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Computational and Experimental
Investigation of Flow and Convective
Heat Transfer Along Rough Surfaces

C. Özman, T. Saner, F. Gül, M. Diederich, A. C. Benim, and U. Janoske

Abstract Flow and heat transfers along rough surfaces are investigated. A test
facility is established, where rough surfaces generated by additive manufacturing can
be tested. The computational work follows two goals. On the one hand, a computa-
tional tool is developed that can analyze the characteristics of a rough surface and
generate rough surfaces with prescribed characteristics. On the other hand, Compu-
tational Fluid Dynamics (CFD) is applied for the analysis of flow and heat transfer
along rough surfaces. The present focus is on the validation of turbulence models.
Within this context, two alternative treatments, namely the wall functions (WF)-
based approach and roughness resolving (RR) approach are assessed. Turbulence is
modeledwithin aRANS (ReynoldsAveragedNumerical Simulation) framework. All
of the considered four turbulent viscosity models, usingWF, showed a similar agree-
ment with the measurements. Quantitatively, the realizable k-ε model is observed to
deliver a better accuracy, in general, which is, then, also applied in RR calculations.
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The RR approach showed a fair qualitative performance, which was, however, quan-
titatively not as good as theWF approach. This is attributed to the idealized geometry
on the one hand and possible limitations on the RANS turbulencemodeling approach
on the other hand. The analysis will be deepened in the future work.

Keywords Fluid dynamics · Heat transfer · Surface roughness

1 Introduction

The additive manufacturing (AM) technology allows compact and lightweight heat
exchangers to be produced, which are of importance in different areas, e.g. in aviation
[1]. Surfaces generated by AM are, however, not smooth compared to conventional
procedures, but exhibit roughness patterns, depending on the particular technique
[2]. The main body of the existing knowledge in convective heat transfer [3] refers
to smooth surfaces, while rough surfaces received comparably less attention. The
purpose of the present research is to achieve a better understanding of forced convec-
tion along rough surfaces. Two roughness categories can be defined as (1) regular
roughness, also called technical roughness or periodic roughness, where roughness
elements consist of regular arrays of well-defined shapes such as pins and fins,
and (2) irregular roughness, also called arbitrary or random roughness, where such
regularities cannot be presumed.

In boundary layers, under certain conditions, the flows may be described by ordi-
nary differential equations, employing boundary layer assumptions and similarity
parameters [4, 5]. In most engineering applications, like the present one, this is
prohibited by the prevailing flow conditions, geometry, and boundary conditions
that necessitate the solution of the full Navier–Stokes equations [4]. Turbulent flows
are characterized by extremely small time and length scales. Their direct numerical
solution, the so-called Direct Numerical Simulation (DNS), is, thus, very expensive
[6]. The common engineering approach is the solution of the time-averaged equations
the so-called Reynolds Averaged Numerical Simulation (RANS) [6, 7]. The terms
resulting from averaging are approximated using the so-called turbulence models
[6]. Combinations of scale resolving and modeling approaches are the Unsteady
RANS (URANS), Detached Eddy Simulation (DES), and Large Eddy Simulation
(DES) [6, 8]. These turbulence modeling strategies were alternately applied in the
previous studies on rough surfaces that are outlined below. The near-wall turbu-
lence, with re-laminarization and its consequences on the mathematical modeling
and discretization, requires special attention. An engineering approach is to approx-
imate this flow by the so-called wall functions (WF) [6], derived under simplifying
assumptions. For rough surfaces, the challenges in modeling the near-wall flow are
increased, additionally, by the complex wall topology.
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Inmodelingflownear roughwalls, a straightforward approach is the full geometric
resolution of the surface by the computational grid. In the case of regular roughness,
the surface topology is easier to grasp. Turbulent flowsover regular arrays of obstacles
with well-defined shapes were presented by many researchers [9–12]. For irregular
roughness, additional challenges exist due to the capturing and discretization of the
surface topology. Numerical analysis of forced convection over irregularly rough
surfaces was also presented by several authors, previously [13–16]. Obviously, the
direct resolution of roughness is nearly impracticable for many engineering appli-
cations due to grid resolution requirements near walls. A remedy is provided by the
WF modeling of near-wall turbulent flow [6], which allows an incorporation of the
roughness effects through model constants. This is the main approach in engineering
applications [21, 22]. A fundamental difficulty in using this approach is that the
model is designed for sand grain roughness (SGR). For other roughness types, the
model should be employed using an equivalent SGR. For this conversion, different
procedures were proposed, including elaborate modifications of the WF [17–22].
However, given the large variety of roughness types, the proposed modifications are
found not to be generally applicable with sufficient accuracy [23].

2 Experimental

A test system is constructed for the experimental part (Fig. 1). Arbitrary rough
surfaces are produced by the SLS printing technique. The roughness is mapped by
using a laser scanner. A high-power vacuum blower is used to manipulate the airflow.
To obtain fully developed flow, a bell mouth and flow conditioner are used. Measure-
ments are taken for different Reynolds numbers. The mass flow rate is measured
by an orifice flow meter, cross-checking the results with a high-precision hot wire
anemometer. The test section is uniformly heatedwith cartridge heaters. The pressure
drop is measured between the inlet and outlet by a differential pressure transducer.
RTD-type thermometers are placed in the channel as well as on the heated surface
to obtain temperature measurements. The velocity profile in the boundary layer is
measuredwith a specially designed hotwire anemometer (DantecDynamics, 55P15).

3 Surface Analysis and Reconstruction

A surface analysis program is created in theMATLAB environment [24]. For surface
generation, a power spectrum density-based or autocorrelation-based concept can
alternatively be used. The generated surface can then be written out as an STL file.
The two concepts can also be used for the analysis of a measured surface.
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Fig. 1 Test rig: T: thermocouple, DB: differential pressure transducer, 1: flow straightener, 2:
entrance length, 3: test section, 4: hot wire anemometer, 5: aluminum block, 6: cartridge heaters,
7: calming length, 8: orifice plate and flanges, 9: mixing chamber, 10: high-pressure blower with
frequency converter, 11: thermographic camera, 12: proportional control solid state relay, 13: power
grid, 14: main data logger, 15: data logger of hot wire anemometer, and 16: computer

4 Mathematical and Numerical Flow Modeling

Incompressible flow with constant material properties described by Navier–Stokes
equations is computationallymodeled by the general-purpose CFD softwareANSYS
Fluent 18.0 [25], based on the Finite Volume Method. Lattice Boltzmann Method
(LBM)-based procedures thatmay bemore convenient inDNS analysis of the present
problem are to be considered in the future work [26]. A coupled procedure is adopted
for the solution of Navier–Stokes equations. For the discretization of the convective
terms, the second-order accurate upwind scheme [25] is used for all variables.Within
the scope of the current work, turbulence is modeled within the RANS framework,
using different turbulent viscosity models [6, 25] including the Standard k-ε model
(STD-KE) [6, 25], Renormalization Group Theory k-ε model (RNG-KE) [6, 25],
Realizable k-ε model (REL-KE) [6, 25], and the Shear Stress Transport k-ω model
(SST-KO) [6, 25] (k: turbulence kinetic energy; ε: dissipation rate of k; ω: specific
dissipation rate). DNS, LES, DES, and URANS studies are planned for the future.
Flows in straight pipes and channels are considered. For the treatment of the near-
wall flow, two approaches are applied: The wall function (WF) approach and the
roughness resolving (RR) approach. The WF-based calculation is performed in 2D.
TheRR calculations are performed in 3D. In theRR calculations, theREL-KE is used
as the turbulence model. In doing so, the so-called Enhanced Wall Treatment based
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on Two-Layer Model [25, 27, 28] is employed to account for the re-laminarization
effects. Due to space limitations, the governing equations of the models are not
provided here, as they can be obtained through the cited sources. For convenience,
a very basic discussion on WF and roughness modeling is presented below. Please
note that, at the current stage, the WF model implemented in the used software [25]
is used with its default settings.

4.1 Roughness Modeling via Wall Functions: A Brief
Overview

For pressure gradient-free, unidirectional boundary layer flow along a straight wall,
the time-averaged velocity (u) as a function of distance from the wall (y) can be
described by a logarithmic function in the turbulent, near-wall region [3, 4]. A
similar relationship can be derived for the time-averaged temperature (T) utilizing
the Reynolds analogy [3, 4]. This is the basis for the so-called “wall functions” (WF).
They are normally expressed in terms of dimensionless quantities indicated by a “+”
in the superscript, where the non-dimensionalization is done by the wall shear stress
and material properties.

Experiments indicate that the effect of wall roughness can be expressed by a shift
(�B) in the logarithmic law of the wall [4, 6, 25]

u+ = 1

κ
ln (E y+) − �B (1)

where κ denotes the Von Karman constant [4] (κ = 0.41), and E = 9.0. For tightly
packed, uniform SGR, with a roughness height of k, analysis of experimental data
reveals that the roughness effect can be classified into three categories in terms of
dimensionless k: (1) hydrodynamically smooth, for k+ ≤2.25; (2) transitional, for
2.25 < k+ < 90; and (3) fully rough k+ > 90 [4]. In the first regime, the effect of
roughness is neglected (�B= 0). For the remaining regimes, expressions of the form
[29]

�B = f
(
k+)

(2)

are assumed. Presently, the empirical expressions from Cebeci and Bradshaw [29]
are employed to relate �B to k+, which are based on Nikuradse’s SGR data [4].
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5 Results

5.1 Validation of Turbulence Models for Wall
Functions-Based Modeling

Turbulent fully developed pipeflow (diameter:D)with SGR is calculated for different
Reynolds numbers (Re = 5 . 103, 1 . 104, 2 . 104, 3 . 104, 4 . 104, 5 . 104, 7.5 . 104,
1 . 105, 2 . 105, 5 . 105, 1 . 106) and for different values of the relative roughness
height (k/D = 0.001, 0.002, 0.004, 0.008, 0.016, 0.033) using the above-mentioned
turbulence models. The predictions are compared with the empirical data in terms
of the friction factor (λ) in Fig. 2.

Fig. 2 Predicted friction factors (λ) as a function of Reynolds number (Re) for different values of
relative roughness (k/D) for fully developed pipe flow, compared with empirical data (black lines,
reproduced from Ref. [30])
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In Fig. 2, one can see that all models show a fair qualitative agreement with the
data, whereas quantitative differences exist. The differences between the models
among one another are larger for low Re and get smaller with increasing Re. For
low roughness (k/D ≤ 0.004), the models underpredict for low Re, and overpredict
for high Re, except for SST-KO, which constantly overpredicts. For high roughness
(k/D≥ 0.008), all models overpredict for the whole Re range. Comparing the models
with each other, a very clear distinction cannot be made. As a general trend, one can
see that STD-KE and RNG-KE perform rather similar to each other, and SST-KO
and REL-KE tend to have slightly higher and lower values, respectively. Overall, a
better quantitative agreement of REL-KE with the measurements can be attested.

5.2 Validation of Roughness Resolving Approach Based
on SGR

A reasonable first step toward the validation of a roughness resolving modeling
approach can be the investigation of SGR, for which much data exists. This is
attempted in the present study, as a basis. Most of the existing data on SGR is,
however, for pipe flow. From a practical point of view, a planar channel flow is more
amenable for a roughness resolving treatment An engineering approach to utilize
the pipe data for different channel shapes is provided by the concept of hydraulic
diameter [3, 4]. Since this is an engineering approximation, its accuracy in converting
the pipe data to a planar channel is analyzed first, for the presently considered case.
For this purpose, the planar channel flow is calculated, and the results are compared
with the pipe data, using the concept of hydraulic diameter. These calculations are
performed for the relative roughness of k/D = 0.033, using the turbulence models
REL-KE and SST-KO. The results obtained for Re = 5.103, 1.104, 2.104, 3.104,
4.104, and 5.104 are compared with pipe data in Fig. 3.

One can see in Fig. 3 that the deviation of the channel analogy to the pipe is larger
for low Re and gets reduced for increasing Re. One can also observe that REL-KE-
CHANNEL agrees better with the experiments, with quite good agreement for large
Re.

In an attempt of obtaining a surface resolving solution for SGR, one shall first
recognize that SGR represents, principally, an irregular roughness. In conceptual
considerations, SGR is normally assumed to be represented by a tightly packed,
regular array of perfect spheres with a uniform diameter (k). It should be stated that
this is a rather strong idealization of the reality. Not only because of the assumed
perfect spherical shape, but also for the connection of the spheres to the wall. The
spheres touch the wall at a point, leaving much free space in the next-to-wall region,
which may not well correspond to reality. This is especially problematic for the
thermal problem, since the roughness elements are thermally disconnected from the
wall, as the ideal point contact allows no finite heat transfer area between the spheres
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Fig. 3 Predicted friction factors (λ) as a function ofReynolds number (Re) for k/D=0.033obtained
for fully developed pipe flow and fully developed channel with equivalent hydraulic diameter,
compared with empirical data for pipe (black lines, reproduced from Ref. [30])

and the wall. Still, this idealization is applied for the sake of a systematic approach
as a first step of the intended more detailed study.

In applying this idealization for SGR, inline and staggered arrangements of the
spheres are considered to find out how much role the difference plays. The calcula-
tions are performed for four Reynolds numbers, i.e. for Re = 1 . 104, 2 . 104, 4 . 104,
and 5 . 104. Since REL-KE shows a more consistent behavior between pipe and
channel, and a better agreement with the experiments, the REL-KE model is used in
these calculations. Applying local grid adaptions, it is ensured that y+ values of the
next-to-wall cells are everywhere well below unity. Detailed views of surface grids
on the roughness elements are displayed in Fig. 4.

Detailed views of the predicted vector fields in a longitudinal plane near the wall,
through the roughness elements, are displayed in Fig. 5, for inline and staggered
arrangements of the roughness elements.

In Fig. 5, the recirculation zones with comparably low velocities within the spaces
between the roughness elements canbeobserved,which also exhibit different patterns

Fig. 4 Surface grids on SGR elements. Left: inline arrangement, right: staggered arrangement
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Fig. 5 Detail velocity vectors near the wall in a longitudinal plane through roughness elements.
Left: inline arrangement, right: staggered arrangement (k/D = 0.033, Re = 50,000, REL-KE)

for the different arrangements of the roughness elements (a color scale is not provided,
since it is about a qualitative discussion. Besides the vector length being proportional
to the velocity magnitude, red and blue colors mark the maximum and minimum
values of the velocity magnitude). One can see that the velocity starts to increase
just above the roughness elements, which can, in a way, be interpreted as a kind of
“lifting” of the boundary layer by the roughness elements. This can be seen to be
in accordance with the empirically considered shift of the assumed boundary layer
velocity profile as expressed in Eq. (1).

The thermal problem is posed as the heating of the fluid (air, Prandtl number =
0.7) by a hot wall. Isothermal boundary conditions are applied (Air inlet temperature:
25 °C, channelwall temperature: 50 °C). It is assumed that all solid surfaces including
the planar wall and spheres have the same, constant wall temperature.

Detailed views of predicted temperature fields in a longitudinal plane near the
wall through the roughness elements are displayed in Fig. 6, for both arrangements
of the roughness elements. In the figure, the distribution of wall heat flux on the
roughness elements is also displayed (a color scale is not provided, since it is about a
qualitative discussion. Red and blue colors mark the maximum and minimum values
of the corresponding variable). In the vicinity of the wall, up to a level of approx.
mid-height of the roughness elements, the temperature distribution is quite uniform,
which is the result of the mixing and homogenization caused by the recirculation
zones. This, in return, seems to lead to comparably low local heat flux values, due
to the prevailing low temperature difference. This can be observed on the wall-side
surfaces of the spheres. On the flow side of the spheres, the roughness elements
are subject to a unidirectional flow with high velocity, higher temperature gradients
occur in the layers next to the roughness elements, and maximum heat flux values on
the surfaces of roughness elements are observed here, on their upstream sides, due
to the impingement effect.

Friction factors predicted by the surface resolving calculations are compared with
the experiments in Fig. 7, where the wall functions-based solution is also indicated.



10 C. Özman et al.

Fig. 6 Detail temperature fields near the wall in a longitudinal plane through roughness elements,
as well as wall heat flux distributions on the solid surfaces. Left: inline arrangement, right: staggered
arrangement (k/D = 0.033, Re = 50,000, REL-KE)

One can see that the RR calculations show a fair agreement with the measure-
ments. This is, however, not as good as that of the WF approach, which is, however,
empirically tuned to achieve the best accuracy exactly for SGR.

Predicted Nusselt numbers (Nu) are compared with experimental values in Fig. 8.
One can see that the results by the WF approach show a fairly good agreement with
measurements. The Nu values obtained by the RR approach are, however, strongly
overpredicting the experimental values.

Fig. 7 Predicted friction factors (λ) as a function of Reynolds number (Re) for SGR, k/D = 0.033
obtained for fully developed pipe flow and fully developed channel flow with equivalent hydraulic
diameter, compared with empirical data for pipe (black lines, reproduced from Ref. [30])
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Fig. 8 Predicted and measured Nu as a function of Re for channel flow with SGR, k/D = 0.033

5.3 Roughness Resolving Approach for Surface
with Irregular Roughness

As the WF approach is tuned for SGR, the RR approach gains more value for non-
SGR, irregular roughness patterns. In applying the RR approach, the discretization
of a measured irregularly rough surface often represents a great challenge, due to
very complex shapes on the rough surface.

An amenable approach is to re-construct the surface by keeping the main charac-
teristics of the rough surface, but smoothing it, at the same time, at a certain level, by
applying some kind of filtering to remove the too-spiky structures, to allow sufficient
grid smoothness and stability.

Since this means some loss of topology information, it is a trade-off between
accuracy and practicability, the optimal point of which is to be explored in the future
studies.

Flow in a rectangular channel with an irregular surface roughness is considered
for Re = 50,000. The generated computational surface grid for the measured, and
subsequent to smoothing, re-constructed rough surface is displayed in Fig. 9.

The predicted distribution of wall shear stress inmagnitude is presented in Fig. 10,
where alternating changes between high and low values at the peaks and valleys can
be observed (a color scale is not provided, since it is about a qualitative discussion.
Red and blue colors mark the maximum and minimum values of the corresponding
variable).

The calculated overall friction coefficient is observed to overpredict the measured
value by about 20%,whichmay, at least partially, be caused by the smoothing applied
to the surface.
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Fig. 9 Surface grid for irregularly rough surface of channel flow

Fig. 10 Distribution of wall shear stress magnitude on the rough surface

6 Conclusions

The WF-based roughness modeling is observed to provide a fair accuracy in the
transitional region of pipe flow with SGR, where the realizable k-ε turbulence model
showed a slightly better quantitative accuracy compared to alternative two-equation
models. Based on the measured SGR data in pipes and measurements performed in
rectangular channels, the RR approach is observed to be less accurate in comparison.
Improvements in the geometry representation and turbulence modeling are expected
to lead to a better accuracy. This is to be explored in the future work.
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Distribution of Noise in Linear Recurrent
Fractal Interpolation Functions for Data
Sets with α-Stable Noise

Mohit Kumar, Neelesh S. Upadhye, and A. K. B. Chand

Abstract In this study, we construct a linear recurrent fractal interpolation function
(RFIF) with variable scaling parameters for data set with α-stable noise (a gener-
alization of Gaussian noise) on its ordinate, which captures the uncertainty at any
missing or unknown intermediate point. The propagation of uncertainty in this linear
RFIF is investigated, and amethod for estimating parameters of the uncertainty at any
interpolated value is provided. Moreover, a simulation study to visualize uncertainty
for interpolated values is presented.

Keywords Fractals · Random fractal interpolation function · Recurrent fractal
interpolation · Stable distribution · Stable noise

1 Introduction

In 1986, Barnsley [1] introduced the notion of fractal interpolation function (FIF)
based on the theory of iterated function system (IFS), which can produce nowhere
differentiable self-similar continuous functions. In 1989, Barnsley et al. [3] general-
ized this FIF technique to recurrent FIF (RFIF) by using recurrent IFS (RIFS), which
can generate even more complex locally self-similar functions. Thereafter, RFIF is
widely used for obtaining missing or unknown values at any intermediate points of a
prescribed deterministic data set. However, if the provided data set contains noise on
its ordinate, then capturing uncertainty at these interpolated values is essential, but
incapable of doing so. This motivates us to study the fractal interpolation for noisy
data sets.

Over the last three decades, many researchers have constructed fractal functions
for deterministic data sets in various ways (for instance, see [2, 4, 7, 12, 13]) and
discussed their analytical properties. At present, fractal interpolation is an advanced
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approach to approximate and analyze a wide range of scientific data that include
irregularities or self-similarities. However, fractal interpolation for data with uncer-
tainty has received little attention from researchers (see, [5, 6]). In this study, we use
data sets with α-stable noise (a generalization of Gaussian noise) on its ordinate and
extend this RFIF technique to capture the uncertainty at any missing or unknown
intermediate values.

The paper is organized as follows. Section2 recalls definitions and some basic
results related to RFIF and α-stable distribution. In Sect. 3, the construction of a
RFIF with variable scaling for α-stable noisy data is discussed and the parameter
estimation of the uncertainty at any intermediate point of this RFIF is given. Section4
discusses numerical experiments to validate and visualize analytical results. Section5
concludes with a brief overview of our theoretical developments.

2 Preliminaries

In this section, we briefly describe the basic notions of RIFS, RFIF, and α-stable
distribution. The details are given in [2, 11, 13].

2.1 Basics of RIFS

Definition 1 Let (K , d) be a complete metric space and Wi : K → K (i = 1,
2, . . . , N ) be contraction maps. Also, let P = (

pi j
)
N×N be an N × N irreducible

row-stochastic matrix. Then {K ; P;Wi : i = 1, 2, . . . , N } is called a recurrent iter-
ated function system.

Further, the recurrent structure of the RIFS is given by a connection matrix C =(
ci j
)
N×N which is defined by

ci j =
{
1, p ji > 0,

0, p ji = 0.
(1)

This C is also an irreducible matrix. Let H(K ) be the set of all nonempty compact
subsets of K , and h be the Hausdorff distance inH(K ) defined by

h(A, B) = max{max
a∈A

min
b∈B d(a, b),max

b∈B min
a∈A

d(a, b)}, A, B ∈ H(K ).

Then (H(K ), h) is a complete metric space. Let us denote the product space

H̃(K ) := H(K ) × · · · × H(K )︸ ︷︷ ︸
N times

= H(K )N ,
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and define a metric h̃ on H̃(K ) by

h̃ ((A1, A2, . . . , AN ), (B1, B2, . . . , BN )) := max {h(Ai , Bi ) : i = 1, 2, . . . , N } ,

for all (A1, A2, . . . , AN ), (B1, B2, . . . , BN ) ∈ H̃(K ). Then
(
H̃(K ), h̃

)
is also a

complete metric space. Now, we define a transformation W : H̃(K ) → H̃(K ) by

W (B) :=

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

N⋃

j=1
c1 jW1(Bj )

N⋃

j=1
c2 jW2(Bj )

...
N⋃

j=1
cN jWN (Bj )

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⋃

j∈Λ(1)
W1(Bj )

⋃

j∈Λ(2)
W2(Bj )

...⋃

j∈Λ(N )

WN (Bj )

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

for all B = (B1, B2, . . . , BN ) ∈ H̃(K ). Here we considered

ci jWi (Bj ) =
{
Wi (Bj ) if ci j = 1,

∅ if ci j = 0,

for all i, j = 1, 2, . . . , N and Λ(i) = { j : ci j = 1} for all i = 1, 2, . . . , N . Alterna-
tively, W can be represented in a matrix as W = (

ci jWi
)
N×N , i.e.

W =

⎛

⎜⎜⎜
⎝

c11W1 c12W1 . . . c1 NW1

c21W2 c22W2 . . . c2 NW2
...

...
...

...

cN1WN cN2WN . . . cNNWN

⎞

⎟⎟⎟
⎠

.

This transformationW is a contraction map on H̃(K ) and hence there exists a unique
fixed point A = (A1, A2, . . . , AN ) ∈ H̃(K ) such that W (A) = A, which is called
an invariant set or an attractor or a recurrent fractal of the RIFS. Moreover, Ai =⋃

j∈Λ(i) Wi (A j ) for all i = 1, 2, . . . , N . Usually, making a slight abuse of notation,

we often call A = ⋃N
i=1 Ai as the attractor of the RIFS.

We first utilize this RIFS theory to construct a fractal function associated with
a deterministic data set and then consider a noisy data set for generating a random
fractal function with variable scaling based on the notion of RIFS.

2.2 RFIF with Variable Scaling for Deterministic Data Set

Let us take an initial data set D = {(ti , yi ) : i = 0, 1, . . . , N } in R
2, where t0 <

t1 < · · · < tN . We denote intervals I := [t0, tN ], and Ii := [ti−1, ti ] for all i =



18 M. Kumar et al.

1, 2, . . . , N . Also, let us consider intervals Jj := [tl( j), tr( j)], where l( j), r( j) ∈
{0, 1, . . . , N } with l( j) < r( j) for all j = 1, 2, . . . , N . Now, we define homeo-
morphisms Lk : Jk → Ik by Lk(t) = akt + bk for k = 1, 2, . . . , N , which map end
points of Jk to end points of Ik such that Lk(tl(k)) = tk−1 and Lk(tr(k)) = tk . Therefore,
we have

ak = tk − tk−1

tr(k) − tl(k)
and bk = tr(k)tk−1 − tl(k)tk

tr(k) − tl(k)
.

Also, for all t, t∗ ∈ Jk , we have |Lk(t) − Lk(t∗)| ≤ |ak ||t − t∗|. If we consider the
length of Jk to be greater than the length of Ik , that is |tk − tk−1| < |tr(k) − tl(k)|, then
|ak | < 1 and Lk becomes a contraction.

Define continuous maps Fk : Jk × R → R by Fk(t, y) = ckt + dk(t)y + ek ,
where dk are real-valued continuous functions defined on I and satisfying

‖dk‖∞ := sup{|dk(t)| : t ∈ I } < 1. (2)

In addition, each Fk satisfying join-up conditions Fk
(
tl(k), yl(k)

) = yk−1 and
Fk

(
tr(k), yr(k)

) = yk . Therefore, we get

ck = yk − yk−1

tr(k) − tl(k)
− dk(tr(k))yr(k) − dk(tl(k))yl(k)

tr(k) − tl(k)
,

ek = tr(k)yk−1 − tl(k)yk
tr(k) − tl(k)

− tr(k)dk(tl(k))yl(k) − tl(k)dk(tr(k))yr(k)
tr(k) − tl(k)

.

Moreover, |Fk(t, y) − Fk(t, y∗)| ≤ |dk(t)||y − y∗|, t ∈ Jk and y, y∗ ∈ R. Hence,
Fk is a contraction with respect to y-variable.

Next, we consider Wk : Jk × R → Ik × R by Wk(t, y) = (Lk(t), Fk(t, y)) for
all k = 1, 2, . . . , N . We can easily check that Wk(tl(k), yl(k)) = (tk−1, yk−1) and
Wk(tr(k), yr(k)) = (tk, yk). Moreover, all Wk are contractions with respect to some
metric, equivalent to the Euclidean metric in R

2. Let us define a row-stochastic
matrix P = (

pi j
)
N×N by

pi j =
{

1
Ni

, Ii ⊂ Jj ,

0, otherwise,

where Ni denotes the number of j such that Ii ⊂ Jj for i = 1, 2, . . . , N . We can
make P an irreducible matrix by selecting Jk’s appropriately. Therefore, we can
construct a RIFS {I × R; P;Wk : k = 1, 2, . . . , N } associated with D.

Remark 1 In this RIFS, we employed function contractivity factors (or variable
scaling parameters) dk , which describe fractal objects better than constant contractiv-
ity factors and provide more flexibility to fractal functions. For detailed information,
see [13].
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Using (1), we obtain the connection matrix C = (
ci j
)
N×N , where

ci j =
{
1, I j ⊂ Ji ,

0, otherwise.
(3)

Let C(I ) be the collection of real-valued continuous functions defined on I . Define
a metric d∞ on C(I ) by d∞( f, g) :=‖ f − g ‖∞= sup{| f (t) − g(t)| : t ∈ I }. Then
(C(I ), d∞) is a complete metric space. Further, let us define

C∗(I ) := { f ∈ C(I ) : f (ti ) = yi , i = 0, 1, . . . , N }.

Then (C∗(I ), d∞) is also a complete metric space. Now, we define an operator T :
C∗(I ) → C∗(I ) by

T g(t) := Fk
(
L−1
k (t), g

(
L−1
k (t)

))
, t ∈ Ik and k = 1, 2, . . . , N .

Here T is known as the Read-Bajraktarević operator, which is a contraction on
(C∗(I ), d∞). Therefore, T has a unique fixed point fD ∈ C∗(I ) such that

fD(t) = T fD(t) = Fk
(
L−1
k (t), fD

(
L−1
k (t)

))
, t ∈ Ik and k = 1, 2, . . . , N . (4)

This fD is called a linear RFIF with variable scaling parameters associated with D.
Let A := {(t, fD(t)) : t ∈ I }, and Ai := {(t, fD(t)) : t ∈ Ii } for all i = 1, 2, . . . , N .
Then A = ⋃N

i=1 Ai . Moreover,

Ai = {(t, fD(t)) : t ∈ Ii } = {(t, Fi
(
L−1
i (t), fD

(
L−1
i (t)

))) : t ∈ Ii }
= {(Li (t), Fi (t, fD(t))) : t ∈ Ji } = {Wi (t, fD(t)) : t ∈ Ji }
=

⋃

j∈Λ(i)

Wi
(
A j
)
.

Thus, A = (A1, A2, . . . , AN ) is an attractor of the RIFS {I × R; P;Wi : i = 1,
2, . . . , N } associated with D.

In the subsequent section, we define α-stable distributions and some of its prop-
erties required for further study.

2.3 α-Stable Distribution

An α-stable distribution, also known as stable distribution, belongs to the family of
heavy-tailed distributions and is a generalization ofGaussian distribution.Acomplete
description of a stable distribution requires the following four parameters: an index of
stability or tail indexα ∈ (0, 2], a skewness parameterβ ∈ [−1, 1], a scale parameter
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σ > 0, and a location parameter μ ∈ R. Generally, a stable distribution does not
have closed form formulae for its probability density function (PDF) or cumulative
distribution function (CDF) [11]. However, it can be described by its characteristic
function.

Definition 2 A random variable X follows a stable distribution, denoted by X ∼
Sα(β,σ,μ), if its characteristic function has the form

φX (t) = E
[
eit X

]

=
{
exp

(
i tμ − |σt |α {1 + iβsign(t) tan

(
πα
2

) [|σt |1−α − 1
]})

, α �= 1,

exp
(
i tμ − |σt | {1 + iβsign(t) 2

π
ln |σt |}) , α = 1,

for t ∈ R, where sign(t) =
{

t
|t | , t �= 0,

0, t = 0.

Remark 2 Several parameterizations for α-stable distributions are available in the
literature, but Nolan’s [8] parameterization is used here for numerical reasons.

For α = 2, the Gaussian distribution is obtained, i.e. X ∼ N (μ, 2σ2). The nth
moment of a non-Gaussian (α �= 2) stable random variable X is finite iff n < α.
When β = 0, the distribution is symmetric about its location parameter μ.

Property 1 If X ∼ Sα(β,σ,μ) and 0 �= a, b ∈ R, then

aX + b ∼ Sα(sign(a)β, |a|σ, aμ + b).

Property 2 For all i = 0, 1, 2, . . . , N , if Xi ∼ Sα(βi ,σi ,μi ) are independent and
ωi ∈ R, then

∑N
i=0 ωi Xi ∼ Sα(β,σ,μ), where

σα =
N∑

i=0

|ωiσi |α, βσα =
N∑

i=0

sign(ωi )βi |ωiσi |α,

μ =
⎧
⎨

⎩

∑N
i=0 ωiμi + tan

(
πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

∑N
i=0 ωiμi + π

2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

For more detailed information, the reader can see [9–11].
In the following section, we construct a linear RFIF with variable scaling for

any given α-stable noisy data set and determine the probability distribution of any
interpolated value of this RFIF.
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3 RFIF for Noisy Data Set

Consider a data set Δ = {(ti , yi , εi ) : i = 0, 1, . . . , N }, where t0 < t1 < · · · < tN
and εi ∼ Sα(βi ,σi , 0) is the α-stable noise in the value of yi . We assume that these
εi ’s are independent. First,we constructRIFS for this noisy data set. LetYi := yi + εi ,
using Property 1, we have Yi ∼ Sα(βi ,σi , yi ) for all i = 0, 1, . . . , N . These Yi ’s are
also independent. Let Y be a real-valued continuous random variable. Define Fk :
Jk × R → R (a random analog of Fk) by Fk(t,Y ) = Ckt + dk(t)Y + Ek satisfying
Fk

(
tl(k),Yl(k)

) = Yk−1 and Fk
(
tr(k),Yr(k)

) = Yk for all k = 1, 2, . . . , N . Therefore,

Ck = Yk − Yk−1

tr(k) − tl(k)
− dk(tr(k))Yr(k) − dk(tl(k))Yl(k)

tr(k) − tl(k)
,

Ek = tr(k)Yk−1 − tl(k)Yk
tr(k) − tl(k)

− tr(k)dk(tl(k))Yl(k) − tl(k)dk(tr(k))Yr(k)
tr(k) − tl(k)

.

(5)

Define Wk : Jk × R → Ik × R by Wk(t,Y ) = (Lk(t),Fk(t,Y )) for all
k = 1, 2, . . . , N , and construct RIFS {I × R; P;Wk : k = 1, 2, . . . , N } associated
with Δ, which is a random analog to the RIFS {I × R; P;Wk : k ∈ NN } associated
with D. There exists a unique [up to distribution] RFIF fΔ : I → R such that

fΔ(t) = Fk
(
L−1
k (t), fΔ

(
L−1
k (t)

))

= CkL
−1
k (t) + dk

(
L−1
k (t)

)
fΔ
(
L−1
k (t)

) + Ek, t ∈ Ik, k = 1, . . . , N . (6)

Apparently, this fΔ is a random analog of fD. Next, we write fΔ in explicit form to
find its distribution.We can see that I = ⋃N

k=1 Ik and Ik = Lk(Jk) = ⋃
j∈Λ(k) Lk(I j ).

Therefore, I is the attractor of RIFS {I ; P; Lk : k = 1, 2, . . . , N }. Hence, for any
given point t ∈ I , there exists a sequence {kn}n∈N, where each kn ∈ {1, 2, . . . , N },
such that

lim
n→∞ Lk1 ◦ Lk2 ◦ · · · ◦ Lkn (s) = t, for s ∈ I. (7)

By recursively applying (6), we can easily obtain the following expression:

fΔ(T0(s)) = Dn(s) fΔ(s) +
n∑

j=1

Dj−1(s)
(
Ck j Tj (s) + Ek j

)
, (8)

where

Tj (s) =
{
Lk j+1 ◦ · · · ◦ Lkn (s) for j = 0, 1, . . . , n − 1,

s for j = n,
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and

Dj (s) =
{

1 for j = 0,
∏ j

i=1 dki (Ti (s)) for j = 1, 2, . . . , n.

We can rewrite (7) as limn→∞ T0(s) = t . Also, we get limn→∞ Dn(s) = 0 by using
(2). Since fΔ is a continuous function, as n approaches ∞ in (8), we obtain

fΔ(t) =
∞∑

j=1

Dj−1(s)
(
Ck j Tj (s) + Ek j

)
, s ∈ I. (9)

Using (5), we can rewrite (9) as

fΔ(t) =
∞∑

j=1

Dj−1(s)

[(
tr(k j ) − Tj (s)

tr(k j ) − tl(k j )

)
Yk j−1 +

(
Tj (s) − tl(k j )

tr(k j ) − tl(k j )

)
Yk j −

(
tr(k j ) − Tj (s)

tr(k j ) − tl(k j )

)
dk j (tl(k j ))Yl(k j ) −

(
Tj (s) − tl(k j )

tr(k j ) − tl(k j )

)
dk j (tr(k j ))Yr(k j )

]
.

(10)

For each k j ∈ {1, 2, . . . , N }, we have Yk j−1,Yk j ,Yl(k j ),Yr(k j ) ∈ {Y0,Y1, . . . ,YN }.
Therefore, by equating coefficients of each Yi in (10), we get

fΔ(t) =
N∑

i=0

ωi Yi , t ∈ I, (11)

where ωi depends on the sequence {k j } of t . We can easily see that the linear RFIF
fΔ(t) is a random variable for each t ∈ I . Now, we determine the probability distri-
bution of fΔ(t). By using Property 2 in (11), we get

fΔ(t) ∼ Sα(β,σ,μ),

where

σ =
(

N∑

i=0

|ωiσi |α
)1/α

, β =
∑N

i=0 sign(ωi )βi |ωiσi |α
σα

,

μ =
⎧
⎨

⎩

∑N
i=0 ωi yi + tan

(
πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

∑N
i=0 ωi yi + π

2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

Moreover, initial data set D is a realization of the noisy data set Δ. Therefore, by
using (11), we get

fD(t) =
N∑

i=0

ωi yi .
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Hence, the location parameter μ of fΔ(t) becomes

μ =
⎧
⎨

⎩

fD(t) + tan
(

πα
2

) (
βσ − ∑N

i=0 ωiβiσi

)
α �= 1,

fD(t) + π
2

(
βσ ln σ − ∑N

i=0 ωiβiσi ln |ωiσi |
)

α = 1.

Thus, fΔ(t) is an α-stable random variable for each t ∈ I .

Remark 3 If α-stable noise in the data set Δ is symmetric, i.e. εi ∼ Sα(0,σi , 0)
for all i = 0, 1, . . . , N , then fΔ(t) is also a symmetric α-stable variate and its loca-
tion parameter is fD(t) that is fΔ(t) ∼ Sα (0,σ, fD(t)) for all t ∈ I , where σ =(∑N

i=0 |ωiσi |α
)1/α

. Moreover, if α = 2, then εi ∼ N (0, 2σ2
i ) for i = 0, 1, . . . , N

and fΔ(t) ∼ N ( fD(t),σ2), where σ2 = 1
2

∑N
i=0 ω2

i σ
2
i .

4 Simulation

In this section,wepresent a simulation study throughanumerical example to illustrate
the propagation of uncertainty in a linear RFIF with variable scaling parameters for
a given α-stable noisy data set.

Let Δ = {(t0, y0, ε0), (t1, y1, ε1), (t2, y2, ε2), (t3, y3, ε3), (t4, y4, ε4)} be a given
data set, where

t0 = 0, t1 = 0.3, t2 = 0.5, t3 = 0.7, t4 = 1;
y0 = 2.3, y1 = 1.6, y2 = 3.8, y3 = 2.9, y4 = 1.2;

and

ε0 ∼ S1.8(0.3, 0.4, 0), ε1 ∼ S1.8(−0.3, 0.5, 0), ε2 ∼ S1.8(0.5, 0.7, 0),

ε3 ∼ S1.8(0.7, 0.6, 0), ε4 ∼ S1.8(−0.2, 0.3, 0).

For this data set, we have N = 4; I = [0, 1]; and

I1 = [0, 0.3], I2 = [0.3, 0.5], I3 = [0.5, 0.7], I4 = [0.7, 1].

Now, let us take J1 = [0.3, 0.7], J2 = [0.5, 1.0], J3 = [0, 0.5], J4 = [0, 0.5]. Then,
by using (3), we can form the connection matrix

C =

⎛

⎜
⎜
⎝

0 1 1 0
0 0 1 1
1 1 0 0
1 1 0 0

⎞

⎟
⎟
⎠ .
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Fig. 1 The directed graph of C

From Fig. 1, we can observe that the directed graph of C is strongly connected,
implying that C and therefore P is irreducible.

By using the given data set Δ, we can form the deterministic data set

D = {(0, 2.3), (0.3, 1.6), (0.5, 3.8), (0.7, 2.9), (1, 1.2)},

and for this data set, we can construct the RIFS {I × R; P;W1,W2,W3,W4}. If we
consider the variable scaling factors:

d1(t) = 1

3
e−5t + 0.5, d2(t) = 1

2
sin(3t) + 0.4,

d3(t) = 1

8
e2t cos(3t) + 0.6, d4(t) = 1

2
e−5t + 0.3.

Then, we can calculate other parameters of the above RIFS:

a1 = 0.75, a2 = 0.4, a3 = 0.4, a4 = 0.6;
b1 = −0.225, b2 = 0.1, b3 = 0.5, b4 = 0.7;
c1 = −3.1505, c2 = 10.1011, c3 = −3.2077, c4 = −2.3119;
e1 = 2.3261, e2 = −6.8658, e3 = 2.1325, e4 = 1.06.

Further, by using (4), we can calculate the values of RFIF fD, whose graph is shown
in Fig. 2. In this figure, the red colored dots represent the data points of D, and the
RFIF fD passing through these points is shown in the blue curve. Moreover, we also
represent the 95% lower and upper quantile bands of the linear RFIF fΔ in Fig. 2,
which imply that any realization of the RFIF fΔ will lie between these bands with a
probability of 0.95.

Now, we consider an arbitrarily point t = 0.58 in I . If we select s = 0.3, then we
can obtain a sequence {kn} of t such that



Distribution of Noise in Linear Recurrent Fractal Interpolation Functions … 25

Fig. 2 95% Quantile band of the RFIF fΔ and graph of the RFIF fD along with the points of the
data set D

{ 3, 1, 3, 1, 3, 1, 2, 3, 2, 4, 2, 3, 1, 3, 2, 4, 1, 3, 2, 4, 2, 4, 2, 4, 1, 2, 4, 2, 4, 2, 3, 2, 4,

1, 3, 2, 4, 1, 2, 3, 2, 3, 1, 3, 1, 3, 1, 3, 2, 4, 1, 2, 4, 2, 4, 2, 4, 1, 2, 4, 2, 4, 2, 4, 2, 4,

1, 2, 4, 1, 2, 3, 2, 3, 1, 2, 3, 2, 4, 2, 4, 2, 3, 2, 3, 1, 3, 2, 4, 1, 2, 4, 1, 2, 3, 1, 3, 2, 4,

2, 4, 2, 3, 1, 3, 1, 3, 2, 4, 2, 4, 1, 3, 2, 4, 2, 3, 1, 3, 1, 2, 4, 2, 4, 1, 2, 3, 1, 2, 3, 2, 3,

2, 3, 2, 4, 2, 4, 1, 3, 1, 3, 1, 3, 1, 3, 2, 4, 2, 3, 2, 3 },

with amaximum tolerance error of 0.001 in (7). This sequence is called a fractal code
of t . By utilizing (10) and (11), we can compute the coefficients of Yi as follows:

ω0 = −0.259217, ω1 = 0.472842, ω2 = 0.631665,

ω3 = 0.257078, ω4 = −0.010617.

Hence, the distribution of RFIF fΔ at point t = 0.58 is given as follows:

fΔ(0.58) ∼ S1.8(0.31393, 0.56363, 3.3099). (12)

Next, we consider 8000 random samples of the data setΔ. For each realization, we
form a RFIF with variable scaling (as we have constructed for the data setD). There-
fore, we have 8000 realizations of the RFIF fΔ and thus we have 8000 realizations
of fΔ(0.58).

In Fig. 3(i), we represent the histogramof these 8000 random samples of fΔ(0.58).
In the same figure, we have fitted an empirical PDF to these observed values and
also plotted the PDF of the analytically estimated distribution of fΔ(0.58), which is
given in (12). Here, we can see that the analytically estimated PDF of fΔ(t) is very
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Fig. 3 (i) Histogram with Empirical & Estimated PDFs, (ii) Empirical & Estimated CDFs, (iii)
Normal Q-Q Plot, and (iv) Stable Q-Q Plot with 95% Confidence Bands

close to its empirically fitted PDF. A similar conclusion can be drawn from the CDFs
plot displayed in Fig. 3(ii).

Moreover, a normal quantile-quantile plot for observed samples of fΔ(0.58) is
shown in Fig. 3(iii). We can observe here that both tails deviate from the red color
reference line, indicating that the distribution of fΔ(0.58) has heavier tails than the
normal distribution.

Further, a stable quantile-quantile plot is exhibited in Fig. 3(iv). In the same figure,
we have displayed 95% confidence band for the simulated values of fΔ(0.58), which
represents the variation in the estimate of fΔ(0.58) from its location based on the
noisy data Δ. Here, we can see that nearly all the observed samples of fΔ(0.58) fall
along the reference line, implying that fΔ(0.58) follows the same distribution as we
specified in (12). Therefore, our analytically estimated distribution for fΔ(t) in (12)
is valid. Moreover, t = 0.58 is an arbitrarily chosen point in I ; therefore, for any
t ∈ I , we can similarly estimate and validate the distribution of fΔ(t).

5 Concluding Remarks

A commonly used tool for analyzing uncertainty at any point is the estimation of
the probability distribution at that point. If the data is collected from a process that
has fractal properties and contains α-stable noise, in that case, the recurrent fractal
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interpolation technique efficiently determines uncertainty at any intermediate point
in this noisy data set. Moreover, for any given data set with α-stable noise on its
ordinate, the probability distribution of a recurrent fractal interpolation function at
any interpolated value is also an α-stable. And the remaining parameters of this
distribution can be estimated analytically.

Acknowledgements The authors would like to acknowledge IC&SR, IIT Madras, for the funding
support from the IoE research project [Project Number = SB20210848
MAMHRD008558].
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Oblivious Transfer Using Non-abelian
Groups

Maggie E. Habeeb

Abstract The field of non-commutative group-based cryptography has flourished
in recent years, resulting in numerous non-commutative key exchange protocols,
digital signature schemes, and secret sharing schemes. In this paper, we propose
two 1-out-of-n oblivious transfer protocols using conjugation of group elements.
The protocols are obtained by modifying the Ko-Lee key exchange protocol and the
Anshel-Anshel-Goldfeld key exchange protocol.

Keywords Oblivious transfer · Cryptography · Group theory

1 Introduction

Rabin first introduced the notion of oblivious transfer in [14] in 1981. It is amethod in
which Alice sends a message to Bob (of his choice) in a manner such that Alice does
not know which message Bob received and Bob only receives his desired message.
More formally, we may define a 1-out-of-2 oblivious transfer as follows. Alice has
twomessagesm0 andm1 andBob has a choice bit c ∈ {0, 1}. The goal of the oblivious
transfer protocol is to send the message mc to Bob where

– Alice does not learn which message Bob received;
– Bob learns nothing of the message m1−c.

A 1-out-of-2 oblivious transfer can be generalized to a 1-out-of-n oblivious transfer
in which the sender has n messages and the receiver is to obtain exactly one of them.

Oblivious transfer protocols are indispensable in the sense that they can be used
as cryptographic primitives. Cryptographic protocols based on oblivious transfer
result in several advantages over number theoretic-based protocols (see [8] for more
details). Oblivious transfer has been utilized in [8, 9] for secure multiparty computa-
tion and commital protocols. Secure Multiparty Computation gives several mutually
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distrustful parties the opportunity to performa computation togetherwithout compro-
mising the privacy of their inputs or the validity of their outputs (see [8]). Commital
protocols are essential in the theory of zero-knowledge proofs, as they allow one
participant to commit to x without the other participant learning x until the protocol
is complete (see [9]). These examples exhibit the importance of oblivious transfer
protocols.

Chou and Orlandi [3] introduced a simple and efficient 1-out-of-n oblivious trans-
fer protocol based on the Diffie-Hellman key exchange protocol. The security of this
protocol is based on the difficulty of the discrete log problem.However,with the poly-
nomial time quantumalgorithms put forth byShor in [16], the security of this protocol
is at risk with the advent of the quantum computer. In the recent years, the field of
post-quantum cryptography has flourished resulting in many new non-commutative
cryptographic protocols (see [4, 13]). In this paper, we provide non-commutative
analogs of this protocol based on conjugation by a group element.

2 Preliminaries

In this section, we give a brief background of the relevant non-abelian protocols
and a description of the oblivious transfer protocol introduced in [3]. Throughout
Sects. 2.1 and 2.2, given two elements x, y in a group G, we denote x y = y−1xy.

2.1 Ko-Lee Key Exchange Protocol

The Ko-Lee key exchange protocol introduced in [10] is a non-abelian analog of the
Diffie-Hellman key exchange, where conjugation is used instead of exponentiation.
The protocol is based on the search conjugacy problemwhich can be stated as follows.

Definition 1 (Search Conjugacy Problem) In a group G, given g ∈ G and
h = a−1ga, find such an a.

Let G be a non-abelian group, u an arbitrary element in G, and S and T two com-
muting subgroups of G. Suppose that two people, Alice and Bob, want to agree on
a shared key.

The group G, the element u ∈ G, and the subgroups S and T are published. Then,

1. Alice chooses a secret element s ∈ S and sends us to Bob.
2. Bob chooses a secret element t ∈ T and sends ut to Alice.
3. Alice computes (ut )s = uts , and Bob computes (us)t = ust . The shared key is

ust = uts .

The shared key is straightforward to determine for Alice and Bob since each knows
secret elements s and t , respectively. If the secret elements are not known, and only the
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public data is available, then the search conjugacy problem can be used to determine
s and t from us and ut , which is assumed infeasible.

2.2 Anshel-Anshel-Goldfeld Protocol

The Anshel-Anshel-Goldfeld (AAG) protocol [1], which is also known as the com-
mutator key exchange, utilizes conjugation of group elements but does not require
commuting subgroups as in the Ko-Lee protocol.

Let G be a finitely presented non-abelian group and S and T be two finitely
generated subgroups ofG with generators {s1, · · · , sk} and {t1, · · · , tl}, respectively.
Suppose Alice and Bob want to agree on a shared key.

The group G, subgroups S and T , and their generators are published. Then,

1. Alice chooses a private element a = si1si2 ...sim ∈ S and sends ta1 , t
a
2 ..., t

a
l to Bob.

2. Bob chooses a private element b = t j1 t j2 ...t jn ∈ G and sends sb1 , s
b
2 ..., s

b
k to Alice.

From this, Alice can compute

sbi1s
b
i2 ...s

b
im = (b−1si1b)(b

−1si2b)...(b
−1sim b) = b−1si1si2 ...sim b = ab

while Bob computes

taj1 t
a
j2 ...t

a
jn = (a−1t j1a)(a

−1t j2a)...(a
−1 jin a) = a−1t j1 t j2 ...t jn a = ba .

Alice and Bob can both compute the commutator, [a, b] = a−1b−1ab, from the ab

and ba as their shared secret since each knows the secret elements a and b, respec-
tively. For an adversary to obtain the shared key, it is not enough to solve the search
conjugacy problem since there are several instances that must be satisfied at once.
Rather, one would need to solve the simultaneous conjugacy search problem which
can be stated as follows.

Definition 2 (Simultaneous Search Conjugacy Problem) In a group G, given g1,
g2, . . . , gn ∈ G and h1 = a−1g1a, h2 = a−1g2a, …, hn = a−1gna, find such an a.

2.3 Chou and Orlandi Oblivious Transfer

The OT protocol introduced by Chou and Orlandi in [3] is based on the well-known
Diffie-Hellman key exchange. Given a group G and a generator g, Alice and Bob
can agree on a shared key by

1. Alice chooses private element a ∈ Z∗
p with p a prime and publishes A = ga .

2. Bob chooses private element b ∈ Z∗
p with p a prime and publishes B = gb.

3. Both parties can compute gab = Ab = Ba .
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By observing that Alice can compute a different key from the value (BA−1)a =
gab−a2 and that Bob cannot compute this without knowing a, the Diffie-Hellman
key exchange can become an OT protocol. We only introduce the 1-out-of-2 OT
protocol as the motivation for the non-abelian analog. Suppose now that Alice has
two messages m0 and m1 and Bob wishes to receive mc where c ∈ {0, 1}. The group
G and a generator g ∈ G are public.

1. Alice chooses private element a ∈ G and publishes A = ga .
2. Bob chooses private element b ∈ G. If c = 0, Bob computes B = gb. If c = 1,

Bob computes B = Agb.
3. Bob publishes B.
4. Alice creates two keys k0 = Ba and k1 = (BA−1)a .
5. Alice sends encrypted messages m0 and m1 based on the keys k0 and k1,

respectively.

Bob can recover the key kc corresponding to his choice bit c, but cannot com-
pute k1−c. To see this if c = 0 then k0 = Ba = gab, which Bob can compute. On
the other hand, k1 = (BA−1)a = gab−a2 which Bob cannot compute. Similarly, if
c = 1 Bob can compute k1 = (BA−1)a = (Agb A−1)a = gab but he cannot compute
k0 = Ba = gab+a2 .

3 Non-abelian Oblivious Transfer

Motivated by the OT protocol in [3], we establish two 1-out-of-n oblivious transfer
protocols; one motivated by the Ko-Lee key exchange and the other motivated by the
Anshel-Anshel-Goldfeld protocol. Throughout subsections 3.1 and 3.2, given two
elements x, y in a group G, we denote x y = y−1xy.

3.1 Oblivous Transfer Based on Ko-Lee Protocol

We begin by establishing a 1-out-of-2 oblivious transfer protocol based on the Ko-
Lee key exchange. Let G be a non-abelian group with commuting subgroups S and
T . The group G, g ∈ G and subgroups S and T are public. Suppose Alice has two
messagesm0 andm1 and Bob wishes to receivemc based on his choice bit c ∈ {0, 1}.
1. Alice chooses a ∈ S. Bob chooses b ∈ T and his choice bit c.
2. Alice makes public A = ga = a−1ga.
3. Bob computes B = gb = b−1gb if c = 0 and B = Agb if c = 1.
4. Alice computes two keys: k0 = Ba and k1 = (A−1B)a .
5. Alice sends encrypted messages m0 and m1 dependent on the keys.

Clearly, Bob can recover k0 when c = 0 since a and b commute and

k0 = Ba = (gb)a = a−1b−1gba = b−1a−1gab = Ab,
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but not k1 since Bob does not know a and

k1 = (A−1B)a = (a−1g−1ab−1gb)a = a−2g−1ab−1gba.

Similarly, Bob can recover k1 when c = 1, but not k0.
We can extend this 1-out-of-2 OT protocol to a 1-out-of-n OT protocol by making

a simple modification as follows. Let G be a non-abelian group with commuting
subgroups S and T . The group G, g ∈ G and subgroups S and T are public. Alice
has messages m0,m1, . . . ,mn−1 and Bob wishes to receive mc.

1. Alice chooses a ∈ S. Bob chooses b ∈ T and his choice c ∈ {0, 1, . . . , n − 1}.
2. Alice makes public A = ga = a−1ga.
3. Bob computes B = Acgb = a−1gcab−1gb.
4. Alice computes n keys: ki = (A−i B)a for i ∈ {0, 1, . . . , n − 1}.
5. Alice sends encrypted messages m0,m1, . . . ,mn−1 dependent on the keys.

For Bob’s choice c he can compute kc since a and b commute and

kc = (A−c B)a = (A−c Acgb)a = gba = Ab,

but he cannot compute ki for i �= c since

ki = (A−i B)a = (A−i Acgb)a = (a−1g−i+cab−1gb)a = a−2g−i+cab−1gba

and Bob does not know a.

3.2 Oblivious Transfer Based on Anshel-Anshel-Goldfeld
Protocol

To avoid using commuting subgroups, we introduce a 1-out-of-n OT protocol
based on the Anshel-Anshel-Goldfeld key exchange protocol. Suppose that Alice
has messages m1,m2, . . . ,mn and Bob wishes to receive mc. A group G and
a1, . . . , ak, b1, . . . , bm are made public with m ≥ n.

1. Alice picks a secret word a ∈ G as a word in a1, . . . , ak and sends ba1 , . . . , b
a
m to

Bob.
2. Bob picks a secret word b ∈ G as a word in b1, . . . , bm and sends bac a

b
1 , . . . , b

a
c a

b
k

to Alice.
3. Alice computes n keys: (b−1

i )abac a
b
1 , . . . , (b

−1
i )abac a

b
k for each 1 ≤ i ≤ n.

4. Alice then follows AAG protocol for each 1 ≤ i ≤ n to obtain the commutators
based on the n keys in step 3.

5. Alice sends encrypted messages m1, . . . ,mn based on the keys.

Alice will compute ab only in the case when i = c, resulting in the shared key,
kc, being the commutator a−1b−1ab. Since Alice published
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ba1 , . . . , b
a
m,

and Bob has b written in the generators b1, . . . , bm , he can determine ba . Hence, Bob
can recover kc by computing (ba)−1 and multiplying on the right by b. Bob can then
decrypt his choice message, mc.

When i �= c Alice will compute in step 3.

(b−1
i )abac a

b
1 , . . . , (b

−1
i )abac a

b
k

and will now compute a word other than ab, resulting in a different key that Bob is
unable to compute. To see this, suppose that a = ai1ai2 ...ail . To compute ki , Alice
proceeds by first computing

(b−1
i )abac a

b
i1(b

−1
i )abac a

b
i2 . . . (b

−1
i )abac a

b
il

and then multiplying on the left by a−1, resulting in

ki = a−1(b−1
i bc)

aabi1(b
−1
i bc)

aabi2 . . . (b
−1
i bc)

aabil .

In this case, ki is no longer the commutator, a−1b−1ab = (ba)−1b, and it not
computable byBob. Thus, Bobwould only be able to decrypt his choicemessage,mc.

4 Security Considerations

To ensure that these protocols are secure, they must be implemented in an appro-
priate platform group, which has proved to be a difficult open research problem.
The platform group must have the following properties to ensure the security of the
protocols.

1. The group should have a normal form of group elements to effectively hide infor-
mation, ensuring the protocol remains “oblivious.”

2. For the OT protocol based on the Ko-Lee key exchange, the conjugacy search
problem should be intractable. If the conjugacy search problem is solvable in
polynomial time, then an adversary could easily obtain the various keys and
decrypt each message.

3. For the OT protocol based on the AAG key exchange, the simultaneous conju-
gacy search problem should be intractable. If the simultaneous conjugacy search
problem is solvable in polynomial time, then an adversary could easily obtain the
various keys and decrypt each message.

We would like to note that although these properties are necessary for the security
of the protocol, they are not necessarily sufficient.
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Initially, braid groups were proposed as platform groups for the Ko-Lee key
exchange protocol and the Anshel-Anshel-Goldfeld protocol, but the protocols were
later found to be susceptible to length-based attacks (see [7]) as well as linear algebra
attacks. Due to Cheon and Jun (see [2]) and B. Tsaban (see [18]), most groups that
admit faithful linear representations of small dimensions are susceptible to linear
algebra attacks. Hence, these groups are no longer in consideration as platforms.

Since then Thompson’s groups and polycyclic groupswere proposed (see [5, 17]).
Unfortunately, these groups were still susceptible to heuristic attacks (see [11, 15]).
Recently, in [6], the computational complexity of the conjugacy search problem in
certain metabelian groups was analyzed. In [6], a length-based conjugacy search was
performed on generalized metabelian Baumslag-Solitar groups, which is a heuristic
attack based on the original length-based attacks. The experiments indicated that
these groups are resistant to these types of search algorithms and a conjugating ele-
ment cannot be found in sufficient time. It is not known if these groups are susceptible
to other attacks.

5 Conclusions

We have presented two 1-out-of-n oblivious transfer protocols based on the Ko-Lee
key exchange protocol and the Anshel-Anshel-Anshel-Goldfeld protocol. These pro-
tocols are based on the conjugacy search problem and the simultaneous conjugacy
search problem. Currently, there is one other non-commutative oblivious transfer
protocol (see [12]) based on the group factorization problem. In addition, we out-
lined some requirements necessary for the platform group to ensure the security of
the protocols. Determining the appropriate platform group has been a long-running
difficult research problem.
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Solution of Population Balance Equation
Using Homotopy Analysis Method

Prakrati Kushwah and Jitraj Saha

Abstract In this paper, homotopy analysis method (HAM) is used to obtain the
analytic solution for fragmentation population balance equation. Different sample
problems are solved using HAM and their series solution is obtained. A detailed
analysis of the series solution and the region of convergence of the solution is also
studied. It is observed that the convergence region of the series solution can be
adjusted with the help of certain parameters involved in HAM.

Keywords Homotopy analysis method · Population balance equation · Analytic
approximations · Fragmentation · Convergence

1 Introduction

The events where two or more particles collide among each other and undergo cer-
tain changes in their physical properties are known as particulate processes. These
changes can be in their mass, volume, size, entropy or some other properties of parti-
cles. Population balance equations (or PBEs) are basically integro-partial differential
equations which represent the change in the particle properties present in a system
due to particulate process. Various examples of these events can be seen in different
fields of science and engineering like the formation of stars, growth of gas bubbles
in solids, merging of drops in atmospheric clouds, and so on [1].
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In this paper, the PBE considered represents particle fragmentation. Fragmen-
tation is a process where a particle break into two or more smaller (or daughter)
fragments. The total number of particles present in the closed system increases due
to fragmentation. Let c(t, x) denote the number density of particles of volume x ≥ 0
at time t ≥ 0 in a system undergoing particulate process (fragmentation). In this
regard, for (t, x) ∈ [0, T ] × [0,∞) where T < ∞, the general fragmentation pop-
ulation balance equation is written as [2]

∂c(t, x)

∂t
= 2

∞∫

x

F(x, y − x)c(t, y)dy − c(t, x)

x∫

0

F(x − y, y)dy, (1)

with the initial data

c(0, x) = c0(x) ≥ 0, for all x ≥ 0. (2)

The left hand side (lhs) of equation (1) gives the time evolution of particle number
density c(t, x). In the right hand side (rhs), the function F(x, y) represents the rate
at which the particles of size x + y breaks into particles of size x and size y. The
first term indicates the inclusion (or birth) of x−size particles in the system, and the
second term indicates the removal (death) of x−size particles from the system.

Several numerical, semi-analytical, and analyticalmethods havebeendevisedover
the years to solve PBE. For fragmentation problems, one can refer to the articles [2, 3]
for exact solutions and the articles [4, 5] for numerical solutions. To our knowledge,
the homotopy analysis method (HAM) has not been used to solve the fragmentation
problem to date, and this is the first attempt to solve above mentioned PBE with
HAM.

HAM was first introduced by Liao [6] in 1992 to solve different linear and non-
linear differential equations appearing in the physical systems. Over the years, HAM
has received sincere attention from the researchers due to its ability to solve different
complicated real-life problems. This is an analytic method which uses the concept of
homotopy from topology to generate a convergent series solution to the considered
problem. In HAM, we construct deformation equations with the help of initial guess
of the solution, auxiliary linear operator, auxiliary parameter, and auxiliary function,
andwehavegreat freedom to choose all of these.Because of this freedom, thismethod
is very flexible and convenient to use as compared to other methods like Adomian
decommission method, artificial parameter method, perturbation method, etc.

The outline of this paper is as follows. In Sect. 2, the preliminary idea of homotopy
analysis method is discussed. In Sect. 3, HAM is applied to solve the particulate
problem (1)−(2) mentioned in Sect. 1 and its convergence is discussed. In Sect. 4,
some sample examples are solved using the software Mathematica 12.2, and the
efficiency of the method is discussed. Finally, the conclusion of the present work is
discussed in Sect. 5.
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2 Preliminaries: Homotopy Analysis Method

The key methodology of HAM is to approximate the solution c(t, x) in terms of
a series of functions. In this regard, we consider c0(t, x) as an initial guess of the
solution. Let us now define an unknown function v(t, x; q), where t and x are inde-
pendent variables and q ∈ [0, 1] is the embedding parameter. The underlying idea
of HAM is that a continuous mapping is described to relate the solution c(t, x)
and the unknown function v, with the aid of the embedding-parameter q. Thus, the
initial guess c0(t, x) of the solution c(t, x) is so chosen that v(t, x; q) varies from
c0(t, x) to c(t, x) as q varies from 0 to 1. Representing this mathematically, we can
write v(t, x; 0) = c0(t, x) and v(t, x; 1) = c(t, x). To ensure the above relation, a
linear operatorL [v(t, x; q)], an auxiliary parameter � ( �= 0) and an auxiliary func-
tion H(t, x) are needed to be defined wisely. Under all these considerations, let us
discuss the homotopy analysis method.

Let the initial assumption to the solution is independent of t and coincides with
the initial data (2), that is

c0(t, x) = c(0, x). (3)

Choose the linear operator with

L [v(t, x; q)] = ∂v(t, x; q)
∂t

(4)

such that

L [ f (x, y)] = 0 ⇐⇒ f (x, y) = 0. (5)

Let us consider the generalized problem in the following operator form

N [c(t, x)] = 0. (6)

Using embedding parameter, we can construct a homotopy

H [v(t, x; q); q, �, H ] := (1 − q)L [v(t, x; q) − c0(t, x)]
− q�H(t, x)N [v(t, x; q)] = 0. (7)

For q = 0, Eq. (7) along with (5) gives

L [v(t, x; 0) − c0(t, x)] = 0 imples v(t, x; 0) = c0(t, x). (8)

Again for q = 1, since � �= 0 and H(t, x) �= 0, relation (7) becomes

N [v(t, x; 1)] = 0, (9)
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which replicates the original problem (6), provided

v(t, x; 1) = c(t, x). (10)

According to Eqs. (8) and (10), v(t, x; q) varies from the initial guess c0(t, x)
to the exact solution c(t, x) as the embedding parameter q varies from 0 to 1. The
equation (7) is called zero-order deformation equation.

The freedom to chooseL , c0(t, x), �, H(t, x), enables us to adjust all the param-
eters properly such that the solution of deformation equation exists for q ∈ [0, 1]. The
m−th order derivative of c0(t, x)with respect to embedding parameter q is defined as

c[m](t, x) := c[m]
0 (t, x)

m! = 1

m!
∂mv(t, x; q)

∂qm

∣∣∣∣
q=0

. (11)

By Taylor’s theorem, v(t, x; q) can be expanded in a power series of q as

v(t, x; q) = v(t, x; 0) +
∞∑

m=1

c[m]
0 (t, x)

m! qm = f (x) +
∞∑

m=1

c[m](t, x)qm . (12)

In general, the above series will converge for q = 1, and hence using relation (9),
we have

c(t, x) = f (x) +
∞∑

m=1

c[m](t, x). (13)

We define the vector �cn := {c0(t, x), c1(t, x), c2(t, x), . . . , cn(t, x)}. Differenti-
ating zero-order deformation (7) m−times with respect to q, then dividing it by m!,
and finally setting q = 0, we get the following m−th order deformation equation:

L [cm(t, x) − χmcm−1(t, x)] = �H(t, x)Rm(�cm−1, t, x) (14)

with initial condition cm(0, x) = 0, where χm :=
{
0, when m ≤ 1,
1, when m > 1.

and

Rm(�cm−1, t, x) = 1

(m − 1)!
∂m−1N [v(t, x; q)]

∂qm−1

∣∣∣∣
q=0

= 1

(m − 1)!
∂m−1

∂qm−1
N

[ ∞∑
n=0

cn(t, x)q
n

]

q=0

.

(15)
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Thus, the solution to problem is reduced to

cm(t, x) = χmcm−1(t, x)] +
∫ t

0
�H(t, s)Rm(�cm−1, s, x). (16)

where Rm is given by (15).

3 HAM Based Solutions and Convergence Theorem

For (1)−(2) the operator N is given by

N [v(t, x; q)] = ∂v(t, x; q)
∂t

− 2
∫ ∞

x
F(x, y − x)v(t, y; q)dy

− v(t, x; q)
∫ x

0
F(x − y, y)dy.

Using (15), we can calculate Rm for m = 1, 2, 3, . . . as shown below

R1 (�c0, t, x) = N [c0(t, x)]|q=0

= −2
∫ ∞

x
F(x, y − x)c0(t, y)dy

− c0(t, x)
∫ x

0
F(x − y, y)dy. (17)

For m = 2,

R2 (�c1, t, x) =
[

∂

∂q
N [c0(t, x) + c1(t, x)q]

]
q=0

= ∂c1(t, x)

∂t
− 2

∫ ∞

x
F(x, y − x)c1(t, y)dy

− c1(t, x)
∫ x

0
F(x − y, y)dy.

(18)

For m = 3,

R3 (�c2, t, x) = 1

2!
[

∂2

∂q2
N

[
c0(t, x) + c1(t, x)q + c2(t, x)q

2
]]

q=0

= ∂c2(t, x)

∂t
− 2

∫ ∞

x
F(x, y − x)c2(t, y)dy

− c2(t, x)
∫ x

0
F(x − y, y)dy.

(19)
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Likewise the mth order representation is

Rm (�cm−1, t, x) = ∂cm−1(t, x)

∂t

− 2
∫ ∞

x
F(x, y − x)cm−1(t, y)dy

− cm−1(t, x)
∫ x

0
F(x − y, y)dy. (20)

Thus, the solution to fragmentation equation (1)−(2) for H(t, x) = 1 is written as

cm(t, x) = χmcm−1(t, x)] +
∫ t

0
hRm (�cm−1, s, x) , (21)

where Rm is given by (20).

Theorem 1 As long as the series (13) converges, where cm(t, x) is governed by the
high order deformation equation (14) under the conditions (15) and (16), it must be
the exact solution of (1)−(2).

Proof If the series
∞∑

m=0

cm(t, x) converges, then we can write

v(t, x) =
∞∑

m=0

cm(t, x), that is lim
m→∞ cm(t, x) = 0. (22)

In this context

n∑
m=0

[
cm(t, x) − χmcm−1(t, x)

] = c1 + (c2 − c1) + · · · + (cn − cn−1) = cn(t, x),

and hence in accordance with relation (22), we get

∞∑
m=0

[
cm(t, x) − χmcm−1(t, x)

] = lim
n→∞ cn(t, x) = 0.

Due to the linearity property of L , we have

∞∑
m=0

L
[
cm(t, x) − χmcm−1(t, x)

] = L
∞∑

m=0

[
cm(t, x) − χmcm−1(t, x)

] = 0.
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Thus recalling (14), we obtain

∞∑
m=0

L
[
cm(t, x) − χmcm−1(t, x)

] = �H(t, x)
∞∑

m=1

Rm
[�cm−1

] = 0.

Since � �= 0 and H(t, x) �= 0, therefore

∞∑
m=1

Rm
[�cm−1

] = 0. (23)

Recalling (22), we get

∞∑
m=1

Rm
[�cm−1

] =
∞∑

m=1

[
∂cm−1(t, x)

∂t
− 2

∫ ∞
x

F(x, y − x)cm−1(t, y)dy − cm−1(t, x)

∫ x

0
F(x − y, y)dy

]

=
∞∑

m=1

∂cm−1(t, x)

∂t
− 2

∫ ∞
x

F(x, y − x)
∞∑

m=1

cm−1(t, y)dy

−
∞∑

m=1

cm−1(t, x)
∫ x

0
F(x − y, y)dy

= ∂

∂t

∞∑
m=1

cm−1(t, x) − 2
∫ ∞
x

F(x, y − x)
∞∑

m=1

cm−1(t, y)dy

−
∞∑

m=1

cm−1(t, x)
∫ x

0
F(x − y, y)dy

= ∂

∂t

∞∑
m=0

cm(t, x) − 2
∫ ∞
x

F(x, y − x)
∞∑

m=0

cm(t, y)dy

−
∞∑

m=0

cm(t, x)
∫ x

0
F(x − y, y)dy.

Combining (22) and (23), we have

∂v(t, x)

∂t
= 2

∫ ∞

x
F(x, y − x)v(t, y)dy − v(t, x)

∫ x

0
F(x − y, y)dy. (24)

Now, from the initial conditions of cm(t, x), it holds that

v(0, x) =
∞∑

m=0

cm(0, x) = c0(0, x) +
∞∑

m=1

cm(0, x) = c0(0, x) = c(0, x).
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Hence, from last two expressions, one can observe that v(t, x) must be the exact
solution of (1)−(2).

4 Numerical Examples and Discussions

In this section, we will consider some examples discussed in [3] and will discuss
using graphs how the approximate solution is approaching the exact solution.

Example 1 Let us consider (1)−(2) with K (x, y) = 1 and the initial condition
c(0, x) = exp(−x). The exact solution to this problem is c(t, x) =
(1 + t)2 exp(−x(1 + t)).

Using the recursive scheme (21) along with (20), we obtain cm(t, x) form ≥ 1 as

c1(t, x) = ht (e−x x − 2e−x ),

c2(t, x) = h(
1

2
t2(hx(e−x x − 2e−x ) − 2 he−x (x − 1)) + ht (e−x x − 2e−x )),

c3(t, x) = h(
1

6
h2t3e−x x3 − h2t3e−x x2 + h2t2e−x x2 + h2t3e−x x + 2 h2t2e−x

− 4 h2t2e−x x − 2 h2te−x + h2te−x x).

We have great freedom to choose �, so we will now look for a set of values of
� for which the solution obtained by HAM converges to the exact solution. From
Fig. 1, we can observe that when � is near −0.5, the graph is flat. So, method will
converge to the exact solution when � is near −0.5. Now, we will analyze graphs
for different values of � for which the solution obtained by HAM converges to exact
solution.

During the computation of graphs for several values of � near −0.4 and −0.2, it
was observed fromFig. 2 that for � = −0.4 the graph of 4−th, 6−th, 8−th and 10−th

Fig. 1 � against c(x, t) for
t = 1 and x = 1 for different
order of approximation for
Eqs. (1)–(2)
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Fig. 2 Graph with � = −0.4 for different order of approximation for Eqs. (1)–(2)

Table 1 Error for Example 1 when � = −0.4

m−th order of
approximation

4 6 8 10

Error 7.7606 × 10−5 7.6782 × 10−5 7.6403 × 10−5 7.0951 × 10−5

order approximation nearly coincides with the exact solution. Here we compute
the numerical number density with the particle size distribution in Fig. 2a. On the
other hand, Fig. 2b represents the numerical error curve obtained for different order
approximations. For a detailed quantitative error analysis, we present the numerical
errors in Table1. To calculate the error, we recall the formula given in [5]. The
following results supports that HAM predicts the solution with high accuracy even
for a small number of approximate terms.

Example 2 Next consider (1)−(2) with K (x, y) = x + y and the initial condition
c(0, x) = exp(−x). The exact solution to this problem is c(t, x) =
exp(−t x2 − x)(1 + 2t (1 + x)).

Again using the recursive scheme (21) along with (20), we obtain cm(t, x) for
m ≥ 1 as

c1(t, x) = ht (e−x x2 − 2e−x (x + 1)),

c2(t, x) = h(
1

2
t2(hx2(e−x x2 − 2e−x (x + 1)) − 2 he−x x2(x + 1)) + ht (e−x x2

− 2e−x (x + 1))),

c3(t, x) = h(
1

6
h2t3e−x x6 − h2t3e−x x5 − h2t3e−x x4 + h2t2e−x x4

− 4 h2t2e−x x3 − 4 h2t2e−x x2 + h2te−x x2 − 2 h2te−x x − 2 h2te−x ).

Similar to the previous example, we will make use of graphs to investigate the
value of � for which the series solution obtained by HAM method converges to
exact solution. From Fig. 3, it is observed that graph is flat in between −0.4 and 0.
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Fig. 3 � against c(x, t) for t = 1 and x = 1 for different order of approximation for Eqs. (1)–(2)

Table 2 Error for Example 2 when � = −0.125

m−th order of
approximation

4 6 8 10

Error 2.9075 × 10−5 2.8762 × 10−5 2.8501 × 10−5 2.8417 × 10−5

Fig. 4 Graph with � = −0.125 for different order of approximation for Eqs. (1)–(2)

Therefore, the approximate solution will converge to exact solution somewhere in
between these two points.

For a detailed investigation, wewill plot the solution with respect to x for different
values of � and it is observed that for h = −0.125 graph coincides with the exact
solution. For a qualitative analysis of the method, we will plot the numerical solution
as well as the error graph. For quantitative analysis, we present the error Table2.
Like before, it is observed that the HAM produces very accurate results for a very
small number of terms and � = −0.125 (Fig. 3).
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5 Conclusion

The homotopy analysis method is applied to fragmentation PBE. A recursive scheme
in the form of series solution is obtained to estimate the solution of PBEs. The con-
vergence analysis shows that approximate solution will converge to exact solution.
Error estimate for the sample problems is minimal which guarantees the accuracy of
the method.
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Certain Properties and Their Volterra
Integral Equation Associated
with the Second Kind Chebyshev Matrix
Polynomials in Two Variables

Virender Singh, Waseem A. Khan, and Archna Sharma

Abstract This paper presents several properties associated with the two-variable
extension of the Chebyshev matrix polynomials of the second kind. In particular, we
establish a three-term recurrence relation for these two-variable matrix polynomi-
als and show that these two-variable matrix polynomials satisfy some second-order
matrix differential equations. We derive their hypergeometric matrix representation
and an expansion formula which links these generalized Chebyshev matrix polyno-
mials with the Hermite matrix polynomials and the Laguerre matrix polynomials.
We also drive their Volterra integral equation.

Keywords Hermite · Laguerre and Chebyshev matrix polynomials ·
Hypergeometric matrix functions · Matrix recurrence relations · Differential
equations · Volterra integral equation

1 Introduction and Preliminaries

Development in the ideology of generalized and multivariate forms of special func-
tion serves as a foundation for massive problems in physical mathematics that have
been explained exactly and also finds expansive practical applications. For example,
the generalized Hermite polynomials are employed to solve quantummechanics and
optical beam transport problems [6]. An expansion to the matrix structure of the
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classical families of Hermite, Jacobi, Laguerre, Chebyshev, and Gagenbauer matrix
polynomials have been mentioned with sincere aforethought in many papers [1, 3,
5, 10, 11, 14, 17, 19–25] for matrix in C

N×N . A close affinity between orthogonal
matrix polynomials and second-order matrix equations appears in [7, 10, 11, 19].
The hypergeometric matrix function and hypergeometric matrix differential equa-
tion along with its general solution is well discussed by Jódar and Cortès in [12, 13].
The integral representation method is used to define second kind Chebyshev matrix
polynomials in [4]. Also, the development of matrix function and a few families of
bilinear and bilateral generating matrix functions for second form Chebyshev matrix
polynomials are derived in [2].

Throughout the paper, D0 refers to the complex plane cut along the negative real
axis and σ(A) (in particular spectrum of A), refers to the set of all the eigenvalues
of A, where A is a positive stable matrix in the complex plane CN×N of all square
matrices of common order N . If C is a matrix in CN×N , its 2-norm ‖ C ‖ is defined
by

‖ C ‖ = sup
x �=0

‖ Ax ‖2
‖ x ‖2

where for a vector y in CN , ‖ y ‖2 = (yT y)1/2 gives the Euclidean norm of y.
From [9, p. 558], we get

f (A)g(A) = g(A) f (A).

Here, f (t) and g(t) are holomorphic functions of the complex variables t , defined
in an open set � of the complex plane.

For σ(A) ⊂ D0 and log(t)marks the principal logarithm of t , then A1/2 = √
A =

exp( 12 log(A)) marks the image by t1/2 of the matrix functional calculus acting on
the matrix A then Re(t) > 0, for all t ∈ σ(A).

The hypergeometric matrix function 2F1(U, V ;W ; z) has been defined as follows
(see [18]):

2F1(U, V ;W ; z) =
∞∑

n=0

(U )n(V )n

(W )n

zn

n! , (1)

for matrices U, V and W in C
N×N such that C + nI is invertible for all integers

n ≥ 0 and for | z |< 1. Here,

(C)n = C(C + I )...(C + (n − 1)I ) = �(C + nI ) [�(C)]−1 , n ≥ 1; (C)0 = I,
(2)

is the matrix version of Pochhammer symbol.
From (2), it can be seen that

(C)n−r = (−1)r (C)n[(I − C − nI )r ]−1; 0 ≤ r ≤ n, (3)

where C + nI is invertible for all n > 0.
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From the relation [21, p. 30], we find

(−1)r

(n − r)! I = (−n)r

n! I = (−nI )r
n! ; 0 ≤ r ≤ n, (4)

and from [21, p. 36], we get

(−nI )2k = 22k
(

−1

2
nI

)

k

(
−1

2
(n − 1)I

)

k

. (5)

Defez and Jódar [8] found that, if G(n,m) and H(n,m) are matrices in C
N×N for

n ≥ 0 and m ≥ 0, then the following relations hold see [18, pp. 57]:

∞∑

n=0

n∑

m=0

G(n,m) =
∞∑

n=0

∞∑

m=0

G(n,m + n), (6)

∞∑

n=0

[ n2 ]∑

m=0

H(n,m) =
∞∑

n=0

∞∑

m=0

H(n,m + 2n), (7)

∞∑

n=0

∞∑

m=0

H(n,m) =
∞∑

n=0

[ n2 ]∑

m=0

H(n,m − 2n). (8)

With a matrix A (positive stable), the two-variable Chebyshev matrix polynomials
(of second kind) are presented in [4]

F(ξ, η, z, A) =
(
1 − ξz

√
2A + ηz2 I

)−1 =
∞∑

m=0

Um(ξ, η, A)zm , ‖ξz√2A − ηz2 I‖ ≤ 1. (9)

And the explicit representation for the generalized Chebyshev matrix polynomials
of two variables [4] is as follows:

Um(ξ, η, A) =
[ m2 ]∑

k=0

(−1)k(m − k)!(ξ√2A)m−2kηk

k!(m − 2k)! . (10)

Now in view of Eq. (10), it may remark that Um(ξ, η, A) is an even function of ξ for
even m and odd function of ξ for odd m, we have

Um(−ξ, η, A) = (−1)mUm(ξ, η, A) (11)

U2m(0, η, A) = (−1)mηm (12)

U2m+1(0, η, A) = 0 (13)
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U2m(0, 0, A) = 0 (14)

U2m+1(0, 0, A) = 0 (15)

∂

∂ξ
U2m(0, η, A) = 0 (16)

∂

∂ξ
U2m+1(0, η, A) = (−1)m

m

√
2Aηm (17)

The integral representation satisfied by these family of matrix polynomials is

Um(ξ, η, A) = 1

m!
∫ ∞

0
e−z zmHm

(
ξ,

η

z
, A

)
dz, (18)

where Hm(ξ, η, A) are called the two-variable Hermite matrix polynomials, see [4].

Hm(ξ, η, A) = m!
[ m2 ]∑

k=0

(−1)k(
√
2A)m−2k

k!(m − k)! ξm−2kηk; m ≥ 0, (19)

And the mth Laguerre matrix polynomials L(A)
m (ξ, η) for two variables [11] are

defined by

L(A)
m (ξ, η) =

m∑

k=0

(−1)kξkηm−k

k!(m − k)! (A + I )m[(A + I )k]−1, (20)

Here, A is a matrix in C
N×N with −k not being an eigenvalue of A.

The following relations [4, 10, 21] also holds application in proving our results
in Sect. 4:

(
ξ
√
2A

)m = m!
[ m2 ]∑

k=0

ηk

k!(m − 2k)!Hm−2k(ξ, η, A), (21)

and

ξm I = m!
m∑

k=0

(−1)k

k!(m − k)! (A + I )m[(A + I )k]−1ηm−k L(A)
k (ξ, η). (22)

The article is an effort to further emphasize the significance of using generating func-
tions to extract those properties associated with two-variable extensions of second
form Chebyshev matrix polynomials. In the next section, we ascertain that these
families of matrix polynomials follow some recurrence relations and appear as finite
series solutions of matrix differential equations. Section3 displays the hypergeomet-
ric matrix representation for the second kind Chebychev matrix polynomials with
two variables. Section4 is characterized by the link between generalized Chebyshev
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matrix polynomials and Hermite matrix polynomials and also with Laguerre matrix
polynomials. Section5 is to findVolterra integral equation associatedwith the second
kind of Chebyshev matrix polynomials in two variables.

2 Matrix Differential Recurrence Relations

This section of the paper suggests establishing some pure and differential matrix
recurrence relations satisfied by generalized two-variable Chebyshev matrix polyno-
mials of the second kind Um(ξ, η, A). Now, taking term wise partial differentiation
of Eq. (9)

(−1)(−z
√
2A)

(
1 − ξz

√
2A + ηz2 I

)−1 =
∞∑

m=0

∂

∂ξ
Um(ξ, η, A)zm .

Hence, it follows that

∂

∂ξ
Um(ξ, η, A) = √

2A
(
1 − ξz

√
2A + ηz2 I

)−1
U(m−1)(ξ, η, A).

Continuing term wise differentiation for 0 ≤ r ≤ m, we get

∂r

∂ξr
Um(ξ, η, A) = (

√
2A)r

(
1 − ξz

√
2A + ηz2 I

)−r
U(m−r)(ξ, η, A).

Theorem 1 The following relation holds true

ξ
∂

∂ξ
Um(ξ, η, A) + 2η

∂

∂η
Um(ξ, η, A) − mUm(ξ, η, A) = 0. (23)

Proof To prove the above Eq. (23), we have partially differential equation (9) with
respect to ξ, η and z respectively, we get

∂

∂ξ
F(ξ, η, z; A) = z

√
2AF2(ξ, η, z; A), (24)

∂

∂η
F(ξ, η, t; A) = −z2 I F2(ξ, η, z; A), (25)

and
∂

∂z
F(ξ, η, z; A) = (ξ

√
2A − 2ηz I )F2(ξ, η, z; A). (26)

From the above three Eqs. (24), (25), and (26), we can easily frame that
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ξ
∂F

∂ξ
+ 2η

∂F

∂η
− z

∂F

∂z
= 0, (27)

which in view of (9) and equating the coefficient of zn gives

ξ
∂

∂ξ
Um(ξ, η, A) + 2η

∂

∂η
Um(ξ, η, A) − mUm(ξ, η, A) = 0. (28)

Theorem 2 The following partial matrix differential equations hold true

ξ
√
2A

∂

∂ξ
Um(ξ, η, A) − m

√
2AUm(ξ, η, A) = 2η

∂

∂ξ
Um−1(ξ, η, A),

and

ξ
√
2A

∂

∂η
Um(ξ, η, A) − 2η

∂

∂η
Um(ξ, η, A) = (m + 1)Um−1(ξ, η, A). (29)

Proof Commencing with (24) and (26), we have

(
ξ
√
2A − 2ηz I

) ∂F

∂ξ
− z

√
2A

∂F

∂z
= 0,

which on using (9) becomes

∞∑

m=0

ξ
√
2A

∂

∂ξ
Um(ξ, η, A)zm −

∞∑

m=0

m
√
2AUm(ξ, η, A)zm =

∞∑

m=1

2η
∂

∂ξ
Um−1(ξ, η, A)zm .

Keeping in view that ∂
∂ξ
U0(ξ, η, A) = 0 , we arrive at a differential matrix relation

of the form

ξ
√
2A

∂

∂ξ
Um(ξ, η, A) − m

√
2AUm(ξ, η, A) = 2η

∂

∂ξ
Um−1(ξ, η, A). (30)

Similarly, the above procedure when applied with (25) and (26), gives

ξ
√
2A

∂

∂η
Um(ξ, η, A) − 2η

∂

∂η
Um−1(ξ, η, A) = (m − 1)Um−1(ξ, η, A). (31)

This ends the proof.

Theorem 3 The following three-term matrix recurrence relations hold true

Um(ξ, η, A) = ξ
√
2AUm−1(ξ, η, A) − ηUm−2(ξ, η, A),
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and

mUm(ξ, η, A) + mu
√
2AUm−1(ξ, η, A) − (3m − 4)ηUm−2(ξ, η, A) = 0. (32)

Proof From (24) and (26), on applying (9), one gets

(
I − ξz

√
2A + ηz2 I

)−2 =
∞∑

m=1

(√
2A

)−1 ∂

∂ξ
Um(ξ, η, A)zm−1, (33)

(
ξ
√
2A − 2ηz I

) (
I − ξz

√
2A + ηz2 I

)−2 =
∞∑

m=1

mUm(ξ, η, A)zm−1. (34)

It is apparent to write I − ηz2 I − z(ξ
√
2A − 2ηz I ) = I − ξz

√
2A + ηz2 I . Thus,

by multiplying (33) by I − ηz2 I and (34) by z followed by their difference yields

(m + 1)
√
2AUm(ξ, η, A) = ∂

∂ξ
Um+1(ξ, η, A) − η

∂

∂ξ
Um−1(ξ, η, A). (35)

Substituting value of η ∂
∂ξ
Um−1(ξ, η; A) from (35) into (30), we get

ξ
√
2A

∂

∂ξ
Um(ξ, η, A) = 2

∂

∂ξ
Um+1(ξ, η, A) − (m + 2)

√
2AUm(ξ, η, A). (36)

Replacing m by (m − 1) in (36) and putting the resulting expression for ∂
∂ξ
Um−1

(ξ, η, A) into (30), gives

((
ξ
√
2A

)2 − 4η I

)
∂

∂ξ
Um (ξ, η, A) = mξ

(√
2A

)2
Um (ξ, η, A) − 2η(m + 1)

√
2AUm−1(ξ, η, A).

(37)

Now by multiplying (30) by

((
ξ
√
2A

)2 − 4η I

)
and substituting for

((
ξ
√
2A

)2 − 4η I

)
∂

∂ξ
Um(ξ, η, A)

and ((
ξ
√
2A

)2 − 4η I

)
∂

∂ξ
Um−1(ξ, η, A).

From (37) to obtain

Um(ξ, η, A) = ξ
√
2AUm−1(ξ, η, A) − ηUm−2(ξ, η, A), (38)
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which is the three-term matrix recurrence relationship satisfied by second kind
Chebyshev matrix polynomials in two variables.

After this, we have to apply a similar approach to (25) and (26), and we obtain

mUm(ξ, η, A) + mξ
√
2AUm−1(ξ, η, A) − (3m − 4)ηUm−2(ξ, η, A) = 0. (39)

Now, we introduce the two-variable Chebyshev matrix differential equation as fol-
lows:

Theorem 4 The following matrix differential equation holds true

(
(ξ

√
2A)2 − 4η I

)
D2

ξUm (ξ, η, A) + ξ(
√
2A)2DξUm (ξ, η, A) − m(m + 1)(

√
2A)2Um (ξ, η, A) = 0,

(40)
where D2

ξ = ∂2

∂ξ2
and Dξ = ∂

∂ξ
.

Proof To obtain the above result, we have to replace m by (m − 1) in (36) and then
differentiate with respect to ξ, we achieve

ξ
√
2AD2

ξUm−1(ξ, η, A) = 2D2
ξUm(ξ, η, A) − (m + 1)

√
2ADξUm−1(ξ, η, A).

(41)
Again differentiating (30) with respect to ξ, we have

ξ
√
2AD2

ξUm(ξ, η, A) − m
√
2ADξUm(ξ, η, A) = 2ηD2

ξUm−1(ξ, η, A). (42)

By putting value of DξUm−1(ξ, η, A) from (30) and D2
ξUm−1(ξ, η, A) from (42) into

(41) and by a little rearrangement of terms, we get the Chebyshev matrix differential
equation for two variable as follows:

((
(ξ

√
2A)2 − 4η I

)
D2

ξ + ξ(
√
2A)2Dξ − m(m + 1)(

√
2A)2

)
Um(ξ, η, A) = 0. (43)

Theorem 5 The following relation holds true

∂r

∂ξr
Um−r (ξ, η, A) − (−1)r

(√
2A

)r ∂r

∂ηr
Um(ξ, η, A) = 0. (44)

Proof Differentiating (9) with respect to ξ and η, we get

(
z
√
2A

) (
I − ξz

√
2A + ηz2 I

)−2 =
∞∑

m=0

∂

∂ξ
Un(ξ, η, A)zm, (45)

and

− z2 I
(
I − ξz

√
2A + ηz2 I

)−2 =
∞∑

m=0

∂

∂η
Um(ξ, η, A)zm . (46)

Iteration (45) and (46), for 0 ≤ r ≤ m, leads to the relation (44).
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3 Hypergeometric Matrix Representation

In this section, we represent two-variable Chebyshev matrix polynomials of second
kind Um(ξ, η, A) in terms of hypergeometric matrix function 2F1 defined in (1).

From relation (4) for r = 2 j , we obtain

1

(m − 2 j)! I = (−m)2 j

m! I = (−mI )2 j
m! ; 0 ≤ 2 j ≤ m, (47)

and from relation (3), we can write

(m − j)! = (I )m− j = (−1) j (I )m[(−mI ) j ]−1 ; 0 ≤ j ≤ m. (48)

Now with the aid of (47), (48), and relation (5), the explicit representation for
Um(ξ, η, A) transforms as follows:

Um(ξ, η, A) =
[ m2 ]∑

j=0

(−1) j (m − j)!
(
ξ
√
2A

)m−2 j
η j

j !(m − 2 j)!

=
[ m2 ]∑

j=0

(−1) j (I )m− j

(
ξ
√
2A

)m−2 j
η j (−mI )2 j

j !m!

=
[ m2 ]∑

j=0

(−mI )2 j
[
(−mI ) j

]−1
(
ξ
√
2A

)m−2 j
η j

j !

=
[ m2 ]∑

j=0

22 j
(− 1

2mI
)
j

(− 1
2 (m − 1)I

)
j

[
(−mI ) j

]−1
(
ξ
√
2A

)m−2 j
η j

j !

Um(ξ, η, A) =
(
ξ
√
2A

)m [ m2 ]∑

j=0

(− 1
2mI

)
j

(− 1
2 (m − 1)I

)
j

[
(−mI ) j

]−1
η j ξ−2 j (2A−1) j

j !

Um(ξ, η, A) =
(
ξ
√
2A

)m
2F1

[
−1

2
mI,−1

2
(m − 1)I ; −mI ; 2ηA

−1

ξ2

]
,

∥∥∥∥
2ηA−1

ξ2

∥∥∥∥ < 1, (3.3)
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which gives another representation in the form of hypergeometric matrix
function 2F1.

4 Expansion of Two-Variable Chebyshev Matrix
Polynomials of Second Kind in Series of Hermite Matrix
Polynomials and Laguerre Matrix Polynomials
of Two-Variable

Working with (9) and (7) and using the identity (21), we have the series

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

[ j
2 ]∑

p=0

(−1)p( j − p)!ηr
(
ξ
√
2A

) j−2p

p!( j − 2p)! z j

=
∞∑

j=0

∞∑

p=0

(−1)p( j + p)!η p
(
ξ
√
2A

) j

p! j ! z j+2p

=
∞∑

j=0

∞∑

p=0

[ j
2 ]∑

q=0

(−1)p( j + p)!ηr+s Hj−2q(ξ, η, A)

p!q!( j − 2q)! z j+2p

=
∞∑

j=0

∞∑

p=0

[ j
2 ]∑

q=0

(−1)p(1) j+pη
p+q

p!q!( j − 2q)! Hj−2q(ξ, η, A)z j+2p

=
∞∑

j=0

∞∑

p=0

∞∑

q=0

(−1)p(1) j+p+2qη
p+q

p!q! j ! Hj (ξ, η, A)z j+2p+2q

=
∞∑

j=0

∞∑

p=0

p∑

q=0

(−1)p−q(1) j+p+qη
p

(p − q)!q! j ! Hj (ξ, η, A)z j+2p. (49)

Now since (1) j+p+q = ( j + p + 1)q(1) j+p, we have
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∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

p=0

p∑

q=0

(−1)p(−1)−q

(p − q)!
( j + p + 1)q (1) j+pη

p

q! j ! Hj (ξ, η, A)z j+2p

=
∞∑

j=0

∞∑

p=0

p∑

q=0

(−1)p(−p)q( j + p + 1)q(1) j+pη
p

p!q! j ! Hj (ξ, η, A)z j+2p

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

p=0

(−1)p

p! j ! 2F0 (−p, j + p + 1; −; 1) (1) j+pη
pHj (ξ, η, A)z j+2p.

Finally, by using (1) and (8), it reduces to

=
∞∑

j=0

[ j
2 ]∑

p=0

(−1)p

p!( j − 2p)! 2F0 (−p, j − p + 1;−; 1) (1) j−pη
pHj−2p(ξ, η, A)z j .

(50)
Conclusively, an identification of coefficient of z j implies an expansion of two-
variable Chebyshev matrix polynomials as a series of Hermite matrix polynomials as

Uj (ξ, η, A) =
[ j
2 ]∑

p=0

(−1)p

p!( j − 2p)! 2F0 (−p, j − p + 1; −; 1) (1) j−pη
pHj−2p(ξ, η, A). (51)

Once again, working with (9) and (7) and using (20), we have the series

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

[ j
2 ]∑

q=0

(−1)q( j − q)!ηq
(
ξ
√
2A

) j−2q

q!( j − 2q)! z j

=
∞∑

j=0

∞∑

q=0

(−1)q( j + q)!ηq
(√

2A
) j

ξ j

q! j ! z j+2q

=
∞∑

j=0

∞∑

q=0

j∑

p=0

(−1)p+q ( j + q)!ηq
(√

2A
) j

p!q!( j − p)! η j−p(A + I ) j [(A + I )p]−1L(A)
p (ξ, η)z j+2q ,

(52)
which on using (6) becomes
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∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

q=0

∞∑

p=0

(−1)p+q( j + q + p)!
(√

2A
) j+p

p!q! j ! η j+q

× (A + I ) j+p

[
(A + I )p

]−1
L(A)

p (ξ, η)z j+p+2q . (53)

From (8), we have

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

p=0

[
j
2

]

∑

q=0

(−1)p+q( j − q + p)!
(√

2A
) j+p−2q

p!q!( j − 2q)! η j−q

× (A + I ) j+p−2q [(A + I )p]−1L(A)
p (ξ, η)z j+p. (54)

Now, we know that

( j + p − q)! = (1) j+p−q = (−1)q(1) j+p
[
((− j − p)I )q

]−1

and

(A + I ) j+p−2q = 2−2q (A + I ) j+p

[(
1

2
((1 − j − p)I − A)

)

q

]−1 [(
− 1

2
(( j + p)I + A)

)

q

]−1

.

Therefore,

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

p=0

[ j
2 ]∑

q=0

(−1)p+q
(√

2A
) j+p−2q

p!q!( j − 2q)! (−1)q(1) j+pη
j−q

× [
((− j − p)I )q

]−1
2−2q(A + I ) j+p

[(
1

2
((1 − j − p)I − A)

)

q

]−1

×
[(

−1

2
(( j + p)I + A)

)

q

]−1

[(A + I )p]−1L(A)
p (ξ, η)z j+p.

Next, using identities (4) and (5), we arrive at
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∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

∞∑

p=0

[ j
2 ]∑

q=0

1

q!
(

−1

2
j I

)

q

(
−1

2
( j − 1)I

)

q

[
((− j − p)I )q

]−1

×
[(

1

2
((1 − j − p)I − A)

)

q

]−1 [(
−1

2
(( j + p)I + A)

)

q

]−1

×
(−1)p

(√
2A

) j+p−2q
(1) j+p

j !p! (A + I ) j+p[(A + I )p]−1η j−q L(A)
p (ξ, η)z j+p

∞∑

j=0

Uj (ξ, η, A)z j =
∞∑

j=0

j∑

p=0

2F3

[
−1

2
( j − p) I,−1

2
( j − p − 1)I ;−nI,

× 1

2
((1 − j)I − A) ,−1

2
( j I + A);

(√
2A

)−2

η

⎤

⎥⎦
j !(−1)p

(√
2A

) j

p!( j − p)!

× (A + I ) j [(A + I )p]−1η j−pL(A)
p (ξ, η)z j , (55)

where
∥∥∥ (

√
2A)−2

η

∥∥∥ < 1. Finally, on comparing the coefficient of z j on both sides, we

easily get the expansion of Chebyshev matrix polynomials in terms of Laguerre
matrix polynomials as

Uj (ξ, η, A) = j !
(√

2A
) j

j∑

p=0

2F3

[
−1

2
( j − p)I,−1

2
( j − p − 1)I ;− j I,

× 1

2
((1 − j)I − A),−1

2
( j I + A);

(√
2A

)−2

η

⎤

⎥⎦
(−1)p

p!( j − p)!

× (A + I ) j
[
(A + I )p

]−1
η j−pL(A)

p (ξ, η). (56)
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5 Volterra Integral Equation of Chebyshev Matrix
Polynomials of the Second Kind U j (ξ,η, A)

We have matrix differential Eq. (43), whose solution is Chebyshev matrix polyno-
mials of the second kind of two variables

((
(ξ

√
2A)2 − 4η I

)
D2

ξ + ξ(
√
2A)2Dξ − m(m + 1)(

√
2A)2

)
Um(ξ, η, A) = 0. m ≥ 0 (57)

in view of Eqs. (12) and (13), we have

(
Um(ξ, η, A)

)

(ξ=0)
=

{
0 m = 2r + 1

(−1)m(η)m m = 2r
(58)

Also, from Eqs. (16) and (17), we have

( ∂

∂ξ
Um(ξ, η, A)

)

(ξ=0)
=

{
0 m = 2r
(−1)m

m

√
2A(η)m m = 2r + 1

(59)

Now,we deal with a problemof obtaining the Integral equation from the abovematrix
differential equation along with the initial conditions given by (58) and (59). Now
we consider the case for even m, then Eq. (57) becomes

((
(ξ

√
2A)2 − 4η I

)
D2

ξ + ξ(
√
2A)2Dξ − 2r(2r + 1)(

√
2A)2

)
U2r (ξ, η, A) = 0. r ≥ 0 (60)

Now, we have

∂2

∂ξ2
U2r (ξ, η, A) = (

√
2A)2

(
1 − ξz

√
2A + ηz2 I

)−2
U(2r−2)(ξ, η, A). (61)

Integrating equation (61) and using the initial conditions, given by Eqs. (58) and (59)
at ξ = 0

∂

∂ξ
U2r (ξ, η, A) = (

√
2A)2

(
1 + ηz2 I

)−2
∫ ξ

0
U(2r−2)(x, η, A)dx . (62)

and

U2r (ξ, η, A) = (
√
2A)2

(
1 + ηz2 I

)−2
∫ ξ

0
(ξ − x)U(2r−2)(x, η, A)dx + (−1)rη2r

(63)
Using Eqs. (62) and (63) in Eq. (57).

(
√
2A)2

(
1 + ηz2 I

)−2
(
(ξ

√
2A)2 − 4η I

)
U(2r−2)(ξ, η, A) + (

√
2A)4

(
1 + ηz2 I

)−2
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×
∫ ξ

0

(
ξ − (ξ − x)(2r(2r + 1))

)
U(2r−2)(x, η, A)dx

+ (−1)r (2r(2r + 1))(
√
2A)2η2r = 0 (64)

Replacing r by r + 1 in Eq. (64)

(
√
2A)2

(
1 + ηz2 I

)−2
(
(ξ

√
2A)2 − 4η I

)
U2r (ξ, η, A) + (

√
2A)4

(
1 + ηz2 I

)−2

×
∫ ξ

0

(
ξ − (ξ − x)((2r + 2)(2r + 3)

)
U2r (x, η, A)dx

+ (−1)r+1((2r + 2)(2r + 3))(
√
2A)2η2r+2 = 0 (65)

Next we consider the matrix differential equation (57) for m = 2r + 1 that is
((

(ξ
√
2A)2 − 4η I

)
D2

ξ + ξ(
√
2A)2Dξ − (2r + 1)(2r + 2)(

√
2A)2

)
U2r+1(ξ, η, A) = 0. (66)

Following the same arguments, the matrix differential equation (66) reduces to

(
√
2A)2

(
1 + ηz2 I

)−2
(
(ξ

√
2A)2 − 4η I

)
U(2r−1)(ξ, η, A) + (

√
2A)4

(
1 + ηz2 I

)−2

×
∫ ξ

0

(
ξ − (ξ − x)((2r + 1)(2r + 2))

)
U(2r−1)(x, η, A)dx

+ (−1)r+1(2r + 1)(2r + 2)(
√
2A)2η2r+1 = 0 (67)

Replacing r by r + 1 in Eq. (67)

(
√
2A)2

(
1 + ηz2 I

)−2
(
(ξ

√
2A)2 − 4η I

)
U(2r+1)(ξ, η, A) + (

√
2A)4

(
1 + ηz2 I

)−2

×
∫ ξ

0

(
ξ − (ξ − x)((2r + 3)(2r + 4))

)
U(2r+1)(x, η, A)dx

+ (−1)r (2r + 3)(2r + 4)(
√
2A)2η2r+3 = 0 (68)

Finally, combining both equations for even and odd, we get Volterra integral equation
of Chebyshev matrix polynomials of the second kind of two variables in the form

(
√
2A)2

(
1 + ηz2 I

)−2
(
(ξ

√
2A)2 − 4η I

)
Um(ξ, η, A) + (

√
2A)4

(
1 + ηz2 I

)−2

×
∫ ξ

0

(
ξ − (ξ − x)((m + 2)(m + 3))

)
Um(x, η, A)dx

+ (−1)[m/2]+1(m + 2)(m + 3)(
√
2A)2ηm+2 = 0 (69)
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6 Conclusion

This section is the epitome of the results obtained in the foregoing sections. In
this manuscript, we have studied and introduced the second kind Chebyshev matrix
polynomials in two variables and obtained its significant properties. We obtained
the solution of Volterra integral equation for the second kind Chebyshev matrix
polynomials in two variables with the help of the matrix differential equation. We
concluded the present research work by giving some comments on the results of
Sects. 2–5.

Therefore, the so obtained results in this article seem to be useful in the generalized
Chebyshev matrix polynomials of the second kind U (m)

j (ξ, η, A) and the first kind
Chebyshev matrix polynomials for two variables Tj (ξ, η, A) can be exploited to
developnewproperties (matrix recurrence relations andmatrix differential equations)
in a similar manner as shown in the present paper.
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Blow-up Analysis and Global Existence
of Solutions for a Fractional
Reaction-Diffusion Equation

R. Saranya and N. Annapoorani

Abstract This paper is concernedwith the blow-up phenomena and global existence
of a fractional nonlinear reaction-diffusion equation with a non-local source term.
Under sufficient conditions on the weight function a(x) and when the initial data
is small enough, the global existence of solutions is proved using the comparison
principle. We establish a finite time blow-up of the solution with large initial data
by converting the fractional PDE into a simple ordinary differential inequality using
the differential inequality technique. Moreover, by solving the obtained ordinary
differential inequality, an upper bound of the blow-up time is also deduced.

Keywords Blow-up · Global existence · Fractional partial differential equation

1 Introduction

In this paper, we consider the following fractional nonlinear reaction-diffusion
equation

C∂αu(x, t)

∂tα
= D � u(x, t) + a(x) f (u) + u p(x, t), x ∈ Ω, t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω, (1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

where Ω is a bounded convex region in Rn(n ≥ 1) with smooth boundary ∂Ω and

D > 0 is the diffusion coefficient.
C∂αu

∂tα
is the Caputo fractional derivative of order

0 < α < 1 which is defined with respect to the time variable as
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C∂αu

∂tα
= 1

Γ (1 − α)

∫ t

0
(t − s)−α ∂u(x, s)

∂s
ds. (2)

Suppose that the nonlinearity f (u) = ul(x, t)

( ∫
Ω

ul+1(x, t)dx

)m

is a non-negative

continuous function. The nonlinear terms a(x) f (u) + u p represents the reaction-
kinetics. The exponents l ≥ 0, m > 0 and p > 1, and the weight function a(x) ∈
C(Ω) satisfies

(A1) a(x) > 0, x ∈ Ω .
(A2) 0 ≤ C1 < a(x) < C2 < ∞, ∀ x ∈ Ω.

Fractional derivative is an arbitrary order derivative which incorporates memory phe-
nomena such that it concatenates both integral and differential operators. Fractional
Calculus is once thought of esoteric in nature. But in recent few decades, it has
been accustomed to model biological, physical and engineering processes. Besides,
most visual phenomena of quantum mechanics, fluid dynamics, ecological systems
and numerous models are controlled by fractional differential equations within their
domain of existence.

Reaction-diffusion equation of type (1) emerges naturally in various mathemat-
ical models from dynamics of bio-reactors and bio-sensors, population dynamics,
combustion theory, compressible reactant gas model and so on [2–4, 6, 11, 12].
In chemical systems, those equations illustrate the production of the material, by
chemical reaction, which competes with the diffusion of that material. Systems of
such equations generally comprise numerous interacting components as chemical
reactions and are widely used to trace out the formation of patterns in a variety of
processes in the applied sciences.

The nonlinear processes lead to the study of new problems in the areas of partial
differential equations and analysis. The blow-up of the solution in the nonlinear evo-
lution problem is one of the most remarkable properties that differs from the linear
ones. The singularities that occur in linear problems are often known as fixed singu-
larities whereas in nonlinear problems, they are known to be movable singularities
as it depends on the initial data and other properties of the problem.

In recent decades, there are many works established which concerns the global
existence and blow-up phenomena of local and non-local reaction-diffusion equation
[9, 10, 17]. For p = l = 0, the blow-up phenomena of time-fractional diffusion equa-
tion (1) with variable exponents is discussed byManimaran and Shangerganesh [15],
where the non-local source term determines human-controlled distribution function.
The global existence and lower and upper bounds of the blow-up time of the solution
are obtained for (1) when α = 1 by Ma and Fang [13]. Cao et al. [7] established
a finite time blow-up and long-time behavior of the solution of a time-fractional
diffusion equation with local source term. Pinasco [16] discussed the blow-up solu-
tion for the parabolic and hyperbolic problems with a non-local source term using
Kaplan’s eigenvalue method and established a local existence theory for the respec-
tive problems with a fixed-point technique. Ma et al. [14] investigated the blow-up
phenomena of a reaction-diffusion equation with weighted exponential nonlinearity
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when α = 1. Tao et al. [18] established a global existence by constructing suitable
sub- and super-solutions and obtained lower bounds of the blow-up time by Kaplan’s
eigenvalue method.

