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Abstract In this study, we construct a linear recurrent fractal interpolation function
(RFIF) with variable scaling parameters for data set with α-stable noise (a gener-
alization of Gaussian noise) on its ordinate, which captures the uncertainty at any
missing or unknown intermediate point. The propagation of uncertainty in this linear
RFIF is investigated, and amethod for estimating parameters of the uncertainty at any
interpolated value is provided. Moreover, a simulation study to visualize uncertainty
for interpolated values is presented.
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1 Introduction

In 1986, Barnsley [1] introduced the notion of fractal interpolation function (FIF)
based on the theory of iterated function system (IFS), which can produce nowhere
differentiable self-similar continuous functions. In 1989, Barnsley et al. [3] general-
ized this FIF technique to recurrent FIF (RFIF) by using recurrent IFS (RIFS), which
can generate even more complex locally self-similar functions. Thereafter, RFIF is
widely used for obtaining missing or unknown values at any intermediate points of a
prescribed deterministic data set. However, if the provided data set contains noise on
its ordinate, then capturing uncertainty at these interpolated values is essential, but
incapable of doing so. This motivates us to study the fractal interpolation for noisy
data sets.

Over the last three decades, many researchers have constructed fractal functions
for deterministic data sets in various ways (for instance, see [2, 4, 7, 12, 13]) and
discussed their analytical properties. At present, fractal interpolation is an advanced
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approach to approximate and analyze a wide range of scientific data that include
irregularities or self-similarities. However, fractal interpolation for data with uncer-
tainty has received little attention from researchers (see, [5, 6]). In this study, we use
data sets with α-stable noise (a generalization of Gaussian noise) on its ordinate and
extend this RFIF technique to capture the uncertainty at any missing or unknown
intermediate values.

The paper is organized as follows. Section2 recalls definitions and some basic
results related to RFIF and α-stable distribution. In Sect. 3, the construction of a
RFIF with variable scaling for α-stable noisy data is discussed and the parameter
estimation of the uncertainty at any intermediate point of this RFIF is given. Section4
discusses numerical experiments to validate and visualize analytical results. Section5
concludes with a brief overview of our theoretical developments.

2 Preliminaries

In this section, we briefly describe the basic notions of RIFS, RFIF, and α-stable
distribution. The details are given in [2, 11, 13].

2.1 Basics of RIFS

Definition 1 Let (K , d) be a complete metric space and Wi : K → K (i = 1,
2, . . . , N ) be contraction maps. Also, let P = (

pi j
)
N×N be an N × N irreducible

row-stochastic matrix. Then {K ; P;Wi : i = 1, 2, . . . , N } is called a recurrent iter-
ated function system.

Further, the recurrent structure of the RIFS is given by a connection matrix C =(
ci j
)
N×N which is defined by

ci j =
{
1, p ji > 0,

0, p ji = 0.
(1)

This C is also an irreducible matrix. Let H(K ) be the set of all nonempty compact
subsets of K , and h be the Hausdorff distance inH(K ) defined by

h(A, B) = max{max
a∈A

min
b∈B d(a, b),max

b∈B min
a∈A

d(a, b)}, A, B ∈ H(K ).

Then (H(K ), h) is a complete metric space. Let us denote the product space

H̃(K ) := H(K ) × · · · × H(K )︸ ︷︷ ︸
N times

= H(K )N ,
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and define a metric h̃ on H̃(K ) by

h̃ ((A1, A2, . . . , AN ), (B1, B2, . . . , BN )) := max {h(Ai , Bi ) : i = 1, 2, . . . , N } ,

for all (A1, A2, . . . , AN ), (B1, B2, . . . , BN ) ∈ H̃(K ). Then
(
H̃(K ), h̃

)
is also a

complete metric space. Now, we define a transformation W : H̃(K ) → H̃(K ) by

W (B) :=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

N⋃

j=1
c1 jW1(Bj )

N⋃

j=1
c2 jW2(Bj )

...
N⋃

j=1
cN jWN (Bj )

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⋃

j∈Λ(1)
W1(Bj )

⋃

j∈Λ(2)
W2(Bj )

...⋃

j∈Λ(N )

WN (Bj )

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

for all B = (B1, B2, . . . , BN ) ∈ H̃(K ). Here we considered

ci jWi (Bj ) =
{
Wi (Bj ) if ci j = 1,

∅ if ci j = 0,

for all i, j = 1, 2, . . . , N and Λ(i) = { j : ci j = 1} for all i = 1, 2, . . . , N . Alterna-
tively, W can be represented in a matrix as W = (

ci jWi
)
N×N , i.e.

