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Abstract A non-linear analysis is done to analyze the heat and mass transport in
a composite nanofluid layer confined between two parallel horizontal plates, heated
from below. The Nusselt number for temperature and nanoparticle concentrations
is obtained as a function of time. It is observed that the suspension of two different
nanoparticles in a base fluid significantly affects the heat and mass transport. We
observe that the modified diffusivity ratios and the Lewis numbers for the first and
second types of nanofluids only affect the mass transportation of the first and second
types of nanofluids, respectively.
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Nomenclature

Latin Symbols

DB1 , DB2 Brownian Diffusion coefficients.
DT1 , DT2 Thermophoretic diffusion coefficients.
Pr Prandtl number.
L Dimensional layer depth.
Le1, Le2 Lewis numbers.
NA1, NA2 Modified diffusivity ratios.
NB1, NB2 Modified particle-density increments.
p Pressure.
g Gravitational acceleration.
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t Time.
T Temperature.
V = (u, v, w) Nanofluid velocity.

Greek Symbols

α f = κ/ρc Thermal diffusivity of the nanofluid.
κ Thermal conductivity of the nanofluid.
βT Thermal volumetric coefficient.
μ Dynamic viscosity.
ρp1 , ρp2 Mass densities of nanoparticles.
φ1, φ2 Nanoparticle volume fractions.

1 Introduction

In order to enhance the poor thermal conductivity of liquids, Maxwell, suggested to
add solid particles of high thermal conductivity into the liquids, more than a century
ago. His idea was implemented with millimeter- or micrometer-sized particles but
it was not very fruitful because of such extra-sized particles. The major issues with
such particles were settling down under gravity, clogging, and abrasion. So, therewas
a search for particles smaller than micro-sized particles and this search ultimately
ended with the invention of nanofluids (by Choi [1]) which are the fluids comprising
a little amount of uniformly dispersed and suspended nanometer-sized particles in
a base fluid. Around 15–40% increment in the thermal conductivity (Eastman et al.
[2], Das et al. [3]) of the fluid is observed on adding a small amount of nanoparticles
into the base fluid. Moreover, the size of nano-particles becomes quite closer to fluid
molecules’ size and this prevents nanoparticles to settle down under gravity.

Because of these important properties, nanofluids arewidely used in various indus-
tries, especially in those processes where cooling is essentially required. Buongiorno
[4] was the first to study convective transport in nanofluids in 2006. He noticed that
other than base fluid velocity, Brownian diffusion and thermophoresis are mainly
responsible for nanoparticles’ absolute velocity in the absence of turbulent motion.
Tzou [5, 6] used theBuongiornomodel to study the onset of convection in a horizontal
nanofluid layer heated from below. Nield and Kuznetsov [7–11] further analyzed the
similar problem with porous media. After them, many researchers are still working
in this field. Bhadauria et al. [12] described the non-linear study for bi-dimensional
convection in a nanofluid-saturated porous medium.

Apart from the direct study of the onset of convection, heat, andmass transfer, var-
ious researchers showed their interest in the study of convective flows under the effect
of various external modulations like thermal modulation, gravity modulation, mag-
netic field modulation, etc. These modulations have various practical applications in
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different industries. Venezian [13] was the first to introduce the effect of modulating
the boundary temperatures. Later on, Umavathi [14] studied the thermal modulation
in the case of nanofluids.Gresho andSani [15]were thefirst to study the consequences
of modulating gravitational field on Rayleigh–Bénard Convection. Bhadauria et al.
[16] did the non-linear study of thermal instability under temperature/gravity mod-
ulation. Bhadauria et al. [17] studied the effect of gravity modulation and internal
heating over convection in a nanofluid-saturated porous medium. Thomson [18] and
Chandrasekhar [19] were the first to discuss the idea about magneto-convection.
This has now become a huge area of research. Kiran et al. [20] recently published
an article about magneto-convection under magnetic field modulation. Yadav [21]
presented a numerical solution of the onset of buoyancy-driven nanofluid convective
motion in an anisotropic porous medium layer with internal heating and variable
gravity. Sakshath et al. [22] investigated the effect of horizontal pressure gradient on
Rayleigh–Bénard convection of a Newtonian nanoliquid in a high porosity medium
using a local thermal non-equilibrium model.

