal{G} -prime ideals of \mathcal{R} and the prime ideals of skew groupring \mathcal{RG} was identified by Lorenz and Passman [\[12](#page-19-0)]. Montgomery [\[14\]](#page-19-1) investigated the relationship between the prime ideals of R and R^G , leading him to broaden the scope of the action of a group to spec*R.*

Fuzzy sets were introduced independently by L.A. Zadeh and Dieter Klaua in 1965 as an extension of the classical notion of set. Liu $[11]$ $[11]$ studied fuzzy ideals of a ring and many researchers [\[4](#page-19-3), [6](#page-19-4), [7](#page-19-5), [20](#page-20-0)] extended the concepts.The concept of fuzzy ideals and related features have been applied to a variety of fields, including semigroups, $[8-10, 18, 19]$ $[8-10, 18, 19]$ $[8-10, 18, 19]$ $[8-10, 18, 19]$ $[8-10, 18, 19]$, distributive lattice [\[2](#page-19-8)], BCK-algebras [\[16\]](#page-19-9), and near rings [\[22](#page-20-3)]. Kim and Kim [\[5\]](#page-19-10) defined the exact analogue of fuzzy ideals for near rings.

Sharma and Sharma [\[19](#page-20-2)] recently investigated the action of group on the fuzzy ideals of the ring *R* and found a relationship between the *G*-prime fuzzy ideals of *R* and the prime fuzzy ideals of R . We define the action of group on a near ring N and investigate the action of group on fuzzy ideals and G -invariant fuzzy ideals of N , finite products of fuzzy ideals, and G -primeness of fuzzy ideals of N . As a result, we extend Sharma and Sharma's conclusions to near ring *N .*

2 Preliminaries

Definition 1 ([\[22\]](#page-20-3)) If N is a near ring, then a fuzzy set \tilde{F} in N is a set of ordered pair $\vec{F} = \{(n, \eta_{\tilde{F}}(n)) | n \in \mathcal{N}\}\$, $\eta_{\tilde{F}}(n)$ is called membership function.

Definition 2 ([\[22\]](#page-20-3)) Let η and μ be two fuzzy subsets of a near ring \mathcal{N} . Then $\eta \cap \mu$ and $\eta \circ \mu$ are defined as follows:

$$
\eta \cap \mu(m) = min\{\eta(m), \mu(m)\}.
$$

And product $\eta \circ \mu$ is defined by

$$
\eta \circ \mu(m) = \begin{cases} \sup_{m=m_1m_2} {\min(\eta(m_1), \mu(m_2))} & \text{if } m = m_1m_2 \\ 0 & \text{if } m \neq m_1m_2. \end{cases}
$$
 (1)

Definition 3 ([\[22\]](#page-20-3)) Let $(G, +)$ be a group and η be a fuzzy subset of G . Then η is fuzzy subgroup if (i) $\eta(g_1 + g_2) \ge \min(\eta(g_1), \eta(g_2)), \forall g_1, g_2 \text{ in } \mathcal{G},$ (ii) $\eta(q) = \eta(-q)$, $\forall q$ in \mathcal{G} .

Definition 4 ([\[22\]](#page-20-3)) A fuzzy subset η of a near ring $\mathcal N$ is said to be a fuzzy subnear ring of $\mathcal N$ if η is a fuzzy subgroup of $\mathcal N$ with respect to the addition '+' and is a fuzzy groupoid with respect to the multiplication $\cdot\cdot\cdot$, i.e.,

(i) $\eta(x - y) > min(\eta(x), \eta(y))$ and (ii) $\eta(xy) > min(\eta(x), \eta(y)) \forall x, y \in \mathcal{N}$.

Definition 5 ([\[22\]](#page-20-3)) A fuzzy subset η of a near ring $\mathcal N$ is said to be a fuzzy ideal of N if n satisfies following conditions:

- (i) η is fuzzy subnear ring,
- (ii) η is normal fuzzy subgroup with respect to '+',
- (iii) $\eta(rs) > \eta(s)$; for all r,s in N,
- (iv) $\eta((r+t)s rs) > \eta(t); \forall r, s \text{ and } t \text{ in } \mathcal{N}.$

If η satisfies (i),(ii), and (iii), then it is called a fuzzy left ideal of $\mathcal N$. If η satisfies (i),(ii), and (iv), then it is called a fuzzy right ideal of N .

Definition 6 ([\[1\]](#page-19-11)) Let G be a group and Z be a set. Then G is said to act on Z if there is a mapping $\phi : \mathcal{G} \times \mathcal{Z} \to \mathcal{Z}$, with $\phi(a, z)$ written $a * z$, such that (i) $a * (b * z) = (ab) * z$, $\forall a, b \in \mathcal{G}, z \in \mathcal{Z}$. *(ii)* $e * z = z$ *.* $e \in \mathcal{G}, z \in \mathcal{Z}$. The mapping ϕ is called the action of \mathcal{G} on \mathcal{Z} , and *Z* is said to be a *G*-set.

Definition 7 ([\[1\]](#page-19-11)) Let G be a group acting on a set \mathcal{Z} , and let $z \in \mathcal{Z}$. Then the set

$$
\mathcal{G}z = \{az \mid a \in \mathcal{G}\}\
$$

is called the orbit of *Z* in *G.*

Proposition 1 Let N be a near ring and $\mathcal{G} = Aut(N)$, group of all automorphism *of N .Then G acts on N via following map*

 ϕ : $\mathcal{G} \times \mathcal{N} \rightarrow \mathcal{N}$ *which is defined by* $\phi(h, a) = h(a)$ *or say* $h * a = h(a)$.

Proof Take (h_1, a_1) *and* (h_2, a_2) such that

$$
(h_1, a_1) = (h_2, a_2).
$$

This implies that $h_1 = h_2$ *and* $a_1 = a_2$. Thus, we have

$$
h_1(a_1) = h_2(a_1)
$$

or

$$
\phi(h_1, a_1) = \phi(h_2, a_2).
$$

Hence, ϕ is well defined. Furthermore, we show that ϕ is the action of *G* on *N*. Take any $g_1, g_2 \in \mathcal{G}$ *and* $b \in \mathcal{N}$. Then

$$
g_1 * (g_2 * b) = g_1 * (g_2(b)) = g_1(g_2(b))
$$
\n(2)

$$
(g_1 \circ g_2) * b = (g_1 \circ g_2)(b) = g_1(g_2(b)).
$$
\n(3)

From (2) and (3) , we get

$$
(g_1 \circ g_2) * b = g_1 * (g_2 * b).
$$

Also, we have

$$
e * x = x.
$$

Hence, ϕ is the action of $\mathcal G$ on $\mathcal N$.

