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Abstract This paper aims to examine the impact of the driver’s behavior with the
downstream average flow on current traffic dynamics in the lattice hydrodynamic
model. The influence of driver’s behavior and downstream traffic conditions with dif-
ferent sites are examined theoretically with the help of linear stability. It is observed
that traffic flow stability can be improved by incorporating both driver’s behavior
and the average flow of traffic downstream. Finally, numerical simulations show that
present traffic dynamics may be improved by integrating the impacts of driver behav-
ior and average downstream traffic conditions in order to alleviate traffic congestion.
Also, it validates the theoretical findings.

Keywords Traffic flow · Lattice model · Downstream average flow · Driver’s
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1 Introduction

Travel has now become a vital part of most people’s daily lives. The rising econ-
omy and growing population have also increased congestion inmetropolitan areas. To
alleviate crowded road conditions while incurringminimal traffic expenditures, man-
agement agencies have prioritized transportation security and dependability. Since
traffic congestion is rising, some scholars have used mathematics and physics to
explain why it occurs and to anticipate how it will evolve through modeling and
simulation.

In recent decades, a lot of research has been carried out to resolve the urban
traffic issues. Multiple traffic flow models, such as microscopic [3, 4, 35–37] and
macroscopic [1, 2, 5–9, 9–34] models have been created to better understand the
intricate process of congested roadways. Macroscopic models represent the flow of
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traffic by simulating themovement of liquids or gases and explore the overall average
behavior of vehicles, whereas microscopic models are discrete models that simulate
the individual behavior of vehicles.

Nagatani [5] created the fundamental one-lane unidirectional lattice hydrody-
namic model (LHM) in 1998 by integrating characteristics of both microscopic and
macroscopic models. This model allowed researchers to investigate the effect of
real-world traffic conditions on traffic dynamics. Later, in real traffic flow, numer-
ous different versions of Nagatani’s lattice model were explored by investigating
various aspects, including optimal current difference [13], driver’s behavior [11],
density difference effect [8] and, and so on. In addition, the lattice hydrodynamic
one-lane unidirectional model is also expanded to include the curved road, two-lane,
higher-dimensional lattice model in traffic systems [9, 16, 18–34].

In real-world traffic scenario, the intelligent transportation system (ITS) has been
widely used in information and communication systems, making traffic information
accessible to drivers in ITS environments more useful than ever before. In 1999,
Nagatani [9] introduced a modified car-following model that includes interaction
between the next-nearest-neighbor in front. Further, a car-following model is intro-
duced by Kuang et al. [35] based on the effect of average headway. Later, Kuang
et al. [34] modified the Zhu et al. model [36] by including the impact of average
velocity as well as mean expected velocity field of forwarding vehicles in a vehicle
to vehicle interaction. Subsequently, Chuan et al. [37] investigated the impact of
multi-anticipation and also examined the influence of forwarding sites in the LHM.
Later, Zhu et al. [17] developed a single-lane LHM that took into account the differ-
ence between optimal and real traffic flow, based on average density and prior traffic
flow.

In regular traffic situations, driver characteristics (timid, aggressive, and normal)
have a significant effect on traffic flow. Additionally, numerous studies [11, 12, 14,
15, 18, 19, 29] have been conducted to examine the impact of the behavior of drivers
on traffic flow. According to studies, aggressive drivers create a strong impact on the
stability of traffic flow, although timid drivers are found to have a negative influence
on traffic flow stability. For this reason, it’smore realistic to investigate traffic features
in terms of the behavior of drivers.

The future era is of semi-automated vehicles. These vehicles partially depend on
the information of the surroundings as well as downstream situations. The idea of
this paper is to improve the traffic conditions by taking the driver’s behavior with
the average flow of front sites simultaneously. Therefore, the aim is to create a new
lattice model that incorporates average flow on front sites and the behavior of drivers
on current traffic conditions.

The following is the outline of the paper. The proposed lattice model, which
incorporates the influence of downstream average flow and behavior of drivers on
current traffic conditions, was described in Sect. 2 of this paper. Section 3 explains
the proposed model’s theoretical analysis. Section 4 contains the findings. Section 5
contains the conclusion.
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2 Model

Nagatani [5] developed the basic LHM in 1998 to depict the density waves in traffic
flow. The basic lattice model consists of two equations: a continuity equation and a
flow evolution equation, as follows:

∂tρ j (t) + ρ0(ρ j (t)v j (t) − ρ j−1(t)v j−1(t)) = 0, (1)

∂t (ρ j (t)v j (t)) = a[ρ0V (ρ j+1(t)) − ρ j (t)v j (t)]. (2)