After various kind of modulations, a new type of nanofluid, known as composite
nanofluid, has now become an advanced area of interest among the researchers in the
recent years. A composite nanofluid is prepared by suspending two or more types of
nanoparticles in a base fluid in order to get a stable and homogeneous mixture. The
synthesis of such composite materials can be done either by chemical or physical
processes (Hanemann and Szabo [23], Zhang et al. [24]). The characteristics of
the composite nanofluids lie in between the properties of their constituents. The
thermophysical properties of composite nanofluids can be altered to converge to the
required heat transfer demands. An extensive review on composite nanofluids and
their properties is given by Suleiman et al. [25]. Linear and nonlinear analysis in
Hele-Shaw cell in the presence of through-flow and gravity modulation have been
done by Bhadauria et al. [26].

The very first study of thermal instability for composite nanofluids is presented
by Kumar and Awasthi [27] recently. They concluded that the maximum stability is
achieved only when both kinds of nanoparticles are in the same ratio. To the best
of our knowledge, no non-linear study on this topic is present in literature till date.
This idea motivated us to present this study of heat and mass transfer in a composite
nanofluid layer.

2 Mathematical Formulation

An infinitely extended horizontal layer, of composite nanoliquid in which two differ-
ent types of nanoparticles are suspended homogeneously, restricted between Z = 0
and Z = L has been considered. The upper plate at Z = L is assumed to be at tem-
perature T0, while the lower plate is at slightly higher temperature T0 + ΔT as shown
in Fig. 1. The cartesian coordinate system has been used. Both nanoparticles and the
base fluid are assumed to be in local thermal equilibrium. Boundaries are considered
to be Free–Free and perfectly insulating. The linearization of equations is done using



232 A. Kumar et al.

Fig. 1 Formal diagram

theOberbeck–Boussinesq approximation. The governing equations of the system are
as follows (Kumar and Awasthi [27]):

∇ · V = 0 (1)

ρ

[
∂

∂t
+ (V · ∇)

]
V = −∇ p + μ∇2V + [φ1ρp1 + φ2ρp2 + ρ(1 − φ1 − φ2){1 − βT (T − T0)}]g (2)

ρc

[
∂

∂t
+ (V · ∇)

]
T = κ∇2T + (ρc)p1 [DB1∇φ1∇T + DT1

T0
∇T∇T ] + (ρc)p2 [DB2∇φ2∇T + DT2

T0
∇T∇T ] (3)

[
∂

∂t
+ (V · ∇)

]
φ1 = DB1∇2φ1 +

( DT1
T0

)
∇2T (4)

[
∂

∂t
+ (V · ∇)

]
φ2 = DB2∇2φ2 +

( DT2
T0

)
∇2T (5)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

At the boundaries, the volume fractions of nanoparticles are assumed to be con-
stant. The boundary conditions under consideration are as follows:

w = 0,
∂w

∂z
+ λ1L

∂2w

∂z2
= 0, φ1 = φ10, φ2 = φ20 at z = 0

w = 0,
∂w

∂z
− λ2L

∂2w

∂z2
= 0, φ1 = φ11, φ2 = φ21 at z = L

⎫⎪⎪⎬
⎪⎪⎭

(6)

where λ1 and λ2 take the value “0” and “∞” for rigid–rigid and free–free bound-
aries, respectively. Also φ11 > φ10 and φ21 > φ20. In order to non-dimensionalize
the equations, we use the following substitutions:

(x, y, z) = L(x ′, y′, z′), (u, v, w) = (u′, v′, w′)
α f

L
,

t = L2

α f
t ′, p = μα f

L2
p′,

T ′ = T − T0
ΔT

, φ′
i(=1or2) = φi − φi0

φi1 − φi0
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7)

Making use of (7) into the Eqs. (1)–(6) and leaving the primes for simplicity, we
obtain the following non-dimensional equations:
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∇ · V = 0 (8)

1

Pr

[
∂

∂t
+ (V · ∇)

]
V = −∇ p + ∇2V + ez [RaT − Rn1φ1 − Rn2φ2 − Rm] (9)

[
∂

∂t
+ (V · ∇)