Motivated by the above works, we analyze the blow-up phenomena of the
problem (1) according to the conditions on the exponents l,m and p. Moreover,
we prove the global existence of solutions to the problem (1). The outline of this
paper is as follows: In Sect. 2, finite time blow-up of the solution is established
for 0 ≤ l < 1 and l > 1. In Sect. 3, we establish a comparison principle for (1) by
defining sub- and super-solutions. Also, global existence is proved using comparison
principle for l,m ≥ 1 and p > 1.

2 Blow-Up of Solutions in Finite Time

In this section, we derive the energy functionals of the problem (1) which is important
to derive the blow-up phenomena of the solution. The positive initial energy obtained
in Lemmas 2 and 3 leads to the blow-up of the solution obtained in Theorems 1
and 2, respectively. Using maximum principle and monotonicity condition as in Cao
et al. [7], the Caputo fractional derivative of order 0 < α < 1 can be written as

C∂αu

∂tα
≤ t1−α

Γ (2 − α)

∂u

∂t
. (3)

Lemma 1 (Jensen’s Inequality [5]) Suppose that � is a real valued function on Ω

and let χ and ϕ be non-negative Riemann-integrable functions on Ω . Then,

�

( ∫
Ω

χ(x)ϕ(x)dx

)
≤

(∫
Ω

�(χ(x))ϕ(x)dx

)
,

where
∫

Ω

ϕ(x)dx = 1.

Lemma 2 Let the assumptions (A1)−(A2) hold true and the exponents l,m ≥ 1
and p > 1. Define an energy function

E(t) := −D
∫

Ω

|∇u|2dx + C2

m + 1

( ∫
Ω

ul+1dx

)m

+
∫

Ω

u p+1dx . (4)

Then for u0(x) ≥ 0, E ′(t) > 0 which implies E(t) > E(0).

Proof Multiplying (1) by ut and integrating over Ω , we use (A1) − (A2) to get
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∫
Ω

C∂αu

∂tα
utdx = D

∫
Ω

�uutdx +
∫

Ω

a(x) f (u)utdx +
∫

Ω

u putdx

≤ −D
∫

Ω

∇u.∇utdx + C2

( ∫
Ω

ulutdx

)

( ∫
Ω

ul+1dx

)m

+
∫

Ω

u putdx

= −D

2

d

dt

∫
Ω

|∇u|2dx + C2

l + 1

d

dt

( ∫
Ω

ul+1dx

)

( ∫
Ω

ul+1dx

)m

+ 1

p + 1

d

dt

∫
Ω

u p+1dx

= −D

2

d

dt

∫
Ω

|∇u|2dx + C2

(l + 1)(m + 1)

d

dt

(∫
Ω

ul+1dx

)m+1

+ 1

p + 1

d

dt

∫
Ω

u p+1dx .

Thus, we have

Γ (2 − α)

t1−α

∫
Ω

∣∣∣∣
C∂αu

∂tα

∣∣∣∣
2

dx

≤ 1

2

d

dt

(
− D

∫
Ω

|∇u|2dx + C2

m + 1

(∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)
.

This implies from (4) that

E ′(t) ≥ 2Γ (2 − α)

t1−α

∫
Ω

∣∣∣∣
C∂αu

∂tα

∣∣∣∣
2

dx > 0.

Thus for u0(x) ≥ 0, E(t) > E(0) > 0.

Theorem 1 Let the assumptions (A1)−(A2) hold true for the weight function a(x)
and the exponents l,m ≥ 1 and p > 1. If u(x, t) is a non-negative solution of the
problem (1), then for sufficiently large initial data u0(x) ≥ 0, there exists a finite
time t∗ such that

lim
t→t∗

u(x, t) = ∞.

Define an auxiliary function

Ψ (t) =
∫

Ω

u2(x, t)dx . (5)

Then the upper bound for the blow-up time can be deduced as
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t∗ ≤
(

2αΨ
2−(m+1)(l+1)

2 (0)

K ((m + 1)(l + 1) − 2)

) 1

α
. (6)

Proof Differentiating (5) with respect to t , we have

Ψ ′(t) = 2
∫

Ω

uutdx .

Using the fact
1

Γ (2 − α)
≤ 2 and in view of (3),

Ψ ′(t) ≥ 2Γ (2 − α)

t1−α

∫
Ω

u
C∂αu

∂tα
dx

≥ 1

t1−α

∫
Ω

u

(
D � u + a(x)ul(x, t)

( ∫
Ω

ul+1(x, t)dx

)m

+ u p(x, t)

)
dx

≥ 1

t1−α

(
− D

∫
Ω

|∇u|2dx + C1

∫
Ω

ul+1

( ∫
Ω

ul+1dx

)m

dx +
∫

Ω

u p+1dx

)

= 1

t1−α

(
− D

∫
Ω

|∇u|2dx + C1

(∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)

= 1

t1−α

(
− D

∫
Ω

|∇u|2dx + C2(m + 1)

m + 1

(∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)

+C1 − C2

t1−α

( ∫
Ω

ul+1dx

)m+1

= 1

t1−α

(
− D

∫
Ω

|∇u|2dx + C2

m + 1

( ∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)

+ mC2

(m + 1)t1−α

( ∫
Ω

ul+1dx

)m+1

+ C1 − C2

t1−α

( ∫
Ω

ul+1dx

)m+1

.

Suppose that

(
mC2

m + 1
+ (C1 − C2)

)
= K > 0. Then from Lemma 2 and using

Jensen’s inequality, we have

Ψ ′(t) ≥ 1

t1−α

(
E(t) + K

(∫
Ω

ul+1dx

)m+1)

≥ K

t1−α

( ∫
Ω

u2dx

) (m + 1)(l + 1)

2 (7)

Ψ ′(t) ≥ K

t1−α
Ψ

(m + 1)(l + 1)

2 (t). (8)
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From (7), we see that Ψ ′(t) > 0 which implies that Ψ (t) > Ψ (0). Now rearranging
and integrating (8) with respect to the time variable from 0 to t , we get

Ψ
1−

(m + 1)(l + 1)

2 (0) − Ψ
1−

(m + 1)(l + 1)

2 (t) ≥ K (m + 1)(l + 1) − 2

2α
tα.

If limt→t∗ Ψ (t) =∞, then we obtain the upper bound of the blow-up time t∗ as in (6).
Thus, we see that the solution of the problem (1) becomes unbounded in L2 norm.

Lemma 3 Suppose that0 ≤ l < 1,m, p > 1and the assumptions (A1) − (A2)hold
true. Define an energy function

F(t) := −D
∫

Ω

|∇u|2dx + 2C2

(l + 1)(m + 1)

(∫
Ω

ul+1dx

)m

+
∫

Ω

u p+1dx . (9)

Then for u0(x) ≥ 0, F ′(t) > 0 which implies that F(t) > F(0).

Proof Following the same procedure as in the proof of Lemma 2, we have

∫
Ω

C∂αu

∂tα
utdx ≤ −D

2

d

dt

∫
Ω

|∇u|2dx + C2

(l + 1)(m + 1)

d

dt

(∫
Ω

ul+1dx

)m+1

+ 1

p + 1

d

dt

∫
Ω

u p+1dx

= 1

2

d

dt

(
− D

∫
Ω

|∇u|2dx + 2C2

(l + 1)(m + 1)

( ∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)
.

Thus from (9), we obtain F ′(t) ≥ 0. This suggests F(t) > F(0).

Theorem 2 Let 0 ≤ l < 1, m, p > 1 and the assumptions (A1) − (A2) hold true
for the weight function a(x). Then the solution of the problem (1) blows up in finite
time t∗ such that the upper bound can be deduced as

t∗ ≤
(

2αΨ
2−(m+1)(l+1)

2 (0)

M((m + 1)(l + 1) − 2)

) 1

α
. (10)

Proof Using the auxiliary function defined as in (5) and following the same proce-
dure as in Theorem 1, we have
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Ψ ′(t) ≥ 1

t1−α

(
− D

∫
Ω

|∇u|2dx + C1

( ∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)

= 1

t1−α

(
− D

∫
Ω

|∇u|2dx + 2C2

(l + 1)(m + 1)

( ∫
Ω

ul+1dx

)m+1

+
∫

Ω

u p+1dx

)

+ 1

t1−α

(
(C1 − 2C2)

(∫
Ω

ul+1dx

)m+1

+ 2C2K

K + 1

(∫
Ω

ul+1dx

)m+1)
,

where K = lm + l + m. Assuming for suitable values of C1, C2, l, m and p, the
constant

C1(K + 1) − 2C2

K + 1
= M > 0.

Now by Lemma 3 and Jensen’s inequality, we have

Ψ ′(t) ≥ M

t1−α

( ∫
Ω

u2dx

) (l+1)(m+1)
2

(11)

= M

t1−α
Ψ

(l+1)(m+1)
2 (t).

Inequality (11) shows that Ψ (t) > Ψ (0). Also by appropriate choice of constants l

and m, we see that
(m + 1)(l + 1)

2
> 1. Now, integrating (11) from 0 to t , we get

Ψ
1−

(m + 1)(l + 1)

2 (0) − Ψ
1−

(m + 1)(l + 1)

2 (t) ≥ M(m + 1)(l + 1) − 2

2α
tα.

If limt→t∗ Ψ (t) = ∞, then the blow-up time of the solution of the problem (1) is
obtained as in (10).

3 Global Existence

This section discusses the global existence by constructing appropriate upper and
lower solutions to the problem (1). We prove the comparison principle by defining
the sub- and super-solutions of the solution to the problem (1) as follows.

Definition 1 A smooth function w(x, t) is called the super-solution to the problem
(1) on (0, T ) provided
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C∂αw

∂tα
≥ D � w(x, t) + a(x)wl(x, t)

( ∫
Ω

wl+1(x, t)dx

)m

+ w p(x, t),

w(x, 0) ≥ w0(x), x ∈ Ω, (12)

w(x, t) ≥ 0, x ∈ ∂Ω, t ∈ (0, T ).

By reversing the inequalities (12), we can define the sub-solution v(x, t) to the
problem (1) similar to Definition 1. To prove the comparison principle, we are in
need of the following lemmas from fractional calculus.

Lemma 4 ([1]) Let X be a Hilbert Space and u : [0, T ] → X. Then for 0 < α < 1,

2(u(t), C0 D
α
t u(t)) ≥ C

0 D
α
t |u(t)|2.

Lemma 5 (Gronwall type lemma [8]) Assume that α, T, ε1, ε2 ∈ R+ and let u :
[0, T ] → R is a continuous function satisfying the inequality

|u(t)| ≤ ε1 + ε2

Γ (α)

∫ T

0
(t − s)α−1|u(s)|ds

for all t ∈ [0, T ]. Then,

|u(t)| ≤ ε1Eα(ε2tα), ∀t ∈ [0, T ].

Here, Eα represents the Mittag-Leffler function of order α.

Next to prove the global existence, we present the comparison principle to the
problem (1).

Theorem 3 If w(x, t) and v(x, t) be the super- and sub-solutions to the problem
(1), then for any (x, t) ∈ Ω × (0, T ), w(x, t) ≥ v(x, t).

Proof Define z(x, t) = v(x, t) − w(x, t). Suppose that for some t1 ∈ (0, T ),
z(x, t1) ≥ 0. We prove by contradiction that there does not exist such t1 such that we
prove w ≥ v. Now using the definitions of w(x, t) and v(x, t), we can write

C∂αz

∂tα
≤ D � z + a(x)

(
vl

( ∫
Ω

vl+1dx

)m

− wl

(∫
Ω

wl+1dx

)m)
+ (v p − w p).

(13)

Let z+ = max(0, z(x, t)). Multiply (13) by z+ and integrate over Ω to get
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∫
Ω

C∂αz+

∂tα
.z+dx ≤ D

∫
Ω

�z+.z+dx +
∫

Ω

a(x)

(
vl

( ∫
Ω

vl+1dx

)m

−wl

( ∫
Ω

wl+1dx

)m)
.z+dx +

∫
Ω

(v p − w p).z+dx

≤ −D
∫

Ω

|∇z+|2dx + C1

∫
Ω

(
vl

(∫
Ω

vl+1dx

)m

−wl

( ∫
Ω

wl+1dx

)m)
.z+dx +

∫
Ω

(v p − w p).z+dx . (14)

For p > 1, from [16], we write

v p − w p ≤ pψ p−1(v − w), (15)

whereψ ∈ Rn is bounded inΩ × (0, T ). Using (15) in the last term of the inequality
(14), we have

∫
Ω

(v p − w p).z+dx ≤ C3

∫
Ω

(z+)2dx . (16)

For a, b, c, d > 0, if (ac − bd) > 0, we have (a + b)(c − d) ≥ (bc − ad). Using
(15) we write

∫
Ω

(
vl

( ∫
Ω

vl+1dx

)m

− wl

(∫
Ω

wl+1dx

)m)
.z+dx ≤ C4

∫
Ω

(vl − wl).z+dx

≤ C5

∫
Ω

(z+)2dx, (17)

where C4 := supt≥0 φ(t) and φ(t) :=
(( ∫

Ω

vl+1dx

)m

+
( ∫

Ω

wl+1dx

)m)
. Since

the first term in the RHS of inequality (14) is strictly negative and inserting (16) and
(17) in (14), we have

1

2

C∂α

∂tα

∫
Ω

(z+)2dx ≤ C6

∫
Ω

(z+)2dx .

Taking Iα on both sides and using Gronwall type of lemma, we get

∫
Ω

(z+)2dx ≤
( ∫

Ω

(z+(x, 0))2dx

)
Eα(C6t

α).

The definitions of sub- and super-solution imply that z+(x, 0) ≤ 0. Hence, v(x, t) ≤
w(x, t).
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Consider the eigenvalue problem

� χ + λχ = 0, x ∈ Ω (18)

χ = 0, x ∈ ∂Ω,

where χ1(x) is the first eigenfunction corresponding to the eigenvalue λ1 and∫
Ω

χ1(x)dx = 1. Next, we propose themain theorem of global existence of solutions

to the problem (1).

Theorem 4 Let the exponents l,m ≥ 1 and the assumptions (A1) − (A2) hold true.
If the initial data u0(x) ≤ η−β1χ1(x), where β is an arbitrary positive constant,
χ1(x) > 0 and η > 0 is large enough, then the solution to the problem (1) exists for
all t > 0.

Proof We construct a function w(x, t) as in [13]. Let η1 > 0 and β1 > 0 be the
constants to be determined later such that

w(x, t) = (η1 + t)−β1χ1(x). (19)

We claim that w(x, t) is the super-solution to the solution of the problem (1). Now,
we compute

C∂αw

∂tα
− D � w − a(x)wl

( ∫
Ω

wl+1dx

)m

− w p

≥ t−α

Γ (1 − α)

(
1

(η1 + t)β1
− 1

η
β1
1

)
χ1(x) + Dλ1χ1(x)

(η1 + t)β1

− C2χ
l
1

(η1 + t)β1l(1+m)−β1m

∫
Ω

(
χl+1
1 dx

)m

− χ
p
1

(η1 + t)pβ1

≥ χ1

(η1 + t)β1

[
t−α

Γ (1 − α)

(
1 − (η1 + t)β1

η
β1
1

)
+ Dλ1 − C2

(η1 + t)β1(l+lm+m−1)

− 1

(η1 + t)β1(1−p)

]
.

Choosing η1 sufficiently large, we have

C∂αw

∂tα
− D � w − a(x)wl

( ∫
Ω

wl+1dx

)m

− w p ≥ 0. (20)

Also by the hypotheses, the initial data satisfies

w(x, 0) = η−β1χ1(x) ≥ u0(x). (21)
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Hence, the inequalities (20)–(21) show thatw(x, t) is a super-solution to the problem
(1.1) and it exists globally. By Comparison Principle, u(x, t) exists for all t > 0.

Remark If we set a function v(x, t) = η2(T − t)−β2χ1(x) with the initial data
u0(x) ≥ η2T−β2χ1(x), where β2 > 0 and η > 0 sufficiently large,

C∂αv

∂tα
− D � v − a(x)vl

( ∫
Ω

vl+1dx

)m

− v p

≤ η2β2χ1(x)

Γ (1 − α)(α + β2)tα+β2
+ Dη2λ1χ1

(T − t)β2
− C2

ηl+lm+m
2 χl

1

(T − t)−β2(l+lm+m)
− η

p
2 χ

p
1

(T − t)pβ2

≤ η2χ1

[
β2

Γ (1 − α)(α + β2)tα+β2
+ Dλ1

(T − t)β2
− C2

ηK−1
2 χl−1

1

(T − t)−β2K
− η

p−1
2 χ

p−1
1

(T − t)pβ2

]
.

For large values of η2 and β2, we see that

C∂αv

∂tα
− D � v − a(x)vl

( ∫
Ω

vl+1dx

)m

− v p ≤ 0.

Hence with the choice of initial data taken, v(x, t) is a sub-solution to the problem
(1) and it blows up at finite time t∗ ≤ T .
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Ways of Constructing Multiplicative
Magic Cubes

Narbda Rani and Vinod Mishra

Abstract In this paper, the methods for construction of multiplicative magic cubes
of order n from the existing additivemagic cube of order n has been introduced. Also,
themodified Trenkler’s formula for themultiplicativemagic cubes of odd and doubly
even order has been instigated. Moreover, the newly defined power method has been
proposed for the construction of multiplicative magic cubes. In all the methods, the
conditions for obtaining multiplicative magic cubes consisting of either odd or even
or composite numbers as their elements have been elaborated.

Keywords Additive magic cube · Multiplicative magic cube · Magic cube
formula · Trenkler’s formula

1 Introduction

A magic cube (or additive magic cube (AMC)) of order n is a three-dimensional
array of n3 numbers in which the sum of n elements of each row, each column, each
pillar, and each of the four space diagonals is the same [3]. The fixed sum is known
as magic sum and is given by n(n3+1)

2 . For instance, the first, second, and third layer
of a third-order magic cube are, respectively, given below

⎡
⎣
10 26 6
24 1 17
8 15 19

⎤
⎦

⎡
⎣
23 3 16
7 14 21
12 25 5

⎤
⎦

⎡
⎣

9 13 20
11 27 4
22 2 18

⎤
⎦
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A multiplicative magic cube (MMC) of order n is a three-dimensional array of n3

numbers with the property that the product of n elements along each row, column,
pillar, and each space diagonal is the same [1]. The generation ofmultiplicativemagic
cubes opens a new direction to the application areas concerning image processing,
cryptography, stenography, game theory, etc., whichmotivate the researchers for their
study and utilization. Trenkler [4] has introduced the formula for the construction
of an additive magic cube of odd, singly even, and doubly even order separately.
Uko and Barron [2] has generalized the Trenkler’s formula for the magic cubes and
derive sufficient conditions to generate regularmagic cubes. They illustrate three new
formulas for the construction of odd ordermagic cubes that differ from each other and
from the magic cubes generated with Trenkler’s rule. Trenkler [5] has demonstrated
several ways to construct additive and multiplicative magic cubes and provide the
formula for the construction of multiplicative magic cubes from the existing additive
magic cubes. He has also given an algorithm for constructing magic cubes [6]. In this
paper, the various ways of constructing multiplicative magic cubes from the existing
additive magic cubes of order n (n �= 2) have been introduced. Also, the Trenkler’s
rules for constructing odd and doubly even order magic cubes have been modified.

2 Ways of Constructing Multiplicative Magic Cubes of Odd
and Doubly Even Order

2.1 Power Method

Let An =
{
an(i, j, k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
be an additive magic cube (AMC) and Mn

be a multiplicative magic cube (MMC) of order n. Then the first formula for con-

structing magic cubes of order n with magic constant σ(Mn) = 2
n(n3+1)

2 is given as

Mn =
{
mn(i, j, k) = 2an(i, j,k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}

By using this formula, one can obtain a multiplicative magic cube of smallest magic
constant. But if there is no problem with the larger magic constant, then the above
formula is generalized as below

Mn =
{
mn(i, j, k) = ran(i, j,k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}

where r is any real (or complex) number. It is a multiplicative magic cube with magic
constant depicted below

σ(Mn) = r
n(n3+1)

2 = rσ(An)



Ways of Constructing Multiplicative Magic Cubes 81

The following table shows the effect of the elements of a multiplicative magic cube
on changing the values of variable r :-

S.no. Value of r Effect on the elements of MMC
1 r is even number All entries of the required MMC are even
2 r is odd number All entries of the required MMC are odd
3 r is mixed type number All the elements of the resulting MMC are mixed numbers

Example depicting the above formula is as below
Let An be the following AMC of order three with magic constant 42.

⎡
⎣

8 15 19
24 1 17
10 26 6

⎤
⎦

⎡
⎣
12 25 5
7 14 21
23 3 16

⎤
⎦

⎡
⎣
22 2 18
11 27 4
9 13 20

⎤
⎦

Layer 1 Layer 2 Layer 3

Then the required MMC for r = 3 with magic sum 342 is given by

⎡
⎣

38 315 319

324 31 317

310 326 36

⎤
⎦

⎡
⎣
312 325 35

37 314 321

323 33 316

⎤
⎦

⎡
⎣
322 32 318

311 327 34

39 313 320

⎤
⎦

Layer 1 Layer 2 Layer 3

The above formula can be modified by adding or subtracting 1,2,3,...,σ(An) from
the powers of each entry of a MMC.

Thereby, Mn =
{
mn(i, j, k) = ran(i, j,k)−σ(An)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
where r and σ(An)

are any real number and magic sum of the additive magic cube An respectively.
The addition of 1, 2, 3, . . . , σ (An) in the powers makes the magic constant larger
whereas the subtraction decreases the value of the multiplicative magic constant.

2.2 Modified Trenkler’s Formula for MMC

Trenkler [5] has introduced formula for the construction of MMC of odd, singly
even, and doubly even order by using his formulas for AMC. The formula for odd
order MMC is represented as below

Let Mn =
{
mn(i, j, k) = αn2 + βn + γ + 1

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
be an AMC of

ordern, forα = (i − j + k − 1) (mod n), β = (i − j − k) (mod n) andγ = (i +
j + k − 2) (mod n). Then, Qn =

{
qn(i, j, k) = 2α · 3β · 5γ

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
is

the required MMC. If in the above formula 3 is replaced by (2β + 1) for β =
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1, 2, ..., n − 1 and 5 by the numbers (2n + 2γ − 1) for γ = 1, 2, ..., n − 1 uniquely,
then the MMC with smaller magic constant has been obtained.

Modification in the formula: By studying the above formula, we have analyzed
that the expressions used for replacing 3 and 5 are not the fixed one and there is no
restriction of such kind needed if we should not confine to the construction of normal
magic cubes. So, it is possible to construct the multiplicative magic cube by using
the formula

Pn =
{
pn(i, j, k) = au · bv · cw

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
(1)

where u = (i − j + k − 1) (mod n), v = (i − j − k) (mod n), w = (i + j +
k − 2) (mod n) and a, b, c are any three distinct real numbers. By using this for-
mula, the construction of a MMC of any order n (n �= 2) with magic constant
σ(Pn) = aκbκcκ = (abc)κ = (abc)

n(n−1)
2 has been instigated, where κ is the sum

of numbers 0, 1, 2, 3, ..., n − 1.

Example of the 4th orderMMC is represented by putting a = 2, b = 4, c = 6, n = 4,
and k = 6 as under:

⎡
⎢⎢⎣

384 4608 3456 2
72 13824 128 96
3456 2 384 4608
128 96 72 13824

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1152 864 8 1536
55296 32 24 288
8 1536 1152 864
24 288 55296 32

⎤
⎥⎥⎦

Layer 1 Layer 2

⎡
⎢⎢⎣
3456 2 384 4608
128 96 72 13824
384 4608 3456 2
72 13824 128 96

⎤
⎥⎥⎦

⎡
⎢⎢⎣

8 1536 1152 864
24 288 55296 32

1152 864 8 1536
55296 32 24 288

⎤
⎥⎥⎦

Layer 3 Layer 4

which is a MMC with magic constant = 26 · 46 · 66 = 12, 230, 590, 464.
Moreover, in (1), if u, v, w take the values as given below then again the MMC

is obtained.

u =
{
(i − j + k − 1) − n

[
i − j + k − 1

n

]}
(mod n)

v =
{
(i − j − k) − n

[
i − j − k

n

]}
(mod n)

w =
{
(i + j + k − 2) − n

[
i + j + k − 2

n

]}
(mod n)
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Here, [x] denotes the integer part of x and (mod n) gives the remainder after division
by n. The magic cubes obtained by using this formula are not normal magic cubes.
The behavior of elements of the MMC constructed above depends entirely on the
value of the variables a, b, and c. This method has also been tested by taking different
values of a, b, and c like a = 2, b = 3, c = 4 and a = 3, b = 4, c = 7, etc., and for
MMC of various orders. See the table below for checking the different behavior of
a, b, c and the entries of a MMC:

S.no. Value of a Value of b Value of c Order of MMC Effect on magic
constant

Effect on the elements of
MMC

1 Even Even Even Odd Even All pn (i, j, k) are even
except one entry when
pn (i, j, k) = 1

2 Even Even Even Even Even All pn (i, j, k) are only
even

3 Odd Odd Odd Odd/ Even Odd All pn (i, j, k) are only
odd

4 Even Odd Even Odd Even All pn (i, j, k) are either
odd or even

5 Even Odd Even Even Even All pn (i, j, k) are only
even

6 Odd Even Even Odd Even All pn (i, j, k) are either
odd or even

7 Odd Even Even Even Even All pn (i, j, k) are only
even

8 Even Even Odd Odd Even All pn (i, j, k) are either
odd or even

9 Even Even Odd Even Even All pn (i, j, k) are only
even

2.3 Modified Trenkler’s Formula for MMC of Doubly Even
Order

Trenkler [5] has introduced the following formula for the construction of MMC of
doubly even order, i.e., for n ≡ 0 (mod 4), from the AMC.

If Mn =
{
mn(i, j, k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
is the AMC, then its each entry mn(i, j, k) is

given as below

mn(i, j, k) =
{

(i − 1)n2 + ( j − 1)n + k if φ(i, j, k) = 1

(ī − 1)n2 + ( j̄ − 1)n + k̄ if φ(i, j, k) = 0

Then, its corresponding MMC, Qn =
{
qn(i, j, k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
is defined as

below

qn(i, j, k) =
{
2(i−1) · 3( j−1) · 5(k−1) if φ(i, j, k) = 1

2(ī−1) · 3( j̄−1) · 5(k̄−1) if φ(i, j, k) = 0
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where φ(i, j, k) =
{
i + ĩ + j + j̃ + k + k̃

}
(mod 2) and x̄ = n + 1 − x

x̃ =
{
0 for 1 ≤ x ≤ n

2

1 for n
2 < x ≤ n

Modification in the formula: Let An =
{
an(i, j, k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
be an AMC

of order n, n ≡ 0 (mod 4), where each entry is defined as

an(i, j, k) =
{

(k − 1)n2 + ( j − 1)n + i if f (i, j, k) = 1

(n − k)n2 + (n − j)n + (n − i) + 1 if f (i, j, k) = 0

and f (i, j, k) =
{
i +

[
2(i − 1)

n

]
+ j +

[
2( j − 1)

n

]
+ k +

[
2(k − 1)

n

]}
(mod 2) (2)

Here, [x] denotes the integer part of x . Then the resultingMMC, Pn =
{
pn(i, j, k)

∣∣∣∣
1 ≤ i, j, k ≤ n

}
of order n ≡ 0 (mod 4) is demonstrated by the following formula:

pn(i, j, k) =
{
u(k−1) · v( j−1) · wi if f (i, j, k) = 1

u(n−k) · v(n− j) · w(n−i) if f (i, j, k) = 0

and the value of the function f (i, j, k) is same as given in equation (3). Also, u, v,
and w are any three distinct real numbers. If all the three variables u, v, and w are
odd, then we get the MMC with only odd elements and having odd magic constant.
Similarly, if u, v, and w are even, then all the entries of MMC are even including its
magic constant. Moreover, if one or two of u, v and w is/ are taken to be even and
the remaining as odd numbers, then the mixture of both odd as well as even numbers
as the entries of MMC of order n ≡ 0 (mod 4).

Example of P4 on putting u = 3, v = 5, and w = 7 with magic constant (3 · 5 ·
7)6 = 65, 664, 686, 390, 625 is as below

⎡
⎢⎢⎣

7 231525 46305 875
165375 245 1225 1323
23625 1715 8575 189
2401 675 135 300125

⎤
⎥⎥⎦

⎡
⎢⎢⎣
385875 105 525 3087
147 11025 2205 18375
1029 1575 315 128625
1125 36015 180075 9

⎤
⎥⎥⎦

Layer 1 Layer 2

⎡
⎢⎢⎣
128625 315 1575 1029
441 3675 735 55125
3087 525 105 385875
375 108045 540225 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

189 8575 1715 23625
6125 6615 33075 49
875 46305 231525 7
64827 25 5 8103375

⎤
⎥⎥⎦

Layer 3 Layer 4
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2.4 Power Method for MMC of Order n ≡ 0 (mod 4)

In this method, the construction of MMC of order n ≡ 0 (mod 4) from the existing
AMC of order n ≡ 0 (mod 4), defined by the equation (2) and (3), has been repre-
sented using the following formula:

If Rn =
{
rn(i, j, k)

∣∣∣∣ 1 ≤ i, j, k ≤ n

}
is the required MMC, then its all elements

rn(i, j, k) are defined by

rn(i, j, k) =
{
m(k−1)n2+( j−1)n+i if g(i, j, k) = 1

m(n−k)n2+(n− j)n+(n−i)+1 if g(i, j, k) = 0

where g(i, j, k) is equal to the function f (i, j, k) as given by the equation (3).
The magic constant of MMC is

σ(Rn) = m
n(n3+1)

2

Example of Rn with magic constant 2130 is depicted as below by substituting m = 2
in the above formula in (4),

⎡
⎢⎢⎣

21 260 256 213

263 26 210 251

262 27 211 250

24 257 253 216

⎤
⎥⎥⎦

⎡
⎢⎢⎣
248 221 225 236

218 243 239 230

219 242 238 231

245 224 228 233

⎤
⎥⎥⎦

Layer 1 Layer 2

⎡
⎢⎢⎣
232 237 241 220

234 227 223 246

235 226 222 247

229 240 244 217

⎤
⎥⎥⎦

⎡
⎢⎢⎣
249 212 28 261

215 254 258 23

214 255 259 22

252 29 25 264

⎤
⎥⎥⎦

Layer 3 Layer 4

3 Conclusion

In this paper, it can be concluded that there are various ways of constructing mul-
tiplicative magic cubes of several orders from the existing additive magic cubes. It
is also explained very well that the change in behavior of the elements of MMC
including its magic constant on making some changes in the variables used in the
construction formulas. Hence, it becomes possible to obtain a MMC consisting of
either even or odd or composite numbers as its elements.
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Novel q-Rung Orthopair Fuzzy
Hamacher Dual Muirhead Mean
Operator for Multi-attribute
Decision-Making

Sukhwinder Singh Rawat and Komal

Abstract Real-lifemulti-attribute decision-making (MADM)has somemajor issues
related to the space of the problem, inter-dependency among attributes, flexibility in
the aggregation process, etc. So, our objective is to deal with these issues by adopt-
ing suitable tools and techniques like the q-rung orthopair fuzzy set (q-ROFS) for
handling space-related difficulty. Dual Muirhead mean (DMM) is applied to address
the inter-dependency among attributes, and for a flexible aggregation process, the
Hamacher t-norm (TN) and t-conorm (TCN) are utilised.By fusing these approaches,
this paper proposes two novel aggregation operators (AOs) named q-rung orthopair
fuzzy Hamacher dual Muirhead mean (q-ROFHDMM) and q-rung orthopair fuzzy
Hamacher weighted dual Muirhead mean (q-ROFHWDMM) operators. The essen-
tial properties of these AOs and special cases are explored as well. Finally, the
q-ROFHWDMM operator has been used to construct a MADM method. The study
also examines a practical example of selecting an enterprise resource planning (ERP)
system, as well as sensitive and comparative analysis.

Keywords Dual Muirhead mean · Hamacher t-norm and t-conorm ·
Multi-attribute decision-making · q-Rung orthopair fuzzy set

1 Introduction

MADM is a prominent technique that is used to find the best option from a set of
available options that depends on various attributes. SeveralMADM techniques exist
in the literature to handle real-life MADM problems. Most of the real-life MADM
problems have some common issues that need to be resolved formeaningful and real-
istic decision-making (DM). Among many, two major challenges faced by decision-
makers are (i) expressing the assessment values of an alternative with respect to
multiple attributes and (ii) considering the interactional behaviour of these attributes
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in the DM process. To address the first problem, Zadeh introduced the notion of the
fuzzy set [1], which assigns amembership degree to every element in order to express
the impreciseness and vagueness of that element in the set. But the Zadeh fuzzy set
does not address the sense of dissatisfaction. As a result, Atanassov [2] introduced
intuitionistic fuzzy set (IFS) in 1986, which used both membership degree(μ) and
non-membership degree (ν) with conditions μ, ν ∈ [0, 1], 0 ≤ μ + ν ≤ 1. In 2013,
Yager discovered that the condition 0 ≤ μ + ν ≤ 1 (IFS) on μ and ν is violated
in many real-life DM problems. To overcome this drawback, Yager [3] extended
the space of intuitionistic fuzzy numbers and proposed the Pythagorean fuzzy set
(PFS) by making use of the conditions 0 ≤ μ, ν ≤ 1; 0 ≤ μ2 + ν2 ≤ 1. Further, it
is observed by many researchers that there are still many real-life DM problems in
which assessment values (μ, ν) violate the PFS condition. For example, if (0.8, 0.7)
is the assessment data provided by the decision-maker, then we get 0.82 + 0.72 ≥ 1.
Therefore, more extended decision space is required. To further extend the decision
space of fuzzy information (μ and ν), a generalised orthopair fuzzy set, i.e. q-ROFS,
has been introduced by Yager in 2017 [4] . Its membership and non-membership
degrees satisfy the conditions μ, ν ∈ [0, 1]; 0 ≤ μq + νq ≤ 1; q ≥ 1. As the AOs-
based MADM approaches provide both comprehensive values and ranking orders of
the alternatives, and also the DM process of these approaches is more intuitive than
the classical ones such as TOPSIS, AHP, TODIM, PROMETHEE, etc [5]. Several
AOs and their utilisation provide variousMADMmethods for q-rung orthopair fuzzy
numbers (q-ROFNs). For instant, Liu and Wang [6] developed weighted geometric
(WG) and weighted average (WA) operators; Liu and Liu [7] proposed Bonferroni
mean (BM) and geometric BM (GBM) operators; Wei et al. [8] introduced gener-
alised Heronian mean and geometric Heronian mean operators; Wei et al. [9] devel-
oped Maclaurin symmetric mean (MSM) and geometric MSM (GMSM) operators.
Rawat and Komal recently used Muirhead mean (MM), Hamacher TN and TCN for
q-ROFNs and introduced some AOs as well as a MADM approach based on them.
TheMMandDMMare aggregation functions which address the inter-dependency of
multiple attributes through the correlation of their arguments for every permutation
[11]. Various well-knownmeans, like arithmetic mean (AM), geometric mean (GM),
GBM and GMSM, are some special cases of DMM [12]. Hamacher TN and TCN
are conjunctive and disjunctive aggregation functions [13]. Also, they are strictly
decreasing and increasing with parameter γ , respectively, which helps to model con-
junction and disjunction among arguments and provides flexibility in the aggregation
process [14]. Consequently, many researchers utilisedHamacher TN and TCN-based
arithmetic operations to develop some AOs for various fuzzy numbers like intuition-
istic fuzzy numbers (IFNs), Pythagorean fuzzy numbers (PFNs), complex IFNs and
q-ROFNs [15–18].

The focus of this article is to develop some novel Hamacher TN and TCN-based
DMM operators for generalised orthopair fuzzy numbers. This fusion of Hamacher
norms and DMM operator provides both interrelationship among multiple attributes
and flexible aggregation process due to the additional parameter γ in Hamacher
norms. The structure of the paper is as follows: In Sect. 2, definitions of q-ROFS,
Hamacher TN and TCN, MM and DMM operators are discussed briefly. Section
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3 introduces the q-ROFHDMM and q-ROFHWDMM operators with their essential
properties and special cases. Further, in Sect. 4, the q-ROFHWDMM operator-based
MADMapproach has been developed, and a real-lifeDMproblemhas been examined
through this. This section also provides sensitive and comparative analyses. Finally,
some concluding remarks are given in Sect. 5.

2 Preliminaries

2.1 q-Rung Orthopair Fuzzy Set (q-ROFS)

Definition 1 ([4]) The q-ROFS � on a universal set U is defined as

� = {〈x, (μ�(x), ν�(x))〉| x ∈ U } (1)

where μ�(x) : U → [0, 1] is membership and ν�(x) : U → [0, 1] is
non-membership functions that holds, 0 ≤ (μ�(x))q + (ν�(x))q ≤ 1 for all q ≥ 1.
Thedegreeof hesitancyof x in� is defined asπ�(x) = (1 − (μ�(x))q − (ν�(x))q)1/q

and the q-rung orthopair fuzzy number (q-ROFN) can be written as (μ�, ν�).

Definition 2 ([6]) The basic arithmetic operations on any two q-ROFNs, ℵ1 =
(μ1, ν1), and ℵ2 = (μ2, ν2), are as follows:

1. ℵ1 ⊕ ℵ2 = (
(μ

q
1 + μ

q
2 − μ

q
1μ

q
2)

1/q , ν1ν2
)
,

2. ℵ1 ⊗ ℵ2 = (
μ1μ2, (ν

q
1 + ν

q
2 − ν

q
1 ν

q
2 )1/q

)
,

3. λℵ1 = (
(1 − (1 − μ

q
1)

λ)1/q , νλ
1

)
,

4. ℵλ
1 = (

μλ
1, (1 − (1 − ν

q
1 )λ)1/q

)
.

For comparing any two q-ROFNs, we have a score function (S) and an accuracy
function (A) as follows:

Definition 3 ([6]) Let ℵ = (μℵ, νℵ) be a q-ROFN, then the score value of ℵ is
obtained by S(ℵ) ∈ [−1, 1] which is defined as

S(ℵ) = μ
q
ℵ − ν

q
ℵ (2)

The accuracy value of ℵ is obtained by A(ℵ) ∈ [0, 1] which is defined as

A(ℵ) = μ
q
ℵ + ν

q
ℵ (3)

Definition 4 For any two q-ROFNs say ℵ = (μℵ, νℵ) and κ = (μκ, νκ):

1. If S(ℵ) > S(κ), then ℵ � κ

2. If S(ℵ) = S(κ), then

(a) If A(ℵ) > A(κ), then ℵ � κ;
(b) If A(ℵ) = A(κ), then ℵ = κ .



90 S. S. Rawat and Komal

2.2 Hamacher t-Norm (TN) and t-Conorm (TCN)

Hamacher TN (T ) as product (⊗) and Hamacher TCN (T ∗) as sum (⊕) are defined
as follows [13]:

T (ı, j) = ı ⊗ j = ıj

γ + (1 − γ )(ı + j − ıj)
,

T ∗(ı, j) = ı ⊕ j = ı + j − ıj − (1 − γ )ıj

1 − (1 − γ )(ıj)
; γ > 0.

For γ = 1, the Hamacher TN and TCN becomes algebraic TN and TCN:

T (ı, j) = ı ⊗ j = ıj, T ∗(ı, j) = ı ⊕ j = ı + j − ıj.

Similarly, for γ = 2, the Hamacher TN and TCN becomes Einstein TN and TCN:

T (ı, j) = ı ⊗ j = ıj

1 + (1 − ı)(1 − j)
, T ∗(ı, j) = ı ⊕ j = ı + j

1 + ıj
.

2.3 Hamacher Operations for q-ROFNs

If ℵ1 = (μ1, ν1) and ℵ2 = (μ2, ν2) are any two q-ROFNs and γ > 0, then the fol-
lowing arithmetic operations for q-ROFNs are defined using Hamacher TN and TCN
[19]:

ℵ1 ⊕ ℵ2 =
((

(μ1)
q + (μ2)

q − (μ1)
q(μ2)

q − (1 − γ )(μ1)
q(μ2)

q

1 − (1 − γ )(μ1)q(μ2)q

)1/q

,

ν1ν2

(γ + (1 − γ ) ((ν1)q + (ν2)q − (ν1)q(ν2)q))
1/q

)

ℵ1 ⊗ ℵ2 =
(

μ1μ2

(γ + (1 − γ ) ((μ1)q + (μ2)q − (μ1)q(μ2)q))
1/q ,

(
(ν1)

q + (ν2)
q − (ν1)

q(ν2)
q − (1 − γ )(ν1)

q(ν2)
q

1 − (1 − γ )(ν1)q(ν2)q

)1/q
)
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λℵ1 =
((

(1 + (γ − 1)μq
1)

λ − (1 − μ
q
1)

λ

(1 + (γ − 1)μq
1)

λ + (γ − 1)(1 − μ
q
1)

λ

)1/q

,

(γ )1/qνλ
1(

(1 + (γ − 1)(1 − ν
q
1 ))λ + (γ − 1)(νq

1 )λ
)1/q

)

ℵλ
1 =

(
(γ )1/qμλ

1(
(1 + (γ − 1)(1 − μ

q
1))

λ + (γ − 1)(μq
1)

λ
)1/q ,

(
(1 + (γ − 1)νq

1 )λ − (1 − ν
q
1 )λ

(1 + (γ − 1)νq
1 )λ + (γ − 1)(1 − ν

q
1 )λ

)1/q
)

For γ = 1 Hamacher operations becomes algebraic operations and for γ = 2 they
changes to Einstein operations.

2.4 Muirhead Mean (MM)

Definition 5 ([11]) The MM operator for n numbers say ς1, ς2, ..., ςn and a param-
eter vector P = (p1, p2, ..., pn) ∈ �n is defined as

MMP(ς1, ς2, ..., ςn) =
⎛

⎝ 1

n!
∑

π∈Sn

n∏

j=1

ς
p j

π( j)

⎞

⎠

1∑n
j=1 p j

(4)

where Sn is the symmetric group of degree n.

2.5 Dual Muirhead Mean (DMM)

Definition 6 ([11]) TheDMMoperator for n numbers sayς1, ς2, ..., ςn and a param-
eter vector P = (p1, p2, ..., pn) ∈ �n is defined as

DMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
∏

π∈Sn

n∑

j=1

p jςπ( j)

⎞

⎠

1
n!

(5)

where Sn is the symmetric group of degree n. Some special cases of the DMM
operator for different values of P are as follows [12]:

1. If P = (1, 0, 0..., 0), then the DMM operator becomes the GM operator



92 S. S. Rawat and Komal

DMMP(ς1, ς2, ..., ςn) =
(

n∏

i=1

ςi

) 1
n

.

2. If P = (1, 1, ..., 1) or (1/n, 1/n, ..., 1/n), then the DMM operator becomes the
AM operator

DMM(1,0,0,...,0)(ς1, ς2, ..., ςn) = 1

n

n∑

i=1

ςi .

3. If P = (p1, p2, 0, 0, ..., 0), then the DMM operator becomes the GBM operator

DMM(p1,p2,0,0,...,0)(ς1, ς2, ..., ςn) = 1

p1 + p2

n∏

i, j=1 i �= j

(p1ςi + p2ς j )
1

n(n−1) .

4. If P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), then theDMMoperator becomes theGMSMoper-

ator

DMM(

k︷ ︸︸ ︷
1, 1, ..., 1,

n−k︷ ︸︸ ︷
0, 0, ..., 0)(ς1, ς2, ..., ςn) = 1

k

⎛

⎝
∏

1≤i1≤...≤ik≤n

k∑

j=1

ςi j

⎞

⎠

1
Ck
n

.

3 q-Rung Orthopair Fuzzy Hamacher Dual Muirhead
Mean Operators

3.1 The q-ROFHDMM Operator

Definition 7 Let ςi = (μi , νi ) be any q-ROFN and P = (p1, p2, ..., pn) ∈ �n be
a parameter vector such that

∑n
j=1 p j > 0, then q-ROFHDMM operator on such n

q-ROFNs is defined as

q-ROFHDMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
⊗

π∈Sn

n⊕

j=1

(p jςπ( j))

⎞

⎠

1
n!

(6)

where Sn is the symmetric group of degree n.

Theorem 1 For any collection {ς1, ς2, ..., ςn} of q-ROFNs, the aggregated value on
applying the q-ROFHDMM operator is also a q-ROFN and it is defined as
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

−

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

+(γ−1)

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(φ2 + (γ2 − 1)ϕ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(φ2 − ϕ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

+(γ2−1)

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

+(γ−1)

⎛
⎜⎜⎝

⎛
⎜⎝

∏
π∈Sn

(ψ2 + (γ2 − 1)χ2)

⎞
⎟⎠

1
n!

−

⎛
⎜⎝

∏
π∈Sn

(ψ2 − χ2)

⎞
⎟⎠

1
n!

⎞
⎟⎟⎠

1
n∑

j=1

pj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where
φ2 = ∏n

j=1(1 + (γ − 1)μq
π( j))

p j ,
ϕ2 = ∏n

j=1(1 − μ
q
π( j))

p j ,

ψ2 = ∏n
j=1

(
1 + (γ − 1)(1 − ν

q
π( j))

)p j ,
χ2 = ∏n

j=1(ν
q
π( j))

p j .

Proof The Eq. (7) is proved using mathematical induction and Hamacher operations
of q-ROFNs, as discussed in Sect. 2.3:

p jςπ( j) =
⎛

⎝
(

(1 + (γ − 1)μq
π( j))

p j − (1 − μ
q
π( j))

p j

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)(1 − μ
q
π( j))

p j

)1/q

,

γ 1/qν
p j

π( j)
(
(1 + (γ − 1)(1 − ν

q
π( j)))

p j + (γ − 1)(νq
π( j))

p j

)1/q

⎞

⎟
⎠

Supposewe have two q-ROFNsςπ(1) = (μπ(1), νπ(1)) andςπ(2) = (μπ(2), νπ(2)), then

p1ςπ(1) ⊕ p2ςπ(2)

=
⎛

⎝
(

(1 + (γ − 1)μq
π(1))

p1 − (1 − μ
q
π(1))

p1

(1 + (γ − 1)μq
π(1))

p1 + (γ − 1)(1 − μ
q
π(1))

p1

)1/q

,

γ 1/qν
p1
π(1)

(
(1 + (γ − 1)(1 − ν

q
π(1)))

p1 + (γ − 1)(νq
π(1))

p1
)1/q

⎞

⎟
⎠

⊕
⎛

⎝

(
(1 + (γ − 1)μq

π(2))
p2 − (1 − μ

q
π(2))

p2

(1 + (γ − 1)μq
π(2))

p2 + (γ − 1)(1 − μ
q
π(2))

p2

)1/q

,
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γ 1/qν
p2
π(2)

(
(1 + (γ − 1)(1 − ν

q
π(2)))

p2 + (γ − 1)(νq
π(2))

p2
)1/q

⎞

⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

⎛

⎜⎜⎜
⎜⎜
⎝

2∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
2∏

j=1

(1 − μ
q
π( j))

p j

2∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
2∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟
⎟⎟
⎠

1/q

,

γ 1/q
2∏

j=1

ν
p j

π( j)

⎛

⎝
2∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
2∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

Assuming that it is also true for j = n − 1,

n−1∑

j=1

p jςπ( j) =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n−1∏

j=1

(1 − μ
q
π( j))

p j

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n−1∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟⎟⎟
⎠

1/q

,

γ 1/q
n−1∏

j=1

ν
p j

π( j)

⎛

⎝
n−1∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n−1∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

Now, the target is to show that this is also true for j = n.

n−1∑

j=1

p jςπ( j) ⊕ pnςπ(n)

=

⎛

⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎜⎜⎜
⎜⎜
⎝

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n−1∏

j=1

(1 − μ
q
π( j))

p j

n−1∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n−1∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟
⎟⎟
⎠

1/q

,
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γ 1/q
n−1∏

j=1

ν
p j

π( j)

⎛

⎝
n−1∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n−1∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

⊕
⎛

⎝

(
(1 + (γ − 1)μq

π(n))
pn − (1 − μ

q
π(n))

pn

(1 + (γ − 1)μq
π(n))

pn + (γ − 1)(1 − μ
q
π(n))

pn

)1/q

,

γ 1/qν
pn
π(n)

(
(1 + (γ − 1)(1 − ν

q
π(n)))

pn + (γ − 1)(νq
π(n))

pn
)1/q

⎞

⎟
⎠

=

⎛

⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

n∏

j=1

(1 + (γ − 1)μq
π( j))

p j −
n∏

j=1

(1 − μ
q
π( j))

p j

n∏

j=1

(1 + (γ − 1)μq
π( j))

p j + (γ − 1)
n∏

j=1

(1 − μ
q
π( j))

p j

⎞

⎟⎟⎟⎟⎟
⎠

1/q

,

γ 1/q
n∏

j=1

ν
p j

π( j)

⎛

⎝
n∏

j=1

(1 + (γ − 1)(1 − ν
q
π( j)))

p j + (γ − 1)
n∏

j=1

(ν
q
π( j))

p j

⎞

⎠

1/q

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

=
n∑

j=1

p jςπ( j)

Then, taking the product of for all permutations, we get
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∏

π∈Sn

n∑

j=1

p jςπ( j)

=

⎛

⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

γ
∏

π∈Sn
(φ2 − ϕ2)

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2) + (γ − 1)

∏

π∈Sn
(φ2 − ϕ2)

⎞

⎟
⎟
⎠

1/q

,

⎛

⎜⎜
⎝

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2) −

∏

π∈Sn
(ψ2 − χ2)

∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2) + (γ − 1)

∏

π∈Sn
(ψ2 − χ2)

⎞

⎟⎟
⎠

1/q⎞

⎟⎟⎟
⎠

and

⎛

⎝
∏

π∈Sn

n∑

j=1

ς
p j

π( j)

⎞

⎠

1
n!

=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

γ

⎛

⎝
∏

π∈Sn
(φ2 − ϕ2)

⎞

⎠

1
n!

⎛

⎝
∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

π∈Sn
(φ2 − ϕ2)

⎞

⎠

1
n!

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

1/q

,

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎝

⎛

⎝
∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2)

⎞

⎠

1
n!

−
⎛

⎝
∏

π∈Sn
(ψ2 − χ2)

⎞

⎠

1
n!

⎛

⎝
∏

π∈Sn
(ψ2 + (γ 2 − 1)χ2)

⎞

⎠

1
n!

+ (γ − 1)

⎛

⎝
∏

π∈Sn
(ψ2 − χ2)

⎞

⎠

1
n!

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎠

1/q⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

Finally,

1
∑n

j=1 p j

⎛

⎝
∏

π∈Sn

n∑

j=1

(p jςπ( j))

⎞

⎠

1
n!
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=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

⎛

⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

+(γ 2−1)

⎛

⎜
⎝

∏

π∈Sn
(φ2 − ϕ2 )

⎞

⎟
⎠

1
n!

⎞

⎟
⎟
⎠

1
n∑

j=1

p j

−

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∏

π∈Sn
(φ2 + (γ 2 − 1)ϕ2 )

⎞

⎟
⎠

1
n!

−
⎛

⎜
⎝

∏

π∈Sn
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(8)

which illustrates that Eq. (7) holds.
Now, to show that Eq. (7) or (8) is a q-ROFN, we will prove the following:

(i) 0 ≤ μ′ ≤ 1
(ii) 0 ≤ ν ′ ≤ 1
(iii) 0 ≤ (μ′)q + (ν ′)q ≤ 1
where μ′ is the membership degree and ν ′ is the non-membership degree of Eq. (8).

Proof (i) and (ii). For any γ > 0, q ≥ 1 and P ∈ �n s.t.
∑n

j=1 p j > 0, we have
φ2, ϕ2, ψ2, χ2 ≥ 0 with φ2 ≥ ϕ2, ψ2 ≥ χ2 and the q-ROFN (μ′, ν ′) can be written

as

((
E∗−F∗

E∗−F∗+γ F∗

)1/q
,
(
1 − G∗−H∗

G∗−H∗+γ H∗

)1/q
)
. where

E∗ =
((∏

π∈Sn (φ2 + (γ 2 − 1)ϕ2)
) 1

n! + (γ 2 − 1)
(∏

π∈Sn (φ2 − ϕ2)
) 1

n!
) 1∑n

j=1 p j ,

F∗ =
((∏

π∈Sn (φ2 + (γ 2 − 1)ϕ2)
) 1

n! − (∏
π∈Sn (φ2 − ϕ2)

) 1
n!
) 1∑n

j=1 p j ,

G∗ =
((∏

π∈Sn (ψ2 + (γ 2 − 1)χ2)
) 1

n! + (γ 2 − 1)
(∏

π∈Sn (ψ2 − χ2)
) 1

n!
) 1∑n

j=1 p j ,

H∗ =
((∏

π∈Sn (ψ2 + (γ 2 − 1)χ2)
) 1

n! − (∏
π∈Sn (ψ2 − χ2)

) 1
n!
) 1∑n

j=1 p j .

Since E∗, F∗, G∗, H∗ ≥ 0 s.t. E∗ ≥ F∗ and G∗ ≥ H∗. Therefore, it is easy to
show that μ′ and ν ′ satisfy the conditions (i) and (ii), respectively.

Proof (iii). Conditions (i) and (ii) ⇒ 0 ≤ (μ′)q + (ν ′)q . For (μ′)q + (ν ′)q ≤ 1, we
know that μ

q
π( j) + ν

q
π( j) ≤ 1 or μ

q
π( j) ≤ 1 − ν

q
π( j). Now by using μ

q
π( j) ≤ 1 − ν

q
π( j)

and Eq. (8) for μ′ and ν ′, we will get

(μ′)q + (ν ′)q ≤ 1. Q.E.D

Some important properties such as idempotency, monotonicity, boundedness and
commutativity of the q-ROFHDMM operator are given below.

Property 1 (Idempotency) If all the considered q-ROFNs are equal, that is, ςi =
ς = (μ, ν) for all i = 1, 2, ..., n, then

q-ROFHDMMP(ς1, ς2, ..., ςn) = ς = (μ, ν).
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Property 2 (Monotonicity) If ςi = (μi , νi ) and ς ′
i = (μ′

i , ν
′
i ) for i = 1, 2, ..., n are

any two collection of q-ROFNs s.t. μi ≤ μ′
i , νi ≥ ν ′

i for all i , then

q-ROFHDMMP(ς1, ς2, ..., ςn) ≤ q-ROFHDMMP(ς ′
1, ς

′
2, ..., ς

′
n).

Property 3 (Boundedness) For any collection ςi = (μi , νi ) for i = 1, 2, ..., n of

q-ROFNs, if ς− =
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
and ς+ =

(
n

max
i=1

(μi ),
n

min
i=1

(νi )

)
, then

ς− ≤ q-ROFHDMMP(ς1, ς2, ..., ςn) ≤ ς+.

Property 4 (Commutativity) For any permutation of ςi (i = 1, 2, ..., n) say ς ′
i (i =

1, 2, ..., n), the aggregated value remains unaffected. That is

q-ROFHDMMP(ς ′
1, ς

′
2, ..., ς

′
n) = q-ROFHDMMP(ς1, ς2, ..., ςn).

Now, some special cases of the q-ROFHDMM operator w.r.t γ and P are discussed
hereafter.

1. For γ = 1, q-ROFHDMM operator becomes q-rung orthopair fuzzy dual Muir-
head mean(q-ROFDMM) operator.

2. For γ = 2, q-ROFHDMMoperator becomes q-rung orthopair fuzzy Einstein dual
Muirhead mean(q-ROFEDMM) operator.

3. For P = (1, 0, 0, ..., 0), q-ROFHDMMoperator becomes q-rung orthopair fuzzy
Hamacher geometric averaging(q-ROFHG) operator.

4. For P = (1, 1, ..., 1) or P = (1/n, 1/n, ..., 1/n), q-ROFHDMM operator
becomes q-rung orthopair fuzzy Hamacher arithmetic averaging(q-ROFHA)
operator.

5. For P = (1, 1, 0, 0, ..., 0), q-ROFHDMM operator becomes q-rung orthopair
fuzzy Hamacher geometric Bonferroni mean(q-ROFHGBM) operator.

6. For P = (

k
︷ ︸︸ ︷
1, 1, ..., 1,

n−k
︷ ︸︸ ︷
0, 0, ..., 0), q-ROFHDMMoperator becomeq-rungorthopair

fuzzy Hamacher geometric Maclaurin symmetric mean(q-ROFHGMSM) opera-
tor.

3.2 The q-ROFHWDMM Operator

Definition 8 Consider a set of q-ROFNs {ς1, ς2, ..., ςn}, a parameter vector P =
(p1, p2, ..., pn) ∈ �n such that

∑n
j=1 p j > 0, and a weight vector ω = (ω1, ω2, ...,

ωn)
T , where ωi ∈ [0, 1] corresponding to ςi such that

∑n
i=1 ωi = 1. The

q-ROFHWDMM operator is thus defined as
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q-ROFHWDMMP(ς1, ς2, ..., ςn) = 1
∑n

j=1 p j

⎛

⎝
⊗

π∈Sn

n⊕

j=1

(
p jς

nwπ( j)

π( j)

)
⎞

⎠

1
n!

where Sn is the symmetric group of degree n.

Theorem 2 For any collection {ς1, ς2, ..., ςn} of q-ROFNs, the aggregated value
using q-ROFHWDMM operator is also a q-ROFN and it is defined as

q-ROFHWDMMP(ς1, ς2, ..., ςn) =
⎛
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where
φ′
2 = ∏n

j=1

((
1 + (γ − 1)(1 − μ

q
π( j))

)nwπ( j) + (γ 2 − 1)
(
μ
q
π( j)

)nwπ( j)
)p j

,

ϕ′
2 = ∏n

j=1

((
1 + (γ − 1)(1 − μ

q
π( j))

)nwπ( j) −
(
μ
q
π( j)

)nwπ( j)
)p j

,

ψ ′
2 = ∏n

j=1

((
1 + (γ − 1)νq

π( j)

)nwπ( j) + (γ 2 − 1)
(
1 − ν

q
π( j)
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)p j

,

χ ′
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1 + (γ − 1)νq

π( j)
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(
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q
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.

Corollary 1 The q-ROFHDMM is a specific case of the q-ROFHWDMM operator.
That is, for w = (1/n, 1/n, ..., 1/n)T , the q-ROFHWDMM operator reduces to q-
ROFHDMM operator.

The two fundamental properties, monotonicity and boundedness, of the q-
ROFHWDMM operator are discussed hereafter.

Property 5 (Monotonicity) If ςi = (μi , νi ) and ς ′
i = (μ′

i , ν
′
i ) for i = 1, 2, ..., n are

any two collection of q-ROFNs s.t. μi ≤ μ′
i , νi ≥ ν ′

i for all i , then

q-ROFHWDMMP(ς1, ς2, ..., ςn) ≤ q-ROFHWDMMP(ς ′
1, ς

′
2, ..., ς

′
n).

Property 6 (Boundedness) For any collection ςi = (μi , νi ) for i = 1, 2, ..., n of

q-ROFNs, if ς− =
(

n
min
i=1

(μi ),
n

max
i=1

(νi )

)
and ς+ =

(
n

max
i=1

(μi ),
n

min
i=1

(νi )

)
, then

ς− ≤ q-ROFHWDMMP(ς1, ς2, ..., ςn) ≤ ς+.
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4 Application of the Proposed AOs on MADM

4.1 MADMMethod Based on the q-ROFHWDMM Operator

Now we’ll develop a MADM method that uses the q-ROFHWDMM operator. To
implement this, let us take � = {�1,�2, ...,�m} be the set of all feasible alterna-
tives, which are being evaluated on the basis of n-attributes {ζ1, ζ2, ..., ζn} with
the weight vector ω = {ω1, ω2, ..., ωn} such that ω j ∈ [0, 1] and ∑w

j=1 ω j = 1. Let
� = (ℵi j )m×n be the decision matrix, where ℵi j = (μi j , νi j ) is an assessment value
(as q-ROFN) of an alternative �i with respect to the attribute ζ j .

The step-by-step approach of this generalised orthopair fuzzy MADM method is
given hereafter.
Step 1. Normalisation of �:
Generally, two types of attributes are involved in any decisionmatrix: cost and benefit
types. To consider these attributes simultaneously, we need to normalise the decision
matrix as follows:

ℵi j = (μi j , νi j ) =
{

(μi j , νi j ), for benefit attributes ζ j

(νi j , μi j ), for cost attributes ζ j

Step 2. Evaluate comprehensive values:
To get a comprehensive value ℵi for each alternative �i , apply the proposed q-
ROFHWDMMoperatorwhich aggregates the assessment valuesℵi j ( j = 1, 2, ..., n).

ℵi = q-ROFHWDMM(ℵi1,ℵi2, ...,ℵin)

Step 3. Find the score and accuracy values:
First, compute the S(ℵi ) for each ℵi (i = 1, 2, ...,m). Now if any two or more score
values match, then calculate their accuracy values A(ℵi ) according to the Eqs. (2)
and (3), respectively.
Step 4. Rank the alternatives:
Now use definition 4 to rank the alternatives (�i ) and choose the most appealing one.

4.2 An Illustrative Example

Now, a practical MADM problem adopted from [8] is presented to illustrate the
applicability of the developedMADM technique. The target of this MADM problem
is to help an organisation install an ERP system. For that, five viable ERP systems
have been chosen by the project team. �i (i = 1, 2, 3, 4, 5) i.e. 5-alternatives and 4-
attributes ζ j ( j = 1, 2, 3, 4) that are (1) function and technology ζ1; (2) strategic fit-
ness ζ2; (3) vendor’s ability ζ3; (4) vendor’s reputation ζ4 andω = (0.2, 0.1, 0.3, 0.4)
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Table 1 Decision matrix (�) taken from [8]

Alternative Attributes

ζ1 ζ2 ζ3 ζ4

�1 (0.5, 0.8) (0.6, 0.3) (0.3, 0.6) (0.5, 0.7)

�2 (0.7, 0.5) (0.7, 0.2) (0.7, 0.2) (0.4, 0.5)

�3 (0.6, 0.4) (0.5, 0.7) (0.5, 0.3) (0.6, 0.3)

�4 (0.8, 0.1) (0.6, 0.3) (0.3, 0.4) (0.5, 0.6)

�5 (0.6, 0.4) (0.4, 0.8) (0.7, 0.6) (0.5, 0.8)

Table 2 Final results of all �i

Alternatives Comprehensive values Score values Ranking

�1 (0.6118, 0.5381) 0.0732 4

�2 (0.7275, 0.3030) 0.3572 1

�3 (0.6210, 0.3863) 0.1818 3

�4 (0.7033, 0.2781) 0.3264 2

�5 (0.6240, 0.6010) 0.0258 5

denotes the weight vector of these qualities. The associated information of these five
alternative with respect to four attributes is given in the form of a decision matrix
� = (ℵi j )5×4 of q-ROFNs as provided in the Table 1.

In order to achieve the most suitable alternative, we utilised the MADM method
given in Sect. 4.1.

Step 1. Normalisation of �:
Here, the given decision matrix (�) does not need to be normalised, as all four ζ j are
benefit type.
Step 2. Evaluate comprehensive values:
Now apply q-ROFHWDMMoperator and compute the comprehensive valuesℵi (i =
1, 2, 3, 4, 5) for all alternatives�i (i = 1, 2, 3, 4, 5) using decisionmatrix� (Table 1),
for q = 3, γ = 1, and P = (1, 1, 1, 1). The comprehensive values are presented in
column 2 of Table 2.
Step 3. Find the score and accuracy values:
For each ℵi (i = 1, 2, 3, 4, 5), compute score value S(ℵi ). Computed score values
are presented in column 3 of Table 2.
Step 4. Ranking of alternatives:
Finally, based on the calculated S(ℵi ), rank the alternatives �i as discussed in step 4
of section 4.1 and result are presented in column 4 of Table 2. From Table 2, it’s clear
that alternative A2 is the best alternative among possible potential ERP systems. The
final choice of alternative may depend on the parameters’ values q, γ, P and AOs
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applied. Therefore, it is obvious to investigate the efficiency of the proposed method
corresponding to the parameters’ values selected and AOs used. Therefore, sections
4.3 and 4.4 discusses sensitivity analysis and comparative analysis, respectively.

4.3 Sensitivity Analysis

To investigate flexibility and capability of the proposedMADMmethod, a sensitivity
analysis has been carried out by changing the parameter q, γ and then P one by one.
The effects on the final result due to these variations are analysed and discussed
hereafter.

Table 3 shows the variation in score values by assigning different integer values to
q ∈ [2, 10] and fixing the values of γ = 1 and P = (1, 1, 1, 1). Similarly in Table 4,
γ varies from 1 to 10; however, the other two parameters q and P are fixed as 3 and
(1, 1, 1, 1), respectively. From Tables 3 and 4, it is observable that, on increasing the
value of parameters q (Table 3) and γ (Table 4), the score values and ranking results
of some alternatives changes accordingly, which reflects the influence of these two
parameters (q andγ ) on thefinal decision. Theparameterq not just provides the larger
assessment spacebut also influences thefinal results.Similarly, theγ parametermakes
theaggregationprocessmoreflexibleandaffectsthefinalresults.However,forthestud-
iedMADMproblem, the best alternative obtained through all considered variations is
unanimously �2. Further, to examine the effect of interrelationship among attributes,
different valuesof theparametervector P wereanalysedonfixing thevaluesofparam-
etersq andγ as 3 and1 respectively, and evaluated score values and ranking results are
shown in Table 5. In this case, Table 5 shows that, on considering the interdependency
ofmultiple attributes, the ranking results are slightly different from those in the case of
no interaction.But thebest alternative for all the consideredvariationsof P ofmultiple
interrelationships is�2.

4.4 Comparative Analysis

To demonstrate the compatibility of the developed AOs, this section compares six
existing AOs, q-ROFWA and q-ROFWG [6], q-ROFWBM [7], q-ROFGWHM and
q-ROFWGHM [8], q-ROFWMSM [9], and one proposed AO (q-ROFHWDMM)
under sameq-ROFNs environmentwithq = 3. The q-ROFWAandq-ROFWGhas no
additional parameter other than q [6]. The q-ROFWBM operator takes into account
the correlation between any two attributes [7], and its additional parameters are
set to s = 1, t = 1. The selected values of their extra parameters for applying q-
ROFGWHM and q-ROFWGHM operators are φ = 1, ϕ = 1, and they assess the
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Table 3 Results by varying q in q-ROFHWDMM operator

q Score values (S(ℵi )) Ranking
orders

2 S(ℵ1) =
0.0663

S(ℵ2) =
0.4201

S(ℵ3) =
0.2260

S(ℵ4) =
0.3873

S(ℵ5) =
0.0315

�2 � �4 �
�3 � �1 �
�5

3 S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

4 S(ℵ1) =
0.0749

S(ℵ2) =
0.2899

S(ℵ3) =
0.1362

S(ℵ4) =
0.2658

S(ℵ5) =
0.0226

�2 � �4 �
�3 � �1 �
�5

5 S(ℵ1) =
0.0709

S(ℵ2) =
0.2326

S(ℵ3) =
0.0994

S(ℵ4) =
0.2150

S(ℵ5) =
0.0196

�2 � �4 �
�3 � �1 �
�5

6 S(ℵ1) =
0.0636

S(ℵ2) =
0.1869

S(ℵ3) =
0.0720

S(ℵ4) =
0.1742

S(ℵ5) =
0.0164

�2 � �4 �
�3 � �1 �
�5

7 S(ℵ1) =
0.0551

S(ℵ2) =
0.1511

S(ℵ3) =
0.0521

S(ℵ4) =
0.1416

S(ℵ5) =
0.0132

�2 � �4 �
�1 � �3 �
�5

8 S(ℵ1) =
0.0467

S(ℵ2) =
0.1230

S(ℵ3) =
0.0379

S(ℵ4) =
0.1156

S(ℵ5) =
0.0103

�2 � �4 �
�1 � �3 �
�5

9 S(ℵ1) =
0.0389

S(ℵ2) =
0.1009

S(ℵ3) =
0.0276

S(ℵ4) =
0.0945

S(ℵ5) =
0.0079

�2 � �4 �
�1 � �3 �
�5

10 S(ℵ1) =
0.0322

S(ℵ2) =
0.0833

S(ℵ3) =
0.0202

S(ℵ4) =
0.0775

S(ℵ5) =
0.0059

�2 � �4 �
�1 � �3 �
�5

correlation between any two attributes [8].The q-ROFWMSM operator takes into
account interactions amonganynumber of attributes [9], and its granularity parameter
is set to k = 2, allowing it to consider correlation between two any attributes for that
very same interactional behavior. To maintain the same operational behavior for the
developed AO (q-ROFHWDMM) also, the selected values of γ and P are 1 and
(1, 1, 0, 0) respectively. Table 6 suggested that the best alternative and the worst
alternative obtained from all the different operators under investigation are almost
the same.
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Table 4 Results by changing γ in q-ROFHWDMM operator

γ Score values(S(ℵi )) Ranking
orders

1 S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

2 S(ℵ1) =
0.0606

S(ℵ2) =
0.3533

S(ℵ3) =
0.1929

S(ℵ4) =
0.3184

S(ℵ5) =
0.0288

�2 � �4 �
�3 � �1 �
�5

3 S(ℵ1) =
0.0508

S(ℵ2) =
0.3490

S(ℵ3) =
0.1968

S(ℵ4) =
0.3099

S(ℵ5) =
0.0299

�2 � �4 �
�3 � �1 �
�5

4 S(ℵ1) =
0.0425

S(ℵ2) =
0.3451

S(ℵ3) =
0.1980

S(ℵ4) =
0.3021

S(ℵ5) =
0.0297

�2 � �4 �
�3 � �1 �
�5

5 S(ℵ1) =
0.0353

S(ℵ2) =
0.3415

S(ℵ3) =
0.1981

S(ℵ4) =
0.2951

S(ℵ5) =
0.0288

�2 � �4 �
�3 � �1 �
�5

6 S(ℵ1) =
0.0290

S(ℵ2) =
0.3384

S(ℵ3) =
0.1976

S(ℵ4) =
0.2889

S(ℵ5) =
0.0275

�2 � �4 �
�3 � �1 �
�5

7 S(ℵ1) =
0.0234

S(ℵ2) =
0.3355

S(ℵ3) =
0.1970

S(ℵ4) =
0.2833

S(ℵ5) =
0.0261

�2 � �4 �
�3 � �5 �
�1

8 S(ℵ1) =
0.0183

S(ℵ2) =
0.3329

S(ℵ3) =
0.1962

S(ℵ4) =
0.2782

S(ℵ5) =
0.0247

�2 � �4 �
�3 � �5 �
�1

9 S(ℵ1) =
0.0137

S(ℵ2) =
0.3305

S(ℵ3) =
0.1954

S(ℵ4) =
0.2736

S(ℵ5) =
0.0233

�2 � �4 �
�3 � �5 �
�1

10 S(ℵ1) =
0.0095

S(ℵ2) =
0.3284

S(ℵ3) =
0.1945

S(ℵ4) =
0.2694

S(ℵ5) =
0.0218

�2 � �4 �
�3 � �5 �
�1

5 Conclusions

In the light of the interrelationship between multiple attributes in MADM problems,
this paper proposes two novel AOs that are q-ROFHDMM and q-ROFHWDMM
operators. These are Hamacher TN and TCN-inspired DMM operators under the q-
ROFN environment. The advantage of combining Hamacher TN and TCN-inspired
arithmetic procedures with DMM in proposed AOs is that they can capture not only
the correlation between multiple attributes but also provide a flexible aggregation
process due to γ and P in AOs. Some essential properties of these AOs are also given
in the paper. The generality of the developed AOs is investigated through some spe-
cial cases. Further, utilising the proposedAO (q-ROFHWDMM), aMADMapproach
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Table 5 Results by altering P in q-ROFHWDMM operator

Parameter
vector(P)

Score values (S(ℵi )) Ranking
results

(1, 0, 0, 0) S(ℵ1) =
−0.2377

S(ℵ2) =
0.0953

S(ℵ3) =
0.1019

S(ℵ4) =
−0.0027

S(ℵ5) =
−0.1826

�3 � �2 �
�4 � �5 �
�1

(2, 0, 0, 0) S(ℵ1) =
−0.2813

S(ℵ2) =
0.0467

S(ℵ3) =
0.0815

S(ℵ4) =
−0.0710

S(ℵ5) =
−0.2462

�3 � �2 �
�4 � �5 �
�1

(1, 1, 0, 0) S(ℵ1) =
−0.1366

S(ℵ2) =
0.2682

S(ℵ3) =
0.1456

S(ℵ4) =
0.1570

S(ℵ5) =
−0.0531

�2 � �4 �
�3 � �5 �
�1

(1, 1, 1, 0) S(ℵ1) =
−0.0516

S(ℵ2) =
0.3236

S(ℵ3) =
0.1688

S(ℵ4) =
0.2814

S(ℵ5) =
−0.0139

�2 � �4 �
�3 � �5 �
�1

(1, 1, 1, 1) S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(2, 2, 2, 2) S(ℵ1) =
0.0732

S(ℵ2) =
0.3572

S(ℵ3) =
0.1818

S(ℵ4) =
0.3264

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(3, 3, 3, 3) S(ℵ1) =
0.0732

S(ℵ2) =
0.3850

S(ℵ3) =
0.1819

S(ℵ4) =
0.3479

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(4, 4, 4, 4) S(ℵ1) =
0.0732

S(ℵ2) =
0.3850

S(ℵ3) =
0.2395

S(ℵ4) =
0.3479

S(ℵ5) =
0.0258

�2 � �4 �
�3 � �1 �
�5

(1, 2, 3, 4) S(ℵ1) =
−0.0316

S(ℵ2) =
0.3114

S(ℵ3) =
0.1650

S(ℵ4) =
0.2693

S(ℵ5) =
−0.0279

�2 � �4 �
�3 � �5 �
�1

has been developed. To show the applicability of the proposed approach, a MADM
problem related to the selection of an ERP system has been solved. Sensitivity anal-
ysis for different variations and comparative analysis with six existing AOs have also
been done to demonstrate the efficiency and compatibility of the proposed AOs. Our
analysis and results conclude that the developed AOs are more flexible and general
and can solve a wide range of real-life MADM problems. In future research, the
proposed AOs may be further extended in various directions, including changing the
uncertain environment, considering the heterogeneous relationship among attributes
and so on.
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Table 6 Score and ranking results for different AOs
AOs Score values (S(ℵi )) Ranking

order

q − ROFW A [6] S(ℵ1) =
−0.1443

S(ℵ2) =
0.2015

S(ℵ3) =
0.1394

S(ℵ4) =
0.1635

S(ℵ5) =
−0.0515

�2 � �4 �
�3 � �5 �
�1

q − ROFWG [6] S(ℵ1) =
−0.2377

S(ℵ2) =
0.0953

S(ℵ3) =
0.1019

S(ℵ4) =
−0.0027

S(ℵ5) =
−0.1826

�3 � �2 �
�4 � �5 �
�1

q − ROFW BM1,1 [7] S(ℵ1) =
−0.6917

S(ℵ2) =
−0.4263

S(ℵ3) =
−0.4687

S(ℵ4) =
−0.4372

S(ℵ5) =
−0.6853

�2 � �4 �
�3 � �5 �
�1

q − ROFGWHM1,1 [8] S(ℵ1) =
−0.3070

S(ℵ2) =
0.0635

S(ℵ3) =
0.0412

S(ℵ4) =
0.0055

S(ℵ5) =
−0.2345

�2 � �4 �
�3 � �5 �
�1

q − ROFWGHM1,1 [8] S(ℵ1) =
−0.0821

S(ℵ2) =
0.2208

S(ℵ3) =
0.2241

S(ℵ4) =
0.1228

S(ℵ5) =
−0.0044

�3 � �2 �
�4 � �5 �
�1

q − ROFWMSMk=2 [9] S(ℵ1) =
0.4898

S(ℵ2) =
0.6936

S(ℵ3) =
0.6421

S(ℵ4) =
0.6254

S(ℵ5) =
0.5812

�2 � �3 �
�4 � �5 �
�1

q − ROFHWDMM(1,1,0,0) S(ℵ1) =
−0.1366

S(ℵ2) =
0.2682

S(ℵ3) =
0.1456

S(ℵ4) =
0.1570

S(ℵ5) =
−0.0531

�2 � �4 �
�3 � �5 �
�1
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Convective Instability in a Composite
Nanofluid Layer Under Local Thermal
Non-equilibrium

Anurag Srivastava and B. S. Bhadauria

Abstract Linear, as well as weakly non-linear, analyses have been done to under-
stand the onset of convection and heat and mass transport in a composite nanofluid
horizontal layer heated from below under LTNE (local thermal non-equilibrium)
effect. Two different types of nanoparticles are assumed to be suspended in the base
fluid. Both the nanoparticles and the base fluid are taken to be at different temper-
ature, and therefore, three temperature model is used for LTNE. Thermal Rayleigh
number is evaluated analytically usingGalerkin’s approachwhile non-linear analysis
is done numerically. The effect of both top-heavy and bottom-heavy configurations
of nanoparticles over convective instability is examined. It is found that the sys-
tem is more stable in case of bottom-heavy configuration when compared to that of
top-heavy case. Moreover, the effect of LTNE depends upon the concentration of
nanoparticles significantly. A comparison between streamlines, isotherms and iso-
halines for both LTE (local thermal equilibrium) and LTNE cases is also presented.

Keywords Composite nanofluids · Local thermal non-equilibrium · Non-linear
analysis · Free-free boundaries

Glossary

Latin Symbols

a Horizontal wave number.
C1,C2 Nanoparticle volume fraction.
d Dimensional layer depth.
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DB1, DB2 Brownian diffusion coefficients.
DT1, DT 2 Thermophoretic diffusion coefficients.
g Gravitational acceleration.
h Dimensional interphase heat transfer coefficient.
p Pressure.
t Time.
T Temperature.
v1, v2, v3 Nanofluid velocity components.
(x, y, z) Rectangular coordinates.

Greek Symbols

α Proportionality factor.
κ Effective thermal conductivity.
μ Viscosity.
ρ Density.
ρc Volumetric heat capacity at constant pressure.
ψ Dimensionfree stream function.

Subscripts and Superscripts

(˚) Perturbation variable.
0 Reference value.
b Basic value.
f Liquid phase.
p1, p2 Particle phase.
u, l Upper and lower walls respectively.
1, 2 Two types of nanoparticles.

1 Introduction

In modern times, the demand of industries is to develop such devices which are
sophisticated and compact with high functionality. For example, in the electronic
industries, the demand is to have smaller and smaller devices like mobiles, laptops,
computers, etc., with more and more capacity. A similar problem is also faced in
the automotive industry. In the run of developing smaller devices and improving
the overall performance, cooling and enhanced heat transfer are the major issues.
Earlier, extended solid surfaces and traditional fluids like water, ethylene glycol,
oil, etc., were used for the purpose. But these methods were not very effective to
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reduce the size, as well as for enhanced heat transfer, because of the lower thermal
conductivities of the traditional fluids. Later on, in order to remove these difficulties,
the solid–liquid systems were used with micro-sized metal particles as suggested by
Maxwell, but it also did not work because of the clogging and abrasion problems
due to the extra large size of particles. The problem was ultimately resolved after the
invention of nano-sized particles. Choi [15] was the first person who developed the
suspension of these nano-scaled particles into some base fluid to form a new type of
fluidwhich he named nanofluid. The problem of clogging and abrasion automatically
vanished because the size of nanoparticles is quite closer to that of fluid molecules
and this prevents nanoparticles to settle down under the effect of gravity. Eastman et
al. [16] and Das et al. [17] reported an increment of around 15–40% in the effective
thermal conductivity of fluid on the addition of a small amount of these nano-sized
particles.

Two mathematical models are generally used to study the process of natural con-
vection in nanofluids, viz., Khanafer-Vafai-Lightstone single-phasemodel (Khanafer
et al. [20]) and Buongiorno two-phase model (Buongiorno [14]). In the single-phase
approach, nanoparticles and base fluid are considered as a single homogeneous fluid,
while in two-phase approach, nanoparticles and base fluid are considered as two dif-
ferent phases. The two-phase approach consists of a separate governing equation for
nanoparticle volume fraction. Single-phase model provides less detail about each
phase but it is computationally more efficient than the two-phase model which pro-
vides a better sightedness of the two phases. An exponential growth in research in the
field of nanofluids can be observed in the last two decades. Tzou [43] investigated
the onset of convection in a horizontal nanofluid layer heated from below, with the
help of Buongiorno two-phase model. Nield and Kuznetsov [29] studied thermal
instability in a porous medium layer saturated by a nanofluid and found that critical
Rayleigh number can be altered by a considerable amount, on changing the basic
distribution of nanoparticles as top heavy or bottom heavy. Kuznetsov and Nield
[30] again investigated a similar problem using the Brinkman model. Agarwal et
al. [1] used Darcy model to investigate thermal instability in a rotating anisotropic
porous medium layer saturated by a nanofluid. Agarwal et al. [3] studied a similar
problem of thermal instability using a Binary nanofluid. Agarwal and Bhadauria [4]
studied convective heat transport by longitudinal rolls in dilute nanoliquids. Nield
and Kuznetsov [13] presented a revised model of their earlier work for studying
thermal instability in a porous medium layer saturated by a nanofluid, based on the
zero flux boundary conditions. Kiran et al. [21] studied the effect of gravity mod-
ulation and internal heating on thermal convection in a nanofluid saturated porous
medium. Siddheshwar and Lakshmi [38] investigated the classical problem ofDarcy-
Bénard convection for Newtonian liquids and Newtonian nanoliquids in cylindrical
enclosures and cylindrical annuli. Kanchana et al. [19] studied the effect of gravity,
boundary temperature and rotation modulations on Rayleigh-Bénard convection in
twenty-eight nanoliquids.

In all the studies mentioned above, it is assumed that the different phases are in
LTE (local thermal equilibrium), i.e., the temperature difference between thefluid and
particle phases, as well as fluid and solid-matrix phases, is assumed to be negligible.
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But the assumption of LTE was not very appropriate with the physical nature of the
problem. Because of the significant differences among the thermal conductivities of
fluid, nanoparticles and solid-matrix phases, a thermal lagging is created among the
different phases, and therefore, the concept of LTNE (local thermal non-equilibrium)
came into picture. Kuznetsov [24] used thermal non-equilibrium condition to study
forced convection in porous media, Rees and Banu [33] used a two-field model for
the separate modelling of the fluid and solid phase temperature fields in a fluid sat-
urated porous medium to investigate the onset of Darcy-Bénard convection, Baytas
and Pop [8] studied the effect of local thermal non-equilibrium on natural convection
in a square porous cavity, Baytas [9] again performed a similar study with a heat gen-
erating solid phase non-Darcy porous medium, Rees and Pop [34] investigated the
effect of LTNE in porous medium convection, Saeid [35] used LTNEmodel to inves-
tigate the problem of two-dimensional steady mixed convection in a vertical porous
layer, numerically, Malashetty et al. [26] examined the stability of a horizontal fluid
saturated sparsely packed porous layer under the assumption of local thermal non-
equilibrium between the fluid and solid phases, Malashetty et al. [27] performed the
similar study with anisotropic porous layer, Malashetty et al. [28] used thermal non-
equilibriummodel to examine double diffusive convection in a porous layer, Agarwal
et al. [2] studied the effect of local thermal non-equilibrium on the linear and non-
linear thermal instability in a nanofluid saturated rotating porous layer using Darcy
model, Agarwal et al. [5] studied famous Rayleigh-Bénard convection in a nanofluid
layer using a thermal non-equilibrium model and concluded that convection starts
earlier for LTNE as compared to LTE case, Agarwal et al. [6] investigated thermal
instability of a nanofluid layer under local thermal non-equilibrium, Siddheshwar and
Siddabasappa [37] investigated the effect of local thermal non-equilibrium on onset
of Brinkman-Bénard convection and on heat transport using rigid-rigid and free-free
boundaries and found that the classical results hold even under the assumption of
LTNE, Lagziri and Bezzazi [25] examined the effect of Robin’s boundary condition
in the Darcy–Rayleigh problem with LTNE model.

In view of the fact that composite nanoparticle has many more advantages over
single-nanoparticle, the use of composite nanoparticle in place of single-nanoparticle
to form composite nanoparticle-based composite nanofluids (hybrid nanofluids) is
a great opportunity for scientists and researchers as suggested by Sarkar et al. [36]
who presented an extensive review of hybrid/composite nanofluids. Nanocompos-
ites hold such physiochemical characteristics which do not appear in the individual
components. This improved and superior performance of nanocomposite-dispersed
composite nanofluids, makes them a rapidly expanding research area. Both physical
and chemical processes can be used for the synthesis of composite materials (Hane-
mann et al. [18] andZhang [45]). The properties of composite nanofluid lie in between
those of its constituent nanofluids (Suleiman et al. [7]). Gupta et al. [11] studied the
effect of vertical magnetic field over the instability of binary nanofluids. Sharma
et al. [39] used top- heavy distribution of nanoparticles to study binary nanofluid
convection in a rotating porous layer. Sharma et al. [40] investigated the effect of
externally impressed magnetic field over binary nanofluid convection in a porous
medium. Sharma et al. [41] numerically investigated the convective instability in a
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rotating binary nanofluid porous layer. Kumar et al. [23] studied the cell formation
in Rayleigh-Bénard convection using metallic and non-metallic nanofluids. Sharma
et al. [42] investigated the instability in nanofluids using the LTNE effect and Hall
currents. Gupta et al. [12] used blood as a base liquid to investigate the double diffu-
sive instability in Casson binary nanoliquids. Bhadauria and Srivastava [10] studied
the joint impact of internal heating and through-flow in a nanofluid saturated porous
medium under LTNE.

Kumar and Awasthi [22] were the first to examine the thermal instability of com-
posite nanofluids. In this work, we have investigated the convective instability of
composite nanofluid using a thermal non-equilibrium approach. We have taken both
top-heavy and bottom-heavy configurations of nanoparticle concentration for our
analysis. It is noticed that the system behaves differently for smaller and higher con-
centrations of nanoparticles in top/bottom-heavy case. To the best of our knowledge,
no study is done till date, investigating the effect of local thermal non-equilibrium on
composite nanofluids. In view of the tremendous applications of composite nanoflu-
ids, as well as LTNE, in science and technology, we got motivated to work in this
area.

2 Mathematical Formulation

Figure 1 describes the schematicmodel of the problem. A suspension of two different
types of nanoparticles into some base liquid is considered to be filled in between
two infinitely extended horizontal plates at z = 0 and z = d. Free-Free isothermal
boundaries have been considered. The base fluid and both types of nanoparticles are
considered to be at different temperatures. Using the approximation of Oberbeck–
Boussinesq and the above assumptions, the governing equations are: (Agarwal et al.
[5], Kumar and Awasthi [22])

Fig. 1 Formal diagram
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∇ · v = 0, (1)

ρ f

[
∂v
∂t

+ (v · ∇)v
]

= −∇ p + μ∇2v + [C1ρp1 + C2ρp2

+ ρ f (1 − C1 − C2)(1 − α(T f − Tu))]g, (2)

(ρc) f

[
∂T f

∂t
+ (v · ∇)T f

]
= κ f ∇2T f + (ρc)p1

[
DB1∇C1 · ∇T f + DT 1

∇T f · ∇T f

T f

]

+ (ρc)p2

[
DB2∇C2 · ∇T f + DT 2

∇T f · ∇T f

T f

]

+ h p1
(1 − C1l )

(Tp1 − T f ) + h p2
(1 − C2l )

(Tp2 − T f ), (3)

(ρc)p1

[
∂Tp1

∂t
+ (v · ∇)Tp1

]
= κp1∇2Tp1 + h p1

C1l
(T f − Tp1), (4)

(ρc)p2

[
∂Tp2

∂t
+ (v · ∇)Tp2

]
= κp2∇2Tp2 + h p2

C2l
(T f − Tp2), (5)

∂C1

∂t
+ (v · ∇)C1 = DB1∇2C1 + DT1

Tu
∇2T f , (6)

∂C2

∂t
+ (v · ∇)C2 = DB2∇2C2 + DT2

Tu
∇2T f . (7)

We assume that the temperature of fluid and the temperature and concentration
of both the nanoparticles are constant at the boundaries, therefore, the boundary
conditions are as follows (Agarwal et al. [5]):

v = 0, T f = Tl , Tp1 = Tl, Tp2 = Tl, C1 = C1l , C2 = C2l at z = 0, (8)

v = 0, T f = Tu, Tp1 = Tu, Tp2 = Tu, C1 = C1u, C2 = C2u at z = d. (9)

where, C1u > C1l , C2u > C2l and Tl > Tu .
Now, tomake the variables dimension-free, we use the following non-dimensional

parameters:
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(x∗, y∗, z∗) = (x, y, z)/d, (v∗
1 , v

∗
2 , v

∗
3) = (v1, v2, v3)d/α f , t

∗ = tα f /d
2

p∗ = pd2

μα f
, C∗

1 = C1 − C1l

C1u − C1l
,C∗

2 = C2 − C2l

C2u − C2l
, T ∗ = T − Tu

Tl − Tu

where α f = κ f

(ρc) f
is the nanofluid thermal diffusivity.

Making use of the above mentioned non-dimensional parameters in Eqs. (1)–(9)
and leaving the asterisk, we get the following non-dimensional equations:

∇ · v = 0, (10)

1

Pr

[
∂v
∂t

+ (v · ∇)v
]

= −∇ p + ∇2v − C1Rn1êz − C2Rn2êz − Rmêz + RaT f êz,

(11)

∂T f

∂t
+ (v · ∇)T f = ∇2T f + NB1

Le1
∇C1 · ∇T f + NA1NB1

Le1
∇T f · ∇T f + NB2

Le2
∇C2 · ∇T f

+ NA2NB2

Le2
∇T f · ∇T f + Hp1(Tp1 − T f ) + Hp2(Tp2 − T f ),

(12)

∂Tp1

∂t
+ (v · ∇)Tp1 = ε1∇2Tp1 + γ1Hp1(T f − Tp1), (13)

∂Tp2

∂t
+ (v · ∇)Tp2 = ε2∇2Tp2 + γ2Hp2(T f − Tp2), (14)

∂C1

∂t
+ (v · ∇)C1 = 1

Le1
∇2C1 + NA1

Le1
∇2T f , (15)

∂C2

∂t
+ (v · ∇)C2 = 1

Le2
∇2C2 + NA2

Le2
∇2T f , (16)

v = 0, T f = 1, Tp1 = 1, Tp2 = 1, C1 = 0, C2 = 0 at z = 0, (17)

v = 0, T f = 0, Tp1 = 0, Tp2 = 0, C1 = 1, C2 = 1 at z = 1. (18)

Where, Pr = μ
ρ f α f

is the Prandtl number, Rn1 = (C1u−C1l )(ρp1−ρ f )gd3

μα f
and Rn2 =

(C2u−C2l )(ρp2−ρ f )gd3

μα f
are the nanoparticle concentration Rayleigh numbers, Rm =

[ρp1C1l+ρp2C2l+ρ f (1−C1l−C2l )gd3]
μα f

is the basic densityRayleighnumber, Ra = α(Tl−Tu)ρ f gd3

μα f

is the thermal Rayleigh number, NA1 = DT 1(Tl−Tu)
DB1Tu(C1u−C1l )

and NA2 = DT 2(Tl−Tu)
DB2Tu(C2u−C2l )

are

the modified diffusivity ratios, NB1 = (ρc)p1(C1u−C1l )

(ρc) f
and NB2 = (ρc)p2(C2u−C2l )

(ρc) f
are the

modified particle-density increments, Le1 = α f

DB1
and Le2 = α f

DB2
are the Lewis num-



116 A. Srivastava and B. S. Bhadauria

bers, ε1 = κp1(ρc) f
(ρc)p1κ f

and ε2 = κp2(ρc) f
(ρc)p2κ f

are thermal diffusivity ratios, γ1 = (1−C1l )(ρc) f
C1l (ρc)p1

and γ2 = (1−C2l )(ρc) f
C2l (ρc)p2

are the modified thermal capacity ratios, Hp1 = h p1d2

(1−C1l )κ f
and

Hp2 = h p2d2

(1−C2l )κ f
are non-dimensional interphase heat transfer coefficients or theNield

numbers.

3 Basic State

At the basic state, it is assumed that all the physical quantities are time independent
and function of z only. The conduction state is given by

v = 0, T f = T f b(z), Tp1 = Tp1b(z), Tp2 = Tp2b(z), C1 = C1b(z), C2

= C2b(z), p = pb(z). (19)

Using Eq. (19), in Eqs. (12)–(16), we have

0 = d2T f b

dz2
+ NB1

Le1

dC1b

dz

dT f b

dz
+ NA1NB1

Le1

dT f b

dz

dT f b

dz
+ NB2

Le2

dC2b

dz

dT f b

dz

+ NA2NB2

Le2

dT f b

dz

dT f b

dz
+ Hp1(Tp1b − T f b) + Hp2(Tp2b − T f b), (20)

0 = ε1
d2Tp1b

dz2
+ γ1Hp1(T f b − Tp1b), (21)

0 = ε2
d2Tp2b

dz2
+ γ2Hp2(T f b − Tp2b), (22)

0 = 1

Le1

d2C1b

dz2
+ NA1

Le1

d2T f b

dz2
, (23)

0 = 1

Le2

d2C2b

dz2
+ NA2

Le2

d2T f b

dz2
. (24)

Similarly, the boundary conditions (17) and (18) take the form:

T f b(0) = Tpb1(0) = Tpb2(0) = 1 and C1b(0) = C2b(0) = 0, (25)



Convective Instability in a Composite Nanofluid Layer … 117

T f b(1) = Tpb1(1) = Tpb2(1) = 0 and C1b(1) = C2b(1) = 1. (26)

In the basic state, it is assumed that both the nanoparticles and base fluid are in
thermal equilibrium, i.e., there is no heat transfer between particle and fluid phases.
Generally, in case of nanofluids, the order of Lewis number ranges between 104 −
107, while the values of NA1 and NA2 are always less than 10 (Buongiorno [14]).
Applying these approximations, we have the following conduction state:

T f b(z) = Tpb1(z) = Tpb2(z) = (1 − z), C1b(z) = C2b(z) = z. (27)

4 Perturbed State

The parameters are now written in the manner: v = v(0, 0, 0) + v(v̊1, v̊2, v̊3), p =
pb + p̊, T f = T f b + T̊ f , Tp1 = Tp1b + ˚Tp1, Tp2 = Tp2b + ˚Tp2, C1 = C1b + C̊1,

C2 = C2b + C̊2 in order to impose small perturbations to the basic conduction state.
Here the perturbed quantities are written under the ring ( ˚ ). The case of two-
dimensional (X-Z) rolls is considered, for simplicity, which gives the liberty to take
all the physical quantities to be independent of y. Also introducing the stream func-
tion ψ such that v1 = ∂ψ

∂z and v3 = − ∂ψ
∂x . Substituting the new perturbed variables in

Eqs. (10)–(16) and eliminating the pressure term and using the basic state solution
(27), we have the following dimension-free reduced set of governing equations (after
leaving the ring symbol (˚)):

1

Pr

∂

∂t
(∇2ψ) = ∇4ψ + Rn1

∂C1

∂x
+ Rn2

∂C2

∂x
− Ra

∂T f

∂x
+ 1

Pr

∂(ψ,∇2ψ)

∂(x, z)
, (28)

∂T f

∂t
= −∂ψ

∂x
+ ∇2T f + Hp1(Tp1 − T f ) + Hp2(Tp2 − T f ) + ∂(ψ, T f )

∂(x, z)
, (29)

∂Tp1

∂t
= −∂ψ

∂x
+ ε1∇2Tp1 + γ1Hp1(T f − Tp1) + ∂(ψ, Tp1)

∂(x, z)
, (30)

∂Tp2

∂t
= −∂ψ

∂x
+ ε2∇2Tp2 + γ2Hp2(T f − Tp2) + ∂(ψ, Tp2)

∂(x, z)
, (31)

∂C1

∂t
= ∂ψ

∂x
+ 1

Le1
∇2C1 + NA1

Le1
∇2T f + ∂(ψ,C1)

∂(x, z)
, (32)
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∂C2

∂t
= ∂ψ

∂x
+ 1

Le2
∇2C2 + NA2

Le2
∇2T f + ∂(ψ,C2)

∂(x, z)
. (33)

Both the boundaries at the top and bottom are considered to be free. The boundary
conditions under this assumption are

C1 = C2 = ψ = ∇2ψ = T f = Tp1 = Tp2 = 0 at z = 0, 1. (34)

5 Stability Analysis

5.1 Linear Stability Analysis

For stationary mode of convection, we seek the solutions of Eqs. (28)–(33) in the fol-
lowing form (Postelnicu and Rees [32]) so as to satisfy the boundary conditions (34):

(ψ, T f , Tp1, Tp2,C1,C2) = [Asin(ax), {B,C, D, E, F}cos(ax)]sin(πz) (35)

here A, B, C, D, E and F are constants and ‘a’ denotes the wave number (horizontal).
Now substituting the values from Eq. (35) into the linearized format of Eqs. (28)–

(33) and using the Galerkin’s technique, we have

⎡
⎢⎢⎢⎢⎢⎣

−δ4 −aRa 0 0 aRn1 aRn2
a (Hp1 + Hp2 + δ2) −Hp1 −Hp2 0 0
a −γ1Hp1 (γ1Hp1 + ε1δ

2) 0 0 0
a −γ2Hp2 0 (γ2Hp2 + ε2δ

2) 0 0

−a δ2NA1
Le1

0 0 δ2

Le1
0

−a δ2NA2
Le2

0 0 0 δ2

Le2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

A
B
C
D
E
F

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0
0
0
0
0
0

⎤
⎥⎥⎦ (36)

The condition for the non-zero solution of the system (36) provides the expression
for the Rayleigh number Ra.

Ra = 1

a2[Hp1Hp2(γ1 + γ2 + γ1γ2) + Hp1(1 + γ1)δ
2ε2 + δ2ε1(Hp2(1 + γ2) + δ2ε2)]

[
δ6{Hp1HP2γ2ε1

+δ4ε1ε2 + δ2(γ1 + ε1)ε2Hp1 + Hp1Hp2γ1(γ2 + ε2) + δ2(γ2 + ε2)ε1Hp2} − a2{(Le1Rn1 + Le2Rn2)

(Hp1HP2γ2ε1 + δ4ε1ε2 + δ2(γ1 + ε1)ε2Hp1 + Hp1Hp2γ1(γ2 + ε2) + δ2(γ2 + ε2)ε1Hp2) + NA1Rn1

(Hp1Hp2(γ1 + γ2 + γ1γ2) + Hp1(1 + γ1)δ
2ε2 + δ2ε1(Hp2(1 + γ2) + δ2ε2)) + NA2Rn2(Hp1Hp2(γ1

+γ2 + γ1γ2) + Hp1(1 + γ1)δ
2ε2 + δ2ε1(Hp2(1 + γ2) + δ2ε2))}

]
(37)

here, δ2 = a2 + π2
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5.2 Non-linear Stability Analysis

For local non-linear stability analysis, the following Fourier series expressions are
considered:

ψ =
∞∑

m=1

∞∑
n=1

Amn(t)sin(mπax)sin(nπz), (38)

T f =
∞∑

m=1

∞∑
n=1

Bmn(t)cos(mπax)sin(nπz), (39)

Tp1 =
∞∑

m=1

∞∑
n=1

Cmn(t)cos(mπax)sin(nπz), (40)

Tp2 =
∞∑

m=1

∞∑
n=1

Dmn(t)cos(mπax)sin(nπz), (41)

C1 =
∞∑

m=1

∞∑
n=1

Emn(t)cos(mπax)sin(nπz), (42)

C2 =
∞∑

m=1

∞∑
n=1

Fmn(t)cos(mπax)sin(nπz). (43)

All these Fourier expressions contain infinite terms and taking all of them together
would be very cumbersome. Therefore, for stream function, we consider (1,1) mode,
while for other parameters, (1,1) and (0,2)modes have been taken (Agarwal et al. [3])

ψ = A11(t) sin(πax)sin(πz), (44)

T f = B11(t) cos(πax)sin(πz) + B02(t)sin(2πz), (45)

Tp1 = C11(t) cos(πax)sin(πz) + C02(t)sin(2πz), (46)

Tp2 = D11(t) cos(πax)sin(πz) + D02(t)sin(2πz), (47)

C1 = E11(t) cos(πax)sin(πz) + E02(t)sin(2πz), (48)

C2 = F11(t) cos(πax)sin(πz) + F02(t)sin(2πz). (49)
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here, A11, B11, B02,C11,C02, D11, D02, E11, E02, F11 and F02 are the time depen-
dent functions, to be determined. Using Eqs. (44)–(49) into the Eqs. (28)–(33) and
applying Galerkin’s orthogonalization procedure, we have:

A′
11(t) = Pr

π(1 + a2)

[−π3(1 + a2)2A11 − aRaB11 + a(Rn1E11 + Rn2F11)
]
,(50)

B ′
11(t) = −aπA11(1 + πB02) − {Hp1 + Hp2 + π2(1 + a2)}B11 + Hp1C11 + Hp2D11, (51)

B ′
02(t) = −{Hp1 + Hp2 + 4π2}B02 + aπ2

2
A11B11 + Hp1C02 + Hp2D02, (52)

C ′
11(t) = γ1Hp1(B11 − C11) − aπA11 − aπ2A11C02 − ε1π

2(1 + a2)C11, (53)

C ′
02(t) = γ1Hp1B02 − (γ1Hp1 + 4ε1π

2)C02 + aπ2

2
A11C11, (54)

D′
11(t) = γ2Hp2B11 − aπA11 − aπ2A11D02 − {γ2Hp2 + ε2π

2(1 + a2)}D11, (55)

D′
02(t) = γ2Hp2B02 − (γ2Hp2 + 4ε2π

2)D02 + aπ2

2
A11D11, (56)

E ′
11(t) = aπLe1A11 − π2(1 + a2){NA1B11 + E11}

Le1
− aπ2A11E02, (57)

E ′
02(t) = aπ2

2
A11E11 − 4π2(NA1B02 + E02)

Le1
, (58)

F ′
11(t) = aπLe2A11 − π2(1 + a2){NA2B11 + F11}

Le2
− aπ2A11F02, (59)
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F ′
02(t) = aπ2

2
A11F11 − 4π2(NA2B02 + F02)

Le2
. (60)

The above set of Eqs. (50)–(60) represents an autonomous system of ODE’s
which is difficult to solve analytically, and therefore, we move towards the numerical
solutions of the same by using an inbuilt tool (NDSolve) of Mathematica.

6 Transport of Heat and Mass

The Nusselt number for fluid Nu f (t) is defined as (Agarwal et al. [3]):

Nu f (t) = Transport of heat by (conduction + convection)

Transport of heat by conduction
= 1 +

⎡
⎢⎢⎢⎢⎣

2/a∫
0

(
∂T f

∂z
)dx

2/a∫
0

(
∂T f b

∂z
)dx

⎤
⎥⎥⎥⎥⎦
z=0
(61)

Using Eqs. (27) and (45) in Eq. (61), we get

Nu f (t) = 1 − 2πB02(t). (62)

In a similar way, the Nusselt numbers for both the nanoparticles

Nup1(t) = 1 − 2πC02(t) and Nup2(t) = 1 − 2πD02(t). (63)

and the concentration Nusselt numbers NuC1(t) and NuC2(t) can be found to be

NuC1(t) = 1 + 2πE02(t) + NA1(1 − 2πB02(t)), (64)

NuC2(t) = 1 + 2πF02(t) + NA2(1 − 2πB02(t)). (65)

7 Results and Discussion

7.1 Linear Stability Analysis

In this paper, the effect of LTNE over composite nanofluid is studied. The expression
for the thermal Rayleigh number obtained in Eq. (37) can be reduced for the LTE
case by substituting Hp1 = Hp2 = 0 as follows:

RaLT E = δ6

a2
− Rn1(Le1 + NA1) − Rn2(Le2 + NA2). (66)
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Above expression for RaLT E , is exactly similar to that of obtained by Kumar
and Awasthi [22] and can be further reduced for the case of simple nanofluid by
taking either Rn1 = 0 or Rn2 = 0 in Eq. (66) to get RaLT E = δ6

a2 − Rn1(Le1 +
NA1) or RaLT E = δ6

a2 − Rn2(Le2 + NA2). This expression for RaLT E for simple
nanofluid bears a complete resemblance to that found byNield andKuznetsov [31]. It
is notable that themodified diffusivity ratios NA1 and NA2 take positive values for top-
heavy case and negative values for bottom-heavy case. But these positive or negative
values of NA1 and NA2 do not much affect the final results because of the presence
of Lewis number Le, and therefore, the investigation is done for NA1 = NA2 = 5,
Le1 = Le2 = 100, Hp1 = Hp2 = 10, ε1 = ε2 = 0.04, γ1 = γ2 = 5 (Agarwal et al.
[3], Kumar and Awasthi [22]) and for various values of Rn1 and Rn2 depending upon
the top-heavy or bottom-heavy case. The positive values of Rn1 and Rn2 describe
the top-heavy case, while the negative values describe the bottom-heavy case. The
variation in critical Rayleigh number and critical wave number for positive and
negative values of NA1 and NA2 in bottom-heavy case is shown in Table 1.

In Fig. 2a and b, the comparison between the onset of convection for LTE and
LTNE cases is presented for top and bottom-heavy configurations of composite
nanofluid, respectively. It can be observed that the onset of convection advances in
both configurations for local thermal non-equilibrium between the fluid and nanopar-
ticles. In LTNE case, there is a temperature difference, between the fluid and nanopar-
ticle phases, which encourages the transfer of energy between them. This transfer
of energy leads to enhancing the onset of convection. A similar conclusion can also
be drawn from Table 1. Equation (66), suggests that for composite nanofluid, the
onset of convection advances for the top-heavy case, while it gets delayed for the
bottom-heavy case as far as the fluid and nanoparticles are in thermal equilibrium
(LTE). But in the case of LTNE, the onset of convection advances for composite
nanofluid as compared to that of normal nanofluid for both top and bottom-heavy
configurations (Table 1).

Figure 3a depicts that for smaller concentration of nanoparticles (Rn1 = Rn2 =
−0.5) in bottom-heavy case of LTNE, convection starts earlier for composite
nanofluid as compared to that of normal nanofluid unlike the case of LTE, but
for higher concentration of nanoparticles (Rn1 = Rn2 = −2), the convection starts
delaying for composite nanofluid (Fig. 3b) and the effect of LTNE reduces.

Figure 4 represents the variation of critical Rayleigh number (Rac) along with the
simultaneous variation of both the interphase heat transfer coefficients Hp1 and Hp2

for the fluid and particle phases. It can be seen that the behaviour of Rac is similar in
both top-heavy and bottom-heavy cases. As Hp1 or Hp2 → 0, there is no heat transfer
between particles and fluid phases and therefor the critical Rayleigh number Rac is
constant.Moreover, when Hp1 or Hp2 → ∞, heat transfer between particles and fluid
phases is too fast and therefore they again attain the state of thermal equilibrium,
keeping the value of Rac still a constant. The maximum change (decrement) in the
value of Rac can be seen for those value of logHp1 and logHp2 which lie near the
halfway. The region, in which the change in the value of Rac is observed, may be
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Table 1 Critical Rayleigh number (Rac) and critical wave number (ac) for top-heavy and bottom-
heavy configurations of nanofluid

Top heavy

Rn1 = Rn2 = 0.5, NA1 =
NA2 = 5

ac Rac

Normal nanofluid under LTE 2.22144 605.011

Normal nanofluid under LTNE 2.22050 508.759

Composite nanofluid under
LTE

2.22144 552.511

Composite nanofluid under
LTNE

2.21997 400.876

Bottom heavy

Rn1 = Rn2 = −0.5, NA1 =
NA2 = 5

ac Rac

Normal nanofluid under LTE 2.22144 710.011

Normal nanofluid under LTNE 2.22034 597.916

Composite nanofluid under
LTE

2.22144 762.511

Composite nanofluid under
LTNE

2.21944 556.479

Bottom heavy

Rn1 = Rn2 = −0.5, NA1 =
NA2 = −5

ac Rac

Normal nanofluid under LTE 2.22144 705.011

Normal nanofluid under LTNE 2.22034 592.916

Composite nanofluid under
LTE

2.22144 752.511

Composite nanofluid under
LTNE

2.21944 546.479

Fig. 2 Effect of LTNE over neutral stability curve
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Fig. 3 Comparison between the onset of convection for normal and composite nanofluid under
LTNE

Fig. 4 Variation of critical Rayleigh number Rac with both interphase heat transfer coefficients,
Rn1 = Rn2 = 0.5 for top heavy and Rn1 = Rn2 = −0.5 for bottom heavy

termed as the LTNE region because the major effect of LTNE can be seen only in
this specific region.