Motivated by the definition of the group action of a finite group on fuzzy ideals of a ring [\[19](#page-20-2)], we define a *G*−fuzzy ideal of *N* as follows:

Definition 8 Let *G* be a group. Then fuzzy set η of $\mathcal N$ is a $\mathcal G$ -set or $\mathcal G$ act on η if

$$
\eta^g(r) = \eta(r^g), \quad g \in \mathcal{G}
$$

where r^g denotes g acts on $r, r \in \mathcal{N}$.

Example 1 Let $\mathcal{N} = \{0, 1, 2\}$ be a set. Then under following two binary operations *N* forms a zero symmetric near ring:

$$
Aut(\mathcal{N}) = \{f | f : \mathcal{N} \to \mathcal{N} \text{ is isomorphism}\}.
$$

There are only two automorphisms *(i)* identity map and *(ii)* the map g defined as follows:

$$
g(0)=0
$$
, $g(1)=2$, and $g(2)=1$.

We know that $Aut(\mathcal{N})$ forms a group. Define a map $\lambda : \mathcal{N} \to [0, 1]$ by

$$
\lambda(a) = \begin{cases} 0.9 & a = 0 \\ 0.8 & a = 1, 2. \end{cases}
$$

 λ is a fuzzy ideal. By Definition [8,](#page-3-2) $\lambda^g : \mathcal{N} \to [0, 1]$ is defined as $\lambda^g(r) = \lambda(r^g)$, i.e.,

$$
\lambda^{g}(0) = \lambda(0^{g}) = \lambda(0) = 0.9
$$

$$
\lambda^{g}(1) = \lambda(1^{g}) = \lambda(2) = 0.8
$$

$$
\lambda^{g}(2) = \lambda(2^{g}) = \lambda(1) = 0.8.
$$

This implies that

$$
\lambda^g = \{ (0, 0.9), (1, 0.8), (2, 0.8) \} \text{ and } (4)
$$

$$
\lambda^e = \lambda = \{ (0, 0.9), (1, 0.8), (2, 0.8) \}.
$$
 (5)

This shows that λ^g is a fuzzy ideal of N, since $\lambda = \lambda^g$.

3 Prime Fuzzy Ideals

Definition 9 ([\[19\]](#page-20-2)) Let Q be a fuzzy ideal of N. Then Q is said to be a prime ideal in *N* if *Q* is not a constant function and for any fuzzy ideals η and μ in $\mathcal{N}, \eta \circ \mu \subset \mathcal{Q}$ implies that either $\eta \subset \mathcal{Q}$ or $\mu \subset \mathcal{Q}$.

Example 2 Take $Z_4 = \{0, 1, 2, 3\}$ the zero symmetric left near ring under binary operations addition modulo 4 and for any $a, b \in Z_4$ multiplication is defined as

$$
a \cdot b = \begin{cases} b & a \neq 0 \\ 0 & a = 0. \end{cases}
$$

Define two maps $\eta_1, \eta_2 : Z_4 \to [0, 1]$ by $\eta_1(z_1) = \begin{cases} 0.9 & z_1 = 0 \\ 0.8 & z_1 \neq 0 \end{cases}$ $0.8 z_1 = 0$, and $\eta_2(z_2) = 0.9$ for all $z_1, z_2 \in Z_4$. It shows that $\eta_1 \circ \eta_2 \subseteq \eta_1$ and $\eta_1 \subseteq \eta_1$ but $\eta_2 \not\subset \eta_1$. As η_1 is non-constant function so η_2 is a prime fuzzy ideal non-constant function so η_1 is a prime fuzzy ideal.

Proposition 2 *If* η *is a fuzzy ideal of* N *, then* η^g *is a fuzzy ideal of* N *. Moreover, primeness of* η *as a fuzzy ideal implies the primeness of fuzzy ideal* η^g *of* \mathcal{N} *.*

Proof Assume that η is a fuzzy ideal of N. Then we show that η^g is also a prime fuzzy ideal of N , i.e., we will show that η^g satisfies following conditions:

Let $r, s \in \mathcal{N}$. Since η is a fuzzy ideal of \mathcal{N} , then we have

$$
\eta^g(r-s) = \eta(r-s)^g = \eta(r^g-s^g) \ge \min(\eta(r^g), \eta(s^g)),
$$

i.e.,

$$
\eta^g(r-s) \ge \min(\eta^g(r), \eta^g(s)) \tag{6}
$$

and

$$
\eta^g(rs) = \eta(rs)^g = \eta(r^gs^g) \ge \min(\eta(r^g), \eta(s^g)),\tag{7}
$$

i.e.,

$$
\eta^g(rs) \ge \min(\eta(r^g), \eta(s^g)).\tag{8}
$$

Equations [\(6\)](#page-5-0) and [\(7\)](#page-5-1) imply that η^g is a fuzzy subnear ring of N.

Again $r, s \in \mathcal{N}$ and η is fuzzy ideal of \mathcal{N} , we have

$$
\eta^g(r+s) = \eta(r+s)^g = \eta(r^g+s^g) \ge \min(\eta(r^g), \eta(s^g)),
$$

i.e.,

$$
\eta^g(r+s) \ge \min(\eta(r^g), \eta(s^g)).\tag{9}
$$

Applying $([5]$ $([5]$ $([5]$, Lemma 2.3), we obtain

$$
\eta^g(r) = \eta(r^g) = \eta(-r^g) = \eta^g(-r).
$$

Also,

$$
\eta^{g}(r) = \eta(r^{g}) = \eta(s^{g} + r^{g} - s^{g}) = \eta(s + r - s)^{g},
$$

i.e.,

$$
\eta^g(r) = \eta^g(s+r-s). \tag{10}
$$

Since η^g satisfies all conditions of normal subgroup, η^g is a normal fuzzy subgroup of $(N, +)$. For $r, s \in \mathcal{N}$, we have

$$
\eta^g(rs) = \eta(rs)^g = \eta(r^gs^g) \ge \eta(s^g),
$$

i.e.,

$$
\eta^g(rs) \ge \eta^g(s). \tag{11}
$$

This implies that η^g is a fuzzy left ideal of *N*. Now, for *r*, *s* and $t \in N$, we have

$$
\eta^{g}((r+t)s - rs) = \eta((r^{g} + t^{g})s^{g} - r^{g}s^{g}) \geq \eta(t^{g}),
$$

i.e.,

$$
\eta^g((r+t)s - rs) \ge \eta^g(t). \tag{12}
$$

This implies that η is a right fuzzy ideal. Thus, η is a fuzzy ideal(left fuzzy ideal as well as right fuzzy ideal) of N .
Now we prove that η^g is a prime fuzzy ideal of N . Let A and B be two fuzzy