]
T = ∇2T +

(
NB1

Le1

)
∇φ1 · ∇T +

(
NA1NB1

Le1

)
∇T · ∇T

+
(
NB2

Le2

)
∇φ2 · ∇T +

(
NA2NB2

Le2

)
∇T · ∇T (10)

[
∂

∂t
+ (V · ∇)

]
φ1 =

(
1

Le1

)
∇2φ1 +

(
NA1

Le1

)
∇2T (11)

[
∂

∂t
+ (V · ∇)

]
φ2 =

(
1

Le2

)
∇2φ2 +

(
NA2

Le2

)
∇2T (12)

The dimensional-less boundary conditions are

T = 1, w = φ1 = φ2 = 0,
∂w

∂z
+ λ1

∂2w

∂z2
= 0 at z = 0,

T = w = 0, φ1 = φ2 = 1,
∂w

∂z
− λ2

∂2w

∂z2
= 0 at z = 1,

⎫⎪⎪⎬
⎪⎪⎭

(13)

where

Ra = ρgβT L3ΔT

μα f
is the thermalRayleighnumber, Rn1 = (ρp1 − ρ)(φ11 − φ10)gd3

μα f

and Rn2 = (ρp2 − ρ)(φ21 − φ20)gd3

μα f
are the nanoparticle concentration Rayleigh

numbers, Rm = {ρp1φ10 + ρp2φ20 + ρ(1 − φ10 − φ20)}gd3

μα f
is the basic density

Rayleigh number, Pr = μ

ρα f
is Prandtl number, Le1 = α f

DB1

and Le2 = α f

DB2

are

theLewis numbers, NA1 = DT1ΔT

DB1T0(φ11 − φ10)
and NA2 = DT2ΔT

DB2T0(φ21 − φ20)
are the

modifieddiffusivity ratios, and NB1 = (ρc)p1
φ11 − φ10

ρc
and NB2 = (ρc)p2

φ21 − φ20

ρc
are the modified particle-density increments.

3 Conduction State

The temperature, pressure, and nanoparticle volume fractions are taken to be the
functions of “z” only. The time-independent quiescent solution of Eqs. (8)–(12) is
obtained under the following assumptions:

V = 0, T = Tb(z), p = pb(z), φ1 = φ1b(z), φ2 = φ2b(z). (14)



234 A. Kumar et al.

The desired conduction state is evaluated (Kumar and Awasthi [27]) as:

Tb(z) = 1 − z, φ1b(z) = z, φ2b(z) = z. (15)

4 Perturbed State

We impose small perturbations on the conduction state:

V = Ṽ, p = pb + p̃, T = Tb + T̃ , φ1 = φ1b + φ̃1, φ2 = φ2b + φ̃2. (16)

Using Eq. (16) in Eqs. (8)–(12) and assuming all the physical quantities to be free
from “y”, we get the following perturbed equations:

∇ · Ṽ = 0 (17)

1

Pr

[
∂

∂t
+

(
ũ

∂

∂x
+ w̃

∂

∂z

)]
Ṽ = −∇ p̃ + ∇2Ṽ + ez

[
RaT̃ − Rn1φ̃1 − Rn2φ̃2

]
(18)

∂ T̃

∂t
− w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
T̃ = ∇2T̃ + NB1

Le1

[
∂ T̃

∂z
− ∂φ̃1

∂z

]
+ NB2

Le2

[
∂ T̃

∂z
− ∂φ̃2

∂z

]

−2NA1NB1

Le1

∂ T̃

∂z
− 2NA2NB2

Le2

∂ T̃

∂z
(19)

∂φ̃1

∂t
+ w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
φ̃1 = 1

Le1
∇2φ̃1 + NA1

Le1
∇2T̃ (20)

∂φ̃2

∂t
+ w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
φ̃2 = 1

Le2
∇2φ̃2 + NA2

Le2
∇2T̃ (21)

The corresponding perturbed boundary conditions are

T̃ = 0, w̃ = φ̃1 = φ̃2 = 0,
∂w̃

∂z
+ λ1

∂2w̃

∂z2
= 0 at z = 0,

T̃ = 0, w̃ = φ̃1 = φ̃2 = 0,
∂w̃

∂z
− λ2

∂2w̃

∂z2
= 0 at z = 1.