Figure 5 describes the variation of critical wave number (ac) along with the simul-
taneous variation of both the interphase heat transfer coefficients Hp1 and Hp2 for
the fluid and particle phases. When Hp1 or Hp2 → 0, the thermal field of the fluid
is totally unaffected by the particle phase, while when Hp1 or Hp2 → ∞, both fluid
and nanoparticles attain uniform temperatures and start behaving like a single phase
only. This is the reason why we don’t observe any variation in the value of critical
wave number (ac) for the terminal values of Hp1 and Hp2. The exact values of Rac
and ac are given in Table 2 for both top-heavy (Rn1 = Rn2 = 0.5) and bottom-heavy
(Rn1 = Rn2 = −0.5) configurations. And it can be clearly noticed that the variation
in the values of critical Rayleigh number (Rac) and critical wave number (ac) can
only be seen in the LTNE region.
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Fig. 5 Variation of critical wave number ac with both interphase heat transfer coefficients, Rn1 =
Rn2 = 0.5 for top heavy and Rn1 = Rn2 = −0.5 for bottom heavy

Table 2 Evaluation of Rac and ac for different values of Hp1 and Hp2 under top-heavy and
bottom-heavy case

Top heavy Bottom heavy

Hp1 Hp2 Rac ac Rac ac

LTE region 10−5 10−5 552.4933 2.2214 762.4868 2.2214

10−4 10−4 552.3308 2.2213 762.2660 2.2212

LTNE
region

10−3 10−3 550.7245 2.2199 760.0833 2.2194

10−2 10−2 536.3190 2.2089 740.4969 2.2045

10−1 10−1 469.4622 2.1847 649.5693 2.1720

100 100 411.5009 2.2091 570.9055 2.2048

101 101 400.8765 2.2199 556.4793 2.2194

LTE region 102 102 399.7232 2.2213 554.9124 2.2212

103 103 399.6069 2.2214 554.7544 2.2214

104 104 399.5953 2.2214 554.7386 2.2214

105 105 399.5941 2.2214 554.7370 2.2214

7.2 Non-linear Stability Analysis

The non-linear stability analysis is done based on the numerical solutions of ordinary
differential Eqs. (50)–(60). The coefficient of heat transport for fluid (fluid-thermal
Nusselt number Nu f (t)), coefficient of heat transport for nanoparticles (particle-
thermal Nusselt numbers Nup1(t) and Nup2(t)) and the coefficient of nanoparticles
concentration transport (concentration Nusselt numbers Nuφ1(t) and Nuφ2(t)) are
evaluated as a function of time ‘t’ for Pr = 5, Na1 = Na2 = 5, Le1 = Le2 = 100,
Hp1 = Hp2 = 10, ε1 = ε2 = 0.04, γ1 = γ2 = 5 (Agarwal et al. [3], Kumar and
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Fig. 6 Rn1 = Rn2 = 5 for top heavy and Rn1 = Rn2 = −5 for bottom heavy

Awasthi [22]). All the obtained results are presented graphically in Figs. 6 and 8.
All these graphs of non-linear analysis have a common characteristic that can be
discussed in three parts. In the first part, when t is close to 0, we observe a constant
Nusselt number which is the indicative of conduction state. As time passes, a huge
enhancement in heat, as well as mass transport can be seen in the second part, which
is the indicative of convection taking place in the system. At last, in the third part, all
the Nusselt numbers again tend to become constant followed by some oscillations.
This indicates that the system has achieved a steady state.
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Figure 6a–c represent the variation of thermalNusselt number for fluid and particle
phases. It can be clearly noticed that in case of LTNE, the heat transfer in both fluid
and nanoparticles is higher than that of LTE. Moreover, the onset of convection also
advances in the LTNE case for both top-heavy and bottom-heavy configurations.
One more thing can be depicted in case of LTE, the onset of convection advances for
top-heavy configuration as compared to that of bottom-heavy configuration, but we
don’t observe any such effect in the LTNE case. The heat transfer in nanoparticles is
more than that of fluid phase, this increased heat transfer in nanoparticles is possibly
due to their increased thermal conductivities. Figure 6d–e describe the variation of
concentration Nusselt number with time for both nanoparticles, respectively. Mass
transport also increases significantly in case of LTNE for both top-heavy and bottom-
heavy configurations. This increased heat and mass transfer in the case of LTNE
is possibly due to the extra energy transfer because of the temperature difference
between the fluid and particle phases.

Figure 7 explains the heat and mass transport inside the system for top-heavy
configuration under LTNE. We notice that convection starts earlier (Fig. 7a–c) in
case of composite nanofluid as compared to that of normal nanofluid. Mass transport
also starts slightly earlier in case of composite nanofluids for both the nanoparticles
(Fig. 7d–e).

Figure 8 describes the transport of heat and mass inside the system for bottom-
heavy configuration under LTNE.We notice that convection gets delayed (Fig. 8a–c)
in case of composite nanofluid as compared to that of normal nanofluid, i.e., the
systemgetsmore stabilized for composite nanofluid in bottom-heavy case. This delay
in onset of convection is probably due to the increased nanoparticle concentration
near the bottom. Mass transport also gets delayed in case of composite nanofluids
for both the nanoparticles (Fig. 8d–e).

In Fig. 9a, b and c, the streamlines, isotherms(fluid) and isohalines (for C1 or C2)
have been shown, respectively, for t = 0.200, 0.225, 0.250, 0.275 and 0.300 under
the case of local thermal equilibrium for composite nanofluid. It can be noticed that
at t = 0.200, the magnitude of streamlines is very weak (Fig. 9c) and the isotherms
are almost horizontal (Fig. 9a) indicating that initially the heat transfer is mainly
due to conduction. Initially, the isohalines are also almost horizontal which depicts
that mass transport is very slow. As time passes, the magnitude of streamlines gets
stronger, which is indicative of convection taking place in the system. Isotherms are
also getting curved which indicates the formation of convective cells. At t = 0.300,
significant amount of mass transport can be seen in Fig. 9c. For higher values of time,
the heat and mass transport become independent of time and the system achieves a
steady state.

In Fig. 10a, b and c, the streamlines, isotherms(fluid) and isohalines (for C1 or
C2) have been shown, respectively, for similar time as in Fig. 9, under the case of
local thermal non-equilibrium for composite nanofluid. It can be easily analyzed that
for the same time duration, the magnitude of streamlines is greater (Fig. 10a) than
that of in LTE case, showing that the onset of convection advances in case of LTNE.
The isotherms at t = 0.300 in Fig. 10b, describe that the transfer of heat is due to
strict convection while for the same time t = 0.300 in LTE case, only a transition
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Fig. 7 Rn1 = Rn2 = 5 for composite nanofluid and Rn1 = 5, Rn2 = 0 for normal nanofluid

from conduction state to convection state can be visualized. More amount of mass
transport can also be observed in the LTNE case (Fig. 10c) as compared to that of
the LTE case.
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Fig. 8 Rn1 = Rn2 = −5 for composite nanofluid and Rn1 = −5, Rn2 = 0 for normal nanofluid

8 Conclusions

In order to investigate the effect of local thermal non-equilibrium over convective
instability in a composite nanofluid layer, both linear and weakly non-linear stability
analyses have been performed under free-free boundary conditions. All the results
have been presented using graphs and tables. The prime conclusions are as follows:
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Fig. 9 Local thermal equilibrium

1. For smaller concentration of nanoparticles, the effect of LTNE is to advance the
onset of convection as compared toLTEcase for both top-heavy and bottom-heavy
configurations.

2. For smaller concentration of nanoparticles, the effect of LTNE dominates over
the delay in onset of convection for composite nanofluid in bottom-heavy case.

3. For higher concentration of nanoparticles in bottom-heavy case, the effect of
LTNE reduces and onset of convection starts delaying for composite nanofluid as
compared to normal nanofluid.

4. The heat transfer between particle and fluid phases takes place only for the inter-
medial values of both the interphase heat transfer coefficients, which affects the
critical Rayleigh number and critical wave number in the LTNE region only.

5. The system is more stable in case of bottom-heavy configuration as compared to
that of top-heavy case.

6. Heat and mass transport in fluid and both the nanoparticles in LTNE case is sig-
nificantly greater than that of LTE case.
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Fig. 10 Local thermal non-equilibrium

NuLT NE
f > NuLT E

f , NuLT NE
p1 > NuLT E

p1 , NuLT NE
p2 > NuLT E

p2 , NuLT NE
φ1 >

NuLT E
φ1 , NuLT NE

φ2 > NuLT E
φ2

7. In composite nanofluid top-heavy configuration, the onset of convection andmass
transport advances, while for bottom- heavy configuration, the onset of convection
and mass transport delays as compared to normal nanofluid.
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Investigation of Traffic Dynamics
Considering Driver’s Characteristics and
Downstream Traffic Conditions

Nikita Madaan and Sapna Sharma

Abstract This paper aims to examine the impact of the driver’s behavior with the
downstream average flow on current traffic dynamics in the lattice hydrodynamic
model. The influence of driver’s behavior and downstream traffic conditions with dif-
ferent sites are examined theoretically with the help of linear stability. It is observed
that traffic flow stability can be improved by incorporating both driver’s behavior
and the average flow of traffic downstream. Finally, numerical simulations show that
present traffic dynamics may be improved by integrating the impacts of driver behav-
ior and average downstream traffic conditions in order to alleviate traffic congestion.
Also, it validates the theoretical findings.

Keywords Traffic flow · Lattice model · Downstream average flow · Driver’s
behavior

1 Introduction

Travel has now become a vital part of most people’s daily lives. The rising econ-
omy and growing population have also increased congestion inmetropolitan areas. To
alleviate crowded road conditions while incurringminimal traffic expenditures, man-
agement agencies have prioritized transportation security and dependability. Since
traffic congestion is rising, some scholars have used mathematics and physics to
explain why it occurs and to anticipate how it will evolve through modeling and
simulation.

In recent decades, a lot of research has been carried out to resolve the urban
traffic issues. Multiple traffic flow models, such as microscopic [3, 4, 35–37] and
macroscopic [1, 2, 5–9, 9–34] models have been created to better understand the
intricate process of congested roadways. Macroscopic models represent the flow of
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traffic by simulating themovement of liquids or gases and explore the overall average
behavior of vehicles, whereas microscopic models are discrete models that simulate
the individual behavior of vehicles.

Nagatani [5] created the fundamental one-lane unidirectional lattice hydrody-
namic model (LHM) in 1998 by integrating characteristics of both microscopic and
macroscopic models. This model allowed researchers to investigate the effect of
real-world traffic conditions on traffic dynamics. Later, in real traffic flow, numer-
ous different versions of Nagatani’s lattice model were explored by investigating
various aspects, including optimal current difference [13], driver’s behavior [11],
density difference effect [8] and, and so on. In addition, the lattice hydrodynamic
one-lane unidirectional model is also expanded to include the curved road, two-lane,
higher-dimensional lattice model in traffic systems [9, 16, 18–34].

In real-world traffic scenario, the intelligent transportation system (ITS) has been
widely used in information and communication systems, making traffic information
accessible to drivers in ITS environments more useful than ever before. In 1999,
Nagatani [9] introduced a modified car-following model that includes interaction
between the next-nearest-neighbor in front. Further, a car-following model is intro-
duced by Kuang et al. [35] based on the effect of average headway. Later, Kuang
et al. [34] modified the Zhu et al. model [36] by including the impact of average
velocity as well as mean expected velocity field of forwarding vehicles in a vehicle
to vehicle interaction. Subsequently, Chuan et al. [37] investigated the impact of
multi-anticipation and also examined the influence of forwarding sites in the LHM.
Later, Zhu et al. [17] developed a single-lane LHM that took into account the differ-
ence between optimal and real traffic flow, based on average density and prior traffic
flow.

In regular traffic situations, driver characteristics (timid, aggressive, and normal)
have a significant effect on traffic flow. Additionally, numerous studies [11, 12, 14,
15, 18, 19, 29] have been conducted to examine the impact of the behavior of drivers
on traffic flow. According to studies, aggressive drivers create a strong impact on the
stability of traffic flow, although timid drivers are found to have a negative influence
on traffic flow stability. For this reason, it’smore realistic to investigate traffic features
in terms of the behavior of drivers.

The future era is of semi-automated vehicles. These vehicles partially depend on
the information of the surroundings as well as downstream situations. The idea of
this paper is to improve the traffic conditions by taking the driver’s behavior with
the average flow of front sites simultaneously. Therefore, the aim is to create a new
lattice model that incorporates average flow on front sites and the behavior of drivers
on current traffic conditions.

The following is the outline of the paper. The proposed lattice model, which
incorporates the influence of downstream average flow and behavior of drivers on
current traffic conditions, was described in Sect. 2 of this paper. Section 3 explains
the proposed model’s theoretical analysis. Section 4 contains the findings. Section 5
contains the conclusion.
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2 Model

Nagatani [5] developed the basic LHM in 1998 to depict the density waves in traffic
flow. The basic lattice model consists of two equations: a continuity equation and a
flow evolution equation, as follows:

∂tρ j (t) + ρ0(ρ j (t)v j (t) − ρ j−1(t)v j−1(t)) = 0, (1)

∂t (ρ j (t)v j (t)) = a[ρ0V (ρ j+1(t)) − ρ j (t)v j (t)]. (2)

Here, ρ j denotes the density and v j presents the velocity, respectively at j th site
on the one-dimensional lattice for time t . The average density is ρ0, while a is the
sensitivity of the drivers. V (ρ j+1) is the Bando’s [3, 4] optimal velocity function
(OVF), given as

V (ρ) = vmax

2

[
tanh

(
2

ρ0
− ρ

ρ20
− 1

ρc

)
+ tanh

(
1

ρc

)]
, (3)

In Eq. (3), ρc and vmax denote the critical density andmaximumvelocity, respectively.
In reality, drivers constantly analyze the state of the road ahead of them and attempt
to adjust their vehicle’s speed in response to the information received from ITS.
Further, to explore the traffic situations more realistically, we propose a LHM to
examine the driver’s behavior while taking into account downstream average flow
on forward sites. Thus, the continuity equation is the same in the new LHM, but the
flow equation is reformed as

∂t (ρ jv j ) = a
[
ρ0V (ρ j+1) − ρ jv j + α(2p − 1)τV ′(ρ j+1)∂tρ j+1

]

+ λ

[
qavg
j − ρ jv j

]
. (4)

The delay time is given by τ = 1/a, and the anticipation coefficient is denoted
by α in Eq. (4). The parameter p ∈ [0, 1] demonstrates that how the behavior of
the drivers impacts the traffic dynamics. Whenever p < 0.5, the driver exhibits the
timid behavior; when p = 0.5, it exhibits normal behavior; and whenever p > 0.5,
it exhibits aggressive behavior. Average flow difference is represented by λ and
qavg
j = 1

n

∑n
l=1(ρ j+lv j+l) is the average flow of the n forward sites.

After omitting v from Eqs. (1) and (4), the resulting density evolution equation
be obtained as

∂2
t (ρ j ) + (λ + a)∂tρ j − λ

n

( n∑
l=1

∂tρ j+l

)
+ aαρ20τ (2p − 1)[V ′(ρ j+1)∂tρ j+1

− V ′(ρ j )∂tρ j ] + aρ20

(
V (ρ j+1) − V (ρ j )

)
= 0. (5)
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In the new model, when α = 0 or p = 1/2 with n = 1, it reduces to the Tian et al.
model [7]. Furthermore, this model is identical to Nagatani’s [5] model with α = 0
or p = 1/2 and λ = 0.

3 Theoretical Analysis

To examine qualitative features of proposed LHM, we apply linear stability analysis.
Consider a traffic flowwith a constant density of ρ0 and an optimal velocity of V (ρ0).
As a result, traffic uniformity may be achieved by

ρ j (t) = ρ0, v j (t) = V (ρ0), (6)

where V ′(ρ0) = dV (ρ)
dρ

|ρ=ρ0 . After adding a tiny fluctuation (y j (t)) into the condition
of smooth flow of traffic, i.e., ρ j (t) = ρ0 + y j (t) and using modified density in
Eq. (5). Applying linearization, we obtain

∂2
t y j + (λ + a)∂t y j − λ

n

∑n
l=1(∂t y j+l) + aαρ20V

′(ρ0)τ (2p − 1)(∂t y j+1 − ∂t y j )

+aρ20V
′(ρ0)(y j+1 − y j ) = 0 (7)

Now, in Eq. (7), we can describe the deviation y j (t) as an exponential function, i.e.
y j (t) = exp(ıκ j + ηt), we get:

η2 + (a + λ)η − λ

n
η
( n∑

l=1

(eikl)
)

+ aαρ20τ (2p − 1)V ′(ρ0)η(eıκ − 1)

+ aρ20V
′(ρ0)(eıκ − 1) = 0. (8)

On inserting η = η1(ıκ) + η2(ıκ)2... in Eq. (8), coefficients of (ıκ) and (ıκ)2 of the
first and second order were obtained as follows:

η1 = −ρ20V
′(ρ0), (9)

η2 = −ρ20V
′(ρ0)
2

− (ρ20V
′(ρ0))2

a
− α(ρ20V

′(ρ0))2

a
− λρ20V

′(ρ0)(n + 1)

2a
. (10)

Homogeneous flow is uncertain for longer wavelength with η2 < 0, but becomes
stable with η2 > 0. So, the neutral stability criterion is as follows:

a = −2ρ20V
′(ρ0)(1 − α(2p − 1)) − λ(n + 1). (11)
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Fig. 1 Phase plot for distinct number of forwarding sites n in parameter space (ρ, a), whenα = 0.1
and λ = 0.1 a p = 0.4, b p = 0.7

The following criterion can be used to stabilize a uniform flow:

a > −2ρ20V
′(ρ0)(1 − α(2p − 1)) − λ(n + 1). (12)

Figures 1a–b show the phase plot for distinct number of forwarding sites (n) and
p, while all other parameters remain constant in the parameter space (ρ, a). Figure 1
illustrates the neutral stability curves. The apex of each curve reflects the crucial point
(ρc, ac) in the respective curves. In this manner, the phase plot is separated into stable
and unstable regions. As seen in Fig. 1a, the amplitude of neutral stability curves
reduces as the number of forwarded sites (n) increases when p = 0.4, implying that
the stability of uniform traffic flow has been improved by using downstream average
flow information. Also, it can be seen in Fig. 1b, that the sensitivity decreases as n
increases with p = 0.7, indicating the widening of the stability region. This demon-
strates that by considering both impacts simultaneously, i.e., downstream average
flow and effect of behavior of drivers on traffic flow can help in strengthening the
traffic flow stability.

4 Numerical Simulation

Numerical simulation with periodic boundary conditions is used to verify theoretical
results. The following initial conditions are preferred:

ρ j (0) =

⎧⎪⎨
⎪⎩

ρ0; j �= M
2 ,

N
2 − 1

ρ0 − σ; j = N
2

ρ0 + σ; j = N
2 − 1

(13)
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Fig. 2 When a = 1.65 and p = 0.4, the spatial-temporal evolution of density waves for distinct
values of n

The associated variables are as follows: ρ0 = ρc = 0.2, λ = 0.1, vmax = 2, α = 0.1,
and t = 2 × 104 s. Here, N = 100 and σ = 0.05 represents the total number of sites
and initial perturbation, respectively.

Figure 2 shows the space-time density wave for distinct values of forwarding
sites (i.e., n = 1, 2, and 3) at t = 104s, when p = 0.4, and a = 1.65. The density
waves in the pattern of Fig. 2a, b are kink-antikink, since the stability requirement
(Eq.(12)) is not met, and the flow goes from uniform to congested after the tiny
disturbance. From the figures, one can observe that the kink-antikink density waves
occurs for smaller values of n and propagates backwards. Further, when the value of
n increases, stability region increases, especially for n = 3, the amplitude of density
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Fig. 3 Density patterns for
distinct values of n at
t = 10000 s with a = 1.65
and p = 0.4
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wave vanishes completely.We found that if forward lattices aremore than 3, then also
it satisfies the stability condition. It indicates that traffic congestion can be reduced
by having information about forward lattices.

The density pattern for distinct values of n with p = 0.4 shown in Fig. 3, which
corresponds to Fig. 2. As n increases, the density wave’s amplitude reduces, and
finally, the flow goes into the homogeneous steady state for n = 3.

Figure 4 indicates the spatio-temporal density wave profiles for distinct values
of forwarding sites (i.e., n = 1, 2, and 3) at t = 104s, when p = 0.7, and a = 1.5.
The density waves in the pattern of Fig. 4a, b demonstrate that an initial perturba-
tion results in the kink-antikink solution propagating backward direction. When the
instability criteria (Eq.(12)) is fulfilled, the flow transits from uniform to congested.
The amplitude of density wave diminishes with the increase in n, however, as n = 3,
the stability region increases.

The density pattern for distinct values of n with p = 0.7 shown in Fig. 5, which
corresponds to Fig. 4. As n increases, the density wave’s amplitude reduces, and
for n = 3, the amplitude of density wave vanishes completely, which shows that the
knowledge of prospective sites flow can help in minimizing the traffic congestion.

After examining all the simulation findings, we noticed that all the simulation
results are completely similar to the theoretical results presented in the previous
section. Also, in real traffic phenomenon, it is feasible for the drivers to adjust their
speed, if they have adequate information about the forward traffic situation and then
the traffic congestion reduces. All these results show that the information about the
diver’s behavior and the downstream average flow on forward sites is crucial in
improving traffic flow stability.
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Fig. 4 When a = 1.5 and p = 0.7, the spatio-temporal evolution of density waves for distinct
values of n

Fig. 5 Density patterns for
distinct values of n at
t = 10000 s with a = 1.5
and p = 0.7
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5 Conclusion

The current study presents a LHM for examining the influence of driver’s behavior
with downstream average flow on traffic dynamics. The stability condition of traffic
dynamics is analyzed via theoretical analysis. From the study of the phase diagram,
it is depicted that the new model considering the average flow of front sites with
driver’s behavior has a greater influence on reducing the traffic congestion than the
basic lattice model. Furthermore, the numerical findings correspond well with the
theoretical conclusions. Thus, it is prominent to make an aspect that the current
traffic dynamics are influenced by the forward traffic information and it is favorable
in reducing the traffic congestion.
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Fractal Convolution Bessel Sequences on
Rectangle

R. Pasupathi, M. A. Navascués, and A. K. B. Chand

Abstract Fractal functions provide a natural deterministic approximation of com-
plex phenomena and also it has self-similarity. Recently, it has been recognized as
an internal binary operation, called fractal convolution. In the present article, we
obtain Bessel sequences of L2(I × J ) composed of product of fractal convolutions,
using the identification of L2(I × J )with the tensor product space L2(I) ⊗ L2(J ),
where I and J are real compact intervals.

Keywords Fractals · Attractor · Fractal interpolation function · Convolution ·
Bessel sequences

1 Introduction

The most natural and scientific phenomena result in patterns that are highly com-
plicated like snowflakes, electromagnetic waves, etc. These patterns are hard to be
described by the usual Euclidean geometry as they don’t resemble simple shapes
with smooth margins. In his famous book “The Fractal Geometry of Nature”, Man-
delbrot [12] introduced the concept of fractal to capture non-uniformity in nature and
in modeling a variety of phenomena in applied mathematics and engineering: image
processing, bio-engineering, signal processing, turbulence, etc. (see, for instance,
[3–6, 11, 15, 21, 25]). Fractal geometry plays a major role for modeling objects
with infinite details in nature.
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Barnsley [1, 2] introduced the theory of Fractal Interpolation Function (FIF) using
the concept of Iterated Function System (IFS) introduced by Hutchinson [9]. FIFs
are defined as the fixed points of maps between spaces of functions. Some of the
advantages of FIFs are : (i) FIFs retain self-similarity under magnification, (ii) for the
suitable choice of scaling vectors, FIF can provide smooth or non-smooth approxi-
mations and one more remarkable advantage is that (iii) the graph of these approx-
imations provide a non-integer dimension with respect to the Hausdorff magnitude
of scaling factor.

FIF was introduced as a continuous function interpolating the prescribed data
set and the graph of the fractal function is the attractor of a suitable IFS. Many
authors developed the theory of FIFs, both in the univariate and multivariate settings
(see for example, [13, 14, 24, 26]). For any continuous function f defined on a
compact interval I, we can get a continuous fractal function f ω

Γ,b associated with the
partition Γ of I, base function b in C(I) and scale vector ω, which interpolates the
given function f on the nodes of Γ . The operator which takes f → f ω

Γ,b on C(I)

is called the fractal operator. The fractal operator can be extended to the Lebegue
spaces L p(I), and in such manner, we construct fractal perturbation of p-integrable
functions. Navascués and group [16, 17, 19, 23] have studied various properties of
fractal functions by using the fractal operator. Latterly, the fractal function f ω

Γ,b has
been realized as the binary operation f ∗ b between the seed function f and the base
function b in L p(I), where the partition and the scale vector are fixed [18, 20].

In this paper, we have constructed fractal convolution Bessel sequences of L2(I ×
J ), by using the identification of L2(I × J ) with the tensor product space L2(I) ⊗
L2(J ). Turning to the structure of our paper, in Sect. 2, we recall the concept of
the tensor product of two Hilbert spaces. In Sect. 3, we give a brief outline of the
fractal functions based on the notion of FIF, and by using the fractal function, we
define fractal convolution in L p(I). Finally, in Sect. 4, we have constructed partial
fractal convolution operators in L2(I) and L2(J ) with fixing the null function,
where J is also a real compact interval. From these operators and the identification
of L2(I × J ), we construct Bessel sequences of L2(I × J ) composed of product
of fractal functions.

2 Tensor Product of Hilbert Spaces

Let us recall the basic concepts of the tensor product of two Hilbert spaces H1 and
H2 and tensor product of two linear bounded operators. For reference, the reader can
see [8, 10].

Definition 1 Let H1 and H2 be Hilbert spaces on the field of real numbers. Then
the tensor product of H1 and H2 is the collection H1 ⊗ H2 defined by
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H1 ⊗ H2 := {Q : H2 → H1 : Q linear, bounded,
∑

j

‖Qej‖2 < ∞},

where {e j } is an orthonormal basis ofH2.

If {li } is an orthonormal basis ofH1, then we have

∑

j

‖Qej‖2 =
∑

j

∑

i

|〈Qej , li 〉|2 =
∑

i

∑

j

|〈e j , Q∗li 〉|2 =
∑

i

‖Q∗li‖2,

where Q∗ is the adjoint of Q. Then the sum
∑

j ‖Qej‖2 is independent of the basis
chosen inH2. The space H1 ⊗ H2 is a Hilbert space with the inner product

〈Q, R〉 =
∑

j

〈Qej , Re j 〉,

and this induced norm is

|||Q||| = (
∑

j

‖Qej‖2)1/2 = |||Q∗|||.

Now we define the tensor product of vectors p ∈ H1 and q ∈ H2 as the operator
p ⊗ q : H2 → H1

(p ⊗ q)(h) = 〈q, h〉p h ∈ H2. (1)

and note that

(i) span({p ⊗ q : p ∈ H1, q ∈ H2}) = H1 ⊗ H2.
(ii) 〈p ⊗ q, p̃ ⊗ q̃〉 = 〈p, p̃〉〈q, q̃〉.
We now consider the tensor product of bounded linear operators.

Definition 2 If T1 and T2 are bounded linear operators of H1 and H2, respectively,
then define the tensor product of T1 and T2 by

T1 ⊗ T2 : H1 ⊗ H2 → H1 ⊗ H2

(T1 ⊗ T2)P = T1PT
∗
2 P ∈ H1 ⊗ H2.

Some basic properties of this tensor product are:

(a) T1 ⊗ T2 is a linear bounded operator on H1 ⊗ H2.
(b) ‖T1 ⊗ T2‖ = ‖T1‖‖T2‖, where ‖T1 ⊗ T2‖ is the operator norm of T1 ⊗ T2 on

H1 ⊗ H2 with respect to |||.|||.
(c) (T1 ⊗ T2)(p ⊗ q) = T1(p) ⊗ T2(q).
(d) (T1 ⊗ T2)−1 = T−1

1 ⊗ T−1
2 .
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Theorem 1 ([8] Theorem 7.16) The identification of p ⊗ q with the function
p(x)q(y) extends uniquely to an isometric isomorphism of L2(I) ⊗ L2(J ) with
L2(I × J ) whose inverse identifies P ∈ L2(I × J ) with the operator
s → ∫

J P(., y)s(y)dy, where s ∈ L2(J ).

If p ∈ L2(I) and q ∈ L2(J ), we have

(p ⊗ q)(s) = 〈q, s〉p =
∫

J
p(.)q(y)s(y)dy.

The kernel of p ⊗ q is p(x)q(y). Similarly, the operator
∑n

i=1 pi ⊗ qi has the kernel∑n
i=1 pi (x)qi (y).
Thus, by Theorem 1, the space L2(I × J ) is identified with the tensor product

space L2(I) ⊗ L2(J ).

3 Fractal Functions and Fractal Convolutions in L p(I)

In this section, we provide a family of fractal functions in L p(I) (Lebegue spaces)
in the notion of FIF. For details the reader is referred to [16, 17].

Let Γ : {γ0, γ1, . . . , γM} be a partition of the interval I = [γ0, γM ] such that
γ0 < γ1 < · · · < γM and set Il = [γl−1, γl ], for all l = 1, 2, . . . , M . The function
Ll : I → Il , l = 1, 2, . . . , M is defined as

Ll(γ) = alγ + bl ,

where al = γl − γl−1

γM − γ0
, bl = γMγl−1 − γ0γl

γM − γ0
.

Let us denote L p(I), 1 ≤ p < ∞ as the collection of real-valued Lebegue inte-
grable functions defined on I with respect to the L p-norm defined by

‖k‖p :=
( ∫

I
|k(γ)|pdγ

)1/p

.

Let f ∈ L p(I) be the prescribed function, called the seed function or the germ
function. Fix a function b ∈ L p(I), referred as the base function and finally choose
the free variableω = (ωl)

M
l=1,ωl is real for l ∈ {1, . . . , M} such thatΩ := max{|ωl | :

l = 1, 2, . . . , M} < 1, which is called the scale vector.
We obtain FIF f ω

Γ,b ∈ L p(I) with respect to the germ function f , base function
b, partition Γ , and the scale vector ω as the fixed point of the Read-Bajraktarević
(RB) operator T ω

f,b,Γ : L p(I) → L p(I) is defined by

T ω
f,b,Γ g(γ) = f (γ) + ωl(g − b) ◦ L−1

l (γ) ∀ γ ∈ Il , l = 1, 2, . . . , M.
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Themagnitude of the scale vector gives the RB operator T ω
f,b,Γ which is a contrac-

tionmap on theBanach space L p(I). Consequently, theBanach contraction principle
says T ω

f,b,Γ has a unique fixed point f ω
Γ,b (say) in L p(I). The FIF f ω

Γ,b is called the
fractal function, which is a self-referential function. And since f ω

Γ,b is the fixed point
of T ω

f,b,Γ which satisfies the following functional equations:

f ω
Γ,b(γ) = f (γ) + ωl( f

ω
Γ,b − b) ◦ L−1

l (γ) ∀ γ ∈ Il, l = 1, 2, . . . , M, (2)

this implies the following inequality:

‖ f ω
Γ,b − f ‖ ≤ Ω

1 − Ω
‖ f − b‖.

For any prescribed function f in L p(I), (2) produces a collection of self-
referential functions { f ω

Γ,b : ω ∈ (−1, 1)M } related with Γ, b. Observe that if the
choosing scale vector is null, then f ω

Γ,b coincides with the given function f . The
elements Γ, b, and ω can be chosen appropriately so as to maintain or reform the
properties of the given function f depending on our problem.

We define a binary operationR := RΓ,ω on the space L p(I) × L p(I), called the
fractal convolution operator associated with the fixed partition Γ and the fixed scale
vector ω by (cf. [18])

R( f, b) := f ω
Γ,b.

In place of R( f, b), we write f ∗ b. The binary operation ∗ on L p(I) × L p(I)

is called the fractal convolution of the functions f and b.

4 Partial Fractal Convolutions on Rectangle with Fixing
Null Function

Consider the fractal convolution operators R = RΓ,ω associated with the fixed par-
tition Γ of the interval I and the fixed scale vector ω defined as

R : L2(I) × L2(I) → L2(I) by ( f, b) → f ∗1 b := f ω
Γ,b

and S = SΓ̃ ,β associated with the fixed partition Γ̃ of the interval J , and the fixed
scale vector β defined as

S : L2(J ) × L2(J ) → L2(J ) by (g, b̃) → g ∗2 b̃ := g
β

Γ̃ ,b̃

where f ω
Γ,b and g

β

Γ̃ ,b̃
are fractal functions.
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We also get partial fractal convolution operators on L2(I) by keeping one of the
input coordinates of R being fixed. We define, for a fixed f ∈ L2(I), the operator

R1
f (b) = R( f, b) : L2(I) → L2(I) by b → f ∗1 b,

and for a fixed b ∈ L2(I)

R2
b( f ) = R( f, b) : L2(I) → L2(I) by f → f ∗1 b.

This is also called one-sided fractal convolutions. We call R1
f as the f -left fractal

convolution andR2
b as the b-right fractal convolution ofR. Similarly, we define the

one-sided fractal convolution operators on L2(J ) of S as follows:
For a fixed g ∈ L2(J ),

S1
g (b̃) = g ∗2 b̃ ∀ b̃ ∈ L2(J )

and for a fixed b̃ ∈ L2(J ),

S2
b̃
(g) = g ∗2 b̃ ∀ g ∈ L2(J ), .

By using (2), the one-sided fractal convolution operators satisfy the following
inequalities (see [18] Theorem 3.3):

‖R1
f (b1) − R1

f (b2)‖ ≤ Ω

1 − Ω
‖b1 − b2‖, (3)

‖R2
b( f1) − R2

b( f2)‖ ≤ 1

1 − Ω
‖ f1 − f2‖, (4)

for all f, f1, f2, b, b1, b2 ∈ L2(I), where Ω := maxn{|ωn|} and ‖.‖ is the L2-norm
( called Euclidean norm) and

‖S1
g (b̃1) − S1

g (b̃2)‖ ≤ Ω̃

1 − Ω̃
‖b̃1 − b̃2‖, (5)

‖S2
b̃
(g1) − S2

b̃
(g2)‖ ≤ 1

1 − Ω̃
‖g1 − g2‖, (6)

for all g, g1, g2, b̃, b̃1, b̃2 ∈ L2(J ), where Ω̃ := maxm{|βm |}.
Remark 1 By using fractal convolution, we can get a connection between fractal
interpolation theory and frame theory. Note that the fractal convolution operatorsR
and S are linear. This gives that one-sided fractal convolution operatorsR1

0,R2
0,S1

0
and S2

0 are also linear.
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Consider the one-sided fractal convolution operatorsR1
0,R2

0,S1
0 and S2

0 with the
null function 0 being fixed.

R1
0(b) = 0 ∗1 b, R2

0( f ) = f ∗1 0,

and
S1
0 (b̃) = 0 ∗2 b̃, S2

0 (g) = g ∗2 0.

From (3)–(6), we haveR1
0 andR2

0 are bounded linear operators on L2(I) and S1
0

and S2
0 are bounded linear operators on L2(J ) with

‖R1
0‖ ≤ Ω

1 − Ω
, ‖R2

0‖ ≤ 1

1 − Ω
. (7)

‖S1
0‖ ≤ Ω̃

1 − Ω̃
, ‖S2

0‖ ≤ 1

1 − Ω̃
. (8)

For the detailed exposition of the following definitions, the reader can refer to
[7, 22].

Definition 3 A family of elements {ηn}∞n=1 in a separable Hilbert spaceH, is called
a frame if there exist constants A,B > 0 such that

A‖η‖2 ≤
∞∑

n=1

|〈η, ηn〉|2 ≤ B‖η‖2 ∀ η ∈ H.

The constantsA and B are called lower and upper frame bounds of {ηn}∞n=1, respec-
tively.

Definition 4 A family of elements {ηn}∞n=1 in a separable Hilbert spaceH, is called
a Bessel sequence if there exists B > 0 such that

∞∑

n=1

|〈η, ηn〉|2 ≤ B‖η‖2 ∀ η ∈ H.

The constant B is called Bessel constant of {ηn}∞n=1.

Proposition 1 ([10]) If {ηn} is a frame for H1 and {λm} is a frame for H2, then
{ηn ⊗ λm} is a frame forH1 ⊗ H2.

Lemma 1 If {ηn} is a Bessel sequence of H1 and {λm} is a Bessel sequence of H2,
then {ηn ⊗ λm} is a Bessel sequence ofH1 ⊗ H2.
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Proof We can conclude this lemma from the proof of the above proposition
in [10].

Theorem 2 If {en} and {rm} are Bessel sequences of L2(I) and L2(J ) respectively,
then for L2(I × J ),

(i) {(0 ∗1 en) ⊗ (0 ∗2 rm)} is a Bessel sequence.
(ii) {(0 ∗1 en) ⊗ (rm ∗2 0)} is a Bessel sequence.
(iii) {(en ∗1 0) ⊗ (0 ∗2 rm)} is a Bessel sequence.
(iv) {(en ∗1 0) ⊗ (rm ∗2 0)} is a Bessel sequence.
Proof By Lemma 1, {en ⊗ rm} is a Bessel sequence. From the properties (b) and (c)
of the tensor product of the bounded linear operators, for any Q ∈ L2(I) ⊗ L2(J ),

we have

(i)
∑

m,n

|〈Q, (0 ∗1 en) ⊗ (0 ∗2 rm)〉|2 =
∑

m,n

|〈Q,R1
0(en) ⊗ S1

0 (rm)〉|2

=
∑

m,n

|〈Q, (R1
0 ⊗ S1

0 )(en ⊗ rm)〉|2

=
∑

m,n

|〈(R1
0 ⊗ S1

0 )
∗Q, en ⊗ rm〉|2

≤ B|||(R1
0 ⊗ S1

0 )
∗Q|||2

≤ B‖R1
0 ⊗ S1

0‖2|||Q|||2

= B‖R1
0‖2‖S1

0‖2|||Q|||2,

(ii)
∑

m,n

|〈Q, (0 ∗1 en) ⊗ (rm ∗2 0)〉|2 =
∑

m,n

|〈Q, (R1
0 ⊗ S2

0 )(en ⊗ rm)〉|2

=
∑

m,n

|〈(R1
0 ⊗ S2

0 )
∗Q, en ⊗ rm〉|2

≤ B|||(R1
0 ⊗ S2

0 )
∗Q|||2

≤ B‖R1
0 ⊗ S2

0‖2|||Q|||2

= B‖R1
0‖2‖S2

0‖2|||Q|||2,
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(iii)
∑

m,n

|〈Q, (en ∗1 0) ⊗ (0 ∗2 rm)〉|2 =
∑

m,n

|〈Q, (R2
0 ⊗ S1

0 )(en ⊗ rm)〉|2

=
∑

m,n

|〈(R2
0 ⊗ S1

0 )
∗Q, en ⊗ rm〉|2

≤ B|||(R2
0 ⊗ S1

0 )
∗Q|||2

≤ B‖R2
0 ⊗ S1

0‖2|||Q|||2

= B‖R2
0‖2‖S1

0‖2|||Q|||2,

(iv)
∑

m,n

|〈Q, (en ∗1 0) ⊗ (rm ∗2 0)〉|2 =
∑

m,n

|〈Q, (R2
0 ⊗ S2

0 )(en ⊗ rm)〉|2

=
∑

m,n

|〈(R2
0 ⊗ S2

0 )
∗Q, en ⊗ rm〉|2

≤ B|||(R2
0 ⊗ S2

0 )
∗Q|||2

≤ B‖R2
0 ⊗ S2

0‖2|||Q|||2

= B‖R2
0‖2‖S2

0‖2|||Q|||2,

where B is a Bessel constant of the sequence {en ⊗ rm}. Hence, proved.

5 Conclusion

In this article,we obtained a collection of fractal (self-referential) Bessel sequences of
L2(I × J ). Since the fractal functions and Bessel sequences own greater flexibility
in order to choose good approximations of mappings separately, our obtained frac-
tal Bessel sequences behave very nicely in order to approximate two-dimensional
square-integrable maps whose domain is a rectangle. First, we considered partial
fractal convolution (bounded linear) operators on both L2(I) and L2(J ) with the
null function being fixed. Consequently, by considering the bounded linear opera-
torsRi

0 ⊗ S j
0 , (i, j) ∈ {1, 2} × {1, 2}, we obtained Bessel sequences of L2(I × J ),

composed of product of fractal convolution maps on L2(I) and L2(J ).
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Uniform Approximation of Functions
Belonging to L[0,∞)-Space Using
Cγ.T -Means of Fourier–Laguerre Series

Sachin Devaiya and Shailesh Kumar Srivastava

Abstract Recently, Singh and Saini [Uniform approximation in L[0,∞)-space by
Cesàro means of Fourier–Laguerre series. Proc. Natl. Acad. Sci., India, Sect. A
Phys. Sci. (2021)] determined the degree of approximation of functions f belonging
to L[0,∞) by Cesàro means of its Fourier–Laguerre series for any x > 0. In this
paper, we obtain the error of approximation of functions f ∈ L[0,∞) using product
mean Cγ .T (γ ≥ 1) of its Fourier–Laguerre series for any x > 0. Further, we also
discuss some particular cases of Cγ .T -means.

Keywords Cγ .T -mean · Error of approximation · Fourier–Laguerre series

1 Introduction

The Fourier–Laguerre expansion of function f ∈ L[0,∞) is given by

f (x) ∼
∞∑

n=0

an L
(α)
n (x), (1)

where L(α)
n (x) is nth Laguerre polynomial of order α > −1, is defined by the gen-

erating function
∞∑

n=0

L(α)
n (x)ωn = exp( ω x

ω−1 )

(1 − ω)1+α
,
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and

an = n! α!
(n + α)! �(α + 1)

∫ ∞

0
xα exp(−x) f (x) L(α)

n (x)dx . (2)

It is pretended that integral (2) exists.
The kernel polynomial Jα

k (x, y), is given as

Jα
k (x, y) =

k∑

m=0

L(α)
m (x) L(α)

m (y)

�(α + 1)
(m+α

m

) . (3)

Jα
k (x, y) = k + 1

�(α + 1)
(k+α

α

)
L(α)
k (x) L(α)

k+1(y) − L(α)
k+1(x) L

(α)
k (y)

x − y
. (4)

In a more appropriate form,

Jα
k (x, y) = k + 1

�(α + 1)
(k+α

α

)
L(α)
k+1(x) L

(α−1)
k+1 (y) − L(α−1)

k+1 (x) L(α)
k+1(y)

x − y
, (5)

and

Jα
k (x, y) = k + 1

�(α + 1)
(k+α

α

)
(
L(α)
k+1(x)

L(α−1)
k+1 (y) − L(α−1)

k+1 (x)

x − y

−L(α−1)
k+1 (x)

L(α)
k+1(y) − L(α)

k+1(x)

x − y

)
. (6)

For more details, one can see [15, pp. 101, 266].
The (n + 1)th partial sum of the Fourier–Laguerre series of equation (1) is defined

by

sn( f ; x) =
n∑

k=0

ak L
(α)
k (x), n ∈ N0. (7)

Define

[t]n( f ; x) =
n∑

k=0

an,k sk( f ; x), n ∈ N0,

where T ≡ (an,k ≥ 0 for every n, k) is a lower triangular matrix such that an,−1 =
0, An,k = ∑n

k=r an,k and An,0 = 1, n ∈ N0. The Fourier–Laguerre series is called
T -summable to s, if [t]n( f ; x) → s as n → ∞.

If an,k =
{ n! γ!

(n+γ)!
(n+γ−k−1

γ−1

)
, 0 ≤ k ≤ n,

0 , k > n,
then the matrix T converts to Cesàro

matrix of order γ ≥ 1 and denoted by Cγ . The Fourier-Laguerre series is called
Cγ-summable to s1, if [Cγ]n( f ; x) → s1 as n → ∞.
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The product of Cγ-summable with T -summable defines Cγ .T -summable. Thus,
Cγ .T -summability of sequence {sn( f ; x)} denoted by

[Cγ .T ]n( f ; x) = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,ksk( f ; x). (8)

If [Cγ .T ]n( f ; x) → s2 as n → ∞, then the Fourier–Laguerre series is called
Cγ .T -summable to s2. The regularity of T and Cγ methods implies the regularity of
the Cγ .T method.

The following cases are important and particular cases of Cγ .T method:

1. If av,k = 1
(v−k+1) log(v+1) , then C

γ .T reduce to Cγ .H or (C, γ)(H, 1
v+1 ).

2. If av,k = pv−k

Pv
, where Pv = ∑v

k=0 pk 	= 0, then Cγ .T reduce to Cγ .Np or (C, γ)

(N , pv).
3. If av,k = pk

Pv
, then Cγ .T reduce to Cγ .N p or (C, γ)(N , pv).

4. If av,k = pv−k qk
Rv

, where Rv = ∑v
k=0 pk qv−k , then Cγ .T reduce to Cγ .Npq or

(C, γ)(N , p, q).
5. If av,k = 1

(1+q)v

(
v

k

)
qv−k , then Cγ .T reduce to Cγ .Eq or (C, γ)(E, q).

6. If av,k = 1
2v

(
v

k

)
, then Cγ .T reduce to Cγ .E1 or (C, γ)(E, 1),

where pv and qv are a non-negative, monotonic, and non-increasing sequence of real
constants.

If we take γ = 1 in the above cases, then we get C1.H , C1.Np, C1.N p, C1.Npq ,
C1.Eq , and (C, 1)(E, 1) are also particular cases of the Cγ .T method.

Remark 1 We consider the matrix ai,k = 1
ni

(i
k

)
(n − 1)i−k , for n ≥ 2, and the series

1 − 2n
∑∞

i=1(−2n + 1)i−1, for n ∈ N, then the i th partial sum of the series is given
by si = (−2n + 1)i . It can be seen that the series is not T -summable and also not
Cγ-summable (for γ = 1), but it is Cγ .T -summable (for γ = 1). We can observe
that product summabilities are more effective than the single summability.

Many researchers have obtained the error of approximation of functions by vari-
ous summability methods or operators; for instance, one can see [1–14]. In the last
two decades, the error of approximation of functions f lies in L[0,∞) using different
types of summabilitymethods of its Fourier–Laguerre series became the area of inter-
est for many investigators. The authors like Lal and Nigam [5], Nigam and Sharma
[8], Sahani et al. [9], and Saini and Singh [10] have approximate functions using
different types of summability methods such as (N , p, q), (E, 1), Nörlund means,
and Hausdorff, respectively. On the other hand, Khatri and Mishra [3], Krasniqi
[4], Mittal and Singh [7], and Sonker [14] have approximate functions using differ-
ent types of product summability methods such as Harmonic–Euler, (C, 1)(E, q),
Matrix–Euler mean, and C1.T , respectively. But the authors mentioned above have
approximated the function at a point x = 0. In 1976, Singh [11] gave an interest-

ing result on the absolute (C, 1)-summability of the series
∑∞

n=1
an L

(α)
n (x)

(log(n+1)ε+1)
, where

an is Fourier-Laguerre coefficient of f ∈ L[0,∞) with x > 0. The Laguerre func-
tions form an orthogonal basis for L2[0,∞)-space, which successively defines the
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Fourier–Laguerre series. It has also been shown that Laguerre’s polynomial theory
directly solves the problem of determining Fourier–Laguerre approximations for
a large class of delay systems. Moreover, these findings are necessary for study-
ing the regular order of identification as a standard method for identifying infinite-
dimensional systems [6]. Recently, Singh and Saini [12] have approximate function
f belonging to L[0,∞) by Cesàro means of the Fourier–Laguerre series of f for
any x > 0. We also use the following notations:

φ(x, y) = f (y) − f (x) and ψ(x, u) = f (x ± u) − f (x).

2 Main Results

We note that a lot of work has been done to approximate function f ∈ L[0,∞)

using different types of summability methods of its Fourier–Laguerre series at a
point x = 0, but very little work has been done for x > 0. Also, the importance of
the product summabilitymethod, which is discussed inRemark 1 and particular cases
of Cγ .T -means, are motivated us to study the problem of the error of approximation
of functions f using Cγ .T -means of its Fourier–Laguerre series for x > 0. More
precisely, we prove the following result:

Theorem Let T ≡ (an,k) be a lower triangular regular matrix satisfy the following
conditions:

1. an,k be a non-negative and non-decreasing with respect to k, for 0 ≤ k ≤ n,

2.
∑n

v=t
Av,v−t = O(n + 1), n ∈ N0.

Then error of approximation of functions f ∈ L[0,∞)-class by Cγ .T -means of its
Fourier-Laguerre series at x > 0 by is given by

|[Cγ .T ]n( f ; x) − f (x)| = o(ξ(n)), (9)

where ξ(t) is an increasing function (positive) of t such that ξ(t) → ∞ as t → ∞
and satisfies following conditions:

�(t) =
∫ ε

t

|φ(x, y)|
y1/4−α/2

dy = o

(
ξ

(
1

t

))
, t → 0, (10)

∫ δ

t

|ψ(x, u)|
u

du = o

(
ξ

(
1

t

))
, t → 0, (11)

∫ ∞

n

exp(−y/2) |φ(x, y)|
y13/12−α/2

dy = o

(
ξ(n)

n1/2

)
, n → ∞, (12)
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where α ≥ −1/2, δ (> 0) is a fixed number and this holds uniformly for every fixed
positive interval 0 < ε ≤ x ≤ ω < ∞.

Here, few lemmas are given, which are useful to prove our Theorem.

Lemma 1 Let ε be a fixed positive constant andα be an arbitrary real number. Then

L(α)
n (x) =

{
O(nα) , 0 ≤ x ≤ 1/n,

O(x−(2α+1)/4 n(2α−1)/4), 1/n ≤ x ≤ ε,
as n → ∞.

The proof is given in [15, pp. 177, Theorem 7.6.4].

Lemma 2 Let ρ and α be arbitrary real numbers, 0 < η < 4 and ω > 0. Then

max exp(−x/2)xρ|L(α)
n (x)| = O(nQ),

where

Q =
{
max

(
ρ − 1

2 ,
α
2 − 1

4

)
, ω ≤ x ≤ (4 − η)n,

max
(
ρ − 1

3 ,
α
2 − 1

4

)
, x > n.

The proof is given in [15, pp. 241, Theorem 8.91.7].

Lemma 3 Let ε andω be fixed positive constants andα be an arbitrary real number,
then

L(α)
n (x) = k(x) nα/2−1/4 cos(2

√
nx − (α + 1/2)π/2) + O(nα/2−3/4),

where k(x) = x−α/2−1/4 exp(x/2)√
π

and x ∈ [ε,ω].
The proof is given in [15, pp. 198, Theorem 8.22.1].

Lemma 4 If x, y ∈ [1/n,ω], then

L(α)
n (y) − L(α)

n (x)√
y − √

x
= k(y) nα/2−1/4 cos(2

√
ny + λ) − cos(2

√
nx + λ)√

y − √
x

+

x−α/2−3/4 O(nα/2−1/4) + y−α/2−3/4 O(nα/2−1/4),

where λ = −(α + 1/2)π/2.

The proof is given in [15, pp. 237].

Lemma 5 If condition (10) holds, then

∫ t

0
yα |φ(x, y)| dy = o

(
tα/2+1/4 ξ

(
1

t

))
.

The proof is given in [12, Lemma 5].
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Lemma 6 If condition (12) holds, then

∫ n

ω

exp(−y/2) yα/2−3/4 |φ(x, y)| dy = o(ξ(n)),

where ω (> 0) is a fixed number and n → ∞.

The proof is given in [12, Lemma 6].

3 Proof of Theorem

We have

sn( f ; x) =
n∑

k=0

ak L
(α)
k (x)

=
n∑

k=0

∫ ∞
0 exp(−y) yα f (y) L(α)

k (y) L(α)
k (x) dy

�(α + 1)
(k+α

α

)

= 1

�(α + 1)

∫ ∞

0
exp(−y) yα f (y)

n∑

k=0

L(α)
k (x) L(α)

k (y)
(k+α

α

) dy

=
∫ ∞

0
exp(−y) yα f (y) Jα

n (x, y) dy. (13)

Applying T -summability on Eq. (13), we get

[T ]n( f ; x) =
n∑

k=0

an,k sk(x)

=
n∑

k=0

an,k

∫ ∞

0
exp(−y) yα f (y) Jα

k (x, y) dy. (14)

Applying (C, γ)-summability on Eq. (14),

[Cγ .T ]n( f ; x) = n! γ!
(n + γ)! �(α + 1)

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k ×
∫ ∞

0
exp(−y) yα f (y) Jα

k (x, y) dy, (15)

we have

[Cγ .T ]n( f ; x) − f (x)
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= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ ∞

0
exp(−y) yα

[ f (y) − f (x)]Jα
k (x, y) dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ ∞

0
exp(−y)yα φ(x, y) Jα

k (x, y) dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

[∫ 1/n

0
+

∫ ε

1/n
+

∫ x−δ

ε

+
∫ x+δ

x−δ

+
∫ ω

x+δ

+
∫ n

ω

+
∫ ∞

n

]
exp(−y) yα φ(x, y) Jα

k (x, y) dy

=
7∑

i=1

Ii . (16)

Consider that x is restricted to a fixed positive number, then using Lemma 1, we
have

|L(α)
k+1(x)| = O(x−α/2+1/4kα/2−1/4)

= O(kα/2−1/4). (17)

Now, in Eq. (5) applying Lemma 1 for 0 ≤ y < 1/n, we have

|Jα
k (x, y)| = O(k1−α[kα/2−1/4kα−1 + kα/2−3/4kα]). (18)

Applying Eqs. (17), (18) and Lemma 5, we have

|I1| ≤ n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ 1/n

0
yα |φ(x, y)| |Jα

k (x, y)| dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(
k1−α

∫ 1/n

0
yα |φ(x, y)|

[
kα/2−1/4kα−1 + kα/2−3/4kα

]
dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(
kα/2+1/4

∫ 1/n

0
yα |φ(x, y)|dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k o(ξ(n))

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)). (19)
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Now, in Eq. (5) applying Lemma 1 for 1/n ≤ y < ε, we have

|Jα
k (x, y)| = O(k1−α[kα/2−1/4y−α/2+1/4kα/2−3/4 + kα/2−3/4y−α/2−1/4kα/2−1/4]).

(20)

|I2| ≤ n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ ε

1/n
yα |φ(x, y)| |Jα

k (x, y)| dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(
k1−α

∫ ε

1/n
yα |φ(x, y)|

[
kα/2−1/4y−α/2+1/4kα/2−3/4 + kα/2−3/4y−α/2−1/4kα/2−1/4

]
dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(∫ ε

1/n
yα/2−1/4 |φ(x, y)|dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k o(ξ(n))

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)), (21)

in view of Eq. (20) and condition (10).
With the help Lemma 3 for ε ≤ y ≤ x − δ, we have

|L(α−1)
k+1 (y)| = O

(
y−α/2+1/4 exp(y/2)√

π
kα/2−3/4 cos(2

√
ky − (α − 1/2)π/2)+

kα/2−5/4
)
. (22)

Applying formula (5), we have

I3 = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ x−δ

ε

exp(−y) yα

φ(x, y)Jα
k (x, y)dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O(k1−α)

∫ x−δ

ε

exp(−y) yα φ(x, y)

L(α)
k+1(x) L

(α−1)
k+1 (y) − L(α−1)

k+1 (x) L(α)
k+1(y)

x − y
dy

= I31 + I32. (23)
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Now, applying Lemma 3 and Eq. (22), we have

I31 = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O(k1−α)

∫ x−δ

ε

exp(−y) yα |φ(x, y)|
x − y

O(kα/2−1/4)

[
y−α/2+1/4 exp(y/2)√

π
kα/2−3/4

cos(2
√
ky − (α − 1/2)π/2) + O(kα/2−5/4)

]
dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

[
O(1)

∫ x−δ

ε

yα/2+1/4|φ(x, y)|
exp(y/2) (x − y)

cos(2
√
ky − (α − 1/2)π/2)dy +

O(k−1/2)

∫ x−δ

ε

exp(−y)yα|φ(x, y)|
x − y

dy + o(1)

]
(24)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k o(1)

= o

(
n−γ

n∑

v=0

(n − v)γ−1

)

= o(1), (25)

in Eq. (24) using Riemann–Lebesgue theorem the first integral approaches to 0 and
second integral approaches to 0 as k → ∞.

Similarly,
|I32| = o(1). (26)

Combining (23), (25), and (26), we have

|I3| = o(1). (27)

Proceeding on the same lines

|I5| = o(1). (28)

Applying Lemmas 3 and 4 in formula (6), we have
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Jα
k (x, y) = k1−α kα/2−1/4 kα/2−3/4 x−α/2−1/4 exp(x/2)y−α/2−1/4 exp(y/2)

π(
√
x + √

y)
[
√
y cos(2

√
kx + λ)

sin(2
√
ky + λ) − sin(2

√
kx + λ)√

y − √
x

− √
x

sin(2
√
kx + λ)

cos(2
√
ky + λ) − cos(2

√
kx + λ)√

y − √
x

+ O(1)

]
. (29)

Here, the variables are confined to a fixed positive interval; so, the remainders in
Lemmas 3 and 4 depend only on n (see [15, pp. 267]).

Following the calculation of [15, pp. 267], we have

Jα
k (x, y) = 1

2

√
x

(
exp(x/2) x−α/2−1/4

√
π

)2

y−1/2 sin(2
√
k(

√
y − √

x))

(
√
y − √

x)
+ O(1).

Thus, from the above equation, we have

I4 = n!γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

∫ x+δ

x−δ
exp(−y)yαφ(x, y)Jα

k (x, y)dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

⎡

⎣1

2

√
x

(
exp(x/2) x−α/2−1/4

√
π

)2

∫ x+δ

x−δ
exp(−y) yα−1/2 φ(x, y)

sin(2
√
k(

√
y − √

x))√
y − √

x
dy + O(1)

]

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

([∫ x−1/n

x−δ
+

∫ x+1/n

x−1/n
+

∫ x+δ

x+1/n

]
exp(−y) yα−1/2 φ(x, y)

sin(2
√
k(

√
y − √

x))√
y − √

x
dy

)
+ O(1)

= I41 + I42 + I43 + O(1). (30)

Applying condition (11), we have
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|I41| = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(∫ x−1/n

x−δ

|φ(x, y)|(√x + √
y)

|x − y| dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(∫ δ

1/n

ψ(x, u)

u
du

)

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)). (31)

Proceeding on the same lines, we have

|I43| = o(ξ(n)). (32)

Applying condition (11), we have

|I42| = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(∫ x+1/n

x−1/n
|φ(x, y)|

∣∣∣∣∣
sin(2

√
k(

√
y − √

x))√
y − √

x

∣∣∣∣∣ dy
)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(√
k

∫ 1/n

0
|ψ(x, u)|du

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k o

(√
k ξ(n)

n

)

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)). (33)

Combining (30)–(33), we have
|I4| = o(ξ(n)). (34)

Now, with the help of first part of Lemma 2 (for η = 3), we have
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|I6| ≤ n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k

[
O(k1−α)

∫ n

ω
exp(−y)yα−1

|φ(x, y)||L(α)
k+1(x)||L(α−1)

k+1 (y)|dy + O(k1−α)

∫ n

ω
exp(−y)yα−1|φ(x, y)|

|L(α−1)
k+1 (x)||L(α)

k+1(y)|dy
]

= I61 + I62. (35)

Applying Lemma 6, we have

|I61| = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O

(
k−α/2+3/4

∫ n

ω
exp(−y/2)

yα/2−3/4|φ(x, y)| exp(−y/2) yα/2−1/4|L(α−1)
k+1 (y)|dy

)

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k(k
−α/2+3/4 kα/2−3/4)

∫ n

ω
exp(−y/2) yα/2−3/4 |φ(x, y)|dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k (k−α/2+3/4 kα/2−3/4) o(ξ(n))

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)). (36)

Similarly, we can calculate
|I62| = o(ξ(n)). (37)

Combining (35)–(37), we have
|I6| = o(ξ(n)). (38)

Using second part of Lemma 2 for n ≤ y < ∞, we have

exp(−x/2) xα/2+1/12 |L(α)
n (x)| = O(nα/2−1/4). (39)

Applying formula (4), we have



Uniform Approximation of Functions Belonging … 167

|I7| = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O(k1−α)

∫ ∞
n

exp(−y) yα|φ(x, y)|
x − y

{L(α)
k (x) L(α)

k+1(y) − L(α)
k+1(x) L

(α)
k (y)}dy

= I71 + I72. (40)

Now, applying condition (12), and with the help of equation (39), we get

I71 = n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O(k1−α)

∫ ∞
n

exp(−y) yα|φ(x, y)|
y − x

O(kα/2−1/4) exp(y/2)y−α/2−1/12kα/2−1/4dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k O(k1/2)
∫ ∞
n

exp(−y/2)

yα/2−13/12|φ(x, y)|dy

= n! γ!
(n + γ)!

n∑

v=0

(
n + γ − v − 1

γ − 1

) v∑

k=0

av,v−k o(ξ(n))

= o

(
ξ(n) n−γ

n∑

v=0

(n − v)γ−1

)

= o(ξ(n)). (41)

Similarly, we can calculate
|I72| = o(ξ(n)). (42)

Combining (40)–(42), we have
|I7| = o(ξ(n)). (43)

Collecting (16), (19), (21), (27), (28), (34), (38), and (43), we have

∣∣[Cγ .T ]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

This completes the proof of Theorem. �

4 Corollaries

Here, few corollaries are given, which are derived from our Theorem.

Corollary 1 If we take av,k = 1
(v−k+1) log(v+1) in Eq. (8), then Cγ .T reduce to Cγ .H or

(C, γ)(H, 1
v+1 ), then, for f ∈ L[0, ∞), we have
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∣∣[Cγ .H ]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

Corollary 2 If we take av,k = pv−k
Pv

, where Pv = ∑v
k=0 pk 	= 0 in Eq. (8), thenCγ .T reduce

to Cγ .Np or (C, γ)(N , pv), then, for f ∈ L[0, ∞), we have

∣∣[Cγ .Np]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

Corollary 3 If we take av,k = pk
Pv

in Eq. (8), then Cγ .T reduce to Cγ .N p or (C, γ)(N , pv),
then, for f ∈ L[0, ∞), we have

∣∣[Cγ .N p]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

Corollary 4 If we take av,k = pv−k qk
Rv

, where Rv = ∑v
k=0 pk qv−k in Eq. (8), then Cγ .T

reduce to Cγ .Npq or (C, γ)(N , p, q), then, for f ∈ L[0, ∞), we have

∣∣[Cγ .Npq ]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

Corollary 5 If we take av,k = 1
(1+q)v

(v
k
)
qv−k in Eq. (8), then Cγ .T reduce to Cγ .Eq or

(C, γ)(E, q), then, for f ∈ L[0, ∞), we have

∣∣[Cγ .Eq ]n( f ; x) − f (x)
∣∣ = o(ξ(n)).

Corollary 6 If we take av,k = 1
2v

(v
k
)
in Eq. (8), then Cγ .T reduce to Cγ .E1 or (C, γ)(E, 1),

then, for f ∈ L[0, ∞), we have

∣∣∣[Cγ .E1]n( f ; x) − f (x)
∣∣∣ = o(ξ(n)).

Remark 2 If we take γ = 1 in the above cases, then we getC1.H ,C1.Np ,C1.N p ,C1.Npq ,
C1.Eq , and (C, 1)(E, 1) are also particular cases of the Cγ .T method.
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Numerical Modelling and Experimental
Validation of Mechanical Separation
of Helminth Eggs for Wastewater
Purification

M. Diederich, F. Gül, C. Özman, A. C. Benim, L. Ihringer, and D. Möller

Abstract Hydrodynamics of wastewater, which is contaminated with helminth eggs
is computationally and experimentally investigated, for laboratory conditions and for
a small sewage treatment plant. In the computational analysis, the flow is mathemat-
ically modelled within the framework of a Eulerian–Lagrangian framework, where
the continuous water phase is treated by an Eulerian, and the discrete particle phase
(helminth eggs) is treated by a Lagrangian formulation. For turbulent flows, the Shear
Stress Transport model is used to model the turbulence of the continuous phase. The
effect of the latter on the discrete phase is modelled by a discrete randomwalkmodel.
In modelling the momentum exchange between the phases, a special emphasis is
placed upon the accurate determination of the drag coefficient for the helminth eggs.
For this purpose, flow around individual eggs is analysed and laboratory measure-
ments of other authors are inspected. Before applying these results, measurements
are performed on a small sewage treatment plant using surrogate spheres, for vali-
dating the remaining aspects of the Eulerian–Lagrangian hydrodynamics modelling.
Subsequently, the operation of the small sewage plant is analysed for wastewater
containing helminth eggs for its optimization.
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1 Introduction

A large population of the world does not have access to clean water. Microorganisms
such as helminth eggs (HE) in water are causing death especially among children
and people with weakened immune system. As a method of purifying wastewater
(WW), the sedimentation technique (ST) is quite often utilized. For being able to
utilize the ST in an efficient way, it is important to know the sinking speeds (SS)
of the particulates. If a small-sized sewage treatment plant (SSTP) is of concern,
the problem is more complicated: the times of residence are shorter. Moreover, flow
turbulence that can occur can affect the motion of the particulates, additionally.

Different approaches for cleaning WW were previously presented by several
authors [1–4]. The purpose of the current work is establishing a numerical simulation
model to obtain the SS of HE, which is verified by comparisons to measurements.
The procedure is subsequently to be applied to calculate the separation behaviour of
a SSTP and for optimizing its performance. For achieving this goal, measurements
and calculations are performed. For the calculations, an approach based on Compu-
tational Fluid Dynamics (CFD) methodology is preferred. The measurements are to
be obtained on an SSTP.

In the past, the sedimentation phenomenon in various areas of application was
numerically analysed by a number of different researchers [5, 6]. For a detailed
analysis of the sedimentation by means of a CFD approach, the two-phase mixture
prevailing in the WW shall first be described by adequate means. Here, an Eulerian–
Lagrangian approach is adopted to this purpose, which will be explained in more
detail below. In the past analyses of similar kind, the shapes of the particulates were
always assumed to be spherical, without paying attention to the actual forms of them.
Consequently, the law of Stokes [7] was always used for determining the SS, which
has its validity for spherical forms. In reality, the geometries of HE differ from that
of a sphere. Therefore, one cannot a priori assume that the Stokes law would deliver
precise results for them. Therefore, in the current analysis, the emphasis is placed
upon the precise calculation of the SS and deduction of more precise drag coefficient
expressions for HE, depending on their individual shapes. As means of validation
of the numerical approach, the measurements of Sengupta et al. [8] are employed as
basis.

2 Outline of Computational Modelling

Under certain conditions, flows may be described by ordinary differential equations
[9]. Inmany applications, like the present one, a description by the full Navier–Stokes
equations is needed [10], which can be solved only by numerical methods. For the
latter, various approaches are possible, including the Lattice BoltzmannMethod [11].
The Finite VolumeMethod (FVM) [12] is the most popular one, and it is also applied
presently.
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Thus, for continuous phase, described in Eulerian frame, incompressible flow of
water as described byNavier–Stokes equations is computationallymodelled applying
the FVM. Steady-state and unsteady calculations in two-dimensional and three-
dimensional geometries are performed. In cases with free surface (air–water inter-
face), the Volume of Fluid method is used [13]. The characteristics of the considered
flows range from laminar [14], over transitional [15], to turbulent [16]. Therefore,
for turbulent flows, the Shear Stress Transport model [17] is used as turbulence
model within RANS or URANS framework [18], as it copes comparably well with
transitional flows [15].

As far as the dispersed phase is considered, the relevant particle sizes may be
considered within the range 50–100 μm. Although the Brownian motion was argued
to play a role [8], it is currently assumed that this is relevant rather for nanoscales
[19] but not for the present particle size range. Thus, only the macroscopic fluid
drag and gravity/buoyancy forces are assumed to act externally on the particles [20].
Currently, a dilute disperse phase is assumed and particle–particle interactions are
neglected. In describing particulate flows, the dispersed phase may also be described
within an Eulerian framework [21, 22]. Alternatively a Lagrangian framework can be
used, where trajectories of individual particles [23] are calculated. The Lagrangian
formulation is currently adopted, as it is more convenient for present purposes. In
case of turbulent flow of the continuous phase, its effect on the dispersed phase is
modelled by the discrete random walk model [24].

In the numerical formulation, the velocity–pressure coupling is treated by the so-
called SIMPLEC procedure [25]. The convective terms are discretized by a second-
order accurate upwinding scheme [26]. Within the iterative procedure, the under-
relaxation factors used for the pressure and velocity, 1.0 and 0.5, are used, respec-
tively. For convergence, the threshold values for the scaled residuals are set to 10–9,
which are 106 times smaller than the default value of 10–3. Grid independence is
always ensured by preceding grid independence studies. The analysis is performed
based on the general-purpose CFD software ANSYS Fluent 18.0 [27].

3 Investigations on Isolated Helminth Eggs

In this part, the flow around individual helminth eggs is investigated. The purpose
is to determine the drag coefficient accurately [28], which gives the basis for the
momentum transfer between the continuous water and discrete particle (helminth
eggs) phases. In relationship with mechanical wastewater purification, the discus-
sion is quite often carried out based on the so-called sink velocity, V [8], which
delivers a more direct information for the special case of sinking particles in quies-
cent fluid. This quantity is closely related to the drag coefficient, C, which allows a
more general description for non-quiescent fluid and, thus, a more convenient means
for mathematical formulation.

In analysing similar flows [8], quite often the Stokes law [29] is used for deter-
mining the sink velocity (or drag coefficient), which is valid for a spherical particle
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shape and vanishingly small relative velocity between the flow and particle. The drag
coefficient for sphere (C), as function of the relative Reynolds number (Re) according
to Stokes law, is given below:

C = 64

Re
(1)

with

Re = ρ �u d

μ
(2)

where �u denotes the magnitude of speed difference between the fluid and particle,
while ρ,μ and d denote the fluid density, viscosity and sphere diameter, respectively.

For arbitrary C, the following relationship can be derived for the drag coefficient
and the sink velocity V, where g and �ρ denote the gravitational acceleration and
the density difference between particle and fluid, respectively.

V =
√
4

3

1

C

�ρ

ρ
gd (3)

In the common commercial CFD software, empirical expressions for the drag
coefficient for sphere are normally implemented such as the following one [30] for
Re ≤ 1000:

C = 24

Re

(
1 + 0.15Re0.687

)
(4)

which approach the Stokes law for small relative Reynolds number.
A main issue in this respect is that the shapes of helminth eggs are not spherical,

but the Stokes law as well as the further commonly used drag laws are given for a
sphere. In order to cope with this fact, an approach that is normally adopted is to
assume a “representative diameter” [8] for the non-spherical egg shape, and use the
Stokes law for sphere, based on this diameter. However, an accurate result cannot a
priori be assumed, by this approach. This point is addressed in the present part of the
study.

Three types of helminth eggs are considered, namely, Oesophagostomum spp.
(oes), Trichuris suis (tri) and Ascaris suum (asc), the generic shapes of which are
qualitatively sketched in Fig. 1. Sengupta et al. [8] performed experiments on these
egg types, in which they determined their sink velocities using an Owen tube [31],
using populations of 500–600 eggs of each kind. In each group, the properties and the
measured velocities show a scatter, of course. Here, the mean values are considered,
unless otherwise is stated. As the eggs do not have spherical shapes, their length
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Fig. 1 Qualitative sketches of typical helminth eggs of different types, a Ascaris suum (asc), b
Trichuris sui (tri), c Oesophagostomum spp. (oes)

Table 1 Geometry
parameters and densities of
helminth eggs [8]

Egg type L (μm) W (μm) Density (kg/m3)

asc 67.20 55.41 1120

tri 62.16 30.78 1100

oes 76.17 50.33 1070

(L) and width (W) are used [8] to define an equivalent diameter as their arithmetic
average

dE = L + W

2
(5)

Geometry parameters and densities of the considered helminth eggs that are
measured in the experiments of Sengupta et al. [8] are provided in Table 1. Note
that the measured parameters showed a scatter and the mean values are shown in the
table.

In the simulations, the shapes (Fig. 1) are exactly considered. Since the surface of
asc was very irregular and nearly arbitrary, it is considered with some idealization.

The sink velocities for the eggs are obtained indirectly, via drag coefficient (Eq. 3).
The latter is obtained by means of steady-state calculations as function of Re. The
expected range of Re is rather low. Thus seven Re are considered between 0.001 and
0.01. In agreement with Ref. [8], tap water is considered, with ρ = 997.8 kg/m3, μ
= 0.00094 Pa · s.

The calculated flow fields for Re = 0.01, for a certain relative orientation of the
eggs to the flow direction, are presented in Fig. 2, where the egg surface and the
velocity vector fields (relative to egg) in two perpendicular sections are displayed for
the three egg types. The low velocity region near the egg surface due to the no-slip
condition, i.e. the thick boundary layer can be observed. The velocity variation near
surface is stronger for asc, due to the surface structures (Fig. 2a).
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Fig. 2 Vectors of nondimensional velocity (relative to egg) in two planes, Re = 0.01, a asc, b tri,
c oes

Fig. 3 Distribution of nondimensional gauge pressure on surface, Re = 0.01, a asc b tri, c oes

For the same case (Fig. 2), the predicted nondimensional gauge pressure distribu-
tions on the egg surface are displayed in Fig. 3, for the three egg types. One can see
that there are similarities in large, for the three egg types, where a pressure differ-
ence between the upwind and downwind sides that contributes to drag force. As the
surface pressure distribution is rather smooth for tri (Fig. 3b) and oes (Fig. 3c), a
patterned distribution is observed for asc (Fig. 3a) due to the surface structure.

In addition to the pressure differential, a further contribution to the drag force is
provided by the shear stress. The predicted nondimensional shear stress magnitude
distributions for the three egg types, for the same flow configuration (Fig. 2), are
displayed in Fig. 4. It is interesting to see that the shear stress patterns are qualitatively
quite different between the egg types. For oes, a very homogeneous distribution is
observed (Fig. 4c), whereas a more variable but a smooth distribution is observed for
tri (Fig. 4b). For asc, a very inhomogeneous pattern is observed, where the tips of
the protrusions experience locally high values, whereas very low values are observed
for the remaining surfaces (Fig. 4a).

The predicted sink velocities for the three egg types are compared with the
measured values by Sengupta et al. [8] (EXP) and those provided by the Stokes
law, in Table 2. Please note that the experimental values are the averages of indi-
vidual measurements varying within a range. In Figs. 2, 3 and 4, only one relative
orientation between the flow direction and egg is displayed. Please note that the drag
coefficients, which are used to obtain the sink velocities, are obtained by considering
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Fig. 4 Distribution of nondimensional shear stress magnitude on surface, Re = 0.01, a asc, b tri,
c oes

Table 2 Predicted sink
velocities compared with
experiments and the Stokes
law

Egg type V (mm/s)

EXP Stokes Prediction

asc 0.06 0.27 0.24

tri 0.15 0.13 0.15

oes 0.13 0.17 0.17

a number of different relative orientations, taking their average to obtain a resul-
tant/effective drag coefficient, since the relative orientation of the egg can arbitrarily
change, in reality. One can see that the predicted values do not differ much from
the values indicated by the Stokes law. For oes, the predicted value is the same as
that of the Stokes law and overpredicts the experimental value. For tri, the predicted
value agrees exactly with the experimental value, whereas the Stokes law shows an
underprediction. The largest disagreement to the experiments is observed for asc.
Here, both the Stokes law and predictions indicate a much higher sink velocity than
the measured one.

This was rather unexpected, since the surface protrusions let one to expect high
drag. However, it turns out that the surface protrusions cause a low overall drag. It
seems thatmost parts of the surface are “protected” by the protrusions and experience
a very low shear, whereas the high shear zones are restricted to small areas at the tips
of the protrusions (Fig. 4a).

Based on the results of Table 2, for tri and oes, one can attest a reasonable accuracy
to the predictions that is slightly better than that of the Stokes law, for tri. The
disagreement observed for asc indicates that additional effects such as agglomeration
might be playing a role, in reality, which are not considered in the predictions.
However, one can still see that the CFD predictions provided an improvement against
the Stokes law (Table 3), even it is rather small.

Since the present CFD predictions could not deliver very accurate results, espe-
cially for asc, probably due to the omission of agglomeration in the present model,
drag coefficient correlations are derived, based directly on the experimental results.
For this purpose, Oseen drag law for sphere [32] is taken as basis, which has a broader
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Table 3 Derived correction
factors for the drag law of
different egg types

Egg type Correction factor, f

Tap water Wastewater

asc 4.3477 1.6610

tri 0.8593 1.4206

oes 1.3249 1.5203

range of validity towards higher Reynolds numbers compared to the Stokes flows,
and the developed correlations are obtained by correcting the Oseen drag law, by a
factor f, as indicated below:

C = f × 24

Re

(
1 + 3

16
Re

)
(4)

The derived correction factors for different egg types are provided in Table 3.
Using the wastewater data of Sengupta et al. [8], correction factors for wastewater
are also developed. Using these correlations (Eq. 4, Table 3), CFD calculations are
performedwithin theEulerian–Lagrangian framework,where the particle trajectories
are calculated in the Owen tube [31], like in the experiments of Sengupta et al. [8].
Please note that these CFD simulations are of different character than the previously
discussed CFD calculations. In the previous results, individual eggs are simulated
by considering the exact geometry, without needing a drag law, but for the purpose
of deriving a drag law. In the CFD predictions that follow, egg geometries are not
resolved but considered as particles that obey a certain drag law (the presently derived
one, Eq. 4, Table 3), and based on this, particle trajectories are calculated. It shall also
be noted that the developed drag coefficient correlations are implemented in the used
software viaUser-Defined Functions (UDF). From the calculated particle trajectories
in the Owen tube, based on the developed drag coefficients, the corresponding sink
velocities are obtained.

The sink velocities, predicted in this manner, in comparison with experiments
and the Stokes law are presented in Table 4. A very good agreement with the exper-
imental values can be observed. Please note that the settling behaviours are quite
different between tap water and wastewater. This can be due to different flocculation
behaviours.

4 Investigation of the Wastewater Treatment Plant

The sewage treatment plant under investigation is shown in Fig. 5. The computational
model of the plant, with the indication of water fill levels for a certain operation point,
is depicted in Fig. 6.

The predicted distributions of the velocity magnitude in the first vessel, in the
vertical middle plane are shown in Fig. 7. In both sub-figures (Fig. 7a, b), the velocity
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Table 4 Predicted sink velocities using derived drag correlations compared with experiments

Egg type V (mm/s)

Tap water Wastewater

EXP Lagrangian prediction by
corrected drag law

EXP Lagrangian prediction by
corrected drag law

asc 0.06 0.06 0.16 0.16

tri 0.15 0.15 0.09 0.09

oes 0.13 0.13 0.11 0.11

Fig. 5 Small sewage treatment plant

Fig. 6 Computational model of the small sewage plant with indication of water volume fraction
for an operation condition (red: water, blue: air)

magnitude (V) is made nondimensional by the velocity at the inlet of the water intake
pipe (V0) during the filling process. The sub-figures show states, where the vessel
is nearly filled out, shortly before closing the water intake (the same V0 value is
used in both sub-figures). Figure 7a corresponds to the instance short before the start
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Fig. 7 Velocity magnitude distribution in middle plane of the first vessel, a State I, b State II

of closing the water inlet valve (State I). Figure 7b shows the state just before the
valve is fully closed, where the discharge is nearly 10% of the nominal value (State
II). In the figure, one can see that quite high velocities can occur at entrance of the
falling water jet into the pool, which can be much higher than the adjusted discharge
velocity (V0) upstream the intake pipe, just because of the gravitational acceleration.
This causes quite high velocities to occur in large regions of the pool (Fig. 7a).

Obviously, for the throttled state (Fig. 7b), the velocities are much smaller. Also
here, the velocities at the jet entry are near V0 (Fig. 7b).

The distribution of turbulence intensity (Tu) for the states shown in Fig. 7 is
displayed in Fig. 8 (Tu is calculated by dividing the local fluctuational velocity u′
by V0, where u′ is obtained from the turbulence kinetic energy). One can see that
quite high levels of turbulence can occur, due to the high velocities, which decline,
of course, by the velocity reduction (Fig. 8). The trajectories of about 300 helminth
eggs injected through the water inlet at State I for a period of 20 s after injection are
displayed in Fig. 9, where the colour indicated the dimensionless velocity magnitude
(in the sense discussed for Fig. 7). In the figure, it can be observed, first, that the
trajectories are dispersed due to the variations in the velocity field and turbulence.

Secondly, one can see that the eggs move with a much higher velocity than the
sink velocity due to the fluid motion, which confirms that the formulation based on
drag coefficient, which incorporates the special case of quiescent fluid, is principally
more convenient than the formulation based on sink velocity in detailed analysis of
such systems. Thirdly, it is observed that the differences between the egg types are
not very much different. This is affected by the fact that the presented distribution
is governed by the water flow with a much higher speed than the sink velocity. On
the other hand, here drag coefficient correlations that are obtained for wastewater
are used, which anyway do not imply substantial differences between the egg types
(Table 3).
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Fig. 8 Turbulence intensity distribution in middle plane of first vessel, a State I, b State II

Fig. 9 Trajectories of eggs for a period of 20 s after injection (State I), a asc, b tri, c oes

The trajectories of the eggs injected at State II for a period of 100 s are depicted in
Fig. 10. One can see that the distances travelled in 100 s for State I are much shorter
than those within 20 s for State I, due to the much smaller flow velocities.

5 Conclusions

Hydrodynamics of wastewater, which is contaminated with helminth eggs is inves-
tigated, for laboratory conditions and for a small sewage treatment plant. The first
part was devoted to the investigation of effect of the individual shapes of the eggs
on the sink velocity. Here, the flow around the individual eggs of three different
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Fig. 10 Trajectories of eggs for a period of 100 s after injection (State II), a asc, b tri, c oes

helminth types is analysed, with the purpose of obtaining relationships for their drag
coefficients that would also lead to the sink velocity information. The sink veloci-
ties predicted by the obtained drag coefficients are observed not to agree with the
measured values verywell especially for a certain egg type (asc), for tapwater. Conse-
quently, the measured sink velocities are directly utilized to obtain drag coefficient
correlations for the three egg types. This is done for tap water and for wastewater,
both, and the correlations are implemented in the applied software by means of
User-Defined Function (UDF). Employing the correlations, the processes in a small
sewage treatment plant are investigated. It is observed that rather high velocities and
turbulence levels occur during the filling process that governs the distribution of the
eggs in this phase.
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Heat Transfer and Second Law Analysis
of Ag-Water Nanoliquid
in a Non-Uniformly Heated Porous
Annulus

H. A. Kumara Swamy , M. Sankar , N. Keerthi Reddy ,
and S. R. Sudheendra

Abstract In majority of industrial and engineering applications, enhanced heat
transfer with minimum entropy production is the major concern. With several theo-
retical and experimental works, it has been found that replacing the traditional heat
transfer liquids with nanoliquid is one of the reliable ways to enhance the thermal
transport with minimum loss of system energy. In this regard, the current article
deals with the convective nanoliquid flow and the associated thermal dissipation
as well as entropy generation rates in a porous annular enclosure saturated nano-
liquid. The vertical surface of interior and exterior cylinders is maintained with
sinusoidal thermal conditions with different phase deviations, while the horizontal
boundaries are thermally insulated. The governing physical equations are solved by
implementing finite difference method (FDM). The variation in buoyant nanoliquid
flow and the corresponding heat transport rates along with local and global entropy
production rates are systematically examined. For the numerical simulations, a vast
range of parameters such as the Rayleigh (103 ≤ Ra ≤ 105) and Darcy (10–6 ≤ Da
≤ 10–2) numbers, phase deviation (0 ≤ γ ≤ π), and nanoparticle volume fraction
(0 ≤ φ ≤ 0.05) are considered in this analysis. The contributions of heat transfer
entropy and fluid friction entropy to global entropy production in the geometry are
determined through the Bejan number. The numerical results reveal the impact of
various parameters on control of convective flow, heat transfer, and entropy genera-
tion rates. Further, the results are in excellent agreement with standard benchmark
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simulations. The predicted results could provide some vital information in choosing
the proper choice of parameters to enhance the system efficiency.

Keywords Annulus · Entropy generation · Nanofluid · Sinusoidal heating ·
Porous medium

Abbreviations

Ar Aspect ratio
D Width of the annulus
Da Darcy number
g Acceleration due to gravity
H Height of the annulus
k Thermal conductivity
K Permeability
Ra Rayleigh number
T Dimensionless temperature
α Thermal diffusivity
β Thermal expansion coefficient
γ Phase deviation
θ Dimensional temperature
μ Dynamic viscosity
ρ Density
ϕ Porosity
φ Nanoparticle volume fraction

1 Introduction

In view of various important applications on convective thermal transport which
includes aeronautics, nuclear reactors, solar collectors, and heating and cooling
devices, many experimental and theoretical investigations on buoyant movement
of different fluids in various geometries have been investigated. Since several indus-
trial applications characterize the convection heat transfer in a sealed annular region
from two or more coaxial concentric cylinders, we considered this geometry in the
present analysis. In many heat transfer industries, the thermal distribution may not
be uniform. Due to this, many researchers have focused on the impact of nonuniform
thermal distribution on heat transfer performance of the system. Buoyant convec-
tion with nonuniform thermal condition with dissimilar phase deviations on vertical
boundaries has been analyzed by Deng and Chang [1] and concluded that maximum
thermal transport produces with nonuniform thermal profile than constant thermal
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conditions. Kiran et al. [2] numerically analyzed the impact of nonuniform temper-
ature distribution on flow strength and heat transport rate by considering different
constraints. In various thermal transport applications, the vital drawback of utilizing
the traditional fluids is their poor thermal conductivity. In view of this, several
researchers have focused on enhancing the thermal transport system efficiency by
upgrading the thermal conductivity of the liquids and this results to the invention of
new type of liquids known as “nanoliquids”. Choi and Eastman [3]made a pioneering
attempt to study convection in a nanoparticle suspended fluid and concluded that the
suspension of nanosize particles in base fluid increases the thermal conductivity and
in turn enhances the heat transport rate. Earlier, Abouali and Falahatpisheh [4] made
an attempt to analyze buoyant flow of Al2O3 nanoliquid in an annular enclosure. The
impact of nanoparticle volume fraction on fluid flow and heat transfer rate has been
numerically studied [5]. By considering nonuniform thermal conditions, Reddy et al.
[6] studied the impact of hybrid nanoparticle concentration on fluid motion and heat
dissipation rate in an annulus region. Recently, Sankar et al. [7] analyzed the effect
of conductive solid wall on thermal dissipation rate of different nanofluids and found
that Cu-H2O nanofluid helps to dissipate maximum thermal energy.

For the design of several thermal transport equipment along with enhancing heat
removal rate, entropy minimization is also a key parameter since the assessment
of system efficiency can be estimated by the entropy production rate. Mejri et al.
[8] numerically studied the influence of sinusoidal thermal profile on nanoliquid
flow and entropy generation in a square cavity. Recently, the same study has been
extended to annular enclosure by Sankar et al. [9]. The geometry saturated with
porousmedium shows vital change in flow strength and thermal performance than the
nonporous geometry. With regard to this, several research works have been carried
out to investigate the impact of porous medium and thermal performance of the
system. Swamy et al. [10] analyzed the impact of geometric tilt angle on nanofluid
flow and entropy in an annulus saturated porous medium. By utilizing Lattice Boltz-
mann Method, Ghasemi and Siavashi [11] reported that the particular choice of
linear thermal distribution leads to enhance the thermal performance of the system.
Later, Kashyap andDass [12] analyzed entropy generated in a nanofluid-filled porous
geometry subjected to various nonuniform thermal conditions. By considering the
sedimentation of nanoparticles, Baghsaz et al. [13] studied heat transport and entropy
generation of nanofluid-saturated porous cavity.

From a thorough andmethodical scrutiny of literature, it is noticed that the thermal
transport and irreversibility distribution of nanoliquid in a porous annular enclosure
subjected to nonuniform thermal conditions has not been investigated and this moti-
vates the current investigation. It is presumed that this investigation would provide
some useful results/data to enhance the performance of thermal systems. In this
work, the flow and thermal fields, thermal dissipation rate, entropy production, and
Bejan number are predicted by varying the Rayleigh number, Darcy number, phase
deviation, and volume fraction of nanoparticle.
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2 Mathematical Statement

The system considered in this study is the annular enclosure formed from two coaxial
vertical concentric cylinders with radii ri and ro of interior and exterior cylinders,
respectively, as portrayed in Fig. 1. The vertical surfaces of inner and outer cylinders
aremaintainedwith sinusoidal thermal profiles with different phase deviations, while
the top and bottom walls are maintained adiabatic [8]. The porous annular region
is occupied with Ag-H2O nanoliquid. The properties of nanoliquid are estimated
using the correlations provided in [8, 11]. Thermo-physical properties of H2O and
Ag nanoparticle are taken from [11]. The vertical surfaces of interior and exterior
cylinder are subjected to sinusoidal thermal distribution with different phase devi-
ation, while the bottom and top surfaces are insulated. It is assumed that the H2O
and Ag nanoparticles are in thermal equilibrium, the thermal properties of porous
matrix and nanoliquid are to be identical, fluid is incompressible, Newtonian. The
fluid motion is considered to be two dimensional, laminar, unsteady, and axisym-
metric. Also, Boussinesq approximation is adopted in this study. By imposing the
above assumptions, the dimensional governing equations are as follows [5]:

∇. �q = 0 (1)

ρn f

ϕ

[
∂ �q
∂t∗

+ 1

ϕ
(�q.∇)�q

]
= −∇ p + μn f

ϕ
∇2 �q − μn f

K
�q

+ (ρβ)n f g(θ − θc) (2)

∂θ

∂t∗
+ (�q.∇)θ = αn f ∇2θ (3)

Fig. 1 Physical domain of the problem and its axisymmetric view
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Byusing thenon-dimensional variables [9], the dimensionless energy andvorticity
stream function equations are as follows:

∂T

∂t
+U

∂T

∂R
+ W

∂T

∂Z
= αn f

α f
∇2T (4)

1

ϕ

[
∂ζ
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+ 1

ϕ

(
U

∂ζ

∂R
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∂ζ
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− Uζ

R

)]
= μn f

ρn f α f

1

ϕ

[
∇2ζ − ζ

R2

]
− μn f

ρn f α f

ζ

Da

− (ρβ)n f

ρn f β f
Ra Pr

∂T

∂R
(5)

ζ = 1

R

[
∂2ψ

∂R2
− 1

R

∂ψ

∂R
+ ∂2ψ

∂Z2

]
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Here, U = 1
R

∂ψ

∂Z , W = − 1
R

∂ψ

∂R and ∇2 = ∂2

∂R2 + 1
R

∂
∂R + ∂2

∂Z2

The total thermal transfer across the enclosure is defined as the sum of average
Nusselt numbers calculated along the heating half of inner and outer surfaces and
given by [8, 11].

Nu =
(

−kn f
k f

) ∫
heating half

[(
∂T

∂R

)
R= 1

λ−1

+
(

∂T

∂R

)
R= λ

λ−1

]
dZ (7)

3 Equation for Entropy Generation

Based on second law of thermodynamics and postulates made, the dimensionless
form of local entropy generation due to heat transfer (Sl.T ) and fluid friction (Sl.ψ )
for fluid-saturated porous medium is written as

Sl.T = kn f
k f
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)2

+
(
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]
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⎪⎪⎪⎪⎭
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Here,  = μ f

k f
θ0

(
α f√
K�θ

)2
is known as irreversibility distribution ratio. The global

entropy production in the geometry is given by the sum of heat and friction entropy,
i.e., SGEN = Sl.T + Sl.ψ . The total entropy production is calculated by integrating
local entropy generation within the enclosure
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Stot = 1

V

∫
V

SGEN dV = 1

V

∫
V

Sl.T + Sl.ψ dV

The above equation can be written as Stot = ST + Sψ . The relative dominance of
entropy production due to heat transfer and fluid friction is given by the parameter
known as the Bejan number (Bel) and is defined as

Be = 1

V

∫
V

(
Sl.T
SGEN

)
dV

If Be < 0.5, then Sψ is dominant, if Be > 0.5, then ST is dominant, and if Be =
0.5, it indicates that heat transfer entropy and friction entropy contribute equally.

4 Numerical Technique, Grid Sensitivity, and Validation

The governing PDEs are solved by adopting an implicit Finite Difference Method
which gives algebraic tri-diagonal FD equations. The solutions of these equations
are obtained using TDMA. Local entropy production due to individual components
is obtained by solving Eq. 8 with a second-order central difference approximation.
Finally, the average Nusselt number and total entropy generation are estimated by
adopting, respectively, Simpson and Trapezoidal rules. The detailed discretization
could be found in our previous work [10]. After performing the grid independency
study with Ra = 105 γ = π/2, Da = 10–2, and φ = 0.05, we found that 161 × 161
is the suitable mesh size for this analysis. Table 1 provides the comparison between
the average Nusselt number obtained by our code and those obtained by Abouali and
Falahatpisheh [4] through the heat transfer correlations.

Table 1 Comparison of average Nusselt number of present study with Abouali and Falahatpishesh
[4]

Ra (Gr × Pr) Abouali and
Falahatpishesh [4]

Present study Relative difference (%)

6 × 103 2.8673 2.8843 0.59 φ = 0.0

2.7291 2.7401 0.40 φ = 0.02

6 × 104 5.4385 5.4796 0.75 φ = 0.0

5.1762 5.1836 0.14 φ = 0.02

6 × 105 10.3150 10.4015 0.83 φ = 0.0

9.8178 9.9132 0.96 φ = 0.02
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5 Discussion on Results

The prime focal point of this study is to detect the flow pattern, heat dissipation rate,
and entropy production of nanoliquid filled in porous annular enclosure subjected
to nonuniform thermal conditions. The numerical simulations have been performed
for vast range of Rayleigh number (Ra), Darcy number (Da), phase deviation (γ),
and nanoparticle volume fraction (φ). The influence of these parameters on natural
convection and entropy production of nanoliquid-saturated porous annular enclosure
has been analyzed.

The effect of Ra on streamlines, isotherms and entropy contours for water and
nanoliquid is predicted in Fig. 2 by fixing other parameters as constant. At lower Ra
(conduction dominantmode), streamlines exhibit one larger and three smaller eddies.
Through thermal lines it is clear that the heat from the hot region is supplied to the
cold region of same wall. Because of conductive mode, friction entropy is negligible
due to this the entropy contours akins the thermal condition profile. The addition of φ
has not altered the contour patterns significantly. Increase in Ra to 105 increases the
flow strength, and as a result two eddies at the top merge and also increase the size
of larger eddy. The isothermal and entropy contour pattern on interior and exterior
walls are varying with rise in Ra which causes an appreciable change in thermal
transport and entropy production with an increment in Ra.

Figure 3 deals with the streamlines, isotherms, and entropy generation of nano-
liquid and water for γ = 0 and π. For γ = 0, the streamlines exhibit four vortices

Fig. 2 Streamlines, isotherms, and entropy generation contours for Ra = 103 (top), Ra = 105

(bottom) at γ = π/2, Da = 10–2, φ = 0 (dotted line) and φ = 0.04 (solid line)
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which are parallel along midline. The left bottom and right top eddies are rotating
clockwise while the other vortexes are in anti-clockwise direction. Since the thermal
profile of both vertical walls is similar, the isotherms and entropy contours appear
similar on left and right walls. For γ = π, the liquid movement takes place in two
vortices. This reduction in number of eddies is due to the variation in the position of
hot and cold region along the outer cylinder. It is interesting to note that the fluidity
of both the eddies is similar. As the magnitude of γ increases, the thermal lines and
entropy pattern along the interior wall have not been varied significantly; however,
profound change along the exterior wall can be noticed indicating that change in γ

affects the exterior boundary.
The impact of Da on nanoliquid flow, thermal and entropy distribution at Ra =

105 and γ = 3π/4 is depicted in Fig. 4. For both Da (10–6 and 10–2), the nanoliquid
movement takes place in twovorticeswhere the bottomvortex is rotating in clockwise
and other in counterclockwise direction. Though the flow takes place in same number
of eddies, the fluidity at Da = 10–6 is very much smaller than fluidity at Da =
10–2. This is because of permeability difference. For Da = 10–6, the permeability
is low, due to this the thermal transfer takes place through conduction mode which
can be observed through isotherms and also due to conduction dominance, and the
entropy contours appear to be parallel along the vertical walls. As the permeability
is enhanced (increase in Da), the resistance of liquid flow declines and leads to
convective dominance. In this situation, significant change in isotherm and entropy

Fig. 3 Streamlines, isotherms, and entropy generation contours for γ = 0 (top), γ = π (bottom) at
Ra = 105, Da = 10–2, φ = 0 (dotted line) and φ = 0.04 (solid line)
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Fig. 4 Streamlines, isotherms, and SGEN contours for Da = 10–6 (top), Da = 10–2 (bottom) at γ
= 3π/4 Ra = 105, and φ = 0.04

patterns can be noticed. Due to enhancement in fluidity, the friction entropy enhances
and leads to increase in entropy production in the enclosure.

The influence of γ on thermal dissipation rate, total entropy generation, and Bejan
number for various Ra and Da is predicted in Figs. 5 and 6, respectively, by fixing
other parameters. It is noticed that sinusoidal thermal condition with γ = π/2 dissi-
pated greater thermal energy during conduction dominant/week convection mode
(Ra ≤ 104 or Da ≤ 10–4); however, during strong convective mode (Ra = 105 or
Da = 10–2) γ = 3π/4 contributes to greater thermal energy dissipation. The same
result has also been noticed in the study of Deng and Chang [1]. For γ ≤ 3π/4,
increase in Ra or Da enhances the average Nu. But for γ = π, average Nu slightly
decreases during change in mode of heat transfer. It is noticed that irrespective of γ,
enhancement of Ra or Da leads to enrichment in Stot . For Ra ≤ 104 or Da ≤ 10–4,
generation of entropy is minimal with respect to every γ compared to Ra= 105 orDa
= 10–2. This is because, for Ra ≤ 104 or Da ≤ 10–4, conduction mode is dominant
and this does not cause friction entropy, while for higher Ra orDa, fluidity enhances
and causes greater friction entropy which leads to greater Stot . This can also be seen
through Be plot that for conduction dominant/week convection mode Be is around
0.5 and for stronger convective flow Be < 0.5.

Figure 7 illustrates the impact of nanoparticle volume fraction and Rayleigh
number on averageNu, Stot , and Be atDa= 10–2 and γ = π/2. As expected, enhance-
ment of φ enhances the thermal conductivity of liquid which helps in maximizing
thermal dissipation rate. Hence, on enhancing φ, global Nu enhances for all Ra. For
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Fig. 5 Impact of Ra and γ on average Nu, Stot , and Be at Da = 10–2 and φ = 0.05

Ra = 103 and 104, it can be noticed that no profound change in thermal dissipation
rate and it is same for all nanoparticle volume fraction. As the fluidity is higher forRa
= 105, friction entropy generation will be higher and this enhances the total entropy
generation compared to lower and moderate Ra. Though the magnitude of flow
strength declines, the thermal conductivity enhances on enrichment of nanoparticle
concentration. Due to this, heat transfer entropy increases and results in enhancement
of Stot with concentration of nanoparticle. The behavior of Be is similar as discussed
earlier.

The influence of phase deviation and solid particle concentration on globalNusselt
number, total entropy generation, and Bejan number has been illustrated in Fig. 8 for
Ra = 105 and Da = 10–2. As discussed earlier, enrichment of nanoparticle volume
fraction leads to enhancement in heat dissipation rate due to increase in thermal
conductivity. This holds good for all phase deviations. Among the three phase devia-
tions (γ = 0, π/2, π) considered, it has been found that γ = π dissipates greater heat
compared to other phase deviations for all nanoparticle concentrations. The inter-
esting fact to note is that the choice of parameters, i.e., Ra= 105,Da= 10–2, and γ =
π/2 is not suitable for better thermal performance of the system as it dissipates less
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Fig. 6 Impact of Da and γ on average Nu, Stot , and Be at Ra = 105 and φ = 0.05

amount of heat with greater entropy. Since bothRa andDa are greater, the convective
flow takes place with greater magnitude and leads to more friction entropy due to
this Be < 0.5 in all the considered cases.

Figures 9 and 10 illustrate the impact of Darcy number for various Rayleigh
number and nanoparticle volume fraction, respectively. During this study the phase
deviation is maintained at π so that the thermal boundary conditions of both vertical
walls will be exactly opposite. During conduction/weak convectionmode, the change
in heat transfer rate is not much significant but in stronger convective mode (Ra =
105 and Da = 10–2) the heat transfer rate has been enhanced by 39.02%. But in
the case of nanoparticle volume fraction, heat transport rate has been increased for
both Darcy values and this may be due to an increase in thermal conductivity. Similar
mechanism can be noticed in entropy generation also. The Bejan number is noticed to
be much greater than 0.5 during conduction being dominant and less than 0.5 during
convective being dominant indicating that during conduction mode ST contributes
more to Stot while during convective mode Sψ contributes more to Stot .
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Fig. 7 Impact of Ra and φ on average Nu, Stot , and Be at Da = 10–2 and γ = π/2

6 Conclusions

A numerical analysis on heat transfer and second law of thermodynamics in a
sinusoidally heated porous annulus has been performed. The various parameters
adopted in this investigation are Rayleigh number, Darcy number, phase deviation,
and nanoparticle volume fraction. Through the vast numerical simulations, it has
been found that Ra, Da, and γ play vital role on flow movement pattern, fluidity,
heat transport, and irreversibility distribution. During conduction being dominant
(Ra≤ 104 or Da≤ 10–4), maximum amount of thermal dissipation takes place at γ =
π/2, whereas, during convective mode, γ = 3π/4 helps to dissipate high amount of
thermal energy. It is also found that the porous enclosure withminimum permeability
producesminimal entropy. It has also been observed that during convective-dominant
flow, γ = π/2 decreases the efficiency of the thermal system, i.e., dissipates lower
thermal energy with greater entropy generation.
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Fig. 8 Impact of γ and φ on average Nu, Stot , and Be at Da = 10–2 and Ra = 105

Fig. 9 Impact of Ra and Da on average Nu, Stot , and Be at φ = 0.05 and γ = π/2
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Fig. 10 Impact of Da and φ on average Nu, Stot , and Be at Ra = 105 and γ = π
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Qualitative Analysis of Peer Influence
Effects on Testing of Infectious Disease
Model

Anjali and Manoj Kumar Singh

Abstract Outbreaks minimization has become the need of the hour. If we start
clouding the list of infectious diseases, the list will point out that there is a rise in
infectious diseases in the current era, and after the first case of any illness for knowing
about its spread, testing methods are introduced. So testing plays a key role, and it
is necessary to detect any infectious disease effects on humans. However, the peer
influence effect of persons who have recovered from disease without visiting any
doctor encourages other people to not get tested and take self-medication. They do
not understand the need for tests and spread fake scenarios convincing others to
follow them. The paper studies the impact of these individuals on the emergence of
the disease by analyzing the mathematical model proposed in the situation, which
is further analyzed and studied through simulation. The analysis section comprises
local and global stability of the equilibrium points, primary reproduction number,
and threshold analysis of the proposed model. Numerical simulation has provided a
clear view of the qualitative analysis through the graphs and the plots.

Keywords Peer-effect · Testing · Infectious disease · Reproduction number ·
Lyapunov · Liénard Chipart criterion · Threshold analysis

1 Introduction

The outbreak is a word that symbolizes the observed scenario, which was unexpected
and unusual. That is why the emergence of infectious disease has generally been
termedanoutbreak.Management of anoutbreak requires a stepwise plan tohandle the
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situation patiently and overcome it. The steps can be called as outbreak identification,
investigation, defining the case, description of the outbreak, proposing and testing the
possibilities, controlling steps, and communication. Laboratory testing and medical
equipment invention have served us greatly. Many unusual happenings have been
recorded during laboratory tests or screening tests, such as human avian flu, diarrhea,
and many more [3]. In 2019, SARS-CoV-2 virus [31] said to have initials in Wuhan,
China which infects from human to another [30] was also tested with RTPCR and
antigen testing kits. This helped to keep the infected people under consideration.
Open testing centers in large numbers was the initial step taken by the government.

The mathematical models are the best to detect the dynamics of the importance
of testing and peer effect during infectious disease transmission. The mathematical
models help us to determine all the concerned cases. In 1760, Daniel Bernoulli
[1] proposed the mathematical model to know about the smallpox mortality rate at
that time. To study more complex mathematical models [7, 20, 21, 25, 29, 32, 33]
researchers areworking hard. The analysis of themathematicalmodels is the efficient
way to provide exact results and predictions.

After emergence, it is clear that testing plays an important role to diagnose the
infection in the host, noting down the rise and working on other actions required to
like what are the necessities. Different types of microbes are diagnosed in different
ways. Peer effect/pressure [4] is influencing other people indirectly or directly by
the peers. This effect can surely encourage or discourage persons. To be its part, an
individual need not be in any organization or a group. It works in our society very
actively. Name it find it can be said for the issue which is affected by this effect.

2 Mathematical Model Description

Communicable infectious disease, transferred from human to human when enters
the environment, can infect persons as at that stage no one is considered to have
immunity to virus (susceptible). On being infected, the person can infect others,
and the persons who contact these individuals are considered prone to the disease
(exposed). After testing methods are introduced, like RTPCR is for coronavirus.
It helps to detect whether the person is infected or not. This can help one take
medications and recover. While some of the deadly infections are also sometimes
taken lightly by people, visiting for tests can be skipped. The mathematical model
here is proposed to focus on the following questions that are

• What is the effect of people who have recovered without any tests and carry a
mentality that virus is no big deal and can be recovered without any tests or
following guidelines?

• Could these people increase the number of infections?

Parameters and variables of the model are decided according to the need of the situ-
ation. Variables include S(t), E(t), I (t), J (t), Ri (t), and R j (t) which represents
the susceptible class, exposed class, infected and tested class, infected and not tested
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class, recovered after being tested and lastly the focused class which will play an
important role is recovered after not being tested class respectively. The parameters
B and Θ are for the birth and death rate of humans. Also the parameters η and γ
are transmissible infection multiple of I (t) and J (t) class respectively. The infection
rate of I (t) and J (t) class from E(t) class are αi and α j respectively. The recovery
rate of Ri (t) is βi and of R j (t) is β j . Lastly, ψ is the rate of peer effect of R j (t).
The mathematical model with the help of the ordinary differential equation can be
written as Eq. (1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = B − (η I + γ J ) S

N − ΘS,
dE(t)
dt = (η I + γ J ) S

N − (αi + α j + ψR j )E − ΘE,
d I (t)
dt = αi E − βi I − Θ I,

d J (t)
dt = (α j + ψR j )E − β j J − Θ J,

dRi (t)
dt = βi I − ΘRi ,

dR j (t)
dt = β j J − ΘR j .

(1)

The Model Assumptions for the mathematical model [4] that initially there is no
testing kit available. There is no recovered individual initially so Ri (0) = R j (0) = 0
also there is no reinfection in the environment. The total humans in the environment
at the time t is N (t) which is equal to the sum of S(t), E(t), I (t), J (t), Ri (t), and
R j (t) (Fig. 1).

S(t) E(t)

I(t) J(t)

Ri(t) Rj(t)

B

ΘS(t)

ΘE(t)

ΘI(t) ΘJ(t)

ΘRi(t) ΘRj(t)

(ηI + γJ) S
N

αiE (αj + ψRj)E

βi βI jJ

Fig. 1 Diagrammatic representation of set of Eq. (1)
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3 Model Analysis

3.1 Positivity and Boundedness of Solution

According to the assumptions, the compartmental model (1) has all its associated
parameters and variables non-negative. To show the positivity of the compartmental
model solution, the particular seed conditions defined in theorem (1) are necessary.

Theorem 1 Let the seed conditions be

S0 = (S(0), E(0), I (0), J (0), Ri (0), R j (0)) ≥ 0 ; t ≥ 0.

Then, S = (S(t), E(t), I (t), J (t), Ri (t), R j (t)) > 0 where S is the bounded solu-
tion of the system of equations of model (1). That is

Π =
{

S ∈ R
6
+, 0 ≤ N (t) ≤ max

{

N (0) + Θ

μ

}}

is the positively invariant feasible region.

Proof Let t := sup{t > 0 : S(0) > 0} ∈ [0, t] and considering the first equation
of the system of Eq. (1)

dS

dt
≥ − (η I + γ J )

S

N
− ΘS. (2)

From Eq. (2). We get

S(t) ≥ S(0) exp
[

−
{
(Θ)t +

∫ t

0
(η I (s) + γ J (s))

1

N (s)
ds

}]
> 0.