W =

⎛

⎜⎜⎜
⎝

c11W1 c12W1 . . . c1 NW1

c21W2 c22W2 . . . c2 NW2
...

...
...

...

cN1WN cN2WN . . . cNNWN

⎞

⎟⎟⎟
⎠

.

This transformationW is a contraction map on H̃(K ) and hence there exists a unique
fixed point A = (A1, A2, . . . , AN ) ∈ H̃(K ) such that W (A) = A, which is called
an invariant set or an attractor or a recurrent fractal of the RIFS. Moreover, Ai =⋃

j∈Λ(i) Wi (A j ) for all i = 1, 2, . . . , N . Usually, making a slight abuse of notation,

we often call A = ⋃N
i=1 Ai as the attractor of the RIFS.

We first utilize this RIFS theory to construct a fractal function associated with
a deterministic data set and then consider a noisy data set for generating a random
fractal function with variable scaling based on the notion of RIFS.

2.2 RFIF with Variable Scaling for Deterministic Data Set

Let us take an initial data set D = {(ti , yi ) : i = 0, 1, . . . , N } in R
2, where t0 <

t1 < · · · < tN . We denote intervals I := [t0, tN ], and Ii := [ti−1, ti ] for all i =
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1, 2, . . . , N . Also, let us consider intervals Jj := [tl( j), tr( j)], where l( j), r( j) ∈
{0, 1, . . . , N } with l( j) < r( j) for all j = 1, 2, . . . , N . Now, we define homeo-
morphisms Lk : Jk → Ik by Lk(t) = akt + bk for k = 1, 2, . . . , N , which map end
points of Jk to end points of Ik such that Lk(tl(k)) = tk−1 and Lk(tr(k)) = tk . Therefore,
we have

ak = tk − tk−1

tr(k) − tl(k)
and bk = tr(k)tk−1 − tl(k)tk

tr(k) − tl(k)
.

Also, for all t, t∗ ∈ Jk , we have |Lk(t) − Lk(t∗)| ≤ |ak ||t − t∗|. If we consider the
length of Jk to be greater than the length of Ik , that is |tk − tk−1| < |tr(k) − tl(k)|, then
|ak | < 1 and Lk becomes a contraction.

Define continuous maps Fk : Jk × R → R by Fk(t, y) = ckt + dk(t)y + ek ,
where dk are real-valued continuous functions defined on I and satisfying

‖dk‖∞ := sup{|dk(t)| : t ∈ I } < 1. (2)

In addition, each Fk satisfying join-up conditions Fk
(
tl(k), yl(k)

) = yk−1 and
Fk

(
tr(k), yr(k)

) = yk . Therefore, we get

ck = yk − yk−1

tr(k) − tl(k)
− dk(tr(k))yr(k) − dk(tl(k))yl(k)

tr(k) − tl(k)
,

ek = tr(k)yk−1 − tl(k)yk
tr(k) − tl(k)

− tr(k)dk(tl(k))yl(k) − tl(k)dk(tr(k))yr(k)
tr(k) − tl(k)

.

Moreover, |Fk(t, y) − Fk(t, y∗)| ≤ |dk(t)||y − y∗|, t ∈ Jk and y, y∗ ∈ R. Hence,
Fk is a contraction with respect to y-variable.

Next, we consider Wk : Jk × R → Ik × R by Wk(t, y) = (Lk(t), Fk(t, y)) for
all k = 1, 2, . . . , N . We can easily check that Wk(tl(k), yl(k)) = (tk−1, yk−1) and
Wk(tr(k), yr(k)) = (tk, yk). Moreover, all Wk are contractions with respect to some
metric, equivalent to the Euclidean metric in R

2. Let us define a row-stochastic
matrix P = (

pi j
)
N×N by

pi j =
{

1
Ni

, Ii ⊂ Jj ,

0, otherwise,

where Ni denotes the number of j such that Ii ⊂ Jj for i = 1, 2, . . . , N . We can
make P an irreducible matrix by selecting Jk’s appropriately. Therefore, we can
construct a RIFS {I × R; P;Wk : k = 1, 2, . . . , N } associated with D.