Now we prove that η^g is a prime fuzzy ideal of *N*. Let *A* and *B* be two fuzzy
als of *N* such that $A \circ B \subset \eta^g$ Then $A^{g^{-1}}$ and $B^{g^{-1}}$ are also fuzzy ideals of *N* ideals of *N* such that $A \circ B \subset \eta^g$. Then $A^{g^{-1}}$ and $B^{g^{-1}}$ are also fuzzy ideals of *N*, since $a^{-1} \in G$ and as proved in n^g we claim that $A^{g^{-1}} \circ B^{g^{-1}} \subset n$. Let $n \in \mathcal{N}$ and since $g^{-1} \in \mathcal{G}$ and as proved in η^g , we claim that $\mathcal{A}^{g^{-1}} \circ \mathcal{B}^{g^{-1}} \subset \eta$. Let $n \in \mathcal{N}$ and

$$
(\mathcal{A}^{g^{-1}} \circ \mathcal{B}^{g^{-1}})(n) = \sup_{n=n_1n_2} \{\min(\mathcal{A}^{g^{-1}}(n_1), \mathcal{B}^{g^{-1}}(n_2))\}
$$

=
$$
\sup_{n^{g^{-1}}=n_1^{g^{-1}}n_2^{g^{-1}}} \left\{\min(\mathcal{A}(n_1^{g^{-1}}), \mathcal{B}(n_2^{g^{-1}}))\right\}
$$

= $(\mathcal{A} \circ \mathcal{B})(n^{g^{-1}})$
 $\leq \eta^g(n^{g^{-1}}) = \eta((n^{g^{-1}})^g)$
= $\eta(n).$

So, $A^{g^{-1}} \circ B^{g^{-1}} \subset \eta$. Since η is a prime fuzzy ideal, then we have $A^{g^{-1}} \subset \eta$ or $B^{g^{-1}} \subset \eta$. Suppose that $A^{g^{-1}} \subset \eta$. Then for all $\eta \in \mathcal{N}$, we have $\mathcal{B}^{g^{-1}} \subset \eta$. Suppose that $\mathcal{A}^{g^{-1}} \subset \eta$. Then for all $n \in \mathcal{N}$, we have

$$
\mathcal{A}(n) = \mathcal{A}((n^g)^{g^{-1}}) = \mathcal{A}^{g^{-1}}(n^g) \le \eta(n^g) = \eta^g(n).
$$

Thus $A \subset \eta^g$. This implies that η^g is a prime fuzzy ideal of N.

Now we define a *G*-invariant fuzzy ideal of a near ring.

Definition 10 A fuzzy ideal η of N is called a *G*-invariant fuzzy ideal of N if and only if

$$
\eta^g(r) = \eta(r^g) \ge \eta(r), \forall g \in \mathcal{G}, r \in \mathcal{N}.
$$

Or

$$
\eta(r) = \eta((r^g)^{g^{-1}}) \ge \eta(r^g).
$$

Example 3 Let X be a near ring. Then

$$
N = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} \middle| \ x, y, \ 0 \in X \right\}
$$

is near ring with regard to matrix addition and matrix multiplication. Let

$$
I = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & y \end{pmatrix} \middle| y, 0 \in X \right\}.
$$

Then *I* is a fuzzy ideal of *N*. Define a map $\eta : \mathcal{N} \to [0, 1]$ by

$$
\eta(z) = \begin{cases} 0.9 & z = 0 \\ 0.8 & z \neq 0 \end{cases}.
$$

Consider

$$
\mathcal{G}(\subseteq Aut(\mathcal{N})) = \{f | f : \mathcal{N} \to \mathcal{N} \text{ is an isomorphism}\}.
$$

There are only two automorphisms that are identity map and the map $q : \mathcal{N} \to \mathcal{N}$ defined by

$$
g\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} y & 0 \\ 0 & x \end{pmatrix}.
$$

Since $\eta^{g}(r) = \eta(r^{g}) = \eta(r)$ *for all* $q \in G$ *and* $r \in \mathcal{N}$, we get η is G −invariant fuzzy ideal in *N* .

Theorem 1 Let η be a fuzzy ideal of N and $\eta^{\mathcal{G}} = \bigcap_{g \in \mathcal{G}} \eta^g$. Then $\eta^{\mathcal{G}}(r) = min\{\eta(r^g),\}$ g∈*^G* ^g [∈] *^G*}*. Moreover, fuzzy ideal* ^η *contains largest ^G-invariant fuzzy ideal* ^η*^G of ^N .*

Proof Assume that

$$
\eta^{\mathcal{G}}(s) = \bigcap_{k \in \mathcal{G}} \eta^k
$$

= $min{\{\eta^k(s), \ k \in \mathcal{G}\}} = min{\{\eta(s^k), \ k \in \mathcal{G}\}}.$

We prove that $\eta^{\mathcal{G}}$ is a fuzzy ideal of N.

Let $r, s \in \mathcal{N}$. Then

$$
\eta^{\mathcal{G}}(r-s) = \min \{\eta(r-s)^g, g \in \mathcal{G}\}
$$

=
$$
\min \{\eta(r^g - s^g), g \in \mathcal{G}\}
$$

=
$$
\min \{\min(\eta(r^g), \eta(s^g)), g \in \mathcal{G}\}.
$$

Since η is a fuzzy ideal, we have

$$
\eta^{\mathcal{G}}(r-s) \ge \min\{\min(\eta(r^g), g \in \mathcal{G}), \min(\eta(s^g), g \in \mathcal{G})\}
$$

= $\min\{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.$

This implies that

$$
\eta^{\mathcal{G}}(r-s) \geq \{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.
$$
\n(13)

Also for any $r, s \in \mathcal{N}$

$$
\eta^{G}(rs) = \min{\eta(rs)^{g}, g \in G}
$$

=
$$
\min{\eta(r^{g}s^{g}), g \in G}
$$

=
$$
\min{\min(\eta(r^{g}), \eta(s^{g}))}, g \in G
$$
.