Similarly we can find that E(t), I (t), J (t), Ri (t) and R j (t) are positive. Adding all
the equations of the system (1). We get

dN

dt
= B − ΘN . (3)

From Eq. (3). We get

N (t) = B

Θ
+

(
N (0) − B

Θ

)
exp(−Θt), (4)

which results to give N (t) → B
Θ
, whenever t → ∞. That is for N (0) < B

Θ
, N (t)

increases to B
Θ

and for N (0) > B
Θ

, N (t) decreases to B
Θ

. Therefore, we say that
N (t) is bounded above implying S is bounded above.



Qualitative Analysis of Peer Influence Effects … 205

3.2 Local Stability

Let disease-free equilibrium point DFE be

DFE = (S(0), E(0), I (0), J (0), Ri (0), R j (0)), (5)

which is ( B
Θ

, 0, 0, 0, 0, 0) of the model (1). Here F is the infection matrix and V is
the transmission matrix inspired from the compartmental model (1).

F =
⎡

⎣
0 − η − γ
0 0 0
0 0 0

⎤

⎦ , V =
⎡

⎣
αi + α j + Θ 0 0

−αi βi + Θ 0
−α j 0 β j + Θ

⎤

⎦ , (6)

which gives FV−1 as

1

k1k2k3

⎡

⎣
αiηk3 + α jγk2 ηk2k3 γk1k2

0 0 0
0 0 0

⎤

⎦ ,

where k1 = αi + α j + Θ , k2 = βi + Θ and k3 = β j + Θ . Calculating by the next
generation matrix [28], we get ρ(FV−1) = R0. Here ρ is spectral radius.

R0 =
(

αiηk3 + α jγk2
k1k2k3

)

= αiη

k1k2
+ α jγ

k1k3
. (7)

Let R1 = αiη
k1k2

and R2 = α jγ

k1k3
spread of infection due to tested and infected class

while infected and not tested class respectively.

Lemma 1 The disease-free equilibrium point DFE of the mathematical model (1),
that is (5), is locally asymptotically stable ifR0 < 1 and unstable wheneverR0 > 1.

The R0 is the threshold quantity giving an average number, one infected individual
spreading the infection and a certain amount of susceptible individuals becoming
infectious [28].

Theorem 2 The system of equations of the model (1) is locally asymptotically stable
at disease-free equilibrium point if reproduction number is less than one and unstable
if not.

Proof The Jacobian matrix at DFE for the proposed model (1) is
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JDFE =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−Θ 0 −η −γψ 0 0
0 −(αi + α j + Θ) η γ 0 0
0 αi −(βi + Θ) 0 0 0
0 α j 0 −(β j + Θ) 0 0
0 0 βi 0 −Θ 0
0 0 0 β j 0 −Θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, the characteristic equation of JDFE can be expressed as

(x + Θ)3(x3 + A1x
2 + A2x + A3), (8)

where A1 = 3Θ + αi + α j + βi + β j , A2 = 3Θ2 − ηαi + 2Θαi − γα j +
2Θα j + 2Θβi + αiβi + α jβi + 2Θβ j + αiβ j + α jβ j + βiβ j , A3 = Θ3 −
ηΘαi + Θ2αi − γΘα j + Θ2α j + Θ2βi + Θαiβi − γα jβi + Θα jβi + Θ2β j −
ηαiβ j + Θαiβ j + Θα jβ j + Θβiβ j + αiβiβ j + α jβiβ j .

x3 + A1x
2 + A2x + A3 = 0 (9)

Equation (8) shows that the Jacobian matrix JDFE has six roots from which three are
real and negative and other three eigenvalues can be determined by solving Eq. (9).

To detect the sign of the real parts of the roots of Eq. (9), the Liénard Chipart [6]
criterion has been taken into account. The necessary and sufficient condition of the
Liénard Chipart criterion, if A1, A2, and A3 > 0 of Eq. (9) then the real parts of the
roots will be negative for the same.

We have
A1 = k1 + k2 + k3,

A2 = k1k2(1 − R1) + k1k3(1 − R2) + k2k3,

A3 = (1 − R0)k1k2k − 3.

Whenever R0 < 1, the values of A1, A2, and A3 are greater then zero. This leads
that all the eigenvalues of JDFE have the negative real part if R0 < 1. This implies
local asymptotic stability at DFE if R0 < 1.

The section epidemiologically states, if R0 < 1, the infection spread decreases.
Whereas, if R0 > 1, the spread increases.

3.3 Endemic Equilibrium

The proposed model (1), endemic equilibria could be obtained by equating each
equation of the system to zero. Hence, Eq. (10) is obtained.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = B
(λ∗+Θ)

,

E∗ = λ∗S∗
(k1+ψR∗

j )
,

I ∗ = αi E∗
k2

,

J ∗ = (α j+ψR∗
j )E

∗

k3
,

R∗
i = βi I ∗

Θ
,

R∗
j = β j J ∗

Θ
,

(10)

where λ∗ = (η I ∗+γ J ∗)
N ∗ .

a(λ∗)2 + bλ∗ − c = 0 (11)

where a = k2αi (1 + βi

Θ
) + k2(α j + ψR j )(1 + β j

Θ
) + k2k3, b = k1k2k3 + ψk2k3R j ,

and c = γαi k3 + γk2(α j + ψR j ). From Eq. (11), both the roots λ∗ = −b±√
b2+4ac
2a

are real. In accordance with Descartes’ rule of signs one must be negative and other
is positive for which the endemic equilibria exist for the proposed model (1).

3.4 Global Stability

The section emphasizes the global dynamics of the endemic equilibria of the model
(1). It discusses the impact of the primary reproduction number on global asymptotic
stability [27].

Theorem 3 The endemic equilibria of the model (1) has global asymptotic stability
if R0 > 1, γ = Θ and β j = 0 where endemic equilibria is represented as E

∗ =
(S∗, E∗, I ∗, J ∗, R∗

i , R∗
j ).

Proof Let the Lyapunov function [27] for the system (1) with positive undetermined
constants c2, c3, c4, and c6 be

V = c2E(t) + c3 I (t) + c4 J (t) + c6R j (t).

Thus, we have

V̇ ≤ c2(η I + γ J − (αi + α j + ψR j )E − ΘE) + c3(αi E − βi I − Θ I )

+c4((α j + ψR j )E − β j J − Θ J ) + c6(β j J − ΘR j )

≤ E(c4α j + c3αi − c2(αi + α j + Θ)) + I (c2η − c3(βi + Θ))

+J (c6β j + c2γ − c4(β j + Θ)) + R j E(−c2ψ + c4ψ) − c6ΘR j

≤ E(c4α j + c3αi − c2(αi + α j + Θ)) + I (c2η − c3(βi + Θ))

+J (c6β j + c2γ − c4(β j + Θ)) + R j E(−c2ψ + c4ψ).

Choosing c2 = 1, c3 = η
k2

, and c4 = γ
k3
with β j = 0, and γ = Θ one can obtain that
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V̇ ≤ k1(R0 − 1)E (12)

Thus from Eq. (12), dV (t)
dt < 0 whenever R0 < 1.

From an epidemiological point of view, the above theorem states that, if ψ = 0, η =
0, the disease spreads in the population whenever R0 > 1. Therefore in �, the
endemic equilibrium point is said to have global asymptomatic stability by using
LaSalle’s invariant principle [19].

3.5 Threshold Analysis

The section focuses on the effect of an infected and not tested person on the trans-
mission variability of the infection of the proposed model (1)-the partial derivative
of primary reproduction number with respect to α j parameter analyzes the threshold
analysis.

Theorem 4 The infected and not tested class on the exposed class has positive or
negative population-level effect if γ less or greater than γ∗, where γ∗ = (β j+Θ)αiη

(βi+Θ)(αi+Θ)
.

Proof The basic reproduction number R0 is differentiated partially with respect to
α j is

∂R0

∂α j
= ηαi

(βi + Θ)(αi + α j + Θ)2
− (αi + Θ)γ

(αi + α j + Θ)2(β j + Θ)
.

Let

γ∗ = (β j + Θ)αiη

(βi + Θ)(αi + Θ)
.

One can easily conclude that ∂R0
∂α j

< 0, if γ < γ∗ and ∂R0
∂α j

> 0, if γ > γ∗.

Thus, the value of the primary reproduction number R0 will depend on α j and will
be decreasing function when the infected and not tested persons do not exceed the
threshold value γ∗ and therefore, disease burden will reduce. Further, the primary
reproduction number R0 will be an increasing function of the parameter α j when
the infected and not tested persons exceed the threshold value γ∗ and therefore, the
disease will increase.

4 Numerical Simulation

The section focuses on the analytical findings of model (1), verified through numer-
ical simulations with assumed parametric values (per day) B = 2; Θ = 0.1; η =
0.6; γ = 0.2; αi = 0.252; α j = 0.81; ψ = 0.2; βi = 0.2; β j = 0.8which results
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Fig. 2 Variation in the proposed model classes according to different values of γ changing the
reproduction number a γ = 0.2 with R0 < 1, b γ = 0.7311 with R0 = 1, and c γ = 0.95 with
R0 > 1

to give the basic reproduction number as 0.6145.Hence themodel (1) is local asymp-
totic stable at disease-free equilibriumpoint (Fig. 2a). Figure 2 depicts the variation in
all classes (susceptible class, exposed class, infected class, infected and tested class,
infected and not tested class, recovered after infected class and tested and recovered
after infected and not tested class) according to different reproduction numbers (a)
with R0 < 1, (b) with R0 = 1, and (c) with R0 > 1. Figure 3 shows the variation
in the total number of infected citizens and total number of recovered citizens in
accordance with the basic reproduction number R0 < 1, = 1 and > 1 and Fig. 4
represents the effective effect of γ on the basic reproduction which decreases with
decrease in the value of γ with threshold value γ∗ = 0.7311.
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Fig. 3 Variation in the a total infected citizens according b total recovered citizens in accordance
with R0 < 1, = 1 and > 1
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Fig. 4 The effect of infection rate(α j ) of J (t) class from E(t) on R0

5 Results and Discussion

The effect of people in the class of recovered without being tested (R j ) or following
any guidelines has been studied through the mathematical epidemiological model
(1). Also, the increase in the number of infections and its importance with the testing
class is elaborated through the qualitative analysis. The analysis helped to evaluate
the importance of peer influence effects importance in society. The dynamics and
behavior of the mathematical model have been theoretically and numerically deter-
mined. It concludes with the following epidemiological as well as mathematical
results itemized as follows:
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(i) The mathematical model has the system of equations resulting to provide non-
negative and bounded solution for all t > 0, when the seed conditions are
non-negative (Theorem 1) which proves that the model (1) is mathematical
and epidemiological well-posed.

(i i) The model has local asymptotic stability at disease-free equilibria (DFE) if the
primary reproduction numberR0 is less than unity (Theorem 2). Epidemiolog-
ically, for each case, each infected individual will infect less than an individual
during the entire time of their infection period. The result leads to an infection
decline and exhaustion. It concludes that the primary reproduction number can
control the infection. This stops the disease from shaping into a pandemic or
epidemic.

(i i i) The mathematical model has an endemic equilibrium if the primary reproduc-
tion numberR0 is more significant than one. The local asymptotic stability and
global asymptotic stability for the particular case whenR0 is more significant
than one is established in (Theorem 3). Epidemiologically, the primary repro-
duction number is more significant than one, leading the infection to grow at
a tremendous rate. Each infected individual infects more than a single individ-
ual during the entire infection period. It concludes that the disease invades the
susceptible class at the time and leads to a pandemic or epidemic.

(iv) The primary reproduction numberR0 depends on the parameter α j . The value
of the primary reproduction number R0 decreases when the class of infected
and not tested persons do not exceed the value γ∗ called the threshold value
(Theorem 4). Therefore, we can see that the untested individuals can increase
or decrease the infection in society at a certain rate.

6 Conclusion

The information opinion indicates the potential value of the study regarding the
reporting issue of outbreak changes the thinking process of the citizens. The phase
of the global crisis is unlike any other scenario in the past few years—people deaths,
the spread of human suffering, and turning upside down of lives leads to different
absurd pieces of information everywhere. However, this is much more than a health
crisis. It is an ecological, economic, financial, human and social crisis. Different
prevention strategies play different roles in society in decreasing the damages, and
testing is one of them. The mindset of the individual can stop them from being tested
due to the scenario. The peer influence effect can lead a society to a different path at
that time.
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B-Splines Collocation Approach
to Simulate Secondary Dengue Virus
(DENV) Infection Model with Diffusion

Rohit Goel, R. C. Mittal, and Neha Ahlawat

Abstract Dengue fever is a mosquito-borne viral infection caused by the dengue
virus (DENV) found worldwide in tropical and sub-tropical urban and non-urban
areas. Dengue viruses (DENV) spread through the bite of an infected Ades species
mosquito. There is not available any specific treatment or cure for this DENV infec-
tion. The dynamics of the secondary dengue virus infection considering the spatial
mobility of dengue virus particles and cells can better be studied and analyzed with
reaction–diffusion mathematical models. A reaction–diffusion mathematical model
consisting of five simultaneous nonlinear partial differential equations to charac-
terize the dynamics of secondary Dengue infection is studied in this paper. The
spatial mobility of the dengue particles and cells is considered in the model. A
numerical simulation technique based on the cubic B-splines collocation is proposed
to approximate the solution of the considered model.

Keywords Dengue virus infection · Cubic basis splines · Thomas algorithm · RK4
method

1 Introduction

Dengue fever caused by dengue virus (DENV) also known as breakbone fever is
a viral disease prominent in tropical and sub-tropical regions that approximately
affects 250 million people worldwide [1]. Dengue (DFH) hemorrhagic fever/dengue
(DSS) shock syndrome [2, 3] are widespread among the four serologically [4] severe
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DENV syndromes. The antibody’s immune responses and the CTLs are the two
major constituents that destroy the DENV-infected cells [5, 6] and kill the DENV
particles [7] respectively.

In the past and the recent years, the dynamics of within-host DENV primary
infection [8–11] and pertaining to another stereotype secondary infection [12–15]
has been studied through various mathematical models. However, no significant
attempts have been made yet to describe diffusion-based dynamics of DENV infec-
tion. A mathematical model describing the global dynamics of the secondary DENV
infection taking into consideration the diffusion impacts is proposed by Elaiw and
Alofi [16]. The non-negativity, the boundedness of the solution, and the stability of
the equilibrium points are analyzed and discussed in the extended model.

The reaction–diffusionmathematical models account to a wide variety of physical
and dynamical phenomena occurring in day-to-day life [24, 25]. In the present paper,
the solutions of the DENV infection model [16] have been found numerically using
the cubicB-splines collocationmethod. The splineswhich are precisely the piecewise
continuous polynomial functions [17] constitute an elegant framework for dealing
with the discretization and the interpolation simulation problems. In this paper, cubic
B-splines are collocated over the finite elements to approximate the spatial variables
and its derivatives. The B-splines are preferred over the other traditional schemes
for their inheritance of continuity and the small local support over the given parti-
tion of the domain. Mittal et al. [18–20] have proposed the collocation scheme to
estimate solutions of various linear and nonlinear partial differential equations. The
authors also used the proposed scheme for a larger dimension malaria infection reac-
tion–diffusion model, M1 cancer virotherapy, COVID-19 infection, computer virus
dynamics, and NPZ-SIR models and achieved the accurate solutions.

2 The DENV Reaction–Diffusion Model

Elaiw and Alofi [16] proposed the following DENV secondary infection diffusion
model:

∂K (u, t)

∂t
= dK�K (u, t) + δ − μK (u, t)M(u, t) − ξK (u, t)

∂L(u, t)

∂t
= dL�L(u, t) + μK (u, t)M(u, t) − ρL(u, t)

∂M(u, t)

∂t
= dM�M(u, t) + τ L(u, t) − ηM(u, t)

− ω1M(u, t)N (u, t) − ω2M(u, t)P(u, t)

∂N (u, t)

∂t
= dN�N (u, t) + λ1M(u, t)N (u, t) − α1N (u, t)
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∂P(u, t)

∂t
= dP�P(u, t) + λ2M(u, t)P(u, t) − α2P(u, t) (1)

for time t > 0 and position u ε , where K (u, t), L(u, t), M(u, t), N (u, t), and
P(u, t), respectively, denote the concentrations of the target cells, DENV infected
cells, DENV particles, heterologous antibodies formed from the primary DENV
infection and the homologous antibodies formed from the secondary DENV infec-
tion, respectively. ∂ is the smooth boundary of the bounded, connected, and the
continuous domain  ⊂ R

m(m ≥ 1). � = ∂2

∂u2
being the Laplacian operator and

d� denotes the diffusion coefficient of the component �. λ1M(u, t)N (u, t) and
λ2M(u, t)P(u, t) are, respectively, the rates of activation of the two antibodies.

The model is associated with the non-negative, continuous, and biologically
justified initial conditions

K (u, 0) = ψ1(u), L(u, 0) = ψ2(u), M(u, 0) = ψ3(u),

N (u, 0) = ψ4(u), P(u, 0) = ψ5(u)

and the homogeneousNeumann boundary conditions representing a natural dispersal
barrier and signifying that the cells and the viruses cannot cross the isolated boundary.

∂K

∂
−→n = ∂L

∂
−→n = ∂M

∂
−→n = ∂N

∂
−→n = ∂P

∂
−→n = 0; t > 0, u ε ∂

where ∂

∂
−→n being the outward normal derivative on the boundary ∂.

3 Mathematical Formulation

The solution domain [a, b] is uniformly partitioned into a mesh of uniform step size
length h = ui+1 − ui = (b−a)

n for i = 0, 1, 2 . . . .., (n − 1) by the knots ui where
i = 0, 1, 2 . . . .., n where n is the number of grid points in the partition such that
a = u0 < u1 . . . . . . . . . . . . < un = b.

The approximate solutions tofind Kn(u, t), Ln(u, t), Mn(u, t), Nn(u, t), Pn(u, t)
takes the following form:

Kn(u, t) =
n+1∑

j=−1

σ j
(K )(t)C j (u), a ≤ u ≤ b, t > 0 (2)

Ln(u, t) =
n+1∑

j=−1

σ j
(L)(t)C j (u), a ≤ u ≤ b, t > 0 (3)
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Mn(u, t) =
n+1∑

j=−1

σ j
(M)(t)C j (u), a ≤ u ≤ b, t > 0 (4)

Nn(u, t) =
n+1∑

j=−1

σ j
(N )(t)C j (u), a ≤ u ≤ b, t > 0 (5)

Pn(u, t) =
n+1∑

j=−1

σ j
(P)(t)C j (u), a ≤ u ≤ b, t > 0 (6)

where σ j
(i)(t); i = K , L , M, N , P are the time-dependent numbers. And C j (u) is

the cubic B-spline basis function defined by

C j (u) = 1

h3

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
u − u j−2

)3
u ∈ [

u j−2, u j−1
)

(
u − u j−2

)3 − 4
(
u − u j−1

)3
u ∈ [

u j−1, u j
)

(
u j+2 − u

)3 − 4
(
u j+1 − u

)3
u ∈ [

u j , u j+1
)

(
u j+2 − u

)3
u ∈ [

u j+1, u j+2
)

0 otherwise

(7)

where the functionsC−1,C0,C1, . . . . . . . . .C,CN ,Cn+1 formabasis over the domain
a ≤ u ≤ b. The values of the functions C j (u) and their two successive derivatives
C ′

j (u),C ′′
j (u) over the prescribed set of knots are given in Table 1.

Using the B-spline function (7) in the approximate solution function (2), the
approximate values can be expressed in terms of time-dependent numbers σ j

(k)(t)
as

K j = σ j−1
(K ) + 4σ j

(K ) + σ j+1
(K )

hK ′
j = 3(σ j+1

(K ) − σ j−1
(K ))

h2K ′′
j = 6(σ j+1

(K ) − 2σ j
(K ) + σ j+1

(K ))

⎫
⎬

⎭ (8)

The respective values of the estimated solutions for the other four variables and
their derivatives can be expressed in the similar manner.

Table 1 Values of cubic B-spline coefficients

u j−2 u j−1 u j u j+1 u j+2

C j (u) 0 1 4 1 0

C ′
j (u) 0 −3/h 0 3/h 0

C ′′
j (u) 0 6/h2 −12/h2 6/h2 0

C j (u) 0 1 4 1 0
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4 Treatment at Boundary Conditions

If r0(t) and r1(t) are the prescribed boundary conditions for K (u, t), respectively,

(
∂K

∂u

)

u=a

= r0(t) and

(
∂K

∂u

)

u=b

= r1(t)

Then

Ku(u0, t) =
1∑

j=−1

σ j
(K )C ′

j (u0) = r0(t)

Ku(un, t) =
n+1∑

j=n−1

σ j
(K )C ′

j (un) = r1(t)

Using Table 1, we get

σ1
(K ) − σ−1

(K ) =
(
h

3

)
r0(t)

σn+1
(K ) − σn−1

(K ) =
(
h

3

)
r1(t)

so that

σ−1
(K ) = σ1

(K ) −
(
h

3

)
r0(t)

σn+1
(K ) = σn−1

(K ) +
(
h

3

)
r1(t)

Thus, the two-time dependent quantities falling outside the prescribed knots
are determined. The remaining other variables can also be treated at the boundary
conditions similarly.

5 Implementation of a RD Equation

The equation for K (u, t) is given by

∂K (u, t)

∂t
= dK�K (u, t) + φ1(K , L , M, N , P) (9)

where dK is diffusion coefficient and φ1 corresponds to the reaction term.
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Using (8) in the approximate solution expression (2) for Hn(x, t), the given
differential Eq. (9) results in the following system:

σ̇
(K )
j−1 + 4σ̇ (K )

j + σ̇
(K )
j+1 = (σ j−1

(K ) − 2σ j
(K ) + σ j+1

(K ))dK + φ1 j ; 0 ≤ j ≤ n

φ1 j is the right-hand side quantity of H at the j-th node, respectively. Upon
deporting σ̇

(K )
−1 , σ̇

(K )
n+1, σ−1

(K ), σn+1
(K ), the following system of differential equations

is obtained:

Aσ̇
∧(K ) = BKσ

∧(K ) + φ1

∧

(10)

where BK = dK .B

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2

1 4 1

. . . . . . . . .

. . . . . . . . .

1 4 1

2 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

B =
(

6

h2

)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 2

1 − 2 1

. . . . . . . . .

. . . . . . . . .

1 − 2 1

2 − 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)

and

σ̇
∧(K ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ̇
(K )
0

σ̇
(K )
1

. . .

. . .

. . .

σ̇
(K )
n−1

σ̇ (K )
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

φ1

∧

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ10 + (
h
3

)
r0(t)

φ11

. . .

. . .

. . .

φ1(n−1)

φ1n − (
h
3

)
r1(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n+1)×1

Similar treatment can be applied in the corresponding time-dependent quantities
for the other variables of the system.

6 Evaluation of Initial Vector σ 0
∧(K )

The initial vector σ 0
∧(K )

can be evaluated by using the given data of initial conditions
and the boundary values of their derivatives.

Kx (a, 0) = Ku(u0, 0) = r0(0) (11)

K
(
u j , 0

) = ψ1
(
u j

)
, j = 1, 2 . . . . . . , n − 1 (12)
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Ku(b, 0) = Ku(un, 0) = r1(0) (13)

Similar expressions will be derived for the other remaining variables. Equations
(11)–(13) on applying to (2) yield a (n + 1) × (n + 1) system of the form

Aσ 0
∧(K ) = φ0

1

∧

(14)

where

σ 0
∧(K ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 0
K0

σ 0
K1

. . .

. . .

. . .

σ 0
K (n−1)

σ 0
Kn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ0
1

∧

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(u0) + (
h
3

)
r0(0)

ψ1(u1)
. . .

. . .

. . .

ψ1(un−1)

ψ1(un) − (
h
3

)
r1(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and so on. This system being reduced to a tridiagonal system can finally be simplified
by the well-known Thomas algorithm for tridiagonal systems [22, 23].

7 Method Implementation

The considered DENV infection model (1) can be rewritten in the standard reaction–
diffusion form as

∂K (u, t)

∂t
= dK�K (u, t) + φ1(K , L , M, N , P)

∂L(u, t)

∂t
= dL�L(u, t) + φ2(K , L , M, N , P)

∂M(u, t)

∂t
= dM�M(u, t) + φ3(K , L , M, N , P)

∂N (u, t)

∂t
= dN�N (u, t) + φ4(K , L , M, N , P)

∂P(u, t)

∂t
= dP�P(u, t) + φ5(K , L , M, N , P)

where each of the d ′
i s are the respective diffusion coefficients and the corresponding

terms are the diffusion terms and φi represents the reaction terms in each the
corresponding reaction–diffusion differential equations.
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Using the B-splines approximation for the above reaction–diffusion system, the
following system of differential equations is obtained

Mσ̇
∧ = Pσ

∧ + F

where M and P are the 5(n + 1) ordered block diagonal matrices.

M =

⎡

⎢⎢⎢⎢⎢⎣

A
A

A
A

A

⎤

⎥⎥⎥⎥⎥⎦

5(n+1)×5(n+1)

P =

⎡

⎢⎢⎢⎢⎢⎣

BK

BL

BM

BLN

BP

⎤

⎥⎥⎥⎥⎥⎦

5(n+1)×5(n+1)

Here σ̇
∧

and F are, respectively, the column vectors.

σ̇
∧ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ̇
∧(K )

σ̇
∧(L)

σ̇
∧(M)

σ̇
∧(N )

σ̇
∧(P)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡

⎢⎢⎢⎢⎢⎣

φ1

∧

φ2

∧

φ3

∧

φ4

∧

φ5

∧

⎤

⎥⎥⎥⎥⎥⎦

5(n+1)×1

The parameter vector σ̇
∧

in the above system is determined at a given time level
using the Thomas algorithm [21]. Then the approximate solutions at any desired time
can be found by computing the time-dependent numbers in the estimated solution
by using the RK4 method.

8 Numerical Simulations

Numerical calculations are being performed to authenticate and implement the
proposed scheme. For this purpose, the spatial domain  = [0, 2] is considered
with step size of �u = 0.02. For calculations, the time step size of �t = 0.1 is
selected. The following parameter values are taken: δ = 10, ξ = 0.01, ρ = 0.3, τ =
5, η = 3, ω1 = 0.3, ω2 = 0.1, α1 = 0.1, α2 = 0.1. All the remaining parameters
are given in Table 2 taken according to the strategies as classified by the stability
analysis.

Depending upon the convergence of the positive solutions of the model, the
simulations are being performed under the four distinct strategies as given below.
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Table 2 Variable parameters
values for different strategies

Strategy μ λ1 λ2

I 0.00004 0.005 0.001

II 0.0004 0.005 0.001

III 0.004 0.05 0.001

IV 0.004 0.01 0.02

Subject to the global stability and the existence of the equilibrium points
�0,�1,�2,�3 [16], there are considered four strategies for the computation of
the simulated results. This paper is chiefly related with the proposed efficient numer-
ical simulation technique to solve the DENV infection model. A detailed analysis of
these threshold parameters and their biological aspects can be well studied in Ref.
[16] and the available literature. The model is accompanied with the following set
of initial condition:

ψ1(u) = 500
(
1 + 0.5 cos2(πu)

)

ψ2(u) = 30
(
1 + 0.5 cos2(πu)

)

ψ3(u) = 4
(
1 + 0.5 cos2(πu)

)

ψ4(u) = 2
(
1 + 0.5 cos2(πu)

)

ψ5(u) = 2
(
1 + 0.5 cos2(πu)

)

9 Results and Discussions

The numerical simulations accomplished by the proposed scheme for the considered
DENV secondary infection model [16] are summarized by performing simulations
for the following four global stability dependent different strategies. The detailed
biological significances of the results obtained can bewell described by the biologists.
As available in the literature, the parameters R0,R1,R2 are taken as follows:

R0 = δτμ

ξρη
,R1 = R0

1 + μα1

ξλ1

,R1 = R0

1 + μα2

ξλ2

Strategy I, concerns with the stability of the infection free equilibrium point �0 =
(δ/ξ, 0, 0, 0, 0) signifying that the DENV is cleared.
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Fig. 1 Numerical simulations for target cells K (u, t)

Strategy II, concerns with the stability of the persistent DENV equilibrium point
�1 = ( K0

R0
,

ηξ(R0−1)
τμ

,
ξ(R0−1)

μ
, 0, 0) signifying the state of persistent DENV infection

without any effective immune body responses.

Strategy III, concerns with the stability of the equilibrium point �2 =
( λ1δ

ξλ1+μα1
,

μδα1

ρ(ξλ1+μα1)
, α1

λ1
,

η(R1−1)
ω1

, 0) signifying the persistence of DENV infection
with effective heterologous antibody immune responses.

Strategy IV, concerns with the stability of the equilibrium point �3 =
( λ2δ

ξλ2+μα2
,

μδα2

ρ(ξλ2+μα2)
, α2

λ2
, 0, η(R2−1)

ω2
) signifying the persistence of DENV infection

with homologous antibody immune responses.

The catholic stability and the existence of the equilibrium points signifies that the
prescribed initial conditions do not govern the solutions in long run.

10 Conclusions

The considered DENV infection model is successfully simulated by the proposed
collocation method of cubic B-splines. It is also observed that the effect of initial
conditions does not run long. The results achieved are quite convincing and in suffi-
cient agreement with those available in Ref. [16]. The method being easy to imple-
ment, reliable, and economical is appropriate for like reaction–diffusion mathemat-
ical models. The approach can be proved beneficiary for many biologists. Due to the
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Fig. 2 Numerical simulations for DENV infected cells L(u, t)

Fig. 3 Numerical simulations for DENV particles M(u, t)
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Fig. 4 Numerical simulations for heterologous antibodies N (u, t)

Fig. 5 Numerical simulations for homologous antibodies P(u, t)
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complexity and the bigger dimensions of themodel the proposed technique has preva-
lence over the traditional numerical simulation techniques. The proposed scheme is
thus recommended as a burning alternative to deal a variety of similar mathematical
models occurring in the field of medical sciences.
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Study of Heat and Mass Transfer
in a Composite Nanofluid Layer

Awanish Kumar, B. S. Bhadauria, and Anurag Srivastava

Abstract A non-linear analysis is done to analyze the heat and mass transport in
a composite nanofluid layer confined between two parallel horizontal plates, heated
from below. The Nusselt number for temperature and nanoparticle concentrations
is obtained as a function of time. It is observed that the suspension of two different
nanoparticles in a base fluid significantly affects the heat and mass transport. We
observe that the modified diffusivity ratios and the Lewis numbers for the first and
second types of nanofluids only affect the mass transportation of the first and second
types of nanofluids, respectively.

Keywords Non-linear theory · Composite nanofluids · Free–free boundaries

Nomenclature

Latin Symbols

DB1 , DB2 Brownian Diffusion coefficients.
DT1 , DT2 Thermophoretic diffusion coefficients.
Pr Prandtl number.
L Dimensional layer depth.
Le1, Le2 Lewis numbers.
NA1, NA2 Modified diffusivity ratios.
NB1, NB2 Modified particle-density increments.
p Pressure.
g Gravitational acceleration.

A. Kumar (B) · B. S. Bhadauria · A. Srivastava
Department of Mathematics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
e-mail: awanish.425@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. K. Sharma et al. (eds.), Frontiers in Industrial and Applied Mathematics,
Springer Proceedings in Mathematics & Statistics 410,
https://doi.org/10.1007/978-981-19-7272-0_17

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7272-0_17&domain=pdf
mailto:awanish.425@gmail.com
https://doi.org/10.1007/978-981-19-7272-0_17


230 A. Kumar et al.

t Time.
T Temperature.
V = (u, v, w) Nanofluid velocity.

Greek Symbols

α f = κ/ρc Thermal diffusivity of the nanofluid.
κ Thermal conductivity of the nanofluid.
βT Thermal volumetric coefficient.
μ Dynamic viscosity.
ρp1 , ρp2 Mass densities of nanoparticles.
φ1, φ2 Nanoparticle volume fractions.

1 Introduction

In order to enhance the poor thermal conductivity of liquids, Maxwell, suggested to
add solid particles of high thermal conductivity into the liquids, more than a century
ago. His idea was implemented with millimeter- or micrometer-sized particles but
it was not very fruitful because of such extra-sized particles. The major issues with
such particles were settling down under gravity, clogging, and abrasion. So, therewas
a search for particles smaller than micro-sized particles and this search ultimately
ended with the invention of nanofluids (by Choi [1]) which are the fluids comprising
a little amount of uniformly dispersed and suspended nanometer-sized particles in
a base fluid. Around 15–40% increment in the thermal conductivity (Eastman et al.
[2], Das et al. [3]) of the fluid is observed on adding a small amount of nanoparticles
into the base fluid. Moreover, the size of nano-particles becomes quite closer to fluid
molecules’ size and this prevents nanoparticles to settle down under gravity.

Because of these important properties, nanofluids arewidely used in various indus-
tries, especially in those processes where cooling is essentially required. Buongiorno
[4] was the first to study convective transport in nanofluids in 2006. He noticed that
other than base fluid velocity, Brownian diffusion and thermophoresis are mainly
responsible for nanoparticles’ absolute velocity in the absence of turbulent motion.
Tzou [5, 6] used theBuongiornomodel to study the onset of convection in a horizontal
nanofluid layer heated from below. Nield and Kuznetsov [7–11] further analyzed the
similar problem with porous media. After them, many researchers are still working
in this field. Bhadauria et al. [12] described the non-linear study for bi-dimensional
convection in a nanofluid-saturated porous medium.

Apart from the direct study of the onset of convection, heat, andmass transfer, var-
ious researchers showed their interest in the study of convective flows under the effect
of various external modulations like thermal modulation, gravity modulation, mag-
netic field modulation, etc. These modulations have various practical applications in
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different industries. Venezian [13] was the first to introduce the effect of modulating
the boundary temperatures. Later on, Umavathi [14] studied the thermal modulation
in the case of nanofluids.Gresho andSani [15]were thefirst to study the consequences
of modulating gravitational field on Rayleigh–Bénard Convection. Bhadauria et al.
[16] did the non-linear study of thermal instability under temperature/gravity mod-
ulation. Bhadauria et al. [17] studied the effect of gravity modulation and internal
heating over convection in a nanofluid-saturated porous medium. Thomson [18] and
Chandrasekhar [19] were the first to discuss the idea about magneto-convection.
This has now become a huge area of research. Kiran et al. [20] recently published
an article about magneto-convection under magnetic field modulation. Yadav [21]
presented a numerical solution of the onset of buoyancy-driven nanofluid convective
motion in an anisotropic porous medium layer with internal heating and variable
gravity. Sakshath et al. [22] investigated the effect of horizontal pressure gradient on
Rayleigh–Bénard convection of a Newtonian nanoliquid in a high porosity medium
using a local thermal non-equilibrium model.

After various kind of modulations, a new type of nanofluid, known as composite
nanofluid, has now become an advanced area of interest among the researchers in the
recent years. A composite nanofluid is prepared by suspending two or more types of
nanoparticles in a base fluid in order to get a stable and homogeneous mixture. The
synthesis of such composite materials can be done either by chemical or physical
processes (Hanemann and Szabo [23], Zhang et al. [24]). The characteristics of
the composite nanofluids lie in between the properties of their constituents. The
thermophysical properties of composite nanofluids can be altered to converge to the
required heat transfer demands. An extensive review on composite nanofluids and
their properties is given by Suleiman et al. [25]. Linear and nonlinear analysis in
Hele-Shaw cell in the presence of through-flow and gravity modulation have been
done by Bhadauria et al. [26].

The very first study of thermal instability for composite nanofluids is presented
by Kumar and Awasthi [27] recently. They concluded that the maximum stability is
achieved only when both kinds of nanoparticles are in the same ratio. To the best
of our knowledge, no non-linear study on this topic is present in literature till date.
This idea motivated us to present this study of heat and mass transfer in a composite
nanofluid layer.

2 Mathematical Formulation

An infinitely extended horizontal layer, of composite nanoliquid in which two differ-
ent types of nanoparticles are suspended homogeneously, restricted between Z = 0
and Z = L has been considered. The upper plate at Z = L is assumed to be at tem-
perature T0, while the lower plate is at slightly higher temperature T0 + ΔT as shown
in Fig. 1. The cartesian coordinate system has been used. Both nanoparticles and the
base fluid are assumed to be in local thermal equilibrium. Boundaries are considered
to be Free–Free and perfectly insulating. The linearization of equations is done using
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Fig. 1 Formal diagram

theOberbeck–Boussinesq approximation. The governing equations of the system are
as follows (Kumar and Awasthi [27]):

∇ · V = 0 (1)

ρ

[
∂

∂t
+ (V · ∇)

]
V = −∇ p + μ∇2V + [φ1ρp1 + φ2ρp2 + ρ(1 − φ1 − φ2){1 − βT (T − T0)}]g (2)

ρc

[
∂

∂t
+ (V · ∇)

]
T = κ∇2T + (ρc)p1 [DB1∇φ1∇T + DT1

T0
∇T∇T ] + (ρc)p2 [DB2∇φ2∇T + DT2

T0
∇T∇T ] (3)

[
∂

∂t
+ (V · ∇)

]
φ1 = DB1∇2φ1 +

( DT1
T0

)
∇2T (4)

[
∂

∂t
+ (V · ∇)

]
φ2 = DB2∇2φ2 +

( DT2
T0

)
∇2T (5)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

At the boundaries, the volume fractions of nanoparticles are assumed to be con-
stant. The boundary conditions under consideration are as follows:

w = 0,
∂w

∂z
+ λ1L

∂2w

∂z2
= 0, φ1 = φ10, φ2 = φ20 at z = 0

w = 0,
∂w

∂z
− λ2L

∂2w

∂z2
= 0, φ1 = φ11, φ2 = φ21 at z = L

⎫⎪⎪⎬
⎪⎪⎭

(6)

where λ1 and λ2 take the value “0” and “∞” for rigid–rigid and free–free bound-
aries, respectively. Also φ11 > φ10 and φ21 > φ20. In order to non-dimensionalize
the equations, we use the following substitutions:

(x, y, z) = L(x ′, y′, z′), (u, v, w) = (u′, v′, w′)
α f

L
,

t = L2

α f
t ′, p = μα f

L2
p′,

T ′ = T − T0
ΔT

, φ′
i(=1or2) = φi − φi0

φi1 − φi0
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7)

Making use of (7) into the Eqs. (1)–(6) and leaving the primes for simplicity, we
obtain the following non-dimensional equations:
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∇ · V = 0 (8)

1

Pr

[
∂

∂t
+ (V · ∇)

]
V = −∇ p + ∇2V + ez [RaT − Rn1φ1 − Rn2φ2 − Rm] (9)

[
∂

∂t
+ (V · ∇)

]
T = ∇2T +

(
NB1

Le1

)
∇φ1 · ∇T +

(
NA1NB1

Le1

)
∇T · ∇T

+
(
NB2

Le2

)
∇φ2 · ∇T +

(
NA2NB2

Le2

)
∇T · ∇T (10)

[
∂

∂t
+ (V · ∇)

]
φ1 =

(
1

Le1

)
∇2φ1 +

(
NA1

Le1

)
∇2T (11)

[
∂

∂t
+ (V · ∇)

]
φ2 =

(
1

Le2

)
∇2φ2 +

(
NA2

Le2

)
∇2T (12)

The dimensional-less boundary conditions are

T = 1, w = φ1 = φ2 = 0,
∂w

∂z
+ λ1

∂2w

∂z2
= 0 at z = 0,

T = w = 0, φ1 = φ2 = 1,
∂w

∂z
− λ2

∂2w

∂z2
= 0 at z = 1,

⎫⎪⎪⎬
⎪⎪⎭

(13)

where

Ra = ρgβT L3ΔT

μα f
is the thermalRayleighnumber, Rn1 = (ρp1 − ρ)(φ11 − φ10)gd3

μα f

and Rn2 = (ρp2 − ρ)(φ21 − φ20)gd3

μα f
are the nanoparticle concentration Rayleigh

numbers, Rm = {ρp1φ10 + ρp2φ20 + ρ(1 − φ10 − φ20)}gd3

μα f
is the basic density

Rayleigh number, Pr = μ

ρα f
is Prandtl number, Le1 = α f

DB1

and Le2 = α f

DB2

are

theLewis numbers, NA1 = DT1ΔT

DB1T0(φ11 − φ10)
and NA2 = DT2ΔT

DB2T0(φ21 − φ20)
are the

modifieddiffusivity ratios, and NB1 = (ρc)p1
φ11 − φ10

ρc
and NB2 = (ρc)p2

φ21 − φ20

ρc
are the modified particle-density increments.

3 Conduction State

The temperature, pressure, and nanoparticle volume fractions are taken to be the
functions of “z” only. The time-independent quiescent solution of Eqs. (8)–(12) is
obtained under the following assumptions:

V = 0, T = Tb(z), p = pb(z), φ1 = φ1b(z), φ2 = φ2b(z). (14)



234 A. Kumar et al.

The desired conduction state is evaluated (Kumar and Awasthi [27]) as:

Tb(z) = 1 − z, φ1b(z) = z, φ2b(z) = z. (15)

4 Perturbed State

We impose small perturbations on the conduction state:

V = Ṽ, p = pb + p̃, T = Tb + T̃ , φ1 = φ1b + φ̃1, φ2 = φ2b + φ̃2. (16)

Using Eq. (16) in Eqs. (8)–(12) and assuming all the physical quantities to be free
from “y”, we get the following perturbed equations:

∇ · Ṽ = 0 (17)

1

Pr

[
∂

∂t
+

(
ũ

∂

∂x
+ w̃

∂

∂z

)]
Ṽ = −∇ p̃ + ∇2Ṽ + ez

[
RaT̃ − Rn1φ̃1 − Rn2φ̃2

]
(18)

∂ T̃

∂t
− w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
T̃ = ∇2T̃ + NB1

Le1

[
∂ T̃

∂z
− ∂φ̃1

∂z

]
+ NB2

Le2

[
∂ T̃

∂z
− ∂φ̃2

∂z

]

−2NA1NB1

Le1

∂ T̃

∂z
− 2NA2NB2

Le2

∂ T̃

∂z
(19)

∂φ̃1

∂t
+ w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
φ̃1 = 1

Le1
∇2φ̃1 + NA1

Le1
∇2T̃ (20)

∂φ̃2

∂t
+ w̃ +

(
ũ

∂

∂x
+ w̃

∂

∂z

)
φ̃2 = 1

Le2
∇2φ̃2 + NA2

Le2
∇2T̃ (21)

The corresponding perturbed boundary conditions are

T̃ = 0, w̃ = φ̃1 = φ̃2 = 0,
∂w̃

∂z
+ λ1

∂2w̃

∂z2
= 0 at z = 0,

T̃ = 0, w̃ = φ̃1 = φ̃2 = 0,
∂w̃

∂z
− λ2

∂2w̃

∂z2
= 0 at z = 1.

⎫⎪⎪⎬
⎪⎪⎭

(22)

where Ṽ = (ũ, ṽ, w̃).
Now eliminating the pressure term in Eq. (18), introducing the stream function

ψ in Eqs. (18)–(21), and removing the tildes, we get the following transformed
equations:
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1

Pr

[
∂

∂t
(∇2ψ)

]
= ∇4ψ − Ra

∂T

∂x
+ Rn1

∂φ1

∂x
+ Rn2

∂φ2

∂x
+ 1

Pr

[
∂(ψ,∇2ψ)

∂(x, z)

]

(23)

∂T

∂t
+ ∂ψ

∂x
= ∇2T + NB1

Le1

[
∂T

∂z
− ∂φ1

∂z

]
− 2NA1NB1

Le1

∂T

∂z
+ NB2

Le2

[
∂T

∂z
− ∂φ2

∂z

]

−2NA2NB2

Le2

∂T

∂z
+ ∂(ψ, T )

∂(x, z)
(24)

∂φ1

∂t
− ∂ψ

∂x
= 1

Le1
∇2φ1 + NA1

Le1
∇2T + ∂(ψ, φ1)

∂(x, z)
(25)

∂φ2

∂t
− ∂ψ

∂x
= 1

Le2
∇2φ2 + NA2

Le2
∇2T + ∂(ψ, φ2)

∂(x, z)
(26)

where u = ∂ψ

∂z
and w = −∂ψ

∂x
.

5 Non-linear Stability Analysis

A non-linear stability analysis is done using the below-mentioned truncated Fourier
expressions (Bhadauria et al. [17]):

ψ = A11(t) sin(kx)sin(πz) (27)

T = B11(t) cos(kx)sin(πz) + B02(t)sin(2πz) (28)

φ1 = C11(t) cos(kx)sin(πz) + C02(t)sin(2πz) (29)

φ2 = D11(t) cos(kx)sin(πz) + D02(t)sin(2πz) (30)

All these expressions are taken in such a way to satisfy the free–free boundary
conditions:

ψ = ∇2ψ = T = φ1 = φ2 = 0 at z = 0, 1, (31)

where A11(t), B11(t), B02(t), C11(t), C02(t), D11(t) and D02(t) are unknowns and
the functions of “t”.

Making use of Eqs. (27)–(30) into the Eqs. (23)–(26) and using the condition of
orthogonality with the eigenfunctions, we obtain
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A′
11(t) = Pr [−δ2A11(t) − k

δ2
{RaB11(t) − Rn1C11(t) − Rn2D11(t)}] (32)

B ′
11(t) = −kA11(t) − kπ A11(t)B02(t) − δ2B11(t) (33)

B ′
02(t) = −4π2B02(t) + kπ

2
A11(t)B11(t) (34)

C ′
11(t) = k[A11(t) − π A11(t)C02(t)] − δ2

Le1
[NA1B11(t) + C11(t)] (35)

C ′
02(t) = −4π2

Le1
[NA1B02(t) + C02(t)] + kπ

2
A11(t)C11(t) (36)

D′
11(t) = k[A11(t) − π A11(t)D02(t)] − δ2

Le2
[NA2B11(t) + D11(t)] (37)

D′
02(t) = −4π2

Le2
[NA2B02(t) + D02(t)] + kπ

2
A11(t)D11(t) (38)

where δ2 = (k2 + π2)

The above autonomous simultaneous ODEs (32)–(38) are solved numerically
using NDSolve of Mathematical under suitably chosen initial conditions.

6 Heat and Mass Transport

The heat transport Nusselt number, NuT (t) is defined as

NuT (t) = Heat transport by (conduction+convection)

Heat transport by conduction

NuT (t) = 1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂T
∂z

)
dx

2π/k∫
0

(
∂Tb
∂z

)
dx

⎤
⎥⎥⎥⎦

z=0

(39)

On putting the values of T and Tb(z) from Eqs. (28) and (15) into the Eq. (39),
we have

NuT (t) = 1 − 2πB02(t) (40)

The nanoparticle concentrationNusselt number for the first type of nanoparticles,
Nuφ1(t), can be defined as

Nuφ1(t) = 1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂φ1

∂z
)dx

2π/k∫
0

(
∂φ1b

∂z
)dx

⎤
⎥⎥⎥⎦

z=0

+ NA1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 +

⎡
⎢⎢⎢⎣

2π/k∫
0

(
∂T

∂z
)dx

2π/k∫
0

(
∂Tb
∂z

)dx

⎤
⎥⎥⎥⎦

z=0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(41)
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Making use of Eqs. (28), (29) and (15) into the Eq. (41), we get

Nuφ1(t) = (1 + 2πC02(t)) + NA1(1 − 2πB02(t)) (42)

Similarly, we can find the nanoparticle concentration Nusselt number for the
second type of nanoparticles, Nuφ2(t), as follows:

Nuφ2(t) = (1 + 2πD02(t)) + NA2(1 − 2πB02(t)) (43)

7 Results and Discussion

In non-linear analysis, we study heat and mass transport in the system. By thermal
Nusselt number and concentration Nusselt number, we study how heat and mass
transport, respectively, happens inside the system. Here thermal Nusselt number
and concentration Nusselt number are functions of time. The general parametric
values are taken as Le1 = 100, Le2 = 100, NA1 = 2, NA2 = 2, Rn1 = 5, Rn2 = 5,
Ra = 5000, and k = 2.22144. We found a common thing in all observations that
the graph of thermal Nusselt number and both concentration Nusselt numbers are
horizontal for a short time initially which shows a conduction state. After some time,
they start increasing which shows a convection state and also oscillate for some time
and go to constant which denotes a steady state. In ordinary nanofluid, Bhadauria
et al. [17] examined that modified particle density increments and Lewis number
have no significant effect on heat transfer. Here we also found the similar result in
composite nanofluid which is shown in Figs. 2, 3, 4, and 5. If the value of Prandtl
number (Pr) is increased, we observe that heat transfer starts sooner by convection
in comparison to the previous Prandtl number which is shown in Fig. 6. In the case
of composite nanofluid, we observe that heat transfer by convection is delayed in
comparison to ordinary nanofluid which is equivalent to the result of Kumar and
Awasthi [27] and shown in Fig. 7. Kumar and Awasthi [27] compared the onset of
convection between ordinary and composite nanofluids under the heavy top condition
and found a delay in the onset of convection in composite nanofluids. In the case of
the first nanoparticle concentration Nusselt number, the effect of NA1 enhances the
mass transport and has no effect of NA2 on mass transport which is shown in Figs.
8, 9. In the case of the second nanoparticle concentration Nusselt number, NA1 has
no effect and NA2 enhances the mass transport which contradicts the result of first
nanoparticle concentration Nusselt number and shown in Figs. 16, 17. The above
result is similar to the result for ordinary nanofluid, which is compared to the result
of Bhadauria et al. [17].

If we increase the value of Le1, we observe that the amplitude of oscillations
of nanoparticle concentration Nusselt number for the first nanoparticle, i.e., Nuφ1

slightly increases, while increment in Le1 has no effect on nanoparticle concentration
Nusselt number for the second nanoparticle, i.e., Nuφ2 (Figs. 10, 18). Similarly, if we
increase the value of Le2, the amplitude of oscillations of Nuφ2 is slight increased,
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Fig. 2 Plot of NuT with t
for varying NA1

Fig. 3 Plot of NuT with t
for varying NA2

Fig. 4 Plot of NuT with t
for varying Le1
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Fig. 5 Plot of NuT with t
for varying Le2

Fig. 6 Plot of NuT with t
for varying Pr

Fig. 7 Comparison of heat
transfer in ordinary and
composite nanofluid
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Fig. 8 Plot of Nuφ1 with t
for varying NA1

Fig. 9 Plot of Nuφ1 with t
for varying NA2

while it has no effect over Nuφ1 (Figs. 11, 19). Let us now discuss the effect of
Prandtl number on mass transport in both cases. We found the same effect in both
cases which is shown in Figs. 12, 20 and the result is same as the result of Bhadauria
et al. [12]. If the ratio of Rn1 and Rn2 are different in composite nanofluid, then
the mass transport by convection takes place sooner in comparison to the same ratio
which is shown in Figs. 13, 14, 21 and 22. If nanoparticle concentration is top heavy
then we found that there is a delay in the mass transport by convection in comparison
to bottom heavy which is shown in Figs. 15, 23.

In Fig. 25a, b, the streamlines and isothermals have been shown, respectively,
at conduction state for t = 0, 0.025, and 0.050. In Fig. 25a, we observe that the
magnitude of streamlines is very weak for t = 0–0.050; therefore, the movement
of fluid in the system is almost negligible, which means that heat transfer is only
due to conduction. Figure 25b describes that the temperature of all the horizontal
fluid layers is almost constant throughout the system, which indicates the conduction
state. Figure 26a shows that as time “t” increases from 0.1 to 0.15, the magnitude of
streamlines also increases slightly. It means that a small movement of fluid particles
has started in the system and, therefore, the heat transfer is due to both conduction
and convection, which indicates a transition from conduction to convection state.
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Fig. 10 Plot of Nuφ1 with t
for varying Le1

Fig. 11 Plot of Nuφ1 with t
for varying Le2

Fig. 12 Plot of Nuφ1 with t
for varying Pr
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Fig. 13 Comparison of
Nuφ1 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 > Rn2)

Fig. 14 Comparison of
Nuφ1 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 < Rn2)

Fig. 15 Comparison of
Nuφ1 for top and bottom
heavy configurations
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Fig. 16 Plot of Nuφ2 with t
for varying NA1

Fig. 17 Plot of Nuφ2 with t
for varying NA2

Figure 26b represents that the isothermals have started deforming from their original
horizontal position as “t” increases from 0.1 to 0.15, which shows the very beginning
stage of the formation of convection cells. Further, the magnitude of streamlines
becomes stronger as time increases and in isothermals, fully developed convective
cells can be seen with increasing time as presented in Fig. 27a, b, respectively. In
Fig. 28a, b, there is no change in the magnitudes of streamlines and in the position of
isothermalswith increasing time,which shows that the systemhas achieved the steady
state. In Fig. 29a, it can be noticed that the isohalines are parallel and horizontal,
which means that the concentration of nanoparticles is constant with horizontal fluid
layers and mass transport is almost negligible in the system for t = 0–0.05. With the
passage of time, mass transport starts in the system as depicted by Fig. 29b. Mass
transportation also achieves the steady state for higher values of time as shown by
Fig. 24.
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Fig. 18 Plot of Nuφ2 with t
for varying Le1

Fig. 19 Plot of Nuφ2 with t
for varying Le2

Fig. 20 Plot of Nuφ2 with t
for varying Pr
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Fig. 21 Comparison of
Nuφ2 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 < Rn2)

Fig. 22 Comparison of
Nuφ2 for same ratio
(Rn1 = Rn2) and different
ratio (Rn1 > Rn2)

Fig. 23 Comparison of
Nuφ2 for top and bottom
heavy configurations
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Fig. 24 Behavior of mass transport for higher value of time

Fig. 25 Conduction state

8 Conclusions

We have investigated the heat and mass transport in a horizontal composite nanoliq-
uid layer by performing a non-linear analysis. All the results have been presented
graphically. These are the major conclusions:
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Fig. 26 Transition state (conduction to convection)

Fig. 27 Convection state
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Fig. 28 Steady state

Fig. 29 Isohalines
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1. We found same effect of modified particle density increments in composite
nanofluid as compared to the ordinary nanofluid on heat transfer.

2. Lewis number has also same effect in composite nanofluid as compared to the
ordinary nanofluid on heat and mass transfer.

3. We found that heat transfer by convection is delayed in composite nanofluid as
compared to ordinary nanofluid.

4. Prandtl number has also same effect in composite nanofluid as compared to
ordinary nanofluid on heat and mass transfer.

5. The effect of modified particle density increments on mass transport depends
upon the nanoparticle concentration Nusselt number, i.e., the effect of NA1 is
only on the first nanoparticle concentration Nusselt number and the effect of NA2

is only on the second nanoparticle concentration Nusselt number.
6. Le1 has its effect only on the nanoparticle concentration Nusselt number for the

first nanoparticle, i.e., Nuφ1, while Le2 has its effect only on the nanoparticle
concentration Nusselt number for the second nanoparticle, i.e., Nuφ2.
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On the Existence and Stability Analysis
for Ψ -Caputo Fractional Boundary Value
Poblem

Bhagwat R. Yewale and Deepak B. Pachpatte

Abstract In this paper,we study the existence and uniqueness results of the solutions
for non-linear boundary value problems involving Ψ -Caputo fractional derivative.
Furthermore, we prove some stability results of the given problem. The tools used
in the analysis are relies on Banach fixed point theorem and Ψ -fractional Gronwall
inequality.

Keywords Fractional differential equations · Ψ -Caputo fractional derivative ·
Gronwall inequality · Stability · Fixed point theorem

1 Introduction

In this paper, we are concerned with the nonlinear fractional differential equations
of the type

Dθ̄,Ψ
0 V(Ö) = G

(
Ö, V(Ö)

)
, for all Ö ∈ [0, χ̄] = I, (1)

V(0) + h(V) = V0, V(χ̄) = Vχ̄, V0, Vχ̄ ∈ R (2)

where 1 < θ̄ < 2, Dθ̄,Ψ
0 is the Ψ -Caputo fractional derivative, G : [0, χ̄] × R →

R, h : C(I,R) × R → R are nonlinear and continuous functions and V ∈ C(I,R);
C(I,R) the space of continuous function from I to R with the supremum norm ‖.‖.

Fractional order derivatives and integrals are more general cases of integer order
derivatives and integrals as it provide arbitrary order derivatives and integration.
It has been seen that many researchers have revealed the efficiency of fractional
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differential equations (FDEs) in the modelling of physical phenomena in different
fields of science and engineering [3, 5, 12, 15, 16], which helped fractional calculus
to become a very useful and attractive research field. In the literature, there are
several approaches by which authors have defined numerous fractional differential
and integral operators see [9]. One such class of fractional operators is an integration
and differentiation of one function with respect to another function, referred to as,
Ψ -Fractional calculus. For instance, Almeida [1], presented Ψ -Caputo fractional
derivativewhich ismodified version of Caputo derivative. In [17], authors established
Ψ -Hilfer fractional derivative.

On the other hand, these Ψ -fractional operators have been utilized to perform
a qualitative analysis of FDEs. In particular, Almeida et al. [2], investigated the
existence, uniqueness, continuous dependence and stability of the Ψ -Caputo FDEs

with the help of Banach fixed point theorem. Kucche et al. [10], studied existence
and uniqueness of Ψ -Hilfer FDEs with the help of Schauder’s fixed point theorem
as well as continuous dependence of the corresponding system have been studied by
employingWeissinger theorem. Recently, Pachpatte [14] have used the Banach fixed
point theorem to study the existence, uniqueness and stability of the Ψ -Hilfer partial
FDEs. In [20], Wahash et al. proved estimate and stability of the solution involving
Ψ -Caputo derivative by using Ψ -Gronwall inequality. We mention here some recent
studies that focus on the qualitative properties of Ψ -fractional differential equations
[4, 6, 11, 18, 19, 21].

Motivated by above work, in this paper we discuss existence, uniqueness and
stability of (1)–(2). In Sect. 2, we give some preliminaries. In Sect. 3, we prove
existence and uniqueness of the solution of (1)–(2) in the view of Banach fixed point
theorem. In Sect. 4, we present Stability analysis of (1)–(2). In Sect. 5, an illustrative
example is given to demonstrate our results.

2 Preliminaries

Here, we provide some basic definitions and important results which are used
throughout this work.

Definition 2.1 ([9]) Let θ̄ > 0 and V be an integrable function defined on I. Let
Ψ ∈ C1(I,R) be an increasing function such that Ψ

′
(Ö) �= 0, for all Ö ∈ I. Then Ψ -

Riemann Liouville fractional integral of V of order θ̄ is defined as

Jθ̄,Ψ
0+ V(Ö) = 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ)θ̄−1V(κ)dκ, Ö > 0. (3)

Definition 2.2 ([1]) Let θ̄ > 0 andΨ ∈ Cn(I,R), theΨ -Caputo fractional derivative
of a function V ∈ Cn−1(I,R) of order θ̄ is defined as
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Dθ̄,Ψ
0+ V(Ö) = Dθ̄,Ψ

0+

[
V(Ö) −

n−1∑

m=0

V[m]
Ψ (0)

m! (Ψ (Ö) − Ψ (0))m
]
, (4)

where n = �θ̄� + 1 for θ̄ /∈ N, n = θ̄ for θ̄ ∈ N.
and

V[m]
Ψ (Ö) :=

(
1

Ψ
′
(Ö)

d

dÖ

)m

ϑ(Ö).

Lemma 2.1 ([1]) Let θ̄ > 0. If V ∈ C1(I,R), then

Dθ̄,Ψ
0+ Jθ̄,Ψ

0+ V(Ö) = V(Ö),

and if V ∈ Cn(I,R), then

Jθ̄,Ψ
0+ Dθ̄,Ψ

0+ V(Ö) = V(Ö) −
n−1∑

m=0

ϑ[m]
Ψ (0)

m! (Ψ (Ö) − Ψ (0))m . (5)

Lemma 2.2 ([9]) For θ̄, θ̄1 > 0 and V ∈ Cn(I), we have

Jθ̄,Ψ
0+ Jθ̄1,Ψ

0+ V(Ö) = Jθ̄+θ̄1,Ψ
0+ V(Ö), Ö > 0. (6)

Lemma 2.3 ([1]) Let θ̄ > 0. Then

Dθ̄,Ψ
0+ (Ψ (κ) − Ψ (0))k = 0, for all k = 0, 1, 2, ..., n − 1, n ∈ N. (7)

Lemma 2.4 ([8]) Let X be a Banach space and B ⊂ X be closed. If ζ : B → B is
a contraction mapping, then ζ has a fixed point in B.

Lemma 2.5 Let 1 < θ̄ < 2 and G : I × R → R be a continuous function. Then the
problem (1)–(2) is equivalent to

V(Ö) =
(
1 − Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
V0 +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
h(V)

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
(Vχ̄ − Jθ̄,Ψ

0 G (χ̄, V(χ̄)) + Jθ̄,Ψ
0 G (Ö, V(Ö)). (8)

Proof Operating Jθ̄,Ψ
0 on both the sides of (1) and using Lemma 2.1, we get

V(Ö) = c0 + c1(Ψ (Ö) − Ψ (0)) + Jθ̄,Ψ
0 G (Ö, V(Ö))

Since V(0) = V0 − h(V) and V(χ̄) = Vχ̄, we have
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c0 = V0 − h(V), c1 = Vχ̄ − V0 + h(V) − Jθ̄,Ψ
0 G (χ̄, V(χ̄))

Ψ (χ̄) − Ψ (0)
.

Then

V(Ö) =
(
1 − Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
V0 +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
h(V)

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
(Vχ̄ − Jθ̄,Ψ

0 G (χ̄, V(χ̄)) + Jθ̄,Ψ
0 G (Ö, V(Ö)). (9)

Conversely, suppose that V satisfies (8). Then from (8), for Ö = 0 and Ö = χ̄, we

obtain (2). Applying Dθ̄,Ψ
0+ on both the sides of (8) and using Lemmas 2.1, 2.3, we

get (1). �

3 Existence and Uniqueness

Theorem 3.1 Let the function G and h satisfying:
[H1]: there exists W1 > 0 and 0 < W2 < 1 such that

|G (Ö, V) − G (Ö, V∗)| ≤ W1|V − V∗|,

and
|h(V) − h(V∗)| ≤ W2|V − V∗|.

If

W2 + 2
(Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
W1 < 1, (10)

then (1)–(2) has a unique solution.

Proof Define T : C(I,R) → C(I,R) as follows:

(TV)(Ö) =
(
1 − Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
V0 +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
h(V)

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
(Vχ̄ − Jθ̄,Ψ

0 G (χ̄, V(χ̄)) + Jθ̄,Ψ
0 G (Ö, V(Ö)). (11)

Then for V, V∗ ∈ C(I,R), we have
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|(TV)(Ö) − (TV∗)(Ö)| ≤
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
|h(V) − h(V∗)|

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
J
θ̄,Ψ
0+ |G (χ̄,V(χ̄)) − G (χ̄,V∗(χ̄))|

+ J
θ̄,Ψ
0+ |G (Ö,V(Ö)) − G (Ö,V∗(t))|

≤
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
W2|V− V∗|

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

) W1

Γ (θ̄)

∫ χ̄

0
Ψ

′
(κ)(Ψ (χ̄) − Ψ (κ)θ̄−1|V− V∗|dκ

+ W1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ)θ̄−1|V− V∗|dκ

≤
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
W2‖V− V∗‖ +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)

(Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
W1‖V− V∗‖ + (Ψ (Ö) − Ψ (0))θ̄

Γ (θ̄ + 1)
W1‖V− V∗‖

≤
(
W2 + 2

(Ψ (χ̄) − Ψ (0)θ̄

Γ (θ̄ + 1)
W1

)
‖V− V∗‖.

In view of (10), T is contraction mapping. By Lemma 2.4, V is a unique solution
of the problem (1)–(2). �

4 Stability Analysis

In this section, by using Ψ -fractional Gronwall inequality, we analysis the Ulam-
Hyers (UH),GeneralizedUlam-Hyers (GHU),Ulam-Hyers-Rassias (UHR) andGen-
eralized Ulam-Hyers-Rassias (GUHR) of the problem (1)–(2).

Let ε > 0 and f : I → R be a continuous function. We consider following
inequalities:

|Dθ̄,Ψ
0+ ω(Ö) − G (Ö,ω(Ö))| ≤ ε; Ö ∈ [0, χ̄] (12)

and

|Dθ̄,Ψ
0+ ω(Ö) − G (Ö,ω(Ö))| ≤ ε f (Ö); Ö ∈ [0, χ̄]. (13)

Definition 4.1 The Eqs. (1)–(2) is said to be UH stable if there exists a real number
δ > 0 such that for each ε > 0 and for each solution ω ∈ C(I,R) of the inequality
(12), there exists a solution V ∈ C(I,R) satisfying

Dθ̄,Ψ
a V(Ö) = G

(
Ö, V(Ö)

)
, for all Ö ∈ I, 1 < θ̄ < 2, (14)
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V(0) = ω(0), V(χ̄) = ω(χ̄) (15)

with
|ω(Ö) − V(Ö)| ≤ δε, Ö ∈ I. (16)

Definition 4.2 The Eqs. (1)–(2) is said to be GUH stable if there exists a continuous
function ϕ : I → I with ϕ(0) = 0 such that for every ε > 0 and for each solution
ω ∈ C(I,R) of (12), there exist a solution V ∈ C(I,R) of (1)–(2) with

|ω(Ö) − V(Ö)| ≤ ϕ(ε), Ö ∈ I. (17)

Definition 4.3 The Eqs. (1)–(2) is said to be UHR stable with respect to the function
f if there exists a real number δ > 0 such that for every ε > 0 and for each solution
ω ∈ C(I,R) of (13), there exist a solution V ∈ C(I,R) of (1)–(2) with

|ω(Ö) − V(Ö)| ≤ δε f (Ö), Ö ∈ I. (18)

Definition 4.4 The Eqs. (1)–(2) is GUHR stable with respect to the function f if
there exists a real number δ > 0 such that for each solutionω ∈ C(I,R) of (13), there
exist a solution V ∈ C(I,R) of (1)–(2) with

|ω(Ö) − V(Ö)| ≤ δ f (Ö), Ö ∈ I. (19)

Remark 4.1 A function ω ∈ C(I,R) is a solution of (12) if and only if there exists
a function g ∈ C(I,R) (where g depends on ω) such that

(1) |g(Ö)| < ε

(2) Dθ̄,Ψ
0+ ω(Ö) = G (Ö,ω(Ö)) + g(Ö), Ö ∈ I.

Remark 4.2 A function ω ∈ C(I,R) is a solution (13) if and only if there exists
function g, f ∈ C(I,R) (where g depends on ω) such that

(1) |g(Ö)| < ε f (Ö)

(2) Dθ̄,Ψ
0+ ω(Ö) = G (Ö,ω(Ö)) + g(Ö), Ö ∈ I.

Lemma 4.1 ([18]) Ψ -Gronwall inequality:
Assume that V and u are nonnegative integrable functions on I. Let ρ be a nonnegative
continuous function on I such that ρ is nondecreasing. If

V(Ö) ≤ u(Ö) + ρ(Ö)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1V(κ)dκ, (20)

then
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V(Ö) ≤ u(Ö)
∫ Ö

0

∞∑

m=1

[ρ(Ö)Γ (θ̄)]m
Γ (θ̄m)

Ψ
′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1u(κ)dκ, (21)

for Ö ∈ I.

Remark 4.3 ([18]) Under the assumptions of Lemma 4.1, let V(Ö) be a nondecreas-
ing function on I. Then we have

V(Ö) ≤ u(Ö)Eθ̄(ρ(Ö)Γ (θ̄)(Ψ (Ö) − Ψ (0))θ̄),

where Eθ̄(Ö) = ∑∞
m=0

Öm
Γ (θ̄+1)

.

In the next theorem, we discuss the UH stability of the problem (1)–(2) with the
help of Ψ -Gronwall inequality.

Theorem 4.1 Suppose that [H1] hold and inequality (12) is satisfied, then the prob-
lem (1)–(2) is UH stable.

Proof Let ε > 0. Assume that V be a solution of (1)–(2). Then

V(Ö) = ΦV + Jθ̄,Ψ
0 G (Ö, V(Ö)), (22)

where

ΦV =
(
1 − Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
V0 +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
h(V)

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
(Vχ̄ − Jθ̄,Ψ

0 G (χ̄, V(χ̄)). (23)

From (15), we can write

V(Ö) = Φω + Jθ̄,Ψ
0 G (Ö, V(Ö)), (24)

where

Φω =
(
1 − Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
ω0 +

( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)
− 1

)
h(ω)

+
( Ψ (Ö) − Ψ (0)

Ψ (χ̄) − Ψ (0)

)
ωχ̄ − Jθ̄,Ψ

0 G (χ̄,ω(χ̄)). (25)

Since ω ∈ C(I,R) is a solution of inequality (12). By Remark 4.1, we have

|Dθ̄,Ψ
0 ω(Ö) − G

(
Ö,ω(Ö)

)| ≤ ε, for all Ö ∈ I. (26)

Operating Jθ̄,Ψ
0 on both the sides of (26), we obtain
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|ω(Ö) − Φω − 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1

G
(
κ,ω(κ)dκ| ≤ (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
ε. (27)

By our assumption and from (24) and (27), we obtain

|ω(Ö) − V(Ö)| = ∣
∣ω(Ö) − Φω − 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1G (κ,V(κ))dκ

∣
∣

≤ ∣∣ω(Ö) − Φω − 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1G (κ, ω(κ))dκ

∣∣

+ 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1|G (κ, ω(κ)) − G (κ,V(κ))|dκ

≤ (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
ε + W1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1|ω(κ) − V(κ)|dκ. (28)

Applying Lemma 4.1 to (28), we get

|ω(Ö) − V(Ö)|

≤ (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
ε
[
1 +

∫ Ö

0

∞∑

m=1

W m
1

Γ (θ̄m)
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄m−1dκ

]

= (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
ε
[
1 +

∞∑

m=1

W m
1

Γ (θ̄m)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄m−1dκ

]

≤ (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
ε
[
1 +

∞∑

m=1

W m
1

Γ (θ̄m + 1)
(Ψ (χ̄)) − Ψ (0))θ̄m

]

= ε(Ψ (χ̄)) − Ψ (0))θ̄

Γ (θ̄ + 1)
Eθ̄(W1(Ψ (χ̄) − Ψ (0))θ̄). (29)

Put

δ = (Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
Eθ̄(W1(Ψ (χ̄) − Ψ (0))θ̄). (30)

Therefore
|ω(Ö) − V(Ö)| ≤ δε. (31)

Hence, the problem (1)–(2) is UH stable. �

Theorem 4.2 If there exists a function continuous functionϕ : I → Iwithϕ(0) = 0.
Then under the assumption of Theorem 4.1, the problem (1)–(2) is GUH stable
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Proof In a same fashion similar to Theorem 4.1, setting ϕ(ε) = δε with ϕ(0) = 0,
we get

|ω(Ö) − V(Ö)| ≤ ϕ(ε). (32)

�

In order to prove UHR and GUHR stability, the following hypothesis must be
satisfied:
[H2]: There exist an increasing function f ∈ C(I,R) and γ > 0 such that

Jθ̄,Ψ
0+ f (Ö) ≤ γ f (Ö), Ö ∈ I.

Lemma 4.2 Let ε > 0 and ω(Ö) ∈ C(I,R) be a solution (13). Then

∣∣ω(Ö) − Φω − Jθ̄,Ψ
0+ G (Ö,ω(Ö))

∣∣ ≤ εγ f (Ö). (33)

Proof By Remark 4.2, g, f ∈ C(I,R) such that

|Dθ̄,Ψ
0+ ω(Ö) − G (Ö,ω(Ö))| = |g(Ö)| ≤ ε f (Ö). (34)

Operating Jθ̄,Ψ
0+ and using the hypothesis [H2], we deduce that

|ω(Ö) − Φω − Jθ̄,Ψ
0+ G (Ö,ω(Ö))| ≤ εJθ̄,Ψ

0+ f (Ö) ≤ γε f (Ö). (35)

�

Theorem 4.3 Let ε > 0 and ω ∈ C(J,R) be a solution (13) and W1γ �= 1, then
(1)–(2) is UHR stable.

Proof Let V(Ö) be a solution of (1)–(2) and using ΦV = Φω Then

V(Ö) = Φω + Jθ̄,Ψ
0+ G (Ö,ω(Ö)). (36)

By hypothesis [H1] and Lemma 4.2, we get

|ω(Ö) − V(Ö)| ≤ ∣∣ω(Ö) − Φω − 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1G (κ,ω(κ))

∣∣dκ

+ 1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1|G (κ,ω(κ)) − G (κ, V(κ))|dκ

≤ γε f (Ö) + W1

Γ (θ̄)

∫ Ö

0
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1|ω(κ) − V(κ)|dκ.

(37)
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Applying Lemma 4.1 to (37) and using hypothesis [H2], we obtain

|ω(Ö) − V(Ö)| ≤ γε f (Ö) + γε

∫ Ö

0

∞∑

k=1

W k
1

Γ (θ̄m)
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄k−1 f (κ)dκ

= γε f (Ö) + γε
[ ∫ Ö

0

W1

Γ (θ̄)
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))θ̄−1 f (κ)dκ

+
∫ Ö

0

W 2
1

Γ (2θ̄)
Ψ

′
(κ)(Ψ (Ö) − Ψ (κ))2θ̄−1 f (κ)dκ + ....

]

= γε f (Ö) + γε
[
W1J

θ̄,Ψ
0+ f (Ö) + W 2

1 J
2θ̄,Ψ
0+ f (Ö) + ....

]

≤ γε f (Ö) + γε
[
W1γ f (Ö) + (W1γ)2 f (Ö) + ....

]

= γε f (Ö)
∞∑

k=0

(W1γ)k

= γ

1 − W1γ
ε f (Ö). (38)

Setting

δ = γ

1 − W1γ
. (39)

From (38) and (39), we have

|ω(Ö) − V(Ö)| ≤ δερ(Ö). �

Theorem 4.4 Under the assumption of Theorem 4.3, problem (1)–(2) is GUHR
stable.

Proof In a same fashion similar to Theorem 4.3, setting ε = 1, we get

|ω(Ö) − V(Ö)| ≤ δ f (Ö). (40)

�

5 Example

Example 5.1 Consider the following fractional differential equation involving Ψ -
Caputo derivative

D
3
2 ,Ψ

0 V(Ö) = Ö + 1

6
sinV(Ö), for all Ö ∈ [0, 1], (41)
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V(0) + 1

4
V(

1

3
) = 0, V(1) = 1

2
. (42)

Here, θ̄ = 3
2 , G

(
Ö, V(Ö)

) = Ö + 1
6 sinV(Ö), h(V) = 1

4V(
1
3 ). Then for Ö ∈ [0, 1],

|G (Ö, V) − G (Ö, V∗)| ≤ 1

6
|V − V∗| and |h(V) − h(V∗)| ≤ 1

4
|V − V∗|.

Therefore W1 = 1
6 and W2 = 1

4 . For Ψ (Ö) = Ö, we have

W2 + 2
(Ψ (χ̄) − Ψ (0))θ̄

Γ (θ̄ + 1)
W1 = 1

4
+ 2(1 − 0)

3
2

6Γ ( 52 )
= 1

4
+ 4

9
√

π
< 1.

Hence, all the conditions of Theorem 3.1 are satisfied. Thus, by the Theorem 3.1,
problem (41)–(42) has unique solution.

6 Concluding Remark

In this research work, the existence and uniqueness of the proposed system have
been successfully examined using Banach fixed point theorem under some specific
assumptions and conditions.Alongwith the existence and uniqueness,we established
stability results such as UH, GUH, UHR and GUHR in the sense of �-Gronwall
inequality. It should be noted that, for different values of �, the �-Caputo fractional
derivative reduces to many classical fractional operators such as Caputo [9], Caputo-
Hadamard [7], Caputo-Erdélyi-Kober [13] fractional derivative. Thus, we believe
that the results derived in this article are general in character and contributes in the
theory of fractional differential equations.
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Alternative Crack-Tip Enrichment
Functions for X-FEM in Arbitrary
Polarized Piezoelectric Media

Rajalaxmi Rath and Kuldeep Sharma

Abstract In this paper, a new approach is proposed to study the fracture mechanics
problems in 2-D arbitrary polarized piezoelectric media using X-FEM. The existing
six-fold crack-tip enrichment functions defined for the generalized case of poling
and alignment of crack in piezoelectric media are re-defined here by considering the
localized solution of crack-tip field based on Lekhnitskii’s formalism in the trans-
formed coordinate system obtained from material axes to crack-axes, whereas the
existing crack-tip enrichment functions were developed other way round. Using the
proposed enrichment functions, some benchmark problems such as center cracks,
edge cracks, double-edge cracks, and macro–micro-collinear cracks have been stud-
ied under arbitrary poling direction, plain strain, and impermeable crack-face condi-
tions. An excellent agreement of normalized intensity factors (IFs) has been obtained
for all the cases with the results of existing six-fold enrichment functions.

Keywords Crack-tip enrichment · Intensity factors · Lekhnitskii’s formalism ·
Piezoelectric · X-FEM

1 Introduction

In this smart material’s era, with rapid change in smart technology, the use of intel-
lectual devices increases from our domestic appliances to spacecraft equipment and
many other electromechanical devices. Piezoelectric material is one of the smart
materials which has the best inherent quality that converts electrical energy to
mechanical energy and vice versa. Due to this electromechanical coupling effect,
these materials have been broadly used as sensors, ultrasonic generators, actuators,
and transducers in many sophisticated, electromechanical devices of submarines,
aeronautics, medical appliances, etc. However, such materials are mechanically brit-
tle and electrically ductile in nature. That’s why, whenever in manufacturing process
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or in service time,while they undergo high electromechanical loadings, the crack per-
sists. In course of time, the developed crack could reach the critical limit and damage
the structural integrity which degrades the performance of the material. Therefore,
for many decades, it has been a major issue to analyze the pre-exist crack to predict
the strength and efficiency of these materials for better performance and utilization.

Since the last decades, various analytical and numerical techniques have been
implemented for the study of cracks in piezoelectric materials under different kinds
of loadings and environments. X-FEM as one of the prominent numerical tech-
niques for the study of fracture mechanics problems has also been developed and
implemented for the study of static and propagating cracks in piezoelectric mate-
rials. Considering Sosa [1] and William’s eigenfunction approach, Bechet and his
coworkers [2] developed the six linearly independent crack-tip enrichment functions
to incorporate the near-tip solution in the X-FEM framework. They developed these
functions for a generalized case of crack and poling direction and studied the crack
problems subjected to impermeable crack-face conditions. Bharagva and Sharma [3]
also proposed the crack-tip enrichment functions for piezoelectric materials indepen-
dent of Bechet et al. [2] but for poling axis perpendicular to crack-axis and studied
the two-collinear cracks problem. Thereafter, many researchers implemented [4, 5]
or extended these basis functions for studying the various kinds of problems such
as transient, fatigue loading, multiple cracks, sub-interface crack, thermal loadings,
semipermeable crack-face conditions, etc., in piezoelectric materials.

Applying Leikhntski’s technique, Xu [6] extended Sosa’s approach [1] for the
study of crack and branch crack problems in arbitrary poling direction. Consid-
ering Xu’s [6] approach and the work of Bechet et al. [2] in piezoelectric media,
authors have proposed here an alternative approach for the development of crack-tip
enrichment functions in piezoelectric materials under the generalized case of poling
direction and developed six enrichment functions independent of the existing ones.

2 Fundamental Equations in Piezoelectric Media

Due to the coupling nature of piezoelectric material the interrelation between stresses
and electrical displacements in terms of strain and electrical field components are
represented as the constitutive equations. These are defined as

σi j = Ci jkpεkp − ei jk Ek (1)

Di = ei jkε jk + κ̃i j E j (2)

where σi j , εkp, Di , and Ep represent Cauchy stress tensor, mechanical strain ten-
sor, electric displacement vector, and electric field vector, respectively. Additionally,
Ci jkp and ei jk represent elastic and piezoelectric constants and κ̃i j are dielectric
permittivity constants.
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The kinematic relations between strain tensor εi j and displacement vector ui as
well as electric field vector Ei , and scalar electric potential φi are given by

εi j = 1

2
(ui, j + u j,i ) (3)

Ei = −φ, i (4)

The Cauchy stress tensor and the electric displacement vector in the absence of
body forces and charges satisfy the equilibrium equations as

σi j, j = 0 (5)

Di, j = 0. (6)

2.1 Boundary Conditions

Considering a linear piezoelectric domain with a crack under plain strain conditions,
a piezoelectric boundary value problem is stated as

σi j n j = t∗i on Γa; Djn j = −ω∗ on Γa, (7)

u j = u∗
j on Γu;φ = φ∗ on Γφ. (8)

Here, t∗ and ω∗ represent stress and charge on the surface of the boundary, respec-
tively.

2.2 Crack-Face Boundary Conditions

The analysis of fracture in linear piezoelectric media requires the information on
medium present inside the crack faces. Researchers have classified three different
crack-face boundary conditions: impermeable, permeable, and semipermeable. For
the present study, impermeable crack-face conditions have been considered which
are mathematically defined as below:

σi j n j = 0 and Djn j = 0 on ΓC . (9)
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3 X-FEM-Based Approximate Solution

X-FEM is one of the elegant numerical techniques to study the crack problems as
it models the crack(s) geometry independent of the mesh and avoids re-meshing
when the crack propagates. Using the concept of partition of unity, linearly indepen-
dent functions which approximate the near tip or local solution incorporated into the
FEMapproximations for the elements of a particular region of interest. In the study of
cracks, the Heaviside function is used to represent the discontinuity in the displace-
ment or the primary variable(s) across the crack faces and the crack-tip enrichment
functions for representing the near-tip asymptotic solutions. In piezoelectric mate-
rial, the X-FEM-based approximate displacement and electric potential functions are
defined as

uh(x, y) =
∑

I∈N
NI (x, y)uI +

∑

I∈Nc̃r

NI (x, y)(H( f h(x, y)) − H( f I ))âI

+
∑

I∈N˜T ip

NI (x, y)
k=6∑

k=1

(Fk(r, θ,μre
k ,μim

k ) − Fk(xI , yI ,μ
re
k ,μim

k ))b̂kI

(10)

φh(x, y) =
∑

I∈N
NI (x, y)φI +

∑

I∈Nc̃r

NI (x, y)(H( f h(x, y)) − H( f I ))ĉI

+
∑

I∈N˜T ip

NI (x, y)
k=6∑

k=1

(Fk(r, θ,μre
k ,μim

k ) − Fk(xI , yI ,μ
re
k ,μim

k ))d̂k
I

(11)

where H( f (x, y)) is a Heaviside step function.

H
(
z∗) =

{
−1 if z∗ < 0

1 if z∗ > 0
(12)

f (x) represents an Level set function. Nc̃r and N˜T ip denotes the set of enriched nodes
associatedwith crack surfaces and crack tips, respectively. Ni (x) represents the shape
functions associatedwith node i . ui andφi are the vectors of nodal degrees of freedom
(DOF) containing the nodal displacements and electric potentials. Furthermore, âI ,

b̂kI and ĉI , d̂
k
I are the additional enriched DOFs in the elements containing the crack.

Fk(r, θ, ,μre
k ,μim

k ) are the near crack-tip enrichment functions. The split and tip
nodes enriched by the use of level set functions are depicted in Fig. 1.

Substituting the approximate solutions into the weak form and assembling the
element-wise solution, the global system of equations can be written as follows:

Ku = f (13)
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Fig. 1 Schematic diagram
for enriched nodes selected
for crack path description

4 Existing and Alternative Enrichment Functions

In this section, the existing and proposed enrichment functions for arbitrary polarized
piezoelectric materials have been discussed in detail.

4.1 Existing Crack-Tip Enrichment Functions

Applying Sosa’s approach [1], Bechet et al. [2] firstly obtained the near tip solution
for transversely isotropic piezoelectric materials with respect to the material axes x1
and x2 (poling direction) as shown in Fig. 2 and then expand the obtained solution
in terms of Laurent-like series expansion of the form:

U (x1, x2) =
∑

m

i=6∑

i=1

Gi (γm)(x1 + μi x2)
γm+2 (14)

Fig. 2 Arbitrary polarized
cracked piezoelectric media
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Considering the real property ofU (x1, x2), it is expressed in polar form as follows:

U (x1, x2) = U (r, θ) =
i=3∑

i=1

Gi (γm)(rcos(θ) + μi rsin(θ))γm+2

+
i=3∑

i=1

Gi (γm)(rcos(θ) + μi rsin(θ))γm+2

(15)

Further, to define the generalized solution for arbitrary poling direction (makes an
angle α w.r.t x2 axis), they [2] simply expressed the solution (15) w.r.t the material
axes, i.e., x ′

1 and x ′
2 (arbitrary poling direction) implies the angle θ is replace by

an angle θ̂ = θ − α in (15). The generalized solution for arbitrary poling direction
defined by Bechet et al. [2] is

U (x1, x2) = U (r, θ) =
i=3∑

i=1

Gi (γ)(rcos(θ − α) + μi rsin(θ − α))γ+2

+
i=3∑

i=1

Gi (γ)(rcos(θ − α) + μi rsin(θ − α))γ+2

(16)

Hence, the six linearly independent crack-tip enrichment functions were devised
for the implementation of X-FEM in piezoelectric media as follows:

F(r, θ,μ(re)
i ,μ

(im)
i ) = {√r p1(θ̂),

√
r p2(θ̂),

√
r p3(θ̂),

√
r p4(θ̂),

√
r p5(θ̂),

√
r p6(θ̂)}

(17)
where

pm
(
θ̂
)

=

⎧
⎪⎪⎨

⎪⎪⎩

ρ
(
θ̂,μ(re)

i ,μ(im)
i

)
cos

(
ψ

(
θ̂,μ(re)

i ,μ(im)
i

)

2

)
if μ(im)

i > 0

ρ
(
θ̂,μ(re)

i ,μ(im)
i

)
sin

(
ψ

(
θ̂,μ(re)

i ,μ(im)
i

)

2

)
if μ(im)

i ≤ 0
(18)

ψ = π

2
+ π int

(
θ̂

π

)

− arctan

⎛

⎝
cos

(
θ̂ − π int

(
θ̂
π

))
+ μre

i sin
(
θ̂ − π int

(
θ̂
π

))

| μ(im)
i | sin

(
θ̂ − π int

(
θ̂
π

))

⎞

⎠
(19)

ρ = 1√
2

4

√
(
μ(re)
i

)2 +
(
μ(im)
i

)2 + μ(re)
i sin 2θ̂ −

[(
μ(re)
i

)2 +
(
μ(im)
i

)2 − 1

]
cos 2θ̂

(20)
and μi = μre

i + iμim
i are the six root of the characteristic equations [2, 3].
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4.2 Proposed/Alternative Crack-Tip Enrichment Functions

In the proposed approach, the piezoelectric material is considered as transversely
isotropic w.r.t the axes x ′

1 and x ′
2 (arbitrary poling direction) in place of axes x1

and x2 which is similar to Xu [6] approach. Then, the constitutive equations for
piezoelectric materials in x ′

1x
′
2x

′
3 system can be expressed as

σ′ = [C][ε′] − [e]T [E ′]; D′ = [e][ε′] + [κ][E ′] (21)

the material axis by an angle α in the clockwise direction. After transformation, the
constitutive equations in x1x2x3 coordinate system are of the form:

σ = [C∗][ε] − [e∗]T [E]; D = [e∗][ε] + [κ∗][E] (22)

Also for plane strain case, these relations in x1 − x2 system can be written as

⎧
⎨

⎩

ε11
ε22
2ε12

⎫
⎬

⎭ =
⎛

⎝
a∗
11 a

∗
12 a

∗
13

a∗
21 a

∗
22 a

∗
23

a∗
31 a

∗
32 a

∗
33

⎞

⎠

⎧
⎨

⎩

σ11

σ22

σ12

⎫
⎬

⎭ +
⎛

⎝
b∗
11 b

∗
21

b∗
21 b

∗
22

b∗
31 b

∗
32

⎞

⎠
{
D1

D2

}
(23)

{
E1

E2

}
= −

(
b∗
11 b

∗
12 b

∗
13

b∗
21 b

∗
22 b

∗
23

)⎧
⎨

⎩

σ11

σ22

σ12

⎫
⎬

⎭ +
(
d∗
11 d

∗
12

d∗
21 d

∗
22

) {
D1

D2

}
(24)

where a∗
i j ,b

∗
i j and d

∗
i j are thematerial constants in transformed axes, i.e., in the x1 − x2

coordinate system.
Further, by applying Lekhnitskii’s formalism approach [1, 2, 6], one can obtain

the generalized solution for arbitrary poling direction. Now to develop the ansatz
for the proposed approach, the methodology of Bechet et al. [2] has been applied.
Accordingly, the solution evaluated for generalized case of poling is defined as

U ∗(x1, x2) = U ∗(r, θ) =
i=3∑

i=1

Ei (γ)(rcos(θ) + μ∗
i rsin(θ))γ+2

+
i=3∑

i=1

Ei (γ)(rcos(θ) + μ∗
i rsin(θ))γ+2

(25)

where μ∗
i is an eigenvalue of the characteristic equation in the transformed system

with positive imaginary part and depending upon the polarization angle α.
Since the solution is obtained here after transforming the material axes along the

crack-axis, the solution in polar form depends on θ and not on θ − α. Also, in this
approach, the effect of polarization has been observed in the evaluated solution but
only in terms of material eigenvalues (μ∗

i and μ∗
i ) and not as a function of θ − α

as in case of Bechet et al. [2] approach. Similar to Bechet et al. [2], six linearly
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independent functions have been developed corresponding to three independent sin-
gular eigenfunctions (at γ = −1

2 ) after imposing the homogeneous crack-face bound-
ary conditions. The developed alternative six linearly independent functions are as
follows:

F∗(r, θ,μ∗(re)
, μ∗(im)

) = {√r p∗
1(θ),

√
r p∗

2(θ),
√
r p∗

3(θ),
√
r p∗

4(θ),
√
r p∗

5(θ),
√
r p∗

6(θ)}
(26)

where

p∗
m (θ) =

⎧
⎨

⎩
ρ∗ (

θ,μ∗
i
(re),μ∗

i
(im)

)
cos

(
ψ∗(θ,μ∗

i
(re),μ∗

i
(im))

2

)
if μ∗

i
(im) > 0

ρ∗ (
θ,μ∗

i
(re),μ∗

i
(im)

)
sin

(
ψ∗(θ,μ∗

i
(re),μ∗

i
(im))

2

)
if μ∗

i
(im) ≤ 0

(27)

ψ∗ = π

2
+ π int

(
θ

π

)

− arctan

(
cos

(
θ − π int

(
θ
π

)) + μ∗
i
(re) sin

(
θ − π int

(
θ
π

))

| μ∗
i
(im) | sin (

θ − π int
(

θ
π

))
) (28)

ρ∗ = 1√
2

4

√
(
μ∗
i
(re)

)2 +
(
μ∗
i
(im)

)2 + μ∗
i
(re) sin 2θ −

[(
μ∗
i
(re)

)2 +
(
μ∗
i
(im)

)2 − 1

]
cos 2θ (29)

5 Results and Discussion

In this section, comparative analysis has been presented for the results of inten-
sity factors obtained using existing and proposed crack-tip enrichment functions
subjected to arbitrary poling direction (α = 30◦) . The benchmark problems of frac-
ture mechanics such as center cracks, edge cracks, double-edge cracks, and major–
minor cracks are considered for the analysis under variations in mechanical load-
ings, electrical loadings, and poling direction. The geometries of the specimens
considered for analysis are shown in Fig. 3. The piezoelectric material BaTio3 has
been taken for numerical studies and its material constants are defined in Table
1. The plain strain, impermeable crack-face conditions, and linear rectangular ele-
ments have been taken here for X-FEM analysis. The IFs have been evaluated under
electromechanical loadings (if not specified, σ∞

yy = 40MPa and D∞
y = 0.02 c/m2)

using the interaction integral approach as explained in [3]. The details of the geo-
metric parameters and the number of elements for each problem are presented in
Table 2.

Figure 4 shows the variations in normalized mode-I mechanical stress intensity
factor (K ∗

I ) and electrical displacement intensity factor (K ∗
I V ) w.r.t variations in

mechanical loading, electrical loading, and polarization angle, respectively. Here,
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Fig. 3 Geometries of the cracked piezoelectric specimens considered for study

Table 1 Material properties for BaTio3
Elastic constants Piezoelectric constants Permittivity

c11 = 16.6 e31 = −4.4 ˜κ11 = 14.343

c12 = 7.66 e33 = 1.6 ˜κ33 = 16.823

c13 = 7.75 e15 = 11.6 ˜κ11 = 14.343

c44 = 4.29

c33 = 16.2

Table 2 Geometry and loading parameters used for analysis

Problem Dimensions (in mm) No. of elements

Center crack L = W = 10, a = 1 99 × 99

Edge crack W = 10, L = 20, a = 2 99 × 199

Double-edge cracks W = 10, L = 20, a = 2 99 × 199

Major–minor cracks W = 40, L = 10, c = 2, 399 × 99

a = 1, d = 1
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Fig. 4 Variations in normalized IFs with increasing mechanical loading, electrical loading, and
polarization angle for center crack problem

the K ∗
I and K ∗

I V are evaluated w.r.t to the analytical results of IFs corresponding to
the applied loadings but, for variations inmechanical loading, K ∗

I = KI

20×106×√
πa

and,

for variations in electrical loading, K ∗
I V = KI

0.02×√
πa
. It has been observed that the

results of IFs obtained using proposed enrichment functions are in good agreement
with the results of existing crack-tip enrichment functions [2]. The effects on IFs
w.r.t the variations in mechanical loadings, electrical loadings, and poling direction
are observed, and the behavior obtained here is similar to the established results.

Similarly, Figs. 5, 6, and 7 represent the numerical studies of the IFsw.r.t variations
in mechanical loading, electrical loading, and polarization angle for edge crack,
double-edge crack, and major–minor collinear crack problems, respectively. These
figures also demonstrate the efficacy of the proposed enrichment functions as in
all the cases the maximum error found in both the normalizing IFs is less than
0.6%. Moreover, from the present numerical results, the effects of loadings, poling
direction, position of crack/cracks in the specimen, number of cracks, and interaction
of collinear cracks can be observed. One can also find that these effects are similar
to the results available in literature [7] for impermeable crack-face conditions.
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Fig. 5 Variations in normalized IFs with increasing mechanical loading, electrical loading, and
polarization angle for edge crack problem

Fig. 6 Variations in normalized IFs with increasing mechanical loading, electrical loading, and
polarization angle for double-edge crack problem
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Fig. 7 Variations in normalized IFs with increasing mechanical loading, electrical loading and
polarization angle for major–minor collinear crack problem

6 Conclusion

In the present work, an alternative approach is proposed to develop the six linearly
independent crack-tip enrichment functions for X-FEM analysis in arbitrary polar-
ized piezoelectric material. The results of IFs obtained by the proposed approach
are found in good agreement with the results of existing enrichment functions for
arbitrary polarized center crack, edge crack, double-edge crack, and major–minor
collinear crack problems.Hence, we conclude that the proposed crack-tip enrichment
functions could be considered as alternative crack-tip enrichment functions for the
X-FEM-based fracture mechanics study in arbitrary polarized piezoelectric media.

References

1. Sosa, H.: Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491–505
(1991)

2. Bechet, E., Scherzer, M., Kuna, M.: Application of the X-FEM to the fracture of piezoelectric
materials. Int. J. Numer. Meth. Eng. 77, 1535–1565 (2009)

3. Bhargava, R.R., Sharma, K.: X-FEM simulation for two-unequal-collinear cracks in 2-D finite
piezoelectric specimen. Int. J. Mech. Mater. Des. 8, 129–148 (2012)



Alternative Crack-Tip Enrichment Functions for X-FEM … 275

4. Sharma, K., Bui, T.Q., Zhang, Ch., Bhargava, R.R.: Analysis of a subinterface crack in piezo-
electric bimaterials with the extended finite element method. Engg. Fract. Mech. 104, 114–139
(2013)

5. Mishra, R.K.: A review on fracture mechanics in piezoelectric structures. Mater. Today.: Proced.
5, 5407–5413 (2018)

6. Xu, X.-L., Rajapakse, R.K.N.D.: A theoretical studies of branched cracks in piezoelectrics. Acta
Mater. 48, 1865–1882 (2000)

7. Sharma, K., Bui, T.Q., Singh, S.: Numerical distributed dislocation modeling of multiple cracks
in piezoelectric media considering different crack-face boundary conditions and finite size
effects. Strength. Fract. Complex. 10, 49–72 (2017)



Convergence Analysis of a Layer
Resolving Numerical Technique
for a Class of Coupled System of
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Abstract In this article, we consider a time-dependent weakly coupled system of
m(≥ 2) singularly perturbed convection-diffusion equations in the domain G :=
Ω × S that has an interface Γd := {(d, t) : t ∈ S} , d ∈ Ω := (0, 1) and S :=
(0, T ]. The source terms in the system of equations have discontinuities along
Γd . Also, the second-order term of each equation is multiplied by a small positive
parameter. These parameters can be arbitrarily small and different in magnitude due
to which overlapping boundary and interior layers appear in the solution. An appro-
priate Shishkin mesh is used to discretize the domain. At the mesh points that are
not on the interface line, the problem is discretized using an upwind central differ-
ence scheme. For the mesh points on the interface line, a particular upwind central
difference scheme is used. An appropriate decomposition of exact and numerical
solutions is made to analyze the parameters-uniform convergence of the consid-
ered numerical scheme. The numerical approximations yielded by this scheme are
parameters-uniformly convergent of first-order in time and almost first-order in space
concerning the perturbation parameters. Numerical results are presented to validate
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1 Introduction

Let the domains G1 := Ω1 × S and G2 := Ω2 × S, where Ω1 := (0, d) and Ω2 :=
(d, 1). The considered singularly perturbed initial-boundary value problem is to find
u ∈ C(G)m ∩ C4(G1 ∪ G2)

m such that

Lu ≡ ∂u
∂t

− E
∂2u
∂x2

− B
∂u
∂x

+ Au = f in G1 ∪ G2, (1a)

u(0, t) = p(t), u(1, t) = q(t) on S, and u(x, 0) = r(x) on Ω, (1b)

and u = (u1, . . . , um)T satisfies the following interface conditions

[[u]] (d, t) := u(d+, t) − u(d−, t) = 0, − E
[[

∂u
∂x

]]
(d, t) = 0 along Γd ,

(1c)
where E = diag(ε1, . . . , εm) with 0 < ε1 ≤ . . . ≤ εm ≤ 1, B = diag(b1, . . . , bm)

and the coupling matrix A = (ai j )m×m, and f = ( f1, . . . , fm)T . Assume for each
(x, t) ∈ G, the matrices A and B satisfy

ai j (x, t) ≤ 0, i �= j,
m∑

k=1

aik(x, t) ≥ 0, and bi (x, t) ≥ βi > 0, 1 ≤ i, j ≤ m.

(2)
Let β = mini βi . Further, it is assumed that the source term fi , 1 ≤ i ≤ m, is suffi-
ciently smooth onG \ Γd , and have finite jump discontinuities in the spatial-variable
only along the interfaceΓd .Thewidths of these layers depend on perturbation param-
eters ε1, . . . , εm . The boundary layers appearing in the kth component of the solution
to the system (1a), at the vicinity of the boundary x = 0, have a width ofO(εk ln 1

εk
),

for each 1 ≤ k ≤ m [9, 11]. Accordingly, we assumed that d �= O(εrk ln
1
εk

), for any
1 ≤ k ≤ m and r ≥ 1, that is, the point d is sufficiently away from the boundary
layer regions; so the associated interior layers in the solution’s component do not
interact/overlap with the boundary layers. A scalar singularly perturbed convection-
reaction-diffusion initial-boundary value problem with discontinuous coefficients
(or discontinuous inhomogeneous term) is studied in [5, 13], where the bound-
ary/initial conditions are sufficiently smooth and satisfy the compatibility conditions
at the corners. A convection-diffusion initial-boundary value problem that has an
interior layer in the initial condition is investigated in [6]. A considerably large
amount of work is already available for the numerical aspect of singularly perturbed
initial-boundary/boundary value linear convection-diffusion problems having only
boundary layers in their solutions (see [3, 4, 7, 8, 10] and the references therein). In
[15–19], singularly perturbed linear systemof steady and unsteady reaction-diffusion
equations and initial value problems with a interior layers are considered. However,
we know of very few articles that deal with the time-dependent convection-diffusion
problems having boundary and interior layers. Shishkin et al. considered a class of
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singularly perturbed convection-diffusion problems with discontinuous coefficients
and source term across the interface [22]; in this article, an almost parameter-uniform
convergence is proved. In [1], the author has considered a time-dependent prob-
lem in a composite domain, in one part of the domain the problem is parabolic
reaction-diffusion type and in the other part of the domain the problem is parabolic
convection-diffusion type; therein, an inverse-monotone finite volume method on a
condensed Shishkin meshes is used for discretization, and an almost second-order
parameter-uniform convergence convergence in the spatial is proved. In [5, 13],
numerical techniques for some singularly perturbed time-dependent problems with
discontinuous coefficients are designed, and their parameter-uniform convergence is
investigated.A class of singularly perturbed parabolic convection-diffusion problems
exhibiting strong interior layers is considered in [12]; therein, the authors proved the
parameter–uniform convergence of the method in the discrete maximum norm. In
[14], a finite-difference upwind scheme is constructed for a two-dimensional sin-
gularly perturbed convection-reaction-diffusion problem using an appropriate mesh
fitted to the interior and boundary layers and the scheme is proved to be an almost
first-order parameter-uniformly convergent. In [20], a parameters-uniform numeri-
cal method for a time-dependent weakly coupled system of two convection-diffusion
equations that has a discontinuity, along the line Γd , in the source term is considered;
therein,it is proved that the numerical method is parameters-uniformly convergent
of almost first-order in space and first-order in time concerning both perturbation
parameters.

However, we know no article dealing with the numerical analysis of the system of
m(> 2) parabolic convection-diffusion problem with an interface. This article aims
to design and analyze a parameter-uniform numerical method for a class of coupled
system of m(≥ 2) parabolic convection-diffusion equations with an interface of the
type (1). The considered problem has discontinuities in the source term across the
interface Γd , and the magnitude of the diffusion parameters are different and can be
arbitrarily small. Therefore, interacting and overlapping boundary layers near x = 0
and weak interior layers to the right of the interface Γd appear in the solution. The
presence of interior and boundary layers in the solution reduces the desired order
of accuracy in any numerical technique applied to the problem. We discretize the
problemusing a special finite difference scheme on an appropriate Shishkinmesh that
is condensed in the layer regions. We decompose the exact solution into regular and
layer components and derive some proper bounds on the solution and its derivatives.
Using these bounds and an appropriate decomposition of the numerical solution,
we prove parameter-uniform convergence for the approximation generated by the
special finite difference scheme in a discrete maximum norm.

The article is arranged in the following manner. The properties of the continuous
solution, a maximum principle for the operator L and stability results are discussed
in Sect. 2. In Sect. 2, a decomposition of the solution into regular and singular
components is also given to acquire sharper bounds on the solution and its derivatives.
In Sect. 3, discretization of the problem, which is appropriate to the layers, is given.
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In Sect. 4, the parameters-uniformly convergence of the scheme is proved. Outcome
of numerical experiments are demonstrated in Sect. 5, and conclusions are included
in Sect. 6.

Notations.ThroughoutC with orwithout a subscript andC = (C1, . . . ,Cm)T denote
a generic positive constant and constant vector, respectively, which are independent
of ε1, . . . , εm and the mesh parameters. ‖ · ‖S denotes the maximum norm, where S
is a closed and bounded set.

2 Properties of the Continuous Solution

We assume that the data p, q and r are sufficiently smooth on the corresponding
boundary of the domain G and satisfy the following compatibility conditions.

At the corners (0, 0) and (1, 0):

r(0) = p(0), r(1) = q(0), (3a)

and
p′(0) = Er ′′(0) + B(0)r ′(0) − A(0, 0)r(0) + f (0, 0), (3b)

q ′(0) = Er ′′(1) + B(1)r ′(1) − A(1, 0)r(1) + f (1, 0). (3c)

At the point (d, 0):

[[r]] (d) := r(d+) − r(d−) = 0, − E
[[
r ′]] (d) = 0, (3d)

− E
[[
r ′′]] (d) − B

[[
r ′]] (d) − [[

f
]]
(d, 0) = 0. (3e)

Under the above assumptions, the problem (1) has a solution u ∈ C(G)m ∩
C1+γ (G)m ∩ C3+γ (G1 ∪ G2)

m, 0 < γ ≤ 1 [20]. Here onwards, without the loss of
any generality, we assume that the boundary and initial conditions (1b) are homoge-
neous, that is, and p ≡ q ≡ 0 on [0, T ] and r ≡ 0 on Ω .

The differential operator L defined in (1a) satisfies the following maximum prin-
ciple which can be proved analogusly as in [20].

Theorem 1 (Maximum Principle) Suppose a map Ψ ∈ C(G)m ∩ C2(G1 ∪ G2)
m

satisfies Ψ ≥ 0 on ∂G,
[[

∂Ψ
∂x

]]
(d, t) ≤ 0 along Γd , and LΨ ≥ 0 in G1 ∪ G2, then

Ψ ≥ 0 in G.

The stability result is a direct consequence of Theorem 1 which is given as follows.

Corollary 1 Suppose u solves (1). Then

‖u‖G ≤ max
{
‖u‖∂G,

1

β
‖ f ‖G

}
.
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To establish parameters-uniform convergence of the numerical scheme depicted in
Sect. 3, we give some bounds on the solution and its derivatives in the following
Theorem.

Theorem 2 Suppose u is a solution of (1) satisfying u ∈ C(G)m ∩ C1+γ (G)m ∩
C2+γ (G1 ∪ G2)

m, 0 < γ ≤ 1. Let the integers k,m satisfy 0 ≤ l ≤ 2, 0 ≤ k + l ≤
2. Then for each (x, t) ∈ G1 ∪ G2

∣∣∣∣ ∂
k+lui

∂xk∂t l
(x, t)

∣∣∣∣ ≤ Cε−k
i ,

∣∣∣∣∂
3ui

∂x3
(x, t)

∣∣∣∣ ≤ Cε−1
i (ε−2

i +
m∑

k=1, k �=i

ε−1
k ), 1 ≤ i ≤ m.

Proof For the case k = 0, l = 0, the proof follows from Corollary 1. For the other
cases, the proof follows using the idea given in [21, Part II, Sect. 2.2] and [2, 20]. �

The reduced solution u0 corresponding to (1) is a solution of the reduced problem
defined as follows:

∂u0

∂t
− B

∂u0

∂x
+ Au0 = f in G1 ∪ G2, (4a)

u0(1, t) = 0 on S, u0(x, 0) = 0 on Ω, and [[u0]] (d, t) = 0 along Γd . (4b)

The bounds given in Theorem 2 are not sharp enough to analyze parameters-
uniform convergence of the numerical scheme depicted in Sect. 3. To obtain sharper
bounds, u is decomposed into the sum u = v + w, where v = (v1, . . . , vm)T and
w = (w1, . . . , wm)T are regular and singular components, respectively.

The component v is a solution to the problem:

Lv = f in G1 ∪ G2, (5a)

v(0, t) = u0(0, t) v(1, t) = 0 on S, v(x, 0) = 0 on Ω, and (5b)

[[v]] (d, t) = 0, E
[[

∂v

∂x

]]
(d, t) =

[[
∂u0

∂x

]]
(d, t) along Γd . (5c)

The component w is a solution to the problem:

Lw =0 in G1 ∪ G2, (6a)

w(0, t) = −v(0, t), w(1, t) = 0 in S, w(x, 0) = 0 on Ω, and (6b)

[[w]] (d, t) = 0,
[[

∂w

∂x

]]
(d, t) = −

[[
∂v

∂x

]]
(d, t) + r(t) along Γd . (6c)

We again decompose v into the sum

v = v0 +
(

m∏
i=1

εi

)
v1 +

(
m∏
i=1

ε2i

)
v2, (7)
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where vk = (vk1, . . . , vkm)T , k = 0, 1, 2.
v0 is defined to be a solution to the problem:

∂v0

∂t
− B

∂v0

∂x
+ Av0 = f in G1 ∪ G2, (8a)

v0(1, t) = 0 on S, v0(x, 0) = 0 on Ω, [[v0]] (d, t) = 0 along Γd . (8b)

v1 is defined to be a solution to the problem:

∂v1

∂t
− B

∂v1

∂x
+ Av1 = E−1 ∂2v0

∂x2
in G1 ∪ G2, (9a)

v1(1, t) = 0 on S, v1(x, 0) = 0 on Ω, [[v1]] (d, t) = 0 along Γd . (9b)

v2 is defined to be a solution to the problem:

Lv2 = E−1 ∂2v1

∂x2
in G1 ∪ G2, (10a)

v2(0, t) = u0(0, t) − v0(0, t) − v1(0, t), v2(1, t) = 0 on S, v2(x, 0) = 0 on Ω, (10b)

[[v2]] (d, t) = 0 and

[[
∂v2

∂x

]]
(d, t) =

([[
∂u0
∂x

]]
−

[[
∂v0

∂x

]]
−

[[
∂v1

∂x

]])
(d, t) along Γd . (10c)

Again, decompose w into the sum w = w1 + w2, where the boundary layer compo-
nent w1 = (w11, . . . , w1m)T is the solution to the problem:

Lw1 = 0 in G, (11a)

w1(0, t) = −v(0, t), w1(1, t) = 0 on S, (11b)

and w1(x, 0) = 0 on Ω, (11c)

and the interior layer component w2 = (w21, . . . , w2m)T is the solution to the prob-
lem:

Lw2 = 0 in G1 ∪ G2, (12a)

w2(0, t) = w2(1, t) = 0 on S, w2(x, 0) = 0 on Ω, (12b)

[[w2]] (d, t) = 0 and

[[
∂w2

∂x

]]
(d, t) = −

[[
∂v

∂x

]]
(d, t) along Γd . (12c)

Using (7)–(10), the following Lemma can be proved.

