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Abstract In this paper, we study the existence and uniqueness results of the solutions
for non-linear boundary value problems involving ¥ -Caputo fractional derivative.
Furthermore, we prove some stability results of the given problem. The tools used
in the analysis are relies on Banach fixed point theorem and ¥ -fractional Gronwall
inequality.
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1 Introduction

In this paper, we are concerned with the nonlinear fractional differential equations
of the type

Dy v(E) = 9(t, v(t)), forall € e [0, Y] =1, (1)
v(0) + h(v) = vy, V(X)) = vy, v, vy €R 2)

where 1 < 0 < 2, @g‘)*” is the W-Caputo fractional derivative, ¢ : [0, x] x R —
R, h:C{d,R) x R — R are nonlinear and continuous functions and v € C(I, R);
C(, R) the space of continuous function from I to R with the supremum norm ||.]|.

Fractional order derivatives and integrals are more general cases of integer order
derivatives and integrals as it provide arbitrary order derivatives and integration.
It has been seen that many researchers have revealed the efficiency of fractional
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differential equations (FDEj) in the modelling of physical phenomena in different
fields of science and engineering [3, 5, 12, 15, 16], which helped fractional calculus
to become a very useful and attractive research field. In the literature, there are
several approaches by which authors have defined numerous fractional differential
and integral operators see [9]. One such class of fractional operators is an integration
and differentiation of one function with respect to another function, referred to as,
W -Fractional calculus. For instance, Almeida [1], presented ¥ -Caputo fractional
derivative which is modified version of Caputo derivative. In [17], authors established
Y -Hilfer fractional derivative.

On the other hand, these ¥ -fractional operators have been utilized to perform
a qualitative analysis of FDEg. In particular, Almeida et al. [2], investigated the
existence, uniqueness, continuous dependence and stability of the ¥ -Caputo FDE;
with the help of Banach fixed point theorem. Kucche et al. [10], studied existence
and uniqueness of ¥ -Hilfer FDE, with the help of Schauder’s fixed point theorem
as well as continuous dependence of the corresponding system have been studied by
employing Weissinger theorem. Recently, Pachpatte [14] have used the Banach fixed
point theorem to study the existence, uniqueness and stability of the ¥ -Hilfer partial
FDE;. In [20], Wahash et al. proved estimate and stability of the solution involving
W -Caputo derivative by using ¥ -Gronwall inequality. We mention here some recent
studies that focus on the qualitative properties of ¥ -fractional differential equations
[4, 6, 11, 18, 19, 21].

Motivated by above work, in this paper we discuss existence, uniqueness and
stability of (1)—(2). In Sect. 2, we give some preliminaries. In Sect. 3, we prove
existence and uniqueness of the solution of (1)—(2) in the view of Banach fixed point
theorem. In Sect. 4, we present Stability analysis of (1)—(2). In Sect. 5, an illustrative
example is given to demonstrate our results.

2 Preliminaries

Here, we provide some basic definitions and important results which are used
throughout this work.

Definition 2.1 ([9]) Let # > 0 and v be an integrable function defined on 1. Let
¥ e C'(I,R) be an increasing function such that lI/_/ (t) # 0, for all £ € I. Then ¥-
Riemann Liouville fractional integral of v of order 6 is defined as

] i )
Jolut) = ol U (k)W (€) — ¥ (k) u(k)dE, € > 0. (3)

Definition 2.2 ([1])Letd > Oand ¥ € C"(I, R), the ¥ -Caputo fractional derivative
of a function v € C"~!(I, R) of order f is defined as
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_ _ n—l [m]
ng’v(f)zz)gf[u(f) Z ( )

m=0

(W () — W(O))’”]

where n = 6] +1for9_¢ N,n =0 forf e N.
and N
[m] .
t) = ———] 9.
Vo (©) <a1ﬂ(f) dﬁ) ©
Lemma 2.1 ([1]) Let 6 > 0. If v € C' (I, R), then
D50V u(E) = v(b),

and if v € C"(1, R), then

_ _ [m]
3o De v() = v(t) — Z W()(W(w w(0)".