Since η is a fuzzy ideal of N , we have

$$
\eta^{\mathcal{G}}(rs) \ge \min\{\min(\eta(r^g), g \in \mathcal{G}), \min(\eta(s^g), g \in \mathcal{G})\}
$$

= $\min\{\mu^G(r), \mu^G(s)\}.$

Thus,

$$
\eta^{\mathcal{G}}(rs) \geq \{\eta^{\mathcal{G}}(r), \eta^{\mathcal{G}}(s)\}.
$$
\n(14)

$$
\eta^{\mathcal{G}}(s+r-s) = \min \{\eta(s+r-s)^{g}, g \in \mathcal{G}\}
$$

$$
= \min \{\eta(s^{g}+r^{g}-s^{g}), g \in \mathcal{G}\}
$$

$$
= \min \{\eta(r^{g}), g \in \mathcal{G}\}
$$

$$
= \eta^{\mathcal{G}}(r).
$$

Therefore,

$$
\eta^{\mathcal{G}}(s+r-s) = \eta^{\mathcal{G}}(r). \tag{15}
$$

Now,

$$
\eta^{\mathcal{G}}(rs) = \min \{ \eta(rs)^g, g \in \mathcal{G} \} = \min \{ \eta(r^g s^g), g \in \mathcal{G} \}.
$$

Again since η is fuzzy ideal, we can write for $r, s \in \mathcal{N}$

$$
\eta^{\mathcal{G}}(rs) \ge \min{\{\eta(s^g), g \in \mathcal{G}\}}.
$$

= $\eta^{\mathcal{G}}(s),$

i.e.,

$$
\eta^{\mathcal{G}}(rs) \ge \eta^{\mathcal{G}}(s) \tag{16}
$$

$$
\eta^G((r+t)s - rs) = \min{\eta((r+t)s - rs)^g}, g \in \mathcal{G}
$$

=
$$
\min{\eta((r+t)^g s^g - r^g s^g)}, g \in \mathcal{G}
$$

=
$$
\min{\eta((r^g + t^g)s^g - r^g s^g)}, g \in \mathcal{G}
$$

$$
\geq \min{\eta(t^g), g \in \mathcal{G}}
$$

=
$$
\eta^G(t)
$$

$$
\eta^{\mathcal{G}}((r+t)s - rs) \ge \eta^{\mathcal{G}}(t). \tag{17}
$$

Since η^G is the left and right fuzzy ideals of *N*, then η^G is the fuzzy ideal of *N*. It is still necessary to show that it is a *G*-invariant fuzzy ideal of *N* .

$$
\eta^{\mathcal{G}}(r^g) = \min{\{\eta((r^g)^k), k \in \mathcal{G}\}}
$$

$$
= \min{\{\eta(r^{g^k}), k \in \mathcal{G}\}}
$$

$$
= \min{\{\eta(r^{g^j}), g^{\prime} \in \mathcal{G}\}}
$$

$$
= \eta^{\mathcal{G}}(r).
$$

Now we prove that η^G is the largest. Assume that μ is any $\mathcal G$ -invariant fuzzy ideal of *N* such that $\mu \subseteq \eta$. Then for any $g \in \mathcal{G}$

$$
\mu(r^g) = \mu(r) \le \eta(r).
$$

Also,

$$
\mu(r^g) = \mu(r) = \mu((r^g)^{g^{-1}}) \le \eta(r^g).
$$

This implies that

$$
\mu(r) \le \min\{\eta(r^g), g \in \mathcal{G}\} = \eta^{\mathcal{G}}(r).
$$

Thus,

 $\mu \subset \eta^{\mathcal{G}}$.

Hence, $\eta^{\mathcal{G}}$ contained in η as the largest \mathcal{G} -invariant fuzzy ideal of \mathcal{N} .

Remark 1 If a fuzzy ideal η of N satisfies $\eta = \eta^{\mathcal{G}}$. Then η is called as \mathcal{G} -invariant fuzzy ideal of *N* and vice versa.

4 Union of Fuzzy Ideals of Near Ring

The following example demonstrates that the union of fuzzy ideals of a near ring *N* need not be a fuzzy ideal in *N .*

Example 4 Let *Q* be a near ring. Then

$$
\mathcal{N} = \left\{ \begin{pmatrix} 0 & p \\ 0 & q \end{pmatrix} \middle| p, q \ 0 \in \mathcal{Q} \right\}
$$

is a near ring with regard to matrix addition and matrix multiplication. Let

$$
\mathcal{I}_1 = \left\{ \begin{pmatrix} 0 & p \\ 0 & 0 \end{pmatrix} \middle| p, 0 \in \mathcal{Q} \right\}
$$

and

$$
\mathcal{I}_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix} \middle| \ q, \ 0 \in \mathcal{Q} \right\}.
$$

We can check that \mathcal{I}_1 and \mathcal{I}_2 are ideals of \mathcal{N} . Define maps

$$
\eta_1 : \mathcal{N} \to [0, 1]
$$
 and $\eta_2 : \mathcal{N} \to [0, 1]$

by

$$
\eta_1(x) = \begin{cases} 0.5 \ x \in \mathcal{I}_1 \\ 0 \quad x \notin \mathcal{I}_1 \end{cases}
$$

and

$$
\eta_2(x) = \begin{cases} 0.6, & x \in \mathcal{I}_2 \\ 0, & x \notin \mathcal{I}_2. \end{cases}
$$

Then η_1 and η_2 are fuzzy ideals of N. However

$$
(\eta_1 \cup \eta_2)(x) = \begin{cases} \max\{0.5, 0.6\}, & x \in \mathcal{I}_1 \cup \mathcal{I}_2 \\ 0, & x \notin \mathcal{I}_1 \cup \mathcal{I}_2 \end{cases}
$$

is not a fuzzy ideal of N, since for $m = \begin{pmatrix} 0 & p \\ 0 & 0 \end{pmatrix} n = \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix}$ 0 *q* $\binom{0}{0}$, *m* − *n* = $\binom{0}{0}$ − *e* 0 −*q* ∈*/ I*₁ ∪ *I*₂*.* We see that $\eta_1 \cup \eta_2(m - n) = 0$, $\eta_1 \cup \eta_2(m) = 0.6$, and $\eta_1 \cup \eta_2(n) = 0.5$. Thus,

$$
\eta_1 \cup \eta_2(m-n) = 0 \nless \max{\eta_1 \cup \eta_2(m), \eta_1 \cup \eta_2(n)}
$$
\n
$$
\nless \max{0.6, 0.5}
$$
\n
$$
\nless 0.6
$$

Hence, $\eta_1 \cup \eta_2$ is not a fuzzy ideal of N.