Here, ρ j denotes the density and v j presents the velocity, respectively at j th site
on the one-dimensional lattice for time t . The average density is ρ0, while a is the
sensitivity of the drivers. V (ρ j+1) is the Bando’s [3, 4] optimal velocity function
(OVF), given as

V (ρ) = vmax

2

[
tanh

(
2

ρ0
− ρ

ρ20
− 1

ρc

)
+ tanh

(
1

ρc

)]
, (3)

In Eq. (3), ρc and vmax denote the critical density andmaximumvelocity, respectively.
In reality, drivers constantly analyze the state of the road ahead of them and attempt
to adjust their vehicle’s speed in response to the information received from ITS.
Further, to explore the traffic situations more realistically, we propose a LHM to
examine the driver’s behavior while taking into account downstream average flow
on forward sites. Thus, the continuity equation is the same in the new LHM, but the
flow equation is reformed as

∂t (ρ jv j ) = a
[
ρ0V (ρ j+1) − ρ jv j + α(2p − 1)τV ′(ρ j+1)∂tρ j+1

]

+ λ

[
qavg
j − ρ jv j

]
. (4)

The delay time is given by τ = 1/a, and the anticipation coefficient is denoted
by α in Eq. (4). The parameter p ∈ [0, 1] demonstrates that how the behavior of
the drivers impacts the traffic dynamics. Whenever p < 0.5, the driver exhibits the
timid behavior; when p = 0.5, it exhibits normal behavior; and whenever p > 0.5,
it exhibits aggressive behavior. Average flow difference is represented by λ and
qavg
j = 1

n

∑n
l=1(ρ j+lv j+l) is the average flow of the n forward sites.

After omitting v from Eqs. (1) and (4), the resulting density evolution equation
be obtained as

∂2
t (ρ j ) + (λ + a)∂tρ j − λ

n

( n∑
l=1

∂tρ j+l

)
+ aαρ20τ (2p − 1)[V ′(ρ j+1)∂tρ j+1

− V ′(ρ j )∂tρ j ] + aρ20

(
V (ρ j+1) − V (ρ j )

)
= 0. (5)
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In the new model, when α = 0 or p = 1/2 with n = 1, it reduces to the Tian et al.
model [7]. Furthermore, this model is identical to Nagatani’s [5] model with α = 0
or p = 1/2 and λ = 0.

3 Theoretical Analysis

To examine qualitative features of proposed LHM, we apply linear stability analysis.
Consider a traffic flowwith a constant density of ρ0 and an optimal velocity of V (ρ0).
As a result, traffic uniformity may be achieved by

ρ j (t) = ρ0, v j (t) = V (ρ0), (6)

where V ′(ρ0) = dV (ρ)
dρ

|ρ=ρ0 . After adding a tiny fluctuation (y j (t)) into the condition
of smooth flow of traffic, i.e., ρ j (t) = ρ0 + y j (t) and using modified density in
Eq. (5). Applying linearization, we obtain

∂2
t y j + (λ + a)∂t y j − λ

n

∑n
l=1(∂t y j+l) + aαρ20V

′(ρ0)τ (2p − 1)(∂t y j+1 − ∂t y j )

+aρ20V
′(ρ0)(y j+1 − y j ) = 0 (7)

Now, in Eq. (7), we can describe the deviation y j (t) as an exponential function, i.e.
y j (t) = exp(ıκ j + ηt), we get:

η2 + (a + λ)η − λ

n
η
( n∑

l=1

(eikl)
)

+ aαρ20τ (2p − 1)V ′(ρ0)η(eıκ − 1)

+ aρ20V
′(ρ0)(eıκ − 1) = 0. (8)

On inserting η = η1(ıκ) + η2(ıκ)2... in Eq. (8), coefficients of (ıκ) and (ıκ)2 of the
first and second order were obtained as follows:

η1 = −ρ20V
′(ρ0), (9)

η2 = −ρ20V
′(ρ0)
2

− (ρ20V
′(ρ0))2

a
− α(ρ20V

′(ρ0))2

a
− λρ20V

′(ρ0)(n + 1)

2a
. (10)

Homogeneous flow is uncertain for longer wavelength with η2 < 0, but becomes
stable with η2 > 0. So, the neutral stability criterion is as follows:

a = −2ρ20V
′(ρ0)(1 − α(2p − 1)) − λ(n + 1). (11)
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Fig. 1 Phase plot for distinct number of forwarding sites n in parameter space (ρ, a), whenα = 0.1
and λ = 0.1 a p = 0.4, b p = 0.7

The following criterion can be used to stabilize a uniform flow:

a > −2ρ20V
′(ρ0)(1 − α(2p − 1)) − λ(n + 1). (12)