Lemma 2.2 ([9]) For 0, 6, > 0 and v € C" (1), we have
LT o) = 3T, € > 0.
Lemma 2.3 ([1]) Let 6 > 0. Then

DI (W (k) —W(0) =0, forall k=0,1,2,...,n—1, n € N.
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“4)

(&)

(6)

)

Lemma 2.4 ([8]) Let X be a Banach space and B C X be closed. If ( : B — B is

a contraction mapping, then ( has a fixed point in B.

Lemma2.5 Let1 <0 <2and¥ : 1 x R — R be a continuous function. Then the

problem (1)—(2) is equivalent to

( v (t) — W(O)) n (‘I/(f) —vO l)h(U)

v - v/ T W@ -0
VO YO\ g o i
(G Tw) ©r 37 FE v + 37 E )

Proof Operating 32’4’ on both the sides of (1) and using Lemma 2.1, we get
v(€) =co+ (¥ () —¥(0) + 32’”’%& u(t))

Since v(0) = vo — h(v) and v(X) = vy, we have

®)
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vz — o +h(v) — ITYL (. V()

O ThO.a= TR0
Then
_ v(t) — v v(t) — w0 _
©=(-Fo—ve)*t Gm e
VO -PON g i
(G mw@) v~ 307 F0 o)+ 96 v,

€))

Conversely, suppose that v satisfies (8). Then from (8), for £ = 0 and t = x, we

obtain (2). Applying @g’f on both the sides of (8) and using Lemmas 2.1, 2.3, we

get (1).

3 Existence and Uniqueness

Theorem 3.1 Let the function G and h satisfying:
[HI]: there exists W) > 0 and 0 < #5 < 1 such that

1€, v) —G(€, V)] < Hilv— v,

and
[h(v) —h")| < #5lv — v

If _
L, W) — v (0)”

W+ =
r@o+1)

<1,

then (1)—(2) has a unique solution.

Proof DefineJ : C(I,R) — C(, R) as follows:

A G 2N 20 2O
0 =( - —v0)" " om-wo O
PO VO g o
(m)(vx — 30 G, v(X) + I35 G (¢, ().

Then for v, v* € C(d, R), we have

O

(10)

(1)



On the Existence and Stability Analysis ... 255

w(€)—w©
@ud) - @b < (S22

< m - 1)|h(U) —h(™)|

VO - PO\ v - C
(v — w308 196 Vi) — 7 v )l
+30 19(E, v — (€, v* )]
w(t) —w(0) *
< (zo—we V"
v v (Y N T
<11/(>'<)7*I/(0))F(§) [ @@ - v - s

vt _
+%/0 ¥ (k)@ ®€) — )L — v¥dx

v (t) — ¥ (0) % v () —w ()
= (W()})fII/(O))%”U_U ”+(l1/()'<)7!1/(0)>
W(R) — )’ w(€) — w(0)
v@-—vo) oo w® o
r@+1 re+1
W —w o) .
Wy +22X ZZE v — v
s (2= A

In view of (10), I is contraction mapping. By Lemma 2.4, v is a unique solution
of the problem (1)-(2). O

4 Stability Analysis

In this section, by using W -fractional Gronwall inequality, we analysis the Ulam-
Hyers (UH), Generalized Ulam-Hyers (GHU), Ulam-Hyers-Rassias (UHR) and Gen-
eralized Ulam-Hyers-Rassias (GUHR) of the problem (1)—(2).