Proposition 3 *Let* $C = \{\eta_k\}$ *be a chain of fuzzy ideals of* N *. Then for any* $m, n \in N$

$$
min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\}) = \sup_{k} \{min(\eta_k(m), \eta_k(n))\}.
$$

Proof We can easily see that

$$
\sup_{k}\{\min(\eta_k(m),\eta_k(n))\}\leq \min(\sup_{k}\{\eta_k(m)\},\sup_{k}\{\eta_k(n)\}).
$$

Now, assume that

$$
\sup_k\{\min(\eta_k(m),\eta_k(n))\}=I.
$$

And

$$
I < \min(\sup_k\{\eta_k(m)\}, \sup_k\{\eta_k(n)\}).
$$

Then

$$
\sup_{k} \{\eta_k(m)\} > I, \quad or \quad \sup_{k} \{\eta_k(n)\} > I.
$$

 η_r and η_s exist in such a way that

$$
\eta_r(m) > I, \quad \& \quad \eta_s(n) > I
$$

or

$$
\eta_r(m) > I \ge \min(\eta_r(m), \eta_r(n)) \tag{18}
$$

and

$$
\eta_r(n) > I \ge \min(\eta_s(m), \eta_s(n)). \tag{19}
$$

Since, $\eta_r, \eta_s \in \mathcal{C}$, so without loss of generality, we may assume that $\eta_r \subseteq \eta_s$ and $\eta_s(n) \geq \eta_s(m)$ Therefore, from [\(18\)](#page-11-0) and [\(19\)](#page-11-1), we get

$$
I < \eta_r(m) \leq \eta_s(m) = \min(\eta_s(m), \eta_s(n)).
$$

This contradicts the fact that

$$
I = \sup_{k} \{ \min(\eta_k(m), \eta_k(n)) \}.
$$

Hence,

$$
min(\sup_{k} \{\eta_k(m)\}, \sup_{k} \{\eta_k(n)\}) = \sup_{k} \{min(\eta_k(m), \eta_k(n))\}.
$$

Corollary 1 Assume that $C = \{\eta_k\}$ is a chain of fuzzy ideals of N. Then for each $x_1, x_2, ..., x_m \in \mathcal{N}$,

 $min(\sup_k{\eta_k(x_1)}, \sup_k{\eta_k(x_2)}, \dots, \sup_k{\eta_k(x_m)}) = \sup_k{\{min(\eta_k(x_1), \eta_k(x_2), \dots, \eta_k(x_m))\}}.$

Theorem 1 Let $C = \{\eta_k\}$ be a chain of fuzzy ideals of N . Then $\bigcup_k \eta_k$ is a fuzzy ideal of N $of N$.

Proof Let $r, s \in \mathcal{N}$, and η_k be a fuzzy ideal of \mathcal{N} , where k is a natural number. Then

$$
(\bigcup_{k} \eta_k)(r - s) = \sup_{k} (\eta_k(r - s))
$$

$$
\geq \sup_{k} \{\min(\eta_k(r), \eta_k(s))\}.
$$

Using Corollary [1,](#page-12-0) we get

$$
(\bigcup_{k} (r-s) \geq \min_{k} \{ \sup_{k} (\eta_k(r)), \sup_{k} (\eta_k(s)) \},
$$

i.e.,

$$
(\bigcup_{k} \eta_k)(r - s) \ge \min\{(\bigcup_{k} \eta_k)(r), (\bigcup_{k} \eta_k)(s)\}.
$$
 (20)

Also,

$$
(\bigcup_{k} \eta_{k})(rs) = \sup_{k} (\bigcup_{k} (rs))
$$

$$
\geq \sup_{k} \{\min(\eta_{k}(r), \eta_{r}(s))\}.
$$

Again from Corollary [1,](#page-12-0) we have

$$
(\bigcup_k \eta_k)(rs) \geq \min_k \{ \sup_k(\eta_k(r)), \sup_k(\eta_k(s)) \},
$$

i.e.,

$$
(\bigcup_{k} \eta_{k})(rs) \ge \min\{(\bigcup_{k} \eta_{k})(r), (\bigcup_{k} \eta_{k})(s)\}.
$$
 (21)

Now

$$
(\bigcup_{k} \eta_k)(s+r-s) = \sup_{k} (\eta_k(s+r-s))
$$

=
$$
\sup_{k} {\eta_k(r)}.
$$

Since η_k is a fuzzy ideal in N , we obtain

$$
(\bigcup_k \eta_k)(s+r-s) = (\bigcup_k \eta_k)(r),
$$

i.e.,

$$
(\bigcup_k \eta_k)(s+r-s) = (\bigcup_k \eta_k)(r). \tag{22}
$$

$$
(\bigcup_{k} \eta_{k})(rs) = \sup_{k} (\eta_{k}(rs))
$$

$$
\geq \sup_{k} {\eta_{k}(s)}.
$$

Again using the fact that η_k is fuzzy ideal, we get

$$
(\bigcup_{k} \eta_k)(rs) \ge (\bigcup_{k} \eta_k)(s) \tag{23}
$$

$$
(\bigcup_k \eta_k)((r+t)s - rs) = \sup_k (\eta_k((r+t)s - rs))
$$

$$
\geq \sup_k \{\eta_k(t)\}.
$$

Also,

$$
(\bigcup_{k} \eta_k)((r+t)s - rs) \ge (\bigcup_{k} \eta_k)(t). \tag{24}
$$

Hence, *(* $\bigcup_k \eta_k$) is a fuzzy ideal of N .

5 G-Prime Fuzzy Ideals of a Near Ring

Motivated by the definition of *G*-prime fuzzy ideals of the rings [\[19\]](#page-20-2), we define *G*−prime fuzzy ideals in a near ring as follows.

Definition 11 Let the fuzzy ideal η of $\mathcal N$ be G -invariant and non-constant. If $\mu \circ \lambda \subset$ η implies that either $\mu \subseteq \eta$ or $\lambda \subseteq \eta$ for any two *G*-invariant fuzzy ideals μ and λ of N , then η is a G -prime fuzzy ideal.