Lemma 1 The regular component v satisfies the following bounds

∣∣∣∣ ∂k+lv

∂xk∂t l
(x, t)

∣∣∣∣ ≤ C, (x, t) ∈ G1 ∪ G2, 0 ≤ l ≤ 2, 0 ≤ k + l ≤ 3.
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Now using (11), the bounds on the boundary layer component w1 are given in the
following Lemma.

Lemma 2 For any (x, t) ∈ G, components of w1 and their derivatives satisfy the
following bounds

∣∣∣∣w1i (x, t)

∣∣∣∣ ≤ C exp

(
− αx

εi

)
, 1 ≤ i ≤ m,

∣∣∣∣ ∂
k+lw1i

∂xk∂tl
(x, t)

∣∣∣∣ ≤ C
m∑
j=i

ε−k
j exp

(
− αx

ε j

)
, 0 ≤ l ≤ 2, 0 ≤ k + l ≤ 2, 1 ≤ i ≤ m,

∣∣∣∣ ∂
3w11

∂x3
(x, t)

∣∣∣∣ ≤ C
m∑
j=1

ε−3
j exp

(
− αx

ε j

)
,

∣∣∣∣ ∂
3w1i

∂x3
(x, t)

∣∣∣∣ ≤ Cε−1
i

m∑
j=i

ε−2
j exp

(
− αx

ε j

)
,

for 2 ≤ i ≤ m. Now using (12) and Lemma 2, the bounds on the interior layer
component w2 are given in the following Lemma.

Lemma 3 For any (x, t) ∈ G, components of w2 satisfy the following bounds

|w2(x, t)| ≤ εmC,

∣∣∣∣∂
lw2

∂t l
(x, t)

∣∣∣∣ ≤ C,

∣∣∣∣∂
k+lw2i

∂xk∂t l
(x, t)

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
m∑
j=i

ε1−k
j exp

(
−αx

ε j

)
, (x, t) ∈ G1,

C
m∑
j=i

ε1−k
j exp

(
−α(x − d)

ε j

)
, (x, t) ∈ G2,

and

∣∣∣∣∂
3w2i

∂x3
(x, t)

∣∣∣∣ ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cε−1
i

m∑
j=1

ε−1
j exp

(
−αx

ε j

)
, (x, t) ∈ G1,

Cε−1
i

m∑
j=1

ε−1
j exp

(
−α(x − d)

ε j

)
, (x, t) ∈ G2.

for l = 1, 2, 0 ≤ k + l ≤ 3 and 1 ≤ i ≤ m.

3 Discretization of the Problem

3.1 The Mesh

Let Ω
N : 0 = x0 < x1 < . . . < xN = 1 be a partition of Ω and S

M : 0 = t0 < t1 <

. . . < tM = T be a partition of S. Define G
N ,M := Ω

N × S
M
to be discretization of

G. We consider a uniform mesh in time-variable, that is, S
M = {tk = kΔt, 0 ≤ k ≤

M, Δt = T/M}. However, in spatial-variable, we construct a variant of piecewise-
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uniform Shishkin mesh Ω
N
. Define the transition parameters

σ L
m := min

{
d

2
, εmα0 ln N

}
, σ R

m := min

{
(1 − d)

2
, εmα0 ln N

}
,

σ L
l := min

{
σ L
l+1

2
, εlα0 ln N

}
, σ R

l := min

{
σ R
l+1

2
, εlα0 ln N

}
,

for l = m − 1,m − 2, . . . , 1, where α0 ≥ (1/β). For the construction of piecewise-
uniform Shishkin mesh, we assume N to be a multiple of 4m. Let σ L

0 = σ R
0 = 0.

We divide Ω1 into m + 1 sub-intervals ∪m
l=1[σ L

l−1, σ L
l ] ∪ [σ L

m , d]. Further, for 1 ≤
l ≤ m, [σ L

l−1, σ L
l ] is divided into N/4m equidistant elements and [σ L

m , d] is divided
into N/4 equidistant elements. Similarly, Ω2 is partition into m + 1 sub-intervals
∪m
l=1[d + σ R

l−1, d + σ R
l ] ∪ [d + σ R

m , 1], and for 1 ≤ l ≤ m, [d + σ R
l−1, d + σ R

l ]
is partition into N/4m equidistant elements and [d + σ R

m , 1] is divided into N/4

equidistant elements. The nodal points so constructed are denoted byΩ
N
1 := {xi }

N
2
i=0

andΩ
N
2 := {xi }Ni= N

2
, respectively, andΩ

N = Ω
N
1 ∪ Ω

N
2 . Let the i th mesh size hi =

xi − xi−1 and hi = (hi + hi+1)/2. Let ∂GN ,M := G
N ,M ∩ ∂G andGN ,M := G

N ,M \
∂GN ,M .

3.2 The Discrete Problem

Define the discrete operator LN ,M as follows: for any mesh function U on G
N ,M

LN ,MU := D−
t U − Eδ2xU − BD+

x U + AU for (xi , tk) ∈ GN ,M , (13)

where

δ2x Z(xi , tk) = (D+
x Z(xi , tk) − D−

x Z(xi , tk))

hi
, D+

x Z(xi , tk) = Z(xi+1, tk) − Z(xi , tk)

hi+1
,

D−
x Z(xi , tk) = Z(xi , tk) − Z(xi−1, tk)

hi
, D−

t Z(xi , tk) = Z(xi , tk) − Z(xi , tk−1)

Δt
.

The discrete analog of (1) is to find a mesh function U such that for (xi , tk) ∈ G
N ,M

such that
LN ,MU(xi , tk) = f (xi , tk) for (xi , tk) ∈ GN ,M (14a)

subject to

U(x0, tk) = p(tk), U(xN , tk) = q(tk), ∀tk ∈ SM , and U(xi , t0) = r(xi ), ∀xi ∈ ΩN ,

(14b)
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where

f (xi , tk) :=
⎧⎨
⎩
hi f (xi−, tk) + hi+1 f (xi+, tk)

2hi
, (xi , tk) ∈ Γd ,

f (xi , tk), otherwise.

The discrete operator LN ,M satisfies the following discrete maximum principle.

Lemma 4 (Discrete Maximum Principle) Suppose a mesh function Z satisfies
Z(xi , tk) ≥ 0 for (xi , tk) ∈ ∂GN ,M , LN ,M Z(xi , tk) ≥ 0 for (xi , tk) ∈ GN ,M. Then

Z(xi , tk) ≥ 0 for all (xi , tk) ∈ G
N ,M

.

Proof This Lemma can be proved using similar arguments given in [20]. �

Corollary 2 Let the mesh function U be the solution of (14), then

‖U‖
G

N ,M ≤ C max{‖U‖∂GN ,M , ‖LN ,MU‖GN ,M },

where ‖ · ‖
G

N ,M denotes the discrete maximum norm.

Proof The proof follows using a suitable barrier function and Lemma 4. �

4 Convergence Analysis

Decomposed the discrete solution U into the sum U = V+ W , where the mesh
function V is a solution to the following problem:

LN ,MV (xi , tk) = f (xi , tk), for all (xi , tk) ∈ GN ,M \ Γd , (15a)

V (0, tk) = v(0, tk), V (d, tk) = v(d, tk), V (1, tk) = v(1, tk), V (xi , 0) = v(xi , 0),
(15b)

and the function W is a solution to the following problem:

LN ,MW(xi , tk) = 0, for all (xi , tk) ∈ GN ,M \ {(d, tk) : tk ∈ SM}, (16a)

W(0, tk) = w(0, tk), W(1, tk) = w(1, tk),

W(xi , 0) = w(xi , 0), [[DxW ]] (d, tk) = − [[DxV ]] (d, tk),

}
(16b)

where the jump [[DxZ]] (d, tk) := D+
x Z(d, tk) − D−

x Z(d, tk).
Further, decompose W as W = W 1 + W 2, where the mesh function W 1 is a

solution to the following problem:

LN ,MW 1(xi , tk) = 0, for all (xi , tk) ∈ GN ,M , (17a)

W 1(0, tk) = w(0, tk), W 1(1, tk) = 0, W 1(xi , 0) = w1(xi , 0), (17b)
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and the mesh function W 2 is a solution to the following problem:

LN ,MW 2(xi , tk) = 0, for all (xi , tk) ∈ GN ,M \ Γd , (18a)

W 2(0, tk) = 0 = W 2(1, tk), W 2(xi , 0) = w2(xi , 0),

[[DxW 2]] (d, tk) = − [[DxV ]] (d, tk) − [[DxW 1]] (d, tk).

}
(18b)

Using Taylor’s expansion of any function Φ having sufficient regularity, i =
1, . . . , N/2 − 1, N/2 + 1, . . . , N and j = 1, . . . , M,wehave the followingbounds:

∣∣∣∣
(

∂

∂t
− D−

t

)
Φ(xi , tk)

∣∣∣∣ ≤ C(tk − t j−1) max
s∈[t j−1,tk ]

∣∣∣∣∂
2Φ

∂t2
(xi , s)

∣∣∣∣ , (19a)

∣∣∣∣
(

∂2

∂x2
− δ2x

)
Φ(xi , tk)

∣∣∣∣ ≤ C max
s∈[xi−1,xi+1]

∣∣∣∣∂
2Φ

∂x2
(s, tk)

∣∣∣∣ , (19b)

∣∣∣∣
(

∂2

∂x2
− δ2x

)
Φ(xi , tk)

∣∣∣∣ ≤ C(hi+1 − hi ) max
s∈[xi−1,xi+1]

∣∣∣∣∂
3Φ

∂x3
(s, tk)

∣∣∣∣ , (19c)

∣∣∣∣
(

∂2

∂x2
− δ2x

)
Φ(xi , tk)

∣∣∣∣ ≤ C(hi+1 − hi )
2 max
s∈[xi−1,xi+1]

∣∣∣∣∂
4Φ

∂x4
(s, tk)

∣∣∣∣ , (19d)

∣∣∣∣
(

∂

∂x
− D+

x

)
Φ(xi , tk)

∣∣∣∣ ≤ Chi+1 max
s∈[xi ,xi+1]

∣∣∣∣∂
2Φ

∂x2
(s, tk)

∣∣∣∣ . (19e)

Along the interface: (xN/2, tk) ∈ Γd .

We approximate −E
[[

∂u
∂x

]]
(x N

2
, tk) using the simple first-order approximation

− E

h N
2

(D+
x U − D−

x U)(x N
2
, tk).

Using [[u]] (x N
2
, tk) = 0 and −E

[[
∂u
∂x

]]
(x N

2
, tk) = 0 along the interface Γd , we

obtain

− E

h N
2

(D+
x U − D−

x U)(x N
2
, tk)

= 1

2h N
2

(
−h N

2 +1E
∂2u
∂x2

(x N
2
+, tk) − h N

2
E

∂2u
∂x2

(x N
2
−, tk)

)
+ E

(
O(h2N

2 +1 + h2N
2
)
)
.

Using (1a) in the above equation, we have
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− E

h N
2

(D+
x U − D−

x U)(x N
2
, tk)

= 1

2h N
2

(
h N

2 +1

(
−∂u

∂t
+ B

∂u
∂x

− Au + f
)

(x N
2
+, tk)

+ h N
2

(
−∂u

∂t
+ B

∂u
∂x

− Au + f
)

(x N
2
−, tk)

)
+ E

(
O(h2i+1 + h2N

2
)
)

=
(

−∂u
∂t

+ B
∂u
∂x

− Au + f
)

(x N
2
, tk) + E

(
O(h2N

2 +1 + h2N
2
)
)
.

This gives the scheme

LN ,MU(x N
2

, tk ) = f (x N
2

, tk ) + E

h N
2

(
O(h2N

2 +1
+ h2N

2
)
)

+ +O(h N
2 +1

) + O(h N
2 +1

) + O(Δt).

Therefore, usingTaylor’s expansion in the left and right neighborhood of the interface
Γd , we obtain

∣∣∣LN ,M(u − U)(x N
2
, tk)

∣∣∣
≤ C

(
Δt max

s∈[t j−1,tk ]

∣∣∣∣∂
2u

∂t2
(xi , s)

∣∣∣∣ + h N
2 +1 max

s∈[x N
2

, x N
2 +1

]

∣∣∣∣∂
2u

∂x2
(s+, tk)

∣∣∣∣

+
h2N

2

h N
2

E max
s∈[x N

2 −1
, x N

2
]

∣∣∣∣∂
3u

∂x3
(s−, tk)

∣∣∣∣ +
h2N

2

h N
2

E max
s∈[x N

2
, x N

2 +1
]

∣∣∣∣∂
3u

∂x3
(s+, tk)

∣∣∣∣
)
. (20)

Using the decompositions of U and u and the bounds given in Lemma 1, the
truncation errors satisfy the following estimates.

Lemma 5 Let v and V be the solution to the problems (5) and (15), respectively.
Then

∣∣LN ,M(v − V )(xi , tk)
∣∣ ≤ (N−1 ln N + M−1)C, for (xi , tk) ∈ G

N ,M
.

Furthermore,
‖v − V‖

G
N ,M ≤ C(N−1 ln N + M−1).

Proof If (xi , tk) ∈ G
N ,M

but (xi , tk) /∈ Γd , then classical technique can be applied to
prove the Lemma (see for example [20]). Along the interface, that is, (xi , tk) ∈ Γd ,

we use the following technique.
Using the decompositions of exact and discrete solutions u and U, respectively,

(16) and the bounds in (20), we derive the following estimates.
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∣∣∣LN ,M(v − V )(x N
2
, tk)

∣∣∣
≤ C

(
Δt max

s∈[t j−1,tk ]

∣∣∣∣∂
2v

∂t2
(xi , s)

∣∣∣∣ + h N
2 +1 max

s∈[x N
2

, x N
2 +1

]

∣∣∣∣∂
2v

∂x2
(s+, tk)

∣∣∣∣

+
h2N

2

h N
2

E max
s∈[x N

2 −1
, x N

2
]

∣∣∣∣∂
3v

∂x3
(s−, tk)

∣∣∣∣ +
h2N

2

h N
2

E max
s∈[x N

2
, x N

2 +1
]

∣∣∣∣∂
3v

∂x3
(s+, tk)

∣∣∣∣
)
.

Using the bounds given in Lemma 1, it can be easily obtained that

∣∣∣LN ,M(v − V )(x N
2
, tk)

∣∣∣ ≤ (N−1 ln N + M−1)C.

Define the mesh function Ψ ±(xi , tk) as

Ψ ±(xi , tk) :=
{

(N−1 ln N + M−1)(d − xi )C ± (V − v)(xi , tk) for (xi , tk) ∈ G
N
1 ,

(N−1 ln N + M−1)(1 − xi )C ± (V − v)(xi , tk) for (xi , tk) ∈ G
N
2 .

Using Lemma 4 and the barrier function Ψ ±, we conclude that the error in the regular com-
ponent satisfies

|(V − v)(xi , tk)| ≤ (N−1 ln N + M−1)C, for (xi , tk) ∈ G
N ,M

,

and hence
‖(V − v‖

G
N ,M ≤ C(N−1 ln N + M−1).

�

Lemma 6 Let w and W be the solution to the problems (6) and (16), respectively.
Then

∣∣LN ,M(w − W)(xi , tk)
∣∣ ≤

⎧⎨
⎩

(N−1 ln N + M−1)C, for (xi , tk) /∈ Γd ,(
N−1(ln N )2

1 + ε1 ln N
+ M−1

)
C, for (xi , tk) ∈ Γd .

Furthermore,
‖w − W‖

G
N ,M ≤ C(N−1 + M−1).

Proof If (xi , tk) ∈ G
N ,M

but (xi , tk) /∈ Γd , then classical technique can be applied to
prove the Lemma (see for example [20]). Along the interface, that is, (xi , tk) ∈ Γd ,

we use the following technique.
Using the decomposition of exact and discrete solutions u and U,

respectively, (16) and the bounds in (20), we derive the following estimates.
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∣∣∣LN ,M(w − W)(x N
2
, tk)

∣∣∣
≤ C

(
Δt max

s∈[t j−1,tk ]

∣∣∣∣∂
2w

∂t2
(xi , s)

∣∣∣∣ + h N
2 +1 max

s∈[x N
2

, x N
2 +1

]

∣∣∣∣∂
2w

∂x2
(s+, tk)

∣∣∣∣

+
h2N

2

h N
2

E max
s∈[x N

2 −1
, x N

2
]

∣∣∣∣∂
3w

∂x3
(s−, tk)

∣∣∣∣ +
h2N

2 +1

h N
2

E max
s∈[x N

2
, x N

2 +1
]

∣∣∣∣∂
3w

∂x3
(s+, tk)

∣∣∣∣
)
.

Using Theorem 2, Lemmas 2 and 3, it holds that
∣∣∣ ∂2w

∂t2 (x N
2
, s)

∣∣∣ ≤ C and hence we

obtain

Δt max
s∈[t j−1,tk ]

∣∣∣∣∂
2w

∂t2
(x N

2
, s)

∣∣∣∣ ≤ M−1C. (21)

Since h N
2 +1 = 8ε1 ln N

αN
, h N

2
≤ CN−1 and w = w1 + w2, using the bounds given in

Lemmas 2 and 3, we have

εl

h2N
2 +1

h N
2

max
x∈[x N

2
, x N

2 +1
]

∣∣∣∂3wl

∂x3
(x+, tk)

∣∣∣ =
2εl h2N

2 +1

h N
2 +1 + h N

2

max
x∈[x N

2
, x N

2 +1
]

∣∣∣∂3wl

∂x3
(x+, tk)

∣∣∣

≤ CN−1(ln N )2

1 + ε1 ln N
. (22)

Now, using the bounds given in Lemmas 2 and 3, and the arguments
exp

(
−αx
εl

)

ε
j
l

≤
C, j = 1, 2, 3, 1 ≤ l ≤ m, we obtain

εl

h2N
2

h N
2

max
x∈[x N

2 −1
, x N

2
]

∣∣∣∣∂
3w1l

∂x3
(x−, tk)

∣∣∣∣ ≤ CN−1

1 + e1 ln N
,

and

εl

h2N
2

h N
2

max
x∈[x N

2 −1
, x N

2
]

∣∣∣∣∂
3w2l

∂x3
(x−, tk)

∣∣∣∣ ≤ CN−1

1 + ε1 ln N
.

Combining the above estimates, we have

εl

h2N
2

h N
2

max
x∈[x N

2 −1
, d]

∣∣∣∣∂
3wl

∂x3
(x−, tk)

∣∣∣∣ ≤ CN−1

1 + ε1 ln N
. (23)

In a similar manner, it also holds that
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εl

h2N
2

h N
2

max
x∈[x N

2
, x N

2 +1
]

∣∣∣∣∂
2wl

∂x2
(x+, tk)

∣∣∣∣ ≤ CN−1

1 + ε1 ln N
. (24)

Using (21)–(24), we have

∣∣∣LN ,M(w − W)(x N
2
, tk)

∣∣∣ ≤
(
N−1(ln N )2

1 + ε1 ln N
+ M−1

)
C.

Now, consider the following barrier function Φ = (φ1, . . . , φm)T defined by

Φ(xi , tk) :=(N−1 ln N + M−1)(1 − xi )C

+
⎧⎨
⎩

(N−1 ln N + M−1)C, 0 ≤ i < N
2 ,(

m∑
l=1

Sεl ,i N
−1 ln N + M−1

)
C, N

2 ≤ i ≤ N ,

where C is sufficiently large and the mesh function Sεl ,i , 1 ≤ l ≤ m, is given by

Sεl ,i :=
N∏

j=i+1

(
1 + αh j

2εl

)−1

, for
N

2
+ 1 ≤ i ≤ N − 1,

with Sεl ,
N
2

:= 1, Sεl ,N := C.

Using the barrier function Φ and Lemma 4, we obtain the following result

‖w − W‖
G

N ,M ≤ (N−1 ln N + M−1)C. �

We complete this section with the following main result.

Theorem 3 Let u and U be the solution to the problems (1) and (14), respectively.
Then

‖U − u‖
G

N ,M ≤ C(N−1 ln N + M−1).

Proof The proof of the theorem follows, using the decompositions of U and u
into regular and singular components, triangular inequality, and the bounds in
Lemmas 5 and 6. �

5 Numerical Experiments

We use the following test example to verify the theoretical conclusions and to exam-
ine the error estimates numerically for various values of mesh and perturbation
parameters. We estimate the maximum point-wise errors and corresponding orders
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of parameters-uniform convergence for this test example. The outcomes of numerical
experiments are highlighted in the tables.

Example We consider the following weakly coupled system of four convection-
diffusion equations of type (1), where the domain G = Ω × S,Ω = (0, 1), S =
(0, 1], the reaction coefficient

A =

⎛
⎜⎜⎝

4 − exp(−(x + t2)) − exp(−(x + t2)) − exp(−(x + t2))
− exp(−(x + t2)) 5 − exp(−(x + t2)) − exp(−(x + t2))
− exp(−(x + t2)) − exp(−(x + t2)) 6 − exp(−(x + t2))
− exp(−(x + t2)) − exp(−(x + t2)) − exp(−(x + t2)) 7

⎞
⎟⎟⎠ ,

the convection coefficient

B = (diag
(
(1 + 4x exp(x)), (1 + 5x exp(x)), (1 + 2x exp(x)), (1 + 6x exp(x))

)
)−1,

d = 0.5, and the source term f = ( f1, f2, f3, f4)T is

f1(x, t) =
{
1, if x < 0.5,

1.5, if x ≥ 0.5,
f2(x, t) =

{
2, if x < 0.5,

2.5, if x ≥ 0.5.

f3(x, t) =
{
3, if x < 0.5,

3.5, if x ≥ 0.5,
f4(x, t) =

{
4, if x < 0.5,

4.5, if x ≥ 0.5.

Also, the subdomains G1 = (0, 0.5) × (0, 1] and G2 = (0.5, 1) × (0, 1].
We compute the parameters-uniform errors in the numerical solution and the orders
of convergence for the above example using the numerical technique described in
Sect. 3. We employ the double mesh principle to estimate errors in the numerical
solution as we do not have the exact solution to the above example. The double mesh
ĜN ,M := Ω̂N × ŜM , where Ω̂N is obtained by creating a new mesh points in the

middle of each pair of consecutive mesh points xi−1, xi ∈ Ω
N
, i = 1, . . . , N , and

ŜM := S2M (see [20]).
For numerical experiments, we choose the parameter ε1 is from the set E1 :=

{2−4 j : j = 0, 1, . . . , 7} and for each εl ∈ El , 1 ≤ l ≤ m − 1, we choose the param-
eter εl+1 from the set El+1 := {2−4 j : j = 0, 1, . . . , 7 and 2−4 j ≥ εl}. For various
values of parameters N , M and for different choices of parameter εl ∈ El ,1 ≤ l ≤ m,

we compute the maximum point-wise errors using the expression DN ,M
ε1,...,εm

:=
‖Û N ,M − U N ,M‖

G
N ,M , where U N ,M is the numerical solution of (14) using the mesh

G
N ,M

and Û
N ,M

is the numerical solution of (14) using the doublemesh ĜN ,M . Next,
for each εl ∈ El , the (εl+1, . . . , εm)-uniform errors are computed using the expression
DN ,M

ε1,...,εl
:= maxεl∈El , l+1≤l≤m DN ,M

ε1,...,εm
, and parameters-uniform errors are computed

using the expression DN ,M := maxεl∈El , 1≤l≤m DN ,M
ε1,...,εm

.

Theoretically, the numerical scheme is proved to be first-order parameters-
uniformly convergent in time and almost first-order parameters-uniformly conver-
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Table 1 The (ε2, ε3, ε4)-uniform errors DN ,M
ε1

, parameters-uniform errors DN ,M , and spatial
orders of parameters-uniform convergence ρN for the Example

N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096

20 3.51E-03 1.82E-03 9.29E-04 4.69E-04 9.05E-05 4.34E-05

2−4 5.04E-03 2.65E-03 1.36E-03 6.87E-04 1.27E-04 5.05E-04

2−8 3.13E-02 1.96E-02 1.11E-02 5.97E-03 2.10E-03 1.45E-03

2−12 4.45E-02 3.41E-02 2.33E-02 1.50E-02 9.51E-03 5.43E-03

2−16 5.78E-02 4.55E-02 3.08E-02 2.01E-02 1.19E-02 6.58E-03

2−20 6.08E-02 4.74E-02 3.22E-02 2.09E-02 1.22E-02 6.83E-03

2−24 6.27E-02 4.85E-02 3.32E-02 2.14E-02 1.22E-02 6.83E-03

2−28 6.27E-02 4.85E-02 3.32E-02 2.14E-02 1.22E-02 6.83E-03

DN ,M 6.27E-02 4.85E-02 3.32E-02 2.14E-02 1.22E-02 6.83E-03

ρN 0.46 0.66 0.75 0.94 0.96

gent in space. To verify these outcomes numerically, we estimate the parameters-
uniform errors DN ,M for the different values of the parameters N and M . Due
to different discretization in space and time variables, two types of errors are
contributed in the numerical solution by the parameters N and M depending on
their numerical values. Accordingly, in the numerical experiments, we attempt
to offset the two errors by choosing the parameters N and M effectively while
computing the orders of parameters-uniform convergence. To calculate the orders
of parameters-uniform convergence in the spatial direction, for a given value of
the mesh parameter M in the time direction, we pick the value of the mesh
parameter N in the spatial direction such that N−1 ln N ≥ M−1. Thus, we use
the formula ρN := (

ln DN ,M − ln D2N ,M
) /

(ln(2 ln N ) − ln(ln 2N )) to compute
parameter-uniform convergence orders in the spatial direction. While computing the
orders of parameters-uniform convergence in the time direction, for a given value
of the mesh parameter N in the spatial direction, we pick the value of the mesh
parameter M in the time direction such that N−1 ln N ≤ M−1. Hence, we use the
formula ηM := (

ln DN ,M − ln DN ,2M
) /

ln 2 to compute parameter-uniform conver-
gence orders in the time direction.

We conducted some numerical experiments on the above-given Example with
α0 = 1 + 6 exp(1). The outcomes of numerical experiments employing the numer-
ical technique defined in Section 3 are presented in Tables 1, 2 and 3. For different
values of the mesh parameters N , M (N = M for Tables 1 and 3) and each εl ∈ Ek,
l = 1, . . . , 4, the (ε2, ε3, ε4)-uniform errors DN ,M

ε1
are demonstrated in these tables.

The second row from the last in Tables 1, 2 and 3 depicts the parameters-uniform
errors DN ,M . The last row of Tables 1 and 3 corresponds to the orders of parameters-
uniform convergence in the spatial direction. In contrast, the last row of Table 2 is
associated with the orders of parameters-uniform convergence in the time direction.

Figure 1a portrays the log-log plots of (N−1 ln N + M−1) and DN ,M on the y-axis
versus N on the x-axis using the data from Table 1. Similarly, Fig. 1b portrays the
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Table 2 The (ε2, ε3, ε4)-uniform errors DN ,M
ε1

, parameters-uniform errors DN ,M , and temporal
orders of parameters-uniform convergence ηM for the Example

N = 176 N = 512 N = 1280 N = 3760 N = 8096

ε1 M = 32 M = 64 M = 128 M = 256 M = 512

20 1.14E-02 6.52E-03 3.51E-03 1.82E-03 9.30E-04

2−4 1.21E-02 6.47E-03 3.48E-03 1.81E-03 9.42E-04

2−8 3.54E-02 1.56E-02 6.95E-03 2.65E-03 1.27E-03

2−12 5.91E-02 4.86E-02 3.84E-02 1.93E-02 8.13E-03

2−16 6.13E-02 4.93E-02 3.87E-02 2.11E-02 9.66E-03

2−20 7.43E-02 5.81E-02 4.30E-02 2.14E-02 1.03E-02

2−24 8.44E-02 6.85E-02 4.35E-02 2.17E-02 1.08E-02

2−28 8.44E-02 6.85E-02 4.35E-02 2.17E-02 1.08E-02

DN ,M 8.44E-02 6.85E-02 4.35E-02 2.17E-02 1.08E-02

ηM 0.30 0.66 1.00 1.01

Table 3 The (ε2, ε3, ε4)-uniform errors DN ,M
ε1

, parameters-uniform errors DN ,M , and spatial

orders of parameters-uniform convergence ρN by using f -values rather than f along Γd for the
Example

ε1 N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096

20 3.60E-03 1.87E-03 3.64E-04 2.83E-04 8.87E-05 6.95E-05

2−4 5.10E-03 2.68E-03 1.43E-03 6.22E-04 4.56E-04 2.43E-04

2−8 3.94E-02 2.47E-02 5.01E-03 4.34E-03 2.38E-03 1.01E-03

2−12 6.01E-02 5.48E-02 6.81E-03 5.16E-03 3.55E-03 3.07E-03

2−16 6.31E-02 5.64E-02 7.12E-03 5.23E-03 3.97E-03 3.28E-03

2−20 6.40E-02 5.98E-02 7.32E-03 6.17E-03 4.23E-03 3.78E-03

2−24 6.41E-02 6.44E-02 7.63E-03 6.28E-03 4.36E-03 3.74E-03

2−28 6.47E-02 5.98E-02 7.78E-03 6.33E-03 4.44E-03 3.77E-03

DN ,M 6.47E-02 6.44E-02 7.78E-03 6.33E-03 4.44E-03 3.78E-03

ρN 0.01 3.67 0.35 0.59 0.27

log-log plots of (N−1 ln N + M−1) and DN ,M on the y-axis versus M on the x-axis
using Table 2. The first curve from the top in Fig. 1a is associated with theoretical
parameters-uniform error estimates(N−1 ln N + M−1). In contrast, the second curve
in Fig. 1a is related to the parameters-uniform error estimates DN ,M . In Fig. 1b, the
first curve from the top is associated with the theoretical parameters-uniform error
estimates (N−1 ln N + M−1). In contrast, the second curve in Fig. 1b relates to
the parameters-uniform error estimates DN ,M . The slope of these curves represents
the order of parameters-uniform convergence for their corresponding errors. These
curves also indicate that the analogous estimated errors decrease with the increase
of mesh sizes.
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Fig. 1 Log-log plots of parameters-uniform errors using the data from Tables 1 and 2, respectively

Along the interface Γd , the proposed scheme (14) uses the value f rather than
the general choice f . Theoretically, this is very crucial to establish almost first-order
parameters-uniform convergence of the discrete scheme in the spatial variable. To
corroborate in practice, we perform some numerical experiments on the Example
data corresponding to the choice of the values of f (that is, f (xi , tk) rather than
f (xi , tk)) in (14). The outcomes of the numerical experiments are demonstrated in
Table 3. Comparing the results of Table 3 with Table 1, we notice the decrease in
the orders of parameters-uniform convergence and increase in maximum errors for
the larger N in Table 3. Consequently, the value of f is essential for theoretical and
practical purposes in developing the discrete scheme (14) to attain almost first-order
parameters-uniform convergence in the spatial direction.

6 Conclusions

A general weakly coupled system of m(≥ 2) linear parabolic convection-diffusion
equations is considered in the regime of singular perturbation problems. The con-
sidered system has discontinuities in the source term along the interface Γd . The
discretization of the domain has been obtained using appropriate piecewise uniform
Shishkin mesh, which is condensed in the layer region. For the nodal points not on
the interface, the problem is discretized using an upwind central difference scheme.
However, the problem is discretized using a special upwind central difference scheme
for the nodal points on the interface. A decomposition of solution technique is used
for the exact solution and its numerical analog concerning the parameters-uniform
convergence analysis of the discrete scheme. Some appropriate bounds on the exact
solution and its derivatives have been given. It is proved that the scheme is almost
first-order in space and first-order in time parameters-uniformly convergent. We
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implemented the proposed scheme on a test example to verify our theoretical results.
The test example given in Section 5 involves jump discontinuity in the source term,
demonstrating that the method preserves its theoretically proven accuracy.
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Filtering in Time-Dependent Problems

P. Megha and G. Chandhini

Abstract Spectral methods are efficient, robust and highly accurate methods in
numerical analysis. When it comes to approximating a discontinuous function with
spectralmethods, it produces spurious oscillations at the point of discontinuity, which
is called Gibbs’ phenomenon. Gibbs’ phenomenon reduces the spectral accuracy of
the method globally. Filtering is a widely used method to prevent the oscillations due
to Gibbs’ phenomenon by which the accuracy of the spectral methods is regained up
to an extent. In this work, we study the effects of various filters in time-dependent
problems and do a comparison of numerical results.

Keywords Filter · Spectral method · Time-dependent problem

1 Introduction

Spectral methods are the numerical approaches of representing the solution of an
equation as a truncated series of base functions. If the base functions used in the
series are Fourier functions, it is called Fourier spectral methods, and if the base
functions are polynomial functions, it is called polynomial spectral methods. The
most commonly used polynomial spectral methods are Chebyshev spectral meth-
ods, Legendre spectral methods, Hermite spectral methods, etc. In this paper, we
concentrate on Fourier spectral methods.

Spectral methods are significant in the sense that high order accuracy can be
obtained with a lesser number of terms. Also, they enjoy the spectral rate of con-
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vergence, i.e., if u is a function having s bounded derivatives and let SN u(x) =∑
|k|≤ N

2
ûkeikx be the truncated Fourier series of the function u, then

|SN u(x) − u(x)| ≤ Const ‖ u ‖Cs N
1−s .

Whenever u is infinitely smooth, exponential accuracy is obtained.
The problem arises when there is discontinuity. The presence of discontinuity

induces spurious oscillations at the point of discontinuity, which not only affects the
convergence rate at the point of discontinuity, but also it reduces the convergence rate
to linear order at the points away from the discontinuity. So the spectral accuracy
enjoyed by spectral methods is lost globally. There have been many attempts to
overcome this major issue with partial success.

Gottlieb et al. [1] developed a two-parameter family of mollifies with which they
have convolved the function and this has improved convergence at the points away
from the discontinuity. An essentially non-oscillatory Fourier spectral method [2] has
been proposed by Cai et al., for hyperbolic differential equations having piecewise
analytic functions as solutions. The modification involves appending a non-smooth
function to the Fourier basis, and filters are considered away from the discontinu-
ity. This has increased the convergence of the Fourier approximation by one order;
however, the method has smoothened the solution at the point of discontinuity too.
Vandeven [10] has introduced a class of filters that does not require the prior knowl-
edge of the position of the discontinuity and produces exponential accuracy, never-
theless only for points away from the discontinuity. Shu andWong [8] have compared
the Fourier solutions of nonlinear conservation law problems post-processed using
the Gegenbauer polynomial method [5] as well as filtering with vanishing viscos-
ity approach. The Gegenbauer reconstruction has the drawback of round-off error
and it suffers from the Runge phenomenon, hence not a robust method. A robust
Gibbs complimentary basis is developed by Gelb et al. [4]. The standard Fourier
Pade approximation is extended for functions with jumps by [3], which reduced
the Gibbs overshoot by 2.5% and is pictorially accurate globally. Inspired by the
Gegenbauer reconstruction method, an inverse polynomial reconstruction method is
proposed by Shizgal et al. [7] for the Fourier series. The numerical results showed
faster convergence for this new method compared to the Gegenbauer reconstruction.

In the present work, we attempt to make a comparison among various filters for
linear advection equations with discontinuous solutions.

2 Filtering

Definition 1 Any C∞ even function σ, whose support is [−1, 1] and such that
σ(0) = 1, is called filter.
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Examples of filters

1. Lanczos, σ1(x) = 1

πx
sin(πx).

2. Raised cosine, σ2(x) = (1 + cos(πx))/2.
3. Sharpened raised cosine, σ3(x) = σ4

2(35 − 84σ2 + 70σ2
2 − 20σ3

2).

4. Exponential filter, σ4(x) = exp−αp x , α > 0, p is the order of the filter.

The process,

Sσ
Nu(x) =

N∑

k=0

σ(k/N )ûkζk(x),

with ζk(x) being either eikx or φk(x), is called filtering. The physical space (time-
space) analogous to this process is called mollification, which includes convolving
a unit mass, compact support non-negative kernel Φ(x), called mollifier, with the
approximation series, i.e.,

Φ ∗ SN u(x) =
∫

�

Φ(y)SN u(x − y)dy

.
For instance, in the case of Fourier series, filtering is defined by

Sσ
Nu(x) =

∑

|k|≤ N
2

σ

(
k

N/2

)

ûke
ikx ,

corresponding to a filter σ(x). Also,

Sσ
Nu(x) = Φ ∗ SN u(x) =

∫ 2π

0
Φ(y)

∑

|k|≤ N
2

ûke
ik(x−y)dy,

where

Φ(y) =
k=∞∑

k=−∞
σ(k, N )eikx ,

and for a mollification Φ ∗ SN u, defined in the physical space, its associated filter
samples σ(k, N ) = Φ̂k are the Fourier coefficients of the mollifier Φ.

A milestone work on filters for reducing Gibbs’ phenomenon was done by Van-
deven [10] by developing a modal filter.

Theorem 1 ([10]) Let u be a 2π periodic function such that ∃ an integer α and real
numbers (cm)α+1

m=1, with 0 ≤ c1 ≤ c2 ≤ ... ≤ cα < 2π and cα+1 = c1 + 2π. Further,
for any integer m with 1 ≤ m ≤ α, there exists an open set �m ∈ C which contains
[cm, cm+1] and a function vm : �m → C such that vm is holomorphic on �m,∀ x ∈
(cm, cm+1), vm(x) = u(x). Let ε > 0 be a real number. Suppose that the filter is
defined by
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σ(x) = 1 − (2p − 1)!
(p − 1)!2

∫ x

0
(t (1 − t))p−1dt

with p = c
(
N
2

)ε/4
, where c is a positive constant independent of N . Then the

following estimate holds:

sup
x∈R, d(x)>( N

2 )
−1+ε

|u(x) − Sσ
Nu(x)| ≤

(
N

2

)β

(CN−ε/2)
( N

2 )
ε/4

for a positive constant C independent of N and a positive constant β independent of
both u and N , where

Sσ
Nu(x) =

∑

|k|≤ N
2

σ(k/N )ûke
ikx (1)

and d(x) = in f {|x − (cm + 2kπ) : 1 ≤ m ≤ α, k ∈ Z}.
Remark 1 Mostly filtering and mollification treats the Gibbs phenomenon as noise
and hence it smoothens the discontinuity part of the function even though this
improves the convergence rate significantly. Actually, Gibbs phenomenon contains
enough information to reconstruct the function.

A breakthrough work on filtering was done by Tadmor and Tanner [9] by developing
an adaptive filter incorporating the position of discontinuity. Their result can be stated
as follows.

Theorem 2 ([9])Given the Fourier projection SNu of a piecewise analytic function
u, we consider a C∞

0 [−1 1] filter σ(ζ), such that σ has Gα-regularity and that it
is accurate of order p in the sense of satisfying the moments condition, σn(0) =
δn0, n = 0, 1, ..., p − 1. Then,

|u(x) − Sσ
Nu(x)| ≤ Const (1 + Nd(x))e−α(ηNd(x))1/α ,

where we set the adaptive order p(x) = (ηNd(x))1/α, depending on the distance
function d(x) = dist (x, singsupp u) and constant η is dictated by the specific
Gevrey and piecewise-analyticity properties of σ and u.

3 Numerical Experiments

Example 1

ut = −2πux , −1 ≤ x ≤ 1, t > 0 u(0, t) = u(2π, t) (2)

u(x, 0) =
{
x, 0 ≤ x ≤ π

x − 2π,π < x <= 2π
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Table 1 Absolute error using various filters at time T = 10 of Example 1. The discontinuity point
is π and time step, h = 0.0001

Points Unfiltered Raised cosine Lanczos Sharpened raised
cosine

0.1567 0.0079 0.0006 0.0006 0.0006

0.3917 0.0006 0.0006 0.0006 0.0006

1.0968 0.0050 0.0006 0.0006 0.0006

1.7236 0.0125 0.0006 0.0006 0.0006

2.8204 0.0422 0.0008 0.0003 0.0006

3.0868 0.2083 0.0267 0.0109 0.3743

3.1024 0.0845 0.0170 0.0740 0.3068

3.1181 0.5620 0.6079 0.3301 0.4821

3.1338 1.1060 2.0863 1.9072 2.0791

3.1494 1.3742 2.2354 2.0794 2.2310

3.1651 0.5485 0.6923 0.4085 0.5817

3.1808 0.0232 0.0358 0.0724 0.2755

3.4471 0.0050 0.0007 0.0006 0.0006

3.9172 0.0113 0.0006 0.0008 0.0006

4.7006 0.0070 0.0006 0.0007 0.0006

5.3274 0.0039 0.0006 0.0006 0.0006

5.6408 0.0060 0.0006 0.0006 0.0006

6.2675 0.0061 0.0006 0.0007 0.0006

is solved using the Fourier-Galerkin method.
Table 1 shows the absolute values of the error using different filters for

Example 1. The time integration is done by the Runge-Kutta fourth-order (RK4)
method using time step h = 0.0001. The values show that the error has reduced at
the points away from the discontinuity when the filters are used. But at the point of
discontinuity, filtering does not have any effects even though the solution graphs in
Fig. 1 show that filtering helps to diminish Gibbs’ phenomenon in the closer neigh-
bourhood. Figure2 shows the error graph of the corresponding filters. In the closer
vicinity of the discontinuity, accuracy has not been improved uniformly even with
filtering. As we move away from the discontinuity raised cosine and Lanczos filters
are consistently better than sharpened raised cosine filters.

A new filtering method based on the sigmoidal transformation was developed
by Yun et al. [11]. This filter is a generalization of the existing Lanczos filter. The
present Sidi-Lanczos-type sigmoidal filter is referred to as Sidi-LSF. The function is
given by

σm(x) = 21−m√
πγ(m)γ(m+1

2 )

γ(m/2)γ(m+1
2 − x)γ(m+1

2 + x)
.
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Fig. 1 Filtered solution at T = 10 using various filters and N = 128 (Example 1)

Fig. 2 Error graph of the solution at T = 10 is using various filters and N = 128 (Example 1)

Authors [11] observed that by increasing the parameter ‘m’ overall accuracy has
been improved in the neighbourhood of the discontinuity points. Using the following
example, we have made a comparison study between traditional raised cosine and
Lanczos (‘m = 1’) filters with the other values of ‘m’(= 5 & 10).

Example 2
ut = −ux , −1 ≤ x ≤ 1, t > 0 (3)

u(x, 0) =

⎧
⎪⎨

⎪⎩

1,−1 ≤ x ≤ −0.5

sin(π(x + 0.5)),−0.5 ≤ x ≤ 0.5

1, 0.5 < x ≤ 1.
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(a) Raised cosine filter (b) Lanczos average filter

Fig. 3 Filtered solution at the time T = 10 and N = 128 (Example 2)

(a) Raised cosine filter (b) Lanczos average filter

Fig. 4 Error graph of the filtered solution at the time step T = 10 and N = 128 (Example 2)

The Example 2 is another first-order linear hyperbolic equation, whose solution
has two discontinuous points, namely −0.5 and 0.5. Fourier-Galerkin with RK4
is used to obtain the solution of Example 2. Figure3 gives a comparison of the
solution obtained using raised cosine and Sidi-Lanczos-type sigmoidal filter (Sidi-
LSF) while Fig. 4 provides corresponding error plots. However, it is observed that
overall accuracy has not been improved as ‘m’ increases. Identifying the optimal
value of ‘m’ is open. Error at various points that are given in Table 2 also shows that
accuracy has not been improved consistently for the filtered solution.

We have also made another attempt to extend the adaptive filter,
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Table 2 Absolute error using various filters at T = 10 of Example 2. The discontinuity points are
–0.5 and 0.5. h = 0.0001

Points Unfiltered Raised cosine Sidi-LSF m
= 1

Sidi-LSF m
= 5

Sidi-LSF m
= 10

-0.9799 0.0004 0.0000 0.0000 0.0003 0.0004

-0.7544 0.0008 0.0000 0.0000 0.0004 0.0005

-0.5138 0.0354 0.0036 0.0107 0.0179 0.0250

-0.5088 0.0812 0.0617 0.0246 0.0546 0.0682

-0.5038 0.0683 0.2628 0.2324 0.1214 0.1002

-0.4987 0.3548 0.4318 0.4103 0.3622 0.3530

-0.4937 0.0655 0.1543 0.1037 0.0201 0.0430

-0.4035 0.0039 0.0004 0.0001 0.0027 0.0032

-0.0025 0.0012 0.0002 0.0001 0.0009 0.0011

0.2481 0.0027 0.0001 0.0001 0.0017 0.0021

0.3484 0.0011 0.0002 0.0001 0.0011 0.0013

0.4737 0.0128 0.0011 0.0020 0.0108 0.0124

0.4987 0.3307 0.4196 0.4103 0.3622 0.3530

0.5038 0.0851 0.2737 0.2324 0.1214 0.1002

0.5088 0.0839 0.0669 0.0246 0.0546 0.0682

0.5138 0.0323 0.0029 0.0107 0.0179 0.0250

0.7494 0.0034 0.0000 0.0000 0.0023 0.0028

0.8496 0.0019 0.0000 0.0000 0.0013 0.0016

σp(x) =
{
exp (cx p)/(x2 − 1), |x | < 1

0, |x | ≥ 1

developed by Tadmor and Tanner [9] to linear hyperbolic problem. The parameter ‘p′
is chosen adaptively by incorporating the position of the discontinuity in the initial
data. To illustrate, we have improved the Fourier-Galerkin solutions of Examples 1
and 2 using the adaptive filter. Figures5 and 6 are the improved solutions and the
corresponding error graphs of these examples. Table 3 compares an adaptive filtered
solution with an unfiltered one.

It is observed that the adaptive filtered solution also does not improve the values
near the discontinuity. However, comparing Figs. 2 and 5b, we can see that adaptive
filtering on Fourier approximation has dramatically improved the accuracy at the
points away from the discontinuity.
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(a) Adaptive filtered solution (b) Error graph of the adaptive
 filtered solution

Fig. 5 Filtered solution using adaptive filter at T = 10 and N = 128 (Example 1)

(a) Adaptive filtered solution (b) Error graph of the adaptive filtered
solution (interval is (-1,-0.5)

Fig. 6 Filtered solution at the time step T = 10 and N = 128 (Example 2)

4 Conclusion

Over the past many years, different filters have been developed for various problems
having non-smooth or discontinuous solutions. The numerical results obtained in the
last section show that a filter that is apt for a particular problem need not be suitable
for another model problem. Also, filters providing good accuracy at points away
from discontinuities are not appropriate at the discontinuous points. The adaptive
filter developed by Tadmor and Tanner [9] was a breakthrough in this concept. It
is observed by Kanevsky et al. [6] that merely applying filtering in time-dependent
problems in each time step may reduce the convergence rate. As a result, they have
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Table 3 Absolute error using adaptive filter at T = 10 of Example 1. The discontinuous point is π

Points Unfiltered Adaptive filtered

0.0781 0.0045 0.0 ×10−15

0.3126 0.0049 0.0 ×10−15

0.4689 0.0042 0.0 ×10−15

0.7815 0.0009 0.0 ×10−15

1.094 0.0064 0.0 ×10−15

1.4067 0.0902 80.0 ×10−15

1.563 0.0023 95.0 ×10−15

1.719 0.0101 23.3 ×10−13

1.875 0.0102 78.5 ×10−12

2.032 0.0051 21.6 ×10−10

2.344 0.0063 19.9 ×10−8

2.970 0.0902 35.1 ×10−3

3.126 0.0769 60.2 ×10−2

3.1416 3.1416 3.1416

developed an idempotent filter from an exponential filter for a nozzle flow problem
satisfying certain conditions. However, the choice of various parameters involved
in the proposed idempotent filter for various problems is a challenge. Hence, our
conclusion is that the choice of filters depends upon the particular problem at hand
and the discontinuity position. Thus, the choice of filters for a class of problems is
still an unresolved area that has a wide scope for future works.
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Heat Transfer Model for Silk Finishing
Calender

Neelam Gupta and Neel Kanth

Abstract Calendering is a finishing process used in many process industries like
paper, textile and leather where the web passes through two or more rotating cylin-
drical bowls in touch with an aim to get special effects like smoothness, gloss and
uniform flattening of the thin sheet. The key factor in the calendering process for get-
ting desired results is pressure and temperature. Several unappealing elements such
as damage to fabric and strength reduction of the fabric arise if pressure and tem-
perature increase in excess. Temperature gradient calendering is used to overcome
these undesirable factors. In this paper, the influence of parameters like cylindrical
bowl temperature, dwell time and thermal diffusivity on the temperature of the fabric
in the stiffness direction of the web inside the calender nip has been discussed for
temperature gradient calenders of the textile industry using the heat balance integral
method.

Keywords Calendering · Heat conduction · Nip mechanics · Nip width · Thermal
diffusivity · Integral method

1 Introduction

At the final stage of fabric manufacturing, the calendering finishing process is used
in the textile industry in which the fabric passes through nips formed by two or more
rotating cylindrical bowls in touch at high pressure and temperature. The fabric runs
through cylindrical bowls at different speeds depending on the fabric quality required.
These cylindrical bowls are hard or soft which describes the type of calender. In hard
nip calendering, all the cylindrical bowls are hard, while there are alternate hard and
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soft cylindrical bowls in the case of soft nip calendering.Nowadays, soft nip calenders
like rolling calender, silk finishing calender, friction calender and schreiner calender
are used in the textile industry because of better finishing results as compared to hard
nip calenders [1–3].

Silk finishing calenders are soft nip calenders having a combination of alternating
hard and soft cylindrical bowls. The basic difference in these calenders is in themate-
rial composition of soft cylindrical bowls. Silk finishing calender uses a special type
of soft cylindrical bowl having less elastic modulus as compared to soft cylindrical
bowls used in other soft calenders. Silk finishing calendering can process all types
of fabrics, but it is used often for high-content cotton and silk fabric[4, 5].

The major difference between the hard nip and soft nip calenders is the dwell
time between the cylindrical bowls and fabric as dwell time directly depends upon
nip width and inversely on calender speed. Depending upon the type of calender,
nip mechanics models are used to evaluate the nip width. Dwell time, temperature
and pressure are the basic process parameters of calendering operation. Design and
type of cylindrical bowls are another important design parameters in calendering
system [1, 4].

Heat is conducted for a very short time from a heated cylindrical bowl to the fabric.
With rise in dwell time, more heat is conducted to the fabric from the cylindrical
bowl which enhances the gloss and smoothness of the fabric. In hard nip calender,
both the cylindrical bowls are heated and may or may not be at similar temperatures,
while in silk finishing calender, the hard cylindrical bowl is at high temperature and
the soft cylindrical bowl is at the room temperature [1–6].

The appropriate stiffness, smoothness and gloss of the fabric are achieved by
controlling the pressure in the nips or through temperature adjustment of heated
cylindrical bowls. Pressure has the largest influence on stiffness and air resistance,
whereas temperature has the largest influence on gloss and roughness of the fabric.
Higher temperature, higher load and lower speed all increase gloss. With rise in
pressure, surface smoothness can be enhanced by rising pressure, but sometimes
damage to the fibre bond takes place by an excess rise in pressure which leads to
fabric strength reduction. So for better finishing of the fabric, pressure should be
increased to a particular limit.

Temperature gradient calendering (TGC) is used for removing several unappealing
elements. In TGC, there are alternating hard and soft cylindrical bowls in which hard
cylindrical bowl is heated up to a temperature of 300 ◦C and soft cylindrical bowl
is at room temperature. So the fibres present on the surface of the fabric which is in
touch with the heated cylindrical bowl get deformed permanently, while the fibres
on the other side and up to the mid of the fabric do not get deformed due to which
the surface properties of the fabric are developed while maintaining the bulk and
strength properties [7, 8].

In this paper, analysis of heat conduction from cylindrical bowls to fabric passing
through silk finishing calender nip is done for temperature gradient calender using
one-dimensional heat conduction equation which has been solved using heat balance
integral method.
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2 Heat Conduction Model For Silk Finishing Calender for
Semi-Infinite Medium

Three-dimensional transient state heat conduction equation is given by [9–19]

∂ϕ

∂t
= α[(∂

2ϕ

∂x2
)yz + (

∂2ϕ

∂y2
)xz + (

∂2ϕ

∂z2
)xy] + qv

cpρ
(1)

where x, y, z are “space coordinates”, qv is “heat generation term”, t is “time”, ϕ is
“temperature”, ρ is “density of the material”, cp is “specific heat”and α is “thermal
diffusivity”.

Also, thermal diffusivity is defined as

α = κ

ρcp

where κ is “thermal conductivity”.
After ignoring the heat generation term qv = 0 and approximating the above

equation in x direction only, Eq. (1) changes to

∂ϕ

∂t
= α

∂2ϕ

∂x2
(2)

For finding the temperature distribution inside the fabric in stiffness direction, solu-
tion of equation (2) under different initial and boundary conditions can be used
depending upon the type of calender.

In TGC, temperature of the cold cylindrical bowl has no contribution to tempera-
ture distribution because the time of contact between the heated cylindrical bowl and
fabric is very short. So heat transfer during this procedure is considered as “transient
heat conduction into a semi-infinite medium”. In this medium, fabric is bounded by
the plane x = 0 and for the other side, x tends to infinity in the positive direction. In
this case, the face x = d has been moved to x −→ ∞. This case is applied where
heating or cooling affects the surface of a body for a very short period of time.

The I.C. is taken as
ϕ(x, 0) = ϕ0 (3)

and B.C. are taken as
ϕ(0, t) = ϕh

limx→∞ ϕ(x, t) = ϕ0

}
(4)

where ϕ0 is the initial fabric temperature and ϕh is the temperature of the hot cylin-
drical bowl.
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3 Solution of Heat Conduction Model For Silk Finishing
Calender

Introducing dimensionless variables

η = ϕ − ϕ0

ϕh − ϕ0
(5)

τ = αt (6)

The heat equation, I.C. and B.C. get transformed to the following forms:

∂η

∂τ
= ∂2η

∂x2
(7)

with I.C.
η(x, 0) = 0 (8)

and B.C.
η(0, τ ) = 1
limx→∞ η(x, τ ) = 0

}
(9)

Equation (7) is solved under initial and boundary conditions given by Eqs. (8) and
(9) using the heat balance integral method. Various heat and phase change problems
are solved using the heat balance integral method. “Heat balance integral method is a
simple approximate technique originally developed for analysing thermal problems”.
This method was first described by Goodman [20–23].

Define δ(t), i.e. distance over which the temperature changes are felt at time t .
Integrate equation (5) from x = 0 to x = δ(t) which gives

(
∂ϕ

∂x

)
x=δ(t)

−
(

∂ϕ

∂x

)
x=0

= 1

α

∫ δ(t)

0

∂ϕ

∂t
dx (10)

The right-hand side integral is performed by applying the rule of differentiation under
the integral sign, hence

(
∂ϕ

∂x

)
x=δ(t)

−
(

∂ϕ

∂x

)
x=0

= 1

α

[
d

dt

∫ δ(t)

0
ϕdx − ϕx=δ

dδ

dt

]
(11)

But

(
∂ϕ
∂x

)
x=δ

= 0 and ϕ = ϕ0 at x = δ.

Let

θ =
∫ δ(t)

0
ϕdx (12)
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Hence, Eq. (5) becomes

− α

(
∂ϕ

∂x

)
x=0

= d

dt
(θ − ϕ0δ) (13)

− κ

(
∂ϕ

∂x

)
x=0

= ρCp
d

dt
(θ − ϕ0δ) (14)

Rate of input of energy at face x = 0 at any time t= Rate of energy of the sensible
heat of the heated layer of stiffness δ(t).

The B.C. at ∞ with

ϕ(δ(t), t) = ∂η

∂x
(δ(t), t) = 0 (15)

where δ is “sufficiently far from the boundary such that the boundary temperature
has a negligible effect”.

Therefore,

ϕ = ϕh at x = 0
ϕ = ϕ0 at x = δ
∂ϕ
∂x = 0 at x = δ

⎫⎬
⎭ (16)

Another condition can be obtained by evaluating the differential equation at x = δ(t),
where ϕ = ϕh=constant.

Therefore,

∂ϕ
∂t = 0 at x = δ
∂2ϕ
∂x2 = 0 at x = δ

}
(17)

Using the above conditions, the solution for G(x, t) is an appropriate approximate
polynomial [20]:

η(x, t) =
(
1 − x

δ

)m

(18)

On integrating over x ∈ [0, δ] and substituting for G(x, t) using Eq. (18) and then
again on integration, it leads to [20]

δ = √
2m(m + 1)t (19)
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Taking seventh order polynomial, using Eqs. (18) and (19), the resulting solution is
given by

ϕ(x, t) = ϕ0 + (ϕh − ϕ0)

[
1 − 7

( x

δ

)
+ 21

( x

δ

)2 − 35
( x

δ

)3 + 35
( x

δ

)4 − 21
( x

δ

)5 + 7
( x

δ

)6 − 21
( x

δ

)7]

(20)
with

δ = √
112αt (21)

4 Simulation of Heat Conduction Model

Influence of cylindrical bowl temperature on the temperature of the fabric in stiffness
direction, influence of dwell time and influence of thermal diffusivity have been
examined using themathematicalmodel given byEq. (20) for single nip silk finishing
calender. Cylindrical bowl temperatures (BT) are taken in the range from 180 ◦–270
◦C, and the initial temperature of fabric is taken as 75 ◦C. Data used for simulation
is given in Table 1.

Table 1 Simulation parameters

Calendering parameters Simulation details

Composition Alternate hard and soft bowls

Hard cylindrical bowl material Cylinders having covering of chilled cast iron

Soft cylindrical bowl material Cylinders having covering of soft material

Speed (m/min) 400 − 900

Linear load (kN/m) 120 − 480

Hot cylindrical bowl temperature (◦C) 180 − 420

Hard Cover Stiffness (m) 0.105

Nip width (m) 0.0065

Soft material stiffness (m) 0.05

Diameter of cylindrical bowl (m) 0.36, 0.5

Specific heat (J/Kg.K ) 1900

Thermal conductivity (W/m.K ) 0.17

Density (Kg/m3) 920

Dwell time (s) 0.008

Thermal diffusivity (m2/s) 9.6 × 10−8
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5 Results and Discussion

5.1 Influence of Cylindrical Bowl Temperature
on Temperature of Fabric in Stiffness Direction

Influence of cylindrical bowl temperature on the temperature of the fabric in stiffness
direction inside the nip of silk finishing calender has been investigated from Eq. (20)
as presented in Fig. 1, and calculated results are given in Table 2.

Results given in tables and figures clearly indicate that the side of the fabric
which is in touch with the heated cylindrical bowl is at a very high temperature as
compared to the side of the fabric which is in touch with the non-heated cylindrical
bowl. Hence, temperature of the fabric decreases with rise in web depth, and while
moving towards the mid of the fabric there is a very negligible influence of bowl
temperature in stiffness direction. Also, results show that with a rise in cylindrical
bowl temperature average fabric temperature rises.
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Fig. 1 Influence of cylindrical bowl temperature of silk finishing calender on temperature of fabric
in stiffness direction
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Table 2 Influence of cylindrical bowl temperature of silk finishing calender on temperature of
fabric in stiffness direction

Fabric Depth (m) Contact cylindrical bowl temperature (◦C)
BT180 BT210 BT240 BT270

0 180 210 240 270

0.00001 122.244 135.742 149.241 162.739

0.00002 94.1768 99.6559 105.135 110.614

0.00003 81.8109 83.7569 85.7029 87.648

0.00004 77.0203 77.5976 78.1748 78.752

0.00005 75.4638 75.5963 75.7289 75.8614

0.00006 75.0718 75.0923 75.1128 75.1334

0.00007 75.0056 75.0072 75.0088 75.0104

0.00008 75.0001 75.0001 75.0002 75.0002

0.00009 75 75 75 75

0.0001 75 75 75 75

Average
temperature

91.4358 96.1317 100.8277 105.5235

5.2 Influence of Dwell Time

The influence of dwell time has been found on the temperature at the mid part of the
fabric in stiffness direction for the case of silk finishing calender from Eq. (20) as
presented in Fig. 2, and calculated results are given in Table 3.

Results given in tables and figures clearly indicate that with rise in dwell time,
fabric spends more time inside the calender nip due to which heat penetrates up to
the centre of the fabric from the side which is in touch with the heated cylindrical
bowl. Hence with rise in dwell time, temperature of the fabric rises.
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Fig. 2 Influence of dwell time at mid stiffness of the fabric (0.00005 m) at various temperatures
in silk finishing calender

Table 3 Influence of dwell time at mid stiffness of the fabric (0.00005 m) at various temperatures
in silk finishing calender

Dwell Time (s) Contact cylindrical bowl temperature (◦C)
BT180 BT210 BT240 BT270

0.0002 75 75 75 75

0.0003 75 75 75.0001 75.0001

0.0004 75.0045 75.0058 75.007 75.0083

0.0005 75.0346 75.0445 75.0543 75.0642

0.0006 75.1147 75.1474 75.1802 75.213

0.0007 75.2572 75.3307 75.4042 75.4777

0.0008 75.4638 75.5963 75.7289 75.8614

5.3 Influence of Thermal Diffusivity on Temperature of
Fabric in Stiffness Direction

Influence of thermal diffusivity on the temperature of the fabric in stiffness direction
has been investigated for silk finishing calendering with the heated cylindrical bowl
temperature 180 ◦C using Eq. (20) as presented in Fig. 3, and calculated results are
given in Table 4.



318 N. Gupta and N. Kanth

Results given in tables and figures clearly indicate that with rise in thermal diffu-
sivity, more heat penetrates the fabric inside the calender nip up to the centre of the
fabric and therefore the average temperature of the fabric rises.

Fig. 3 Influence of thermal diffusivity of silk finishing calender on temperature of the fabric in
stiffness direction

Table 4 Influence of thermal diffusivity on temperature of fabric in stiffness direction in silk
finishing calender

Fabric Depth (m) Thermal diffusivity (m2/s)

9.2 × 10−8 9.5 × 10−8 9.8 × 10−8 10.1 × 10−8

0 180 180 180 180

0.00001 121.391 122.035 122.656 123.255

0.00002 93.397 93.9839 94.5586 95.1213

0.00003 81.3355 81.6922 82.0482 82.4033

0.00004 76.8006 76.9647 77.1329 77.305

0.00005 75.388 75.4442 75.5042 75.5678

0.00006 75.0542 75.0671 75.0818 75.0983

0.00007 75.0035 75.005 75.007 75.0094

0.00008 75 75.0001 75.0002 75.0003

0.00009 75 75 75 75

0.0001 75 75 75 75

Average
Temperature

91.2154 91.3811 91.5445 91.7055
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6 Conclusion

The analytical approximate solution of one-dimensional heat conduction equation
is obtained using heat balance integral method. This also reflects the remarkable
applicability of the heat balance integral method to solve the heat conduction model
used in the textile industry. This model gives an evolutionary advantage and helps to
predict the temperature of the fabric at distinct web depths in the stiffness direction
inside the nip. In the case of the silk finishing calender, heat penetrates the outer
surface of the fabric which is in touch with the heated cylindrical bowl. Therefore, in
silk finishing calender, heat is not conducted to the mid of the fabric. Therefore, silk
finishing calender gives more lustre and less dense fabric. To rise gloss and decrease
roughness, higher temperature, higher load and lower speed are held accountable.
Also, a decrease in the speed of the fabric passing through the calender nip results in
the rise of dwell timewhich in turn rises the average temperature of the fabric.Desired
fabric quality may not be obtained if calendering speed should not be increased
beyond a certain limit. More pressure and heat are transported to the fabric in a
stiffness direction which output the required quality of the fabric. So pressure and
temperature influence should be balanced to get optimized results.
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AMulti-Criteria Decision Approach
using Divergence Measures for Selection
of the Best COVID-19 Vaccine

H. D. Arora, Anjali Naithani, and Aakanksha

Abstract COVID-19 is a worldwide health threat that has resulted in a significant
number of deaths and complicated healthcare management issues. To prevent the
COVID-19 pandemic, there is a need to choose a safe and most effective vaccine.
Several Multi-criteria Decision-Making (MADM) techniques and approaches have
been selected to choose the optimal probable options. The purpose of this article
is to deliver divergence measures for fuzzy sets. To validate these measures, some
of the properties were also proved. The Multi-criteria Decision-Making method is
employed to rank and hence select the best vaccine out of available alternatives.
The proposed research allows the ranking of different vaccines based on specified
criteria in a fuzzy environment to aid in the selection process. The results suggest
that the proposed model provides a realistic way to select the best vaccine from the
vaccines available. A case study on the selection of the best COVID-19 vaccine and
its experimental results using fuzzy sets are discussed.

Keywords TOPSIS · Multi-criteria decision-making · Triangular fuzzy sets

1 Introduction

The fuzzy set theory proposed by Zadeh in 1965 is a beneficial tool for solving
problems in vague environments. Zadeh’s fuzzy sets are intended to produce an
analogue of crisp set theory in the field of uncertain conditions. Zadeh created a fuzzy
set theory that may be used in incidents requiring ambiguity, vagueness, uncertainty
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and hazy judgements. Theoretically, fuzzy sets might be used as a foundation for
an expansion of mathematical concepts such as probability, topology and so forth
whose traditional counterparts are based on the subject of crisp set theory. A Fuzzy
Set primarily defines the degree to which a particular element belongs to a given set.

Fuzzy numbers were employed to get better outcomes in situations involving
decision-making and evaluations. Fuzzy numbers which are an extended version of
real numbers have their own features that may be linked to number theory. To make
a connection between number theory and fuzzy numbers, triangular fuzzy numbers
were introducedwhichmirror Pythagorean triples. Triangular FuzzyNumbers (TFN)
have been used to describe ambiguous and partial data in assessing risk, partial calls
and knowledge-based systems.

Multi-criteria Decision-Making (MCDM) is a data science field that assesses
multiple competing factors in decision-making. In domains where selecting the
optimal solution is exceedingly complicated, the multi-criteria decision-making
delivers robust decision taking. During the previous several years, Multi-criteria
Decision-Making has had a tremendous amount of applications. Its relevance has
risen considerably in a number of application sectors, especially when new tech-
niques arise and current ones adapt. Multi-criteria Decision-Making is often utilized
in a variety of fields, such as earth science, power generation, sustainability manage-
ment, numerical methods and others. This study proposes a supplement to the fuzzy
MCDM technique, in which the ranking of alternatives versus characteristics, as
well as the weights of all criteria, are evaluated in semantic results calculated by
Fuzzy numbers. Several academics in the field of linguistic modeling [4, 5] and
fuzzy linguistic modeling [6] have presented the MCDM model in a fuzzy environ-
ment. Triantaphyllou et al. [7] gave Multi-criteria Decision-Making an Operations
research approach. Harrera et al. [8] used a fuzzy set technique to provide a linguistic
methodology for group decision-making.Kacprzyk et al. [9] propose fuzzy logicwith
linguistic expressions for group decision-making. Liu et al. [10] proposed a strategy
for resolving fuzzy MADM issues with triangular Fuzzy Numbers depending on
the connection number. For tackling multi attribute decision-making issues with
given criterion weights, Wang and Gong [11] proposed a Set Pair Analysis-Based
decision-making approach. Zhao and Zhang [12] presented the Set Pair Analysis-
Based Triangular Fuzzy number MADM approach to handle difficulties with Multi
Attribute Decision-Making when both characteristic weight and value are Trian-
gular Fuzzy Numbers. To analyze the ambiguousMADM issue, Huang and Luo [13]
proposed an index weight measure based on TFN. Moreover, Seikh et al. [14] gave
Generalized triangular fuzzy numbers in an Intuitionistic fuzzy environment, and
Sudha and Jayalalitha [15] defined Fuzzy triangular numbers in Sierpinski Triangle
and Right-Angle Triangle. Also, Gani [16] proposed a new operation on Triangular
Fuzzy Numbers for solving the fuzzy LPP.

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
is an MCDM approach established by Yoon and Hwang [17], which was updated by
Yoon [18] and further by Hwang et al. [19]. The TOPSIS method is founded on the
principle that the preferred choice should have the smallest Euclidean Distance from
Positive Ideal Solution (PIS) and the greatest Euclidean Distance from Negative
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Ideal Solution (NIS) [20]. The TOPSIS technique was used by several studies to
investigate the MADM methodology [21]. TOPSIS method was employed for polar
fuzzy linguistic [22, 24], environmental management [25, 26], supplier section [27]
and several other realistic scenarios.

The COVID-19 pandemic is a worldwide health threat that has resulted in many
deaths. In order to prevent further casualties, there is a need to choose the best vaccine
when all the criteria are considered simultaneously. The criteria taken in this paper
are taken from https://www.who.int/ [28]. India Today [29, 30] provided the data for
the availability of different vaccines, and the data for the price of different vaccines
[31, 32], their after-effects [33] and their efficacy [34] has been collected from Times
of India [31, 34].

The following is how the entire article is structured: the second section discusses
various fundamental definitions related to Fuzzy Sets, Triangular Fuzzy Numbers
and Distance Measures. In the third section, a fuzzy TOPSIS algorithm is suggested
as well as a case study to select the best COVID-19 vaccine is discussed and vaccines
are ranked accordingly. Finally, Sect. 4 presents the paper’s conclusion.

2 Preliminaries

The theoretical foundation of fuzzy sets suggested by Zadeh [35] and Zimmerman
[36, 37] is covered in this section. The following is an overview of the fuzzy set
concept.

Definition 2.1 [35]. The Fuzzy Set A inƳis described by the membership function:

A = {〈y, μA(y)〉|y ∈ ϒ} (1)

whereμA(y):Ƴ→ [0, 1] is themeasure of the degree of belongingness of participation
of an element y ∈ Ƴ in A.

Definition 2.2 [38]. Let A = [e, f , g, h] be any real Fuzzy Number, thus its
membership function is as follows:

μA(x) =

⎧
⎪⎪⎨

⎪⎪⎩

μL
M(x) e ≤ x ≤ f
1 f ≤ x ≤ g

μU
M(x), g ≤ x ≤ h
0 otherwise

(2)

where μL
M (x) and μU

M (x) are lower and the upper Membership Functions of the
Fuzzy Number A, respectively, and p = −∞, or p = q, or q = r, or r = s, or s = +
∞.

Definition 2.3 [36, 37]. A Triangular Fuzzy Number (TFN) A is a Fuzzy Number
with piece-wise linear membership function μA(x) described by

https://www.who.int/


324 H. D. Arora et al.

μA(x) =

⎧
⎪⎨

⎪⎩

x−u
v−u u ≤ x ≤ v
w−x
w−v v ≤ x ≤ w
0 otherwise

(3)

which is represented as (u, v, w).

Definition 2.4 [39]. Let P = (u, v, w) and Q = (x, y, z) be any two TFNs. Then the
Distance Measure function D(P, Q) can be defined as

D(P, Q) =
√
1

3

{
(x − u)2 + (y − v)2 + (z − w)2

}
. (4)

3 Suggested Fuzzy TOPSIS Algorithm

Due to its capacity to examine several attributes concurrently, Multi Attribute
Decision-Making (MADM) has appeared to be a promising technique to solve prob-
lems with inadequate or vague data. This section discusses the MADM issue in the
fuzzy domain. A feasible procedure is made available to deal with MADM issues in
a fuzzy environment. We know that each decision matrix in the MADMmethod has
four main components: (a) Criteria, (b) Alternative, (c) Weights and (d) assessment
value of alternatives in relation to the criteria. The method of the proposed technique
will then be applied to the selection of the best COVID-19 vaccine.

The procedure proposed to solve the MADM issue in a fuzzy environment is
explained by the following steps:

Step 1: Gather the decision maker’s subjective opinion on the relevance of the
weights.

Step 2: Compute the Fuzzy significant coefficients or weights founded on the
decision maker’s subjective judgements utilizing the table of linguistic variables and
their accompanying Triangular Fuzzy Weights.

Step 3: Structure the normalized Decision Matrix.
Step 4: Create the Fuzzy Weighted Decision Matrix by multiplying normalized

decision matrix by their corresponding fuzzy weights.
Step 5: Calculate the Fuzzy Positive Ideal Solution and the Fuzzy Negative Ideal

Solution.
Step 6: Calculate the Euclidean Distance of all alternatives from fuzzy positive

and negative ideal solutions.
Step 7: Determine the fuzzy closeness coefficient.
Step 8: Sort the alternatives corresponding to their closeness coefficients and

chose the foremost option.
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3.1 Case Study

Coronavirus disease (COVID-19) is an infectious illness caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The symptoms of coronavirus
range fromnone to life-threatening. COVID-19 canmake anyone sick and cause them
to become terminally sick or die at any time. To prevent these severe effects, vacci-
nation is done in every country including India. The Oxford AstraZeneca vaccine,
created by the Serum Institute of India (SII) under the title “Covishield” and BBV152
(Covaxin), a vaccine created by Bharat Biotech in conjunction with the National
Institute of Virology and the Indian Council of Medical Research, was approved by
the DCGI in January 2021. The DCGI authorized the Russian Sputnik V vaccine,
which has been tested in India byDr. Reddy’s Laboratories, inApril 2021. In late June
2021, DCGI authorized theModerna vaccine for emergency use. The various criteria
to choose the best COVID-19 vaccine are taken from https://www.who.int/pub
lications/m/item/criteria-for-covid-19-vaccine-prioritization. The data for Covaxin,
Covishield and Sputnik is taken for the Indian population, whereas the data for the
Moderna vaccine is taken by considering the worldwide population as the jabs of
the Moderna vaccine are given in India only in case of emergency. Data including
various criteria Efficacy (C1), Availability (C2), Price (C3) and After Effect (C4) is
given in the Table 1.

Based on the data given in the Table 1, the vaccines need to be ranked and the
selection of the best COVID-19 vaccine needs to be done. The initial stage inMADM
is to categorize the situation under consideration using benefit and cost criteria.
Benefit criteria are those that are intended to have higher values, whereas cost criteria
are those that are intended to have lower values. In the case study considered here,
Efficacy (C1) andAvailability (C2) are the criteria of benefit, and Price (C3) andAfter
Effect (C4) are the criteria of cost. To proceed further, a 7-point scale of Triangular
Fuzzy Numbers, as given in Table 2, must be chosen.

Step 1: Let there be four decision makers, DM1, DM2, DM3 and DM4 who will
decide the best COVID-19 vaccine among the alternatives present. Table 3 given
depicts the decision maker’s choices in terms of linguistic factors as follows.

Step 2: Fuzzyweights are computed and given below, based on the subjective opinion
of decision makers.

Table 1 Data set in the form of decision matrix

Alternative/criteria Efficacy Availability Price After Effect

Covaxin 81 55 1410 0.04

Covishield 90 75 780 0.03

Sputnik 91 15.6 1145 0.002

Moderna 95 0.75 800 0.00004

https://www.who.int/publications/m/item/criteria-for-covid-19-vaccine-prioritization
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Table 2 Linguistic variables and their corresponding triangular fuzzy weights

Importance Fuzzy weights

Very Low (VL) (0, 0, 0.1)

Low (L) (0, 0.1, 0.3)

Fairly Low (FL) (0.1, 0.3, 0.5)

Medium (M) (0.3, 0.5, 0.7)

Fairly High (FH) (0.5, 0.7, 0.9)

High (H) (0.7, 0.9, 1)

Very High (VH) (0.9, 1, 1)

Table 3 Rating by decision makers on linguistic scale

Criteria/decision maker DM1 DM2 DM3 DM4

Efficacy H FH VH VH

Availability FH H M FH

Price M FL VL FL

After effect H VH FH H

Step 3: Taking into account the highest, middle and lower values of the four ratings
from Table 4, the aggregated fuzzy weights are generated as follows (Table 5).

Step 4: Multiply the Normalized Decision Matrix by its associated Fuzzy Weights
to get the Fuzzy weighted Normalized Decision Matrix, as stated in the formula:

V = X × W

Table 4 Conversion of linguistic rating of decision makers into fuzzy rating

Criteria/decision maker DM1 DM2 DM3 DM4

C1 (0.7 0.9 1) (0.5 0.7 0.9) (0.9 1 1) (0.9 1 1)

C2 (0.5 0.7 0.9) (0.7 0.9 1) (0.3 0.5 0.7) (0.5 0.7 0.9)

C3 (0.3 0.5 0.7) (0.1 0.3 0.5) (0 0 0.1) (0.1 0.3 0.5)

C4 (0.7 0.9 1) (0.9 1 1) (0.5 0.7 0.9) (0.7 0.9 1)

Table 5 Aggregated fuzzy rating

Criteria/fuzzy weights L fuzzy weight M fuzzy weight U fuzzy weight

Efficacy (C1) 0.75 0.90 0.98

Availability (C2) 0.50 0.70 0.88

Price (C3) 0.13 0.28 0.45

After effect (C4) 0.70 0.88 0.98
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Table 6 Fuzzy weighted normalized decision matrix

Efficacy Availability

Covaxin 0.3398 0.4077 0.4417 0.2916 0.4082 0.5103

Covishield 0.3775 0.4530 0.4908 0.3976 0.5567 0.6959

Sputnik 0.3817 0.4581 0.4962 0.0827 0.1158 0.1447

Moderna 0.3985 0.4782 0.5181 0.0040 0.0056 0.0070

Price After effect

Covaxin 0.0826 0.1818 0.2975 0.5596 0.6994 0.7794

Covishield 0.0457 0.0457 0.1006 0.4197 0.5246 0.5845

Sputnik 0.0671 0.0671 0.1477 0.0280 0.0350 0.0390

Moderna 0.0469 0.0469 0.1032 0.0006 0.0007 0.0008

where V = vij (i = 1,…,4 and j = 1, 2, 3,…., 12) is normalized matrix, X = xij (i =
1,…,4 and j = 1,….., 4) is the decision matrix and W = wij (I = 1,….., 4, j = 1, 2,
3) are the aggregated fuzzy weights (Table 6).

Step 5: Using the following formulae, the fuzzy positive ideal solution (FPIS) Ak+

and fuzzy negative ideal solution (NPIS) Ak− are calculated:

Ak+ = {
rk+1 , rk+2 , . . . , rk+n

} = {(
max

(
rki j

)
/j ∈ I

)
,
(
min

(
rki j

)
/j ∈ J

)}
(5)

Ak+ = {
rk−1 , rk−2 , . . . , rk−n

} = {(
min

(
rki j

)
/j ∈ I

)
,
(
max

(
rki j

)
/j ∈ J

)}
(6)

where I and J represent the criterion of benefit and criterion of cost, respectively.
Table 7 shows the results of the calculations.

Step 6: Separationmeasures Si+, Si− and theEuclideanDistance [39]D(Ai,A+),D(Ai,
A−) of each alternative from FPIS and FNIS have been determined using Formulae
(7) and (8) and are provided in Tables 8 and 9.

S+
i = ∑n

i=1 D
(
Ai , A+)

, where

Table 7 Positive and negative ideal solution for each criterion

Efficacy (C1) Availability (C2)

Lower Middle Upper Lower Middle Upper

A+ 0.3985 0.4782 0.5181 0.3976 0.5567 0.6959

A− 0.3398 0.4077 0.4417 0.0040 0.0056 0.0070

Price (C3) After effect (C4)

A+ 0.0457 0.1006 0.1646 0.0006 0.0007 0.0008

A− 0.0826 0.1818 0.2975 0.5596 0.6994 0.7794
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Table 8 Separation measures for FPIS for each criterion

C1 C2 C3 C4 Si+

For FPIS Covaxin 0.0689 0.1502 0.0924 0.6848 0.9964

Covishield 0 0 0.5134 0.5134 0.5381

Sputnik 0.4462 0.0536 0.0036 0.0336 0.5530

Moderna 0.5578 0.0029 0.0029 0 0.5607

Table 9 Separation measures for FNIS for each criterion

C1 C2 C3 C4 Si−

For FNIS Covaxin 0 0.4075 0 0 0.4075

Covishield 0.0443 0.5578 0.0924 0.1714 0.8659

Sputnik 0.0492 0.1116 0.0389 0.6512 0.8509

Moderna 0.0689 0 0.0895 0.6848 0.8432

D
(
Ai , A

+) =
√
1

3

{
(a1 − b+)2 + (

a2 − b+
2

)2 + (
a3 − b+

3

)2
}

∀i = 1, 2, 3, 4 (7)

and
S−
i = ∑n

i=1 D
(
Ai , A−)

, where

D
(
Ai , A

−) =
√
1

3

{
(a1 − b−)2 + (

a2 − b−
2

)2 + (
a3 − b−

3

)2
}

∀i = 1, 2, 3, 4 (8)

Step 7: Equation (9) was used to get the closeness coefficient (Ri) for each evaluated
alternative.

Ri = D
(
Ai , A−)

D(Ai , A+) + D(Ai , A−)
= S−

i

S+
i + S−

i

where 0 ≤ Ri ≤ 1, i = 1, 2, 3, 4

(9)

As stated in Table 10, the rankings were done in decreasing order of magnitude.

Table 10 Ranking result obtained from TOPSIS approach

Si+ Si− Ri Rank

Covaxin 0.9964 0.4075 0.2903 4

Covishield 0.5381 0.8659 0.6168 1

Sputnik 0.5530 0.8509 0.6061 2

Moderna 0.5607 0.8432 0.6006 3
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3.2 Sensitivity Analysis

Originally, the decision makers were given equal importance while ranking the
different alternatives. However, there are instances where the decision maker’s
opinions are prioritized differently. In this section, such scenarios have been
examined.

Different priorities, β i, have been allotted to the four decision makers, where β i >
0, i = 1, 2, 3, 4 and

∑4
i=1 βi = 1. The distance measures Dr

+,Dr
− and the closeness

coefficient (Ri) have been calculated using Eqs. (10), (11) and (12) and are introduced
in Table 11.

D+
r =

s∑

r=1

βi S
+
r (10)

D−
r =

s∑

r=1

βi S
−
r (11)

Also, Ri = v−
r

v+
r + v−

r
where 0 ≤ Ri ≤ 1, i = 1, 2, 3, 4 (12)

The results of the suggested technique remained the samewhen different priorities
were assigned to the judgements of decision makers and Covishield stood out to be
the best vaccine against COVID-19 in all circumstances, hence proving the validity
and dependability of the suggested technique.

4 Conclusion

In this paper, a novel technique to solve issues involving Multi-criteria Decision-
Making was proposed and the same was applied in order to select the best COVID-
19 vaccine. The selection was done by considering different criteria and a team of
experts. Thenwe ranked various vaccines with the help of the TOPSIS approach, also
the selection for the best vaccine was done by assigning priorities to different criteria.
Eventually, it was found that Covishield is the best vaccine out of the available alter-
natives. Despite the Multi-Criteria domain, this approach supports decision makers
in producing unbiased and systematic judgements. In the long term, this study can
be used in various Multi-criteria Decision-Making procedures and could help in the
analysis of various vague situations.
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Table 11 Aggregated closeness coefficient and ranking of each alternative

(a) Case 1: β1 = 0.4, β2 = 0.3, β3 = 0.2 and β4 = 0.1

Vaccines Distance measure Ri Rank Best vaccine

Dr
+ Dr

−

Covaxin 0.1596 0.1223 0.4337 3 Covishield

Covishield 0.0612 0.2207 0.7829 1

Sputnik 0.1558 0.1261 0.4472 2

Moderna 0.1679 0.1139 0.4043 4

(b) Case 2: β1 = 0.35, β2 = 0.25, β3 = 0.23 and β4 = 0.17

Covaxin 0.1994 0.1019 0.3382 4 Covishield

Covishield 0.0959 0.2053 0.6817 1

Sputnik 0.1365 0.1648 0.5470 2

Moderna 0.1401 0.1611 0.5349 3

(c) Case 3: β1 = 0.3, β2 = 0.28, β3 = 0.27 and β4 = 0.17

Covaxin 0.2041 0.1141 0.3586 4 Covishield

Covishield 0.0947 0.2236 0.7025 1

Sputnik 0.1510 0.1672 0.5254 2

Moderna 0.1570 0.1613 0.5067 3

(d) Case 4: β1 = 0.33, β2 = 0.29, β3 = 0.2 and β4 = 0.18

Covaxin 0.2081 0.1182 0.3622 4 Covishield

Covishield 0.1005 0.2257 0.6918 1

Sputnik 0.1527 0.1736 0.5321 2

Moderna 0.1623 0.1639 0.5024 3
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Magnetohydrodynamic Mixed
Convection Flow in a Vertical Channel
Filled with Porous Media

Nidhi Singh and Manish K. Khandelwal

Abstract We report a linear instability mechanism of MHD mixed convection flow
in a porousmediumchannel under a transversemagnetic field. The stability results are
reported for an electrically conducting water-based electrolytes fluid. The governing
equations are solved by a Chebyshev spectral collocation method. The linear distur-
bance equations formed a generalized eigenvalue problem. The results show that
the basic flow contains the inflection point. The linear stability analysis shows that
the growth of the disturbance reduces by increasing the strength of the magnetic
field and decreasing the media permeability of the porous medium flow. The linear
stability boundaries show that the relatively higher strength of the applied magnetic
field stabilizes the flow, whereas an increase in the media permeability destabilizes
the basic flow.

Keywords MHD flow · Mixed convection · Porous medium

1 Introduction

The phenomenon of mixed convection occurs due to thermal buoyancy force as well
as external pressure gradient. The mixed convection flows through porous medium
have been examined extensively due to wide applications in the electronic industry.
The porousmedium is an excellent candidate to enhance the heat inmanyheat transfer
applications. The stability of mixed convection flow in vertical geometries has been
the object of great interest in several applications namely heat exchangers, nuclear
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reactors, solar collectors, electronic equipment. The researchers have already studied
the hydrodynamic instability properties of mixed convection flow in the vertical
configurations [1–6] under different types of heating conditions. The flow of an elec-
trically conducting fluid through a porous medium under an applied magnetic field
has received considerable attention in many technological and laboratory flows. The
study of magnetohydrodynamic (MHD) flow of electrically conducting fluid through
a porous medium is essential in many MHD-related applications such as blankets
(e.g., dual-coolant lead–lithium (DCLL) blanket) for thermonuclear reactors, MHD
generators, crystal growth, and stirring of melts in the metallurgical industry, and
electronic devices [7, 8]. The interaction of electrically conducting fluid with the
magnetic field through inter-connected porous medium flow gives a significant heat
enhancement in the above-mentioned applications.

The understanding of hydrodynamic stability analysis of MHD porous media
flow is a fundamental interest in many applications. The present paper focuses on
the stability analysis of parallel mixed convection flow in a linearly heated vertical
porous medium channel with a transverse magnetic field. The flow instabilities may
appear by many factors, particularly by a magnetic field, heat transfer, and medium
permeability of the porous medium. The present study will provide the basic concept
of the flow instability mechanism of an electrically conducting fluid through a porous
medium in the presence of a magnetic field. There are some studies relevant to
the present investigation in a vertical configuration. We summarize some important
conclusions, which may support the present investigation.

The instability mechanism of non-magnetic fully developed mixed convection
flow in a vertical channel filled with a porous medium is well established in the
open literature using linear and weakly nonlinear stability analysis [9–15]. In these
studies, two different types of state the local thermal equilibrium (LTE) state and local
thermal non-equilibrium (LTNE) state are used for energy equations to examine the
instability characteristics of porous medium flow. The effect of media permeability
[9], the influence of Prandtl number [10], impact of different models [11], the impact
of inter-phase heat transfer coefficient [12] for porous medium flow are discussed in
terms of stability analysis. These porous medium parallel mixed convection channel
flow studies show that flow is most unstable under two-dimensional. The kinetic
energy balance mainly gives three different instability types: buoyant, shear, and
thermal-shear (mixed) instability for assisted flow and Rayleigh–Taylor instability
for buoyancy-opposed flow.

The MHD flow through porous media is investigated very little in the open litera-
ture. However, few important theoretical and experimental studies on porousmedium
flow in the presence of a magnetic field in different geometries are available in the
literature [7, 16–22]. Wallace et al. [16] have investigated an experimental study for
the flow of mercury in porous media (sandstone) under a magnetic field. They have
shown that the flow rate ofmercury through the porousmedia under themagnetic field
does not change. Later, Rudraiah et al. [22] have performed a theoretical and numer-
ical study of Hartmann flow to validate experimentally obtained results of Wallace
et al. [16]. Using multiple scale expansions, Geindreau and Auriault [7] have exam-
ined the macroscopic description of seepage in porous media under magnetic field.
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In contrast to instability properties of porous medium flow under magnetic field,
the instability mechanism for viscous-medium flow in a vertical channel under
applied magnetic field is discussed rigorously. For example, a survey of existing
published literature: related to natural convection [23–25], in connection with forced
convection [26–28], and in connection with mixed convection [29–32] focuses on
the instability mechanism of parallel channel flow under magnetic field. In these
studies, the magnetic field, in general, stabilizes the basic flow. However, in the
mixed convection flow, thermal buoyancy force destabilizes the MHD flow.

The above literature review shows that the hydrodynamic stability characteristics
of mixed convection MHD flow in a vertical channel filled with a porous medium is
not considered yet in our best knowledge. Therefore, we aim to discuss the stability
properties ofmixed convectionMHDporousmediumflow using linear stability anal-
ysis in a vertical channel. The present study will provide a new research development
in many MHD applications.

2 Governing Equations

We consider an incompressible MHD flow in a long vertical channel filled with a
porous medium. The width of the channel is 2L. A uniform transverse magnetic
field of strength B0 is applied perpendicularly to the direction of the flow, as shown
in Fig. 1. Buoyancy force and an external pressure gradient drive the flow under a
uniform magnetic field. A linearly varying temperature is considered on the walls
as Tw = T0 + Cz where T0 denotes the reference temperature and C is a positive
constant. The schematic of flow configuration is displayed in Fig. 1. Thermo-physical
properties of the fluid are assumed constant except density in the buoyancy force term.
The Boussinesq approximation is used for the density variation. In the present study,
we have adopted volume-averagedNavier–Stokes (VANS) equations for transporting
porous medium [33] to analyze the flow instability. The non-dimensional governing
equation of the present problem is given by

∇.V = 0 (1)

(2)

σ
∂θ

∂t
+ V .∇θ = 1

RePr

(∇2θ − w
)

(3)

(4)

∇. j = 0 (5)
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Fig. 1 Physical problem and
coordinate system
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where , and ε are the unit vector in the x-direction and z-direction, the ratio
of the volumetric heat capacities of the fluid andmedium and porosity of themedium,
respectively. Following non-dimensional quantities are used to non-dimensionalized
the above governing equations

(x, y, z) = (x∗, y∗, z∗)
L

, V = V ∗

W0
, P = p∗

ρ0W0
2 , t = t∗W0

L
, θ = T − TW

CLRePr
,

φ = ∅

LB0W0
, j = j∗

σ1B0W0
(6)

where V , P, t, θ, j , φ are the dimensionless velocity vector, pressure, time, temper-
ature, current density, and electrical potential, respectively. The following non-
dimensional parameters are appeared in the present problem: Rayleigh number (Ra
= gCL4βT /να), Reynolds number (Re = W0L/ν), Prandtl number (Pr = ν/α),
Darcynumber (Da= K/L2),Forchheimer number (F =CF L/|K |1/2),viscosity ratio
(λ = μ/μ f ), interaction parameter (N = σ1LB0

2/ρ0W0), and Hartmann number (Ha
= √

N Re). Furthermore,W0 is average base velocity, ρ0 is reference fluid density, α
is the thermal diffusivity, βT is the thermal expansion coefficient, ν is the kinematic
viscosity, g acceleration due to gravity, K the permeability of the porous medium,
CF is form drag coefficient, μ is coefficient of effective viscosity, μ f is the fluid
viscosity, and σ1 is the electrical conductivity. Note that the value of σ and λ is taken
1 for the present investigation.
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2.1 Basic Flow

To investigate the instability mechanism of the mixed convective flow, first we derive
the basic flow that is steady state, unidirectional, and fully developed. Using these
conditions, the governingEqs. (1)–(5) reduces into the following ordinary differential
equations

λ
d2W0

dx2
− 1

Da
W0 − ReF |W0|W0 − Ha2W0 + Ra�0 = Re

dP0
dz

(7)

d2�0

dx2
= W0 (8)

The boundary conditions for the basic flow at the channel walls are

W0 = �0 = 0 at x = ±1 (9)

where W0,�0, and P0 are the basic state velocity, temperature, and pressure,
respectively.

2.2 Linear Stability Analysis

The classical normal mode analysis [34] is considered to examine the linear stability
analysis of the above MHD mixed convection basic flow. The infinitesimal distur-
bance is imposed on the basic flow. Thus the velocity, temperature, and pressure field
can be written as

(u, v,w, θ, P) =
(
u

′
, v

′
,W0(x) + w

′
,�0(x) + θ

′
, P0(z) + p

′)
(10)

In the above equation, primed quantities denote infinitesimal disturbance to the
corresponding field variable. The infinitesimal disturbance can be written in the form
of traveling waves [34]

X
′
(x, y, z, t) = X

∧

(x)ei(αz+βy−αct) (11)

where X
′
denotes field variables, α and β are wavenumbers in the z and y directions,

respectively. c = cr + ici represents the complex wave speed. The behavior of distur-
bance (growth/decay) depends upon the sign of ci . The flow is unstable, neutrally
stable, or stable accordingly as ci > 0, ci = 0, or ci < 0, respectively. The linear
disturbance equations for above basic flow are given as
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iαw
∧ + iβv

∧ + du
∧

dx
= 0 (12)

− 1

ε2
iαW0u

∧ − d p
∧

dx
+ λ

Re

(
d2u

∧

dx2
− (

α2 + β2)u
∧

)
− u

∧

DaRe
− F |W0|u

∧ = −1

ε
iαcu

∧

(13)

− 1

ε2
iαW0v

∧ − iβ p
∧ + λ

Re

(
d2v

∧

dx2
− (

α2 + β2)v
∧

)
− v

∧

DaRe
− F |W0|v

∧

− N (iαφ
∧

+ v
∧

) = −1

ε
iαcv

∧

(14)

− 1

ε2
iαW0w

∧ − iα p
∧ + λ

Re

(
d2w

∧

dx2
− (

α2 + β2
)
w
∧

)
− 1

ε2

dW0

dx
u
∧ − w

∧

DaRe

− 2F |W0|w∧ + N
(
iβφ

∧

− w
∧

)
+ Ra

Re
θ
∧

= −1

ε
iαcw

∧

(15)

−iαW 0θ
∧

+ 1

RePr

(
d2θ

∧

dx2
− (

α2 + β2
)
θ
∧

− w
∧

)

− d�0

dx
u
∧ = −σ iαcθ

∧

(16)

[
d2φ

∧

dx2
− (

α2 + β2
)
φ
∧

]

− iβw
∧ + iαv

∧ = 0 (17)

Finally, Eqs. (12)–(17) constitute a generalized eigenvalue problem.

2.3 Numerical Method

In order to determine the numerical solution of Eqs. (7) and (8) (basic flow equations)
and (12)–(17) (linear disturbance equations) along with boundary conditions, a high
accurate spectral collocation method has been used. The Chebyshev polynomial
is used as a basis set for spectral collocation method. The equations have been
discretized along the x-direction at Gauss–Lobatto points. These are the extreme
points of an M-degree Chebyshev polynomial and given by

x j = cos

(
π j

M

)
, j = 0, 1, 2, . . . , M

The main emphasis in spectral collocation method is to construct differential
operator which is given by
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Table 1 Comparison between published and present results under special caseHa= 0, Da= 1012,
ε = 1

Re Pr Published result [1] Present

Rac αc Rac αc

100 0.7 41.65 0.875 41.646 0.873

1000 0.7 30.26 1.355 30.263 1.355

100 7.0 15.73 0.24 15.738 0.237

1000 7.0 15.60 0.024 15.605 0.024

100 100 8.61 0.108 8.614 0.108

1000 100 8.6 0.011 8.597 0.011

D(1)
jk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c j (−1)k+ j

ck(x j−xk)
, j �= k

x j

2
(
1−x2j

) , 1 ≤ j = k ≤ N − 1

2N 2+1
6 , j = k = 0

− 2N 2+1
6 , j = k = N

The other higher order derivative can be obtained from lower order derivative by
differentiating them. In this process, the differentiation operator takes the role of the
derivative. Using spectral method discretization scheme, equations are transformed
into a generalized eigenvalue problem of the form

AX = cBX (18)

where X represents the eigenvector of the field variable, c is an eigenvalue. The square
matricesA andB represent the coefficients of linear disturbance equations. The details
of the considered numericalmethodwith implementation procedure canbe seen in the
reference [32]. The eigenvalues and eigenvectors of the eigenvalue problem (18) are
calculated byMATLAB software. The obtained results are compared with published
results [1] under some special cases. The results calculated by our numerical code
are in good match with the published one (Table 1).

3 Results and Discussion

In the present section, we discuss the results of mixed convection flow of electri-
cally conducting fluid in a vertical channel filled with porous medium. The present
problem is governed by six non-dimensional parameters, namely Darcy number
(Da), Reynolds number (Re), Prandtl number (Pr), Rayleigh number (Ra), Hart-
mann number (Ha), and Forchheimer number (F). The main emphasis is considered
on basic flow, disturbance growth rate profiles, and stability boundaries under a weak
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to a moderate value of the magnetic field. The stability results are determined for
electrically conducting water-based electrolytes fluid, whose Prandtl number (Pr)
is 7.01 [24]. The analysis is considered for high permeable porous medium flow.
Therefore, the porosity of the medium is taken at 0.9. The Reynolds number is fixed
at Re = 1000 for the present investigation. The value of F is calculated in terms of
CF and Da, i.e., F = CF/

√
Da, where CF is fixed at 0.006.

First,we examine the basic flow results to examine the impact ofmagnetic field and
media permeability of the MHD porous medium flow. Figure 2 shows a variation of
the basic velocity under different magnetic field strengths for Da = 10−2. The basic
velocity profiles contain the point of inflection near the channel walls. It is observed
that point of inflection in the velocity profile smooth out slowly on increasing the
value of magnetic field parameter Ha, and the velocity profile becomes flattened.
The maximum velocity occurs near the channel walls. The impact of the media
permeability in terms of the Darcy number under magnetic field on basic velocity is
investigated in Fig. 3. The high permeable flow provokes a clear point of inflection
in the velocity profile. The velocity profile is relatively more flattened under a low
permeability case (see for Da = 10−2).We have also examined the impact of thermal
buoyancy force under magnetic field on basic velocity and temperature in Fig. 4a–
b. It is observed that increasing the thermal buoyancy force in terms of Rayleigh
number invites the point of inflection in the basic velocity profile. The magnitude
of the basic velocity near channel walls increases on increasing the strength of the
thermal buoyancy force. The increase in the value of Ra also results in increase in
the magnitude of basic temperature (see Fig. 4b).

The above basic flow analysis indicates that the basic velocity profiles contain the
inflection point, which could increase the flow’s instability. Based on this analysis,
we can predict that the instability of the flow decreases on increasing the value of
Hartmann number, i.e., applied magnetic field has a tendency to stabilize the flow.
However, increased media permeability acts in the reverse way of the magnetic field.
We have examined the linear stability properties to confirm the observations of basic
flow.

Fig. 2 Basic velocity profile
for Da = 10–2, Ra = 150,
and different values of Ha
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Fig. 3 Basic velocity profile for Ha = 10, Ra = 150, and different values of Da
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Fig. 4 a Basic velocity profile. b Basic temperature profile for Ha = 10, Da = 10–2, and different
values of Ra

We have tested several numerical tests for different parameter sets to know the
least stable mode of linear stability. It is found that MHD porous medium flow is
least stable under two-dimensionalmode.Therefore,wehave examinedpresent linear
stability results for spanwise wavenumber β = 0. The disturbance growth of the most
unstable mode is one of the important features in the instability of the flow. To know
the instability behavior of mixed convection MHD flow of electrically conducting
water-based electrolytes fluid, we plot the disturbance growth rate contours in (Ha,
α)-plane for Da = 10−2 and Da = 10−3.The positive (negative) value of the growth
rate indicates the unstable (stable) nature. The disturbance growth rate contours show
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Fig. 5 Contour of the growth rate of the most unstable mode in (Ha, α)-plane at Ra = 1000 a Da
= 10−2 and b Da = 10−3

that growth of the disturbance reduces on enhancing the strength of the magnetic
field, i.e., flow instability reduces on enhancing the value of Hartmann number.
Figure 5a shows an unstable zone for weak magnetic field strength, but for relatively
high magnetic field strength, there is no unstable zone. We have also observed the
decrease in the media permeability gives a more stable flow. Figure 5b shows a
complete stable flow for the same parameters as Fig. 5a. The analysis shows that
the instability of the flow grows by increasing the media permeability of the porous
medium. The qualitative behavior of the growth rate analysis helps to examine the
linear instability boundaries. The linear stability results are calculated in terms critical
value of the Rayleigh number.

The instability boundaries for three different values of Darcy number (Da =
10−1, 10−2, and 10−3) in (Ha, Rac)-plane is plotted in Fig. 6 to understand the influ-
ence of magnetic field on instability boundaries. The critical value of the Rayleigh
number increases on increasing the strength of themagnetic field. For the higher value
of Ha, the generated Lorentz force in the flow stabilizes the basic flow. On the other
hand, increasing the Darcy number’s value reduces the critical value of Rayleigh
number, i.e., the flow stability reduces by increasing the media permeability of the
porous medium flow.

To gain further insight about the characteristics of the instability mechanism, we
have plotted eigenfunctions of a disturbance at a critical level for different values of
magnetic field parameter, i.e., Hartmann number in Fig. 7 for Da = 10−2. The distur-
bance fluctuation reduces by increasing the value of Ha. The magnitude of temper-
ature disturbance is larger in comparison to the velocity disturbance eigenfunction
for all considered values of the Ha.
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on linear stability critical point at Da = 10−2 for a Ha = 10, b Ha = 20, and c Ha = 50

4 Conclusion

In this paper, we have studied the instability mechanism of MHD mixed convection
flow in a vertical channel filled with the porous medium through a linear stability
analysis. The present study results are examined for electrically conducting water-
based electrolytes fluid at a fixed value of Re = 1000. A high permeable porous
medium flow situation is considered. In the present study, we have examined basic
flow characteristics, growth rate, and linear stability boundaries under awide range of
magnetic fields. The basic flow and linear disturbance equations are solved byCheby-
shev spectral collocation method. The considered flow is least stable under two-
dimensional disturbance. The enhancement in the media permeability and thermal
buoyancy force could give rise to the inflection point in the velocity profile. The
relatively strong magnetic field makes the velocity profile flatten. The growth rate
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profile shows that the stability domain enlarges by increasing the strength of the
magnetic field and decreasing the media permeability. The linear stability conforms
to the applied magnetic field stabilizes porous medium flow, whereas increase in the
media permeability destabilizes the basic flow. These results of the present studymay
serve as a piece of fruitful information in many porous medium MHD applications.
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Group Action on Fuzzy Ideals of Near
Rings
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Abstract In this paper, we introduce the group action on a near ring N and with it
we study group action on fuzzy ideals ofN , G-invariant fuzzy ideals, finite products
of fuzzy ideals, and G-primeness of fuzzy ideals of N .

Keywords Fuzzy ideals · Prime fuzzy ideals · G-invariant fuzzy ideals · G-prime
fuzzy ideals

2010 Mathematics Subject Classification. 16N60 · 16W25 · 16Y30

1 Introduction

A setN with two binary operations ‘+’ and ‘·’ is known as left near ring if (i) (N ,+)

is a group (not necessarily abelian), (ii) (N , ·) is a semigroup, (iii) α(β + γ) =
α · β + α · γ ∀ α,β and γ in N . Analogously, N is said to be a right near ring if
N satisfies (i i i)

′
(β + γ)α = β · α + γ · α ∀ α,β and γ in N . A near ring N with

0x = 0, ∀x ∈ N , is known as zero symmetric if 0x = 0, (left distributively yields
that x0 = 0).Throughout the paper, N represents a zero symmetric left near ring;
for simplicity, we call it a near ring. An ideal of near ring (N ,+, ·) is a subsetM of
N such that (i) (M,+) � (N ,+), (ii)NM ⊂ M, (iii) (n1 + m)n2 − n1n2 ∈ M ∀
m ∈ M and n1, n2 ∈ N . Note that if M fulfils (i) and (i i), it’s referred to as a left
ideal of N . It is termed a right ideal of N if M satisfies (i) and (i i i). A mapping
φ : N → N ′

from near ring N to near ring N ′
is said to be a homomorphism if (i)
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φ(α + β) = φ(α) + φ(β) (ii)φ(αβ) = φ(α)φ(β)∀α andβ ∈ N .Ahomomorphism
φ : N → N which is bijective is said to be an automorphism on N . The set of
all automorphism of N denoted by Aut (N ) forms a group under the operation of
composition of mappings.

The study of group actions on rings led to the establishment of the Galois theory
for rings. Lorenz and Passman [12], Montgomery [14], and others researched the
skew grouping approach in the context of the Galois theory, as well as the groupring
and fixed ring. The link between the G-prime ideals of R and the prime ideals of
skew groupring RG was identified by Lorenz and Passman [12]. Montgomery [14]
investigated the relationship between the prime ideals of R and RG , leading him to
broaden the scope of the action of a group to specR.

Fuzzy sets were introduced independently by L.A. Zadeh and Dieter Klaua in
1965 as an extension of the classical notion of set. Liu [11] studied fuzzy ideals
of a ring and many researchers [4, 6, 7, 20] extended the concepts.The concept of
fuzzy ideals and related features have been applied to a variety of fields, including
semigroups, [8–10, 18, 19], distributive lattice [2], BCK-algebras [16], and near
rings [22]. Kim and Kim [5] defined the exact analogue of fuzzy ideals for near
rings.

Sharma and Sharma [19] recently investigated the action of group on the fuzzy
ideals of the ringR and found a relationship between the G-prime fuzzy ideals ofR
and the prime fuzzy ideals ofR. We define the action of group on a near ringN and
investigate the action of group on fuzzy ideals and G-invariant fuzzy ideals of N ,
finite products of fuzzy ideals, and G-primeness of fuzzy ideals of N . As a result,
we extend Sharma and Sharma’s conclusions to near ring N .

2 Preliminaries

Definition 1 ([22]) If N is a near ring, then a fuzzy set F̃ in N is a set of ordered
pair F̃ = {(n, ηF̃ (n))|n ∈ N }, ηF̃ (n) is called membership function.

Definition 2 ([22]) Let η and μ be two fuzzy subsets of a near ring N . Then η ∩ μ
and η ◦ μ are defined as follows:

η ∩ μ(m) = min{η(m),μ(m)}.

And product η ◦ μ is defined by

η ◦ μ(m) =
⎧
⎨

⎩

sup
m=m1m2

{min(η(m1),μ(m2))} if m = m1m2

0 if m 
= m1m2.
(1)
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Definition 3 ([22]) Let (G,+) be a group and η be a fuzzy subset of G. Then η is
fuzzy subgroup if
(i) η(g1 + g2) ≥ min(η(g1), η(g2)), ∀ g1, g2 in G,
(ii) η(g) = η(−g), ∀ g in G.
Definition 4 ([22]) A fuzzy subset η of a near ring N is said to be a fuzzy subnear
ring of N if η is a fuzzy subgroup of N with respect to the addition ‘+’ and is a
fuzzy groupoid with respect to the multiplication ‘·’, i.e.,

(i) η(x − y) ≥ min(η(x), η(y)) and (ii) η(xy) ≥ min(η(x), η(y)) ∀ x, y ∈ N .

Definition 5 ([22]) A fuzzy subset η of a near ring N is said to be a fuzzy ideal of
N if η satisfies following conditions:

(i) η is fuzzy subnear ring,
(ii) η is normal fuzzy subgroup with respect to ‘+’,
(iii) η(rs) ≥ η(s); for all r,s in N ,

(iv) η((r + t)s − rs) ≥ η(t); ∀ r, s and t in N .

If η satisfies (i),(ii), and (iii), then it is called a fuzzy left ideal of N . If η satisfies
(i),(ii), and (iv), then it is called a fuzzy right ideal of N .

Definition 6 ([1]) Let G be a group and Z be a set. Then G is said to act on Z if
there is a mapping φ : G × Z → Z, with φ(a, z) written a ∗ z, such that
(i) a ∗ (b ∗ z) = (ab) ∗ z, ∀a, b ∈ G, z ∈ Z .
(i i) e ∗ z = z. e ∈ G, z ∈ Z . The mapping φ is called the action of G on Z, and
Z is said to be a G-set.
Definition 7 ([1]) Let G be a group acting on a set Z, and let z ∈ Z. Then the set

Gz = {az|a ∈ G}

is called the orbit of Z in G.
Proposition 1 Let N be a near ring and G = Aut (N ), group of all automorphism
of N .Then G acts on N via following map

φ : G × N → Nwhich is defined by φ(h, a) = h(a) or say h ∗ a = h(a).