Lete >0 and f:I— R be a continuous function. We consider following
inequalities:

0 w(t) — F (6 wE)] <& € el0.X] (12)

and
Do w(®) =G (€, w(E)] <cf(©®); tel0,X]. (13)
Definition 4.1 The Egs. (1)—(2) is said to be UH stable if there exists a real number
0 > 0 such that for each € > 0 and for each solution w € C(I, R) of the inequality

(12), there exists a solution v € C(I, R) satisfying

DY u(t) = Z(t, u(t)), forall t e, 1 <8 <2, (14)
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v(0) = w(0), v(x) = wx) 15)

with
lw(®) —v(®)| <de, tel (16)

Definition 4.2 The Eqs. (1)—(2) is said to be GUH stable if there exists a continuous
function ¢ : I — I with ¢(0) = 0 such that for every € > 0 and for each solution
w € C(I, R) of (12), there exist a solution v € C(I, R) of (1)—(2) with
lw(®) —v(®)| = ple), tel (17)
Definition 4.3 The Egs. (1)—(2) is said to be UHR stable with respect to the function
f if there exists a real number § > 0 such that for every £ > 0 and for each solution
w € Cd, R) of (13), there exist a solution v € C(I, R) of (1)—(2) with
lw(®) —v(®)| <def(f), tel (18)
Definition 4.4 The Eqgs. (1)—(2) is GUHR stable with respect to the function f if
there exists a real number § > 0 such that for each solution w € C(I, R) of (13), there
exist a solution v € C(I, R) of (1)—(2) with
lw(®) —v@®)| <df(), tel (19)

Remark 4.1 A function w € C(I, R) is a solution of (12) if and only if there exists
a function g € C(I, R) (where g depends on w) such that

(D 1g®) <e
2) DIYw(t) = G (€, w() +g(f), £ €L

Remark 4.2 A function w € C(I, R) is a solution (13) if and only if there exists
function g, f € C(I, R) (where g depends on w) such that

(M) 1g®)] < ef(®)
2) DIYw(t) = G (€, w(t) +g(f), £ L.

Lemma 4.1 ([18]) ¥-Gronwall inequality:
Assume that v and u are nonnegative integrable functions on 1. Let p be a nonnegative
continuous function on 1 such that p is nondecreasing. If

€ _
v(f) < u(t) + p(’ﬁ)/ W (R (W (6) — ¥ (1) u(R)dr, (20)
0

then
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(e ¢]

3 [p(E) T (O)]"

' . 6—1
T @m) ¥ (k)W () — ¥ (k)" u(k)dk, 21

t
u(f) = u(f)/
0

m=1

fort el

Remark 4.3 ([18]) Under the assumptions of Lemma 4.1, let v(f) be a nondecreas-
ing function on I. Then we have

v(E) < u(t) Ey(p(®) M @) (W () — ¥ (0))"),

where E;(t) =Y o, F(E_H).
In the next theorem, we discuss the UH stability of the problem (1)—(2) with the

help of ¥-Gronwall inequality.

Theorem 4.1 Suppose that [H1] hold and inequality (12) is satisfied, then the prob-
lem (1)—(2) is UH stable.

Proof Let e > 0. Assume that v be a solution of (1)—(2). Then

(€)= Dy + I0YG(E 1(E). (22)
where
B W () — ¥ (0) W () — ¥ (0)
Pv _(1 Tw) - W(O))UO (q/(g) —w0) 1)h(U)
O -VOY\,  u -
(m)@x Jo G v()). (23)
From (15), we can write
v(€) = B, + IVG(E, v(E)), (24)
where
B W () — ¥ (0) W (t) — ¥ (0)
Pu _(1 T — lI/(O))wO (lp(;() —w0) l)h(“’)
O YO\ G
(m)wx WG R 0. (25)

Since w € C(I, R) is a solution of inequality (12). By Remark 4.1, we have
D0 w(t) — 4(t, w(t))| <, foralltel (26)

Operating 33’”’ on both the sides of (26), we obtain
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1 f ’ n
-, ——— | W W (t) — ¥ (k))!!
|w (£) T b (K) (P () (k)

WX - ‘1/(0))6
— " ¢, 27
%(ﬁ,w(n)diﬂ < R 27

By our assumption and from (24) and (27), we obtain

lw(®) — vl

£, )
|w(®) — @ — %/0 ¥ ()W () — ¥ ()G (k, V(k))dr]|

IA

£, _
|w(®) — @ — %/0 v (R W () — ¥ ()G (k, w(k))dk|
£

+ L_ A lP/(m)(lI/(f) - lI/(fc))gP1 |9 (k, w(k)) — 9 (k, V(K)|dK

wx-voy!  owm (b 51
s S —— 1/ ) —w - . (28
< ity ST ra b Y@ ® - e - v (28)