Example 5 Take $Z_3 = \{0, 1, 2\}$ which is a zero symmetric left near ring under binary operations addition modulo 3 and for any $r, s \in Z_3$ multiplication is defined as follows:

$$
r \cdot s = \begin{cases} s & r \neq 0 \\ 0 & r = 0. \end{cases}
$$

Aut (Z_3) = {f | f : $Z_3 \rightarrow Z_3$ is isomorphism}.

We can check that there are only two automorphisms on Z_3 ; one is the identity map and the other is the map g defined by

$$
g(0)=0
$$
, $g(1)=2$ and $g(2)=1$.

 $Aut(Z_3)$ forms a group under the composition of mappings. Now we define two maps $\eta_1, \eta_2: Z_3 \to [0, 1]$ by $\eta_1(r) = \begin{cases} 0.9 & r = 0 \\ 0.8 & r \neq 0 \end{cases}$ $0.8 \, r \neq 0$, and $\eta_2(s) = 0.9$ for all $r, s \in Z_3$. By Definition [8,](#page-3-2) $\eta_1^g : Z_3 \to [0, 1]$ is defined as $\eta_1^g(r) = \eta_1(r^g)$, i.e.,

$$
\eta_1^q(0) = \eta_1(0^g) = \eta_1(0) = 0.9
$$

\n
$$
\eta_1^q(1) = \eta_1(1^g) = \eta_1(2) = 0.8
$$

\n
$$
\eta_1^q(2) = \eta_1(2^g) = \eta_1(1) = 0.8.
$$

This implies that

$$
\eta_1^g = \{ (0, 0.9), (1, 0.8), (2, 0.8) \}
$$
 (25)

and

$$
\eta_1^e = \eta_1 = \{ (0, 0.9), (1, 0.8), (2, 0.8) \}.
$$
 (26)

Also, we can see that η_2 is a *G*-invariant fuzzy ideal of Z_3 . Since $\eta_1 \circ \eta_2 \subseteq \eta_1$ and $\eta_1 \subseteq \eta_1$ but $\eta_2 \not\subset \eta_1$, so it follows that η_1 is *G*-prime fuzzy ideal as η_1 is non-constant function function.

The following proposition is an extension of Lemma 2.6 of [\[22](#page-20-3)] in case of near rings:

Proposition 4 *If* N *is near ring and* $\lambda_1, \lambda_2, ..., \lambda_n$ *are fuzzy ideals of* N *, then*

$$
\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n \subset \lambda_1 \cap \lambda_2 \cap \cdots \cap \lambda_n.
$$

Proof Let $\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = 0$. Then, there is nothing to demonstrate. Otherwise

$$
\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = \sup_{x = x_1 x_2 \cdots x_n} \{ \min(\lambda_1(x_1), \lambda_2(x_2), \ldots, \lambda_n(x_n)) \}.
$$

Since λ_i is a fuzzy ideal of N , we get

$$
\lambda_i((x+z)y-xy)\geq \lambda_i(z).
$$

Since N is zero symmetric, we have

$$
\lambda_1(x) = \lambda_1(x_1x_2\cdots x_n) = \lambda_1((0+x_1)x_2\cdots x_n - 0 \cdot x_1x_2\cdots x_n).
$$

\n
$$
\geq \lambda_1(x_1),
$$

i.e.,

$$
\lambda_1(x) \geq \lambda_1(x_1).
$$

Also, λ_2 is a fuzzy ideal; hence,

$$
\lambda_2(x) = \lambda_2(x_1x_2\cdots x_n) \ge \lambda_2(x_2x_3\cdots x_n) = \lambda_2((0+x_2)x_3\cdots x_n - 0 \cdot x_2x_3\cdots x_n).
$$

$$
\ge \lambda_2(x_2),
$$

i.e.,

$$
\lambda_2(x) \geq \lambda_2(x_2).
$$

In a similar manner, we can prove that

$$
\lambda_3(x) \geq \lambda_3(x_3),
$$

$$
\lambda_4(x) \geq \lambda_4(x_4),
$$

...

···

$$
\dots
$$

$$
\lambda_{n-1}(x) \ge \lambda_{n-1}(x_{n-1}).
$$

$$
f_{\rm{max}}
$$

Since λ_n is a fuzzy ideal in N, we get

$$
\lambda_n(x) \geq \lambda_n(x_n).
$$

Therefore,

$$
\lambda_1 \circ \lambda_2 \circ \cdots \circ \lambda_n(x) = \min(\lambda_1(x_1), \lambda_2(x_2), \ldots, \lambda_n(x_n))
$$

or

$$
\underset{1 \le i \le n}{\circ} \lambda_i(x) \le (\bigcap_{1 \le i \le n} \lambda_i)(x)
$$

or

$$
\bigcap_{1 \leq i \leq n} \lambda_i \subset \bigcap_{1 \leq i \leq n} \lambda_i.
$$

Now we will prove the main result.

Theorem 2 If η is a prime fuzzy ideal of N. Then η^G is a G-prime fuzzy ideal of N. *Conversely, if* λ *is a ^G-prime fuzzy ideal of ^N , then there exists a prime fuzzy ideal* η *of* N *such that* $\eta^{G} = \lambda$, η *is unique up to its G-orbit.*

Proof Assume that η is a prime fuzzy ideal of $\mathcal N$ and $\mathcal P$, $\mathcal Q$ are two $\mathcal G$ -invariant fuzzy ideal ideals of $\mathcal N$ such that $\mathcal P \circ \mathcal O \subset \eta^{\mathcal G}$. Since $\eta^{\mathcal G}$ is the largest $\mathcal G$ -invariant fuzzy i ideals of *N* such that $P \circ Q \subseteq \eta^G$. Since η^G is the largest *G*-invariant fuzzy ideal contained in *n* then $P \circ Q \subseteq n$. Also primeness of *n* implies that either $P \subseteq n$ or contained in η , then $P \circ Q \subseteq \eta$. Also primeness of η implies that either $P \subseteq \eta$ or $Q \subseteq \eta$. Therefore, by Theorem [1](#page-7-0) either $P \subseteq \eta^{\mathcal{G}}$ or $Q \subseteq \eta^{\mathcal{G}}$. Thus, $\eta^{\mathcal{G}}$ is a \mathcal{G} -prime fuzzy ideal.