Proof Take (h1, a1) and (h2, a2) such that

(h1, a1) = (h2, a2).

This implies that h1 = h2 and a1 = a2. Thus, we have

h1(a1) = h2(a1)

or
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φ(h1, a1) = φ(h2, a2).

Hence, φ is well defined. Furthermore, we show that φ is the action of G onN . Take
any g1, g2 ∈ G and b ∈ N . Then

g1 ∗ (g2 ∗ b) = g1 ∗ (g2(b)) = g1(g2(b)) (2)

(g1 ◦ g2) ∗ b = (g1 ◦ g2)(b) = g1(g2(b)). (3)

From (2) and (3), we get

(g1 ◦ g2) ∗ b = g1 ∗ (g2 ∗ b).

Also, we have
e ∗ x = x .

Hence, φ is the action of G on N .

Motivated by the definition of the group action of a finite group on fuzzy ideals of a
ring [19], we define a G−fuzzy ideal of N as follows:

Definition 8 Let G be a group. Then fuzzy set η of N is a G−set or G act on η if

ηg(r) = η(r g), g ∈ G

where r g denotes g acts on r, r ∈ N .

Example 1 LetN = {0, 1, 2} be a set. Then under following two binary operations
N forms a zero symmetric near ring:

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

Aut (N ) = { f | f : N → N is isomorphism}.

There are only two automorphisms (i) identity map and (i i) the map g defined as
follows:

g(0)=0, g(1)=2, and g(2)=1.

We know that Aut (N ) forms a group. Define a map λ : N → [0, 1] by

λ(a) =
{
0.9 a = 0
0.8 a = 1, 2.
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λ is a fuzzy ideal. By Definition 8, λg : N → [0, 1] is defined as λg(r) = λ(r g), i.e.,

λg(0) = λ(0g) = λ(0) = 0.9

λg(1) = λ(1g) = λ(2) = 0.8

λg(2) = λ(2g) = λ(1) = 0.8.

This implies that

λg = {(0, 0.9), (1, 0.8), (2, 0.8)} and (4)

λe = λ = {(0, 0.9), (1, 0.8), (2, 0.8)}. (5)

This shows that λg is a fuzzy ideal of N , since λ = λg.

3 Prime Fuzzy Ideals

Definition 9 ([19]) LetQ be a fuzzy ideal ofN . ThenQ is said to be a prime ideal
inN ifQ is not a constant function and for any fuzzy ideals η and μ inN , η ◦ μ ⊂ Q
implies that either η ⊂ Q or μ ⊂ Q.

Example 2 Take Z4 = {0, 1, 2, 3} the zero symmetric left near ring under binary
operations addition modulo 4 and for any a, b ∈ Z4 multiplication is defined as

a · b =
{
b a 
= 0
0 a = 0.

Define two maps η1, η2 : Z4 → [0, 1] by η1(z1) =
{
0.9 z1 = 0
0.8 z1 
= 0,

and η2(z2) = 0.9

for all z1, z2 ∈ Z4. It shows that η1 ◦ η2 ⊆ η1 and η1 ⊆ η1 but η2 
⊂ η1. As η1 is
non-constant function so η1 is a prime fuzzy ideal.

Proposition 2 If η is a fuzzy ideal of N , then ηg is a fuzzy ideal of N . Moreover,
primeness of η as a fuzzy ideal implies the primeness of fuzzy ideal ηg of N .

Proof Assume that η is a fuzzy ideal of N . Then we show that ηg is also a prime
fuzzy ideal of N , i.e., we will show that ηg satisfies following conditions:

Let r, s ∈ N . Since η is a fuzzy ideal of N , then we have

ηg(r − s) = η(r − s)g = η(r g − sg) ≥ min(η(r g), η(sg)),

i.e.,
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ηg(r − s) ≥ min(ηg(r), ηg(s)) (6)

and

ηg(rs) = η(rs)g = η(r gsg) ≥ min(η(r g), η(sg)), (7)

i.e.,

ηg(rs) ≥ min(η(r g), η(sg)). (8)

Equations (6) and (7) imply that ηg is a fuzzy subnear ring of N .

Again r, s ∈ N and η is fuzzy ideal of N , we have

ηg(r + s) = η(r + s)g = η(r g + sg) ≥ min(η(r g), η(sg)),

i.e.,

ηg(r + s) ≥ min(η(r g), η(sg)). (9)

Applying ([5], Lemma 2.3), we obtain

ηg(r) = η(r g) = η(−r g) = ηg(−r).

Also,

ηg(r) = η(r g) = η(sg + r g − sg) = η(s + r − s)g,

i.e.,

ηg(r) = ηg(s + r − s). (10)

Since ηg satisfies all conditions of normal subgroup, ηg is a normal fuzzy subgroup
of (N ,+). For r, s ∈ N , we have

ηg(rs) = η(rs)g = η(r gsg) ≥ η(sg),

i.e.,

ηg(rs) ≥ ηg(s). (11)

This implies that ηg is a fuzzy left ideal of N . Now, for r, s and t ∈ N , we have

ηg((r + t)s − rs) = η((r g + tg)sg − r gsg) ≥ η(tg),
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i.e.,

ηg((r + t)s − rs) ≥ ηg(t). (12)

This implies that η is a right fuzzy ideal. Thus, η is a fuzzy ideal(left fuzzy ideal as
well as right fuzzy ideal) of N .

Now we prove that ηg is a prime fuzzy ideal of N . Let A and B be two fuzzy
ideals of N such that A ◦ B ⊂ ηg. Then Ag−1

and Bg−1
are also fuzzy ideals of N ,

since g−1 ∈ G and as proved in ηg, we claim that Ag−1 ◦ Bg−1 ⊂ η. Let n ∈ N and

(Ag−1 ◦ Bg−1
)(n) = sup

n=n1n2
{min(Ag−1

(n1),Bg−1
(n2))}

= sup
ng−1=ng−1

1 ng−1

2

{
min(A(ng−1

1 ),B(ng−1

2 ))
}

= (A ◦ B)(ng−1
)

≤ ηg(ng−1
) = η((ng−1

)g)

= η(n).

So, Ag−1 ◦ Bg−1 ⊂ η. Since η is a prime fuzzy ideal, then we have Ag−1 ⊂ η or
Bg−1 ⊂ η. Suppose that Ag−1 ⊂ η. Then for all n ∈ N , we have

A(n) = A((ng)g
−1
) = Ag−1

(ng) ≤ η(ng) = ηg(n).

Thus A ⊂ ηg. This implies that ηg is a prime fuzzy ideal of N .

Now we define a G-invariant fuzzy ideal of a near ring.

Definition 10 A fuzzy ideal η of N is called a G-invariant fuzzy ideal of N if and
only if

ηg(r) = η(r g) ≥ η(r), ∀ g ∈ G, r ∈ N .

Or

η(r) = η((r g)g
−1
) ≥ η(r g).

Example 3 Let X be a near ring. Then

N =
{(

x 0
0 y

)∣
∣
∣
∣ x, y, 0 ∈ X

}

is near ring with regard to matrix addition and matrix multiplication. Let

I =
{(

0 0
0 y

)∣
∣
∣
∣ y, 0 ∈ X

}

.
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Then I is a fuzzy ideal of N . Define a map η : N → [0, 1] by

η(z) =
{
0.9 z = 0
0.8 z 
= 0 .

Consider

G(⊆ Aut (N )) = { f | f : N → N is an isomorphism}.

There are only two automorphisms that are identity map and the map g : N → N
defined by

g

(
x 0
0 y

)

=
(
y 0
0 x

)

.

Since ηg(r) = η(r g) = η(r) f or all g ∈ G and r ∈ N , we get η is G−invariant
fuzzy ideal in N .

Theorem 1 Let η be a fuzzy ideal ofN and ηG = ⋂

g∈G
ηg. Then ηG(r) = min{η(r g),

g ∈ G}.Moreover, fuzzy ideal η contains largest G-invariant fuzzy ideal ηG of N .

Proof Assume that

ηG(s) =
⋂

k∈G
ηk

= min{ηk(s), k ∈ G} = min{η(sk), k ∈ G}.

We prove that ηG is a fuzzy ideal of N .

Let r, s ∈ N . Then

ηG(r − s) = min{η(r − s)g, g ∈ G}
= min{η(r g − sg), g ∈ G}
= min{min(η(r g), η(sg)), g ∈ G}.

Since η is a fuzzy ideal, we have

ηG(r − s) ≥ min{min(η(r g), g ∈ G),min(η(sg), g ∈ G)}
= min{ηG(r), ηG(s)}.

This implies that

ηG(r − s) ≥ {ηG(r), ηG(s)}. (13)
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Also for any r, s ∈ N

ηG(rs) = min{η(rs)g, g ∈ G}
= min{η(r gsg), g ∈ G}
= min{min(η(r g), η(sg)), g ∈ G}.

Since η is a fuzzy ideal of N , we have

ηG(rs) ≥ min{min(η(r g), g ∈ G),min(η(sg), g ∈ G)}
= min{μG(r),μG(s)}.

Thus,

ηG(rs) ≥ {ηG(r), ηG(s)}. (14)

ηG(s + r − s) = min{η(s + r − s)g, g ∈ G}
= min{η(sg + r g − sg), g ∈ G}
= min{η(r g), g ∈ G}
= ηG(r).

Therefore,

ηG(s + r − s) = ηG(r). (15)

Now,

ηG(rs) = min{η(rs)g, g ∈ G}
= min{η(r gsg), g ∈ G}.

Again since η is fuzzy ideal, we can write for r, s ∈ N

ηG(rs) ≥ min{η(sg), g ∈ G}.
= ηG(s),

i.e.,

ηG(rs) ≥ ηG(s) (16)
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ηG((r + t)s − rs) = min{η((r + t)s − rs)g, g ∈ G}
= min{η((r + t)gsg − r gsg), g ∈ G}
= min{η((r g + tg)sg − r gsg), g ∈ G}
≥ min{η(tg), g ∈ G}.
= ηG(t)

ηG((r + t)s − rs) ≥ ηG(t). (17)

Since ηG is the left and right fuzzy ideals of N , then ηG is the fuzzy ideal of N . It
is still necessary to show that it is a G-invariant fuzzy ideal of N .

ηG(r g) = min{η((r g)k), k ∈ G}
= min{η(r gk), k ∈ G}
= min{η(r g

′
), g

′ ∈ G}
= ηG(r).

Now we prove that ηG is the largest. Assume that μ is any G-invariant fuzzy ideal of
N such that μ ⊆ η. Then for any g ∈ G

μ(r g) = μ(r) ≤ η(r).

Also,

μ(r g) = μ(r) = μ((r g)g
−1
) ≤ η(r g).

This implies that

μ(r) ≤ min{η(r g), g ∈ G} = ηG(r).

Thus,

μ ⊆ ηG .

Hence, ηG contained in η as the largest G-invariant fuzzy ideal of N .

Remark 1 If a fuzzy ideal η of N satisfies η = ηG . Then η is called as G-invariant
fuzzy ideal of N and vice versa.
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4 Union of Fuzzy Ideals of Near Ring

The following example demonstrates that the union of fuzzy ideals of a near ringN
need not be a fuzzy ideal in N .

Example 4 Let Q be a near ring. Then

N =
{(

0 p
0 q

)∣
∣
∣
∣ p, q 0 ∈ Q

}

is a near ring with regard to matrix addition and matrix multiplication. Let

I1 =
{(

0 p
0 0

)∣
∣
∣
∣ p, 0 ∈ Q

}

and

I2 =
{(

0 0
0 q

)∣
∣
∣
∣ q, 0 ∈ Q

}

.

We can check that I1 and I2 are ideals of N . Define maps

η1 : N → [0, 1] and η2 : N → [0, 1]

by

η1(x) =
{
0.5 x ∈ I1
0 x /∈ I1

and

η2(x) =
{
0.6, x ∈ I2
0, x /∈ I2.

Then η1 and η2 are fuzzy ideals of N . However

(η1 ∪ η2)(x) =
{
max{0.5, 0.6}, x ∈ I1 ∪ I2
0, x /∈ I1 ∪ I2

is not a fuzzy ideal ofN , since form =
(
0 p
0 0

)

n =
(
0 0
0 q

)

,m − n =
(
0 p
0 −q

)

/∈
I1 ∪ I2.We see that η1 ∪ η2(m − n) = 0, η1 ∪ η2(m) = 0.6, and η1 ∪ η2(n) = 0.5.
Thus,

η1 ∪ η2(m − n) = 0 
> max{η1 ∪ η2(m), η1 ∪ η2(n)}

> max{0.6, 0.5}

> 0.6.
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Hence, η1 ∪ η2 is not a fuzzy ideal of N .

Proposition 3 Let C = {ηk} be a chain of fuzzy ideals ofN . Then for any m, n ∈ N

min(sup
k

{ηk(m)}, sup
k

{ηk(n)}) = sup
k

{min(ηk(m), ηk(n))}.

Proof We can easily see that

sup
k

{min(ηk(m), ηk(n))} ≤ min(sup
k

{ηk(m)}, sup
k

{ηk(n)}).

Now, assume that

sup
k

{min(ηk(m), ηk(n))} = I.

And

I < min(sup
k

{ηk(m)}, sup
k

{ηk(n)}).

Then

sup
k

{ηk(m)} > I, or sup
k

{ηk(n)} > I.

ηr and ηs exist in such a way that

ηr (m) > I, & ηs(n) > I

or

ηr (m) > I ≥ min(ηr (m), ηr (n)) (18)

and

ηr (n) > I ≥ min(ηs(m), ηs(n)). (19)

Since, ηr , ηs ∈ C, so without loss of generality, we may assume that ηr ⊆ ηs and
ηs(n) ≥ ηs(m) Therefore, from (18) and (19), we get

I < ηr (m) ≤ ηs(m) = min(ηs(m), ηs(n)).

This contradicts the fact that

I = sup
k

{min(ηk(m), ηk(n))}.
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Hence,

min(sup
k

{ηk(m)}, sup
k

{ηk(n)}) = sup
k

{min(ηk(m), ηk(n))}.

Corollary 1 Assume that C = {ηk} is a chain of fuzzy ideals of N . Then for each
x1, x2, ..., xm ∈ N ,

min(sup
k

{ηk (x1)}, sup
k

{ηk (x2)}, ......., sup
k

{ηk (xm )}) = sup
k

{min(ηk(x1), ηk (x2), ......, ηk (xm ))}.

Theorem 1 Let C = {ηk} be a chain of fuzzy ideals ofN . Then
⋃

k ηk is a fuzzy ideal
of N .

Proof Let r, s ∈ N , and ηk be a fuzzy ideal ofN ,where k is a natural number. Then

(
⋃

k

ηk)(r − s) = sup
k
(ηk(r − s))

≥ sup
k

{min(ηk(r), ηk(s))}.

Using Corollary 1, we get

(
⋃

k

)(r − s) ≥ min{sup
k
(ηk(r)), sup

k
(ηk(s))},

i.e.,

(
⋃

k

ηk)(r − s) ≥ min{(
⋃

k

ηk)(r), (
⋃

k

ηk)(s)}. (20)

Also,

(
⋃

k

ηk)(rs) = sup
k
(
⋃

k

(rs))

≥ sup
k

{min(ηk(r), ηr (s))}.

Again from Corollary 1, we have

(
⋃

k

ηk)(rs) ≥ min{sup
k
(ηk(r)), sup

k
(ηk(s))},

i.e.,

(
⋃

k

ηk)(rs) ≥ min{(⋃
k

ηk)(r), (
⋃

k
ηk)(s)}. (21)
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Now

(
⋃

k

ηk)(s + r − s) = sup
k
(ηk(s + r − s))

= sup
k

{ηk(r)}.

Since ηk is a fuzzy ideal in N , we obtain

(
⋃

k

ηk)(s + r − s) = (
⋃

k

ηk)(r),

i.e.,

(
⋃

k

ηk)(s + r − s) = (
⋃

k

ηk)(r). (22)

(
⋃

k

ηk)(rs) = sup
k
(ηk(rs))

≥ sup
k

{ηk(s)}.

Again using the fact that ηk is fuzzy ideal, we get

(
⋃

k

ηk)(rs) ≥ (
⋃

k

ηk)(s) (23)

(
⋃

k

ηk)((r + t)s − rs) = sup
k
(ηk((r + t)s − rs))

≥ sup
k

{ηk(t)}.

Also,

(
⋃

k

ηk)((r + t)s − rs) ≥ (
⋃

k

ηk)(t). (24)

Hence, (
⋃

k
ηk) is a fuzzy ideal of N .
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5 G-Prime Fuzzy Ideals of a Near Ring

Motivated by the definition of G-prime fuzzy ideals of the rings [19], we define
G−prime fuzzy ideals in a near ring as follows.

Definition 11 Let the fuzzy ideal η ofN beG-invariant and non-constant. Ifμ ◦ λ ⊆
η implies that either μ ⊆ η or λ ⊆ η for any two G-invariant fuzzy ideals μ and λ of
N , then η is a G-prime fuzzy ideal.

Example 5 Take Z3 = {0, 1, 2}which is a zero symmetric left near ring under binary
operations addition modulo 3 and for any r, s ∈ Z3 multiplication is defined as fol-
lows:

r · s =
{
s r 
= 0
0 r = 0.

Aut (Z3) = { f | f : Z3 → Z3 is isomorphism}.

We can check that there are only two automorphisms on Z3; one is the identity map
and the other is the map g defined by

g(0)=0, g(1)=2 and g(2)=1.

Aut (Z3) forms a group under the composition ofmappings. Nowwe define twomaps

η1, η2 : Z3 → [0, 1] by η1(r) =
{
0.9 r = 0
0.8 r 
= 0,

and η2(s) = 0.9 for all r, s ∈ Z3. By

Definition 8, ηg
1 : Z3 → [0, 1] is defined as η

g
1(r) = η1(r g), i.e.,

η
g
1(0) = η1(0g) = η1(0) = 0.9

η
g
1(1) = η1(1g) = η1(2) = 0.8

η
g
1(2) = η1(2g) = η1(1) = 0.8.

This implies that

η
g
1 = {(0, 0.9), (1, 0.8), (2, 0.8)} (25)

and

ηe
1 = η1 = {(0, 0.9), (1, 0.8), (2, 0.8)}. (26)

Also, we can see that η2 is a G-invariant fuzzy ideal of Z3. Since η1 ◦ η2 ⊆ η1 and
η1 ⊆ η1 but η2 
⊂ η1, so it follows that η1 is G-prime fuzzy ideal as η1 is non-constant
function.

The following proposition is an extension of Lemma 2.6 of [22] in case of near
rings:
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Proposition 4 If N is near ring and λ1,λ2, ...,λn are fuzzy ideals of N , then

λ1 ◦ λ2 ◦ · · · ◦ λn ⊂ λ1
⋂

λ2
⋂ · · · ⋂ λn.

Proof Let λ1 ◦ λ2 ◦ · · · ◦ λn(x) = 0. Then, there is nothing to demonstrate. Other-
wise

λ1 ◦ λ2 ◦ · · · ◦ λn(x) = sup
x=x1x2···xn

{min(λ1(x1),λ2(x2), ....,λn(xn))}.

Since λi is a fuzzy ideal of N , we get

λi ((x + z)y − xy) ≥ λi (z).

Since N is zero symmetric, we have

λ1(x) = λ1(x1x2 · · · xn) = λ1((0 + x1)x2 · · · xn − 0 · x1x2 · · · xn).
≥ λ1(x1),

i.e.,

λ1(x) ≥ λ1(x1).

Also, λ2 is a fuzzy ideal; hence,

λ2(x) = λ2(x1x2 · · · xn) ≥ λ2(x2x3 · · · xn) = λ2((0 + x2)x3 · · · xn − 0 · x2x3 · · · xn).
≥ λ2(x2),

i.e.,

λ2(x) ≥ λ2(x2).

In a similar manner, we can prove that

λ3(x) ≥ λ3(x3),

λ4(x) ≥ λ4(x4),

· · ·

· · ·
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· · ·
λn−1(x) ≥ λn−1(xn−1).

Since λn is a fuzzy ideal in N , we get

λn(x) ≥ λn(xn).

Therefore,

λ1 ◦ λ2 ◦ · · · ◦ λn(x) = min(λ1(x1),λ2(x2), ....,λn(xn))

or

◦
1≤i≤n

λi (x) ≤ (
⋂

1≤i≤n

λi )(x)

or

◦
1≤i≤n

λi ⊂
⋂

1≤i≤n

λi .

Now we will prove the main result.

Theorem 2 If η is a prime fuzzy ideal ofN . Then ηG is a G-prime fuzzy ideal ofN .

Conversely, if λ is a G-prime fuzzy ideal of N , then there exists a prime fuzzy ideal
η of N such that ηG = λ, η is unique up to its G-orbit.
Proof Assume that η is a prime fuzzy ideal ofN andP,Q are two G-invariant fuzzy
ideals of N such that P ◦ Q ⊆ ηG . Since ηG is the largest G-invariant fuzzy ideal
contained in η, then P ◦ Q ⊆ η. Also primeness of η implies that either P ⊆ η or
Q ⊆ η. Therefore, by Theorem 1 either P ⊆ ηG or Q ⊆ ηG . Thus, ηG is a G-prime
fuzzy ideal.

Conversely, suppose that λ is a G-prime fuzzy ideal of N and consider

S = {η, a fuzzy ideal of N| ηG ⊆ λ}.

Before using Zorn’s lemma on S to get the maximal element(i.e., maximal ideal),
we have to show that if C = {ηk} ⊂ S is a chain in S, then ⋃

k
ηk ∈ S.

Now, from Theorem 1,
⋃

k ηk is a fuzzy ideal ofN . Since ηk ∈ S,we get ηG
k ⊆ λ,

and we can take any r ∈ N and ηk ∈ C such that

η
g
k (r) = ηk(r

g) and η
g
k ⊆ λ.

Then
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ηk(r
g) = η

g
k (r) ≤ λ(r),

or

min(ηk(r
g), g ∈ G) ≤ λ(r).

This implies that

sup{min(ηk(r
g), g ∈ G)} ≤ λ(r). (27)

Since G is finite, by Corollary 1, we obtain

min{sup(ηk(r g), g ∈ G)} = sup
k

{min(ηk(r
g), g ∈ G)}. (28)

From (27) and (28), we have

min{sup
k
(ηk(r

g), g ∈ G)} ≤ λ(r)

or

min{(
⋃

k

ηk)(r
g), g ∈ G} ≤ λ(r).

Now by Theorem 1, we get

(
⋃

k

ηk)
G(r) ≤ λ(r).

Thus, we obtain

(
⋃

k

ηk)
G ⊆ λ.

This shows that (
⋃

k
ηl) ∈ S, i.e., S has upper bound. Now we use Zorn’s lemma on

S to choose a maximal fuzzy ideal say η. Let P, Q be fuzzy ideals of N such that
P ◦ Q ⊆ η. Then

(P ◦ Q)G ⊆ ηG ⊆ λ. (29)

Since PG and QG are the largest fuzzy ideals contained in P and Q, respectively.
Now we prove that PG ◦ QG ⊆ P ◦ Q is a G-invariant,
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(PG ◦ QG)(r g) = sup
rg=ab

{min(PG(a),QG(b))}

= sup
r=ag−1bg−1

{min(PG(ag−1
),QG(bg−1

))}

= PG ◦ QG(r).

Hence, by Theorem 1, (PG ◦ QG) ⊆ (P ◦ Q)G ⊆ λ. Since λ is G-prime, then we
have either PG ⊆ λ or QG ⊆ λ. By maximality of η either P ⊆ η or Q ⊆ η. This
implies that η is prime fuzzy ideal ofN .As λG = λ,we have λ ∈ S.But maximality
of η gives that λ ⊆ η. Since λ and ηG are G-invariant ideal and ηG is largest in η, we
get

λ ⊆ ηG . (30)

Thus, from (29) and (30), we obtain

ηG = λ.

Let there exist another prime fuzzy ideal σ of N such that σG = λ. Then

⋂

g∈G
ηg = ηG = σG ⊆ σ.

Since G is finite, so from Proposition 4, we get

◦
g∈G

ηg ⊆
⋂

g∈G
ηg.

Or for any h( 
= g) ∈ G, we have

ηh ◦ (
⋂

g∈G
g 
=h

ηg) ⊆
⋂

g∈G
ηg ⊆ σ.

By fuzzy primeness either ηh ⊆ σ or
⋂

g∈G
g 
=h

ηg ⊆ σ. If ηh ⊆ σ, then η ⊆ σh−1
and

maximality of η with (σh−1
)G ⊆ λ implies that

η = σh−1
. (31)

On the other hand, if ηh � σ,we get
⋂

g∈G
g 
=h

ηg ⊆ σ.Thus, there exists some (h 
=)g ∈
G such that ηg ⊆ σ and hence η ⊆ σg−1

. Again maximality of η with (σg−1
)G ⊆ λ

yields that
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η = σg−1
. (32)

Equations (31) and (32) show that η is unique up to its G-orbit.
Conclusion: In the future, we plan to study partial group action (the existence of
g ∗ (h ∗ x) implies the existence of (gh) ∗ x, but not necessarily conversely) on
fuzzy ideals of near rings. The theorems that we prove are the following which are
generalizations of Theorems 1 and 2.
Open Problem 1. Can we establish relation between G−invariant fuzzy ideal and
largest G−invariant fuzzy ideal of N under partial group action?
Open Problem 2. Can we investigate relationship between primeness and G-
primeness of fuzzy ideal if a group G partially acts on a fuzzy ideal?
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and suggestions.
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Effect of Viscosity on the Spherical Shock
Wave Propagation in a Dusty Gas with
Radiation Heat Flux and Exponentially
Varying Density

Ravilisetty Revathi, Dunna Narsimhulu, and Addepalli Ramu

Abstract This paper investigates the effect of viscosity on the propagation of spher-
ical shock waves in a dusty gas with a radiation heat flux and a density that grows
exponentially. It is assumed that the dusty gas is a blend of fine solid particles and ideal
gas. In a perfect gas, solid particles are uniformly distributed. To obtain several sig-
nificant shock propagation properties, the solid particles are treated as a pseudo-fluid,
and the mixture’s heat conduction is neglected. The flow’s equilibrium conditions
are expected to be maintained in an optically thick gray gas model, and radiation is
assumed to be of the diffusion type. The effects of modifying the viscosity parameter
and time are explored, and non-similar solutions are found. The formal solution is
determined by assuming that the shockwave’s velocity is variable and its total energy
is not constant.

Keywords Dusty gas · Radiation heat flux · Shock waves · Viscosity

1 Introduction

Numerous authors have investigated the propagation of shock waves in a medium
with exponentially changing density [1–5]. Radiation’s repercussions have not been
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taken into consideration by these authors. Several researchers [6–9] have developed
similar or non-similar solutions for the propagation of a shock wave with radiation
heat transfer effects in an exponential medium. The propagation of a strong shock
wave through a material whose density changes with distance from the point of the
explosion was examined by [10, 11].

Inmany disciplines of science and engineering, the study of shockwaves propaga-
tion in a dusty gas is significant due to their vast range of applications(see [12–14]).
Pai et al. [15] have obtained a similarity solution for the propagation of a shock
wave in dusty gas with constant density. Vishwakarma [16] then explored the prop-
agation of shock waves with exponentially varying density in a dusty gas using a
non-similarity method. Singh and Vishwakarma [17] explored shock wave propaga-
tion with exponentially changing density and radiation heat flux in a dusty gas. The
consequences of viscosity have not been considered by these authors.

In the thin transition zone through which the gas travels from its initial state of
thermodynamic equilibrium to its final, also equilibrium state, flow variables such as
pressure, density, and particle velocity rapidly change. The shock front is the ther-
modynamic equilibrium inside this region, and it can be significantly affected. As
a result, dissipative processes due to viscosity must be considered when analyzing
shock wave propagation behind the shock front. Rankine [18], Rayleigh [19], and
Taylor [20] explored the dissipative processes caused by viscosity and thermal con-
duction in the beginning. Henderson et al. [21] investigated the effects of thermal
conductivity and viscosity on shock waves in argon. Simeonides [22] investigated
the influence of viscousness on hypersonic flow. In a compressible gas, Huang et al.
[23] explored viscous shock waves. It’s worth noting that many previous research
has remained focused on viscous shocks in a perfect gas. Nevertheless, it is widely
recognized that the viscosity in a non-ideal gas, as compared to that in an ideal gas,
plays a major role in the characterization of shocks.

To the best of the authors’ knowledge, no research on the effects of viscosity on
shock wave propagation has yet been reported. For this purpose, in the current work,
we develop a non-similar solution taking viscosity into account for the propagation
of a shock wave.

It is believed that the dusty gas is gray and opaque and that the shock is isother-
mal. Radiation energy and pressure are thought to be insignificant in comparison to
material energy and pressure, hence only the radiation flux is taken into account.
The non-linear dissipative mechanism due to viscosity q is assumed to be negligibly
small, except in the neighborhood of the shock, and is taken as the function of flow
variables and their derivatives as in von Neumann and Richtmyer [24]. Small solid
particles are treated as a pseudo-fluid to accomplish some fundamental shock propa-
gation properties, with the heat conduction of the mixture considered to be minimal
and the flow field preserving the equilibrium flow state (see [25]).
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2 Basic Equations and Boundary Conditions

The governing equations incorporating the viscosity term proposed, for the spheri-
cally symmetric, one-dimensional unsteady flow with radiation heat flux in a dusty
gas, can be written as [9, 16, 24]

∂u

∂t
+ u

∂u

∂r
+ 1

ρ

(
∂ p

∂r
+ ∂q

∂r

)
= 0

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+ 2ρu

r
= 0 (1)

∂em
∂t

+ u
∂em
∂r

− p + q

ρ2

(
∂ρ

∂t
+ u

∂ρ

∂r

)
+ 1

ρr2
∂

∂r

(
Fr2

) = 0

where t and r are the independent time and space coordinates, respectively, p—
pressure of the mixture, u—radial direction flow velocity, ρ—density of the mixture,
em—internal energy per unit mass of the mixture, F—radiation heat flux, and q—
artificial viscosity.

The expression for artificial viscosity q is given by ([26] also see the references
within)

q = 1

2
K 2ρr2

∂u

∂r

(
|∂u
∂r

| − ∂u

∂r

)
(2)

where K is a constant parameter that can be modified easily in any numerical exper-
iment.

Using Rosseland’s diffusion approximation and assuming local thermodynamic
equilibrium, we have

F = −cμ

3

∂

∂r

(
aT 4

)
(3)

where c—velocity of light, μ—mean free path of radiation, and ac/4—Stefan-
Boltzmann constant.

The mean free path of radiation μ which is a function of absolute temperature T
and density ρ is given by Wang [27] as

μ = μ0ρ
α�

T β�

(4)

where α�,β� are constants.
The dusty gas equation of state is as follows: (Pai [28])

p = 1 − Kp

1 − Z
ρR�T (5)

where R�—gas constant, Z—volume fraction of solid particles in the mixture, and
Kp—mass concentration of solid particles.
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Z and Kp are related as

Kp = Zρsp

ρ
(6)

where ρsp—solid particle species density. For an equilibrium flow, Kp is constant
throughout the flow.

The mixture’s internal energy em can be expressed as follows:

em = [
KpCsp + (1 − Kp)Cv

]
T = CvmT (7)

where Cvm—mixture’s specific heat at constant volume, Cv—specific heat of a gas
at a constant volume, and Csp—specific heat of solid particles. The specific heat at
constant pressure process is

Cpm = KpCsp + (1 − Kp)Cp (8)

where Cp—specific heat of the gas at constant pressure process.
The ratio of the specific heats of the mixture is given by (see [28])

Γ =
γ

(
1 + σβ′

γ

)

1 + σβ′ (9)

where

γ = Cp

Cv

σ = Kp

1 − Kp
β′ = Csp

Cv

. (10)

Therefore, the internal energy em is given by

em = p(1 − Z)

ρ(Γ − 1)
. (11)

The propagation of a spherical shock wave into a resting medium with a small
constant counter pressure is investigated. Further, the medium’s initial density is
assumed to follow the exponential law

ρ = Aeαr (12)

where A,α are the constants which are positive.
The jump conditions across the shock are as follows:

u2 = (1 − β) V

ρ2 = ρ1
β
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p2 = (1 − Z1 − 4K 2(1 − β)2
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)ρ1V

2
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2
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(13)

where R is the distance between the shock front and the point of symmetry,U = dR

dt
is the shock velocity, suffices “1” and “2” are the values just ahead and behind the
shock, and F1 = 0 (see [7]). Also, the expression for β is given by

β = Z1 + 1 − Z1

Γ M2
e

(14)

where

M2
e = V 2

a21
a21 = Γ P1

ρ1(1 − Z1)
(15)

Me stands for the shock-Mach number, which refers to the sound speed a1 in the
dusty gas.

In general, Z1, the solid particles’ volume fraction at the initial state is not constant.
However, because solid particles have a much higher density than gas (Miura and
Glass [13]), the volume occupied by solid particles is extremely small, and Z1 can
be assumed to be a small constant. Z1 is expressed as (Naidu et al. [29])

Z1 = Kp

G(1 − Kp) + Kp
. (16)

Here, G is the solid particles density divided by the initial gas density.
Let the solution to Eqs. (1), (2), and (3) be of the form

u = t−1U (η), ρ = tγ
�

D(η), p = tγ
�−2P(η), F = tγ

�−3Q(η), q = tγ
�−2S(η)

(17)

where
η = teδ�r δ� �= 0 (18)

and γ�, δ� are the constants that will be determined subsequently. The shock surface
is chosen to be

η0 = constant (19)

as a result of which the velocity is given by
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V = − 1

δ�t
. (20)

As a result, it is self-evident that δ� < 0. In the form of (17), the solutions of the
equations (1),(2), and (3) are compatible with the shock conditions only if

α� = 1, β� = −5

2
, γ� = 2, δ� = −α

2
. (21)

The Mach number Me of the shock is given by

M2
e = V 2

a21
= −4(1 − Z1)A

Γ p1α2η0
= constant

For a very strong shock, as Me is a constant, and p1 is of order zero, we assume
that the shock holds its enormous strength over a long period of time. As a result,
the solutions in the following section are valid whenever t > τ until Z1 stays small,
where τ is the duration of the initial impulse. It can be obtained from Eqs. (20) and
(21) that

R = 2

α
log

t

τ
. (22)

3 Solution

By solving equations (1), (2), and (3), the flow variables in the flow field behind the
shock front will be obtained. Equations (17), (20), and (21) provide us
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. (23)

Using the above Eq. (23) and considering the transformations

r ′ = r

R
u′ = u

V
p′ = p

p2

ρ′ = ρ

ρ2
F ′ = F

F2
q ′ = q

q2
(24)

in basic equations (1), (2), and (3), we get
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where

N = 4acμ0α

3
√
R�

3

is a non-dimensional radiation parameter and
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√
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The shock conditions get the following form in terms of dimensionless variables

r ′ = 1, p′ = 1, ρ′ = 1, F ′ = 1, q ′ = 1, u′ = 1 − β. (30)

The solution to our problem is given by Eqs. (25)–(29) along with the boundary
conditions (30). Due to the fact that the motion behind the shock can be calculated
only when a certain time is supplied, the resulting solution is non-similar.

4 Results and Discussion

From the shock front r ′ = 1, we begin the numerical integration of Eqs. (25)–
(29) along with boundary conditions (30) and work our way inwards to acquire
the solutions. At specified instants when t/τ = 2 or 4, distributions of flow vari-

ables ρ′ = ρ

ρ2
, p′ = p

p2
, u′ = u

u2
are obtained. For the sake of numerical integra-

tion, values of Kp, γ,G, M2
e , N ,χ, and K are assumed to be Kp = 0, 0.2, 0.4; γ =

1.4;G = 10, 50 (see [15]), M2
e = 20, N = 10 (see [9]), χ = 1 (see [13]), and

K = 0, 0.0349, 0.349 (see [26]).
Figures 1, 2, and 3 depict the variation of ρ′, p′, and u′ with reduced distance r ′

for varied values of viscosity parameter K at different times t/τ for fixed values of
N , Kp, and G.

Density ρ′ and pressure p′ decline as we travel inwards from the shock front, as
seen in Figs. 1 and 2. Further, from Fig. 3, it can be seen that the reduced flow velocity
u′ increases when K = 0 , whereas, it decreases when K �= 0. In the presence of
viscosity, the nature of reduced flow variables(concave upwards) is in contrast with
the case of no viscosity K = 0(concave downwards). It can be further observed that
when K = 0, the values of ρ′, p′, and u′ tend to be the same with the values of Singh
and Vishwakarma [17] work.

An increase in the viscosity parameter K causes the density ρ′, the pressure p′,
and the velocity u′ to decrease as well as the slopes of ρ′ and p′ to decrease at any
point in the flow behind the shock front. An increase in time t/τ causes density ρ′,
pressure p′ to decline, and the flow velocity u′ to rise.

Figures 4, 5, and 6 illustrate the reduced flow variables variation with reduced
distance for varied values of solid particle mass concentration Kp and the ratio of
solid particle density to initial gas density G for given values of N , K , and t/τ .
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Fig. 1 Reduced density ρ′ variation behind the shock front when N = 10,G = 50, and Kp = 0.2
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Fig. 2 Reduced pressure p′ variation behind the shock front when N = 10,G = 50, and Kp = 0.2
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Fig. 3 Reduced flow velocity u′ variation behind the shock front when N = 10,G = 50, and
Kp = 0.2
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Fig. 4 Reduced density ρ′ variation behind the shock front when N = 10, K = 0.349, and t/τ = 2
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It can be observed from Figs. 4, 5, and 6 that reduced density ρ′, reduced pressure
p′, and reduced velocity decrease as onemoves inside from the shock front.Whereas,
the nature of reduced velocity u′ (concave downwards) is opposite to those of density
ρ′ and pressure p′ (concave upwards). When shock travels through a dusty gas, the
values of density ρ′, pressure p′ increase; however, the shock speed u′ drops when
compared to a perfect gas (Kp = 0) or a dusty gas with a larger Kp. The existence
of solid particles in dusty gas is accountable for this phenomenological behavior.

For given K , N , andG values, increasing themass concentration of solid particles
Kp increases ρ′, p′ and decreases u′, as well, increases the slopes of density, pressure
profiles. Also, an increase in the ratio of solid particle density to initial gas density
G for fixed values of N , K , and Kp results in the decrease of density, pressure and
an increase in fluid velocity.
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On the Stability of a Heated Inclined
Fluid Layer with Gravity Modulation

Manisha Arora and Renu Bajaj

Abstract The effect of sinusoidal gravity modulation on the stability of natural
convection in an inclined viscous fluid layer is studied using the energy stability the-
ory. The variation of the critical value of the control parameter, the Rayleigh number,
belowwhich the basic flow is stable is discussed with the modulation parameters and
the inclination of the fluid layer. An uncertain stability region is observed between
the linear and the nonlinear marginal curves.

Keywords Energy method · Gravity modulation · Inclined fluid layer · Nonlinear
stability

1 Introduction

The hydrodynamical stability of natural convection in an inclined fluid layer [10, 14]
subjected to temperature gradient has been an interesting problem among researchers
due to its non-zero basic flow. Researchers always attempt to control the rate of heat
transfer across the fluid layer.Applying periodicallymodulated driving force is one of
the methods to control the heat transfer rate. This hydrodynamical stability problem
has direct applications in various fields such as material processing, nuclear science,
large-scale convection problems, engineering, astrophysics, and geophysics.

The effect of time periodic gravity modulation on the stability of the basic flow of
an infinite viscous fluid layer has been studied by various researchers [4, 5, 7–9, 11,
12]. Chen and Chen [7] have discussed the effect of gravity modulation on the linear
stability of thermal convection in a vertical fluid layer. Themodeof instability is found
to depend on the Prandtl number of the fluid. The effect of themodulation parameters
on the thermosolutal convection has been discussed by Bajaj [5] in magnetic fluids
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using Floquet theory. Recently, Saravanan and Meenasaranya [15] have studied the
energy stability of porous convection driven by periodically modulated boundary
temperatures in the presence of magnetic field.

Linear instability analysis provides marginal boundary in the space of governing
parameters above which the basic flow is unstable. Below the marginal curve, the
basic flow is stable against perturbations of infinitesimally smallmagnitude. To deter-
mine the stability of the basic flow against finite perturbations, the energy stability
analysis [16] is used.

Homsy [11] has discussed the stability characteristics in a horizontal fluid layer
with temperature and gravity modulation using the energy method. Kaloni and Qiao
[12] have discussed the nonlinear stability in a horizontal fluid layer with variable
gravity force and inclined temperature gradient. Arora et al. [1, 3] have studied the
nonlinear stability of a heated inclined fluid layer for the Prandtl numbers equal to
0.71 and 7.56. The region of uncertain stability has been found in the parametric
space. The effect of internal heating on the stability of natural convection in an
inclined fluid layer is discussed by Arora and Bajaj [2] using the energy method.

In this paper, we have studied the effect of time periodically varying gravity on
the stability of the basic flow of a heated inclined fluid layer. The energy method is
used to find the stability of the flow against arbitrary perturbations.

The outline of the paper is as follows: themathematical formulation of the problem
and the basic state are given in Sect. 2. The stability of the hydrodynamical system is
discussed through the linear instability analysis and the energy stability analysis in
Sect. 3. The Euler-Lagrange equations are derived and solved by using the shooting
method. The critical value of the control parameter is obtained and the results are
discussed in Sect. 4.

2 Governing Equations and the Basic State

Consider a viscous, incompressible flow of a fluid of uniform density ρ. The fluid
layer is inclined at an angle φ to the horizontal and confined between two rigid,
thermally conducting planes. The Cartesian coordinate system is assumed to be fixed
in the fluid layer such that x-axis is normal and y-axis is along the fluid layer. The
Boussinesq approximation [6], which makes density term constant in all the terms
except in the body force term, is assumed. The variation of density with temperature
gradient is given by the following relation

ρ = ρ0[1 − α(T − T0)],

where α is the coefficient of volume expansion, ρ0 is the density of the fluid at
reference temperature T0. The fluid flow is subjected to time dependent gravity
modulation. The gravitational field is varying time periodically and is given by
g = (g + ε0 sin(ω0t))(− cosφ,− sin φ, 0). Here, g is the mean value of acceleration
due to gravity, ε0 is the amplitude of the modulation and ω0 is the frequency of the
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modulation. The governing equations are made dimensionless using the characteris-
tic length d, time d2

κ
, temperature T−T0

T1−T2
, pressure κ2ρ0

d2 and modulation frequency κ
d2 .

The governing equations representing the conservation of mass, linear momentum
and energy in the dimensionless form are given by

∇ · v = 0, (1)

∂v
∂t

+ v · ∇v = − ∇(P + d3g

κ2
{x cosφ + y sin φ}) + Pr∇2v

+ RaPrT (1 + ε sin(ωt))(cosφî + sin φ ĵ),

(2)

∂T

∂t
+ v · ∇T = ∇2 T, (3)

The boundary conditions for the velocity and the temperature are

v|x=± 1
2

= 0; T |x= 1
2

= −1

2
; T |x=− 1

2
= 1

2
. (4)

In the above equations, v is the velocity, T the temperature, P the pressure, κ the
thermal diffusivity, and ν the kinematic coefficient of viscosity of the fluid. All
the quantities are in dimensionless form in the above equations. The dimensionless
parameters governing the fluid flow are the Rayleigh number Ra = gαd3(T1−T2)

κν
, the

Prandtl number Pr = ν
κ
, the amplitude of themodulation ε(= ε0/g) and the frequency

of modulation ω.

2.1 The Basic State

By solving the system (1)–(4) analytically, we obtain the following basic state,

TB(x) = −x, (5)

vB(x, t) = (0, VB(x, t), 0), (6)

PB = −d3g

κ2
(x cosφ + y sin φ), (7)

where

VB(x, t) = Ra sin φ
( x3
6

− x

24

)
+ Ra sin φ

εPr

ω
x sin(ωt),

− Ra sin φ
εPr

2ω

( W1(x) sin(ωt) + W2(x) cos(ωt)

sinh2(a) cos2(a) + sin2(a) cosh2(a)

)
.

(8)
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The functions W1(x) and W2(x) are given by

W1(x) = cos(a) sinh(a) cos(2ax) sinh(2ax) + sin(a) cosh(a) sin(2ax) cosh(2ax),

W2(x) = cos(a) sinh(a) sin(2ax) cosh(2ax) − sin(a) cosh(a) cos(2ax) sinh(2ax),

where a = √
ω
8Pr . The basic state is calculated with the assumption that the net flux

across the fluid layer is zero, i.e.,

∫ 1
2

− 1
2

VB(x, t) = 0

Modulation of gravity has no effect on the basic temperature (5). The basic velocity
is a periodic function of t with time period 2π

ω
.

3 Stability Analysis

The basic state of the fluid system (5)–(8) is perturbed at an instant of time t to analyze
its stability at that instant. Arbitrary disturbances of finite magnitude are imposed
on the basic state of velocity, temperature and pressure. The perturbed quantities
are vB(x, t) + u, TB(x) + θ and PB(x, y) + p, which would satisfy the governing
equations of the system (1)–(4). The resulting perturbation equations are

∇ · u = 0, (9)

∂u
∂t

+ vB · ∇u + u · ∇vB + u · ∇u = −∇ p + Pr∇2u

+ RaPrθ(1 + ε sin(ωt))(cosφî + sin φ ĵ),
(10)

∂θ

∂t
+ u · ∇θ + u

∂TB

∂x
+ VB

∂θ

∂y
= ∇2θ. (11)

The perturbations must get vanished at the rigid boundaries, which results in the
following boundary conditions.

(u, v, w, θ) = (0, 0, 0, 0) at x = ∓1

2
. (12)
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3.1 Linear Stability Analysis

To analyze the linear stability of the system, the disturbances are assumed to be of
infinitesimally small amplitude and therefore the higher order terms in the equations
(9)–(11) are ignored.

At the onset of instability, the fluid layer is assumed to get divided into cells,
periodic along the layer (y − axis) and transverse to the layer (z − axis). Let V be
the volume of one such periodic cell. The normal mode analysis is applied and the
solution form is taken as

(u, v, w, θ, p) = (ũ(x, t), ṽ(x, t), w̃(x, t), θ̃(x, t), p̃(x, t)) exp{ι(k1y + k2z + δt)} + c.c. (13)

Here, k1 and k2 represent thewavenumbers in y and z direction, respectively, such that
k21 + k22 = a21 and δ = δ1 + ιδ2. The resulting system of ordinary differential equa-
tions is solved by using the shooting method [3]. The value of the control parameter
Rayleigh number is determined by considering the fixed value of other parameters
φ,Pr,ω, ε, t, k1, k2, and δ and is obtained numerically by minimizing its value with
respect to the wavenumbers as

R̃aL(t) = min
k1, k2

Ra(φ,Pr,ω, ε, t, k1, k2) (14)

The Rayleigh number is observed to be periodic with time period 2π
ω
. Therefore, the

critical value of the Rayleigh number is obtained as

RaL = min
t∈[0, 2πω ]

min
k1, k2

Ra(φ,Pr,ω, ε, t, k1, k2) (15)

Thecorrespondingvalueof t ,k1,k2 aredenotedby tL ,k1L ,k2L .a1L =
√
k21L + k22L .The

basic state is stable with respect to infinitesimally small perturbations for Ra < RaL .

3.2 Energy Stability Analysis

To study the stability with respect to arbitrary perturbations, the energy method [16]
is used which provides a sufficient condition for the global stability of the basic
flow. ∂V denotes the boundary of the periodic cell in the fluid layer at the onset of
instability. Let ‖.‖ denotes L2(V ) norm derived from the inner product

〈 f g〉 =
∫

V
f g dV .

The energy function E(t) for the perturbations is defined as

E(t) = 1

2
||u||2 + γ

2
||θ||2, (16)
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where γ is a coupling parameter. On taking L2 product of Eq. (10) with u and Eq. (11)
with θ, the following equations are obtained by using the continuity equation (5),
Gauss Divergence theorem and the boundary conditions (12).

1

2

d

dt
||u||2 = −〈uv

∂VB
∂x

〉 + RaPr(1 + ε sin(ωt)){cosφ〈θu〉 + sin φ〈θv〉} − Pr||∇u||2,
(17)

1

2

d

dt
||θ||2 = 〈θu〉 − ||∇θ||2. (18)

From Eq. (16), the rate of change of energy function E(t) is obtained as

dE

dt
= 1

2

d

dt
||u||2 + γ

2

d

dt
||θ||2 = I − D, (19)

where

I = −〈uv
∂VB

∂x
〉 + RaPr(1 + ε sin(ωt)){cosφ〈θu〉 + sin φ〈θv〉} + γ〈θu〉,

D = Pr||∇u||2 + γ||∇θ||2.
(20)

We claim that I
D is bounded over the space H, where H is the space of all

admissible solutions satisfying the perturbation equations (9)–(12). From the basic
state of velocity, we have

∣∣∣∂VB(x, t)

∂x

∣∣∣ ≤ sup
x,t

∣∣∣∂VB(x, t)

∂x

∣∣∣ ≤ |Ra| Ω(ε,ω),

where

Ω(ε,ω) = 1

12
+ εPr

ω

[
1 + 4a

B
{| sinh(a)| + | cosh(a)|}

]
,

B = sinh2(a) cos2(a) + sin2(a) cosh2(a).

By using the Cauchy-Schwarz inequality, the Arithmetic-Geometric mean inequality
and the Poincaré inequality, we get

|I| ≤ 1

K 2

( |Ra|
Pr

( 1

12
+ Ω(ε,ω)

)
+ |Ra|

√
Pr

γ
+ 1

2

√
γ

Pr

)
D. (21)

Hence, I
D is bounded over H.

Now, using (21) and the Poincaré inequality [16] in (18),

dE

dt
= I − D = −D

(
1 − I

D
)

≤ −D(1 − r) (22)
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where r = supH
(

I
D

)
. Using the Poincaré inequality [16], we get

2hK 2E(t) ≤ D

which implies,
dE

dt
≤ −2h(1 − r)K 2E(t)

where h = min{1,Pr} and K = diam(V ) is the Poincaré constant.
If 0 < r ≤ 1, then dE(t)

dt ≤ 0. Thus all the perturbations decay with time for r ∈
(0, 1). Thus, the periodic basic state is stable with respect to arbitrary disturbances.

The variation of
( I
D

)
is zero for r = 1, which is the maximum value of r for the

stability of the basic state. This results in the following Euler-Lagrange equations:

∂VB

∂x
v − (RaPr cosφ(1 + ε sin(ωt)) + γ)θ − 2Pr∇2u + ∂λ

∂x
= 0, (23)

∂VB

∂x
u − RaPr sin φ(1 + ε sin(ωt))θ − 2Pr∇2v + ∂λ

∂y
= 0, (24)

− 2Pr∇2w + ∂λ

∂z
= 0, (25)

− RaPr(u cosφ + v sin φ)(1 + ε sin(ωt)) − γu − 2γ∇2θ = 0, (26)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (27)

whereλdenotes theLagrangemultiplierassociatedwith theequationofcontinuity (9).
To solve the Euler-Lagrange equations, the following solution form is considered.

(u, v, w, θ,λ) = (û(x, t), v̂(x, t), ŵ(x, t), θ̂(x, t), λ̂(x, t)) exp{ι(l1y + l2z)} + c.c., (28)

where l1 and l2 denote the wavenumbers in y and z direction, respectively. This
results in the following system.

∂VB

∂x
v̂ − (RaPr cosφ(1 + ε sin(ωt)) + γ)θ̂ − 2Pr(D2 − a2)û + Dλ̂ = 0, (29)

∂VB

∂x
û − RaPr sin φ(1 + ε sin(ωt))θ̂ − 2Pr(D2 − a2)v̂ + ιl1λ̂ = 0, (30)

− 2Pr(D2 − a2)ŵ + ιl2λ̂ = 0, (31)

− RaPr(û cosφ + v̂ sin φ)(1 + ε sin(ωt)) − γû − 2γ(D2 − a2)θ̂ = 0, (32)

Dû + ιl1v̂ + ιl2ŵ = 0. (33)

Here, a22 = l21 + l22 . The boundary conditions are given by
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(û, v̂, ŵ, θ̂) = (0, 0, 0, 0) at x = ∓1

2
. (34)

The above system (29)–(33) of the ordinary differential equations with the boundary
conditions (34) is solved by using the shooting method [3, 13]. Define

R̃aM(t) = max
λ

min
l1,l2

Ra(φ,Pr,ω, ε, t, l1, l2,λ) (35)

Here, t treated as a parameter, refers to the instant of time at which the perturbations
are imposed on the basic state. R̃aM(t) is found to be a periodic function of t with
period 2π

ω
. The critical value of the Rayleigh number is defined as

RaM = min
t∈[0, 2πω ]

R̃aM(t) (36)

The values of l1, l2, a2, t and γ at which RaM is attained, are denoted by l1M , l2M ,
a2M , tM and γM , respectively. We have observed that the optimal value of Ra occurs
at l1M = 0, hence a2M = l2M .

4 Results and Discussion

We have obtained numerically the critical Rayleigh numbers, RaL corresponding to
(15) (linear stability) and corresponding to (36) (energy stability). The value of the
Prandtl number is fixed as 0.71, which corresponds to the Prandtl number of air.

Fig. 1 For Pr = 0.71, ε = 0.5 and ω = 10, a variation of R̃aL (t) and R̃aM (t) in (φ,Ra) plane at
fixed values t∗ = tω

2π = 0.5, b variation of RaM with the angle of inclination φ of the layer
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Figure1a depicts the variation of R̃aL(t) and R̃aM(t) with the angle φ of inclina-
tion of the fluid layer at fixed values of t∗(= tω

2π ) = 0.5, ω = 10 and ε = 0.5. Here,
t∗ = 0.5 is the value of t∗ at which R̃aL(t) and R̃aM(t) are minimum for a horizon-
tal fluid layer. Dashed and dotted lines represent the variation of R̃aL(t) and solid
line shows the variation corresponding to R̃aM(t). For 0 < φ < 73◦, the instability
occurs as longitudinal stationary mode and for 73◦ ≤ φ ≤ 90◦, the preferred mode
of instability is transverse stationary mode. The mode of instability changes from
longitudinal stationary mode to transverse stationary mode at φ = 72◦ in the absence
of modulation, i.e., ε = 0 (see [3]). The value of R̃aL(t) increases with the angle φ
for φ ∈ [0, 90◦]. Also, R̃aM(t) decreases with φ upto certain angle of inclination
where it attains its minimum and then increases slightly with further increase in φ.
Figure1b shows the variation of RaM with the angle φ of inclination of fluid layer.
The minimum value of RaM (from (36)) is attained at φ = φc = 77◦.

To study the effect of the amplitude ε of modulation on the stability of the basic
flow, the variation of the critical values of RaL and RaM with ε is represented in
Fig. 2 for φ = 0, 10◦ and 90◦. The basic state is globally stable when Ra ≤ RaM , it
is linearly stable when Ra ≤ RaL . We cannot predict the stability of the basic state in
the region between the linear instability boundary and the global stability boundary
(also termed as nonlinear stability boundary). This region is called uncertain stability
region. Subcritical instabilities may be present in this region.

In Fig. 2, for φ = 0, the linear and the nonlinear boundaries coincide. This is due
to the fact that the linear operator of perturbation equations is self-adjoint for φ = 0
[16]. We get distinct linear and nonlinear boundaries for φ = 10◦ and 90◦, which
results in the existence of the uncertain stability region as shown in Fig. 2b and 2c.
The values of RaL and RaM both decrease with increase in ε.

The variation of RaL and RaM with the frequency of the sinusoidal gravity modu-
lation is shown in Fig. 3. For ε = 0.5 andφ = 0, the values of RaL and RaM are equal,
i.e., RaL = RaM = 1138.51 for all values of ω. Figure3a depicts that for φ = 10◦,
RaL is equal to 1156.07 for all values of ω while RaM increases with increase in the
value of ω. For ω ≥ 20, the variation of RaM is very small with increase in ω. We
have checked numerically that for ε = 0.5, RaL does not vary withω for φ ∈ (0, 72◦)
but its value increases with ω for φ > 72◦. For φ = 90◦, the linear stability boundary
and the nonlinear stability boundary in (ω,Ra) plane are shown in Fig. 3b. The value
of both RaL and RaM increases with increase in ω. We have observed that the rate of
increase of RaL is relatively large as compared to that of RaM .
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Fig. 2 At ω = 10, the variation of RaL and RaM with the amplitude ε of modulation for a φ = 0,
b φ = 10◦ and c φ = 90◦
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Fig. 3 At ε = 0.5, variation of RaL and RaM in (ω,Ra) plane for a φ = 10◦, b φ = 90◦

5 Conclusions

The stability of natural convection in an inclined fluid layer is studied under the effect
of sinusoidal gravity modulation. We have obtained analytically the basic state. The
basic velocity oscillates time periodically with the driving frequency. The global
stability results are obtained by using the energy method. In the present analysis, all
the results are obtained for Pr = 0.71. We have obtained the following conclusions:

• A sufficient condition for the stability of the basic flow is obtained using energy
method.

• The critical value of the control parameter depends upon the instant of time t at
which the basic flow is perturbed.

• Using energy method, φ = 77◦ is found be the least stable configuration with
respect to arbitrary perturbations of inclined fluid layer for fixed values of ω = 10
and ε = 0.5.

• Uncertain stability regions are observed in (φ,Ra), (ε,Ra) and (ω,Ra) parametric
space.

• At fixed values of φ and ω, we have observed decrement in the values of RaL and
RaM with increase in the amplitude ε of gravity modulation.

• With increase in the value of the frequencyω of themodulation, the critical value of
Rayleigh number RaM increases. However, the increase is significant upto ω = 20
only.
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Dynamical Study of an Epidemiological
Model with Harvesting and Infection
in Prey Population

Smriti Chandra Srivastava and Nilesh Kumar Thakur

Abstract The analysis of prey–predator in an eco-epidemiological system has
become the major concern of scientific research in the field of mathematics and
disease dynamical studies. Our studies concern with three-tier species model system
when infection is spreading among the prey populations. The impact of infection
affecting population dynamics is more complicated studies in natural dynamics.
Therefore, we investigate an eco-epidemiological model system’s local and global
stability around the biologically feasible equilibrium point. In order to analyze the
local and global stability of themodel system,we perform a detailed numerical exper-
iments.We analyze the resultingmodel through various mathematical characteristics
like boundedness, global stability, local stability, and bifurcation. We further inves-
tigate time evaluation, phase portraits, and bifurcation diagrams and results show
the complexity of the eco-epidemiological system. The analytical results are verified
through simulations.

Keywords Bifurcation · Eco-epidemic · Harvesting · Prey-predator · Stability

1 Introduction

The study of prey-predator systems dynamics is one of the predominant research
area in mathematical ecology, epidemiology, and marine system. Many researchers
have studied the marine ecological complexities that arise in the ocean. Because of
the universality and importance of the aquatic, the prey-predator model may help
to investigate the complexities and salvaging marine animals. In nature, millions of
fish die every year with different causes in the aquatic dynamical system. Overex-
ploitation of biological resources and overfishing are responsible for the removable
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of marine resources, so the harvesting policy may play a significant role in the fish-
ery and agriculture sectors to save species at the risk of extinction. According to
the United Nations (UN) food and agriculture organization, the fishery is a sustain-
able livelihood, and the recent coverage shows approximately 39 million people are
engaged in the fishery, and 20.5 million people are involved in aquaculture. As a
result of fish exports in 2018, approximately USD 164 billion worth of revenue was
earned from the global seafood industry, compared to 93 million tonnes in 2017 [1].
However, it comes with several challenges. Ecological and economic studies has
been focused on the issue of reasonable harvesting policy for a long time because it
has proved to be an exciting challenge. Disease in the fish [2] is a severe problem in
fish production and revenue earning. The increasing aquatic fish diseases are believed
to be caused by an unbalanced environment like climate change, global warming,
and industrial pollutants [3, 4].

We may also include the economic perspective in fishery that contains both the
susceptible as well as infected fish. According to a fact, fish with the disease are more
likely to be caught in fisheries. Therefore, it is essential to analyze the fishery mod-
els mathematically in economic and ecological aspects in the presence of infection.
The literature show that much remarkable works on eco-epidemiolocal modelling
have considered the ecology and economic aspects [5–8]. Lv et al. [9] examined the
influence of harvesting on a phytoplankton-zooplankton system. They determined
that excessive harvesting could destroy population viability, while proper harvesting
ensures the population’s survival. Pei et al. [10] developed a model of planktonic
harvesting with two species of zooplankton. Lafferty et al. [11] conducted a study on
the infected killifish (Fundulus parvipinnes) and found these fishes more vulnerable
to the bird predators as they tend to stay closer to the sea surface. Upadhyay et al.
[12] studied the emergence of spatial patterns and developed a spatial model consid-
ering the Tilapia and Pelican population in a damaged diffusive eco-epidemiological
system. The results suggested that removing infected Tilapia at regular time intervals
and controlling salinity can help restore the system, providing a conservation strategy
point of view. Further, Upadhyay et al. [13] studied an ecosystem of the Salton Sea in
the crisis and suggested that it is essential to plan for a transition at the ecosystem level
so that human and bird residents living adjacent to the shrinking and salinization sea
are not adversely affected. Recently, Pal et al. [14] studied the eco-epidemiological
problem by combining harvesting in the prey-predator model with prey refuge and
predator switching phenomena. Motivated by the above research, we have devel-
oped a modified model by introducing harvesting efforts in prey populations and
intra-specific competition among predators[12].

There are the following sections in the paper: in Sect. 2, we describe the model
formulation and its parameters in detail. in Sect. 3, we study the boundedness, equi-
librium, local stability and global stability for the proposed model. Furthermore, in
Sect. 4, we carry out simulation and its discussion to verify the analytical findings
and in Sect. 5, we include a summary of the paper with result interpretation and
discussion at the end of the paper.
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2 Model Formulation

We present an eco-epidemiological system where the fish population is infected
by viruses. Viruses may lead to two categories of fish populations: susceptible fish
and infected fish. Therefore, the total fish population at time t can be expressed
as N (t) = S(t) + I (t), where N (t) is the fish population, S(t) is the susceptible
fish population, and I (t) is the infected fish population. It is assumed that only
susceptible fish populations can reproduce, but the infected fish populations die
before reproducing. However, the infected fish populations still contribute to the
susceptible S in population growth towards their carrying capacity. The transmission
of viruses from infected fish species to susceptible fish is described by Holling type
II function response. Spread of disease is assumed in the prey population only that is
not inherited genetically. The relationship between (S, I, P) is defined by theHolling
type II function response.Viruses transmit amongfish species at the rate ofβwhileC1

is a half-saturation constant. Birds predate the infected fish populationwith the rate of
ω2 and predate the susceptible fish population with the rate of ω1 whileC2 is the half-
saturation constant. The presentmodel is based on the following assumptions: (a) bird
populations are forced to compete for food (intra-specific competition) when there is
a shortage of fish, so bird population competed for food at the rate of ε (intra-specific
coefficient), and (b) harvesting efforts are implemented in the fish population to
eradicate the infection from the dynamics and stabilize it. The catchability coefficient
represents q1 and q2 for susceptible and infected fish, respectively, along with the
harvesting effort E introduced in both susceptible and infected populations.Although
virus-induced fish are more vulnerable and easy to pick therefore we assume that
q2 > q1. With this assumption the model system is as follows:

dS

dt
= r S

(
1 − S + I

k

)
− βSI

S + I + C1
− ω1SP

S + C2
− q1ES,

d I

dt
= βSI

S + I + C1
− ω2 I P

I + C2
− δ I − q2E I, ,

dP

dt
= ω3SP

S + C2
+ ω4 I P

I + C2
− eP − εP2, (1)

with initial conditions S(0) > 0, I (0) > 0 and P(0) > 0.

3 Stability Analysis

In this section, we investigate the boundedness, existence criteria and the linear
stability analysis of the model system (1).
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Theorem 1 Let E < r
q1
, the system (1) has non-negative and unique solution uni-

formly bounded by octant

φ =
{
(S, I, P) ∈ T 3

+; S(t) + I (t) + ω1

ω3
P(t) = k

4rη
(η + r − q1E)

2+ ∈,∈> 0

}
,

where, η ≤ min (δ + q2E, e) and ω2ω3 > ω1ω4.

The proof of this theorem can be obtained by simple calculation and hence omitted.
To evaluate the local behaviour of model system (1), variational matrix for the model
system (1) to understand whether the model (1) is locally stable at each equilibrium
point L(S, I, P) can be written as follows

J (L) =
⎛
⎝ S ∂h1

∂S + h1 S ∂h1
∂ I S ∂h1

∂Z
I ∂h2

∂S I ∂h2
∂ I + h2 I ∂h2

∂Z
P ∂h3

∂S P ∂h3
∂ I P ∂h3

∂Z + h3

⎞
⎠ ,

∂h1
∂S

= −r

k
+ β I

(S + I + C1)
2 + ω1P

(S + C2)
2 ,

∂h1
∂ I

= −r

k
− β (S + C1)

(S + I + C1)
2 ,

∂h1
∂P

= − ω1

(S + C2)
,
∂h2
∂S

= β (I + C1)

(S + I + C1)
2 ,

∂h2
∂ I

= − βS

(S + I + C1)
2 + ω2P

(I + C2)
,

∂h2
∂P

= − ω2

(I + C2)
,
∂h3
∂S

= ω3C2

(S + C2)
2 ,

∂h3
∂ I

= ω4C2

(I + C2)
2 ,

∂h3
∂P

= −ε.

There are five equilibrium points that exist.

(i) The trivial equilibriumpoint L0(0, 0, 0) always exists and corresponding eigen-
values of J (L0) are (r − q1E,−(δ + q2E),−e). Clearly the system is stable
manifold in I P direction. If the system holds r ≤ q1E , then the system is stable
around L0 = (0, 0, 0), otherwise, unstable or saddle.

(ii) The infected and predator-free equilibrium point L1(S, 0, 0), where S =
k(r−q1E)

r exist if the condition r > q1E hold. Eigenvalues of J (L1) are(
− (r + q1E) ,− (δ + q2E) + βS

S+C1
,−e + w3S

S+C2

)
. Therefore, L1 is locally

asymptotically stable provided

βk

(k + C1) (δ + q2E)
≤ 1, (2)

and

w2k

(k + C2) e
≤ 1, (3)
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and L1 is a saddle point if at least one condition (2) and (3) hold.
(iii) The predator-free equilibrium point L2(S

′
, I

′
, 0), where

I
′ = S

′
(β − φ) − C1φ

φ
,&S

′ = φ (r (k + C1) − k (β − φ)) + √
γ

2βr
, (4)

whereφ = q2E + δ andγ = k (β − φ) − r (C1 + k) + 4rkC1 (β − q1E) exist
if the following conditions S

′ ≥ C1φ
β−φ

and β ≥ φ hold.
The Jacobian matrix with respect to the point L2 is

J (L2) =
⎛
⎜⎝

βS′ I ′
(S′+I ′+C1)2

− r S′
k − r S′

k − βS′(S′+C1)

(S′+I ′+C1)2
− w1S′

(S′+C2)
β I ′(I ′+C1)

(S′+I ′+C1)
2 − βS′ I ′

(S′+I ′+C1)
2

−w2 I ′
I ′+C2

0 0 ω3S′
S′+C2

+ ω4 I ′
I ′+C2

− e

⎞
⎟⎠.

Clearly, one eigenvalue corresponding to J (L2) is given as
ω3S′
S′+C2

+ ω4 I ′
I ′+C2

− e.
The eigenvalue is negative or positive, depending on following nature:

ω3S′

S′ + C2
+ ω4 I ′

I ′ + C2
< e, (5)

or,
ω3S′

S′ + C2
+ ω4 I ′

I ′ + C2
> e. (6)

The other eigenvalues are root of sub matrix

J (L21) =
(

βS′ I ′
(S′+I ′+C1)

2 − r S′
k − r S′

k − βS′(S′+C1)

(S′+I ′+C1)
2

β I ′(I ′+C1)

(S′+I ′+C1)
2 − βS′ I ′

(S′+I ′+C1)
2

)
, (7)

The eigenvalues of submatrix J (L21) have negative value if tr(J (L21)) < 0
and det (J (L21)) > 0. Therefore,

tr(J (L21)) = −r S′

k
< 0, (8)

and

det (J (L21)) = βS′ I ′(r(S′ + I ′ + β)2 + βC1k)

(S′ + I ′ + C1)
3 > 0. (9)

Thus, the predator-free equilibrium point L2 is locally asymptotically stable if
conditions Eqs. (5), (8) and (9) hold.

(iv) The infection-free equilibrium point L3(S̄, 0, P̄), where
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S̄ = C2
(
e + εP̄

)
ω3 − (

e + εP̄
) ,&P̄ =

(
k (r − q1E) − r S̄

)
(S + C2)

ω1K
, (10)

exist if the conditions w3 ≤ (
e + εP̄

)
and k ≤ r S̄

r−q1E
hold.

The Jacobian matrix with respect to the point L3 is

J (L3) =

⎛
⎜⎜⎜⎜⎜⎝

r
(
1 − 2S̄

k

)
− ω1 P̄C2(

S̄+C2
)2 − q1E − r S̄

k − β S̄
(
C1−S̄

)
(
S̄+C1

)2 − ω1 S̄
(S̄+C2)

0 β S̄(S̄+C1)

(S̄+C1)
2 − w4 P̄

C2
− (δ + q1E) 0

C2w3 P̄

(S̄+C2)
2 −w4 P̄

C2
0

⎞
⎟⎟⎟⎟⎟⎠
.

Clearly, one eigenvalue corresponding to L3 is given as
β S̄(S̄+C1)

2

S+C1
− ω2 P̄

C2
−

(q1E + δ). The eigenvalue is negative or positive, depending on following
nature:

β S̄
(
S̄ + C1

)2
S̄ + C1

>
ω2 P̄

C2
+ (q1E + δ), (11)

or,
β S̄

(
S̄ + C1

)2
S̄ + C1

<
ω2 P̄

C2
+ (q1E + δ). (12)

The other eigenvalues are root of sub matrix

J (L31) =
⎛
⎝ r(k−2S̄)

k − ω1 P̄C2

(S̄+C2)
2 − q1E − ω1 S̄

(S̄+C2)

C2ω3 P̄

(C2+S̄)
2 0

⎞
⎠ . (13)

The eigenvalues of submatrix J (L31) have negative value if tr(J (L31)) < 0
and det (J (L31)) > 0. Therefore,

tr(J (L31)) = r

(
1 − 2S̄

k

)
− ω1C2 P̄(

S̄ + C2
)2 < 0, (14)

and

det (J (L21)) = ω1ω3C2 P̄ S̄(
S̄ + C2

)4 > 0. (15)

Thus, the infection-free equilibrium point L3 is locally asymptotically stable if
conditions Eqs. (12), (14) and (15) hold.

(v) The non-trivial equilibrium point L4(S∗, I ∗, P∗) has been obtained frommodel
system (1). From straightforward calculation
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P∗ = 1

ε

(
ω3S∗

S∗ + C2
+ ω4 I ∗

I ∗ + C2
− e

)
. (16)

From model system (1), we have

F(S∗) = S∗2 + AS∗ + B = 0, (17)

where

A = (I + C2) (C2 (εβ − eω2) − (δ I + q2E))

(I + C2) (εβ − eω2 + (δ I + q2E) (I + C2)) − ω2ω4

−
(
I + C1 (ω2 (ω4 I − eC2) + (I + C2) eω) − (δ I + q2E) (I + C2)

2) − ω2ω4

(I + C2) (εβ − eω2 + (δ I + q2E) (I + C2)) − ω2ω4
,

B = C2 (I + C1) (I + C2 (δ I + q2E (I + C2) − eω2) − ω2 (ω4 I + ω3))

(I + C2) (εβ − eω2 + (δ I + q2E) (I + C2)) − ω2ω4
.

Roots of Eq. (17) can be represented as S∗ = −A+√
A2−4AB
2 that consist atleast

one positive root in the following cases

(i) A < 0 and B < 0,
(ii) A < 0, B > 0 and A2 − 4B > 0,
(iii) A > 0 and B < 0.

In a same manner, we can obtain the roots of F(I ∗)

F(I ∗) = I ∗2 + A1 I
∗ + B1 = 0, (18)

where,

A1 = ω1P
∗k + 2r S∗ + C1r + βk + k (q1E − r)

r (S∗ + C2)
,

B1 =
(
S∗ + C1

(
ω1P

∗k + (
S∗ + C2

) (
S∗ − k

)
r
)) + S∗q1Ek

(
S∗ + C1 + 2C2

)
r (S∗ + C2)

.

(19)

Roots of Eq. (18) can be represented as I ∗ = −A1+
√

A2
1−4A1B1

2 that consist atleast
one positive root in the following cases

(i) A1 < 0 and B1 < 0,
(ii) A1 < 0, B1 > 0 and A2

1 − 4B1 > 0,
(iii) A1 > 0 and B1 < 0.

The variational matrix along L4(S∗, I ∗, P∗) is given by



402 S. C. Srivastava and N. K. Thakur

J (L∗) =
⎛
⎝h11 h12 
13
h21 h22 h23
h31 h32 h33

⎞
⎠ ,

h11 = −rs

k
+ βS∗ I∗

(S∗ + I∗ + C1)
2 + ω1S

∗P∗
(S∗ + C2)

2 , h12 = −r S∗
k

−
(
S∗ + C1

)
S∗β

(S∗ + I∗ + C1)
2 ,

h13 = − ω1P
∗S∗

(S∗ + C2)
2 , h21 = β I∗ (I + C1)

(S∗ + I∗ + C1)
2 ,

h22 = − βS∗ I∗
(S∗ + I∗ + C1)

2 + ω2P
∗ I∗

(I∗ + C2)
2 , h23 = − ω2 I

∗
(I∗ + C2)

, h31 = ω3C2P
∗

(S∗ + C2)
2 ,

h32 = ω4C2P
∗

(I + C2)
2 , h33 = −2εP∗ + ω3S

∗
(S + C2)

+ ω4 I
∗

(I∗ + C2)
− e.

The characteristics equation of L4(S∗, I ∗, Z∗) is given by

V 3 + A1V
2 + A2V + A3 = 0,

where

A1 = − (h11 + h22 + h33) ,

A2 = (h11h22 − h12h21) + (h22h33 − h23h32) + (h11h33 − h13h31) ,

A3 = (h13h22 − h12h23) h31 + (h11h23 − h13h21) h32 + (h12h21 − h11h22) h33,

Theorem 2 Assume that the L4 (S∗, I ∗, P∗) is positive equilibrium point of the
system (1). This point is locally asymptotically stable when A1 > 0 , A2 > 0 and
A1A2 − A3 > 0 are satisfied.

The proof is simple and can be derived from the Routh-Hurwitz criterion.

Theorem 3 Assume that the positive equilibrium point L4(S∗, I ∗, P∗) is locally
asymptotically stable of the model system,then it is a globally stable in the interior
of the positive octant (i.e., int R3+) provided that

3r

2k
+ β (S∗ + C1)

2ρ11
>

w1P∗

2ρ22
+ β (k1 + 2) I ∗ + k1C1

2ρ11
, (20)

r

2kk1
+ β (k1 (2S∗ + C1) + I )

2k1ρ11
>

k1w2P∗

2ρ22
+ β (S∗ + C1)

2k1ρ11
, (21)

where ρ11 = (S∗ + I ∗ + C1) (S + I + C1) and ρ22 = (S∗ + C2) (S + C2).

Proof Consider the following positive definite Lyapunov function about the equi-
librium point
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ϑ (S, I, P) =
(
S − S∗ − S∗ ln S

S∗
)

+ k1

(
I − I∗ − I∗ ln I

I∗
)

+ k2

(
P − P∗ − P∗ ln P

P∗
)
.

(22)

Differentiating ϑ with respect to time t along the solution of the system (1), we
obtain

dϑ

dt
= dϑ1

dt
+ dϑ2

dt
+ dϑ3

dt
,

dϑ

dt
= −L11

(
S − S∗)2 + L12

(
S − S∗) (

I − I∗
) − k1L22

(
I − I∗

)2 − k2L33
(
I − I∗

)2
+ L23

(
P − P∗) (

I − I∗
) + L31

(
S − S∗) (

P − P∗)
,

where,

L11 = r

k
− β I

(S∗ + I ∗ + C1) (S∗ + I ∗ + C1)
+ w1P∗

(S∗ + C2) (S + C2)
,

L22 = βS∗

(S∗ + I ∗ + C1) (S + I + C1)
− w2P∗

(I ∗ + C2) (I + C2)
,

L33 = ε
(
P − P∗)2 , L12 = −r

k
− β (k1 (I + C1) − (S∗ + C1))

(S∗ + I ∗ + C1) (S + I + C1)
,

L23 = k2w4C2 − k1w2 (I ∗ + C1)

(I ∗ + C2) (I + C2)
, L31 = k2w3C2 − w1 (S∗ + C2)

(S∗ + C2) (S + C2)
.

Sufficient conditions for dϑ
dt to be negative definite required that conditions (20) and

(21) hold. This proves the result.

4 Numerical Simulation

Numerical simulation has been carried out using Matlab to validate the results
obtained analytically.

r = 2.1, k = 100,β = 1.931,C1 = 10,C2 = 10, q1 = 0.6, q2 = 0.8, E = 0.002,

a = 0.218, e = 1.2, ε = 0.004,ω1 = 1.02,ω2 = 0.1,ω3 = 2,ω4 = 1.65.
(23)

The set of parameters are taken from [12]. Two parameters, carrying capacity and
intra-specific coefficients, have an enormous impact on disease dynamics and exhibit
diverse behaviour within the eco-epidemiological system (1).

In Fig. 1 we can observe the local stability of the system (1) around the interior
equilibrium point. As depicted in Fig. 1, system exhibits stable focus for carrying
capacity k = 25, and for k = 54 the system (1) shows higher oscillation. When the
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Fig. 1 Solution tragectories of the system (1) converges to a interior equilibrium point a k = 25,
b k = 54, c k = 100
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Fig. 2 Bifurcation diagram of model system (1) for k versus a Max(S), b Max(I), c Max(Z)

carrying capacity k = 100, the system settles down in chaotic regimes, as depicted
in Fig. 1. In the case of kε(25, 100), Hopf bifurcation occurs around the interior
equilibrium point, as illustrated in Fig. 2.

Figure 3, illustrates the changes in fish-bird dynamics in the eco-epidemiological
system as the intra-specific coefficient varies from 0 to 0.4. In Fig. 3, the infected
fish density increases and predator density decreases as a result of a higher value of
the intra-specific coefficient ε in the system (1).

We have now examined the proposed model with harvesting efforts, which incor-
porated into both susceptible and infected prey species. The parameters are the
same as in Eq. (23) except the catchability coefficient for susceptible fish popu-
lation q1 = 0.6, infected fish population q2 = 0.8 and harvesting effort E = 0.002.
Based on the above discussion, we implicitly take q1 < q2 that means fish become
more vulnerable and more accessible to catch by birds or other predators due to
virus infection. As shown in Fig. 5, we have plotted a bifurcation diagram using E
(the amount of effort spent in fish harvesting) as a bifurcation parameter. All other
parameters are the same as in Eq. (23). In Fig. 5, we see successive maxima in the
range of 0 ≤ S ≤ 100, 0 ≤ I ≤ 80 and 0 ≤ P ≤ 100 respectively, as E is taken in
the range of 25 ≤ E ≤ 100. A bifurcation analysis shows chaotic behaviour (i.e.,
behaviour that indicates that an unstable system exists) in the range 0 ≤ E ≤ 0.15;
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Fig. 3 Bifurcation diagram of model system (1) for ε versus a Max(S), bMax(I), c Max(Z)

after crossing E = 1.85, the solution trajectory converges to a fixed value, i.e., stable
focus in SP direction and Infected go to extinction. In order to validate our results,
we plotted the time series and phase portrait for E from 0.004 to 2.0 (c.f., Fig. 4).

5 Discussion and Conclusion

In many studies, prey-predator dynamics have been discussed to emphasize the role
of infective populations. The prey-predator dynamics may become complex due to
the presence of viruses. Eating infected prey is fatal for predators or other species.
In the present paper, we have incorporated fish population harvesting effort in a
fish-bird model system, and assumed that viruses infect fish populations. The fish
population is divided into two groups based on whether they carry the infection.
According to the simulation results,we have found that the following parameters have
an essential role in our studies: (i) carrying capacity k, (ii) intra-specific coefficient
ε, and (iii) harvesting effort E . Figure 1 shows how carrying capacity plays an
essential role in fish-bird dynamics, as evidenced by different types of attractors
with stable focus, periodic order, and chaotic behaviour. Further, Fig. 2 illustrates
that the high carrying capacity increases fish oscillation size and eventually produces
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Fig. 4 Solution tragectories of the system (1) converges to a interior equilibriumpoint a E = 0.004,
b E = 0.4, c E = 2
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Fig. 5 Bifurcation diagram of model system (1) for E versus a Max(S), bMax(I), c Max(Z)

chaos due to this increment. Additionally, Hopf bifurcation for the parameter, i.e., the
intra-specific coefficient, is noticed in Fig. 3. These results show that the parameter
ε has a negative impact on the fish-bird dynamical system. Additionally, when ε
crosses some threshold value, susceptible fish settle in stable mode while infected
fish have continued growth, but birds populations settle down in decline regimes.
Further, a Hopf bifurcation scenario observed for the parameter E , i.e., the harvesting
effort for fish (c.f., Fig. 5). These results show that the parameter E impact the
system positively when it crosses some threshold values, extinction in infected fish
is observed. Finally, this study on the fish-bird dynamics with viruses concluded
that these systems with multiple parameters are highly complex and unpredictable.
Parameters like the carrying capacity of thefishpopulation and intra-specific rate have
generated chaos, whereas harvesting effort generates the extinction of the infected
population and stabilizes the system.
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Joint Decisions on Imperfect Production
Process and Carbon Emission Reduction
Under Carbon Regulations

Geetanjali Raiya and Mandeep Mittal

Abstract In firms, maintaining the quality of the product with carbon emission
reduction is a big concern. To ensure the good quality of the product, so many
retailers segregate perfect items from imperfect ones and made an attempt to reduce
carbon emissions through green technologies. In the proposed model, the discount
price of imperfect items is examined and the retailer’s joint decisions have been
analyzed on reclamation of inventory and investment in reducing carbon emission
under three environmental regulations such as carbon cap, carbon tax, and carbon cap-
and-trade. These regulations and understanding of the customer for greener products
invigorate retailers to invest in green technology. The total cost is minimized with
respect to the optimal order quantity and annual investment on carbon emission
reduction. Numerical examples and sensitive analysis are represented to understand
the sturdiness of the model.

Keywords Imperfect items · Green technology investment · Carbon regulations ·
Economic order quantity

1 Introduction

Economic order quantity is the quantity that is used to minimize total costs. Ford
W. Haris and R.H. Wilson developed this model in 1913. Bouchery and Dallery [1]
consider sustainability in the classical inventory model. Arslan and Turkay [2] have
contributed to the Economic order quantity model by including sustainability con-
siderations which embrace environmental and social criteria with standard economic
consideration. Wang et al. [3] developed an EOQ model with renewal reward theory
to derive the expected total profit per unit time. Lee et al. [4] developed a model
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for sustainable economic order quantity with stochastic lead time and multi-model
transportation options. Sheikh et al. [5] developed two EOQmodels with andwithout
shortages and considered purchasing and holding costs constant.

Carbon emission is increasing day by day and many firms are working to reduce
carbon emissions. The government has also taken many steps to reduce emissions
such as carbon tax, cap, and offset. Therefore,Wang andHua [6] investigate manage-
ment of carbon footprints in firms under carbon emission tradingmechanism.Benjaa-
far et al. [7] developed a model to investigate how far carbon reduction requirements
can be addressed by operational adjustments as a supplement to costly investments
in carbon-reducing. Chen, Benjaafar, and Elomri [8] provide a model a condition in
which emission can be reduced by modifying order quantity. Toptal et al. [9] extend
an EOQmodel to show that in addition to carbon regulations such as carbon cap, tax,
and cap-and-trade to reduce emission, emission reduction investment further reduces
the emission while reducing costs. Mittal et al. [10] provide an economic production
model to elaborate on human errors’ effect on emission cost, transportation cost,
and expected total profit of the retailer. Daryanto et al. [11] introduced an Economic
order quantity model which includes the effect of defective rates, different sources of
carbon emission, different demand rates, selling price and holding cost for defective
products, and shortages backorder.

Since there are perfect quality items as well as defective items, therefore, in 2000,
Salameh and Jaber [12] proposed EPQ/EOQ model in which a production/inventory
situationwhereitems,received/produced,areofimperfectqualityandextendsthestan-
dard EOQ/EPQ model for imperfect items. Chang [13] introduces a model with the
complete screening process and imperfect quality items are sold as a single batchwith
discount before receiving the next shipment. Jaggi andMittal [14] developed amodel
for spoilable items inwhich there is constant deterioration and the demand rate is time
dependent under inflation andmoneyvalue. Jaggi andKhanna [15] developed amodel
to formulate an inventory policy for a retailer dealing with imperfect quality items of
deteriorating nature under inflation and permissible delay in payments. Jaggi andMit-
tal [16] developed a model for deteriorating items with imperfect quality and also an
assumption has been made that the screening rate is more than demand. Jaber et al.
[17] reviewed the model of Salameh and Jaber (2000) and elongate it by making an
assumption that shipment is coming fromadistant supplier and thus it is not feasible to
imperfect itemswithanadditionalordertothesamesupplier.Mittaletal. [18]discussed
about themethodfor redesigning theorderingpolicybyincorporating thecross-selling
effect and also compared ordering policy for imperfect items developed by applying
rules derived from apriori algorithm. Mittal, Jaggi, Khanna, Reshu, and Yadav [19–
21] developed models for imperfect items under different conditions and Jayaswal et
al. [22] discussed a fiscal construction feature model for imperfect quality items with
trade credit policy analyzed under the effects of learning.

Many researchers have worked on reducing carbon emissions including imperfect
items. Nobil et al. [23] proposed a model to calculate the optimal reorder point for
the inventory model in Salameh and Jaber(2000) by which the appropriate timing of
an order can be determined. Sarkar et al. [24] developed a three-echelon sustainable
supply chainmodelwith a single-supplier, singlemanufacturer, andmultiple retailers.
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Also, control the carbon emission and reduce the imperfect items to maintain the
sustainability. Daryanto et al. [25] considered the EOQmodel with carbon emissions
from transportation and warehouse operations. Furthermore, include imperfect items
and complete backordering is assumed.

2 Problem Definition

In this paper, investment on the reduction of carbon emission by retailers and deci-
sion of reclamation of inventory is taken according to the government regulations on
carbon emissions. The standard EOQmodel has been used under different conditions
and includes imperfect items. Carbon emission is increased due to ordering, inven-
tory holding, and manufacturing. In this study, three emission policies have been
considered that is carbon cap, carbon tax, and cap-and-trade. Under the cap policy, a
retailer’s emission per year cannot exceed the carbon emission cap. Under tax policy,
there will be a tax pe units for unit carbon emission. Under the cap-and-trade policy,
for cpe units, retailer deals a unit carbon emission.

2.1 Notations and Assumptions

1. Demand rate is considered constant throughout the model and shortages are not
allowed.

2. Lead time is constant and known, and instantaneous replenishment is considered.
3. Each inventory containing defective items with percentage i with probability

density function P(i) is known.
4. Imperfect items have been sold as a single batch with a discount on price.
5. Maximum reduction in carbon emission attainable due to investment decisions is

less thanminimum emission attainable due to ordering decisions per year. That is,

√
4 ÂĥM D + k̂ D >

α2

4β

where M = (1−i)2

2 + i D
x , α gives the efficiency of green technology in emission

reduction, and β is a decreasing return parameter(For G monetary units, carbon
emission may be decreased in an amount of (αG − βG2).

6. In cap policy, there are values of the investment that can reduce carbon emission
per year below carbon capacity. Therefore, we can write

√
4 ÂĥM D + k̂ D − α2

4β
< C



414 G. Raiya and M. Mittal

where C is the carbon cap.

Q Order quantity (per cycle)
k Unit variable cost ($ per unit)
A Fixed cost per ($ per unit)
i Percentage of defective items in Q
P(i) Probability density function of i
x Screening rate, x > D
d Unit screening cost($ per unit)
T Cycle length
h Holding cost ($ per unit)

Â Emission associated with ordering (per unit)

ĥ Emission associated with inventory holding (per unit)

k̂ Emission associated with production/purchasing (per unit)
D Demand per year
G Amount invested on carbon emission reduction per year

3 Carbon Cap

Inthisstudyunder thecarboncappolicy, retailer’scarbonemissionsperyearshouldnot
exceed carbon capC . Thus, the retailer has tofinda feasible solution for order quantity
and investment to reduce emissions. Therefore, this problem can be shown as follows:
Minimize

Total cost per unit time = T CU (Q,G) = AD
Q + (k + d)D + h

[
(1−i)2

2

+ i D
x

]
Q + G

Subject to

Total emission per unit time = T EU (Q,G) = ÂD
Q + k̂ D + ĥ

[
(1−i)2

2 + i D
x

]

Q − αG + βG2 ≤ C .

If we consider G = 0, then the optimal solution for this problem lies between the
global interval Q1, Q2 when T E = C ,

Q1, Q2 = Ĉ ±
√

Ĉ2 − 4 Âĥ DM

2ĥM

where Ĉ = C − k̂ D and M =
[
(1−i)2

2 + i D
x

]
. The feasible solution exists if C ≥

2
√

ÂĥM D + k̂ D.
Under cap policy, two cases can be considered such as

(1) C ≥ 2
√

ÂĥM D + k̂ D.

(2) 2
√

ÂĥM D + k̂ D − α2

4β < C < 2
√

ÂĥM D + k̂ D. The next theoremwill provide
the optimal order quantity and investment decisions with different cases. (Q∗,G∗)
will represent the feasible solution.
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Theorem 1 Let

Q3, Q4 = (Ĉ − βG2
3 + αG3) ±

√
(Ĉ − βG2

3 + αG3)2 − 4 Âĥ DM

2ĥM

and

G3 = (AD − hM Q2
3)α − (− ÂD + ĥM Q2

3)

(AD − hM Q2
3)2β

,

G4 = (AD − hM Q2
4)α − (− ÂD + ĥM Q2

4)

(AD − hM Q2
4)2β

.

Then under carbon cap the feasible solution is

If C ≥ 2
√

ÂĥM D + k̂ D, then

(Q∗,G∗) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Qc, 0) if Q2 ≤ Qc ≤ Q1

(Q1, 0) if Qα < Q1 < Qc

(Q3,G3) if Qem < Q3 ≤ Qα

(Q2, 0) if Qc < Q2 < Qα

(Q4,G4) if Qα ≤ Q4 < Qem

(1)

and if 2
√

ÂĥM D + k̂ D − α2

4β < C < 2
√

ÂĥM D + k̂ D, then

(Q∗,G∗) =

⎧
⎪⎨

⎪⎩

(Q3,G3) if Qem < Q3 ≤ Qα

(Q4,G4) if Qα ≤ Q4 < Qem

(Q5,G5) if otherwise

(2)

where Q5 = Qem and G5 = α−
√

α2−4β(−Ĉ+2
√

ÂĥM D
2β . Also, Qα =

√
(Aα+ Â)D
hα+ĥ)M

.

Remark 1 When A
h = Â

ĥ
then Qc = Qem . Also, when C ≥ 2

√
ÂĥM D + k̂ D then

G∗ = 0 and C < 2
√

ÂĥM D + k̂ D then G∗ > 0. The next corollary represents the
minimum emission due to the retailer’s optimal solution in the above theorem.

Corollary 1 Under carbon cap, the minimum emission due to retailer’s feasible
solution is

Em(Q∗,G∗) =
√

DM

AD
( Âh + Aĥ)

when Q2 ≤ Qc ≤ Q1 and otherwise Em(Q∗,G∗) = C. Now, there will be a lemma
which shows the influence of using investment on emission reduction to reduce
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retailer’s carbon emission with a certain cap C. Thus, there will be two considerations
such as Em(Q∗(0), 0) − Em(Q∗,G∗) and T C∗(Q∗(0), 0) − T C∗(Q∗,G∗), where
Q∗(0) is the retailer’s optimal order quantity under cap policy and the investment
amount is zero.

Lemma 1 Investment amount to reduce emissions does not affect the carbon emis-
sion level under the certain cap per year, nevertheless it can reduce the total cost
per year for the retailer. Therefore, we have Em(Q∗(0), 0) − Em(Q∗,G∗) = 0 and
T C∗(Q∗(0), 0) − T C∗(Q∗,G∗) ≥ 0

In the next lemma, there will be a comparison of emissions per year with and without
the carbon cap. Additionally, the effect of total cost per year with and without carbon
cap.

Lemma 2 Carbon emission reduces after applying the carbon cap policy but total
cost per year is not less than when there is no cap policy. Therefore, T C∗(Q∗,G∗) ≥
T C(Qc, 0) and Em(Q∗,G∗) ≤ E(Qem, 0).

Lemma 3 If we consider two investment options, first with α1 and β1 and second
with α2 and β2, then solution that exists using the first investment will give the same
emission level per year without costs.

4 Carbon Tax

In this section, the penalty of pe unit tax will be paid by the retailer per unit carbon
emission. Therefore, the total cost and emission will be as follows:

T CUpe (Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]

Q + G + peT EU (Q,G)

and

T EUpe(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2.

With Q ≥ 0 and G ≥ 0.
In the next theorem, the total cost has beenminimized under the carbon tax policy.

Theorem 2 The feasible solution under carbon tax is given by

(Q∗∗,G∗∗) =
(√

(A + pe Â)D

(h + peĥ)M
,
αpe − 1

2peβ

)
.
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It can be seen that Q∗∗ and G∗∗ are increasing when A
h > Â

ĥ
and decreasing when

A
h < Â

ĥ
. Also, when A

h = Â
ĥ
there is no effect on Q∗∗.

5 Carbon Cap-and-Trade

In this section, there is a restriction of carbon cap C, and if total emission exceeds
carbon cap C, then there is no penalty but the firm can buy carbon permits equal to its
demand of carbon emission at the market price of cpe units per unit carbon emitted.
Also, if the emission by the retailer is less than the carbon cap, then they can sell the
carbon capacity at the same price cpe . Then the problem can be stated as follows:

T CUcpe
(Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]
Q + G − cpe X

and

T EUcpe
(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2 + X = C

with Q ≥ 0, G ≥ 0, where X denotes the amount of carbon that the retailer trades
per year. In the next theorem, a feasible solution will be found out for the above-
formulated problem.

Theorem 3 The optimal solution to minimize the total cost under cap-and-trade
policy is given by

(Q∗∗∗,G∗∗∗) =
(

√√√√ (A + cpe Â)D

(h + cpe ĥ)M
,
αcpe − 1

2cpeβ

)
.

Also, X∗ = C − T EUcpe
(Q∗∗∗,G∗∗∗), where X∗ is the retailer’s optimal amount of

carbon traded per year.

It can be seen that Q∗∗∗ and G∗∗∗ are increasing when A
h > Â

ĥ
and decreasing when

A
h < Â

ĥ
. Also, when A

h = Â
ĥ
, there is no effect on Q∗∗∗.

6 Numerical Analysis

In this section, there will be a comparison of values between two cases, i.e., A
h > Â

ĥ

and A
h < Â

ĥ
. We will consider two sets of examples:
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(1) A = 100, h = 3, Â = 4 and ĥ = 3.
(2) A = 10, h = 4, Â = 100 and ĥ = 8,
where D = 500, k = 6, k̂ = 2, d = 0.5, and i = 0.02 will remain same throughout.
Also, since it is known that percentage defective random variable i is uniformly
distributed and can have any value within the range [γ, δ]where γ = 0 and δ = 0.04.

Probability density function for i is

P(i) =
{
25, 0 ≤ i ≤ 0.04

0, otherwise.
Now, from the first case, we have Qc = 186.3, Qem = 37.26, Qα = 167.463,

T C(Qc, 0) = 3786.77, and T E(Qc, 0) = 1279.12, and from the case 2, Qc =
51.02, Qe = 114.085, Qα = 77.935, T C(Qc, 0) = 3446, and T E(Qc, 0) = 2176.01

6.1 Numerical Analysis for Cap Policy

In Fig. 1, there are two figures (a) and (b) showing the changes in values of
T C(Q∗,G∗) with respect to cap C for both sets of examples. In both of the cases,
T C(Q∗,G∗) strictly decreases with respect to the increasing values of C .

Whenever the value of carbon cap C increases, the emission reduction investment
G decreases, and therefore, the T C(Q∗,G∗) decreases. But from the table, it can
be seen that the total cost before the investment is less than or equal to the total
cost after the investment. Because in the first case, i.e., A

h > Â
ĥ
when C = 1270 and

in the second case that is A
h < Â

ĥ
when C = 2110, T C(Qc, 0) < T C(Q∗,G∗) =

T C(Q∗, 0), and T E(Qc, 0) > T E(Q∗,G∗) = T E(Q∗, 0). Therefore, in this policy,
total emission is decreasing and the total cost is increasing.

Numerical representation for carbon cap

A
h > Â

ĥ
C Q∗ G∗ T C(Q∗,G∗) T E(Q∗,G∗) T C(Q∗, 0) T E(Q∗, 0)
1070 162.361 50.4026 3842.26 1070 – –
1170 165.6 21.2959 3811.79 1169.99 3878.22 1170
1270 179.696 0 3787.12 1270 3787.12 1270
1370 186.3 0 3786.77 1279.12 3786.77 1279.12
A
h < Â

ĥ
C Q∗ G∗ T C(Q∗,G∗) T E(Q∗,G∗) T C(Q∗, 0) T E(Q∗, 0)
1710 83.531 61.9684 3532.27 3532.27 – –
1910 78.4863 7.27361 3471.74 1910 3474.1 1910
2110 55.8343 0 3446.8 2110 3446.8 2110
2310 2110 0 3446 2176.01 3446 2176.01
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(a) (b)

Fig. 1 Change in value of T C(Q∗,G∗) with respect to C

7 Conclusions

In the proposedmodel, the discount price of imperfect items is examined and retailer’s
joint decisions have been analyzed on reclamation of inventory and investment on
reducing carbon emissions under three environmental regulations such as carbon
cap, carbon tax, and carbon cap-and-trade. This model provides that under cap pol-
icy carbon emission will either remain the same or increases when investment and
imperfect items are included but in the carbon tax and cap-and-trade policy, emis-
sion level decreases. This paper imparts an idea that how a retailer should choose
the reclamation of inventory and the effect of government regulations on reducing
emissions and costs.

8 Appendix

8.1 Proof of Theorem-1

In carbon cap policy, KKT(Karush-Kuhn-Tucker) conditions have been used to find
the optimal solution for emission constraint. A feasible solution exists when there
are constraints such that

ÂD

Q
+ k̂ D + ĥ

[
((1 − i)2)

2
+ i D

x

]
Q − αG + βG2 < C

and
Q,G ≥ 0.

By using KKT conditions, there is global optimality when optimality conditions
have been used. Therefore,
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(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
− ĥM

)
− μ1 = 0 (3)

1 + λ1(−α + 2βG) − μ2 = 0 (4)

λ1

(
C − ÂD

Q
+ k̂ D + ĥM Q − αG + βG2

)
= 0 (5)

μ1Q = 0

μ2G = 0

where M =
(

(1−i)2

2 + i D
x

)
and multipliers λ1, μ1, and μ2 may be greater than or

equal to zero. There could be eight possible cases but the feasible solution can be
attained using the following three.
Case 1. λ1 = 0, μ1 = 0, μ2 > 0

If λ1 = 0, μ1 = 0, then Eq.(3) becomes

(−AD

Q2
+ hM

)
= 0. (6)

Therefore, Q =
√

AD
hM = Qc and since μ2G = 0 and μ2 > 0 then G = 0.

Where Qc is the optimal solution for imperfect items.
To get the optimal solution order quantity must satisfy the

ÂD

Q
+ k̂ D + ĥM Q − αG + βG2 < C.

Using this equation, there will be a global interval [Q1, Q2], where

Q2, Q1 = Ĉ ±
√

Ĉ2 − 4 ÂDĥM

2ĥM
.

For a solution to be feasible Ĉ2 − 4F̂ DĥM ≥ 0 and hence C ≥ k̂ D +
√
4 ÂDĥM .

Thus, if C ≥ k̂ D +
√
4 ÂDĥM and Q1 ≤ Qc ≤ Q2, then Q∗ = Qc and G = 0.

Case 2. λ1 > 0, μ1 = 0, μ2 > 0

From Eqs. (3) and (4), we have

(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
− ĥM

)
= 0 (7)

and
1 + λ1(−α + 2βG) − μ2 = 0. (8)
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Since μ2 > 0 then G = 0. Therefore, from Eq. (8),

1 + (−α) λ1 − μ2 = 0 (9)

Also, λ1 > 0 then from Eq. (5), we have

C −
(

ÂD

Q
+ k̂ D + ĥM Q

)

= 0. (10)

Q1 and Q2 satisfy the above equality. Thus, they must have C ≥ k̂ D +
√
4 ÂDĥM

to get the feasible solution. Further, let us consider two cases as follows:

Case 2.1. C = k̂ D +
√
4 ÂDĥM

In this case, Q1 = Q2 =
√

ÂD
ĥM

= Qem and also, since λ1 > 0 and μ2 >= 0 then

λ1 <
1
α
. Equation (7) exists for any positive value of λ1 and A

h = Â
ĥ
. Thus, if A

h = Â
ĥ

then Q∗ = Qc and G∗ = 0.

Case 2.2. C > k̂ D +
√
4 ÂDĥM

In this case, Q1 �= Q2. Then either Q = Q1 or Q = Q2 to get the feasible solution.
Since λ1 > 0, G = 0 then from Eq. (7), it obtained

λ1 = AD − hM Q2

− ÂD + ĥM Q2

then to get optimality, we must have

0 <
AD − hM Q2

− ÂD + ĥM Q2
<

1

α
. (11)

From the above inequality, there are twopossibilities that is either AD − hM Q2 >

0 and − ÂD + ĥM Q2 > 0 or AD − hM Q2 < 0 and − ÂD + ĥM Q2 < 0.
Thus, let us prove first that both the numerator and denominator are less than zero.

Since, we already know that for optimality C > k̂ D +
√
4F̂ DĥM . It can be

rewritten as
2(C − k̂ D)2 − 8 ÂDĥM > 0

2(C − k̂ D)2 − 2(C − k̂ D)

√
(C − k̂ D)2 − 4 ÂDĥM − 8 ÂDĥM < 0

((C − k̂ D) −
√
(C − k̂ D)2 − 4 ÂDĥM)2

2ĥM
− 2 ÂD < 0
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⎛

⎝
(C − k̂ D) −

√
(C − k̂ D)2 − 4 ÂDĥM

2ĥM

⎞

⎠

2

2ĥM − 2 ÂD < 0

− ÂD + ĥM Q2
1 < 0.

Therefore, according to Eq. (11), we must have AD − hM Q2
1 < 0 and 0 <

AD−hM Q2
1

− ÂD+ĥM Q2
1
< 1

α
. By solving these two equations together, the result can be formu-

lated as Q2 >

√
AD
hM = Qc and Q2 <

√
(A+α Â)D
(h+ĥ)M

= Qα, then Q∗ = Q2 and G∗ = 0.

In a similar manner, we can show that AD − hM Q2
1 > 0, − ÂD + ĥM Q2

1 > 0

and AD−hM Q1

− ÂD+ĥM Q1
< 1

α
. After formulating the above results, the result can be shown as

Q1 <

√
AD
hM = Qc and Q1 >

√
(A+α Â)D
(h+ĥ)M

= Qα, then Q∗ = Q1 and G∗ = 0.

Case 3. λ1 > 0,μ1 = 0,μ2 = 0
Since μ1 = 0 and μ2 = 0 then Eqs. (3) and (4) can be written as

(−AD

Q2
+ hM

)
+ λ1

(− ÂD

Q2
+ ĥM

)
= 0 (12)

1 + λ1(−α + 2βG) = 0. (13)

Now, for λ1 > 0, we rewrite Eq. (5) as

C −
(

ÂD

Q
+ k̂ D + ĥM Q − αG + βG2

)

= 0. (14)

By evaluating the above equation, we obtain

Q3, Q4 = Ĉ + αG − βG2 ±
√

Ĉ + αG − βG2 − 4 ÂĥM D

2ĥM
.

Here, Q3 , Q4 exist only if Ĉ + αG − βG2 − 4 ÂĥM D ≥ 0. Let us consider two
cases as follows.

Case 3.1. Ĉ + αG − βG2 = 4 ÂĥM D

From this equality, Q3(G) = Q4(G) =
√

ÂD
ĥM

= Qem , where Qem is the optimal solu-
tion for emission. We should have from Eq. (13)

0 < G <
α

2β
.
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When Q = Qem then Eq. (12) holds for any positive value of λ1 as long as Â
ĥ

= A
h .

Now, we have Ĉ + αG − βG2 = 4 ÂĥM D then there will be two roots from this
equation but the condition, i.e., 0 < G < α

2β only holds at one value which is given
by

G =
α −

√

α2 − 4β(−Ĉ + 2
√

ĥ ÂM D)

2β
.

We can consider this value as G5. Thus, if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D + k̂ D and Â
ĥ

= A
h , then Q∗ = Qem and G∗ = G5.

Case 3.2. Ĉ + αG − βG2 > 4 ÂĥM D
In this case, Q3(G) �= Q4(G).Now, fromEq. (12),λ1 = AD−hM Q2

− ÂD+ĥM Q2
, and for Q3(G) >

0 and Q4(G) to be optimal, theymust satisfy this inequality. Therefore, it is possible to
show that− ÂD + ĥM Q2

3(G) > 0.Moreover, from this result, Q3(G) > Qem . Simi-
larly, for λ1 > 0, wemust have−AD + hM Q2

3(G) > 0 and therefore Q3(G) < Qc.
Now, use the value of λ1 in Eq. (13), to find the value of G in the form of Q3(G),

then(Q3,G3) is the feasible solution, that is,

G = (AD + hM Q2
3(G))α − (− ÂD + ĥM Q2

3(G))

(− ÂD + ĥM Q2
3(G))2β

. (15)

Since, G ≥ 0 then (AD + hM Q2
3(G))α − (− ÂD + ĥM Q2

3(G)) ≥ 0 and therefore
Q ≤ Qα. Now, there are three inequalities such as Q ≤ Qα, Q3(G) < Qc, and
Q3(G) > Qem . From Qem < Q3(G) < Qc, A

h > Â
ĥ
and therefore, Qα < Qc. Final

result can be expressed as if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D + k̂ D and
Qem < Q3(G) < Qα, the optimal solution is (Q3,G3).

Similarly, (Q4,G4) can be obtained. Here,

G4 = (AD + hM Q2
4(G))α − (− ÂD + ĥM Q2

4(G))

AD + hM Q2
4(G M Q2

4(G))2β
. (16)

Therefore, it can be concluded that if 2
√

ĥ ÂM D + k̂ D − α2

4β < C < 2
√

ĥ ÂM D +
k̂ D and Qα < Q4(G) < Qem , then the optimal solution is (Q4,G4).

8.2 proof of Theorem-2

Objective function is

T CUpe(Q,G) = AD

Q
+ (k + d)D + hM Q + G + peT EU (Q,G).
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Putting the value of T EU (Q,G) in the above equation, therefore

T CUpe (Q,G) = (A + pe Â)D

Q
+ (k + pek̂)D + d D + (h + peĥ)M Q + G − αpeG + β peG2.

To find the feasible solution for a total cost per year, solve the Hessian matrix, which
gives (

∂2T CUpe

∂G2

)(
∂2T CUpe

∂Q2

)
−

(
∂2T CUpe

∂Q∂G

)2

must be greater than zero.

∂2T CUpe

∂Q2
= (A + pe Â)D

Q3
,

∂2T CUpe

∂G2
= 2peβ

and
∂2T CUpe

∂Q∂G
= 0.

Therefore, (
∂2T CUpe

∂G2

)(
∂2T CUpe

∂Q2

)
−

(
∂2T CUpe

∂Q∂G

)2

> 0.

Then the optimal solution is Q∗∗ =
√

(A+pe Â)D
h+peĥ)M

and G∗∗ = αpe−1
2peβ

.

8.3 Proof of theorem-3

Objective function is

T CUcpe
(Q,G) = AD

Q
+ (k + d)D + h

[
(1 − i)2

2
+ i D

x

]
Q + G − cpe X

and

T EUcpe
(Q,G) = ÂD

Q
+ k̂ D + ĥ

[
(1 − i)2)

2
+ i D

x

]
Q − αG + βG2 + X = C.