Remark 1 In this RIFS, we employed function contractivity factors (or variable
scaling parameters) dk , which describe fractal objects better than constant contractiv-
ity factors and provide more flexibility to fractal functions. For detailed information,
see [13].
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Using (1), we obtain the connection matrix C = (
ci j
)
N×N , where

ci j =
{
1, I j ⊂ Ji ,

0, otherwise.
(3)

Let C(I ) be the collection of real-valued continuous functions defined on I . Define
a metric d∞ on C(I ) by d∞( f, g) :=‖ f − g ‖∞= sup{| f (t) − g(t)| : t ∈ I }. Then
(C(I ), d∞) is a complete metric space. Further, let us define

C∗(I ) := { f ∈ C(I ) : f (ti ) = yi , i = 0, 1, . . . , N }.

Then (C∗(I ), d∞) is also a complete metric space. Now, we define an operator T :
C∗(I ) → C∗(I ) by

T g(t) := Fk
(
L−1
k (t), g

(
L−1
k (t)

))
, t ∈ Ik and k = 1, 2, . . . , N .

Here T is known as the Read-Bajraktarević operator, which is a contraction on
(C∗(I ), d∞). Therefore, T has a unique fixed point fD ∈ C∗(I ) such that

fD(t) = T fD(t) = Fk
(
L−1
k (t), fD

(
L−1
k (t)

))
, t ∈ Ik and k = 1, 2, . . . , N . (4)

This fD is called a linear RFIF with variable scaling parameters associated with D.
Let A := {(t, fD(t)) : t ∈ I }, and Ai := {(t, fD(t)) : t ∈ Ii } for all i = 1, 2, . . . , N .
Then A = ⋃N

i=1 Ai . Moreover,

Ai = {(t, fD(t)) : t ∈ Ii } = {(t, Fi
(
L−1
i (t), fD

(
L−1
i (t)

))) : t ∈ Ii }
= {(Li (t), Fi (t, fD(t))) : t ∈ Ji } = {Wi (t, fD(t)) : t ∈ Ji }
=

⋃

j∈Λ(i)

Wi
(
A j
)
.

Thus, A = (A1, A2, . . . , AN ) is an attractor of the RIFS {I × R; P;Wi : i = 1,
2, . . . , N } associated with D.

In the subsequent section, we define α-stable distributions and some of its prop-
erties required for further study.

2.3 α-Stable Distribution

An α-stable distribution, also known as stable distribution, belongs to the family of
heavy-tailed distributions and is a generalization ofGaussian distribution.Acomplete
description of a stable distribution requires the following four parameters: an index of
stability or tail indexα ∈ (0, 2], a skewness parameterβ ∈ [−1, 1], a scale parameter
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σ > 0, and a location parameter μ ∈ R. Generally, a stable distribution does not
have closed form formulae for its probability density function (PDF) or cumulative
distribution function (CDF) [11]. However, it can be described by its characteristic
function.

Definition 2 A random variable X follows a stable distribution, denoted by X ∼
Sα(β,σ,μ), if its characteristic function has the form

φX (t) = E
[
eit X

]

=
{
exp

(
i tμ − |σt |α {1 + iβsign(t) tan

(
πα
2

) [|σt |1−α − 1
]})

, α �= 1,

exp
(
i tμ − |σt | {1 + iβsign(t) 2

π
ln |σt |}) , α = 1,

for t ∈ R, where sign(t) =
{

t
|t | , t �= 0,

0, t = 0.

Remark 2 Several parameterizations for α-stable distributions are available in the
literature, but Nolan’s [8] parameterization is used here for numerical reasons.

For α = 2, the Gaussian distribution is obtained, i.e. X ∼ N (μ, 2σ2). The nth
moment of a non-Gaussian (α �= 2) stable random variable X is finite iff n < α.
When β = 0, the distribution is symmetric about its location parameter μ.

Property 1 If X ∼ Sα(β,σ,μ) and 0 �= a, b ∈ R, then

aX + b ∼ Sα(sign(a)β, |a|σ, aμ + b).

Property 2 For all i = 0, 1, 2, . . . , N , if Xi ∼ Sα(βi ,σi ,μi ) are independent and
ωi ∈ R, then

∑N
i=0 ωi Xi ∼ Sα(β,σ,μ), where

σα =
N∑

i=0

|ωiσi |α, βσα =
N∑

i=0

sign(ωi )βi |ωiσi |α,

μ =
⎧
⎨

⎩

∑N
i=0 ωiμi + tan

(
πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

∑N
i=0 ωiμi + π

2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

For more detailed information, the reader can see [9–11].
In the following section, we construct a linear RFIF with variable scaling for

any given α-stable noisy data set and determine the probability distribution of any
interpolated value of this RFIF.
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3 RFIF for Noisy Data Set