Conversely, suppose that λ is a *G*-prime fuzzy ideal of $\mathcal N$ and consider

 $S = \{ \eta, \text{ a fuzzy ideal of } N \mid \eta^{\mathcal{G}} \subseteq \lambda \}.$

Before using Zorn's lemma on S to get the maximal element(i.e., maximal ideal), we have to show that if $C = {\eta_k} \subset S$ is a chain in *S*, then $\bigcup_k \eta_k \in S$.

k

Now, from Theorem [1,](#page-12-1) $\bigcup_k \eta_k$ is a fuzzy ideal of $\mathcal N$. Since $\eta_k \in \mathcal S$, we get $\eta_k^{\mathcal U} \subseteq \lambda$,
the can take any $r \in \mathcal N$ and $n_k \in \mathcal C$ such that and we can take any $r \in \mathcal{N}$ and $\eta_k \in \mathcal{C}$ such that

$$
\eta_k^g(r) = \eta_k(r^g) \quad \text{and} \quad \eta_k^g \subseteq \lambda.
$$

Then

 $\eta_k(r^g) = \eta_k^g(r) \leq \lambda(r)$,

or

$$
\min(\eta_k(r^g), g \in \mathcal{G}) \leq \lambda(r).
$$

This implies that

$$
\sup\{\min(\eta_k(r^g), g \in \mathcal{G})\} \le \lambda(r). \tag{27}
$$

Since G is finite, by Corollary [1,](#page-12-0) we obtain

$$
\min\{\sup(\eta_k(r^g), g \in \mathcal{G})\} = \sup_k\{\min(\eta_k(r^g), g \in \mathcal{G})\}.\tag{28}
$$

From (27) and (28) , we have

$$
\min_{k} \{ \sup_{k} (\eta_k(r^g), g \in \mathcal{G}) \} \le \lambda(r)
$$

or

$$
\min\{(\bigcup_k \eta_k)(r^g), g \in \mathcal{G}\} \le \lambda(r).
$$

Now by Theorem [1,](#page-7-0) we get

$$
(\bigcup_k \eta_k)^{\mathcal{G}}(r) \leq \lambda(r).
$$

Thus, we obtain

$$
(\bigcup_k \eta_k)^{\mathcal{G}} \subseteq \lambda.
$$

This shows that $(\bigcup_{k} \eta_{l}) \in S$, i.e., *S* has upper bound. Now we use Zorn's lemma on *S* to choose a maximal fuzzy ideal say *η*. Let *P, Q* be fuzzy ideals of *N* such that $P \circ Q \subseteq n$. Then $P \circ Q \subseteq \eta$. Then

$$
(\mathcal{P} \circ \mathcal{Q})^{\mathcal{G}} \subseteq \eta^{\mathcal{G}} \subseteq \lambda. \tag{29}
$$

Since $\mathcal{P}^{\mathcal{G}}$ and $\mathcal{Q}^{\mathcal{G}}$ are the largest fuzzy ideals contained in \mathcal{P} and \mathcal{Q} , respectively. Now we prove that $\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}} \subseteq \mathcal{P} \circ \mathcal{Q}$ is a $\mathcal{G}\text{-invariant}$,

$$
(\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}})(r^{g}) = \sup_{r^{g} = ab} \{ \min(\mathcal{P}^{\mathcal{G}}(a), \mathcal{Q}^{\mathcal{G}}(b)) \}
$$

=
$$
\sup_{r = a^{g^{-1}}b^{g^{-1}}} \{ \min(\mathcal{P}^{\mathcal{G}}(a^{g^{-1}}), \mathcal{Q}^{\mathcal{G}}(b^{g^{-1}})) \}
$$

=
$$
\mathcal{P}^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}}(r).
$$

Hence, by Theorem [1,](#page-7-0) $(P^{\mathcal{G}} \circ \mathcal{Q}^{\mathcal{G}}) \subseteq (P \circ \mathcal{Q})^{\mathcal{G}} \subseteq \lambda$. Since λ is \mathcal{G} -prime, then we have either $P^{\mathcal{G}} \subseteq \lambda$ or $\mathcal{Q}^{\mathcal{G}} \subseteq \lambda$. By maximality of η either $P \subseteq \eta$ or $\mathcal{Q} \subseteq \eta$. This implies that η is prime fuzzy ideal of N. As $\lambda^{\mathcal{G}} = \lambda$, we have $\lambda \in \mathcal{S}$. But maximality implies that η is prime fuzzy ideal of $\mathcal N$ *.* As $\lambda^{\mathcal G} = \lambda$, we have $\lambda \in \mathcal S$ *.* But maximality of *n* gives that $\lambda \subset n$. Since λ and $n^{\mathcal G}$ are *G*-invariant ideal and $n^{\mathcal G}$ is largest in *n*, we of η gives that $\lambda \subseteq \eta$. Since λ and $\eta^{\mathcal{G}}$ are $\mathcal{G}\text{-invariant ideal}$ and $\eta^{\mathcal{G}}$ is largest in η , we get get

$$
\lambda \subseteq \eta^{\mathcal{G}}.\tag{30}
$$

Thus, from (29) and (30) , we obtain

$$
\eta^{\mathcal{G}}=\lambda.
$$

Let there exist another prime fuzzy ideal σ of $\mathcal N$ such that $\sigma^{\mathcal G} = \lambda$. Then

$$
\bigcap_{g\in\mathcal{G}}\eta^g=\eta^{\mathcal{G}}=\sigma^G\subseteq\sigma.
$$

Since $\mathcal G$ is finite, so from Proposition [4,](#page-14-0) we get

$$
\underset{g\in\mathcal{G}}{\circ}\eta^g\subseteq\underset{g\in\mathcal{G}}{\bigcap}\eta^g.
$$

Or for any $h \neq g$ *)* $\in \mathcal{G}$ *,* we have

$$
\eta^h \circ (\bigcap_{\substack{g \in \mathcal{G} \\ g \neq h}} \eta^g) \subseteq \bigcap_{g \in \mathcal{G}} \eta^g \subseteq \sigma.
$$

By fuzzy primeness either $\eta^h \subseteq \sigma$ or $\bigcap_{g \in \mathcal{G}} \eta^g \subseteq \sigma$. If $\eta^h \subseteq \sigma$, then $\eta \subseteq \sigma^{h^{-1}}$ and maximality of η with $({\sigma}^{h^{-1}})^{\mathcal{G}} \subseteq \lambda$ implies that

$$
\eta = \sigma^{h^{-1}}.\tag{31}
$$

On the other hand, if $\eta^h \nsubseteq \sigma$, we get $\bigcap_{\substack{g \neq h \\ g \neq h}} \eta^g \subseteq \sigma$. Thus, there exists some $(h \neq)g \in$ *G* such that $\eta^g \subseteq \sigma$ and hence $\eta \subseteq \sigma^{g^{-1}}$. Again maximality of η with $(\sigma^{g^{-1}})^g \subseteq \lambda$ yields that

$$
\eta = \sigma^{g^{-1}}.\tag{32}
$$

Equations [\(31\)](#page-18-1) and [\(32\)](#page-19-12) show that η is unique up to its \mathcal{G} -orbit.