Applying Lemma 4.1 to (28), we get

lw(€) — ()]
W —w0)’ N -
= Tra+y o1 / Z it "W ) = w )" dx]
WX - @ (0))? s / , -
_ W =¥vO)" f 6 et
r@é+1u 5[” Z T @m) Jo (R (L) — (k) H]
W - w0)’ > i
T raan ¢ -y
= r@+1 [ 2:: I @m +1)(‘1’(x)) 0)) ]
W () — ()’ ) P
- W) =¥O) o, —wonh, 5
rée+1n EQ( 1) —¥(0)") ( 9)
Put )
(¥ (x) — ¥ (0)’ _ 5
= ——————E;(/ (¥ () —¥(0)). (30)
F(9—|— 1) 0 1 X
Therefore
lw(®) —v(®)| < de. 31)
Hence, the problem (1)—(2) is UH stable. O

Theorem 4.2 [fthere exists a function continuous function p : 1 — Iwith ¢(0) = 0.
Then under the assumption of Theorem 4.1, the problem (1)—(2) is GUH stable
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Proof In a same fashion similar to Theorem 4.1, setting (¢) = de with p(0) = 0,
we get
lw(t) —v(©)| < @(e). (32)

O

In order to prove UHR and GUHR stability, the following hypothesis must be
satisfied:
[H2]: There exist an increasing function f € C(I, R) and v > 0 such that

JoLFE®) <€), tel
Lemma 4.2 Let ¢ > 0 and w(t) € Cd, R) be a solution (13). Then
w(®) — @, — JgF G (€, wE))| < v f(E). (33)

Proof By Remark 4.2, g, f € C(I, R) such that
190 w(t) — Gt wt))] = |gE)] < f(©). (34)
Operating 3§f and using the hypothesis [H2], we deduce that

w(t) — B, — LG (E, wE)| < e30Y F(E) < e f(©). (35)
|

Theorem 4.3 Let ¢ > 0 and w € C(J, R) be a solution (13) and #iy # 1, then
(1)=(2) is UHR stable.

Proof Let v(f) be a solution of (1)—(2) and using @y = @, Then
v(t) = B, + LY (. w(E)). (36)

By hypothesis [H1] and Lemma 4.2, we get

£ _
lw(®) —v(®)| < |w(®) — D, — ;—/ W (R (W () — ¥ ()G (5, w(k))|dr
re Jo

ﬁ -
" %/o WO = W)Y (5 w() = 9 v()Idk

£ _
vef(€) + % i W (k) (P () — W (8)"w(k) — v(r)|dk.
(37)

IA
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Applying Lemma 4.1 to (37) and using hypothesis [H2], we obtain

t o Wk ) -
lw(€) —v(E)| < yef(€) +7e /0 ; - (é‘m)w (K) (W (E) — W (RN f(rk)dr

¢ "o 6—1
= 76f(€)+7€[ /0 md/(n)(d/(ﬁ)—wm» f(r)dr
+ / s W (1) (W (8) — W ()P f(R)dr + ]
| ron

Ve F(€) + e[ HI0Y £ &)+ #2T0Y £(6) + ....]

< yef©) +ye[HVf € + F) F () + ....]
= vsf(f)i(%v)"
k=0
- 1_7%@0@). (38)
Setting
==y (39)
From (38) and (39), we have
lw(€) — v(E)| < dep(t). m

Theorem 4.4 Under the assumption of Theorem 4.3, problem (1)—(2) is GUHR
stable.