⎫⎪⎪⎬
⎪⎪⎭

(22)

where Ṽ = (ũ, ṽ, w̃).
Now eliminating the pressure term in Eq. (18), introducing the stream function

ψ in Eqs. (18)–(21), and removing the tildes, we get the following transformed
equations:
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1

Pr

[
∂

∂t
(∇2ψ)

]
= ∇4ψ − Ra

∂T

∂x
+ Rn1

∂φ1

∂x
+ Rn2

∂φ2

∂x
+ 1

Pr

[
∂(ψ,∇2ψ)

∂(x, z)

]

(23)

∂T

∂t
+ ∂ψ

∂x
= ∇2T + NB1

Le1

[
∂T

∂z
− ∂φ1

∂z

]
− 2NA1NB1

Le1

∂T

∂z
+ NB2

Le2

[
∂T

∂z
− ∂φ2

∂z

]

−2NA2NB2

Le2

∂T

∂z
+ ∂(ψ, T )

∂(x, z)
(24)

∂φ1

∂t
− ∂ψ

∂x
= 1

Le1
∇2φ1 + NA1

Le1
∇2T + ∂(ψ, φ1)

∂(x, z)
(25)

∂φ2

∂t
− ∂ψ

∂x
= 1

Le2
∇2φ2 + NA2

Le2
∇2T + ∂(ψ, φ2)

∂(x, z)
(26)

where u = ∂ψ

∂z
and w = −∂ψ

∂x
.

5 Non-linear Stability Analysis

A non-linear stability analysis is done using the below-mentioned truncated Fourier
expressions (Bhadauria et al. [17]):

ψ = A11(t) sin(kx)sin(πz) (27)

T = B11(t) cos(kx)sin(πz) + B02(t)sin(2πz) (28)

φ1 = C11(t) cos(kx)sin(πz) + C02(t)sin(2πz) (29)

φ2 = D11(t) cos(kx)sin(πz) + D02(t)sin(2πz) (30)

All these expressions are taken in such a way to satisfy the free–free boundary
conditions:

ψ = ∇2ψ = T = φ1 = φ2 = 0 at z = 0, 1, (31)

where A11(t), B11(t), B02(t), C11(t), C02(t), D11(t) and D02(t) are unknowns and
the functions of “t”.

Making use of Eqs. (27)–(30) into the Eqs. (23)–(26) and using the condition of
orthogonality with the eigenfunctions, we obtain
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A′
11(t) = Pr [−δ2A11(t) − k

δ2
{RaB11(t) − Rn1C11(t) − Rn2D11(t)}] (32)

B ′
11(t) = −kA11(t) − kπ A11(t)B02(t) − δ2B11(t) (33)

B ′
02(t) = −4π2B02(t) + kπ

2
A11(t)B11(t) (34)

C ′
11(t) = k[A11(t) − π A11(t)C02(t)] − δ2

Le1
[NA1B11(t) + C11(t)] (35)

C ′
02(t) = −4π2

Le1
[NA1B02(t) + C02(t)] + kπ

2
A11(t)C11(t) (36)

D′
11(t) = k[A11(t) − π A11(t)D02(t)] − δ2

Le2
[NA2B11(t) + D11(t)] (37)

D′
02(t) = −4π2

Le2
[NA2B02(t) + D02(t)] + kπ

2
A11(t)D11(t) (38)

where δ2 = (k2 + π2)

The above autonomous simultaneous ODEs (32)–(38) are solved numerically
using NDSolve of Mathematical under suitably chosen initial conditions.