Putting the value of X from the above equation in the objective function, thus

T CUcpe (Q,G) = (A + cpe Â)D

Q
+ (k + cpe k̂)D + d D + (h + cpe ĥ)M Q + G − αcpe G + βcpe G2.
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With the similar approach in 8.2, T CUcpe (Q,G) is convex in Q andG. Therefore, Q∗∗∗ =
√

(A+cpe Â)D

(h+cpe ĥ)M

and G∗∗∗ = αcpe −1
2cpe β . Thus, (Q∗∗∗,G∗∗∗) is the feasible solution.
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Propagation of Water Waves
in the Presence of a Horizontal Plate
Submerged in a Two-Layer Fluid

S. Naskar, N. Islam, R. Gayen, and R. Datta

Abstract The interaction of surface and interface waves with a thin horizontal plate
submerged in the lower layer of a two-layer fluid is studied under linearised theory
of water waves. The associated boundary value problem is solved here by Fourier
integral transform by reducing it to an integral equation involving the potential dif-
ference function across the plate. Application of multi-term Galerkin method to the
solution of the integral equation leads to a simple, rapidly convergent numerical
scheme and suitable expressions for different hydrodynamic quantities of interest.
Numerical results for the reflection coefficients and the hydrodynamic force on the
plate are presented to study the effect of different physical parameters. The present
method is verified by recovering the published numerical results for a limiting case
and through an energy balance relation.
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1 Introduction

The study of water wave interaction with obstacles has sparked enormous attention
for a variety of applications in coastal and marine environments. Also, obtaining a
less cost-effective clean renewable energy by extracting energy from ocean waves
has received considerable attention from researchers. One of the best developments
in extracting wave energy is to construct a line of submerged bodies that would act
like a lens and focus the diverging waves to converge waves. In Norway, they have
developed many such constructions like shore-based horizontal tapered channels,
oscillating water columns, phase controlled wave power buoys, etc. McIver [1] con-
sidered a horizontal flat plate moored to seabed which would act like such a lens,
while Mehlum [2] considered a circular cylinder. Using Fourier integral transform
together with a Galerkin method, Porter [3] investigated the oblique water wave
interaction with a horizontal thin plate submerged in a single layer fluid.

In the study of the propagation of water waves in a two-layer fluid having a free
upper surface in the upper layer, Lamb [4] established that for a given frequency,
there exist two linearwave systems of differentwavenumbers. These twowavemodes
mainly propagate along the free surface and the interface of the fluids. As a result,
if wave fields interact with obstacles, some transformation of wave energy from one
mode to another may occur. This makes the wave interaction problems in a two-layer
fluid more interesting. Linton and McIver [5] developed the linear scattering theory
for two-dimensional wave motion in a two-layer fluid comprised of an infinite lower
layer and a finite upper layer with a free surface to investigate the problem of wave
scattering by a horizontal circular cylinder with the help of multipole expansion
method. Using hypersingular integral equations method, Dhillon et al. [6] and Islam
and Gayen [7] investigated the scattering of water waves by a thin vertical and
inclined plate in a two-layer fluid, respectively. Based on themethod of eigenfunction
expansion, Medina-Rodríguez and Silva [8] considered two thick horizontal plates
submerged in a two-layer fluid and analysed the reflection energies of interface and
surface waves.

In the present article, a thin horizontal rigid plate submerged in the lower layer of a
two-layer-fluid is proposed and investigated in the context of linear potential theory.
Here, both the fluids are considered to be of finite depth. The coupled boundary
value problem is solved here by Fourier integral transform to obtain an integral
equation involving the unknown potential difference function across the plate. Then
using Galerkin method we find this potential difference function numerically and
with this solution, we compute the different physical quantities. The correctness of
the present analysis is established by checking the energy identity relation and by
comparing the obtained numerical results for limiting case with one of the previous
results available in the literature. New results are presented graphically illustrating
the effects of various parameters on the hydrodynamic quantities.
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2 Formulation of the Problem

Figure1 depicts the geometry of a horizontal plate Γ submerged in the bottom layer
of a two-layer fluid. The depths of the upper and lower layer fluids are h and H ,
respectively. A Cartesian coordinate system is considered in which z = 0 represents
the rest common interface of the two fluids, z = −h represents the free surface,
and z-axis is measured vertically downwards from the undisturbed interface. Let the
plate be submerged at a depth d from the undisturbed interface of the two fluids
and extends horizontally from −b to b. Assuming time harmonic incident waves
of angular frequency σ making an angle θ with the positive x-axis, the motion
in the upper layer fluid (of density ρ1) and lower layer fluid (of density ρ2) can
be represented by Re

{
φ1(x, z)e−iστeiνy

}
and Re

{
φ2(x, z)e−iστeiνy

}
respectively,

where τ indicates the time and ν is the wavenumber along the y direction. The
functions φ j (x, z) satisfy

(∇2 − ν2)φ j (x, z) = 0, in the respective fluid region. (1)

Linearized free surface, interface and the bottom boundary conditions are

Kφ1 + φ1z = 0 on z = −h, (2)

φ1z = φ2z on z = 0, (3)

s(Kφ1 + φ1z) = Kφ2 + φ2z on z = 0, (4)

φ2z = 0 on z = H , (5)

where s = ρ1/ρ2, K = σ2/g , g being the acceleration due to gravity.
The boundary condition on the horizontal plate is

φ2z(x, d
±) = 0, | x |< b, (6)

φ2(x, d
+) − φ2(x, d

−) = P(x), | x |< b. (7)

Fig. 1 Schematic diagram
for horizontal plate

z = 0

z = −h

z = H

z

Γ

d

φ1, ρ1

φ2, ρ2
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In a two-layer fluid, the progressive waves propagating at the free surface and the
interface can be expressed by

f1(v, z)e±i(v2−ν2)1/2x (−h < z < 0), f2(v, z)e±i(v2−ν2)1/2x (0 < z < H)

with

f1(v, z) = sinh vH

K cosh vh − v sinh vh
[ v cosh v(h + z) − K sinh v(h + z)] ,

f2(v, z) = cosh v(H − z)

where v is real, positive and satisfies the dispersion equation

�(v) ≡ (1 − s)v2 + K 2(s + coth vh coth vH) − vK (coth vh + coth vH) = 0.
(8)

Equation (8) has exactly two positive real roots, m and M (K < m < M). Thus,
there exist two wave systems with two different wavenumbers. As a result, if a wave
train of mode m is obliquely incident on the horizontal plate at angle θ with the
positive x-axis, the far-field behaviours of φ j ( j = 1, 2) are given by

φ j (x, z) →
{

φI
jm(x, z) + rmφI

jm(−x, z) + RmφI
jM(−x, z) as x → −∞,

tmφI
jm(x, z) + TmφI

jM(x, z) as x → ∞,
(9)

where
φI

jv(x, z) = f j (v, z)ei(v
2−ν2)1/2x . (10)

In (9), for an obliquely incident wave of modem, the unknowns rm and Rm repre-
sent the amplitudes of reflected waves associated with modes m and M respectively,
while tm and Tm represent the amplitude of transmitted waves associated withmodes
m and M respectively. Similarly, for an incident wave of mode M with incident wave
angle θ < sin−1(m/M) the far-field behaviours of φ j ( j = 1, 2) can be expressed as

φ j (x, z) →
{

φI
jM(x, z) + RMφI

jM(−x, z) + r MφI
jm(−x, z) as x → −∞,

T MφI
jM(x, z) + t MφI

jm(x, z) as x → ∞.

(11)
Here, for an obliquely incident wave of mode M , the unknowns r M and RM repre-

sent the amplitudes of reflected waves associated with modes m and M respectively,
while t M and T M denote the amplitudes of transmitted waves associated with modes
m and M respectively.
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3 Method of Solution

Let a wave train of modem making an angle θ(0 ≤ θ ≤ π/2)with the positive x-axis
be incident on the plate. Then, we must have ν = m sin θ.

Now, we define the Fourier transform of the scattered potential function by

φ j (k, z) =
∫ ∞

−∞

(
φ j (x, z) − φI

jm(x, z)
)
e−ikxdx, (12)

with the inverse

φ j (x, z) = φI
jm(x, z) + 1

2π

∫ ∞

−∞
φ j (k, z)e

ikxdk, (13)

where the integration contour in the inverse transform will be defined later by incor-
porating the far-field conditions.

Then, applying (12) to (1)–(7) produces

(
d2

dz2
− β2)φ j = 0, j = 1, 2, (14)

Kφ1 + φ1z = 0 on z = −h, (15)

φ1z = φ2z on z = 0, (16)

s(Kφ1 + φ1z) = Kφ2 + φ2z on z = 0, (17)

φ2z = 0 on z = H, (18)

φ2z(k, d
+) = φ2z(k, d

−), (19)

φ2(k, d
+) − φ2(k, d

−) =
∫ b

−b
P(x)e−ikxdx ≡ P(k), (20)

where β2 = k2 + ν2.
Solving (14) subjected to the boundary conditions (15)–(18), we get

φ1(k, z) = K P(k) sinh β(H − d)[K sinh β(h + z) − β cosh β(h + z)]
sinh βh sinh βH�(β)

,−h < z < 0, (21)

φ2(k, z) =
{

P(k) sinh β(H−d)[sinh βh cosh βz((1−s)β2+K 2s)−Kβ cosh β(h+z)+K 2 cosh βh sinh βz]
sinh βh sinh βH�(β)

, 0 < z < d,

P(k) cosh β(H−z)[sinh βh cosh βd((s−1)β2−K 2s)+Kβ sinh β(h+d)−K 2 cosh βh cosh βd]
sinh βh sinh βH�(β)

, d < z < H.
(22)

Taking inverse transforms of the representations (21) in (−h < y < 0) and (22)
in 0 < y < d, we get
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φ1(x, z) = φI
1m (x, z)

+ 1

2π

∫ ∞
−∞

K P(k) sinh β(H − d)[K sinh β(h + z) − β cosh β(h + z)]
sinh βh sinh βH�(β)

eikxdk, (23)

φ2(x, z) = φI
2m (x, z) + 1

2π

∫ ∞
−∞

P(k)H(z, β)eikxdk, (24)

where

H(z, β) = sinh β(H − d)[sinh βh cosh βz((1 − s)β2 + K 2s) − Kβ cosh β(h + z) + K 2 cosh βh sinh βz]
sinh βh sinh βH�(β)

. (25)

In order to obtain the reflection and transmission coefficients, we find the far-field
form for φ1(x, z). There are poles on the real k-axis at k = ±α1 and k = ±α2 where
α1 = m cos θ, α2 =

√
M2 − m2 sin2 θ. Thus, in order to meet the radiation con-

dition that φ1 − φI
1m is outgoing, the contour of the integration in equation (23)

is taken to pass under the poles at k = α1,α2 and over the poles at k = −α1,−α2.
Thus, capturing the residues at the poles k = ±α1,±α2, the contour can be deformed
into either the upper-half or lower-half k-plane by letting x → ±∞ in (19), and this
yields

φ1(x, z) →

⎧
⎪⎪⎨

⎪⎪⎩

φI
1m (x, z) − imμ1P(−α1) sinhm(H − d)φI

1m (−x, z) − iMμ2P(−α2) sinh M(H − d)φI
1M (−x, z)

as x → −∞,
(
1 − imμ1P(α1) sinhm(H − d)

)
φI
1m (x, z) − iMμ2P(α2) sinh M(H − d)φI

1M (x, z) as x → ∞.

(26)
Comparing (26) with (9), we get

tm − 1 = −imμ1P(α1) sinhm(H − d), Tm = −iMμ2P(α2) sinhM(H − d),

rm = −imμ1P(−α1) sinhm(H − d), Rm = −iMμ2P(−α2) sinhM(H − d),

(27)
where μ1 and μ2 are defined as

μ1 = K (K coshmh − m sinhmh)

α1 sinhmh sinh2 mH�
′
(m)

, μ2 = K (K coshMh − M sinh Mh)

α2 sinh Mh sinh2 MH�
′
(M)

.

Now with the help of the values of tm , Tm , rm and Rm , we can write (24) as the
sum of Cauchy principal value-integral and contributions from the four poles. Thus,
φ2(x, z) given in (24) can be expressed as

φ2(x, z) = 1

2
(tm + 1)φI

2m(x, z) + rm

2
φI
2m(−x, z) + 1

2
[Tmeiα2x + Rme−iα2x ]

+ 1

2π

∫
−

∞

−∞
H(z,β)P(k)eikxdk. (28)

We note that, for 0 < z < d,
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H(z,β) → 1

2
e−|k|(d−z), as |k| → ∞. (29)

We also note the following identity (cf. [9]) for d − z > 0

log
√

(x − w)2 + (d − z)2 = 1

2

∫ ∞

−∞
e|k| − e|k|(d−z)eik(x−w)

| k | dk. (30)

Thus, making use of the relations (20), (29) and (30), we re-write (28) as

φ2(x, z) = 1

2
(tm + 1)φI

2m(x, z) + rm

2
φI
2m(−x, z) + 1

2
[Tmeiα2x + Rme−iα2x ]

+ 1

2π

∂

∂z

∫ b

−b
P(w) log

√
(x − w)2 + (d − z)2dw

+ 1

2π

∫
−

∞

−∞
[H(z,β) − 1

2
e−|k|(d−z)]eikx

∫ b

−b
P(w)e−ikwdwdk. (31)

Now we apply the plate condition (6) in (31) and this gives

(tm + 1) f+(x) + rm f−(x) + Tmg+(x) + Rmg−(x) = − 1

π

d2

dx2

∫ b

−b
P(w) log | x − w | dw

+ 1

2π

∫
−

∞
−∞

Eν (k)eikx
∫ b

−b
P(w)e−ikwdwdk (32)

for | x |< b, where

f±(x) = −m sinhm(H − d)e±iα1x and g±(x) = −M sinh M(H − d)e±iα2x

(33)
and

Eν (k) = 2β sinh β(H − d)[sinh βh sinh βd((s − 1)β2 − K 2s) + Kβ sinh β(h + d) − K 2 cosh βh cosh βd]
sinh βh sinh βH�(β)

+ |k|.
(34)

It may be noted that to obtain (32) we have used

(
∂2

∂x2
+ ∂2

∂z2

)
log

√
(x − w)2 + (d − z)2 = 0 (35)

to alter from z to x-axis before applying the plate condition on z = d.
Now, we define the integro-differential operator K by

(KP)(x) = − 1

π

d2

dx2

∫ b

−b
P(w) log | x − w | dw + 1

2π

∫
−

∞

−∞
Eν(k)e

ikx

∫ b

−b
P(w)e−ikwdwdk (36)
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and let P±(x), Q±(x) satisfy

(KP±,KQ±) (x) = ( f±, g±) (x), | x |< b. (37)

Hence it follows from (32) that

P(x) = (tm + 1)P+(x) + rm P−(x) + TmQ+(x) + RmQ−(x). (38)

Using (33) and the definition (20) in (27) results in

tm − 1 = iμ1〈P, f+〉, Tm = iμ2〈P, g+〉,
rm = iμ1〈P, f−〉, Rm = iμ2〈P, g−〉, (39)

where the operation 〈p, q〉 denotes the inner product as defined by

〈p, q〉 =
∫ b

−b
p(x)q∗(x)dx (40)

with asterisk denoting complex conjugate.
Substitution of (38) in (39) gives

tm − 1 = iμ1(t
m + 1)S+,+ + iμ1r

mS−,+ + iμ1T
mX+,+ + iμ1R

mX−,+
Tm = iμ2(t

m + 1)W+,+ + iμ2r
mW−,+ + iμ2T

mL+,+ + iμ2R
mL−,+

rm = iμ1(t
m + 1)S+,− + iμ1r

mS−,+ + iμ1T
mX+,− + iμ1R

mX−,−
Rm = iμ2(t

m + 1)W+,− + iμ2r
mW−,− + iμ2T

mL+,− + iμ2R
mL−,−

(41)

where W±,± = 〈P±, g±〉, L±,± = 〈Q±, g±〉, S±,± = 〈P±, f±〉, X±,± = 〈Q±, f±〉
with the first ’±’s in the left-hand side corresponding to the first in the right hand
side and so on.

3.1 Numerical Method

To solve the system of equations given in (41) for Rm , Tm , rm and tm , we must
compute the inner products; hence we need to solve for P±, Q±. For this, we apply
the Galerkin method (cf. Porter [3]) to find the solution for (37). The method is
described below.
We take

(P±, Q±) (x) =
∞∑

n=0

(
A±
n , B±

n

)
pn(x/b), | x |≤ b, (42)

where A±
n , B

±
n are unknown coefficients to be determined and
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pn(w) = einπ/2

π(n + 1)
(1 − w2)1/2Un(w), (43)

where Un are second kind Chebyshev polynomials of order n.
Substitution of (42) into (37), multiplication with p∗

l (x/b) and integration over
−b < x < b results in the infinite system of equations for the unknown coefficients
A±
n and B±

n :

− 1

2π(l + 1)

(
A±
l , B±

l

) +
∞∑

n=0

(
A±
n , B±

n

)
Kl,n = (

F±
l ,G±

l

)
, l = 0, 1, 2, ..., (44)

where

Kl,n = 1

2π

∫
−

∞

−∞
Eν(k)

k2
Jn+1(kb)Jl+1(kb)dk, (45)

and

F±
l = −m sinhm(H − d)(±1)l

Jl+1(bα1)

α1
, G±

l = −M sinhM(H − d)(±1)l
Jl+1(bα2)

α2
. (46)

It is noted that Kl,n = 0 if l + n is odd. This indicates that we can decouple (44) into
its symmetric and antisymmetric parts for

(
A±
2n, B

±
2n

)
and

(
A±
2n+1, B

±
2n+1

)
. Thus, we

have the following real symmetric systems of linear equations:

− 1

2π(2l + ξ + 1)

(
A±
2l+ξ, B

±
2l+ξ

)
+

∞∑

n=0

(
A±
2n+ξ, B

±
2n+ξ

)
K2l+ξ,2n+ξ =

(
F±
2l+ξ,G

±
2l+ξ

)
,

l = 0, 1, 2, ..., ξ = 0, 1. (47)

Again, F+
l = (−1)l F−

l and G+
l = (−1)lG−

l imply that A+
l = (−1)l A−

l and B+
l =

(−1)l B−
l and thus it is sufficient to find just the solutions of (47) for

(
A+
l , B+

l

)
.

Using (42) and (46), we have

W±,± =
∞∑

n=0

A±
n G

±
n , L±,± =

∞∑

n=0

B±
n G

±
n , S±,± =

∞∑

n=0

A±
n F

±
n , X±,± =

∞∑

n=0

B±
n F±

n .

(48)
Thus, it follows that

W+,+ = W−− =
∞∑

n=0

A±
2nG

±
2n +

∞∑

n=0

A±
2n+1G

±
2n+1 and

W+,− = W−+ =
∞∑

n=0

A±
2nG

±
2n −

∞∑

n=0

A±
2n+1G

±
2n+1 (49)

and similarly for L±,±, S±,± and X±,±.
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The energy identity comprising reflection and transmission coefficients can be
derived using Green’s integral theorem as

|rm |2 + |Rm |2 + J (|tm |2 + |Tm |2) = 1; J = JM

Jm
, (50)

with

Jλ = iλ

[
s
∫ 0

−h
{ f (λ, z)}2dz +

∫ H

0
{cosh λ(H − z)}2dz

]
, λ = m, M. (51)

The vertical hydrodynamic force acting on the plate can be obtained by integrating
the dynamic pressure difference across the plate and is given as

Fm = iσρ2

∫ b

−b

(
φ2(x, d

+) − φ2(x, d
−)

)
dx = iσρ2

∫ b

−b
P(x)dx . (52)

Thus using (38) we have

Fm = iσρ2
(
(tm + 1)S+,0 + rmS−,0 + TmX+,0 + RmX−,0

)
(53)

where S±,0 = 〈P±, f0〉, X±,0 = 〈X±, f0〉 and f0 = 1. Since f0 = 1 = U0(x/b), it
follows that S±,0 = (1/2)bA+

0 and X± = (1/2)bB+
0 .

Thus, the dimensionless hydrodynamic force acting on the horizontal rigid thin
plate is defined as

F̂m = Fm

2ρ2σb coshmh
= 1

4

{
((tm + 1) + rm)A+

0 + (Tm + Rm)B+
0

}
. (54)

Following the similarmathematical analysis as described above, for awave train of
mode M obliquely incident at an angle θ, the solutions for the reflection coefficients,
transmission coefficients and wave load on the plate can be obtained and analysed.
Thus in the present paper, we only depict the numerical results for the case of incident
wave of mode m.

4 Numerical Results and Discussions

The numerical results for different hydrodynamic quantities are computed after trun-
cating the infinite series (42) to a finite number N . After some numerical examina-
tions, it is found that the value of N = 4 is enough to produce sufficiently accurate
numerical results.

Table1 represents the validation of computed numerical values of the reflec-
tion and transmission coefficients against the energy balance relation. In this table,
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Table 1 A numerical check on energy identity relation

mb |rm | |Rm | |tm | |Tm | J |rm |2 +
|Rm |2 +
J (|tm |2 +
|Tm |2)

0.1507 6.808e−3 1.814e−3 0.99981 6.808e−3 14.773 0.99977

0.6460 4.843e−3 1.420e−3 0.99702 6.808e−3 817.92 1.00013

0.5947 6.233e−2 1.641e−4 0.99783 6.808e−3 3.024e4 1.00114

0.8406 3.860e−6 5.960e−6 0.99920 6.808e−3 7.670e5 1.00008

Fig. 2 Comparisons
between the present results
and the results obtained by
Gradshteyn and Ryzhik [9]
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1
Present Results
Porter(2015)

we present the variations of rm, Rm, tm, Tm and |rm |2 + |Rm |2 + J (|tm |2 + |Tm |2)
for few values of mb with other parameters as s = 0.5, d/b = 2, h/b = 2, H/b =
4, θ = 00. It is visible from Table1 that the reflection and the transmission coef-
ficients satisfy the energy identity relation (50) accurately and this proves partial
correctness of our numerical results.

Here we note that by letting s = 1 and h → 0, we can reduce the two-layer fluid
to a single layer fluid of depth H . Through Fig. 2, we validate the newly developed
method by comparing the numerical results for reflection coefficient (R) with those
obtained by Porter [3] where he studied water wave scattering by a horizontal rigid
thin plate in a single layer fluid. Fig. 2 is generated considering d/H = 0.1, b/H =
0.5, s = 1, h → 0, θ = 0◦. This graph demonstrates that the present results agree
very well with those in Porter [3], and this provides additional validation on the
numerical results obtained by the current analysis.

In Fig. 3a and b, for an incident wave train of mode m, we show the variations of
the reflection coefficients |rm | and |Rm | against the dimensionless wavenumber mb
for different values of dimensionless submergence depth d/b(= 0.5, 1, 1.5). Here
the values of other fixed parameters are s = 0.5, h/b = 2, H/b = 4, θ = 0◦. These
two figures show that as the submergence depth increases the reflection coefficients
decrease. This may illustrate the fact that as the submergence depth increases, the
interface and surface waves find more regions to pass the other side of the plate. It
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(b) Reflection coefficient at mode M .

Fig. 3 Reflection coefficients as a function ofmb for various values of d/b with s = 0.5, h/b = 2,
H/b = 4, θ = 0◦
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(b) Reflection coefficient at mode M

Fig. 4 Reflection coefficients as a function ofmb for various values of h/bwith s = 0.5, H/b = 4,
d/b = 2, θ = 0◦

also demonstrates that the reflection coefficients diminish to zero beyond a certain
value of dimensionless wavenumber.

For an incidentwave train ofmodem, Fig. 4a and b shows the influence of the inter-
face position on the reflection coefficients |rm | and |Rm | as a function of dimension-
less wavenumbermb by altering the depth of the upper layer fluid(h/b = 0.5, 1, 1.5)
for the following fixed parameters: s = 0.5, H/b = 4, d/b = 2, θ = 0◦. From
Fig. 4a, it is visible that as the interface is moved upwards, the reflection coeffi-
cient at mode m increases, whilst opposite behaviour for the reflection coefficient at
mode M can be observed in Fig. 4b.

For an incident wave train of mode m, the effects of dimensionless plate length
on the values of reflection coefficients |rm | and |Rm | as a function of dimension-
less wavenumber md are depicted in Fig. 5a and b respectively. Here the values of
other fixed parameters are chosen as s = 0.5, h/d = 1.5, H/d = 3, θ = 0◦. These
two graphs demonstrate the fact that as the plate length decreases, the reflection
coefficients also decrease. One obvious explanation for this phenomenon is that a
smaller plate obstructs less amount of waves, resulting in lower reflection.
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Fig. 5 Reflection coefficients as a function ofmd for various values of b/d with s = 0.5, H/d = 3,
h/d = 1.5, θ = 0◦

Fig. 6 The dimensionless
hydrodynamic force |F̂m | for
various values of d/b with
s = 0.5, h/b = 2, H/b = 3
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Figs. 6 and 7 represent the dimensionless hydrodynamic force |F̂m | with respect
to dimensionless wavenumber mb for different values of d/b and h/b respectively.
Fig. 6 is plotted by choosing the values of parameters as s = 0.5, h/b = 2, H/b =
3, θ = 0◦. On the other hand, the Fig. 7 is plotted by choosing the values of parameters
as s = 0.5, H/b = 3, d/b = 2. The two Figs. 6 and 7 indicate that the dimensionless
hydrodynamic force exerted on the plate due to a wave train of mode m decreases
as the submergence depth and depth of the upper layer fluid increase. It is obvious
that as the plate moves deeper into the fluid, the propagating waves experience less
obstruction by the plate resulting in lower vertical force.

5 Conclusions

On the basis of two-dimensional potential theory, we have investigated the prob-
lem of oblique wave scattering by a horizontal thin plate submerged in the lower
layer of a two-layer fluid, comprising of two finite layers of fluids, in which upper
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Fig. 7 The dimensionless
hydrodynamic force |F̂m | for
various values of h/b with
s = 0.5, H/b = 3, d/b = 2
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layer has a free surface. We have adopted the Fourier integral transform to formulate
integral equation involving unknown potential difference function across the plate.
Applying Galerkin method to the solution of this integral equation, we obtain simple
expressions for the reflection coefficients, transmission coefficients and hydrody-
namic force exerted on the plate. We have validated the results obtained for the
present analysis with those in Porter [3]. Also to ensure the validity of our results, we
have calculated the energy identity for an incident wave of modem. The dependence
of various hydrodynamic quantities on the various parameters are depicted through
figures. The reflection coefficients and hydrodynamic force significantly depend on
the submergence depth of the plate and the interface position of the fluids. Reflection
coefficients at the interface mode and surface mode for the incident wave of mode
m increase as the submergence depth of the plate decreases. Also, the dimension-
less hydrodynamic force acting on the plate decreases as the depth of upper layer
fluid increases and increases as the submergence depth of the plate decreases. As
usual, here also increasing plate lengths reflect more amount of wave energy. With
decreasing depth of the upper layer fluid, the effect of the plate on the surface waves
becomes prominent whereas the effect of the plate on the interface waves becomes
suppressed. For the normal incident wave of mode m, the horizontal plate reflects
very less amount of waves incident on it even zero beyond a certain value of dimen-
sionless wavenumber. Thus, the plate can be used to construct as a component of a
lens for the purpose of wave focusing. Moreover, the present method could further
be extended to study the wave interaction problem with more than one horizontal
plate submerged in a two-layer fluid.

References

1. McIver, M.: Diffraction of water waves by a moored, horizontal, flat plate. J. Eng. Maths. 19,
297–319 (1985)

2. Mehlum, E.: A circular cylinder in water waves. Appl. Ocean Res. 2, 171–177 (1980)



Propagation of Water Waves in the Presence of a Horizontal … 441

3. Porter, R.: Linearisedwaterwave problems involving submerged horizontal plates.Appl.Ocean
Res. 50, 91–109 (2015)

4. Lamb, H.: Hydrodynamics. Cambridge University Press (1932)
5. Linton, C.M., McIver, M.: The interaction of waves with horizontal cylinders in two layer

fluids. J. Fluid Mech. 304, 213–229 (1995)
6. Dhillon, H., Banerjea, S., Mandal, B.N.:Wave scattering by a thin vertical barrier in a two-layer

fluid. Int. J. Eng. Sci. 78, 73–88 (2014)
7. Islam, N., Gayen, R.: Scattering of water waves by an inclined plate in a two layer fluid. Appl.

Ocean Res. 80, 136–147 (2018)
8. Medina-Rodríguez, A., Silva, R.: Oblique water-wave scattering by two thick submerged-

horizontal plates in a two-layer fluid. J. Waterw. Port Coast. Ocean Eng. 144, 04018003 (2018)
9. Gradshteyn, I.M., Ryzhik, I.S.: Table of Integrals, Series and Products, 2nd edn. Academic

Press, New York (1981)



Transversely Isotropic Homogeneous
Medium with Absorbing Boundary
Conditions: Elastic Wave Propagation
Using Spectral Element Method

Poonam Saini

Abstract Particle displacements and stresses are calculated for studying elastic
wave propagation in a transversely isotropic homogeneous medium. A mesh con-
sisting of rectangular elements is considered for discretization of two-dimensional
domain. The spectral element method is applied through the non-uniformly dis-
tributedGauss-Lobatto-Legendre nodes. The tensor product of highorderLagrangian
interpolation polynomials is used as shape functions. Lagrangian interpolation poly-
nomials along with Gauss-Lobatto-Legendre quadrature rule for numerical integra-
tion results in diagonalmassmatrixwhich leads to an efficient fully explicit solver for
time integration. Second order accurate, central differencemethod is applied for time
discretization. The displacements and stress components are exhibited through time
series at a point and snapshots in the domain. The influence of absorbing boundary
conditions is demonstrated on the displacement components at different times. The
validation of numerical solution is ensured through its comparison with known ana-
lytical solution for the two dimensional homogeneous transversely isotropic model.

Keywords Transversely isotropic · Wave propagation · Absorbing boundary
conditions · Spectral element method · Lagrange type shape function ·
Gauss-Lobatto-Legendre nodes

1 Introduction

The formulation of elastic wave problems is generally done under the assumption of
homogeneity, perfect elasticity and isotropy. The reason being the lesser parameters
in model description, simpler constitutive equations and easier solutions. But, in
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more realistic studies, the assumption on isotropy is relaxed to take anisotropy of
the medium into account. A transversely isotropic (TI) medium is considered to be a
simpler and the most common anisotropic model in wave propagation studies. Such
amedium possess a plane of isotropy, with normal along the single axis of symmetry.

The transient propagation of elastic waves is a reality in numerous fields of science
and technology including earthquake and exploration seismology. The governing
equations of motion are a system of partial differential equations with initial and/or
boundary conditions which are posed in infinite space-time domain. Analytic solu-
tions are difficult to find in these problems as they require application of advanced
mathematical techniques. Generally, the standard numerical methods, such as FEM,
are developed for solutions in bounded space-time domain. Thus, any model for the
bounded region of interest may involve the reflections of elastic waves at the bound-
aries. But, for these superimposed reflections, the actual solution for wave motion
becomes inaccurate. To tackle this situation numerically, an artificial boundary is con-
sidered to truncate the unbounded domain of the problem. This imagined boundary
is placed at some distance away from the region of the interest. To make the prob-
lem well posed, an absorbing boundary condition (ABC) is devised at the truncating
boundary, which can absorb the incident waves. The numerical solution obtained
for the bounded domain may serve as the solution for original unbounded domain,
provided appropriate boundary conditions are applied on truncating boundary.

For solving the equations of elastodynamics numerically, the finite element
method (FEM) is a prominently used method. This technique has been used widely
in elastic wave propagation modeling [8, 9, 17]. Although conventional FEM can
simulate elastic wave propagation in arbitrary geometry domain, its cost of computa-
tion becomes high. Hence, in recent years, researchers have tried to implement new
variants of FEM.

Spectral Element Method (SEM) was first proposed by Patera [10] for the model-
ing of liquid flow in computational fluid dynamics. This method is a variant of FEM
which uses specific high order shape functions. The idea behind its development was
to combine the accuracy and rapid convergence of Pseudo Spectral Method (PSM)
with geometrical flexibility of FEM. The main advantage of SEM over FEM is its
high accuracy of approximation of solution through a smaller number of elements.
Interpolating polynomial was taken as Chebychev polynomial in Patera [10]. Maday
and Patera [11] developed SEM further by introducing Lagrange polynomial in com-
bination of Gauss-Lobatto-Legendre (GLL) quadrature rule, which led to a diagonal
mass matrix.

The SEM has been used for the study of seismic wave propagation as well. Pri-
olo and Seriani [13] used SEM with Chebychev polynomials for simulation of one
dimensional wave propagation. The same technique has been extended to study the
propagation of elastic waves in 2D and 3D media for different geological applica-
tions ([6, 14, 15]). Basabe [5] used Lagrange interpolation polynomial to apply SEM
for the simulation of wave propagation in 2D isotropic elastic media. Seriani et al.
[16] studied the propagation of elastic waves in 2D transversely isotropic medium
with vertical symmetry axis using Chebychev SEM. But, this Chebychev formula-
tion leads to a non-diagonal mass matrix, whose inversion takes a lot of computation
time.
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In the present work, SEM has been used to study the two dimensional elastic wave
propagation in transversely isotropic media. The higher order Lagrange interpolating
polynomial in combination with GLL nodes has been used as shape function. This
choice yields a diagonal mass matrix due to orthogonality of approximation func-
tions. It is easier to find inverse of the diagonal matrix as one has to just reciprocate
the diagonal elements. Further, the ability to store elements of diagonal mass matrix
as a one-dimensional vector leads to reduction in memory requirements. Thus, diag-
onal mass matrix results in a very efficient fully explicit scheme for integration over
time. This is a significant advantage over classical FEM. The GLL quadrature rule
for numerical integration is used to evaluate entries of elemental mass and stiffness
matrix. The unbounded domain is simulated by introducing artificial boundaries on
which absorbing conditions are enforced. The accuracy of method is demonstrated
graphically by comparing numerical solution with analytical solution for a homoge-
neous transversely isotropic medium as mentioned in Carcione [12], Payton [2].

2 Elastic Moduli in Transversely Isotropic Material

The elastic properties of a medium are represented by its elastic stiffness tensor,
ci jkl . In the linear elasticity, this stiffness tensor relates the components of stress
tensor (σi j ) and strain tensor (εkl). The relevant relations are given according to the
generalized Hooke’s law as

σi j = ci jklεkl, (i, j = 1, 2, 3) . (1)

The stiffness tensor obey the symmetry relations ci jkl = c jikl = ci jlk = ckli j ; (i, j, k,
l = 1, 2, 3). Consequently, the number of independent components in this ten-
sor reduce to 21, which are arranged in 6 × 6 symmetric matrix {CI J }, (I, J =
1, 2..., 6). The Kronecker tensor (δi j ) is used to relate the two set of indices as I =
iδi j + (9 − i − j)(1 − δi j ), J = kδkl + (9 − k − l)(1 − δkl); (i, j, k, l = 1, 2, 3).

In an anisotropic medium, there are 21 independent elastic constants. A trans-
versely isotropic (TI) medium has only 5 independent elastic constants. The consti-
tutive relations for a transversely isotropic elastic material, with axis of symmetry
lying along vertical z axis are written as Lubarda [7]

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σzx

σxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
2εyz
2εzx
2εxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2)
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where C66 = 1
2 (C11 − C12) and CI J is as defined above.

For two dimensional transversely isotropic elastic solid in x-z plane with symmetry
axis lying along the vertical z axis, elastic stiffness matrix C can be written as

C =
⎛

⎝
C11 C13 0
C13 C33 0
0 0 C44

⎞

⎠ . (3)

In two dimensional case, number of independent elastic constants reduces to 4.

3 Mathematical Formulation

3.1 Elastic Wave Equation in Two Dimensions
in a Transversely Isotropic Medium

The governing equations for a dynamical system in the presence of external force
are given by Achenbach [1] as

σi j, j + fi = ρüi in Ω × (0, T ] (4)

where Ω ⊂ R2 is the physical domain with boundary �, (0, T ] is the time domain
σi j is the stress tensor, ρ is density of medium, fi = fi (x, t) is the force vec-
tor component and ui is displacement vector component. The comma preceding an
index in the subscript denotes derivative w.r.t. space partially and over dot represents
partial time differentiation. Repetition of index means sum over that index following
Einstein convention. In orthogonal Cartesian coordinate system, displacement vec-
tor (ux , uz) at a point (x, z) defines the motion of material particle. Using general
definition of divergence of a tensor field S as ∇.S = ∂Ski

∂xk
ei , the expression σi j, j in

(4) can be expressed as

[
∂x 0 ∂z

0 ∂z ∂x

]
⎡

⎣
σxx

σzz

σxz

⎤

⎦ = DTσ (5)

where D =
⎡

⎣
∂x 0
0 ∂z

∂z ∂x

⎤

⎦ is the differential operator.

Components of strain tensor are related to displacement field as

ε = Du . (6)
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Stresses and strains are related according to generalised Hooke’s law

σ = Cε (7)

where C is elastic stiffness matrix as defined by (3). σ = {σxx ,σzz,σxz}T , ε =
{εxx , εzz, 2εxz}T are the stress and strain vectors respectively, defined through usual
components σi j of stress and εi j of strain tensors. Equations of motion (4) can be
written in vector form as

DTσ + f = ρü . (8)

3.2 SEM Formulation

The first step in the SEM formulation is to obtain the weak formulation. For this,
the product of governing equations and the test function is integrated over the space
domain Ω . Integration by parts is performed and Gauss divergence theorem is used
to reduce the order of the spatial derivatives. The advantage of the weak formulation
is that the free surface boundary conditions are naturally satisfied. In case of free
surface boundary conditions, the weak formulation of (8) is obtained by introducing
the space of admissible displacement field and the space of admissible test function
respectively as

X = {φ : Ω × (0, T ] → R2|φ ∈ H 1(Ω),∀t ∈ (0, T ]}

and
δX = {ψ : Ω → R2|ψ ∈ H 1(Ω)}

where H 1 (Ω) is the space of functions, which together with their first order partial
derivatives, are square integrable over the domain Ω .

We search for u ∈ X such that for any test function w ∈ δX and ∀t ∈ (0, T ], we
have

∂t t (w, ρu)Ω + a(w,u)Ω = (w, f)Ω . (9)

The symbols a(., .)Ω , and (., .)Ω are defined as

a(w,u)Ω =
∫

Ω

wTDTσdΩ =
∫

Ω

(Dw)TCεdΩ =
∫

Ω

(Dw)TCDudΩ (10)

(w, f)Ω =
∫

Ω

wT fdΩ (11)
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(w, ρu)Ω =
∫

Ω

wT ρudΩ . (12)

3.3 Discretization in Space

The space discretization of (9) is performed by approximating displacement field in a
finite-dimensional subspaceXh = Xh × Xh of original spaceX. This approximation
transforms (9) into a system of ordinary differential equations.

Approximating u as uh ∈ Xh given by linear combination

uh (x, z, t) =
[
Ux

j (t)φ j (x, z)
Uz

j (t)φ j (x, z)

]

. (13)

where Ux
j (t) and Uz

j (t) are SEM approximations coefficients in horizontal and
vertical displacements respectively.φ j denote shape functions for each node position.

Substituting w = (φi , 0)T for the test function, (9) can be simplified as

∂t t

∫

Ω

ρ[φi , 0]
[
Uj

x (t)φ j

U j
z(t)φ j

]

dΩ+

∫

Ω

[
∂xφi 0 ∂zφi

]

⎡

⎣
C11 C13 0
C13 C33 0
0 0 C44

⎤

⎦

⎡

⎣
∂x 0
0 ∂z

∂z ∂x

⎤

⎦

[
Ux

j (t)φ j

U z
j (t)φ j

]

dΩ

=
∫

Ω

[φi , 0]

[
fx
fz

]

dΩ . (14)

Simplifying it further, we get equation of the form

Mi j∂t tU
x
j + K 1

i jU
x
j + K 2

i jU
z
j = Fx

i (15)

where

Mi j =
∫

Ω

ρφiφ j dxdz (16)

K 1
i j =

∫

Ω

(
C11φi,xφ j,x + C44φi,zφ j,z

)
dxdz (17)
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K 2
i j =

∫

Ω

(
C13φi,xφ j,z + C44φi,zφ j,x

)
dxdz (18)

Fx
i =

∫

Ω

fxφi dxdz . (19)

Similarly, on substituting w = (0,φi )
T in (9), we get one more system of equations

Mi j∂t tU
z
j + K 3

i jU
x
j + K 4

i jU
z
j = Fz

i (20)

where

K 3
i j =

∫

Ω

(
C13φi,zφ j,x + C44φi,xφ j,z

)
dxdz (21)

K 4
i j =

∫

Ω

(
C33φi,zφ j,z + C44φi,xφ j,x

)
dxdz (22)

Fz
i =

∫

Ω

fzφi dxdz . (23)

Equations (15) and (20) are combined in block matrix form as

A∂t tU + BU = F, U = (
Ux (t) ,Uz (t)

)T
(24)

where A =
[
M 0
0 M

]

is the assembled mass matrix.

B =
[
K1 K2

K3 K4

]

is the assembled stiffness matrix.

F = (Fx,Fz)T is the global force vector.
These assembled matrices and vector are formed by assembly of all elemental

level matrices and vectors respectively. Equation (24) is in semi-discretized form
wherein partial differential equation has been discretized with respect to space only.

3.4 Discretization in Time

The equation of motion in semi-discretized form is expressed as

AÜ + BU = F (25)
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along with the initial conditions
U (0) = U0 = 0
U̇ (0) = U̇0 = 0
where the vectorU represents the values of approximate solutionuh at all global nodes
for each degree of freedom. Equation (25) is a second order ordinary differential
equation in time. Explicit central difference method or implicit Newmark method
are mostly used methods for time discretization. The choice of Lagrange polynomial
at GLL collocation points as shape function along with GLL quadrature rule results
in diagonal mass matrix A. Due to diagonal mass matrix, explicit time integration
methods are most effective because these methods become truely explicit. That is
a system of equations is not required to be solved for each time step. Inverse of
mass matrix can be calculated easily which makes computational algorithm less
expensive. Explicit time integration scheme used here is central difference method.
This method is second order accurate and conditionally stable. Time step stability
limit of this method is highest among all second order methods. Time discretization
of (25) is obtained by discretizing the time variable t in [0, T ] as tn = n�t ,�t = T

NT
,

where NT is the number of time steps. At time tn , solution U (tn) is simply denoted
as Un .

In central difference method, we write

Ün = Un+1 − 2Un + Un−1

(�t)2
. (26)

Substituting the value in (25) at time t = tn

A
[
Un+1 − 2Un + Un−1

(�t)2

]

+ BUn = Fn

AUn+1 = 2AUn + (�t)2(Fn − BUn) − AUn−1 .

Substituting A, B, Fn , Un and simplifying

Un+1
x = 2Un

x − Un−1
x + (�t)2[Fn

x − K 1Un
x − K 2Un

z ]
M

(27)

Un+1
z = 2Un

z − Un−1
z + (�t)2[Fn

z − K 3Un
x − K 4Un

z ]
M

. (28)

Displacements at present time step in x and z directions are calculated from
displacements at two previous time steps using (27) and (28) respectively. The dis-
placements thus calculated are used to compute the strain components through (6).
These strains are further used along with the material elastic moduli to solve for
stress components using (7).
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4 Computational Algorithm

4.1 Domain Decomposition and Mapping of Geometry

Physical domain is divided into non-overlapping elementsΩe, e = 1, 2 . . . ne, where
ne is the total number of elements. For a 2D problem, the elements are quadrilaterals.
The integrals of the weak form (9) are evaluated separately for each element domain
Ωe. The computation of the integral over an element is simplified by means of an
invertible transformation between the general element Ωe and reference element Ω̂ .
The reference element is expressed by natural coordinates (ξ, η) where 0 ≤ ξ ≤ 1
and 0 ≤ η ≤ 1. The element geometry is mapped from natural coordinates (ξ, η) to
physical coordinates (x, z). Tensor product of linear Lagrange polynomial has been
used for the purpose of this mapping. Four bilinear Lagrange type functions used in
this mapping for the quadrilateral element are

ψ1 = (1 − ξ) (1 − η) , ψ2 = ξ (1 − η) , ψ3 = (1 − ξ) η, ψ4 = ξη .

(29)
The points on reference domain and physical domain are related as follows

x(ξ, η) =
4∑

i=1

ψi (ξ, η)xei , z(ξ, η) =
4∑

i=1

ψi (ξ, η)zei . (30)

where xei , zei are x and z coordinates respectively of local node i of element e.

4.2 Interpolation of Field Variables Using Shape Functions

In SEM, higher order Lagrange interpolation polynomials are used for expressing
field variables on the elements. Let {ξi }ki=0 be the nodes on ξ side of the reference
square Ω̂ with ξ0 = 0 and ξk = 1 and {l j }kj=0 be the interpolating Lagrange polyno-
mial with the condition l j (ξi ) = δi j , where δi j is the Kronecker’s delta. Lagrange
polynomial for each ξi is defined as

li (ξ) = (ξ − ξ0) . . . (ξ − ξi−1)(ξ − ξi+1) . . . (ξ − ξk)

(ξi − ξ0) . . . (ξi − ξi−1)(ξi − ξi+1) . . . (ξi − ξk)
, i = 0, 1.., k . (31)

Using polynomials (31), the shape function for each node position in unit square
element is given by

φq(ξ, η) = li (ξ)l j (η) , (i, j = 0, 1, ...k) (32)

where q = (k + 1) j + i . Range of q = 0, 1, . . . (k + 1)2 − 1.
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These shape functions are referred to as tensor product Lagrange shape functions. A
scalar function f on a general elementΩe is approximated by these shape functions as

f (x(ξ, η)) =
k∑

i, j=0

li (ξ)l j (η) fi j . (33)

The horizontal and vertical displacements throughout the element are interpolated
using shape functions and nodal displacements as

ux =
(k+1)2−1∑

i=0

φi (ξ, η) uex,i , uz =
(k+1)2−1∑

i=0

φi (ξ, η) uez,i . (34)

Tensor product of kth order Lagrange polynomial is taken as shape function φi .
uex,i , uez,i are x and z components of displacement respectively of local node i of
element e.

In SEM, the collocation points ξi (i = 0, 1..., k), which are interpolated by
Lagrange polynomials of degree k are selected as the (k + 1) Gauss-Lobatto-
Legendre (GLL) points. The GLL points are defined as the roots of the equation

(1 − x2)P ′
k(x) = 0 (35)

where P ′
k(x) is the first derivative of kth order Legendre polynomial. This choice of

interpolation points is convenient because it allows one to enforce continuity of field
variables across the element boundaries.

4.3 Computation of Mass and Stiffness Matrices

The evaluation of entries of stiffnessmatrices in Eqs. (17), (18), (21) and (22) requires
the differentiation of shape functions w.r.t physical coordinates. Since, shape func-
tions are expressed in terms of natural coordinates, their derivatives w.r.t. physical
coordinates x and z must be transformed to derivative w.r.t. natural coordinates ξ and
η. The transformation of derivatives from physical coordinate system to natural coor-
dinate system is obtained by chain rule of partial differentiation which is expressible
in matrix form as Carey and Oden [3]

[
∂
∂ξ
∂
∂η

]

=
[

∂x
∂ξ

∂z
∂ξ

∂x
∂η

∂z
∂η

][
∂
∂x
∂
∂z

]

= J

[
∂
∂x
∂
∂z

]

(36)

where J is the two dimensional matrix that denotes the mapping from physical
coordinates (x, z) to the natural coordinates (ξ, η). The determinant of matrix J is
referred to as the Jacobian and is used in transforming the integrals as follows
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∫ ∫

dxdz =
∫ ∫

det (J ) dξdη.

Using (30), we have ∂x
∂ξ

= ∑4
i=1

∂ψi

∂ξ
xei . Similar expressions are derived to get the

entries of matrix J . Inverse of transformation (36) may be written as

[
∂
∂x
∂
∂z

]

= J−1

[
∂
∂ξ
∂
∂η

]

=
[
J11

∗ J12
∗

J21∗ J22∗
][ ∂

∂ξ
∂
∂η

]

. (37)

In (37), matrix with starred entries represents inverse of matrix J which can be com-
puted easily. With the help of (37), we can find derivatives of shape functions w.r.t
physical coordinates in terms of derivatives w.r.t. natural coordinates. Entries of mass
matrix in (16) are computed as

Mi j =
∫

Ω

ρφiφ j dΩ =
ne∑

e=1

∫

Ωe

ρφiφ j dxdz =
ne∑

e=1

1∫

0

1∫

0

ρφiφ j det (J ) dξdη . (38)

For the calculation of entries of element matrices, integration has been performed
numerically using Gauss-Lobatto-Legendre(GLL) quadrature rule for numerical
integration. In GLL quadrature, boundary points of the interval are also included.
GLL quadrature rule on unit interval [0, 1] has been applied for calculation of ele-
mentary integrals.

5 Absorbing Boundary Condition for Unbounded Domain

The accurate modeling of seismic wave propagation requires truncation of the model
in finite domain. A proper boundary condition needs to be applied at the artificial
boundary for elimination of the reflections from the edges. Large number of tech-
niques are developed in order to find a suitable boundary condition which can effec-
tively eliminate reflections from the truncating boundary. Cerjan et al. [4] proposed
to eliminate the reflected wave by setting the damping boundary layer outside the
working area. This type of boundary condition works on the principle of gradually
damping of waves in the neighbourhood of truncating boundary. In this method,
wave amplitude is multiplied by an exponential function in the thin strip in the vicin-
ity of artificial boundary, known as Cerjan sponge boundary layer. This technique
decreases the amplitude of wave in the desired narrow region and thus eliminates
reflections. The method works for large range of incident angles and different geo-
logical models. Due to simple application technique, this method is often used for
numerical simulations [4]. We use slight improvement of Cerjan boundary condition
based on Tian et al. [18].
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The nodal displacements at (n + 1)th time step is generated with the help of dis-
placements at nth and (n − 1)th time steps using (27) and (28). To damp the wave in
the damping area using this absorbing condition, the displacement at (n + 1)th time
step, Un+1, is replaced by Ũn+1 which can be expressed as

Ũn+1 = σ(ωUn+1 + (1 − ω)Un)

where ω = exp(−α( i
N )2) , σ = exp(−β( i

N )2).
Here, N is the damping strip width. Generally, width of damping strip is taken as

20 node for wave propagation problems. The parameter i denotes node positioning
inside the damping strip, starting from i=1 in the interior of strip and increasing
outwards.

6 Discussion of Numerical Result

We shall discuss the results for bounded and unbounded domains.

6.1 Bounded Domain

For bounded domain, results are presented for the wave propagation simulation
through a sample of Apatite. This anisotropic material has transverse isotropy with
z axis being the axis of symmetry and with the following elastic moduli
C11 = 16.7, C13 = 6.6, C33 = 14.0, C44 = 6.63, ρ = 3200.

Elasticmoduli are in the unit ofGPa andhence should bemultiplied by1010N/m2.
Density(ρ) is in the units of kg/m3.

Two dimensional domain is taken as a square of size 33cm × 33cm discretized
with a grid of 20 × 20 elements in x − z plane. This is a bounded and connected
domain with boundary conditions applied on boundary �. In the present paper, free
surface boundary conditions has been considered. The order of SEM has been taken
as 7.

Motion is excited by z directional point force f (x, t) = g (x) h (t) applied at the
center of domain. The time history h(t) of the source function is defined by

h(t) = e−0.5 f02(t−t0)
2

cosπ f0(t − t0) (39)

where t0 = 6µs and f0 = 500kHz.
The source function is implemented as a 2D Gaussian in space.
Absorbing boundary conditions are not used for the bounded domain case because

simulation is stopped before propagating wave reaches the mesh limits. Results are
presented in the form of snapshots, which represent the wave field at a particular
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Fig. 1 Snapshot of x component of displacement at (a) t = 10 µs, (b) t = 20 μs and (c) t = 30 µ

instant of time. The standard geophysical package Seismic Unix is used for visu-
alization of snapshots. Figures1 and 2 show snapshots of the x and z components
of displacements at specified times . As it can be seen, wave front shows charac-
teristics predicted by wave front curves as explained in [12]. Point K (16.5, 21.4)
is chosen as observation point to show variation of displacement components and
stress components w.r.t. time. Time history of horizontal displacement ux and verti-
cal displacement uz at point K is plotted in Fig. 3. Figure4 shows variation of stress
components w.r.t time at point K.

Figure5 shows numerical and analytical solution on the same scale. Analytical
solution along symmetry axis for a homogeneous transversely isotropic solid is taken
from [12] and is given in Appendix. Receiver is located at distance 4.9 cm from
source position along symmetry axis. The figure demonstrate exact overlapping of
the numerical and analytical solutions. Total time for simulation is taken to be 40 μ s
and number of time steps are taken as 1250 for the purpose of comparison.

6.2 For Unbounded Domain

For finding the numerical solution in the unbounded domain, we truncate the
unbounded problem domain to a finite computational domain. We choose 100 cm ×
100 cm as truncated domain discretized with a grid of 60 × 60 elements in x − z
plane. Motion is exited by the same z directional point source as in case of bounded

Fig. 2 Snapshot of z component of displacement at (a) t = 10 µs, (b) t = 20 µs and (c) t = 30 µs
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Fig. 3 Time histories of the horizontal and vertical displacements at point K(16.5, 21.4)
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Fig. 4 Time histories of the stress components at point K(16.5, 21.4)

domain applied at the center. Receiver is placed at point (50, 54.9) along symmetry
axis. Total time for simulation is taken to be 160µ s and number of time steps are
taken as 4000 for the purpose of simulation. Simulation is done for larger time period
to demonstrate the effect of absorbing boundary conditions on the reflections at arti-
ficial boundary. In Fig. 6, it can be seen that reflections from the edges are very much
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Fig. 5 Comparison between analytical and numerical solution along symmetry axis at a distance
of 4.9cm from source position
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Fig. 6 Comparison between analytical and numerical solutions (with andwithout absorbing bound-
ary conditions) along symmetry axis at a distance of 4.9cm from source position

reduced in numerical solution with absorbing boundary than in case of numerical
solution without absorbing boundary. Solution with the present method of absorbing
boundary conditions is in good agreement with the analytical solution for unbounded
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Fig. 7 Snapshot of x component of displacement without absorbing boundary at (a) t = 100 µs
and (b) t = 120 µs

Fig. 8 Snapshot of x component of displacement with absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

domain. Figure7 shows snapshots of the x components of displacements at specified
times without applying any absorbing boundary condition. The same components
with the application of absorbing boundary condition are shown in Fig. 8. It can be
seen that spurious boundary reflections are considerably reduced with application
of absorbing boundary condition. The comparison for z component of displace-
ment before and after applying absorbing boundary conditions can be seen from
Figs. 9 and 10.
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Fig. 9 Snapshot of z component of displacement without absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

Fig. 10 Snapshot of z component of displacement with absorbing boundary at (a) t = 100 µs and
(b) t = 120 µs

7 Conclusion

In this paper, two dimensional elastic wave propagation is modeled in homogeneous
transversely isotropic media by spectral element method. Snapshots generated by
algorithm are in good agreement with predicted wavefront curves for the trans-
versely isotropic media. Accuracy of algorithm has been established by comparing it
with analytical solution along symmetry axis in homogeneous transversely isotropic
media.Absorbing boundary conditions are used to reduce the reflections and simulate
wave propagation in unbounded domain more accurately.

Present algorithm may be extended to problems involving wave propagation
through heterogeneous media where elastic constants vary with position of particles
in domain. Transverse isotropy may be extended to orthotropy or general anisotropy.
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Appendix

Analytic solution for a homogeneous transversely isotropic material
Two dimensional Green’s function uk satisfies following equation of motion in x-z
plane:

ci jkl
∂2uk

∂xl∂x j
+ fi = ρ∂2ui

∂t2 , i, j, k, l = 1, 2

where fi is the impulsive body force.
We define following dimensionless parameters

α = C33
C44

, β = C11
C44

γ = 1 + αβ −
(
C13
C44

+ 1
)2

To simplify notations in the solution, dimensionless variables are defined as

z = z
Vs t

, where Vs =
√

C44
ρ

Following is the analytic solution for class (3) of transversely isotropic materials
(according to the classification done by Payton [12]) along the symmetry axis (z
axis).

For this particular class of TI materials, γ < β + 1 and γ2 − 4αβ < 0

Case I: when impulsive body force f is horizontal

f = (1, 0)δ(x)δ(z)δ(t)

where δ denotes Dirac delta function.
Response to Horizontal body force is given by

uz = 0 and ux =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ t ≤ tp
F1(z̄) tp ≤ t ≤ ts
0 ts ≤ t ≤ t1

F3(z̄) t > t1
where

F1(z̄) = 1
πτ

[
1
4β − 2β(α−z̄2)−{γ−(β+1)z̄2}

4β
√
D

] [−{γ−(β+1)z̄2}+√
D

−2(α−z̄2)(1−z̄2)

] 1
2

F3(z̄) = 1
2πτ

[
1√
β

+
(

α−z̄2

1−z̄2

) 1
2

] [{
γ − (β + 1)z̄2

} + 2
{
β(α − z̄2)(1 − z̄2)

} 1
2

]− 1
2

Here, ts = z/(C44/ρ)
1
2 , tp = z/(C33/ρ)

1
2 t1 =ts/z̄1

The quantity D(z̄) and z̄1 are given by

D(z̄) = {
γ − (β + 1)z̄2

}2 − 4β(α − z̄2)(1 − z̄2) and

z̄1 =
[
γ(β + 1) − 2β(α + 1) + 2{β(1 + αβ − γ)(α + β − γ)} 1

2

] 1
2
/(β − 1)

Case II: when impulsive body force f is vertical

f = (0, 1)δ(x)δ(z)δ(t)
Solution in this case is
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ux = 0 and uz =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 ≤ t ≤ tp
G1(z̄) tp ≤ t ≤ ts
0 ts ≤ t ≤ t1

G3(z̄) t > t1

with

G1(z̄) = 1
πτ

[
1
4 − 2(1−z̄2)−{γ−(β+1)z̄2}

4
√
D

] [−{γ−(β+1)z̄2}+√
D

−2(α−z̄2)(1−z̄2)

] 1
2

G3(z̄) = 1
2πτ

[
1√
β

+
(

1−z̄2

α−z̄2

) 1
2

] [{
γ − (β + 1)z̄2

} + 2
{
β(α − z̄2)(1 − z̄2)

} 1
2

]− 1
2

All the quantities are defined as above in case I.
For the comparison of analytical and numerical solution, the above free-space

Green’s function is convolved with the source time function h(t) given by (39).
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Growth of Polynomials Having No Zero
Inside a Circle

Khangembam Babina Devi, N Reingachan, Thangjam Birkramjit Singh,
and Barchand Chanam

Abstract In this manuscript, an upper bound estimate for the maximum modulus
of a general class of polynomials with restricted zeros on a circle |z| = L , L ≥ 1, is
obtained in terms of the maximum modulus of the same polynomials on |z| = 1. It
is observed that a result of Hussain [J. Pure Appl. Math., (2021) (https://doi.org/10.
1007/s13226-021-00169-7)] is sharpened by our result. Also, this result generalizes
and sharpens some other previously proved result.

Keywords Polynomials · Zeros · Inequalities · Maximum modulus

1 Introduction

Let b(z) be a polynomial of degree m and let

‖b‖ = max|z|=1
|b(z)|, M(b, L) = max|z|=L

|b(z)|.

For a polynomial b(z), there is a simple deduction from the Maximum Modulus
Principle [11, p. 158] that for L ≥ 1,

M(b, L) ≤ Lm‖b‖. (1)

Equality is obtained in (1) for b(z) = λzm with λ �= 0, λ ∈ C.
For a polynomial b(z) having all its zeros outside |z| < 1, it was shown byAnkeny

and Rivlin [1] that for L ≥ 1,
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M(b, L) ≤
(
Ln + 1

2

)
‖b‖. (2)

Equality holds in (2) for b(z) = α + βzm , where |α| = |β|.
Govil [6] understood that equality in (2) holds only for polynomials b(z) = α +

βzm , |α| = |β|, which satisfy

|coe f f icient o f zm | = 1

2
‖b‖, (3)

and it would be possible to refine the bound in (2) for polynomials which do not hold
the condition given in (3). In an attempt to solve this problem, he [6] could obtain that

for polynomial b(z) =
∑m

v=0
wvz

v having all its zeros outside |z| < 1 and L ≥ 1,
we have

M(b, L) ≤ (Lm + 1)

2
‖b‖ − m

2

(‖b‖2 − 4|wm |2
‖b‖

)

×
[
(L − 1)‖b‖
‖b‖ + 2|wm | − ln

{
1 + (L − 1)‖b‖

‖b‖ + 2|wm |
}]

. (4)

Recently, Hussain [8, Corollary 2] proved a generalization and extension of
inequality (4) that

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖ b ‖ − m

1 + s1

(
(‖ b ‖)2 − (1 + s1)2|wm |2

‖ b ‖
)

×
{

(L − 1) ‖ b ‖
‖ b ‖ +(1 + s1)|wm | − ln

(
1 + (L − 1) ‖ b ‖

‖ b ‖ +(1 + s1)|wm |
)}

, (5)

where

s1 = kμ+1(
μ
m

|wμ|
|w0| k

μ−1 + 1)
μ
m

|wμ|
|w0| k

μ+1 + 1
, (6)

where b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m} is a polynomial such that b(z) �=
0 in |z| < k, k ≥ 1.

Remark 1 Whenμ = m, the polynomialb(z) = w0 +
∑m

v=μ
wvz

v becomesb(z) =
w0 + wmzm . Therefore, by simple calculation, we have

M(b, L) = max|z|=L
|w0 + wmz

m | = |w0| + Lm |wm |. (7)

However, for μ = m, inequality (5) reduces to
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M(b, L) ≤
(
Lm + s3
1 + s3

)
‖ b ‖ − m

1 + s3

(
(‖ b ‖)2 − (1 + s3)2|wm |2

‖ b ‖
)

×
{

(L − 1) ‖ b ‖
‖ b ‖ +(1 + s3)|wm | − ln

(
1 + (L − 1) ‖ b ‖

‖ b ‖ +(1 + s3)|wm |
)}

, (8)

where

s3 = |wm
w0

|k2m + km+1

|wm
w0

|km+1 + 1
. (9)

The estimate of M(b, L) given by inequality (8) for μ = m is not required as we
could easily get the exact value of it by a simple calculation given by (7).

2 Main Results

In this manuscript, we obtain a result which is a refinement and a generalization of
inequality (5) of Hussain [8].

Theorem 1 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, .....,m − 1}, is a polynomial

having all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)s1m∗

(1 + s1)km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (N , s1), (10)

where

s1 = kμ+1(
μ
m |wμ

w0
|kμ−1 + 1)

μ
m |wμ

w0
|kμ+1 + 1

(11)

and

f (N , s1) =
(
L − 1

)
−

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

}

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or N = 1, (12)
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f (N , s1) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}N−1

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or N ≥ 2 (13)

and here and in the entire paper

m∗ = min|z|=k
|b(z)|. (14)

Remark 2 From Lemma 3, f (N , s1) given by (12) and (13) of Theorem 1 is a
monotonically increasing function of N , N ≤ m, hence, taking N = m, we obtain
the best bound in Theorem 1.

Further, consider b(z) to be a polynomialwhose degreem = 1. Then, by a straight-
forward calculation, we obtain

M(b, L) = max|z|=L
|b(z)| = max|z|=L

|w0 + Lw1| = |w0| + L|w1|. (15)

Hence, we present the exact value of M(b, L) for m = 1 which is given by (15).

From the preceding dicussion, Theorem 1 assumes

Corollary 1 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,

M(b, L) = |w0| + L|w1| f or m = 1 (16)

and

M(b, L) ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)s1m∗

(1 + s1)km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1), (17)

where
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f (m, s1) =
(
Lm − 1

m

)

+
m−1∑
v=1

(
Lm−v − 1

m − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

} {
(1 + s1)|wm |
‖b‖ − s1m∗

km

}v−1

+ (−1)m
{
1 + (1 + s1)|wm |

‖b‖ − s1m∗
km

}{
(1 + s1)|wm |
‖b‖ − s1m∗

km

}m−1

× ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

(‖b‖ − s1m∗
km ) + (1 + s1)|wm |

}
f or m ≥ 2 (18)

and s1 is as defined in (11).

Remark 3 If k = 1, s1 = 1, then Theorem 1 reduces to the succeeding result which
refines and generalizes the result of Dewan and Bhat [3].

Corollary 2 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {12, .....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1, and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + 1

2

)
‖b‖ −

(
Lm − 1

2

)
m∗ − m

(‖b‖ − m∗

2
− |wm |

)
f (N , 1),

(19)
where

f (N , 1) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + 2|wm |

‖b‖ − m∗

} {
2|wm |

‖b‖ − m∗

}v−1

+ (−1)N
{
1 + 2|wm |

‖b‖ − m∗

} {
2|wm |

‖b‖ − m∗

}N−1

× ln

{
1 + (L − 1)(‖b‖ − m∗)

(‖b‖ − m∗) + 2|wm |
}
. (20)

Remark 4 Since for 1 ≤ N , f (1, 1) ≤ f (N , 1) and hence, substituting the value
of f (1, 1), inequality (19) becomes the result of Dewan and Bhat [3].

Remark 5 For N = 1, Theorem 1, in particular, becomes the following interesting
result.

Corollary 3 If b(z) = w0 +
∑m

v=μ
wvz

v, μ ∈ {12, .....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,
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M(b, L) ≥
(
Lm + s1
1 + s1

)
‖b‖ −

(
Lm − 1

1 + s1

)
s1m∗

km

− m

1 + s1

{
(‖b‖ − s1m∗

km )2 − |wm |2(1 + s1)2

‖b‖ − s1m∗
km

}

×
[

(L − 1)(‖b‖ − s1m∗
km )

‖b‖ − s1m∗
km + (1 + s1)|wm | − ln

{
1 + (L − 1)(‖b‖ − s1m∗

km )

‖b‖ − s1m∗
km + (1 + s1)|wm |

}]
,

where s1 is as defined in (11).

Remark 6 By Lemma 8, we have

(
‖b‖ − s1m∗

km

)2

− (1 + s1)
2|wm |2 ≥ 0 (21)

and ln(1 + x) < x for positive values of x and hence the bound given by Corollary 3
improves and generalizes inequality (2) proved byAnkeny and Rivlin [1].

Remark 7 By Lemma 10, k ≤ s1 for k ≥ 1, where s1 is as defined in (11), therefore,
we have for m∗ ≥ 0

m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)
≤ m

1 + s1
‖b‖. (22)

Applying Lemma 4 to (22), we have for r ≥ 1,

rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)
− m|wm |

)
(r − 1)

m|wm | + r

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)

)
⎫⎪⎪⎬
⎪⎪⎭

{
m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)

}

≤ rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − m|wm |

)
(r − 1)

m|wm | + rm
1+s1

‖b‖

⎫⎪⎪⎬
⎪⎪⎭

m

1 + s1
‖b‖. (23)

On integrating (23) from both sides with respect to r from 1 to L and following similar simpli-
fication of the RHS of (73) to inequality (74) in the proof of Theorem 1, we get

Lm − 1

1 + s1

(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

)
(1 − e)

R∫
1

(r − 1)rm−1

r + e
dr

≤ Lm − 1

1 + s1
‖b‖ − m

1 + s1
‖b‖(1 − g)

L∫
1

(r − 1)rm−1

r + g
dr, (24)

where e = |wm |(1+s1)

‖b‖− s1m
∗

km

and g = |wm |(1+s1)‖b‖ .

The expression
∫ L
1

(r−1)r N−1

r+g dr ≥ 0 and is amonotonically increasing function of N for N ≤ m,
therefore, we have
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L∫
1

(r − 1)r N−1

r + g
dr ≤

L∫
1

(r − 1)rm−1

r + g
dr. (25)

Since m∗ ≥ 0, by Lemma 8, we have

|wm |(1 + s1)

‖b‖ ≤ 1, (26)

and hence

1 − g = 1 − |wm |(1 + s1)

‖b‖ ≥ 0. (27)

We see that 1 − g ≥ 0 and using Lemma 2 for the values of the integrals of inequality (24), we
have

(
Lm − 1

1 + s1

)(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

) {
1 − (1 + s1)|wm |

‖b‖ − s1m∗
km

}
f (m, s1)

≤
(
Lm − 1

1 + s1

)
‖b‖ − m‖b‖

1 + s1

{
1 − (1 + s1)|wm |

‖b‖
}
h∗(N ), (28)

where f (m, s1) is as defined in (18) and

h∗(N ) = (L − 1) −
{
1 + (1 + s1)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N = 1, (29)

h∗(N ) =
(
LN − 1

m

)

+
m−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖
}{

(1 + s1)|wm |
‖b‖

}N−1

× ln

(
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
)

f or N ≥ 2. (30)

Adding ‖b‖ on both sides of (28), we have
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km
− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1)

≤
(
Lm + s1
1 + s1

)
‖b‖ − m

1 + s1
{‖b‖ − (1 + s1)|wm |} h∗(N ), (31)

which clearly shows that Corollary 1 refines the next result which further deduces to inequality (5)
due to Hussain [8].

Corollary 4 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,
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M(b, R) ≤
(
Lm + s1
1 + s1

)
‖b‖ − m

1 + s1
{‖b‖ − (1 + s1)|wm |} h∗(N ), (32)

where

s1 = kμ+1(
μ
m |wμ

w0
|kμ−1 + 1)

μ
m |wμ

w0
|kμ+1 + 1

(33)

and

h∗(N ) =
(
L − 1

)
−

{
1 + (1 + s1)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N = 1, (34)

h∗(N ) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + s1)|wm |

‖b‖
} {

(1 + s1)|wm |
‖b‖

}N−1

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + s1)|wm |
}

f or N ≥ 2. (35)

Remark 8 By Lemma 3, it is noted that h∗(N ) ≥ 0 as defined in (34) and (35) of
Corollary 4 and is a monotonically increasing function of N for N ≥ 1 and therefore
h∗(1) ≤ h∗(N ).Noting this andLemma8 that {‖b‖ − (1 + s1)|wm |} ≥ 0,Corollary4
reduces to inequality (5) due toHussain [8]

Remark 9 By Lemma 10, k ≤ s1 for k ≥ 1, where s1 is as defined in (11), therefore,
by Lemma 11, we have

m

1 + s1
‖b‖ ≤ m

1 + k
‖b‖. (36)

Since m ≥ 0 and 1 ≤ k ≤ s1, inequality (36) implies

m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)
≤ m

1 + k
‖b‖. (37)

Applying Lemma 4 to (37), we have for r ≥ 1,
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rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)
− m|wm |

)
(r − 1)

m|wm | + r

(
m

1+s1
‖b‖ − ms1m∗

km (1+s1)

)
⎫⎪⎪⎬
⎪⎪⎭

{
m

1 + s1
‖b‖ − ms1m∗

km(1 + s1)

}

≤ rm−1

⎧⎪⎪⎨
⎪⎪⎩
1 −

(
m

1+k ‖b‖ − m|wm |
)
(r − 1)

m|wm | + r

(
m

1+k ‖b‖
)

⎫⎪⎪⎬
⎪⎪⎭

(
m

1 + k
‖b‖

)
. (38)

Inequality (38) is integrated on both sides with respect to r from 1 to L and following similar
simplification of the RHS of inequality (73) to inequality (74) in the proof of Theorem 1, we get

Lm − 1

1 + s1

(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

)
(1 − e)

L∫
1

(r − 1)rm−1

r + e
dr

≤ Lm − 1

1 + k
‖b‖ − m‖b‖

1 + k
(1 − c)

L∫
1

(r − 1)rm−1

r + c
dr, (39)

where e = |wm |(1+s1)

‖b‖− s1m
∗

km

and c = |wm |(1+k)
‖b‖ .

The expression
∫ L
1

(r−1)r N−1

r+c dr ≥ 0 and is amonotonically increasing function of N for N ≤ m,
we have

L∫
1

(r − 1)r N−1

r + c
dr ≤

L∫
1

(r − 1)rm−1

r + c
dr. (40)

Since m∗ ≥ 0, by Lemma 9, we have

|wm |(1 + k)

‖b‖ ≤ 1, (41)

and hence

1 − c = 1 − |wm |(1 + k)

‖b‖ ≥ 0. (42)

Since 1 − c ≥ 0 and using Lemma 2 for the values of the integrals in (39), we get

(
Lm − 1

1 + s1

)(
‖b‖ − s1m∗

km

)
− m

1 + s1

(
‖b‖ − s1m∗

km

) {
1 − (1 + s1)|wm |

‖b‖ − s1m∗
km

}
f (m, s1)

≤
(
Lm − 1

1 + k

)
‖b‖ − m‖b‖

1 + k

{
1 − (1 + k)|wm |

‖b‖
}

g∗(N ), (43)

where f (m, s1) is as defined in (18) and

g∗(N ) = (L − 1) −
{
1 + (1 + k)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N = 1,
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g∗(N ) =
(
LN − 1

m

)

+
m−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}N−1

× ln

(
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
)

f or N ≥ 2. (44)

Adding ‖b‖ on both sides of (43), we have
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km
− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (m, s1)

≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k
{‖b‖ − (1 + k)|wm |} g∗(N ). (45)

Hence, it is verified that Corollary 1 improves the succeeding result.

Corollary 5 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1 and N ∈ Z
+, N ≤ m,

M(b, L) ≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k

(
‖b‖ − (1 + k)|wm |

)
g∗(N ), (46)

where

g∗(N ) = (L − 1) −
{
1 + (1 + k)|wm |

‖b‖
}

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N = 1, (47)

g∗(N ) =
(
LN − 1

N

)

+
N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v

{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}v−1

+ (−1)N
{
1 + (1 + k)|wm |

‖b‖
}{

(1 + k)|wm |
‖b‖

}N−1

× ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}

f or N ≥ 2. (48)

Remark 10 For N = m, it can be easily verified that the result of Mir et al. [10,
Corollary 1] is obtained from Corollary 5.
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Remark 11 By Lemma 3, it is observed that g∗(N ) ≥ 0 as defined in (47) and (48)
of Corollary 5 and is a monotonically increasing function of N for N ≥ 1 and hence
g∗(1) ≤ g∗(N ). With this fact and Lemma 9, Corollary 5 gives a result which is a
generalization of inequality (4) of Govil [6].

Corollary 6 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial

with all its zeros outside |z| < k, k ≥ 1, then for L ≥ 1,

M(b, L) ≤
(
Lm + k

1 + k

)
‖b‖ − m

1 + k

{‖b‖2 − (1 + k)2|wm |2
‖b‖

}

×
[

(L − 1)‖b‖
‖b‖ + (1 + k)|wm | − ln

{
1 + (L − 1)‖b‖

‖b‖ + (1 + k)|wm |
}]

. (49)

Remark 12 Also for k = 1, inequality (49) of Corollary 6 reduces to inequality (4)
of Govil [6].

3 Lemmas

We require the following lemmas.

Lemma 1 Let b(z) =
∑m

v=0
wmz

m be a polynomial. Then for |z| = L ≥ 1,

|b(z)| ≤ Lm

{
1 − (‖b‖ − |wm |)(L − 1)

|wm | + L‖b‖
}

‖b‖. (50)

Lemma 1 is due to Govil [6].

Lemma 2 Let

J (N ) =
L∫

1

(r − 1)r N−1

r + x
dr, x > 0 . (51)

Then for N ≥ 2,

J (N ) =
(
LN − 1

N

)
+

N−1∑
v=1

(
LN−v − 1

N − v

)
(−1)v(x + 1)xv−1

+ (−1)N (x + 1)xN−1 ln

(
L + x

1 + x

)
, (52)

and for N = 1,

J (1) = (L − 1) − (1 + x) ln

(
1 + L − 1

1 + x

)
. (53)
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Lemma 2 is due to Dalal and Govil [2, Lemma 3.6].

Lemma 3 J (N ) defined in Lemma 2 is a non-negative increasing function of N for
N ≥ 1.

Proof (Proof of Lemma 3) Dalal and Govil [2, Lemma 3.7] has done this proof, but,
we present another proof of it using the method of differentiation under the integral
sign.

By the method of differentiation under the integral sign, we obtain

d

dN
J (N ) =

L∫
1

(r − 1)(r N−1)

r + x
ln rdr. (54)

Since, for r ∈ [1, L], (r−1)r N−1

r+x ln r ≥ 0, therefore, we have

L∫
1

(r − 1)r N−1

r + x
ln rdr ≥ 0. (55)

From equality (54),
d

dN
J (N ) ≥ 0, f or N ≥ 1. (56)

Hence, J (N ) is an increasing function of N for N ≥ 1.
Further,we see that (r−1)r N−1

r+x is non-negative for N ≥ 1which implies that J (N ) ≥
0 for N ≥ 1,
and hence Lemma 3 is proved. �

Lemma 4 For polynomial b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m} and r ≥ 1,

the function

t (y) =
{
1 − (y − m|wm |)(r − 1)

m|wm | + r y

}
y (57)

is an increasing function of y for y > 0.

Proof of Lemma 4. The proof simply follows by using the derivative test and we
omit it.

The next lemma is due to Qazi [12, Remark 1].

Lemma 5 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a polynomial with all

its zeros outside |z| < k, k ≥ 1, then

μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ ≤ 1. (58)
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Lemma 6 If b(z) =
∑m

v=0
wvz

v is a polynomial with all its zeros outside |z| < k,
k ≥ 1, then

‖b′‖ ≤ m

1 + k
‖b‖. (59)

Lemma 6 is due to Malik [9].

Lemma 7 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial with
no zero in |z| < k, k ≥ 1, then

‖b′‖ ≤ m

1 + s1
‖b‖ − m

km

(
1 − 1

1 + s1

)
m∗, (60)

where s1 is as defined in (11).

Lemma 7 is due to Dewan et al. [4].

Lemma 8 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m − 1}, is a polynomial with
no zero in |z| < k, k ≥ 1, then

|wm | ≤ 1

1 + s1

(
‖b‖ − m∗s1

km

)
, (61)

where s1 is as defined in (11).

Proof (Proof of Lemma 8)

For a polynomial b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m − 1}, then we get

b′(z) =
∑m

v=μ
vwvz

v−1.

Using Cauchy’s inequality to b′(z) on |z| = 1, we have

∣∣∣∣ d
m−1

dzm−1
b′(z)

∣∣∣∣
z=0

≤ (m − 1)!max|z|=1
|b′(z)|. (62)

That is,
|mwm | ≤ ‖b′‖. (63)

Combining inequality (60) of Lemma 7 and (63), we have inequality (61) of Lemma 8
and this completes the proof of Lemma 8. �

Lemma 9 If b(z) =
∑m

v=0
wvz

v is a polynomial with no zero in |z| < k, k ≥ 1,
then

|wm | ≤ 1

1 + k
‖b‖. (64)
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Proof (Proof of Lemma 9) This lemma is proved in similar ways as that of Lemma 8,
but we apply inequality (59) of Lemma 6 in place of (60) of Lemma 7 andwe omit the
details �.

Lemma 10 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ...,m}, is a polynomial with no
zero in |z| < k, k ≥ 1, then

s1 ≥ k, (65)

where s1 is as defined in (11).

Proof (Proof of Lemma 10) Let b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a
polynomial with no zero in |z| < k, k ≥ 1.
From inequality (58) of Lemma 5, we have

0 ≤ μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ ≤ 1. (66)

Since k ≥ 1 and μ = 1, 2, · · · , we have

k − kμ−1 ≤ kμ − 1. (67)

Multiplying (66) and (67) sidewise, we have

kμ

{
μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ−1 + 1

}
≥ μ

m

∣∣∣∣wμ

w0

∣∣∣∣kμ+1 + 1, (68)

which is equivalent to

s1 ≥ k,

and hence, Lemma 10 is obtained. �

Lemma 11 If b(z) = w0 +
∑m

v=μ
wvz

v , μ ∈ {1, 2, ....,m}, is a polynomial having
no zero in |z| < k, k ≥ 1, then

m

1 + s1
‖b‖ ≤ m

1 + k
‖b‖, (69)

where s1 is as defined in (11).

Lemma 11 is due to Qazi [12].
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4 Proof of the Theorem

Proof (Proof of Theorem 1) For each θ, 0 ≤ θ < 2π and 1 ≤ r ≤ L , we have

b(Leiθ) − b(eiθ) =
L∫

1

eiθb′(reiθ)dr, (70)

which implies

|b(Leiθ) − b(eiθ)| ≤
L∫

1

|b′(reiθ)|dr. (71)

Now, applying Lemma 1 to the polynomial b′(z) which is of degree m − 1, we
get

|b(Leiθ) − b(eiθ)| ≤
L∫

1

rm−1
{
1 − (‖b′‖ − m|wm |)(r − 1)

m|wm | + r‖b′‖
}

‖b′‖dr. (72)

Since by Lemma 4, in the integrand of (72), the quantity
{
1 − (‖b′‖−m|wm |)(r−1)

m|wm |+r‖b′‖
}

‖b′‖ is a

monotonically increasing function of ‖b′‖, hence using Lemma 7, we have for 0 ≤ θ < 2π,

|b(Leiθ) − b(eiθ)|

≤
L∫

1

rm−1

⎡
⎢⎢⎣1 −

{
m

1+s1
‖b‖ − m

km

(
1 − 1

1+s1

)
m∗ − m|wm |

}
(r − 1)

m|wm | + r

{
( m
1+s1

)‖b‖ − m
km

(
1 − 1

1+s1

)
m∗

}
⎤
⎥⎥⎦ (73)

×
{

m

1 + s1
‖b‖ − m

km

(
1 − 1

1 + s1

)
m∗

}
dr

=
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

} L∫
1

rm−1dr −
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

×
L∫

1

rm−1

⎡
⎣ ‖b‖ − m∗s1

km − (1 + s1)|wm |
(1 + s1)|wm | + r

{
‖b‖ − m∗s1

km

}
⎤
⎦ (r − 1)dr

= Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}
−

{
m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

× (1 − e)

L∫
1

(r − 1)rm−1

r + e
dr, (74)

where s1 is as defined in (11) and e = |wm |(1+s1)

‖b‖− m∗s1
km

.
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It is observed that
∫ L
1

(r−1)r N−1

r+e dr ≥ 0 and is a monotonically increasing function of N for
N ≤ m, therefore, we have

L∫
1

(r − 1)r N−1

r + e
dr ≤

L∫
1

(r − 1)rm−1

r + e
dr. (75)

We see from Lemma 8 that (1 − e) ≥ 0 and using inequality (75) to (74), we get for every N ,
N ≤ m,

|b(Leiθ) − b(eiθ)| ≤ Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}
−

{
m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}

× (1 − e)

L∫
1

(r − 1)r N−1

r + e
dr. (76)

Using Lemma 2 (on replacing x by e) for the value of the integral in (76), we have,

|b(Leiθ) − b(eiθ)| ≤ Lm − 1

1 + s1

{
‖b‖ − m∗s1

km

}

−
{

m

1 + s1
‖b‖ − mm∗s1

km(1 + s1)

}
(1 − e) f (N , s1), (77)

where f (N , s1) is as defined in (12) and (13).
Now, putting the value of e and using the relation

|b(Leiθ)| ≤ |b(Leiθ) − b(eiθ)| + |b(eiθ)|
≤ |b(Leiθ) − b(eiθ)| + ‖b‖ (78)

in (77), we get

|b(Leiθ)| ≤
(
Lm + s1
1 + s1

)
‖b‖ − (Lm − 1)

1 + s1

s1m∗

km

− m

{ ‖b‖
1 + s1

− s1m∗

(1 + s1)km
− |wm |

}
f (N , s1), (79)

which is equivalent to inequality (10) and hence, Theorem 1 is obtained. �

5 Conclusions

We have improved and generalized inequality (5) proved by Hussain [8] by involving
min|z|=k |b(z)|. Moreover, through Remarks and Corollaries, we have discussed the
implications of Theorem 1 on other well-known results .

Acknowledgements Weare very grateful to the referee for the valuable suggestions and comments.
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Simulation of Queues in Sugar Mills
Using Monte Carlo Technique

Vikash Siwach, Manju S. Tonk, and Hemant Poonia

Abstract The arrival and service data for a season was gathered from Sugar Mill
in Meham, Haryana, to improve the service facilities for farmers and reduce queue
waiting time through simulation.A suitable simulationmodelwas developedutilizing
the Monte Carlo technique to analyze the queue characteristics. Simulation revealed
a significant reduction of 60% in waiting time with a marginal rise in the mill’s
sugarcane crushing limit.

Keywords Queueing model · Monte Carlo simulation · Agriculture sciences

1 Introduction

Queuing theory is widely used to investigate and manage queue characteristics in a
variety of settings, including bank counters, railway counters, super markets, agri-
culture markets, and sugar mills, among others. The majority of queuing models are
built on the assumption that customer arrival rates are lower than the system’s service
rate. This condition ensures the steady state solution of the governing equations for
the model. But there are situations where steady state solution cannot be achieved
or does not exist. For example, at a doctor’s clinic, where patients are seen for a set
length of time, such as 9:00 a.m. to 3:00 p.m. Because the consultation or service
process does not last for a long period, the system’s long-term behavior cannot be
analyzed. In the following scenario, as well as many others, it is possible that the
arrival rate exceeds the service rate, causing the system to collapse in the long run
and leaving no stable solution. These types of problems can be handled by either
limiting the queue system’s capacity or increasing the number of servers.

The analysis of non-steady state queue system was accomplished in [1] and the
result was achieved by developing computation formula from both symbolic and
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numeric exact where results are tested against Monte Carlo simulation. Another
simple queue model (M/M/1/∞) was implemented in [2] in bank service to improve
the optimal service rate.

Complex queues can be solved using simulation. Simulation can be defined as a
process of designing amathematical or artificial model of a real system. The behavior
of real system can be examined by performing experiments with the developedmodel
[3]. TheMonteCarlo simulation technique converts uncertainties of input variables in
themodel into probability distributions [4]. To re-form the opportunity distribution in
this simulation, you’ll need a random number generator [5]. A few of the applications
of Monte Carlo queuing system can be found in the hospital [6], in fuzzy queuing
theory [7], in traffic light simulation [8], in finance [9], etc. Since the results are
derived after performing the repeated experiments based on random numbers, Monte
Carlo simulation is very effective and widely accepted for true results.

Arrival and service data for the season 2020–21 (Nov 2020 to May 2021) was
collected from The Meham Co-Op. Sugar Mills Ltd., Meham, Haryana. There were
no symmetries between arrival and service pattern as shown in Fig. 1.

The zigzag nature of the arrival and service rates can easily be recognized, indi-
cating that a basic queue model (M/M/1) could not be utilized to describe the queue
characteristics. In addition, both the average arrival rate and the average service rate
were the same, i.e., 146 trolleys each day. The Monte Carlo simulation approach is
used to deal with such a circumstance.

Section 2 discusses the Monte Carlo simulation approach and algorithm used to
determine queue characteristics. Section 3 contains the simulation findings. Section 4
discusses the potential for improvement by increasing mill crushing, as well as the
consequences. Section 5 contains the work’s conclusion.

Fig. 1 Arrival and service pattern on seasonal days
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2 Methodology

According to data collected from the Meham sugar mill for the entire season, a total
of 28,128 trolleys carrying 3,168,923.80 qtl of sugarcane arrived and were unloaded
between November 19, 2020 and May 30, 2021. There were 193 crushing days in
total. Note that the arrival was low in May 2021, and hence the crushing or service
was likewise low. So actual performance of mill could not be determined from the
data includingmonth ofMay 2021. For better simulation of mill system, this month’s
data was omitted and the data of 162 days from November 21, 2020 to May 01, 2021
was utilized. During this period, a total of 3,035,082.6 qtl sugarcane was crushed,
with an average of 18,735 qtl each day.

The average daily arrival was 161.42 trolleys, or 6.73 per hour, with an average
of 112.44 qtl sugarcane each trolley. Figure 2 shows a day-by-day summary of the
weight of sugarcane crushed during these days.

Figure 2 shows that on January 6, 2020 (Day 49) and March 22, 2021(Day 124),
therewas substantially less crushing. Themaximumcrushing of 22,906 qtl sugarcane
was done on Dec 01, 2020. The mill’s full crushing capacity of 25,000 qtl per day
has never been reached.

Fig. 2 Per day crushing during the season 2020–21
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2.1 Monte Carlo Technique

There were three shifts of workers in the sugar mill in Meham: shift 0, shift 1, and
shift 2. Shift 0 ran from 6:00 a.m. to 2:00 p.m., shift 1 from 2:00 p.m. to 10:00 p.m.,
and shift 2 from 10:00 p.m. to 2:00 a.m. Based on the number of arrivals and services
in each shift, the possible 40 values of inter-arrival time ranging from 3 to 240 min
and the possible 23 values of service time ranging from 6 to 480 min for the trolleys
were achieved.

To overcome the problem, an algorithm for Monte Carlo simulation was created
as follows:

1. Based on the number of arrivals and services in each shift, determine the inter-
arrival time and service time for each trolley.

2. Determine the frequency of inter-arrival times and service durations.
3. Calculate the probability of each value of the inter-arrival and service times.
4. Determine the cumulative probability as well as the boundary/random number

interval.
5. For arrivals and services, generate random numbers in the interval (0, 1)

uniformly.
6. Calculate arrival time, waiting time, time to enter service, service time, and queue

length, etc.
7. Determine the expected values of queue characteristics.
8. Repeat the above process 1000 times for better estimation of queue characteris-

tics.

Figure 3 depicts a flow chart of the steps.
The inter-arrival timing, frequency, probability distribution, and random number

intervals were determined using the arrival and service data, as shown in Table 1.
Similarly, the service time, frequencies, probability distribution, and random

number intervals were determined as shown in Table 2.

3 Results and Discussion

The trial rows of 26,150 trolleys (arrived in season 2020–21 over the study period)
were formed using the random number intervals for cumulative probability of inter-
arrival and service time estimated in Tables 1 and 2. We applied the Monte Carlo
technique to get the inter-arrival time between two trolleys and the service time of
each trolley by uniformly generating 26,150 random numbers in the interval (0, 1).
Each of the random number was lying in some of the random interval in the last
column of Table 1. Inter-arrival time corresponding to those random intervals was
assigned to 26,150 trolleys. Similar procedure was applied to get service time of each
trolley. Note that values to the first trolley were not assigned according to random
numbers since there was no queue to cause delays in its unloading and other services.
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Fig. 3 Flowchart of Monte Carlo simulation

Other characteristics of the queues were calculated using the achieved inter-arrival
and service times. A few rows from the beginning and finish of the trial rows of
26,150 trolleys were shown in Table 3.

The aforementioned experiment was repeated 1000 times, with the results
displayed in Figs. 4 and 5, respectively, for estimated waiting time (in hours) and
expected queue length.
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Table 1 Random number interval generation for inter-arrival time

Inter-arrival time
(min), x

Frequency f (x) p(x) = f (x)∑
x f (x) Cumulative

probability
Random number
interval

3 1188 0.0454 0.0454 0–0.0454

4 5958 0.2278 0.2733 0.0454–0.2733

5 4145 0.1585 0.4318 0.2733–0.4318

6 2443 0.0934 0.5252 0.4318–0.5252

7 1508 0.0577 0.5829 0.5252–0.5829

8 2027 0.0775 0.6604 0.5829–0.6604

9 1971 0.0754 0.7358 0.6604–0.7358

10 1815 0.0694 0.8052 0.7358–0.8052

11 1090 0.0417 0.8468 0.8052–0.8468

12 681 0.0260 0.8729 0.8468–0.8729

13 335 0.0128 0.8857 0.8729–0.8857

14 136 0.0052 0.8909 0.8857–0.8909

15 380 0.0145 0.9054 0.8909–0.9054

16 120 0.0046 0.9100 0.9054–0.9100

17 226 0.0086 0.9187 0.9100–0.9187

18 343 0.0131 0.9318 0.9187–0.9318

19 100 0.0038 0.9356 0.9318–0.9356

20 72 0.0028 0.9384 0.9356–0.9384

21 46 0.0018 0.9401 0.9384–0.9401

22 176 0.0067 0.9468 0.9401–0.9468

23 42 0.0016 0.9485 0.9468–0.9485

24 80 0.0031 0.9515 0.9485–0.9515

25 133 0.0051 0.9566 0.9515–0.9566

27 216 0.0083 0.9649 0.9566–0.9649

28 51 0.0020 0.9668 0.9649–0.9668

30 128 0.0049 0.9717 0.9668–0.9717

32 60 0.0023 0.9740 0.9717–0.9740

34 112 0.0043 0.9783 0.9740–0.9783

37 65 0.0025 0.9808 0.9783–0.9808

40 72 0.0028 0.9835 0.9808–0.9835

44 88 0.0034 0.9869 0.9835–0.9869

48 130 0.0050 0.9919 0.9869–0.9919

53 36 0.0014 0.9932 0.9919–0.9932

60 64 0.0024 0.9957 0.9932–0.9957

69 14 0.0005 0.9962 0.9957–0.9962

(continued)
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Table 1 (continued)

Inter-arrival time
(min), x

Frequency f (x) p(x) = f (x)∑
x f (x) Cumulative

probability
Random number
interval

80 66 0.0025 0.9987 0.9962–0.9987

96 20 0.0008 0.9995 0.9987–0.9995

120 8 0.0003 0.9998 0.9995–0.9998

160 3 0.0001 0.9999 0.9998–0.9999

240 2 0.0001 1 0.9999–1

Total 26,150 1

Table 2 Random number interval generation for service time

Service Time
(min), y

Frequency f (y) p(y) = f (y)∑
y f (y) Cumulative

probability
Random number
interval

6 985 0.0365 0.0365 0–0.0365

7 6370 0.2360 0.2725 0.0365–0.2725

8 9999 0.3704 0.6429 0.2725–0.6429

9 4730 0.1752 0.8181 0.6429–0.8181

10 2322 0.0860 0.9041 0.8181–0.9041

11 919 0.0340 0.9382 0.9041–0.9382

12 722 0.0267 0.9649 0.9382–0.9649

13 223 0.0083 0.9732 0.9649–0.9732

14 242 0.0090 0.9821 0.9732–0.9821

15 96 0.0036 0.9857 0.9821–0.9857

16 30 0.0011 0.9868 0.9857–0.9868

17 86 0.0032 0.9900 0.9868–0.9900

18 105 0.0039 0.9939 0.9900–0.9939

19 50 0.0019 0.9957 0.9939–0.9957

21 23 0.0009 0.9966 0.9957–0.9966

25 19 0.0007 0.9973 0.9966–0.9973

28 34 0.0013 0.9986 0.9973–0.9986

40 12 0.0004 0.9990 0.9986–0.9990

53 9 0.0003 0.9993 0.9990–0.9993

69 7 0.0003 0.9996 0.9993–0.9996

96 5 0.0002 0.9998 0.9996–0.9998

120 4 0.0001 0.9999 0.9998–0.9999

480 2 0.0001 1 0.9999–1

Total 26,994 1
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Table 3 Monte Carlo simulation

Trolley Uniformly
distributed
random
numbers
for arrival

Inter-arrival
time
(Minutes)

Arrival
time

Uniformly
distributed
random
numbers
for service
time

Service
time
(Minutes)

Time to
enter
service

Waiting
time

Queue
length

R1 R2

1 0.9206 0 0 0.7633 9 0 0 0

2 0.8379 11 11 0.6488 9 11 0 0

3 0.4271 5 16 0.7178 9 20 4 1

4 0.9555 25 41 0.4206 8 41 0 0

5 0.1829 4 45 0.0185 6 49 4 1

6 0.0469 4 49 0.1106 7 55 6 1

7 0.0917 4 53 0.2535 7 62 9 2

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

26,144 0.1703 4 233,550 0.5511 8 233,661 111 14

26,145 0.4044 5 233,555 0.1434 7 233,669 114 15

26,146 0.2230 4 233,559 0.7451 9 233,676 117 15

26,147 0.9196 18 233,577 0.6165 8 233,685 108 14

26,148 0.0112 3 233,580 0.1367 7 233,693 113 15

26,149 0.6113 8 233,588 0.3048 8 233,700 112 15

26,150 0.6776 9 233,597 0.8671 10 233,708 111 15

To determine the final parameters of the queuing system, an average of the esti-
mated waiting time and expected queue lengths was taken. The average of all 1000
experiments was as under.

Averagewaiting time in queue = 3.2891 ∼ 3 h and 17min

Average queue length = 23.1416 ∼ 23 trolleys

The average of all the probabilities of associated variables from all 1000 exper-
iments was used to obtain the probability distribution of waiting time and queue
length. Figure 6 depicts the cumulative probability distributions of both waiting time
and queue length. It also shows that there is a 90% chance that the wait time would
be less than 9 h and the queue length will be fewer than 57 trolleys at any given time.
The system’s average usage is 0.9770. This suggests that the system will be busy for
about 98% of the time and free for only about 2% of the time.
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Fig. 4 Repetition of average queue length Lq

Fig. 5 Repetition of average waiting time in queue

Table 4 shows the queue characteristics and performance measures. In the mill,
the average number of trolleys was one higher than the average number of trolleys
in the queue. In addition, the average waiting time in the system was the sum of
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Fig. 6 Cumulative probability distribution of waiting time and queue length

Table 4 Queue characteristics of existing system

Queue characteristics Performance

Average server utilization (ρ) 97.70% Busy

Average number of trolleys in the queue (Lq) 23 In queue

Average number of trolleys in the system (L) 24 In system

Average waiting time in the queue (Wq) 3.29 Hour

Average time in the system (W) 3.44 Hour

Probability (% of time) system is empty 2.30% Empty

the average waiting time in the queue and the service time. With an average of 166
trolleys unloaded per day, the average service time is 8.64 min. Unloading a trolley
takes about 9 min (0.15 h) on average in a mill.

3.1 Validation of the Model

According to mill data, the average daily arrival rate was 161 trolleys, i.e., 7 trolleys
per hour. In queuing theory and stochastic systems, Little’s formula, L = λW , is
one of the most well-known and useful conservation laws. It asserts that the average
number of units in a system equals the average arrival rate of units multiplied by
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the average time in the system per unit. In the case of a queue, Lq = λWq , i.e., the
expected length of the queue is the expected number of waiting times in the queue
multiplied by the rate of arrival.

Using the observations from simulation,

Average queue length = λ(averagewaiting time in queue)

23 = λ(3.29)

which gives

λ = 23/3.29 = 6.99 ∼ 7 trolleys per hour

Approximately the same arrival rate achieved from the simulation validates the
good fit of the model.

4 Performance Measures of Mill with Enhanced Crushing
Capacity

Meham Mill was established in 1991, and its machinery is nearly 30 years old. As
a result, exceeding the 25,000 qtl maximum crushing capacity restriction may raise
the risk of mechanical failure. This, in turn, will degrade service quality by halting
the mill’s operation. During the peak season, the average crushing rate was 18,735
qtl per day. On December 1, 2020, the maximum crushing of 22,906 qtl sugarcane
was attained. We can simulate the model and find the expected queue characteristics
by assuming the same arrival rate of 6.73 trolleys per hour and increasing the average
crushing capacity of the mill from 20,000 qtl to 24,000 qtl. Table 5 shows the service
rates associated with increased average crushing.

The arrival rate is smaller than the service rate in all of the preceding scenarios,
and the queue characteristics are presented in Table 6 using the M/M/1 queuing
model.

Table 5 Service rate as per different average crushing

Average crushing (qtls per day) 20,000 21,000 22,000 23,000 24,000

Service rate (number of trolleys unloaded per hour) 7.41 7.78 8.15 8.52 8.89
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Table 6 Queue characteristics with enhanced service

Queue characteristics μ = 7.41 μ = 7.78 μ = 8.15 μ = 8.52 μ = 8.89

Average server utilization
(ρ)

90.81% 86.48% 82.55% 78.96% 75.67% Busy

Average number of trolleys
in the queue (Lq)

8.97 5.53 3.91 2.96 2.35 In queue

Average number of trolleys
in the system (L)

9.87 6.40 4.73 3.75 3.11 In system

Average waiting time in
the queue (Wq)

80 49 35 26 21 Minutes

Average time in the system
(W)

88 57 42 33 28 Minutes

Probability (% of time)
system is empty

9.19% 13.51% 17.45% 21.04% 24.33% Empty

5 Conclusion

According to the study based on primary data, average crushing over the season was
16,419 qtl per day, while peak days saw 18,735 qtl per day. The average arrival rate
of trolleys was 161 trolleys per day. The mill was busy 97.70% of the time, with
an average waiting time of 3 h and 17 min for a trolley to be serviced. The average
queue length was 23 trolleys. Keeping in view, the maximum crushing capacity of
25,000 qtl per day, queue characteristics are obtained by simulation for different
average crushing values. Because the mill is roughly 30 years old, it is possible
that the machinery will fail if it is operated at maximum crushing speed. The mill’s
suspension of operations will inevitably result in a reduction in service quality. Even
though the mill crushed more than 20,000qtl sugarcane per day around 40% of the
time, an average of 20,000qtl crushing could be attained. With a crushing capacity of
20,000 qtl, the mill can service 177 trolleys every day, with current average weight
of 112.44 qtl per trolley. The present average waiting time of 3 h, 17 min will be
reduced to 1 h, 20 min, and the average queue length of 23 trolleys will be reduced to
9 trolleys. This increases the probability of an idle scenario from 2 to 9%, implying
that the idle time of service will increase to 7%.
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Abstract This article proposes a novel adaptive step-size numerical method for
solving initial value ordinary differential systems. The development of the proposed
method is based on the theory of interpolation and collocation inwhich representation
of the theoretical solution of the problem is assumed in the form of an appropriate
interpolating polynomial. In order to bypass the first Dahlquist’s barrier on linear
multistep methods, the proposed method considers five intra-step points in one-step
block

[
xn, xn+1

]
resulting in a hybridmethod. Among these considered five intra-step

points, the values of two intra-step points were fixed named as supporting off-step
points and the optimized values of the other three intra-step points were obtained by
minimizing the local truncation errors of the main formula at the point xn+1 and other
two additional formulas at supporting off-step points. The proposed method exhibits
the property of self-starting as the formulation is immersed into a block structure
which enhances the efficiency of the method. The resulting method is of order seven
retaining the characteristic of A-stability. The precision of numerical solution is
intensified by drafting the proposed algorithm into an adaptive step-size formulation
using an embedded-type procedure. The adaptive step-size method has been tested
on some well-known stiff differential systems, viz., Robertson’s chemistry problem,
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1 Introduction

Differential equations are the results of the scientific phrasing of many of the phys-
ical phenomena. In the absence of analytical procedure for solving the differential
equation, they can be dealt numerically. Much of the physical situations like chemi-
cal kinetics, orbital dynamics, atmospheric phenomena, engineering control systems,
lasers,mechanics, electronic circuits, or orbital dynamicsmodelled into stiff ordinary
differential equations (ODEs) [1, 2]. In the state of absence of closed expressions of
the solutions to these problems, the various numerical schemes have been introduced
to approximate the solutions on the discrete points on the interval of interest. In this
article, our aim is to develop a one-step efficient numerical algorithm to solve the
below initial value problem (IVP) numerically (see Refs. [3, 4]).

W′(z) = F(z,W(z)); W(z0) = W0, (1)

where z ∈ [z0, zN ], W : [z0, zN ] → R
m, W : [z0, zN ] × R

m → R
m . It’s been

assumed that the given IVP holds the conditions of Existence and Uniqueness
theorem.

Manynumerical integratorswere developed andpresented in scientific literature to
solve the differential system (1). Among them, the two well-defined classes for eval-
uating the differential systems numerically has been widely used which are named
as Runge-Kutta (RK) and multistep methods. From the family of multistep methods,
the backward differentiation formulas (BDFs) are used to solve the stiff numeri-
cal problems. Recently, many researchers have developed the numerical schemes,
a fusion of hybrid and block methods to solve the differential systems numerically.
Initially, the block methods were proposed by Milne [5] to obtain the solutions of
predictor-corrector methods simultaneously. Later on, Rosser [6] extends this con-
cept for the general purposes. The structure of block methods consists of main and
additional methods, which were applied successively in block intervals and produce
the solution of problem (1) simultaneously at several points which enhances the effi-
ciency of schemes in terms of accuracy by reducing the computational efforts. In the
present literature, many researchers are implementing the block methods along with
some off-step points in the interval of interest which are named as hybrid points.
Thus, the resulting scheme exhibits of both block and hybrid nature. Hybrid meth-
ods were simultaneously proposed by Gragg and Stetter [7], Butcher [8] and Gear
[9]. The main feature of hybrid methods is that they overcome the Dahlquist barrier
which limits the accuracy in class of zero-stable linear multistep methods. Hybrid
methods have also the characteristic of Runge-Kutta method (that is, in order to
find the solution at end point of interval [zn, zn+1] it also uses the appropriate data
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at off-step points) along with certain features of linear multistep methods. For the
construction and implementation of hybrid and block methods to solve the different
types of ODEs, one can see the literature [10–17] and the references therein.

Many authors are solving the ODEs numerically by implementing the hybrid
block method with the arbitrary values to the intermediate points. Later on Ramos
et al. firstly proposed the optimization strategy to obtain the optimized values of
intermediate values by minimizing the local truncation errors of the main formula
and other additional formulas which results in the higher order of accuracy of these
formulas (for the strategy one can see the procedure adopted in [17] concerning
second-order problems).

The present article deals with the hybrid formulation of a single-step implicit
method by using the five transitional points in one block of interval [zn, zn+1]. The
values of two intermediate points are fixed in order to get the optimized values of
other three intermediate points by minimizing the local truncation errors of the main
formula and the additional formulas which approximates the solution of (1) at the
fixed intermediate points. The resulting obtained formulas are incorporated into the
block structure to get the numerical solution of the problem (1) at the intermediate
points and final point of the interval [zn, zn+1] simultaneously. Proceeding further, the
method is evolved to adaptive step-size algorithm by using embedded-like structure
which enhances the accuracy and efficiency of the proposed method.

2 Derivation of Proposed Algorithm

In order to carry out the derivation in a simplified manner, the method is derived
for solving the scalar differential equation numerically, that is, for m = 1. Later
on the method can be implemented to the vector differential equation for m > 1 by
using component-wise strategy. Firstly, the method is derived with the fixed step-size
δz = z j+1 − z j on a discrete gridwith N + 1nodal points, z0 < z1 < z2 < . . . < zN ,
and later on method is derived into an adaptive step-size formulation. The derivation
starts with the assumption of theoretical solution to (1) in the form of an interpolating
polynomial as

w(z) ≈ R(z) =
7∑

i=0

κi Ξi (z), z ∈ [z j , z j+1]. (2)

The value of unknown coefficients κi has to be determined and Ξi (z) = (z − z j )i

are the polynomial basis functions. The proposed method is formulated into hybrid
nature by considering the five intra-step points referred to as mi ∈ [0, 1], i = 1(1)5
where the values of intra-step points m2 = 1/4,m4 = 3/4 are fixed such that each
z j+mi = z j + miδz for 1 ≤ i ≤ 5. The derivation of the proposed method can be
elaborated in the following steps:
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Step 1: In the first step, the value of unknown coefficientsκ′
i s can be determined by

imposing the interpolatory and collocation conditions to the assumed theoretical
solution which are as follows:

(i) w(z j ) = R(z j ).
(ii) w′(z j+k) = R′(z j+k), k = 0,mi , 1 such that 1 ≤ i ≤ 5.

These conditions result into a algebraic system of eight equations in eight knowns
κi , i = 0(1)7 which can be solved to get the values of κ′

i s. Now, after substituting
the obtained values of κ′

i s into the Eq. (2), the equation results into the form as

w(z) ≈ R(z) = λ(z)w j + δz

(
1∑

i=0

ηi (z)Fj+i +
5∑

i=1

ηmi (z)Fj+mi

)

, (3)

where

w j � w(z j ), Fj+k � F(z j+k, w j+k), k = 0,mi , 1 and i = 0(1)5,

Step 2: In the second step, the optimized values of the transitional points
m1,m3,m5 have to be obtained, which can be done by evaluating expression (3)
at the remaining transitional points (z j+m2 , z j+m4) and at the final point (z j+1) of
the block [z j , z j+1]. Now the optimized values of intermediate pointsm1,m3,m5

can be obtained by adopting the following optimization strategy:

(i) Obtain the local truncation errors of formulas w(z j+mi ) for i = 2, 4 and
w(z j+1) by expanding these formulas about point z = z j with the help of
Taylor series, and hence the obtained expressions are of form:

L(w(z j+m2), δz) = A1(m1,m3,m5)w
(8)(z j )(δz)8

277453209600
+ O((δz)9) , (4)

L(w(z j+m4), δz) = A2(m1,m3,m5)w
(8)(z j )(δz)8

10276044800
+ O((δz)9) , (5)

L(w(z j+1), δz) = A3(m1,m3,m5)w
(8)(z j )(δz)8

33868800
+ O((δz)9) , (6)

where

A1(m1,m3,m5) = (211 − 1312m5 + 1312m1 (−1 + 7m5)−
32m3 (41 − 287m5 + 7m1 (−41 + 352m5)))

A2(m1,m3,m5) = (3 (−477 + 864m1 + 864m5 − 1568m1m5)+
32m3 (81 − 147m5 + 7m1 (−21 + 32m5)))

A3(m1,m3,m5) = (2 + m1 + m5 − 7m1m5+
m3 (1 − 7m5 + 7m1 (−1 + 2m5))) .
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(ii) Now, equating the principal terms of the truncated errors (4), (5) and (6)
to zero gives the unique solution with the condition 0 < m1 < m2 < m3 <

m4 < m5 < 1 which are as follows:

m1 = 1

8

(
4 − √

10
)

� 0.104715, m3 = 1

2
= 0.5,

m5 = 1 + 1

8

(
−4 + √

10
)

� 0.895285

.Hence substituting the optimal values of m1,m3 & m5 into the truncation
errors given by (4), (5) and (6), the precision to approximate values of theo-
retical solution at nodal points z j+m2 , z j+m4 and z j+1 is increased.