Proof In a same fashion similar to Theorem 4.3, setting € = 1, we get

|w () —v(®)] =7 (F). (40)

5 Example

Example 5.1 Consider the following fractional differential equation involving ¥ -
Caputo derivative

3 1
D5 u() = £+ gsinv(®), forall t € [0, 1], “1)
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(0)+1 (1)—0 (1)—1 (42)
v 4U 3= ,u(l) = 5
Here, 0 = 2, 9(t, v(£)) =t + sinv(t), h(v) = Ju(3). Then for t € [0, 1],
1 1
|9 (€, v) —F (£, v)] < glv —v*land [h(v) —h(")| < Zlv — v
Therefore W) = % and #5 = le' For ¥ (t) = £, we have

W (Y) — ¥ (0)) 1 20-02 1 4
%_{_2(()()_—())7/] :_+¥:_+_< 1.
re+1i 4 6I'(3) 4 9w
Hence, all the conditions of Theorem 3.1 are satisfied. Thus, by the Theorem 3.1,
problem (41)—(42) has unique solution.

6 Concluding Remark

In this research work, the existence and uniqueness of the proposed system have
been successfully examined using Banach fixed point theorem under some specific
assumptions and conditions. Along with the existence and uniqueness, we established
stability results such as UH, GUH, UHR and GUHR in the sense of W-Gronwall
inequality. It should be noted that, for different values of W, the W-Caputo fractional
derivative reduces to many classical fractional operators such as Caputo [9], Caputo-
Hadamard [7], Caputo-Erdélyi-Kober [13] fractional derivative. Thus, we believe
that the results derived in this article are general in character and contributes in the
theory of fractional differential equations.

References

1. Almeida, R.: A Caputo fractional derivative of a function with respect to another function.
Commun. Nonlinear Sci. Numer. Simul. 44, 460-481 (2017). https://doi.org/10.1016/j.cnsns.
2016.09.006

2. Almeida, R.,Malinowska, A.B., Monteiro, M.T.: Fractional differential equations with a Caputo
derivative with respect to a kernel function and their applications. Math. Meth. Appl. Sci. 41,
336-352 (2017). https://doi.org/10.1002/mma.4617

3. Baskonus, H.M., Sanchez Ruiz, L.M., Ciancio, A.: A new challenging arising in engineering
problems with fractional and integer order. Fractal Fract. 5(2), 35 (2021). https://doi.org/10.
3390/fractalfract5020035

4. Derbazi, C., Baitiche, Z., Benchohra, M., N Guérékata, G. M.: Existence, uniqueness, approx-
imation of solutions and E«a-Ulam stability results for a class of nonlinear fractional differ-
ential equations involving t-Caputo derivative with initial conditions. Math. Morav. 25(1),
1-30(2021). https://doi.org/10.5937/MatMor2101001D


https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.1002/mma.4617
https://doi.org/10.3390/fractalfract5020035
https://doi.org/10.3390/fractalfract5020035
https://doi.org/10.5937/MatMor2101001D

262

5.

10.

11.

16.

17.

18.

19.

20.

21.

B. R. Yewale and D. B. Pachpatte

Debnath, L.: Recent applications of fractional calculus to science and engineering, Int.
J. Math. Math. Sci. 2003, Article ID 753601, 3413-3442 (2003). https://doi.org/10.1155/
S0161171203301486

Douriah, S., Foukrach, D., Benchohra, M., Graef, J.: Existence and uniqueness of periodic solu-
tions for some nonlinear fractional pantograph differential equations with )-Caputo derivative.
Arab. J. Math. (2021). https://doi.org/10.1007/s40065-021-00343-z

Gambo, Y.Y., Jarad, F.,, Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard
fractional derivatives. Adv. Differ. Equ., Art. no. 10 (2014). https://doi.org/10.1186/1687-
1847-2014-10

Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003). https://doi.org/10.
1007/978-0-387-21593-8

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential
Equations. Elsevier, Amsterdam (2006)

Kucche, K.D., Mali, A.D., Sousa, J.V.D.C.: On the nonlinear -Hilfer fractional differential
equations. Comput. Appl. Math. 38, 73 (2019). https://doi.org/10.1007/s40314-019-0833-5
Kucche, K.D., Kharade, J.P., Sousa, J.V.D.C.: On the nonlinear impulsive 1-Hilfer fractional
differential equations. Math. Model. Anal. 25(2), 642-660 (2020). https://doi.org/10.3846/
mma.2020.11445

Kumar, D., Singh, J.: Fractional Calculus in Medical and Health Science. CRC Press, New
York (2020)

. Luchko, Y., Trujillo, J.J.: Caputo-type modification of the Erdélyi-Kober fractional derivative.