Consider a data set Δ = {(ti , yi , εi ) : i = 0, 1, . . . , N }, where t0 < t1 < · · · < tN
and εi ∼ Sα(βi ,σi , 0) is the α-stable noise in the value of yi . We assume that these
εi ’s are independent. First,we constructRIFS for this noisy data set. LetYi := yi + εi ,
using Property 1, we have Yi ∼ Sα(βi ,σi , yi ) for all i = 0, 1, . . . , N . These Yi ’s are
also independent. Let Y be a real-valued continuous random variable. Define Fk :
Jk × R → R (a random analog of Fk) by Fk(t,Y ) = Ckt + dk(t)Y + Ek satisfying
Fk

(
tl(k),Yl(k)

) = Yk−1 and Fk
(
tr(k),Yr(k)

) = Yk for all k = 1, 2, . . . , N . Therefore,

Ck = Yk − Yk−1

tr(k) − tl(k)
− dk(tr(k))Yr(k) − dk(tl(k))Yl(k)

tr(k) − tl(k)
,

Ek = tr(k)Yk−1 − tl(k)Yk
tr(k) − tl(k)

− tr(k)dk(tl(k))Yl(k) − tl(k)dk(tr(k))Yr(k)
tr(k) − tl(k)

.

(5)

Define Wk : Jk × R → Ik × R by Wk(t,Y ) = (Lk(t),Fk(t,Y )) for all
k = 1, 2, . . . , N , and construct RIFS {I × R; P;Wk : k = 1, 2, . . . , N } associated
with Δ, which is a random analog to the RIFS {I × R; P;Wk : k ∈ NN } associated
with D. There exists a unique [up to distribution] RFIF fΔ : I → R such that

fΔ(t) = Fk
(
L−1
k (t), fΔ

(
L−1
k (t)

))

= CkL
−1
k (t) + dk

(
L−1
k (t)

)
fΔ
(
L−1
k (t)

) + Ek, t ∈ Ik, k = 1, . . . , N . (6)

Apparently, this fΔ is a random analog of fD. Next, we write fΔ in explicit form to
find its distribution.We can see that I = ⋃N

k=1 Ik and Ik = Lk(Jk) = ⋃
j∈Λ(k) Lk(I j ).

Therefore, I is the attractor of RIFS {I ; P; Lk : k = 1, 2, . . . , N }. Hence, for any
given point t ∈ I , there exists a sequence {kn}n∈N, where each kn ∈ {1, 2, . . . , N },
such that

lim
n→∞ Lk1 ◦ Lk2 ◦ · · · ◦ Lkn (s) = t, for s ∈ I. (7)

By recursively applying (6), we can easily obtain the following expression:

fΔ(T0(s)) = Dn(s) fΔ(s) +
n∑

j=1

Dj−1(s)
(
Ck j Tj (s) + Ek j

)
, (8)

where

Tj (s) =
{
Lk j+1 ◦ · · · ◦ Lkn (s) for j = 0, 1, . . . , n − 1,

s for j = n,
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and

Dj (s) =
{

1 for j = 0,
∏ j

i=1 dki (Ti (s)) for j = 1, 2, . . . , n.

We can rewrite (7) as limn→∞ T0(s) = t . Also, we get limn→∞ Dn(s) = 0 by using
(2). Since fΔ is a continuous function, as n approaches ∞ in (8), we obtain

fΔ(t) =
∞∑

j=1

Dj−1(s)
(
Ck j Tj (s) + Ek j

)
, s ∈ I. (9)

Using (5), we can rewrite (9) as

fΔ(t) =
∞∑

j=1

Dj−1(s)

[(
tr(k j ) − Tj (s)

tr(k j ) − tl(k j )

)
Yk j−1 +

(
Tj (s) − tl(k j )

tr(k j ) − tl(k j )

)
Yk j −

(
tr(k j ) − Tj (s)

tr(k j ) − tl(k j )

)
dk j (tl(k j ))Yl(k j ) −

(
Tj (s) − tl(k j )

tr(k j ) − tl(k j )

)
dk j (tr(k j ))Yr(k j )

]
.