Conclusion: In the future, we plan to study partial group action (the existence of $g * (h * x)$ implies the existence of $(gh) * x$, but not necessarily conversely) on fuzzy ideals of near rings. The theorems that we prove are the following which are generalizations of Theorems [1](#page-7-0) and [2.](#page-16-0)

Open Problem 1. Can we establish relation between *G*−invariant fuzzy ideal and largest *G*−invariant fuzzy ideal of *N* under partial group action?

Open Problem 2. Can we investigate relationship between primeness and *G*primeness of fuzzy ideal if a group *G* partially acts on a fuzzy ideal?

Acknowledgements The authors are extremely thankful to the referees for their valuable comments and suggestions.

References

- 1. Bhattacharya, P.B., Jain, S.K., Nagpaul, S.R.: Basic Abstract Algebra. Cambridge University Press(2006)
- 2. Bo, Y., Wangming, W.: Fuzzy ideals on distributive lattice. Fuzzy Sets Syst. **35**, 231–240 (1990). [https://doi.org/10.1016/0165-0114\(90\)90196-D](https://doi.org/10.1016/0165-0114(90)90196-D)
- 3. Clay, J.R.: Nearrings. Geneses and Applications. Oxford, New York (1992)
- 4. Dixit, V.N., Kumar, R., Ajal, N.: On Fuzzy rings. Fuzzy Sets Syst. **49**, 205–213 (1992). [https://](https://doi.org/10.1016/0165-0114(92)90325-X) [doi.org/10.1016/0165-0114\(92\)90325-X](https://doi.org/10.1016/0165-0114(92)90325-X)
- 5. Kim, S.D., Kim, H.S.: On Fuzzy Ideals of Near-Rings. Bull. Korean Math. Soc. **33**, 593–601 (1996). <https://www.koreascience.or.kr/article/JAKO199611919482456.page>
- 6. Kumar, R.: Certain fuzzy ideals of rings redefined. Fuzzy Sets Syst. 251–260 (1992). [https://](https://doi.org/10.1016/0165-0114(92)90138-T) [doi.org/10.1016/0165-0114\(92\)90138-T](https://doi.org/10.1016/0165-0114(92)90138-T)
- 7. Kumar, R.: Fuzzy irreducible ideals in rings. Fuzzy Sets Syst. **42**, 369–379 (1992). [https://](https://doi.org/10.1016/0165-0114(91)90116-8) [doi.org/10.1016/0165-0114\(91\)90116-8](https://doi.org/10.1016/0165-0114(91)90116-8)
- 8. Kuroki, N.: Fuzzy bi-ideals in semigroups. Comment. Math. Univ. St. Pauli **28**, 17–21(1979). <https://doi.org/10.14992/00010265>
- 9. Kuroki, N.: On fuzzy ideals and fuzzy bi-ideals in semigroups. Fuzzy Sets Syst. **5**, 203–215 (1981). [https://doi.org/10.1016/0165-0114\(81\)90018-X](https://doi.org/10.1016/0165-0114(81)90018-X)
- 10. Kuroki, N.: Fuzzy semiprime ideals in semigroups. Fuzzy Sets Syst. **8**, 71–79 (1981). [https://](https://doi.org/10.1016/0165-0114(82)90031-8) [doi.org/10.1016/0165-0114\(82\)90031-8](https://doi.org/10.1016/0165-0114(82)90031-8)
- 11. Liu, W.: Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. **8**, 133–139 (1982). [https://doi.org/10.1016/0165-0114\(82\)90003-3](https://doi.org/10.1016/0165-0114(82)90003-3)
- 12. Lorenz, M., Passman, D.S.: Prime ideals in crossed products of finite groups: Israel J. Math. **33**(2) 89–132 (1979). <https://doi.org/10.1007/BF02760553>
- 13. McLean, R.G., Kummer, H.: Fuzzy ideals in semigroups. Fuzzy Sets Syst. **48**, 137–140 (1992). [https://doi.org/10.1016/0165-0114\(92\)90258-6](https://doi.org/10.1016/0165-0114(92)90258-6)
- 14. Montgomery, S.: Fixed Rings of Finite Automorphism Groups of Associative Rings. Springer, Berlin (1980)
- 15. Mukherjee, T.K., Sen, M.K.: On fuzzy ideals of a ring I. Fuzzy Sets Syst. **21**, 99–104(1987). [https://doi.org/10.1016/0165-0114\(87\)90155-2](https://doi.org/10.1016/0165-0114(87)90155-2)
- 16. Ougen, X.: Fuzzy BCK-algebras. Math. Japonica **36**, 935–942 (1991)
- 17. Pilz, G.: Near-Rings: North-Holland Publishing Company, Amsterdam (1983)
- 18. Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. **35**, 512–517 (1971)
- 19. Sharma, R.P., Sharma, S.: Group action on fuzzy ideals. Commun. Algebra 4207–4220 (1998). <https://doi.org/10.1080/00927879808826406>
- 20. Yue, Z.: Prime L-fuzzy ideals and primary L-fuzzy ideals. Fuzzy Sets Syst. **27**, 345–350 (1988). [https://doi.org/10.1016/0165-0114\(88\)90060-7](https://doi.org/10.1016/0165-0114(88)90060-7)
- 21. Zadeh, L.A.: Fuzzy sets. Inf. Control **8**, 338–353 (1965). [https://doi.org/10.1016/S0019-](https://doi.org/10.1016/S0019-9958(65)90241-X) [9958\(65\)90241-X](https://doi.org/10.1016/S0019-9958(65)90241-X)
- 22. Zaid, S.A.: On fuzzy subnear-rings and ideals. Fuzzy Sets Syst. **44**, 139–146 (1989). [https://](https://doi.org/10.1016/0165-0114(91)90039-S) [doi.org/10.1016/0165-0114\(91\)90039-S](https://doi.org/10.1016/0165-0114(91)90039-S)