Fract. Calc. Appl. Anal. 10(3), 249-267 (2007)
Pachpatte, D.B.: Existence and stability of some nonlinear ¢-Hilfer partial fractional differential
equation, Part. differ. Equ. Apl. Math. 3 (2021). https://doi.org/10.1016/j.padiff.2021.100032

. Pandey, P, Chu,Y.-M., Gémez-Aguilar, J.F.,, Jahanshahi, H., Aly, A.A.: A novel fractional

mathematical model of COVID-19 epidemic considering quarantine and latent time. Results
Phys. 26 (2021). https://doi.org/10.1016/j.rinp.2021.104286

Srivastava, H.M., Dubey, R.S., Jain, M.: A study of the fractional order mathematical model of
dibeties and it’s resulting complications. Math. Methods Appl. Sci. 42(13), 4570-4583 (2019).
https://doi.org/10.1002/mma.5681

Sousa, J.V.D.C., De Oliveira, E.C.: On the -Hilfer fractional derivative. Commun. Nonlinear
Sci. Numer. Simul. 60, 72-91 (2018). https://doi.org/10.1016/j.cnsns.2018.01.005

Sousa, J.V.D.C., De Oliveira, E.C.: A Gronwall inequality and the Cauchy type problem by
means of -Hilfer operator. Differ. Equ. Appl. 11(1), 87-106 (2019). https://doi.org/10.7153/
dea-2019-11-02

Sousa, J.V.D.C., Kucche, K.D., De Oliveira, E.C.: On the Ulam-Hyers stabilities of the solutions
of ¢-Hilfer fractional differential equation with abstract volterra operator. Math. Methods Appl.
Sci. 42(12), 3021-3032 (2019). https://doi.org/10.1002/mma.5562

Wahash, H.A., Panchal, S.K., Abdo, M.S.: Existence and stability of a nonlinear fractional
differential equation involving a 1-Caputo operator. ATNAA 4(4), 266-278 (2020). https://
doi.org/10.31197/atnaa.664534

Wahash, H.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam-Hyers stability of the implicit
fractional boundary value problem with ¢)-Caputo fractional derivative. JAMCM 19(1), 89-101
(2020). https://doi.org/10.17512/jamcm.2020.1.08


https://doi.org/10.1155/S0161171203301486
https://doi.org/10.1155/S0161171203301486
https://doi.org/10.1007/s40065-021-00343-z
https://doi.org/10.1186/1687-1847-2014-10
https://doi.org/10.1186/1687-1847-2014-10
https://doi.org/10.1007/978-0-387-21593-8
https://doi.org/10.1007/978-0-387-21593-8
https://doi.org/10.1007/s40314-019-0833-5
https://doi.org/10.3846/mma.2020.11445
https://doi.org/10.3846/mma.2020.11445
https://doi.org/10.1016/j.padiff.2021.100032
https://doi.org/10.1016/j.rinp.2021.104286
https://doi.org/10.1002/mma.5681
https://doi.org/10.1016/j.cnsns.2018.01.005
https://doi.org/10.7153/dea-2019-11-02
https://doi.org/10.7153/dea-2019-11-02
https://doi.org/10.1002/mma.5562
https://doi.org/10.31197/atnaa.664534
https://doi.org/10.31197/atnaa.664534
https://doi.org/10.17512/jamcm.2020.1.08

	 On the Existence and Stability Analysis for -Caputo Fractional Boundary Value Poblem
	1 Introduction
	2 Preliminaries
	3 Existence and Uniqueness
	4 Stability Analysis
	5 Example
	6 Concluding Remark
	References