(10)

For each k j ∈ {1, 2, . . . , N }, we have Yk j−1,Yk j ,Yl(k j ),Yr(k j ) ∈ {Y0,Y1, . . . ,YN }.
Therefore, by equating coefficients of each Yi in (10), we get

fΔ(t) =
N∑

i=0

ωi Yi , t ∈ I, (11)

where ωi depends on the sequence {k j } of t . We can easily see that the linear RFIF
fΔ(t) is a random variable for each t ∈ I . Now, we determine the probability distri-
bution of fΔ(t). By using Property 2 in (11), we get

fΔ(t) ∼ Sα(β,σ,μ),

where

σ =
(

N∑

i=0

|ωiσi |α
)1/α

, β =
∑N

i=0 sign(ωi )βi |ωiσi |α
σα

,

μ =
⎧
⎨

⎩

∑N
i=0 ωi yi + tan

(
πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

∑N
i=0 ωi yi + π

2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

Moreover, initial data set D is a realization of the noisy data set Δ. Therefore, by
using (11), we get

fD(t) =
N∑

i=0

ωi yi .
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Hence, the location parameter μ of fΔ(t) becomes

μ =
⎧
⎨

⎩

fD(t) + tan
(

πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

fD(t) + π
2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

Thus, fΔ(t) is an α-stable random variable for each t ∈ I .

Remark 3 If α-stable noise in the data set Δ is symmetric, i.e. εi ∼ Sα(0,σi , 0)
for all i = 0, 1, . . . , N , then fΔ(t) is also a symmetric α-stable variate and its loca-
tion parameter is fD(t) that is fΔ(t) ∼ Sα (0,σ, fD(t)) for all t ∈ I , where σ =(∑N

i=0 |ωiσi |α
)1/α

. Moreover, if α = 2, then εi ∼ N (0, 2σ2
i ) for i = 0, 1, . . . , N

and fΔ(t) ∼ N ( fD(t),σ2), where σ2 = 1
2

∑N
i=0 ω2

i σ
2
i .

4 Simulation

In this section,wepresent a simulation study throughanumerical example to illustrate
the propagation of uncertainty in a linear RFIF with variable scaling parameters for
a given α-stable noisy data set.

Let Δ = {(t0, y0, ε0), (t1, y1, ε1), (t2, y2, ε2), (t3, y3, ε3), (t4, y4, ε4)} be a given
data set, where

t0 = 0, t1 = 0.3, t2 = 0.5, t3 = 0.7, t4 = 1;
y0 = 2.3, y1 = 1.6, y2 = 3.8, y3 = 2.9, y4 = 1.2;

and

ε0 ∼ S1.8(0.3, 0.4, 0), ε1 ∼ S1.8(−0.3, 0.5, 0), ε2 ∼ S1.8(0.5, 0.7, 0),

ε3 ∼ S1.8(0.7, 0.6, 0), ε4 ∼ S1.8(−0.2, 0.3, 0).

For this data set, we have N = 4; I = [0, 1]; and

I1 = [0, 0.3], I2 = [0.3, 0.5], I3 = [0.5, 0.7], I4 = [0.7, 1].

Now, let us take J1 = [0.3, 0.7], J2 = [0.5, 1.0], J3 = [0, 0.5], J4 = [0, 0.5]. Then,
by using (3), we can form the connection matrix

C =

⎛

⎜
⎜
⎝

0 1 1 0
0 0 1 1
1 1 0 0
1 1 0 0

⎞

⎟
⎟
⎠ .
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Fig. 1 The directed graph of C

From Fig. 1, we can observe that the directed graph of C is strongly connected,
implying that C and therefore P is irreducible.

By using the given data set Δ, we can form the deterministic data set

D = {(0, 2.3), (0.3, 1.6), (0.5, 3.8), (0.7, 2.9), (1, 1.2)},

and for this data set, we can construct the RIFS {I × R; P;W1,W2,W3,W4}. If we
consider the variable scaling factors:

d1(t) = 1

3
e−5t + 0.5, d2(t) = 1

2
sin(3t) + 0.4,

d3(t) = 1

8
e2t cos(3t) + 0.6, d4(t) = 1

2
e−5t + 0.3.

Then, we can calculate other parameters of the above RIFS:

a1 = 0.75, a2 = 0.4, a3 = 0.4, a4 = 0.6;
b1 = −0.225, b2 = 0.1, b3 = 0.5, b4 = 0.7;
c1 = −3.1505, c2 = 10.1011, c3 = −3.2077, c4 = −2.3119;
e1 = 2.3261, e2 = −6.8658, e3 = 2.1325, e4 = 1.06.

Further, by using (4), we can calculate the values of RFIF fD, whose graph is shown
in Fig. 2. In this figure, the red colored dots represent the data points of D, and the
RFIF fD passing through these points is shown in the blue curve. Moreover, we also
represent the 95% lower and upper quantile bands of the linear RFIF fΔ in Fig. 2,
which imply that any realization of the RFIF fΔ will lie between these bands with a
probability of 0.95.