6 Heat and Mass Transport

The heat transport Nusselt number, NuT (t) is defined as

NuT (t) = Heat transport by (conduction+convection)

Heat transport by conduction

NuT (t) = 1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂T
∂z

)
dx

2π/k∫
0

(
∂Tb
∂z

)
dx

⎤
⎥⎥⎥⎦

z=0

(39)

On putting the values of T and Tb(z) from Eqs. (28) and (15) into the Eq. (39),
we have

NuT (t) = 1 − 2πB02(t) (40)

The nanoparticle concentrationNusselt number for the first type of nanoparticles,
Nuφ1(t), can be defined as

Nuφ1(t) = 1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂φ1

∂z
)dx

2π/k∫
0

(
∂φ1b

∂z
)dx

⎤
⎥⎥⎥⎦

z=0

+ NA1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂T

∂z
)dx

2π/k∫
0

(
∂Tb
∂z

)dx

⎤
⎥⎥⎥⎦

z=0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(41)
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Making use of Eqs. (28), (29) and (15) into the Eq. (41), we get

Nuφ1(t) = (1 + 2πC02(t)) + NA1(1 − 2πB02(t)) (42)

Similarly, we can find the nanoparticle concentration Nusselt number for the
second type of nanoparticles, Nuφ2(t), as follows:

Nuφ2(t) = (1 + 2πD02(t)) + NA2(1 − 2πB02(t)) (43)

7 Results and Discussion

In non-linear analysis, we study heat and mass transport in the system. By thermal
Nusselt number and concentration Nusselt number, we study how heat and mass
transport, respectively, happens inside the system. Here thermal Nusselt number
and concentration Nusselt number are functions of time. The general parametric
values are taken as Le1 = 100, Le2 = 100, NA1 = 2, NA2 = 2, Rn1 = 5, Rn2 = 5,
Ra = 5000, and k = 2.22144. We found a common thing in all observations that
the graph of thermal Nusselt number and both concentration Nusselt numbers are
horizontal for a short time initially which shows a conduction state. After some time,
they start increasing which shows a convection state and also oscillate for some time
and go to constant which denotes a steady state. In ordinary nanofluid, Bhadauria
et al. [17] examined that modified particle density increments and Lewis number
have no significant effect on heat transfer. Here we also found the similar result in
composite nanofluid which is shown in Figs. 2, 3, 4, and 5. If the value of Prandtl
number (Pr) is increased, we observe that heat transfer starts sooner by convection
in comparison to the previous Prandtl number which is shown in Fig. 6. In the case
of composite nanofluid, we observe that heat transfer by convection is delayed in
comparison to ordinary nanofluid which is equivalent to the result of Kumar and
Awasthi [27] and shown in Fig. 7. Kumar and Awasthi [27] compared the onset of
convection between ordinary and composite nanofluids under the heavy top condition
and found a delay in the onset of convection in composite nanofluids. In the case of
the first nanoparticle concentration Nusselt number, the effect of NA1 enhances the
mass transport and has no effect of NA2 on mass transport which is shown in Figs.
8, 9. In the case of the second nanoparticle concentration Nusselt number, NA1 has
no effect and NA2 enhances the mass transport which contradicts the result of first
nanoparticle concentration Nusselt number and shown in Figs. 16, 17. The above
result is similar to the result for ordinary nanofluid, which is compared to the result
of Bhadauria et al. [17].

If we increase the value of Le1, we observe that the amplitude of oscillations
of nanoparticle concentration Nusselt number for the first nanoparticle, i.e., Nuφ1

slightly increases, while increment in Le1 has no effect on nanoparticle concentration
Nusselt number for the second nanoparticle, i.e., Nuφ2 (Figs. 10, 18). Similarly, if we
increase the value of Le2, the amplitude of oscillations of Nuφ2 is slight increased,
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Fig. 2 Plot of NuT with t
for varying NA1

Fig. 3 Plot of NuT with t
for varying NA2

Fig. 4 Plot of NuT with t
for varying Le1
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Fig. 5 Plot of NuT with t
for varying Le2

Fig. 6 Plot of NuT with t
for varying Pr

Fig. 7 Comparison of heat
transfer in ordinary and
composite nanofluid
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Fig. 8 Plot of Nuφ1 with t
for varying NA1

Fig. 9 Plot of Nuφ1 with t
for varying NA2

while it has no effect over Nuφ1 (Figs. 11, 19). Let us now discuss the effect of
Prandtl number on mass transport in both cases. We found the same effect in both
cases which is shown in Figs. 12, 20 and the result is same as the result of Bhadauria
et al. [12]. If the ratio of Rn1 and Rn2 are different in composite nanofluid, then
the mass transport by convection takes place sooner in comparison to the same ratio
which is shown in Figs. 13, 14, 21 and 22. If nanoparticle concentration is top heavy
then we found that there is a delay in the mass transport by convection in comparison
to bottom heavy which is shown in Figs. 15, 23.