Figures 1a–b show the phase plot for distinct number of forwarding sites (n) and
p, while all other parameters remain constant in the parameter space (ρ, a). Figure 1
illustrates the neutral stability curves. The apex of each curve reflects the crucial point
(ρc, ac) in the respective curves. In this manner, the phase plot is separated into stable
and unstable regions. As seen in Fig. 1a, the amplitude of neutral stability curves
reduces as the number of forwarded sites (n) increases when p = 0.4, implying that
the stability of uniform traffic flow has been improved by using downstream average
flow information. Also, it can be seen in Fig. 1b, that the sensitivity decreases as n
increases with p = 0.7, indicating the widening of the stability region. This demon-
strates that by considering both impacts simultaneously, i.e., downstream average
flow and effect of behavior of drivers on traffic flow can help in strengthening the
traffic flow stability.

4 Numerical Simulation

Numerical simulation with periodic boundary conditions is used to verify theoretical
results. The following initial conditions are preferred:

ρ j (0) =

⎧⎪⎨
⎪⎩

ρ0; j �= M
2 ,

N
2 − 1

ρ0 − σ; j = N
2

ρ0 + σ; j = N
2 − 1

(13)
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Fig. 2 When a = 1.65 and p = 0.4, the spatial-temporal evolution of density waves for distinct
values of n

The associated variables are as follows: ρ0 = ρc = 0.2, λ = 0.1, vmax = 2, α = 0.1,
and t = 2 × 104 s. Here, N = 100 and σ = 0.05 represents the total number of sites
and initial perturbation, respectively.

Figure 2 shows the space-time density wave for distinct values of forwarding
sites (i.e., n = 1, 2, and 3) at t = 104s, when p = 0.4, and a = 1.65. The density
waves in the pattern of Fig. 2a, b are kink-antikink, since the stability requirement
(Eq.(12)) is not met, and the flow goes from uniform to congested after the tiny
disturbance. From the figures, one can observe that the kink-antikink density waves
occurs for smaller values of n and propagates backwards. Further, when the value of
n increases, stability region increases, especially for n = 3, the amplitude of density
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Fig. 3 Density patterns for
distinct values of n at
t = 10000 s with a = 1.65
and p = 0.4
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wave vanishes completely.We found that if forward lattices aremore than 3, then also
it satisfies the stability condition. It indicates that traffic congestion can be reduced
by having information about forward lattices.

The density pattern for distinct values of n with p = 0.4 shown in Fig. 3, which
corresponds to Fig. 2. As n increases, the density wave’s amplitude reduces, and
finally, the flow goes into the homogeneous steady state for n = 3.

Figure 4 indicates the spatio-temporal density wave profiles for distinct values
of forwarding sites (i.e., n = 1, 2, and 3) at t = 104s, when p = 0.7, and a = 1.5.
The density waves in the pattern of Fig. 4a, b demonstrate that an initial perturba-
tion results in the kink-antikink solution propagating backward direction. When the
instability criteria (Eq.(12)) is fulfilled, the flow transits from uniform to congested.
The amplitude of density wave diminishes with the increase in n, however, as n = 3,
the stability region increases.

The density pattern for distinct values of n with p = 0.7 shown in Fig. 5, which
corresponds to Fig. 4. As n increases, the density wave’s amplitude reduces, and
for n = 3, the amplitude of density wave vanishes completely, which shows that the
knowledge of prospective sites flow can help in minimizing the traffic congestion.

After examining all the simulation findings, we noticed that all the simulation
results are completely similar to the theoretical results presented in the previous
section. Also, in real traffic phenomenon, it is feasible for the drivers to adjust their
speed, if they have adequate information about the forward traffic situation and then
the traffic congestion reduces. All these results show that the information about the
diver’s behavior and the downstream average flow on forward sites is crucial in
improving traffic flow stability.
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Fig. 4 When a = 1.5 and p = 0.7, the spatio-temporal evolution of density waves for distinct
values of n

Fig. 5 Density patterns for
distinct values of n at
t = 10000 s with a = 1.5
and p = 0.7
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5 Conclusion

The current study presents a LHM for examining the influence of driver’s behavior
with downstream average flow on traffic dynamics. The stability condition of traffic
dynamics is analyzed via theoretical analysis. From the study of the phase diagram,
it is depicted that the new model considering the average flow of front sites with
driver’s behavior has a greater influence on reducing the traffic congestion than the
basic lattice model. Furthermore, the numerical findings correspond well with the
theoretical conclusions. Thus, it is prominent to make an aspect that the current
traffic dynamics are influenced by the forward traffic information and it is favorable
in reducing the traffic congestion.
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