Now, we consider an arbitrarily point t = 0.58 in I . If we select s = 0.3, then we
can obtain a sequence {kn} of t such that
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Fig. 2 95% Quantile band of the RFIF fΔ and graph of the RFIF fD along with the points of the
data set D

{ 3, 1, 3, 1, 3, 1, 2, 3, 2, 4, 2, 3, 1, 3, 2, 4, 1, 3, 2, 4, 2, 4, 2, 4, 1, 2, 4, 2, 4, 2, 3, 2, 4,

1, 3, 2, 4, 1, 2, 3, 2, 3, 1, 3, 1, 3, 1, 3, 2, 4, 1, 2, 4, 2, 4, 2, 4, 1, 2, 4, 2, 4, 2, 4, 2, 4,

1, 2, 4, 1, 2, 3, 2, 3, 1, 2, 3, 2, 4, 2, 4, 2, 3, 2, 3, 1, 3, 2, 4, 1, 2, 4, 1, 2, 3, 1, 3, 2, 4,

2, 4, 2, 3, 1, 3, 1, 3, 2, 4, 2, 4, 1, 3, 2, 4, 2, 3, 1, 3, 1, 2, 4, 2, 4, 1, 2, 3, 1, 2, 3, 2, 3,

2, 3, 2, 4, 2, 4, 1, 3, 1, 3, 1, 3, 1, 3, 2, 4, 2, 3, 2, 3 },

with amaximum tolerance error of 0.001 in (7). This sequence is called a fractal code
of t . By utilizing (10) and (11), we can compute the coefficients of Yi as follows:

ω0 = −0.259217, ω1 = 0.472842, ω2 = 0.631665,

ω3 = 0.257078, ω4 = −0.010617.

Hence, the distribution of RFIF fΔ at point t = 0.58 is given as follows:

fΔ(0.58) ∼ S1.8(0.31393, 0.56363, 3.3099). (12)

Next, we consider 8000 random samples of the data setΔ. For each realization, we
form a RFIF with variable scaling (as we have constructed for the data setD). There-
fore, we have 8000 realizations of the RFIF fΔ and thus we have 8000 realizations
of fΔ(0.58).

In Fig. 3(i), we represent the histogramof these 8000 random samples of fΔ(0.58).
In the same figure, we have fitted an empirical PDF to these observed values and
also plotted the PDF of the analytically estimated distribution of fΔ(0.58), which is
given in (12). Here, we can see that the analytically estimated PDF of fΔ(t) is very



26 M. Kumar et al.

Fig. 3 (i) Histogram with Empirical & Estimated PDFs, (ii) Empirical & Estimated CDFs, (iii)
Normal Q-Q Plot, and (iv) Stable Q-Q Plot with 95% Confidence Bands

close to its empirically fitted PDF. A similar conclusion can be drawn from the CDFs
plot displayed in Fig. 3(ii).

Moreover, a normal quantile-quantile plot for observed samples of fΔ(0.58) is
shown in Fig. 3(iii). We can observe here that both tails deviate from the red color
reference line, indicating that the distribution of fΔ(0.58) has heavier tails than the
normal distribution.

Further, a stable quantile-quantile plot is exhibited in Fig. 3(iv). In the same figure,
we have displayed 95% confidence band for the simulated values of fΔ(0.58), which
represents the variation in the estimate of fΔ(0.58) from its location based on the
noisy data Δ. Here, we can see that nearly all the observed samples of fΔ(0.58) fall
along the reference line, implying that fΔ(0.58) follows the same distribution as we
specified in (12). Therefore, our analytically estimated distribution for fΔ(t) in (12)
is valid. Moreover, t = 0.58 is an arbitrarily chosen point in I ; therefore, for any
t ∈ I , we can similarly estimate and validate the distribution of fΔ(t).

5 Concluding Remarks

A commonly used tool for analyzing uncertainty at any point is the estimation of
the probability distribution at that point. If the data is collected from a process that
has fractal properties and contains α-stable noise, in that case, the recurrent fractal
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interpolation technique efficiently determines uncertainty at any intermediate point
in this noisy data set. Moreover, for any given data set with α-stable noise on its
ordinate, the probability distribution of a recurrent fractal interpolation function at
any interpolated value is also an α-stable. And the remaining parameters of this
distribution can be estimated analytically.
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