In Fig. 25a, b, the streamlines and isothermals have been shown, respectively,
at conduction state for t = 0, 0.025, and 0.050. In Fig. 25a, we observe that the
magnitude of streamlines is very weak for t = 0–0.050; therefore, the movement
of fluid in the system is almost negligible, which means that heat transfer is only
due to conduction. Figure 25b describes that the temperature of all the horizontal
fluid layers is almost constant throughout the system, which indicates the conduction
state. Figure 26a shows that as time “t” increases from 0.1 to 0.15, the magnitude of
streamlines also increases slightly. It means that a small movement of fluid particles
has started in the system and, therefore, the heat transfer is due to both conduction
and convection, which indicates a transition from conduction to convection state.
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Fig. 10 Plot of Nuφ1 with t
for varying Le1

Fig. 11 Plot of Nuφ1 with t
for varying Le2

Fig. 12 Plot of Nuφ1 with t
for varying Pr
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Fig. 13 Comparison of
Nuφ1 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 > Rn2)

Fig. 14 Comparison of
Nuφ1 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 < Rn2)

Fig. 15 Comparison of
Nuφ1 for top and bottom
heavy configurations
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Fig. 16 Plot of Nuφ2 with t
for varying NA1

Fig. 17 Plot of Nuφ2 with t
for varying NA2

Figure 26b represents that the isothermals have started deforming from their original
horizontal position as “t” increases from 0.1 to 0.15, which shows the very beginning
stage of the formation of convection cells. Further, the magnitude of streamlines
becomes stronger as time increases and in isothermals, fully developed convective
cells can be seen with increasing time as presented in Fig. 27a, b, respectively. In
Fig. 28a, b, there is no change in the magnitudes of streamlines and in the position of
isothermalswith increasing time,which shows that the systemhas achieved the steady
state. In Fig. 29a, it can be noticed that the isohalines are parallel and horizontal,
which means that the concentration of nanoparticles is constant with horizontal fluid
layers and mass transport is almost negligible in the system for t = 0–0.05. With the
passage of time, mass transport starts in the system as depicted by Fig. 29b. Mass
transportation also achieves the steady state for higher values of time as shown by
Fig. 24.



244 A. Kumar et al.

Fig. 18 Plot of Nuφ2 with t
for varying Le1

Fig. 19 Plot of Nuφ2 with t
for varying Le2

Fig. 20 Plot of Nuφ2 with t
for varying Pr
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Fig. 21 Comparison of
Nuφ2 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 < Rn2)

Fig. 22 Comparison of
Nuφ2 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 > Rn2)

Fig. 23 Comparison of
Nuφ2 for top and bottom
heavy configurations
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Fig. 24 Behavior of mass transport for higher value of time

Fig. 25 Conduction state

8 Conclusions

We have investigated the heat and mass transport in a horizontal composite nanoliq-
uid layer by performing a non-linear analysis. All the results have been presented
graphically. These are the major conclusions:
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Fig. 26 Transition state (conduction to convection)

Fig. 27 Convection state



248 A. Kumar et al.

Fig. 28 Steady state

Fig. 29 Isohalines
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1. We found same effect of modified particle density increments in composite
nanofluid as compared to the ordinary nanofluid on heat transfer.

2. Lewis number has also same effect in composite nanofluid as compared to the
ordinary nanofluid on heat and mass transfer.

3. We found that heat transfer by convection is delayed in composite nanofluid as
compared to ordinary nanofluid.

4. Prandtl number has also same effect in composite nanofluid as compared to
ordinary nanofluid on heat and mass transfer.

5. The effect of modified particle density increments on mass transport depends
upon the nanoparticle concentration Nusselt number, i.e., the effect of NA1 is
only on the first nanoparticle concentration Nusselt number and the effect of NA2

is only on the second nanoparticle concentration Nusselt number.
6. Le1 has its effect only on the nanoparticle concentration Nusselt number for the

first nanoparticle, i.e., Nuφ1, while Le2 has its effect only on the nanoparticle
concentration Nusselt number for the second nanoparticle, i.e., Nuφ2.
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