Step 3: In the last step, the formulas for approximation to theoretical solution at
the other intra-step points z j+m1 , z j+m3 , z j+m5 have to be obtained. For this, the
optimized values of m1,m3,m5 and z = z j+mi for i = 1, 3, 5 have to be inserted
in expression (3) which will gives us the hybrid method consisting of five approx-
imations to the true solution at z j+mi , i = 1(1)5 and z j+1.

Hence, we obtain an implicit hybrid block method and incorporated into block form
which results in a hybrid block method whose coefficients are listed in Table1.

3 Convergence Investigation

In this section, the basic theoretical aspects like consistency, order of accuracy, zero
and linear stability of the proposed methods are discussed.

3.1 Order of Accuracy and Consistency

For analysing the consistency of the proposed method, it can be rewritten as

P W j = δz Q F j . (7)

Here matrices P and Q represent the coefficients of order 6 × 7 which can be easily
written from Table1 and

Wj = (w j , w j+m1 , w j+m2 , w j+m3 , w j+m4 , w j+m5 , w j+1)
T ,

Fj = ( f j , f j+m1 , f j+m2 , f j+m3 , f j+m4 , f j+m5 , f j+1)
T .

Proceeding further, the difference operator L can be associated with the difference
Eq. (7) and written as
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L[W (z), δz] =
∑

j

ρ j W (z + jδz) − δz
∑

j

δ j W
′(z + jδz) for j = 0,mi , 1 & 1 ≤ i ≤ 5, (8)

where ρ j and δ j are precisely the column vectors of matrices P and Q. Now, the
functions W (z + jδz) and W ′(z + jδz) can be expanded around z with the help of
Taylor series. After expanding the terms, the difference operator can be written as

L[W (z), δz] = τ0W (z) + τ1δzW
′(z) + τ2δz

2W ′′(z) + · · · + τpδz
pW (p)(z) + · · ·

(9)
The proposed hybrid block method and the associated linear difference operator are
said to be of order q if all τ0 = τ1 = · · · = τq = 0 and τq+1 	= 0. Hence τ ′

i s are the
vectors and τq+1 is known as vector of constants.

For the present hybrid block method τ0 = τ1 = τ2 = · · · = τ7 = 0 and

τ8 =
(

− 9

4697620480
, 0,− 1

165150720
, 0,− 9

469762048
, 0

)T

.

Since the proposed hybrid block method is of order 7 which is greater than 1 and
hence the proposed method is consistent with the system of differential equation (1).

3.2 Zero-Stability Investigation

In this, the behaviour of method is examined as the step-size δz → 0. By consid-
ering δz → 0, the proposed method in Table1 reduces to Wj+m1 = Wj , Wj+m2 =
Wj , Wj+m3 = Wj , Wj+m4 = Wj , Wj+m5 = Wj , Wj+1 = Wj which can be written
in a simpler way as

M̂ζ = Ā M̂ζ−1, (10)

where Ā = [ai j ], 1 ≤ i, j ≤ 6 and

ai j =
{
0, for 1 ≤ i ≤ 6 and 1 ≤ j < 6,

1, for 1 ≤ i ≤ 6 and j = 6,

and

M̂ζ = (Wj+m1 ,Wj+m2 ,Wj+m3 ,Wj+m4 ,Wj+m5 ,Wj+1)
T ,

M̂ζ−1 = (Wj+m1−1,Wj+m2−1,Wj+m3−1,Wj+m4−1,Wj+m5−1,Wj )
T .

(11)

The first characteristic polynomial of the proposed method is written as

ρ(η) = det[I6η − Ā] = η5(η − 1). (12)
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As the roots of characteristic polynomialρ(η) = 0 satisfy η j ≤ 1 and havingmodulus
one is simple then by definition of zero-stability, the proposed method is zero-stable.

3.3 Convergence

Hence the method is consistent and zero-stable which implies that the proposed
method is convergent.

3.4 Linear Stability Analysis

As we always deal with some finite step-size δz, it is a very impractical situation
where we say δz → 0. Now, wewill examine the behaviour of proposedmethodwith
some finite value of δz that makes the concept of linear stability analysis different
from zero-stability. For this purpose, the well-known Dahlquist’s test equation is
considered

W ′(z) = ξW (z), Re(ξ) < 0. (13)

The analytical solution of Eq. (13) will tend to 0 as z → ∞. It has been expected that
while applying the proposedmethod to test Eq. (13), the produced numerical solution
will behave in alike manner to analytical solution. So now we have to determine the
region for which numerical method reproduces the behaviour of true solution of test
problem, for this when proposed method is applied to test equation, the obtained
system can be written as

X M̂ζ = Y M̂ζ−1, (14)

where
X = [xi j ] & Y = [yi j ], 1 ≤ i, j ≤ 6

with H = ξδz. The Eq. (14) can be also expressed as

M̂ζ = Q(H)M̂ζ−1, (15)

where Q(H) = X−1Y is defined as stability matrix. In order to examine the stability
characteristics of the proposed method, the spectral radius of ρ[Q(H)] is to be
considered which is given as

ρ[Q(H)] = 1720320 + 860160H + 195840H2 + 26240H3 + 2212H4 + 114H5 + 3H6

1720320 − 860160H + 195840H2 − 26240H3 + 2212H4 − 114H5 + 3H6
.
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Fig. 1 Absolute stability
region of the hybrid block
method in Table1

For all Re(H) < 0, the magnitude of spectral radius |ρ[Q(H)]| < 1, hence by
definition the proposed method is A−stable. Figure1 presents the absolute stability
region of the new proposed method.

4 Modulation into Variable Step-Size

In this section, the proposed method is formulated to variable step-size algorithm.
For the purpose, the embedded-type procedure is followed as per guided in Shampine
et al. [19]. The similar strategy is also used with embedded Runge-Kutta methods
like Dopri 4(5), Runge-Kutta-Fehlberg methods, etc. In this modulation, the two
methods having different orders of accuracy were executed simultaneously in which
method with higher order is used for advancing the integration steps and the lower
order method is used to estimate the local error at each step of integration. Here, the
proposed method in Table1 is considered as a higher order method and the lower
order method is chosen in such a way that it uses the same function evaluations of
the proposed method. Hence, by doing in such a way the computational cost is not
increased but accuracy of the method is enhanced. For the detailed procedure, one
can follow the article [13, 14] for solving first-order and second-order differential
equation. Following is the lower order method used for the formulation of proposed
hybrid block method, Table1, into an adaptive step-size algorithm:



504 R. Singla et al.

W ∗
j+1 = 411Wj + 108Wj+m3 − 496Wj+m1 + 48Wj+m4

71
+

δz

(
9

71
f j + 48(5 + √

10)

355
f j+m1 − 48(−5 + √

10)

355
f j+m5

)

, (16)

with local truncation error LT E = 3 W (7)(z)(δz)7

5816320 + O((δz)8).

5 Computational Efficiency

This section addresses the precision to numerical solution obtained by proposed
adaptive step-size hybrid block method by testing on well-known differential sys-
tems existing in scientific literature. The abbreviations used in the below tables are
designated as: FNC: Number of function evaluations; δzini : Initial step-size; TOL:
Tolerance; N: number of integration steps; �max : Maximum absolute errors among
all the components and along the integration interval given by

�max = max
1≤i≤m

{ max
0≤ j≤N

{|wi (z j ) − wi j |}},

where wi (z j ) and wi j denote the exact and computed i th-component of solution of
a m-system differential problem at point z j . The following solvers were considered
in comparison to proposed method:

1. RKGauss: This method is an A-stable implicit Runge-Kutta method based on a
“Gaussian quadrature”. The method is a five-stage tenth-order method (see [3]).

2. RADAU: This solver is of variable order (1, 5, 9, 13) with step-size control. It is
also based on implicit Runge-Kutta methods (Radau-IIa). In the experiments, we
have used the Matlab code of this scheme by Hairer (see MatlabStiff package in
http://www.unige.ch/~hairer/software.html).

3. C-OHM: This is the new optimized hybrid scheme whose coefficients listed in
Table1 are developed with the fixed step-size strategy.

4. V-OHM: This is the new optimized hybrid scheme whose coefficients listed in
Table1 use the embedded variable step-size strategy explained in Sect. 4.

5.1 Comparison of Constant and Variable Step-Size Proposed
Method

In this section, an example is solved by implementing the proposed hybrid method
in both constant and variable step-size mode and comparing their computational
efficiencies, that is, order of accuracy on same number of function evaluations.

http://www.unige.ch/~hairer/software.html
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Table 2 Computational data for problem Sect. 5.1.1

N FNC �max in C-OHM �max in V-OHM

24 168 8.65765 × 100 2.68781 × 10−6

45 315 1.10858 × 100 3.0714 × 10−8

120 720 6.10482 × 10−3 8.86047 × 10−12

Fig. 2 Exact andDiscrete solutionsw1 of ProblemSect. 5.1.1 using the constant step-size (C-OHM)
with N = 45(left) and variable step-size (V-OHM) with N = 45(right)

5.1.1 A Non-linear Problem

The problem is given by

w′
1(z) = w2(z), w1(0) = 1,

w′
2(z) = zw2(z)

2, w2(0) = 1

2
.

Theproblem is solved over the integration of interval z ∈ [0, 1.99]. The exact solution
of the system is given asw1(z) = 1 + 1

2
ln

(
2 + z

2 − z

)
, w2(z) = 2

4 − z2
. The proposed

method with adaptive step-size is implemented on problem by varying step-size δzini
and tolerances to equalize the number of steps used in implementation of proposed
block method with constant step-size. The computational errors compared to ana-
lytical solution is presented in Table2. Also Figs. 2 and 3 reveal that the proposed
variable step-size formulation performs better than the proposed method in constant
step-size version.
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Fig. 3 Exact and discrete solutionsw2 of problem Sect. 5.1.1 using the constant step-size (C-OHM)
with N = 45(left) and variable step-size (V-OHM) with N = 45(right)

5.2 Comparison of Proposed Variable Step-Size Method with
Other Well-Known Solvers

In this section, a comparison has been made between the proposed hybrid block
method in adaptive step-size mode with the other well-known integrators in variable
step-size mode.

5.2.1 The Brusselator System

Consider the diffusion-free “Brusselator system” which consists of the two differen-
tial equations

w′
1(z) = L + w2

1(z) w2(z) − (M + 1) w1(z), w1(0) = w0
1

w′
2(z) = M w1(z) − w2

1(z) w2(z), w2(0) = w0
2,

(17)

where L andM are positive real constants. It can be shown that the critical point of the
system is (w∗

1, w
∗
2) = (L , M/L). For numerical experimentation, we assume M =

3, L = 1, with initial values w1(0) = 1.5, w2(0) = 3, over the integration interval
[0, 20]. The reference solution at end point zN = 20

w1(z20) = 0.4986370712683478483331816235

w2(z20) = 4.5967803494520111826429803773

is taken from the article [15] as the analytical solution of the problem is not present in
the literature. The problem is solved by considering (hini , Tol) = (10−κ, 10−(κ+3)),

κ = 4, 5. The results in Table3 gives a numerical evidence of the good performance
of the proposed method.
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Table 3 Numerical results for Sect. 5.2.1

δzini TOL Method �max N FNC

10−4 10−7 RADAU 9.3149 ×
10−8

187 2371

RKGauss 3.55082 ×
10−6

553 3318

V-OHM 1.49117 ×
10−9

84 588

10−5 10−8 RADAU 4.7105 ×
10−9

231 3870

RKGauss 8.72215 ×
10−7

1709 10254

V-OHM 8.20015 ×
10−11

115 805

6 Conclusion

In this article, we have derived one-step optimized hybrid block method with five
transitional points in which the value of two off-step points are fixed and optimized
values of other three off-step points are determined. The development of method
is purely based on interpolation and collocation technique clubbed with hybrid and
block approaches. The method is A-stable and having seventh algebraic order of
convergence with satisfying conditions of zero-stability. The new scheme is also
modulated into an adaptive step-size technique by using embedded-type procedure
which makes the proposed scheme more efficient than its counterpart. Numerical
experimentation establishes the statement that the proposed new scheme is a good
alternative for solving the well-known considered differential systems.
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Comparison of Prediction Accuracy
Between Interpolation and Artificial
Intelligence Application of CFD Data
for 3D Cavity Flow
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Abstract The great opportunities of the new technology of artificial intelligence
and the growing computational capacities togetherwith interacting sensor technology
leads to the next industrial revolution called Industry 4.0. In this field the combination
of artificial intelligence with numerical simulation to develop a simplified model of a
given system can be used for establishing a digital twin of the system for better control
andmore efficient performance. In this paper, theArtificialNeuronalNetwork (ANN)
methodology is applied as well as a standard interpolation to develop two different
simplified models of a 3D cavity flow. The problem is analyzed by Computational
Fluid Dynamics (CFD). The CFD simulations are carried out using a commercial
software for a case, for which experimental data from the literature exists. In general,
the combination of CFD and ANN has been performed in different researches on
different applications. Thus, the present paper focuses rather on the comparison of a
standard interpolation procedure to ANN, utilizing two different error calculations.
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1 Introduction

Thefields of theArtificial Intelligence (AI) [1–3] andComputational FluidDynamics
(CFD) [4–8] are experiencing a rather parallel development. Both fields exist for
decades, and due to the increasing computational capabilities, their impact has been
growing rapidly in the recent years. First ideas of combination the technologies of date
back a lot of years, e.g. to 1988, when Andrews [9] published the first review on the
capabilities and problems in combination of AI and CFD. More recent publications
[10–12] show different approaches for the AI-CFD interaction. In Ref. [13] a nice
overview on the newestAI technologies and frameworkswere presented. In problems
with more complex physics, the combination of AI and CFD was demonstrated in
Refs. [14, 15]

Further investigations on the different aspects of the problem in different areas
including digital twins were presented by numerous researches [16–25].

2 The Test Case

For comparison with realistic data from a three dimensional flow with large velocity
variations, a 3D cavity problem is considered. Corresponding experimental was data
found in Ref. [26] (Fig. 1, 2).

For the experimental investigations, different Reynolds numbers have been used
as shown in Table 1 with the calculated velocities for the working fluid of isopropyl
alcohol of density ρ = 0.785 g/cm3 and kinematic viscosity of ν = 0.031 cm2/s.

Fig. 1 Sketch of the experimental setup [26]



Comparison of Prediction Accuracy Between Interpolation … 511

Table 1 Reynolds numbers
used for
simulation/experiment

Case Re Vm (mm/s)

a 2.7 2.64

b 5.6 5.47

c 15.7 15.33

d 32.1 31.34

e 62.8 61.32

f 140.8 137.47

g 288 281.20

h 320 312.44

i 542 529.20

j 650 634.65

Fig. 2 Laser image of the velocity field [26]

3 Mathematical and Numerical Flow Modeling

The computational modeling of the flow has been performed using the simulation
softwareANSYSFluent [27]. To ensure reliable simulation results, amesh sensitivity
study has been performed and the meshes shown in Fig. 3 are used for the further
calculations. Since the Reynolds number was within the laminar flow regime, the
simulation was done with no turbulence model, but for a laminar flow simulation
setup.

For the inlet boundary condition, a fully developed flow is set by an equation for
the velocity.
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Fig. 3 Mesh for the CFD-simulation

Fig. 4 Flow field Reynolds number 140 (left: simulation, right: experiments [26])

The Simulation results show fine agreement with the experimental data as shown
in Fig. 4.

4 Developing a Simplified Model

The numerical simulation following the iterative solution of fluid physics by calcu-
lation of the Navier–Stokes equation system can take a lot of computational effort
and time. Thus, the common CFD approach may not be feasible in cases, where
limitations of resources and time are strict.
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On the other hand, if the flow field is prescribed by a set of coefficients as found
in interpolations of artificial network, this set of coefficients can be solved within
very short time by simple matrix calculations which are very simple for nowadays
computational infrastructure.

So the aim of the given study is to develop two different approaches for the
calculation of the matrices that represent the flow field and to compare both results
for different Reynolds numbers within a given range.

4.1 Simple Interpolation

The first approach is the calculation of a set of coefficients for the solution domain
expressing the variables of interest as functions of the inlet condition following a
regression function, whose coefficients are extracted from the data exported from the
simulations. These coefficients represent the influence of the change of the variable
(here the inlet velocity) to the behavior of the system, for different orders, linear,
quadratic, and more if necessary.

Ya = b0 · 1+ b1 · va + b2 · v2a
Yb = b0 · 1+ b1 · vb + b2 · v2b

...

(1)

The equations can be put in matrix form as follows

⎡
⎣

1 va v2a
1 vb v2b
· · · · · · · · ·

⎤
⎦ ·

⎡
⎣
b0
b1
b2

⎤
⎦ =

⎡
⎢⎣
Ya
Yb
...

⎤
⎥⎦ (2)

This system can be solved for the whole domain to get the velocity for a given
inlet velocity.

4.2 ANN Model

The next approach is more advanced one, using the ANN framework of Keras with
the CFD simulation results, the coordinates and the boundary conditions as an input
for the neuronal network with randomized order of the points.

The training is done in a sequential class, the relu activation layer an Adam
optimizer with a learning rate of 0.005 and a loss function with Mean AbsouteError.

The architecture was built with four hidden layers with 256 nodes each.
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5 Error Estimation

In estimation of the accuracy of the simulation results, next to the qualitative
comparison of the flow fields, the given project aimed to also find quantitative error
estimation.

Here, it was important to find amethod to calculate the error that takes into account
the differences of the high velocity zones as well as the differences of the zones with
lower velocity also. After some development the decision was made to define two
different error calculations as shown in Eqs. (3) and (4).

Since the Error1 takes the differences of each velocity at a certain point from
the CFD calculation to the model prediction, here the relative error of the small
velocities has a much higher influence compared to the error in the high velocity
field. On the other hand for the Error2, the relative error of the differences of the
sum of all velocities for the CFD calculation to the sum of all velocities of the model
prediction has been calculated and thus, here the differences of the high velocity
areas at the flow field plays a major role.

Error1 =
∑∣∣VCFD(x,y,z) − Vmodel(x,y,z)

∣∣
∑∣∣VCFD(x,y,z)

∣∣ · 100 (3)

Error2 =
∑∣∣VCFD(x,y,z)

∣∣ − ∑∣∣Vmodel(x,y,z)

∣∣
∑∣∣VCFD(x,y,z)

∣∣ · 100 (4)

6 Results

In Fig. 5 the comparison of the results of the interpolation to the CFD calculations
are shown. It is shown that the prediction of the model shows rather big errors in the
area of low Reynolds number but for the higher velocities, the error becomes low
and the quality of the predictions is feasible.

The results of the error calculations for the predictions of the ANN in comparison
to CFD are shown in Fig. 6. As before, the results of the predictions at the low
Reynolds numbers are not good but becomes much better in a range of smaller
than 10% at higher Reynolds numbers. It is interesting to notice that the simple
interpolation algorithm appears to give better results than the more advanced AI
approach.

A further comparison is shown in Fig. 7. As seen in the figure the velocity is
plotted along traversal lines (Line 1 in a and d, line 2 in b and e, line 3 in c and f)
for two different Reynolds numbers (Re = 15 for a, b, c and Re = 140 for d, e, f)
each plot with the direct comparison of the velocity profile for the CFD simulation,
the interpolation and the AI model.
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Fig. 5 Error of the interpolation model

It is seen that the prediction of the fully developed pipe flow for the inlet and outlet
(at line 1 and 3) is quite well for all cases, just in the middle of the cavity, at line 2,
the differences become larger. In b, one can see the difference of the interpolation
to the CFD result is smaller than the difference of the AI predictions. For the higher
Reynolds number (e) the differences become negligible small for both (Interpolation
and AI) in comparison to the CFD simulation.

7 Conclusions

Two different approaches have been developed for using the data of CFD calcula-
tions to train different meta models that are able to predict the three dimensional
flow field of a cavity flow within very short time. The models were using a simple
interpolation model and a more advances AI approach. In this paper both models
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Fig. 6 Error of the AI model

have been compared among each other and both models show acceptable accuracy in
the prediction of the flow field for higher Reynolds numbers but shows difficulty in
the lower Reynolds numbers. Here the interpolation shows even better performance
than the AI approach.

Following developments will be carried out to develop a supervision tool that
performs randomized test simulations and compares them to the predictions and will
form smaller submodels for areas where the prediction shows big differences. Here,
again both approaches shall be compared.
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Re=15 Re=140

(a) (d)

(b) (e)

(c) (f)

Fig. 7 Error of the interpolation and AI models
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26. Abali, B.E., Savaş, Ö.: Experimental validation of computational fluid dynamics for solving
isothermal and incompressible viscous fluid flow. SN Appl. Sci. 2, 1500 (2020)

27. ANSYS Fluent 18.0, Theory Guide, www.ansys.com

https://doi.org/10.1017/dce.2021.16
http://www.ansys.com


Virtual Element Methods for Optimal
Control Problems Governed by Elliptic
Interface Problems

Jai Tushar, Anil Kumar, and Sarvesh Kumar

Abstract AconformingVirtual ElementMethod alongwith a variational discretiza-
tion concept for solving the optimization problem governed by an elliptic interface
problem is presented. Elements with small edges and hanging nodes occur naturally
while numerically solving interface problems. Conforming Finite Element Methods
cannot handle these difficulties naturally. VEM has the attractive feature that it can
tackle hanging nodes and is even robust with respect to small edges. We use these
features of VEM to design a method that can tackle these difficulties naturally. The
state, adjoint and control estimates have been derived in suitable norms. Numerical
results verify our theoretical findings and show the robustness and flexibility of the
proposed method.

Keywords Virtual element method · Optimal control problem · Elliptic interface
problem · Variational discretization · Numerical analysis

1 Introduction

There are numerous applications of interface problems in applied sciences and engi-
neering. For example, in material sciences, problems involve discontinuous material
coefficients across the interface, such as conductivity in heat transfer, permeability
in porous media flow. Optimizing these physical processes lead to optimal con-
trol problems governed by partial differential equations (PDEs) with interfaces. To
numerically solve these problems, one of the standard practices is to use a finite
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element method (FEM) (cf. [4, 7]), which has element boundaries coincident with
the interface (see [2] and references therein). These methods are categorized as fitted
methods. In this group of methods, the meshing of the domain depends on the loca-
tion of the interface. One faces several difficulties in generating a mesh that resolves
the interface. For example, aligning the element edges coincidentally at the interface
is not trivial when meshing domains on either side of the interface. The relaxation
of the edge alignment condition on the mesh can naturally lead to meshes that have
arbitrarily small edges. The attractive properties of VEMmake it robust under small
edges and allow it to handle hanging nodes; we present a conforming virtual element
method (VEM) along with the variational discretization concept presented in [3] for
the discretization of the continuous optimization problem governed by an elliptic
problem with a polygonal interface which can tackle these difficulties naturally. Our
approach allows for greater flexibility in meshing since we can use different meshes
on either side of the interface (see Fig. 1). Moreover, we also show that using the
same feature of VEM, we can generate background fitted meshes independent of the
location of the interface (see Fig. 1). Thus, it is easier to generatemeshes as compared
to conforming FEM. Our numerical experiments show that the original linear VEM
stabilization presented in [5] will generate small but visible oscillations in the solu-
tion (see Fig. 2). This motivates us to use the boundary stabilization presented in [6],
which smoothens these oscillations at the interface (see Fig. 3). The model problem
is to find the distributed control z and the associated state y = y(z) satisfying

min
z∈Zad

J (y, z) := 1

2
‖y − yd‖20,Ω + λ

2
‖z‖20,Ω , (1)

subject to

−∇ · (β ∇ y) = z + f, in Ω,

y = 0, on ∂Ω, (2)

[y] = 0,

[
β

∂y

∂n

]
= g on Γ,

za ≤ z ≤ zb for a.e. in Ω.

We define the jump of a function ζ across Γ by [ζ] (x) := ζ1(x) − ζ2(x), ∀ x ∈ Γ ,
where ζ1 and ζ2 are restrictions of ζ on Ω1 and Ω2, respectively, n denotes the unit
outward normal vector to the interface. The coefficient β is assumed to be piecewise
constant and positive and is defined as β1 in Ω1 and β2 in Ω2. Let za, zb ∈ R with
za < zb, yd ∈ L2(Ω) is the desired state andλ > 0 is the regularization or the penalty
parameter. The admissible set of controls is defined as follows:

Zad := {
z ∈ L2(Ω) : za ≤ z ≤ zb a.e. in Ω

}
.



Virtual Element Methods for Optimal Control Problems … 523

Define the space X := H 1(Ω) ∩ H 2(Ω1) ∩ H 2(Ω2) equipped with the norm

‖ζ‖X = ‖ζ‖1,Ω + ‖ζ‖2,Ω1
+ ‖ζ‖2,Ω2

, ∀ ζ ∈ X.

Sobolev embedding theorem dictates that for any ζ ∈ X , we have ζ ∈ W 1,p(Ω) for
all p > 2. The regularity of the state equation (2) is given by the following Lemma
(see Theorem 2.1, [2])

Lemma 1 Assuming f, z ∈ L2(Ω) and g ∈ H 1/2(Γ ). We have that the problem (2)
has a unique solution y ∈ X which satisfies

‖y‖X � ‖ f ‖0,Ω + ‖z‖0,Ω + ‖g‖1/2,Γ
Using the standard techniques employed in PDE optimal control, we can find that
the optimal control satisfies the following variational inequality also known as the
first-order necessary optimality condition

(λz + p, w − z) ≥ 0, ∀ w ∈ Zad ,

where p is the adjoint variable or the co-state variable and solves the subsequent
adjoint equation

−∇ · (β ∇ p) = y − yd , in Ω,

p = 0, on ∂Ω,

[p] = 0,

[
β

∂ p

∂n

]
= 0 on Γ.

A unique p ∈ X exists, which solves the adjoint equation follows from (Theorem
2.1, [2]). We can rewrite the first-order necessary optimality condition as a pointwise
projection formula

z = PZad

(
− 1

λ
p

)
.

If we introduce a control-to-state map S defined as Sz = y, then the problem (1)–(2)
reduces to

min
z∈Zad

j (z) = min
z∈Zad

J (Sz, z),

then the optimal control satisfies the following coercivity condition

j ′′(z)(w,w) ≥ λ ‖w‖2L2(Ω) , ∀ w ∈ Z := L2(Ω). (3)

Define a(·, ·) : H 1(Ω) × H 1(Ω) −→ R such that a(ζ, η) := ∫
Ω

β ∇ζ · ∇η. Now
the optimality system corresponding to (1)–(2) is to find (y, p, z) ∈ V (:= H 1

0 (Ω)) ×
V × Zad such that
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a(y, v) = (z + f, v) + 〈g, v〉Γ , ∀ v ∈ V (4)

a(p, q) = (y − yd , q), ∀ q ∈ V (5)

(λz + p, w − z) ≥ 0, ∀ w ∈ Zad . (6)

We adopt the standard Sobolev space notations. Additionally, we have the notation
a � b, which represents that a is less than or equal to some positive constant (inde-
pendent of the mesh parameter) times b. An outline of the manuscript is as follows.
In Sect. 2, a VEMdiscretization of the continuous problem is proposed. In Sect. 3, we
give the convergence analysis for the proposed scheme under suitable norms. After-
ward, in Sect. 4, we conduct two numerical experiments to analyse the behaviour of
the solution and verify the theoretical results proved in Sect. 3.

2 Discrete Formulation

Let Th be the triangulation of Ω into simple polygons K with discretization param-
eter h := maxK∈τh hK ∈ (0, 1], where hK is the diameter of K . Γ is the polygonal
interfacewhich is resolved byTh .T ∗

h := {K ∈ τh : K ∩ Γ �= ∅} is the set of interface
polygons. Then Th satisfies:
(A1) Ω̄ = ∪K∈Th K .
(A2) If K1, K2 ∈ Th are two distinct polygons, then either their intersection is empty

or they share a common vertex or edge.
(A3) Each polygon either lies in Ω1 or Ω2 and has at most two vertices lying on the

interface.

Moreover, we introduce the following relaxed assumptions which allow small edges
on any polygon K ∈ τh ,

(A4) Any K ∈ Th is star-shaped w.r.t. disc BK ⊂ K with radius ρK hK where, and
there exists ρ ∈ (0, 1), such that ρK ≥ ρ for all K ∈ Th .

(A5) There exists N ∈ Z
+ independent of the mesh parameter such that |EK | ≤ N ,

where EK denotes the set of all edges of K .

2.1 Discretization of State and Adjoint Equations

Following [1], the linear local virtual element space V (K ) ⊂ H 1(K ) is defined as
follows:

V (K ) := {
ζ ∈ H 1(K ) : ζ|∂K ∈ P1(∂K ), −�ζ ∈ P1(K ),

(ζ − Π∇
1,K ζ, q)K = 0 ∀ q ∈ M∗

0(K ) ∪ M∗
1(K )

}
.

where
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M∗
r (K ) :=

{
m|m =

(
x − xK
hK

)s

for s ∈ N
2 with |s| = r

}
.

We denote by xK the centroid of K , the space of all polynomials of degree ≤ 1 is
denoted by P1(K ). The degrees of freedom of V (K ) consist of the values of v at the
vertices of K . Ritz projection operator Π∇

1,K : H 1(K ) −→ P1(K ) satisfies

((Π∇
1,K ζ, q)) = ((ζ, q)) ∀ q ∈ P1(K ), (7)

where the inner product ((ζ, w)) := (∇ζ,∇w) + (
∫
∂K ζ ds)(

∫
∂K w ds). Moreover,

(7) is equivalent to

∫
K

∇(Π∇
1,K ζ) · ∇q dx =

∫
K

∇ζ · ∇q dx;
∫

∂K
Π∇

1,K ζ ds =
∫

∂K
ζ ds. (8)

Π0
1,K is the projection from L2(K ) onto P1(K ). P1

h represents the space of discon-
tinuous piecewise polynomials of degree ≤ 1. Then the global projection operators
Π∇

1,h : H 1(Ω) −→ P1
h , Π0

1,h : L2(Ω) −→ P1
h , are understood in the sense of their

local counterparts as

(Π∇
1,hv)|K = Π∇

1,K (v|K ), (Π0
1,hv)|K = Π0

1,K (v|K ).

We glue to the local virtual element spaces to write the following global virtual
element space

Vh = {ζ ∈ H 1
0 (Ω) : ζ|K ∈ V (K ) ∀ K ∈ Th}.

The mesh dependent norm is defined as |v|h,1 :=
(∑

K∈τh
|v|2H 1(K )

) 1
2
. We define the

discrete bilinear form as follows:

ah(w, v) =
∑
K∈τh

aK
h (w, v)

=
∑
K∈τh

[
aK (Π∇

1,Kw,Π∇
1,K v) + SK (w − Π∇

1,Kw, v − Π∇
1,K v)

]
, (9)

aK (w, v) =
∫
K

β|K∇w · ∇v dx,

Note that supp(β − β|K ) ∩ K = {0} for all K ∈ τh . The two choices of local stabi-
lization bilinear forms are defined as follows:

SK (ζ, v) =
{
SK
1 (ζ, v) := ∑

ϕ∈B∂K
ζ(ϕ)v(ϕ),

SK
2 (ζ, v) := hK (∂ζ/∂s, ∂v/∂s)0,∂K .
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Here, B∂K denotes the set of nodes of K . and ∂ζ/∂s is the tangential derivative of ζ
along ∂K . From ((3.55) in [1]), we have for all u ∈ V (K ) the following inequality

|u|21,K � |Π∇
1,K u|21,K + hK

∥∥∂(u − Π∇
1,K u)/∂s

∥∥2

0,∂K
, (10)

with a hidden constant depending on ρK and the degree of the polynomial. Also from
((3.56) in [1]) for all u ∈ V (K ), we have

|u|21,K � |Π∇
1,K u|21,K + ln (1 + τK )

∥∥u − Π∇
1,K u

∥∥2

∞,∂K )
, (11)

with the constant depending on |EK | along with ρK and the degree of the polyno-
mial. Here, τK := maxe∈EK he/mine∈EK he. On combining (10) and (11), we get the
following stability estimate for ah(·, ·),

|v|2H 1(Ω) � αhah(v, v) ∀ v ∈ Vh, (12)

where

αh =
{
ln

(
1 + maxK∈τh τK

)
if SK (·, ·) = SK

1 (·, ·),
1 if SK (·, ·) = SK

2 (·, ·). (13)

The source term is discretized using Π0
1,h operator as follows

(Π0
1,h f, v) := ( f,Π0

1,hv) =
∑
K∈τh

∫
K
f Π0

1,K vh .

2.2 Variational Discretization

In this approach, we discretize the control variable implicitly. Thus the discrete
admissible set of controls coincides with Zad . Following the optimize-then-discretize
approach, we can write the discrete optimality system as follows: Find (yh, ph, zh) ∈
Vh × Vh × Zad such that

ah(yh, vh) = (
Π0

1,h( f + zh), vh
) + 〈g, vh〉Γ ∀ vh ∈ Vh (14)

ah(ph, qh) = (
Π0

1,h(yh − yd), qh
) ∀ qh ∈ Vh (15)(

λzh + Π0
1,h ph, w̃ − zh

) ≥ 0 ∀ w̃ ∈ Zad . (16)

The discrete variational inequality (16) is rewritten as a discrete projection formula

uh |K = PUad

(
− 1

λ
(Π0

1,h ph)|K
)

∀ K ∈ τh . (17)
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The stability estimate (12) implies that the discrete state Eq. (14) and discrete adjoint
Eq. (15) are well-posed.

3 Convergence Analysis

This section is dedicated to deriving the error estimates for the state, adjoint and
control variable under variational discretization of control. We begin by considering
the following auxiliary equations: For any arbitrary control z̃ ∈ L2(Ω), let yh(z̃) ∈ Vh

solve
ah(yh(z̃), vh) = (Π0

1,h(z̃ + f ), vh) + 〈g, vh〉Γ ∀ vh ∈ Vh, (18)

and for any arbitrary ỹ ∈ H 1
0 (Ω), let ph(ỹ) ∈ Vh solve

ah(qh, ph(ỹ)) = (Π0
1,h(ỹ − yd), qh) ∀ qh ∈ Vh . (19)

Let us define the following notations yh := yh(zh), ph := ph(yh). For the subsequent
analysis we will need the following Lemma.

Lemma 2 For any arbitrary z̃i ∈ L2(Ω), and ỹi ∈ H 1
0 (Ω), let yh(z̃i ) and ph(ỹi ),

i = 1, 2 solve (18) and (19), respectively. Then

|yh(z̃1) − yh(z̃2)|1,Ω � αh ‖z̃1 − z̃2‖0,Ω ,

|ph(ỹ1) − ph(ỹ2)|1,Ω � αh ‖ỹ1 − ỹ2‖0,Ω ,

where αh is as defined in (13).

Proof Test (18) with yh(z̃1) and yh(z̃2) to get,

ah(yh(z̃1) − yh(z̃2), vh) = (Π0
1,h(z̃1 − z̃2), vh).

Now using the stability estimate (12) along with vh = yh(z̃1) − yh(z̃2), the stability
of Π0

1,K operator and the consequence of Poincaré-Friedrichs inequality we have,

|yh(z̃1) − yh(z̃2)|21,Ω � αh ‖z̃1 − z̃2‖0,Ω
∥∥Π0

1,h(yh(z̃1) − yh(z̃2))
∥∥
0,Ω

,

� αh ‖z̃1 − z̃2‖0,Ω
∑
K∈τh

∥∥Π0
1,K (yh(z̃1) − yh(z̃2))

∥∥
0,K

,

� αh ‖z̃1 − z̃2‖0,Ω
∑
K∈τh

‖yh(z̃1) − yh(z̃2)‖0,K ,

� αh ‖z̃1 − z̃2‖0,Ω |yh(z̃1) − yh(z̃2)|1,Ω,

� αh ‖z̃1 − z̃2‖0,Ω .
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Similarly, test (19) with ph(ỹ1) and ph(ỹ2) along with qh = ph(ỹ1) − ph(ỹ2) and
follow the same steps to get the second desired inequality. �

Estimates corresponding to the auxiliary problems (18) and (19) can be proved using
the techniques of [1] and [2] in the following Lemma.

Lemma 3 Let y(z̃) and yh(z̃) be the solutions of (4) and (18), respectively. Let
p(ỹ) and ph(ỹ) be the solutions of (5) and (19), respectively. Let f, yd ∈ L2(Ω)

and g ∈ H 1/2(Γ ) and αh is as defined in (13). Then

|y(z̃) − yh(z̃)|1,Ω + |p(ỹ) − ph(ỹ)|1,Ω � αh h.

Additionally, if f, yd ∈ H 1(Ω) then

‖y(z̃) − yh(z̃)‖0,Ω + ‖p(ỹ) − ph(ỹ)‖0,Ω � αh h2.

Moreover, for z̃ = zh,

‖p(zh) − ph(zh)‖L2(Ω) � αhh
2.

Following the arguments of Lemma 2.1 in [2] and the standard approximation prop-
erty of Π0

1,K given in [1], we have

∥∥ζ − Π0
1,hζ

∥∥
0,Ω

� h2 ‖ζ‖X ∀ ζ ∈ X. (20)

Now we derive the error estimates for the state, adjoint and control variables under
variational discretization of control.

Theorem 1 Let (y, p, z) solve the continuous optimality system (4)–(6). Let
(yh, ph, zh) solve the discrete optimality system (14)–(16). Then under the assump-
tions of Lemma 2 and Lemma 3, then following estimate holds

‖z − zh‖L2(Ω) � αh h2,

where αh is as defined in (13).

Proof Thediscrete (16) and continuous (6) variational inequalities give the following

(λzh + Π0
1,h ph, z − zh) ≥ 0 ≥ (λz + p, z − zh), (21)

The coercivity condition (3) for z − zh ∈ Z and (21) leads to
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λ ‖z − zh‖20,Ω ≤ (λz + p, z − zh) − (λzh + p(zh), z − zh),

≤ (λzh + Π0
1,h ph, z − zh) − (λzh + p(zh), z − zh)

= (Π0
1,h ph − p(zh), z − zh),

= [
(Π0

1,h(ph − p(zh)), z − zh)

+(Π0
1,h p(zh) − p(zh), z − zh)

]
= TA + TB

In view of the stability ofΠ0
1,K operator, Lemmas 2 and 3, TA is bounded as follows:

TA ≤
∑
K∈τh

∥∥Π0
1,K (ph − p(zh))

∥∥
0,K

‖z − zh‖0,K

≤
∑
K∈τh

‖ph − p(zh)‖0,K ‖z − zh‖0,K

≤
∑
K∈τh

(‖ph − ph(y(zh))‖0,K + ‖ph(y(zh)) − p(zh)‖0,K
) ‖z − zh‖0,K

�
(|ph − ph(y(zh))|1,Ω + ‖ph(y(zh)) − p(zh)‖0,Ω

) ‖z − zh‖0,Ω
�

(
αh ‖yh(zh) − y(zh)‖0,Ω + ‖ph(y(zh)) − p(zh)‖0,Ω

) ‖z − zh‖0,Ω
� αh h2 ‖z − zh‖0,Ω .

The term TB is bounded using (20) as follows

TB ≤
∑
K∈τh

∥∥Π0
1,K p(zh) − p(zh)

∥∥
L2(Ω)

‖z − zh‖L2(Ω) � h2 ‖p(zh)‖X ‖z − zh‖0,Ω .

Combining the bounds of TA and TB leads to the desired estimate. �
Theorem 2 Assuming Theorem 1 holds. Then under variational discretization of
control the following estimates hold

‖y − yh‖0,Ω + ‖p − ph‖0,Ω � αh h2; |y − yh |1,Ω + |p − ph |1,Ω � αh h.

Proof We split the error in state equation using yh(z) as y − yh = (y − yh(z)) +
(yh(z) − yh). Now we use Lemmas 2, 3 and Theorem 1 as follows:

‖y − yh‖0,Ω ≤ ‖y − yh(z)‖0,Ω + ‖yh(z) − yh‖0,Ω
≤ ‖y − yh(z)‖L2(Ω) + αh ‖z − zh‖L2(Ω) � αh h2

|y − yh |1,Ω ≤ |y − yh(z)|1,Ω + |yh(z) − yh |1,Ω
≤ |y − yh(z)|1,Ω + αh ‖z − zh‖0,Ω � αh h.

Following analogous steps andusing the splitting p − ph = (p − ph(y)) + (ph(y) −
ph), we can get the estimates for the adjoint variable. �
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4 Numerical Experiments

In this section, we present two numerical examples to study the behaviour of our
scheme. In Example I, we study the behaviour of the solution at the interface in
the presence of small edges under both the proposed stabilization terms SK

1 (·, ·) and
SK
2 (·, ·). The mesh T 1

h (see Fig. 1) under (A1)–(A5) that we consider arises naturally,
if we mesh the domain Ω either side of the interface Γ with different elements. The
error in control, state, and adjoint variables are illustrated, and the theoretical results
of Sect. 3 are corroborated. In Example II, we employ a segment interface which
is independent of the background fitted mesh T 2

h (see Fig. 1) such that it satisfies
(A1)–(A3). In Fig. 1, the red star markers on the slant interface are the intersection
points of the interface with T 2

h and result in hanging nodes that are repurposed to
generate a fitted mesh; hence the name background fitted mesh. Error in control,
state, and adjoint variables under variational discretization of control is illustrated
which verifies the results obtained in Sect. 3.

Example 1 (Vertical interface) Let Ω be a unit square domain. Consider the
problem (1)–(2). The interface Γ := {x ∈ Ω : x1 − 0.5 = 0} and the following data

λ = 0.1, ua = −0.25, ub = 0.25, β1 = 1, β2 = 10, y(x) = x21 (x1 − 1)x2(x2 − 1),

p(x) = x1(x1 − 1)x2(x2 − 1), z(x) = max(za,min(zb, − 1

λ
p(x))).

The optimal control problem is solved using the variational variant of the projected
gradient algorithm presented in [3]. In our numerical experiment, we observe that
under the classical VEM stabilization choice of S1K (·, ·), the solution of the state and
the adjoint variable exhibits oscillations at the interface under the presence of small
edges; however, the control variable is free of these oscillations under variational
discretization of control (See Fig. 2). The red dotted lines in Fig. 2 represent the
true solution at the interface, and the blue lines represent the approximated solution
on T 2

h .

Fig. 1 Meshes T 1
h and T 2

h , respectively
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Fig. 2 Solution profile of state, adjoint and control variables, respectively at the interface under
variational discretization of control with SK1 (·, ·) on T 2

h

Fig. 3 Solution profile of state, adjoint and control variables, respectively at the interface under
variational discretization of control with SK2 (·, ·) on T 2

h

We do the same experiment with the boundary stabilization S2K (·, ·) and observe that
the oscillations at the interface have smoothened (see Fig. 3).

Remark 1 It is also observed in our numerical experiments that the oscillations
are sensitive to the parameter β. For example, if we consider the same numerical
example with β1 = 1 and β2 = 0.5, the oscillations with S1K (·, ·) in the state and the
adjoint will be still visible but much smaller.
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Fig. 4 Sequence of meshes T 1
1 , T

1
2 , T

1
3 , T

1
4 and T 1

5 , respectively

Table 1 Error and order of convergence in y, p and u under T 1
1 -T

1
5 and variational discretization

of control in L2-norm and energy norm for Example I
h E0(y) R0(y) E0(p) R0(p) E1(y) R1(y) E1(p) R1(p) E0(z) R0(z)

0.3651 0.002111 – 0.002765 – 0.0386 – 0.0572 – 0 –

0.1847 0.000509 2.08 0.000725 1.96 0.0196 0.99 0.0280 1.04 0.002962 -Inf

0.0910 0.000124 1.98 0.000188 1.90 0.0097 0.98 0.0139 0.98 0.000540 2.40

0.0474 0.000030 2.17 0.000048 2.06 0.0048 1.08 0.0069 1.06 0.000139 2.07

0.0233 0.000007 1.91 0.000012 1.94 0.0023 0.98 0.0034 0.98 0.000030 2.14

Now we compare the error under a sequence of meshes T 1
1 to T 1

5 (see Fig. 4). We
compare the exact solution of the state and co-state variables with the L2-projection
of the discrete state and co-state variables since the virtual element solution is not
known explicitly inside the element. The discrete control is computed using the
discrete projection formula (17). We denote the L2-error as follows

E0(w) =
∑
K∈τh

∥∥w − Π0
1,Kwh

∥∥
0,K

forw = y, p, E0(z) =
∑
K∈τh

‖z − zh‖0,K .

Similarly, we denote the error in the energy norm for the state and the co-state
variable by E1(y) and E1(p), respectively with the help ofΠ∇

1,K operator. We denote
by R0(w) and R1(w) the order of convergence corresponding to the variable w in
the L2 and H 1 norms, respectively. The numerical errors and the corresponding rate
of convergence under T 1

1 -T 1
5 are given in Table1 and corroborate theoretical results

of Theorems 1 and 2. The solution profile on T 1
3 is given in Fig. 5.

Example 2 (Segment interface) Consider the problem (1)–(2) on a unit square
domain with the interface Γ := {x ∈ Ω : x2 = kx1 + b}, where k = −√

3
3 and b =

(6+√
6−2

√
3)

6 and the following data

λ = 1, ua = −0.2, ub = 0.2, β1 = 1, β2 = 1/2, y(x) = x21 (x1 − 1)x2(x2 − 1),

z(x) = max(za,min(zb, − 1

λ
p(x))), p(x) = (x2 − kx1 − b)2(x1(x1 − 1)x2(x2 − 1)).
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Fig. 5 Solution profile of state, adjoint and control variables, respectively on T 1
3 for Example I

Table 2 Error and order of convergence in y, p and u under a sequence of meshes of type T 2
h and

variational discretization of control in energy and L2 norms for Example II
h E0(y) R0(y) E0(p) R0(p) E1(y) R1(y) E1(p) R1(p) E0(z) R0(z)

0.7071 0.006770 – 0.002261 – 0.0589 – 0.0217 – 0.0008842 –

0.3547 0.002619 1.37 0.001169 0.95 0.0346 0.77 0.0160 0.43 0.0001723 2.37

0.1818 0.000617 2.16 0.000338 1.85 0.0179 0.98 0.0087 0.91 0.0000852 1.05

0.0922 0.000156 2.02 0.000087 1.99 0.0090 1.00 0.0044 0.98 0.0000249 1.81

0.0483 0.000038 2.16 0.000020 2.21 0.0045 1.05 0.0022 1.06 0.0000049 2.48

The numerical errors and the corresponding order of convergence under a sequence
of refined meshes of the type T 2

h independent of the interface Γ are given in Table2
and confirm the theoretical results of Theorems 1 and 2.
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Positivity Preserving Rational Quartic
Spline Zipper Fractal Interpolation
Functions

Vijay and A. K. B. Chand

Abstract In this paper, we introduce a class of novel C1-rational quartic spline
zipper fractal interpolation functions (RQS ZFIFs) with variable scalings, where
rational spline has a quartic polynomial in the numerator and a cubic polynomial in
the denominator with two shape control parameters. We derive an upper bound for
the uniform error of the proposed interpolant with aC3 data generating function, and
it is shown that our fractal interpolant has O(h2) convergence and can be increased to
O(h3) under certain conditions. We restrict the scaling functions and shape control
parameters so that the proposed RQS ZFIF is positive, when the given data set is
positive. Using this sufficient condition, some numerical examples of positive RQS
ZFIFs are presented to support our theory.

Keywords Fractals · Positivity · Rational quartic spline · Zipper · Zipper smooth
fractal function
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1 Introduction

To find a nice interpolation curve with various attributes is an active area of research
in numerical analysis, approximation theory, wavelets, classical and discrete geom-
etry, engineering design, civil engineering and computer science. From the last
many decades, researchers have come up with various types of interpolants that
have advantages over one another. Polynomial interpolations are preferred when the
original function is sufficiently smooth. For some fixed order of smoothness, differ-
ent types of spline (polynomial/trigonometric/exponential/rational) interpolants are
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used. Rational spline interpolants with shape parameters are more flexible over other
type of spline interpolants, and hence popular in geometric modelling problems for
discrete data visualization. These have been utilized from animated films to simu-
lated surgery. For the classical positivity preserving rational splines one can see [1,
15, 16, 23, 25, 33]. Schmidt and Heß in [25] discussed positive interpolation with
quadratic and rational quadratic spline and observed that rational quadratic splines
have an advantage over quadratic splines. Sakai and Schmidt in [23] presented a class
of C2 positivity-preserving rational spline using two local control parameters with
the cubic numerator and linear denominator. Using cubic numerator and quadratic
denominator, Abbas et al. in [1] constructed a C2 rational cubic spline with three
shape parameters. They derived the shape feature of data using a single shape param-
eter and the other two shape parameters were left free for the designer to adjust the
shape of positive curves as per industrial requirements. Hussain and Sarfraz in [16]
constructed a C1 piecewise rational cubic spline with four parameters to visualize
positive data set. Two parameters are constrained for the presentation of positive
curves through positive data while the other two provide extra freedom to vary the
curve shape as needed. Han in [15] presented a piecewise rational spline with the
quartic numerator and quadratic denominator. He derived the shape-preservation
properties like positivity, monotonicity and convexity of the interpolant. But these
non-recursive classical interpolants are either smooth or piecewise smooth and con-
sequently, they are not differentiable at the finite number of points. But if the data
is taken from an irregular and non-smooth function, these classical interpolants are
not good approximants for it.

Non-smooth and irregular curves such as profiles of mountain ranges, tops of
clouds, lightning, ECG curves, turbulence, etc. cannot be interpolated by classical
interpolants. The term fractal was given byMandelbrot [19] to unify the irregular and
complex structures.After thatmany researchersworkedon it and expand its theory.To
construct fractals, Hutchinson [17] introduced the concept of iterated function system
(IFS). The fractal-based theory is a new tool to analyse various non-linear complex
phenomena in nature, sciences and engineering. With the help of some parameters,
we can easilymodelmost of these complex phenomena byusing self-referential rules.
Using the theory of IFS, Barnsley [5] created fractal interpolation functions (FIFs)
to generate non-smooth and irregular curves from their data points [6] and proved
the existence and uniqueness of fractal interpolation function for a hyperbolic IFS
with fixed parameters. Barnsley andHarrington [7] constructed r -times differentiable
polynomial splinewith fixed type of boundary conditions to interpolate functions that
have fractality in their higher-order derivatives. For all kinds of boundary conditions,
Chand and Kapoor [8] constructed cubic spline FIFs using moments. For application
of FIF in data visualization, Chand and collaborators have proposed shape-preserving
fractal interpolants, see for instance [9, 10, 12, 18, 29, 30]. Akhtar et al. in [20]
introduced a group of fractal functions on the unit sphere through a linear bounded
fractal operator and presented some approximation properties. Balasubramani et al.
[4] constructed rational cubic spline α-fractal functions with three shape parameters
that can preserve positivity and monotonicity. They have also found the conditions
on the IFS parameters so that the proposed interpolant is constrained between two



Positivity Preserving Rational Quartic Spline Zipper Fractal Interpolation Functions 537

piecewise linear functions. But most of the development in shape-preserving FIF
theory, the authors have used constant scaling factors, whereas fractal functions with
variable scalings provide more flexibility. Using variable scaling, Wang and Shan
[32] generated FIFs to approximate functions with less self-similarity and studied
their analytical properties such as smoothness, stability and sensitivity. Gowrisankar
and Guru Prem Prasad [14] investigated Riemann-Liouville fractional calculus of
quadratic FIF with constant as well as variable scaling factors.

Aseev [2] conceptualized the notion of the zipper, which is the generalization of
the IFS. Several interesting topological and structural properties of zipper are studied
related to dendrites and self-similar continua byTetenov and his group [3, 24, 26–28].
Similar to fractal interpolants, zipper fractal interpolant as an attractor of a suitable
zipper can give details on arbitrarily small scales. Chand et al. [11] introduced affine
zipper fractal interpolants. They constructed affine zipper interpolants inscribed in
a rectangle and found a basis for the affine zippers fractal interpolation function
for a prescribed data set. Zipper fractal interpolants can be non-differentiable in a
dense set of an interval. The construction of smooth zipper FIFs is proposed recently
in Reddy [22], where certain derivative of smooth zipper FIF is a typical fractal
function. Thus, zipper fractal interpolants can be smooth or non-smooth, and smooth
zipper fractal interpolants may be used to generalize traditional non-recursive spline
interpolants. In this work, we have come up with a novel C1-rational quartic spline
zipper fractal interpolation function with variable scaling functions and studied its
positivity preserving property.

The main points of our work are as follows: First, we formulate a class of novel
C1-rational quartic spline (RQS) with two families of shape control parameters with
the help of a binary vector, and then using that RQS and the theory of zipper, we
derive a new type of fractal interpolant with variable scaling functions named rational
quartic spline zipper fractal interpolation function (RQS ZFIF) in Sect. 2. In Sect. 3,
we glean that our RQS and RQS ZFIF converge to aC3 data generating function with
the order O(h2) as h → 0, and under additional assumptions on IFS parameters, we
can increase the order of convergence up to O(h3). To get a strictly positive RQS
ZFIF or RQS for a strictly positive data set, we derive sufficient conditions on the
shape control parameters and the variable scaling functions in Sect. 4 and give some
numerical examples to reinforce our theory. In Sect. 5, we summarize our work.

2 Construction of RQS ZFIFs

In this section, we will construct a new type of C1-rational quartic spline using a
binary vector called a signature, and then we will construct a class of novel C1-RQS
ZFIF with the help of our new rational quartic spline and the theory of the zipper.

Follows are some notation for this paper: Let I := [a, b] ⊂ R. For j ∈ N, let
N j := {1, 2, 3, . . . , j}, and N

0
j := {0, 1, 2, 3, . . . , j}. For j ∈ N ∪ {0}, C j (I ) is the

Banach space of real valued functions having j continuous derivatives defined on
I , and for g ∈ C j (I ), ‖g‖ j := max{‖g(r)‖∞ : r = 0, 1, 2, . . . , j}. For g ∈ C(I ),
‖g‖∞ := max{|g(x)| : x ∈ I }.



538 Vijay and A. K. B. Chand

Let a set of interpolation points {(xi , yi ) ∈ I × R : i ∈ NN } with increasing
abscissae be given with a = x1 and b = xN . Let [k1, k2] be a large compact interval
in R such that yi ∈ [k1, k2]∀i ∈ NN . For a binary vector ε := (ε1, ε2, . . . , εN−1) ∈
{0, 1}N−1, let Li : I → Ii := [xi , xi+1], i = 1, 2, . . . , N − 1, be contractive home-
omorphisms such that

Li (x1) = xi+εi , Li (xN ) = xi+1−εi ,

|Li (x) − Li (x
∗)| ≤ r |x − x∗|, ∀x, x∗ ∈ I,

(1)

for some 0 ≤ r < 1.
For 0 ≤ θ := x−x1

xN−x1
≤ 1 and Qi (θ) = wi (1 − θ)3 + (wi + ui )(1 − θ)2θ +

(wi+1 + ui+1)(1 − θ)θ2 + wi+1θ
3, where wi and ui are the shape control param-

eters, let

Pi1(θ) = wi (1 − θ)3 + (wi + ui )(1 − θ)3θ + (wi+1 + ui+1)(1 − θ)2θ2

Qi (θ)
,

Pi2(θ) = (wi + ui )(1 − θ)2θ2 + (wi+1 + ui+1)(1 − θ)θ3 + wi+1θ
3

Qi (θ)
,

Pi3(θ) = wi (1 − θ)3θ

Qi (θ)
, Pi4(θ) = −wi+1(1 − θ)θ3

Qi (θ)
, i ∈ NN−1,

(2)

Then, for each j ∈ N4, Pi j ∈ C1(I ) and satisfies

Pi1(0) = 1, Pi1(1) = 0, P ′
i1(0) = 0, P ′

i1(1) = 0,

Pi2(0) = 0, Pi2(1) = 1, P ′
i2(0) = 0, P ′

i2(1) = 0,

Pi3(0) = 0, Pi3(1) = 0, P ′
i3(0) = 1, P ′

i3(1) = 0,

Pi4(0) = 0, Pi4(1) = 0, P ′
i4(0) = 0, P ′

i4(1) = 1.

(3)

Let hi := xi+1 − xi , |I | := xN − x1, and h∗
i := xi+1−εi − xi+εi . Now consider the

function

Pε(Li (x)) = Pi1(θ)yi+εi + Pi2(θ)yi+1−εi + h∗
i Pi3(θ)di+εi + h∗

i Pi4(θ)di+1−εi = Pi (θ)

Qi (θ)
, (4)

where

Pi (θ) =
4∑

k=0

Aik(1 − θ)4−kθk,

Ai0 = wi yi+εi , Ai1 = ui yi+εi + wi (2yi+εi + h∗
i di+εi ),

Ai2 = (ui + wi )yi+1−εi + (ui+1 + wi+1)yi+εi ,

Ai3 = ui+1yi+1−εi + wi+1(2yi+1−εi − h∗
i di+1−εi ), Ai4 = wi+1yi+1−εi .

(5)
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Then, the RQS Pε ∈ C1(I ) and satisfies Pε(Li (x1)) = yi+εi , Pε(Li (xN )) = yi+1−εi ,
P ′

ε(Li (x1)) = di+εi , and P ′
ε(Li (xN )) = di+1−εi . From (1), we can easily obtain that it

also interpolates the given data, i.e.∀i ∈ N, Pε(xi ) = yi , and P ′
ε(xi ) = di for arbitrary

signature ε, where di ’s are called derivative parameters. If the given data set {(xi , yi ) :
i ∈ NN } is without the derivative parameters, then theymust be calculated either from
the data or by some appropriate methods. The arithmetic mean method (amm) and
the geometric method (gmm) are popular choices for calculating derivatives from
data. For details of these methods, see [10].

Remark 1 (i) If our shape control parameters wi and ui for i ∈ N, are fixed and
wi �= wi+1 for i ∈ NN−1, then we can generate 2N−1 different rational quartic spline
interpolation functions using different signatures for N numbers of data points.
(ii) If εi = 0, for all i ∈ NN−1, then our rational quartic spline Pε(x) reduces to the
rational quartic spline R(x) defined in [33].

Definition 1 A zipper with vertices (v1, v2, . . . , vN ) and signature ε = (ε1, ε2, . . . ,
εN−1) ∈ {0, 1}N−1 is a collection of some non-surjectivemapswith a completemetric
space is denoted by� := {X;Wi : i ∈ NN−1}, where for each i ∈ NN−1,Wi satisfies
Wi (v1) = vi+εi and Wi (vN ) = vi+1−εi .

If there exists a compact set Γ ⊂ X such that

Γ = N−1∪
j=1

Wj (Γ ),

then Γ is called the attractor or fractal corresponding to the zipper �.
Let H := I × [k1, k2]. Construct N − 1 continuous functions Fi : H → R such

that
Fi (x, y) = αi (x)y + (Pε(Li (x)) − αi (x)Bi (x)),

where αi ∈ C1(I ) such that ‖αi‖1 < 1, and Bi ∈ C1(I ) such that

Bi (x) = Pi1(θ)y1 + Pi2(θ)yN + |I |Pi3(θ)d1 + |I |Pi4(θ)dN = P∗
i (θ)

Qi (θ)
,

P∗
i (θ) =

4∑

k=0

A∗
ik(1 − θ)4−kθk,

A∗
i0 = wi y1, A∗

i1 = ui y1 + wi (2y1 + |I |d1),
A∗
i2 = (ui + wi )yN + (ui+1 + wi+1)y1,

A∗
i3 = ui+1yN + wi+1(2yN − |I |dN ), A∗

i4 = wi+1yN .

(6)

Now, for each i ∈ NN−1, Bi satisfies Bi (x1) = y1, Bi (xN ) = yN , B ′
i (x1) = d1, and

B ′
i (xN ) = dN . Therefore, we have

Fi (x1, y1) = yi+εi , Fi (xN , yN ) = yi+1−εi ,

|Fi (x, y) − Fi (x, y
∗)| ≤ ‖αi‖∞|y − y∗|, ∀x ∈ I, y, y∗ ∈ [k1, k2], (7)
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Now define mappings Wi : H → Ii × R, i = 1, 2, . . . , N − 1 by

Wi (x, y) = (Li (x), Fi (x, y)), ∀(x, y) ∈ H.

Therefore, {H ;Wi : i ∈ NN−1} is a zipper with vertices ((x1, y1), (x2, y2), . . . , (xN ,

yN )) and signature ε = (ε1, ε2, . . . , εN−1). For each i ∈ NN−1, αi (x) is called the
variable scaling function corresponding to themapWi and Bi is called a base function.
Now we will construct a C1-RQS ZFIF using the zipper {H ;Wi : i ∈ NN−1} for the
given Hermite data {(xi , yi , di ) : i ∈ NN }.
Theorem 1 Let {(xi , yi , di ) : i ∈ NN } be a given set of interpolation data such that
x1 < x2 < · · · < xN . Let the signature ε ∈ {0, 1}N−1 be fixed. For i ∈ NN−1, let
Li (x) = ai x + bi satisfies (1), and Fi (x, y) = αi (x)y + Pε(Li (x)) − αi (x)Bi (x),
where Pε and Bi are as defined in (4) and (6) respectively. Ifαi ∈ C1(I ) and ‖αi‖1 <
|ai |
2 for all i ∈ NN−1, then the zipper {H ; (Li (x), Fi (x, y)) : i ∈ NN−1} determines
a rational quartic spline zipper fractal interpolation function Pα

ε ∈ C1(I ).

Proof Let D(I ) := {g ∈ C1(I ) : g(x1) = y1, g(xN ) = yN , g′(x1) = d1, and g′(xN )

= dN }. Then D(I ) is a complete metric space with respect to norm ‖.‖1. Now, define
the Read-Bajraktarević operator T α : D → D such that

T αg(Li (x)) = Pε(Li (x)) + αi (x)(g(x) − Bi (x)), x ∈ I, i = 1, 2, . . . , N − 1.
(8)

Since the functions Pε, Bi , and αi belong to C1(I ), T αg ∈ C1(xi , xi+1) for each
i ∈ NN−1. We know, for i ∈ NN−2, xi+1 ∈ I j for j = i, i + 1. Since Li and Li+1

satisfy (1), therefore we have

xi+1 =
{
Li (xN ) εi = 0
Li (x1) εi = 1,

and xi+1 =
{
Li+1(x1) εi+1 = 0
Li+1(xN ) εi+1 = 1.

(9)

By putting (9) in (8), we have

T αg(xi+1) =
{
Pε(Li (xN )) εi = 0
Pε(Li (x1)) εi = 1,

and T αg(xi+1) =
{
Pε(Li+1(x1)) εi+1 = 0
Pε(Li+1(xN )) εi+1 = 1.

(10)
=⇒ lim

x→x−
i+1

(T αg)(x) = lim
x→x+

i+1

(T αg)(x) = yi+1

Similarly, after differentiating (8) once and using (9), we can obtain

(T αg)′(xi+1) =
{
P ′

ε(Li (xN )) εi = 0
P ′

ε(Li (x1)) εi = 1,
and (T αg)′(xi+1) =

{
P ′

ε(Li+1(x1)) εi+1 = 0
P ′

ε(Li+1(xN )) εi+1 = 1.
(11)

=⇒ lim
x→x−

i+1

(T αg)′(x) = lim
x→x+

i+1

(T αg)′(x) = di+1. (12)
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Now, for i = 1, N − 1, from (8) we can easily get that T αg(x1) = y1, T αg(xN ) =
yN , (T αg)′(x1) = d1, and (T αg)′(xN ) = dN . Therefore, the operator T α is well-
defined, i.e. T αg ∈ D. Now, for x ∈ Ii ,

(T αg)(x) − (T αg∗)(x) = αi (L
−1
i (x))(g − g∗)(L−1

i (x)),

which implies

|(T αg)(x) − (T αg∗)(x)| ≤ ‖αi‖∞‖g − g∗‖∞ ≤ ‖αi‖1‖g − g∗‖1.

Similarly,

|(T αg)′(x) − (T αg∗)′(x)| ≤ |a−1
i |(‖α′

i‖∞‖g − g∗‖∞ + ‖αi‖∞‖g′ − g∗′‖∞)

≤ 2|a−1
i |‖αi‖1‖g − g∗‖1.

So, if for all i ∈ NN−1, ‖αi‖1 < s |ai |
2 for some 0 ≤ s < 1, then we have ‖T αg −

T αg∗‖1 < s‖g − g∗‖1, i.e. T α is a contraction map on D. Therefore, by Banach
fixed point theorem T α has a unique fixed point say Pα

ε ∈ C1(I ), and Pα
ε satisfies

the recurrence relation

Pα
ε (Li (x)) = Pε(Li (x)) + αi (x)(P

α
ε (x) − Bi (x)), x ∈ I, i = 1, 2, . . . , N − 1.

(13)

Pα
ε is the desired rational quartic spline zipper α-fractal function corresponding to

the function Pε. For more details on α-fractal functions, see [5, 21].

Remark 2 (i) If αi (x) = 0, for all x ∈ I and for all i ∈ NN−1, then our RQS ZFIF
Pα

ε reduces to the RQS Pε defined in (4).
(ii) If αi (x) = 0 and εi = 0, for all x ∈ I and for all i ∈ NN−1, then the proposed
RQS ZFIF Pα

ε reduces to the rational quartic spline R(x) defined in [33].
(iii) For the fixed shape control parameters and the fixed non-zero variable scaling
functions, we can get 2N−1 different RQS ZFIFs using different values of signature
for the N numbers of data points.

3 Convergence Analysis

In this section, we will derive an upper bound for the uniform error of the RQS ZFIF
with a C3 data generating function, and we will show that our RQS ZFIF has O(h2)
convergence and can be increased to O(h3) under certain conditions.

We fix these notation for this section: �i := yi+1−yi
hi

, t := x−xi
hi

, h := max{hi : i ∈
NN−1}, |y|∞ := max{|yi | : i ∈ NN }, |d|∞ := max{|di | : i ∈ NN },wi∗ := min{wi , wi+1},
ui∗ := min{ui , ui+1}, w∗

i := max{wi , wi+1}, u∗
i := max{ui , ui+1}, w∗ := min{wi :

i ∈ NN },w∗ := max{wi : i ∈ NN },u∗ := min{ui : i ∈ NN },u∗ := max{ui : i ∈ NN },
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B∗ := max{‖Bi‖∞ : i ∈ NN−1}, α(x) := (α1(x),α2(x), . . . ,αN−1(x)), ‖α‖∞ :
= max{‖αi‖∞ : i ∈ NN−1}, and ‖α‖1 := max{‖αi‖1 : i ∈ NN−1}.

Let Φ ∈ C3(I ) be a data generating function, i.e. Φ(xi ) = yi , ∀i ∈ NN . Let di ’s
are chosen derivatives at xi , for all i ∈ NN . Now, for θ = x−x1

xN−x1
, let t∗ := L−1

i (θ),

i.e. t∗ = x−xi+εi
xi+1−εi −xi+εi

. Therefore, for x ∈ Ii ,

Pε(x) = 1

Qi (t∗)

4∑

k=0

Aik(1 − t∗)4−k t∗k, (14)

where t∗ =
{
t εi = 0
1 − t εi = 1,

and Aik’s are as defined in (5).

Case I: Let x ∈ Ii and εi = 0, then

Pε(x) = 1

Qi (t)

4∑

k=0

Aik(1 − t)4−k tk,

Ai0 = wi yi , Ai1 = ui yi + wi (2yi + hidi ),

Ai2 = (ui + wi )yi+1 + (ui+1 + wi+1)yi ,

Ai3 = ui+1yi+1 + wi+1(2yi+1 − hidi+1), Ai4 = wi+1yi+1,

Qi (t) = wi (1 − t)3 + (wi + ui )(1 − t)2t + (wi+1 + ui+1)(1 − t)t2 + wi+1t
3.

(15)
Now from [13, 33], for x ∈ Ii and εi = 0, choosing wi , wi+1 > 0 and ui , ui+1 ≥ 0,
we have

|Φ(x) − Pε(x)| ≤ h3i
96

‖Φ(3)‖∞ + hi
4
max

{|Φ ′(xi ) − di |, |Φ ′(xi+1) − di+1|
}

+ hi
2
√

wiwi+1 + min{ui , ui+1}
[ 27

256
|ui (�i − di ) − wi (2�i − di − di+1)|

+ 1

16
|(wi+1 − wi )(2�i − di − di+1) + ui+1(�i − di ) + ui (di+1 − �i )|

+ 27

256
|wi+1(2�i − di − di+1) + ui+1(di+1 − �i )|

]
.

(16)
Case II: Let x ∈ Ii and εi = 1, then
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Pε(x) = 1

Qi (1 − t)

4∑

k=0

Aikt
4−k(1 − t)k,

Ai0 = wi yi+1, Ai1 = ui yi+1 + wi (2yi − hidi+1),

Ai2 = (ui + wi )yi + (ui+1 + wi+1)yi+1,

Ai3 = ui+1yi + wi+1(2yi + hidi ), Ai4 = wi+1yi ,

Qi (1 − t) = wi t
3 + (wi + ui )t

2(1 − t) + (wi+1 + ui+1)t (1 − t)2 + wi+1(1 − t)3.
(17)

After interchanging wi and wi+1, ui and ui+1, (17) becomes equivalent to (15).
Therefore, using similar analysis, for x ∈ Ii and εi = 1, choosing wi , wi+1 > 0 and
ui , ui+1 ≥ 0, we have

|Φ(x) − Pε(x)| ≤ h3i
96

‖Φ(3)‖∞ + hi
4

max
{|Φ ′(xi ) − di |, |Φ ′(xi+1) − di+1|

}

+ hi
2
√

wi+1wi + min{ui+1, ui }
[ 27

256
|ui+1(�i − di ) − wi+1(2�i − di − di+1)|

+ 1

16
|(wi − wi+1)(2�i − di − di+1) + ui (�i − di ) + ui+1(di+1 − �i )|

+ 27

256
|wi (2�i − di − di+1) + ui (di+1 − �i )|

]
.

(18)

Now, if the derivative parameters di ’s are chosen such that

d1 = �1 − h1
h1 + h2

(�2 − �1),

dN = �N−1 + hN−1

hN−1 + hN−2
(�N−1 − �N−2),

di = hi
hi−1 + hi

�i−1 + hi−1

hi−1 + hi
�i , i = 2, 3, . . . , N − 1,

(19)

then by using Peano kernel analysis, we can easily get following results:

Φ ′(x1) − d1 = 1

6
h1(h1 + h2)Φ

(3)(ζ1), di − Φ ′(xi ) = 1

6
hi−1hiΦ

(3)(ζi ),

Φ ′(xN ) − dN = 1

6
hN−1(hN−1 + hN−2)Φ

(3)(ζN ), �1 − d1 = 1

2
h1Φ

(2)(χ2),

�i − di = 1

2
hiΦ

(2)(χi ), di+1 − �i = 1

2
hiΦ

(2)(χi+1),

dN − �N−1 = 1

2
hN−1Φ

(2)(χN−1), 2�1 − d1 − d2 = 0,

dN−1 + dN − 2�N−1 = 0, di + di+1 − 2�i = 1

6
hi (hi−1 + hi + hi+1)Φ

(3)(χ∗
i ),

(20)
where ζ1 ∈ (x1, x3), ζi ∈ (xi−1, xi+1), ζN ∈ (xN−2, xN ), χi ∈ (xi−1, xi+1), i = 2,
3, . . . , N − 1 and χ∗

i ∈ (xi−1, xi+2), i = 2, 3, . . . , N − 2. Therefore, using (20) in
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(16) and (18), we have

|Φ(x) − Pε(x)| ≤ h3

96
‖Φ(3)‖∞ + h3

12
‖Φ(3)‖∞

+ h2

2wi∗ + ui∗

[ 43

256

(
u∗
i ‖Φ(2)‖∞ + hw∗

i ‖Φ(3)‖∞
)]

,

for x ∈ Ii and εi ∈ {0, 1}.
Now we summarize the above discussions in the following as a theorem:

Theorem 2 Let Φ ∈ C3(I ) be a data generating function such that Φ(xi ) = yi ,
i ∈ NN . For a fixed signature ε ∈ {0, 1}N−1, let Pε be the rational quartic spline
defined in (4). If for all i ∈ NN , we choose our shape control parameters such that
wi > 0, ui ≥ 0 and the derivative parameters as prescribed in (19), then

‖Φ − Pε‖∞ ≤ 9h3

96
‖Φ(3)‖∞ + h2

2w∗ + u∗

[ 43

256

(
u∗‖Φ(2)‖∞ + hw∗‖Φ(3)‖∞

)]
.

(21)

Now we will try to find the upper bound for the difference between RQS Pε

defined in (4) and RQS ZFIF Pα
ε defined in (13). If α �≡ 0, then Pε �= Pα

ε , and
the interpolants Pα

ε and Pε are the fixed points of T α defined in (8) with α �≡ 0 and
α(x) = (0, 0, . . . , 0) respectively.

For i ∈ NN−1 and x ∈ I ,

|Pα
ε (Li (x)) − Pε(Li (x))| = |T αPα

ε (Li (x)) − T 0Pε(Li (x))|
= |Pε(Li (x)) + αi (x)(P

α
ε (x) − Bi (x)) − Pε(Li (x))|

= |αi (x)(P
α
ε (x) − Bi (x))|

≤ ‖αi‖∞‖Pα
ε − Bi‖∞

≤ ‖αi‖∞‖Pα
ε − Pε‖∞ + ‖αi‖∞‖Pε − Bi‖∞

≤ ‖αi‖∞‖Pα
ε − Pε‖∞ + ‖αi‖∞(‖Pε‖∞ + B∗).

As for each i ∈ NN−1, the above inequality holds, hence

‖Pα
ε − Pε‖∞ ≤ ‖α‖∞‖Pα

ε − Pε‖∞ + ‖α‖∞(‖Pε‖∞ + B∗),

i.e.

‖Pα
ε − Pε‖∞ ≤ ‖α‖∞(‖Pε‖∞ + B∗)

1 − ‖α‖∞
. (22)

Now, let us deduce upper bounds for ‖Pε‖∞ and B∗. From (4), for i ∈ NN−1 and
x ∈ I ,

|Pε(Li (x))| ≤ max{|Pi (θ)| : 0 ≤ θ ≤ 1}
min{|Qi (θ)| : 0 ≤ θ ≤ 1} .
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Using inequalities (1 − θ)3θ ≤ 27
256 , (1 − θ)2θ2 ≤ 1

16 , (1 − θ)θ3 ≤ 27
256 , and (1 −

θ)4 + θ4 ≤ 1, we can easily deduce that

|Pi (θ)| ≤ w∗
i (max{|yi |, |yi+1|})

+ 27

128

[
(u∗

i + 2w∗
i )(max{|yi |, |yi+1|}) + w∗

i hi (max{|di |, |di+1|})
]

+ 1

8

[
(u∗

i + w∗
i )(max{|yi |, |yi+1|})

]
,

i.e. |Pi (θ)| ≤
(99
64

w∗ + 43

128
u∗

)
|y|∞ + w∗h|d|∞,

and
|Qi (θ)| ≥ wi (1 − θ)2 + ui (1 − θ)2θ + ui+1(1 − θ)θ2 + wi+1θ

2

≥ wi (1 − θ)2 + wi+1θ
2 ≥ 1

2
wi∗ ≥ 1

2
w∗.

Hence,

‖Pε‖∞ ≤ 2

(
99
64w

∗ + 43
128u

∗
)
|y|∞ + w∗h|d|∞

w∗
.

Similarly,

‖Bi‖∞ ≤ 2

(
99
64w

∗
i + 43

128u
∗
i

)
max{|y1|, |yN |} + w∗

i |I |(max{|d1|, |dN |})
w∗

i

.

Therefore,

B∗ ≤ 2

(
99
64w

∗ + 43
128u

∗
)
max{|y1|, |yN |} + w∗|I |(max{|d1|, |dN |})

w∗
.

Now we will present the main theorem of this section.

Theorem 3 Let Φ ∈ C3(I ) be a data generating function such that Φ(xi ) = yi , i ∈
NN . For a fixed signature ε ∈ {0, 1}N−1, let Pε be the rational quartic spline defined
in (4) and Pα

ε be the proposed rational quartic spline zipper fractal interpolation
function defined in (13). If for all i ∈ NN , we choose our shape control points such
that wi > 0, ui ≥ 0 and the derivative parameters as given in (19), then

‖Φ − Pα
ε ‖∞ ≤ 9h3

96
‖Φ(3)‖∞ + h2

2w∗ + u∗

[ 43

256

(
u∗‖Φ(2)‖∞ + hw∗‖Φ(3)‖∞

)]

+ ‖α‖∞(‖Pε‖∞ + B∗)
1 − ‖α‖∞

.

Proof We know that
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‖Φ − Pα
ε ‖∞ ≤ ‖Φ − Pε‖∞ + ‖Pα

ε − Pε‖∞. (23)

Therefore, using (21) and (22) in (23), we can easily get our desired result.

Remark 3 (i) If we choose ‖α‖1 < min{h2, h
2|I | }, then from Theorem 3, we can

deduce that our proposed zipper fractal interpolant Pα
ε converges to aC3-data gener-

ating function Φ with the order O(h2) as h → 0
on I .
(ii) If we choose ui = 0 for all i ∈ NN and ‖α‖1 < min{h3, h

2|I | }, then u∗ = 0, and
hence from Theorem 3 we can conclude that our proposed zipper fractal interpolant
Pα

ε converges to a C3-data generating function Φ with the order O(h3) as h → 0
on I .

4 Positivity-Preserving RQS ZFIFs

Many real-life problems like monthly rainfall amounts, the half-life of a radioactive
substance, probability distribution functions, speed of winds and the numbers of
covid-19 patients at different intervals of time are based on positivity. So, the problem
is to find a positive interpolant for a given positive data set. In this section, we are
going to construct positive RQS ZFIFs for the given positive data by restricting our
shape control parameters and variable scaling functions.

Theorem 4 Let {(xi , yi ) : i = 1, 2, . . . , N } be a given set of strictly positive data
with increasing abscissae. Suppose di ’s are chosen derivative values at the knots xi ’s.
For the fixed value of signature ε ∈ {0, 1}N−1, if the non-negative variable scaling
functions and shape control points are chosen as

‖αi‖1 <
|ai |
2

, ‖αi‖∞ < min
{ yi+εi

y1
,
yi+1−εi

yN

}
,

wi > 0, wi+1 > 0,

ui ≥ max
{
0,−wi

(
2 + h∗

i di+εi − αi (x)|I |d1
yi+εi − αi (x)y1

)}
,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi − αi (x)|I |dN
yi+1−εi − αi (x)yN

)}
, ∀x ∈ I, ∀i ∈ NN−1,

then the corresponding C1-rational quartic spline zipper fractal interpolation func-
tion Pα

ε defined in (13) will be strictly positive on I .

Proof Since ‖αi‖1 <
|ai |
2 , and αi , Pε, Bi ∈ C1(I ), therefore according to

Theorem 1 the proposed RQS ZFIF Pα
ε ∈ C1(I ), and it satisfies (13). We can rewrite

(13) as

Pα
ε (Li (x)) = αi (x)P

α
ε (x) + (Pε(Li (x)) − αi (x)Bi (x)), i ∈ NN−1, x ∈ I. (24)
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Equation (24) is equivalent to

Pα
ε (Li (x)) = αi (x)P

α
ε (x) + P∗∗

i (θ)

Qi (θ)
, P∗∗

i (θ) =
4∑

k=0

Bik(1 − θ)4−kθk ,

Bi0 = wi (yi+εi − αi (x)y1),

Bi1 = ui (yi+εi − αi (x)y1) + wi (2(yi+εi − αi (x)y1) + h∗
i di+εi − αi (x)|I |d1),

Bi2 = [(ui + wi )(yi+1−εi − αi (x)yN )] + [(ui+1 + wi+1)(yi+εi − αi (x)y1)],
Bi3 = ui+1(yi+1−εi − αi (x)yN ) + wi+1(2(yi+1−εi − αi (x)yN ) − h∗

i di+1−εi + αi (x)|I |dN ),

Bi4 = wi+1(yi+1−εi − αi (x)yN ).

(25)
After choosing wi > 0, wi+1 > 0, ui ≥ 0 and ui+1 ≥ 0, our cubic denomina-
tor Qi (θ) in (25) becomes strictly positive on I . Since Pα

ε is the attractor of
the zipper {H ; (Li (x) = ai x + bi , Fi (x, y) = αi (x)y + Pε(Li (x)) − αi (x)Bi (x)) :
i ∈ NN−1} and defined recursively by (25), therefore to show Pα

ε (x) > 0 on I ,
enough to prove that for all x ∈ I , Pα

ε (Li (x)) > 0 ∀i ∈ NN−1, whenever Pα
ε (x) > 0.

Now, let x ∈ I , Pα
ε (x) > 0, then choosing non-negative scaling functions we have

αi (x)Pα
ε (x) ≥ 0. Therefore, after these assumptions on the shape control parame-

ters and the variable scaling functions, the positivity of Pα
ε (Li (x)) reduces to the

positivity of P∗∗
i (θ), ∀θ ∈ [0, 1]. Now, if Bi j ≥ 0, ∀ j ∈ {0, 1, 2, 3, 4} and Bi j > 0

for j ∈ {0, 4}, then we have P∗∗
i (θ) > 0. Now,

wi > 0, and αi (x) <
yi+εi

y1
=⇒ Bi0 > 0,

ui > max
{
0,−wi

(
2 + h∗

i di+εi − αi (x)|I |d1
yi+εi − αi (x)y1

)}
, and αi (x) <

yi+εi

y1
=⇒ Bi1 ≥ 0,

ui + wi > 0, ui+1 + wi+1 > 0, and αi (x) <
{ yi+εi

y1
,
yi+1−εi

yN

}
=⇒ Bi2 > 0,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi − αi (x)|I |dN
yi+1−εi − αi (x)yN

)}
, and αi (x) <

yi+1−εi

yN
=⇒ Bi3 ≥ 0,

wi+1 > 0, and αi (x) <
yi+1−εi

yN
=⇒ Bi4 > 0.

Hence, coupling these above restrictions on the shape control parameters and the
scaling functions, we have the desired sufficient conditions for this theorem.

Remark 4 (i) For all i ∈ NN−1 and x ∈ I , if we choose αi (x) = 0 and εi = 0, then
Theorem 4 gives sufficient conditions on the shape control parameters such that
the RQS function R defined in [33] becomes positive for a given positive data set
{(xi , yi ) : i = 1, 2, . . . , N }.
(ii) Let the given data set be strictly positive and αi (x) = 0 for all x ∈ I and for all
i ∈ NN−1. If we choose our shape control parameters such that
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wi > 0, wi+1 > 0, ui ≥ max
{
0,−wi

(
2 + h∗

i di+εi

yi+εi

)}
,

ui+1 ≥ max
{
0,−wi+1

(
2 − h∗

i di+1−εi

yi+1−εi

)}
, ∀i ∈ NN−1.

(26)

Then, Theorem 4 instructs that our corresponding rational quartic spline Pε defined
in (4) satisfies Pε(x) > 0 for all x ∈ I .
(iii) For N (> 2) number of positive data points and the fixed non-zero variable
scaling functions, we can get total numbers of 2N−1 different C1-rational quartic
spline zipper fractal interpolation functions depending on the different values of
signature ε.

Example 1 In Theorem 4, we have provided sufficient conditions on the shape
control parameters and the variable scaling functions such that our corresponding
RQS ZFIF becomes positive on I , whenever our given data set is positive. It can
happen that if we do not choose our parameters as prescribed in Theorem 4, then our
corresponding RQS ZFIF Pα

ε may not be positive on I for a given positive data set,
but after restricting our shape control parameters and variable scaling functions as
prescribed in Theorem 4 our corresponding RQS ZFIF becomes positive on I .

Consider the positive data set {(0, 2,−1), (0.25, 0.6,−3), (0.5, 0.1, 2), (0.75,
0.4,−2), (1, 5, 6)}. For the fixed shape control parameters u = (1, 2, 3, 1, 1) and
w = (1, 0.2, 0.5, 1, 3), Figs. 1(a)-(f) are the plots of RQS ZFIFs generated with
scaling functions and signature {( x217 , ex

25 ,
ex

25 ,
−x
10 ), (1, 0, 1, 0)}, {( ex25 , x

60 ,
1

100 ,
ex

35 ),

(1, 0, 1, 0)}, {( ex25 , x
60 ,

1
100 ,

ex

35 ), (0, 0, 1, 0)}, {(0, 0, 0, 0), (0, 0, 0, 0)}, {(0, 0.01 +
x
120 , 0, 0), (0, 0, 0, 0)}, and {(0, 0, 0, 0), (1, 0, 0, 1)} respectively. For Fig. 1(a), we
do not restrict our scaling functions as recommended by Theorem 4, and the corre-
sponding RQS ZFIF is not positive on I = [0, 1]. But for the other plots, we have
restricted our shape control parameters and scaling functions as recommended by
Theorem 4 and hence the corresponding RQS ZFIFs are positive on I .

To see the effect of signature, we have plotted Fig. 1(b) and (c) with the same
parameters except for ε1, and we have turned up with very different RQS ZFIF on
I1 = [0, 0.25]. Fig. 1(d) is the plot of the classical rational quartic spline defined in
[33]. To see the effect of scaling functions, we have plotted Fig. 1(e) by changing
the scaling function α2 from the parameters used for Fig. 1(d). Fig. 1(f) is the plot
of RQS defined by us in (4) using the binary vector signature ε = (1, 0, 0, 1) and
we can see that the RQS defined by us and classical RQS defined in [33] are not the
same. Thus, the proposed method enlarge the class of rational quartic splines with
fixed shape parameters.



Positivity Preserving Rational Quartic Spline Zipper Fractal Interpolation Functions 549

Fig. 1 Positive RQS ZFIFs

5 Conclusions

Wehavederived anew typeofC1-rational quartic spline using the binary vector called
a signature. For the fixed shape control parameters, we can generate 2N−1 different
new C1-rational quartic spline interpolation functions using different signatures for
the N numbers of data points. Then, by using the fractal techniquewe have introduced
rational quartic spline zipper fractal interpolation functions. It has been shown that
for a data generating function Φ ∈ C3(I ), the proposed RQS ZFIF has the order of
convergence O(h2) as h → 0, and it can be increased to the next order of convergence
as the classical rational quartic spline defined in [33] under suitable assumptions
on the IFS parameters. We have derived sufficient conditions on the shape control
parameters and the variable scaling functions so that our RQS ZFIF (consequently,
the class of RQS) becomes positive for a given positive data set.
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Heptic Hermite Collocation on Finite
Elements

Zanele Mkhize, Nabendra Parumasur, and Pravin Singh

Abstract We present the solution of linear and nonlinear ordinary differential equa-
tions using collocation on finite elements. A heptic (septic) basis is derived and
its properties are discussed. The phenomenon of superconvergence at the nodes is
illustrated. An investigation of the global and nodal rates of convergence reveals
remarkable agreement with a theorem proved by Carl R. de Boor in 1973.

Keywords Heptic collocation · Superconvergence · Differential equations

1 Introduction

Orthogonal Collocation (OC) is an approximation method for solving differential
equations. It is similar to the Pseudospectral Method (PS) and is also referred to as
the Differential Quadrature Method (DQ). In contrast to finite difference methods,
the solution by OC is defined as a continuous or piecewise continuous function.

The collocation method is employed in two different ways, either globally or
locally. In the global collocation method, the method finds the solution for various
numbers of collocation points. In the local collocation method, the domain is divided
into equal-width subintervals called finite elements, and each element has a fixed
number of collocation points within its boundaries. The solutions are then computed
from the collocation points within each element.

The collocation method was introduced in the 1930s [1–4]. It was named the
interpolation method by Kantorovich [1]; Lanczos called it the method of selected
points [3] while Frazer et al. called it collocation [2]. From these three names, it can
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be inferred that the method interpolates the residual to zero at chosen points. The
most attractive feature of the method is that it is easier to implement, since it does
not require integration to determine the unknown coefficients.

The collocation might lead to the Runge phenomenon [5] because it is primarily
a residual interpolation method. Bert and Malik [6] provided several examples of
problems related to collocation with equal intervals.

Lanczos used Chebyshev polynomials for the basis functions and collocated at the
zeros of Chebyshev polynomials of the second kind. Wright [7] chose to collocate at
the zeros of Chebyshev polynomials of the first kind. The application of Chebyshev
roots was a great improvement because the Runge phenomenon does not occur.

Another advancement to themethodwas the usage ofGaussian or Lobatto quadra-
ture points by Villadsen and Stewart [8]. These are simply the roots of Jacobi polyno-
mials. They referred to this as Orthogonal Collocation. By constructing the method
with nodal values they further enhanced it. These adjustments gave rise to finite
difference-like methods.

The phenomenon of collocation method in the 1970s happens in three branches,
namely Orthogonal Collocation (OC), Pseudospectral (PS), and Differential Quadra-
ture (DQ). Villadsen and Stewart introduced the OC branch in their paper, and further
improvements to the method which outline collocation at Gauss, Radau, and Lobatto
points were mentioned in Villadsen [8], Finlayson [9], and Villadsen and Michelsen
[10]. It was proved that the numerical quadrature of the method of moments is equiv-
alent to collocation at Gauss points.

They further applied the method for problems symmetric about an axis, using
cylindrical, spherical, and planar coordinates. They exclusively used the nodal dif-
ferentiation matrices. Early papers indicated that the method compared favourably
with finite differences [11–14].

Orzagwas thefirst to start thePseudospectral thread [15]whichwas later improved
by Gottlieb and Orzag [16]. Although the pseudospectral method is similar to col-
location, it is seldom used to refer to approximations of integration in MWR. Orzag
solved periodic problems using trigonometric basis functions. His work includes col-
location at the zeros of Chebyshev polynomials of the second kind for non-periodic
first-order linear hyperbolic problems. He showed that collocation can accurately
approximate the Galerkin method. Here, he used Chebyshev trial functions and did
not consider nodal approximations. His main contribution was the application of fast
Fourier transforms (FFT) to perform calculations.

The Differential Quadrature Method thread was initially presented in Bellman
and Casti [17], Bellman et al. [18], and Bellman [19]. Here Bellman et al. introduced
the idea of a nodal differential matrix applied to first- and second-order differential
equations. Although the paper does not give much details with respect to boundary
condition treatment. The idea to apply a nodal differentiation matrix was not new,
it has been applied before. In Bellman et al. [18], Bellman proposed the method
of differentiation matrices based on collocation at Gauss points. In Nielson [20],
the formulas for the nodal differentiation matrix with arbitrary nodal locations were
introduced. The method was adopted for the solution of engineering problems.
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When one uses a global polynomial, the solution is represented by a single poly-
nomial on the domain. This approach is fairly accurate when low-order polynomials
can represent the solution.

Finite elementmethods can accurately represent complex geometries. The interest
in finite element methods erupted in the 1970s [21–23]. There was a huge interest
for other applications because of the initial success in structural mechanics. The idea
by Villadsen and Stewart of using quadrature points globally was extended to finite
elements.

Unlike the global method, a finite element method divides the domain into a
collection of subdomains, with a polynomial representation over each subdomain.
The two methods are identical when using a single element hence the finite element
method ismore general. The degree of continuity at the element boundaries is denoted
by Cn .

There are two alternatives to dealing with the continuity conditions at the bound-
ary of the elements. Firstly we could enforce the continuity of the trial functions
at the boundary of the elements. This also applies to the continuity of the deriva-
tives depending on the smoothness requirement. Alternatively, we could choose trial
functions like the Hermite polynomials which have built-in continuity. The latter
approach results in fewer unknowns to solve for. To a large extent the solution of
chemical engineering problems, namely two point boundary value problems have
been achieved by the Galerkin finite element method [24, 25] with far greater accu-
racy than the collocation method, though with slightly more numerical effort. For
the solution of reaction-diffusion models, see [26, 27].

C1 Collocation at Gauss Points This was described by de Boor and Swartz [28] and
Douglas and Dupont [29]. Carey and Finlayson [30] employed a Lagrange basis.

C0 Collocation at Lobatto Points This method based on Lobatto points is also used
in the finite element approach. One method is C0, which uses Lagrange basis func-
tions and called theHybrid-Collocation-Galerkinmethod [31–33]. Another approach
described in Gray [34], Young [35], Young [36], Hennart [37], and Leyk [38, 39]
uses a Lagrange basis and a simple Galerkin method with integration effected using
Lobatto quadrature. Young called this the Lobatto-Galerkin method. Gray and Hen-
nart only used quadratic trial functions with integration using Simpson’s rule. This
was referred to as the hp Spectral element in Maday and Patera [40], Canuto et al.
[41], Karniadakis and Sherwin [42], and Vosse and Minev [43].

Convergence Rate and Efficiency The approximate solution for orthogonal colloca-
tion and the finite element methods they approximate have the same convergence
and superconvergence rates. Finite element methods and collocation at Gauss points
require much less numerical effort than the contrasting Galerkin method when using
the same trial functions especially in several dimensions.
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2 Heptic Hermite Basis Functions

We seek a basis forP7, the vector space of polynomials of degree ≤ 7 on the interval
[xi , xi+1]. There are eight such functions and we denote them by Hk, k = 1, 2, ..., 8.
We further stipulate their function and derivative values at the end points xi and xi+1

as follows:

H (p)
k (xi ) = δk,p+1

h p
, H (p)

k (xi+1) = 0, H (p)
k+4(xi ) = 0, H (p)

k+4(xi+1) = δk,p+1

h p
, (1)

where k, p + 1 ∈ S = {1, 2, 3, 4} and δi, j is thewell-knownKronecker delta symbol.
It is convenient to transform to the variable z ∈ [0, 1] defined by

z = (x − xi )

(xi+1 − xi )
= (x − xi )

h
(2)

where h is the uniform interval length. As x varies from xi to xi+1, z varies from 0
to 1. The interpolatory conditions in (1) transform naturally in the variable z to

H (p)
k (0) = δk,p+1, H

(p)
k (1) = 0, H (p)

k+4(0) = 0, H (p)
k+4(1) = δk,p+1 k, p + 1 ∈ S.

These conditions enable the unique derivation of the Hk(z), k = 1, 2, ..., 8.The poly-
nomial H3(z) has a zero of multiplicity four at z = 1 and a zero of multiplicity two
at z = 0 and therefore has the form of H3(z) = (Az + B)z2(z − 1)4. The remain-
ing conditions H

′′
3 (0) = 1 and H

′′′
3 (0) = 0 are used to evaluate A and B. Using this

approach, the polynomials H1(z), H2(z), H3(z), and H4(z) are derived and displayed
in Eqs. (3)–(6).

H1(z) = (20z3 + 10z2 + 4z + 1)(z − 1)4 (3)

H2(z) = z(10z2 + 4z + 1)(z − 1)4 (4)

H3(z) = z2

2
(4z + 1)(z − 1)4 (5)

H4(z) = z3

6
(z − 1)4. (6)

By using symmetry/antisymmetry, one can show that

H5(z) = H1(1 − z) (7)

H6(z) = −H2(1 − z) (8)

H7(z) = H3(1 − z) (9)

H8(z) = −H4(1 − z). (10)
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From (7)–(10), we may write

H (p)
j+4(z) = (−1) j−1+pH (p)

j (1 − z), j = 1, 2, 3, 4. (11)

The uniqueness of the interpolatory conditions ensures that the polynomials Hi (z)
are independent. Consider p = 0, if Hj (z) is shifted to the (i + 1)st interval the
equation of the curve becomes Hj (z − 1). When evaluated at z = 1 we get Hj (0).
Now Hj+4(1) = (−1) j−1Hj (0) and for j = 1, 3 Hj+4(1) = Hj (0), also for j =
2, 4 we have Hj+4(1) = −Hj (0) = 0 = Hj (0). Similar relationships apply for the
derivatives of order up to three. Hence Hj+4(z) and its derivatives up to order three
are continuous at the element boundary with Hj (z) and its derivatives of order up
to three in the (i + 1)st interval. If we write H5(z)) = H1(−(z − 1)), then we note
that H5(z) is a reflection of H1(z) about the vertical axis together with a shift of one
unit to the right. H7(z) is similarly related to H3(z). Also, H6(z) may be interpreted
as H2(z) rotated by 180◦ anticlockwise and then shifted one unit to the right. H8(z)
is also related to H4(z) in a similar manner.

3 Collocation on Finite Elements

Consider solving a fourth-order linear ordinary differential equation in one spatial
variable, x , and on the domain [a, b]. Firstly, the domain [a, b] is divided into N
subintervals or elements of spacing h = b−a

N , by placing the dividing points or nodes
xi , i = 1, 2, ..., N + 1, as illustrated in Fig. 1. We shall refer to this discretization as
the mesh Δ.

Here x1 = a and xN+1 = b coincide with the left and right hand boundaries,
respectively. This differs from global orthogonal collocation where the domain is
not subdivided and instead higher order polynomials are used to achieve greater
accuracy. The ith element [xi , xi+1] is mapped to [0, 1] by using a transformation of
the form (2). We assume that the approximate solution in the ith element is given by

Ui (x) = Ui (z) =
8∑

k=1

C (i)
k Hi

k (z)

Fig. 1 Mesh points on the global domain
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and is represented in the (i + 1)st element by

Ui+1(x) = Ui+1(z) =
8∑

k=1

Ci+1
k Hi+1

k (z).

The continuity of the basis functions and their first three derivatives have some inter-
esting consequences on the coefficients of the solutions in the successive elements.
In order to obtain a smooth solution that is C3 continuous, we enforce the condition

Ui (xi+1) = Ui+1(xi+1),

which is equivalent, in the variable z, toUi (1) = Ui+1(0). This implies that Ci+1
1 =

Ci
5. The continuity of the derivative at xi+1 is equivalent to

dU

dz

(i)∣∣∣
z=1

= dU

dz

(i+1)∣∣∣
z=0

and this yields Ci+1
2 = Ci

6. Similarly, the continuity of the second derivative at xi+1

yieldsCi+1
3 = Ci

7 and that of the third derivative yieldsC
i+1
4 = Ci

8. Thus, the first four
coefficients in interval i + 1 are a repetition of the last four coefficients in interval i .
Thus, we can write the trial solution as

U (z) =
8∑

k=1

Ck+4(i−1)Hk(z), (12)

where we write Hk(z) for Hi
k (z) bearing in mind that Hk(z) is a function of i and we

have dropped the superscript i fromUi (z). With this labelling of the coefficients, we
are automatically ensuring that the solution and its first, second, and third derivatives
are continuous at the nodes.

Remark 1 Substituting z = 0 and z = 1 into (12), its derivative, its second and its
third derivative, we can show that U (xi ) = C4i−3, hU ′(xi ) = C4i−2, h2U ′′(xi ) =
C4i−1, and h3U ′′′(xi ) = C4i , i = 1, 2, ..., N + 1. Thus, every fourth coefficient
beginning from C1 is an approximation to the solution at the nodes. Similarly, every
fourth coefficient beginning from C2 scaled by h is an approximation to the deriva-
tive at the nodes. Likewise, every fourth coefficient beginning from C3 scaled by h2

represents an approximation to the second derivative at the nodes, and every fourth
coefficient beginning from C4 scaled by h3 represents an approximation to the third
derivative at the nodes.

Wefind itmore instructive to apply the error bounds derived in [28] and to illustrate
the numerical validity of the bounds in the present context on two examples. Consider
the fourth-order linear differential equation, defined on [a, b], which can be written
in the form Lu(x) = f (x), where the operator L = ∑4

k=0 ak(x)D
k and D denotes

the derivative operator.
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The following theorem establishes the order of convergence for very smooth
solutions [28].

Theorem 1 ([28]) Assume that the coefficients ai (x) of L satisfy ai (x) ∈ C8[a, b]
for all i and that u(x) ∈ C12[a, b]. If the collocation points are chosen as the Gauss
points, then there exists a constant c1 such that

|Dp(u −U )(x j )| � c1h
8, p = 0, 1, 2, 3 (13)

and a constant c2 such that

‖Dp(u −U )‖∞ � c2h
8−p, p = 0, 1, 2, 3, 4. (14)

Here, U (x) represents the collocation approximation of u(x). Similar error bounds
hold for nonlinear ODEs [28] and will be illustrated with an example below.

This effectively means that at the nodes the error of the collocation solution and
its derivatives of order up to three should be O(h8). Also, the infinity norm of the
error and its derivatives of order up to four should be O(h8−p).

4 Numerical Example

Example 1 Consider the fourth-order ODE

u(iv) − (10π)3u = (10π)3(10π − 1) sin(10πx) = f (x) (15)

with analytical solution u(x) = sin(10πx) and boundary conditions u(0) = 0 =
u(1) and u′(0) = 10π = u′(1)

We substitute the trial solution (12) into the differential equation (15) to obtain

8∑

k=1

[
H (iv)

k (z)/h4 − (10π)3Hk(z)
]
Ck+4(i−1) = f (xi + zh), i = 1, 2, ..., N . (16)

The boundary condition u(0) = U (0) = ∑8
k=1 CkHk(0) = 0 yields C1 = 0 while

the boundary condition u(1) = U (1) = ∑8
k=1 Ck+4(N−1)Hk(1) = 0 yields C4N+1 =

0. The boundary condition u′(0) = U ′(0) = 1
h

∑8
k=1 CkH ′

k(0) = 10π yields C2 =
10πh. Similarly, u′(1) = U ′(1) = 1

h

∑8
k=1 Ck+4(N−1)H ′

k(1) = 10π yields C4N+2 =
10πh.

There are 4N + 4 unknowns in Eq. (12). Given that we have two boundary con-
ditions on the left and two boundary conditions on the right, we thus require 4N
conditions in order to solve the problem uniquely. We choose four collocation points
denoted by s1, s2, s3, s4, in each interval. The s j are chosen as the zeros of the fourth
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degree Legendre polynomial, shifted to the interval [0, 1]. These have been shown
to be the optimal choice for the collocation points [28]. This optimal choice arises
due to the orthogonality property of the Legendre polynomials and hence the method
is called orthogonal collocation on finite elements (OCFE). The collocation points
are then substituted into Eq. (16) to give the remaining 4N linear equations. The
matrix-vector system, of size (4N + 4) × (4N + 4), has the form Aa = f , where A
has the form

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

. .

. .

. .

a11 a12 a13 a14 a15 a16 a17 a18
a21 a22 a23 a24 a25 a26 a27 a28
a31 a32 a33 a34 a35 a36 a37 a38
a41 a42 a43 a44 a45 a46 a47 a48

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

with

ai j = 1

h4
H (iv)

j (si ) + (10π)3Hj (si ), i = 1, 2, 3, 4; j = 1, 2, ..., 8, (18)

and f has the form

f j+4i−4 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10π)3(10π − 1) sin(10π(xi + s j h)), i = 1, ..., N , j = 1, 2, 3, 4

0, i = N + 1, j = 1, 3

10πh, i = N + 1, j = 2, 4.
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Fig. 2 Error plot with N = 20 for example 2.1

The non-zero blocks of matrix A are shifted four places to the right and account for
the repetition of the coefficients. The position of the ones accounts for the boundary
conditions. The sparse nature of the matrix and the repetitive pattern can easily be
exploited to solve the linear system efficiently with minimum CPU storage require-
ments.

After solving (17), the solution is constructed on each subinterval using the appro-
priate coefficients and can then be plotted.

Since there is very good agreement between the approximate solution and the
exact solution, we choose to show the error plot in Fig. 2 for N = 20. We point
out that in contrast to global collocation the numerical results are much more
acceptable.

We use the following technique to approximate the convergence order. If the
discrete error at the nodes x j is O(hn) then

∣∣Dp(u −U )(x j )
∣∣(h) = O

(
hn

)
(19)

and
∣∣Dp(u −U )(x j )

∣∣( h
2 ) = O

((
h

2

)n)
. (20)

By taking the ratio of (19)–(20), we obtain

α1 =
∣∣Dp(u −U )(x j )

∣∣(h)

∣∣Dp(u −U )(x j )
∣∣( h

2 )
≈ 2n (21)
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Table 1 Convergence order n(h) at nodes from (21)

xi p = 0 p = 1 p = 2 p = 3 xi p = 0 p = 1 p = 2 p = 3

0.05 8.3581 8.2630 8.3306 8.2909 0.55 8.7506 8.2487 8.7841 8.2493

0.10 8.3486 8.1682 8.3474 8.2273 0.60 8.3179 8.2433 8.3184 8.8037

0.15 8.3358 9.0963 8. 3618 8.0691 0.65 8.2625 8.4625 8.2502 8.4620

0.20 8.2448 8.2739 8.2377 8.3273 0.70 8.1744 8.7793 8.1824 8.4068

0.25 8.1592 8.3138 8.1167 8.3128 0.75 8.3788 8.2916 8.3458 8.2867

0.30 8.4366 8.5032 8.4341 8.2856 0.80 8.3677 8.2011 8.3593 8.2233

0.35 8.3041 8.1579 8.2915 8.1548 0.85 8.3613 7.8613 8.3673 6.4756

0.40 8.2843 7.9236 8.2846 7.5945 0.90 8.2783 8.2569 8.2282 8.3518

0.45 8.1588 8.3554 8.2455 8.3554 0.95 8.2408 8.2857 8.0558 8.3496

Table 2 Global convergence orders from (22)

p 0 1 2 3 4

n(h) 7.9596 6.8907 5.6224 4.6626 3.7390

from which the order of convergence n(h) ≈ ln(α1)

ln(2) . Similarly, we obtain

α2 =
∥∥Dp(u −U )(x)

∥∥(h)

∞∥∥Dp(u −U )(x)
∥∥( h

2 )

∞
≈ 2n. (22)

These results are summarized in Tables1 and 2. It is seen that the nodal order is
approximately 8, while the global order seems to satisfy (14). The error in the global
convergence order is attributed to the conditioning of the matrix for this problem as
well as the low value of N used. The pointwise error in the domain is least and of
order 8 only at the nodes, a phenomenon known as superconvergence.

Example 2 As a second example, we solve a nonlinear BVP.

u(iv)(x) + u′′′(x) + u′′(x) + u(x)u′(x) = f (x), −2 < x < 2, (23)

with exact solution u(x) = e−x2 .

The right-hand side f (x) and boundary conditions are extracted from the exact
solution. Clearly, the exact solution u(x) satisfies the hypothesis of Theorem (1)
and therefore we expect nodal and global errors of O(h8). If the global error∥∥Dp(u −U )(x)

∥∥N

∞ is O
(
h−n

)
then

α3 =
∥∥Dp(u −U )(x)

∥∥N

∞∥∥Dp(u −U )(x)
∥∥N+1

∞
≈

(
N + 1

N

)n

(24)
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Fig. 3 a Global error order. b Global error

and the global convergence order is given by

n ≈ ln α3

ln
(
N+1
N

) . (25)

We use Eq. (25) to estimate this order as it is computationally inefficient to use (22)
in this case. For a nonlinear problem, the nonlinear solver consumes much CPU
time as the number of equations increases. For example for N = 10, if we had used
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Table 3 Nodal order and error for N = 8

i xi n |(u −U )(xi )|
2 –1.5 8.218 9.73e-8

3 –1.0 11.257 3.75e-8

4 –0.5 8.463 1.32e-7

5 0.0 8.523 2.59e-7

6 0.5 8.929 2.85e-8

7 1.0 7.995 7.21e-8

8 1.5 8.671 6.68e-8

(22) then this will require solving additionally 84 (N = 20) nonlinear equations as
compared to 48 (N = 11) nonlinear equations.

In Fig. 3a, we plot the global order (p = 0) as a function of N for small values
of N . These orders seem to oscillate about the horizontal red line (N = 8). Those
below the line are attributed to numerical errors arising from the Julia nonlinear solver
nlsolve. For larger values of N , the actual global errors are illustrated in Fig. 3b and
agree remarkably with the theoretical bound of Theorem (1).

For (N = 8) the nodal orders using (21) as well as the nodal errors are tabulated
in Table3. Again this reinforces the validity of Theorem (1).
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A Computationally Efficient Sixth-Order
Method for Nonlinear Models

Janak Raj Sharma and Harmandeep Singh

Abstract The aim of the present study is to develop an iterative scheme of high con-
vergence order with minimal computational cost. With this objective, a three-step
method has been designed by utilizing only two Jacobian matrices, single matrix
inversion, and three function evaluations. Under some standard assumptions, the
proposed method is found to possess the sixth order of convergence. The iterative
schemes with these characteristics are hardly found in the literature. The analysis
is carried out to assess the computational efficiency of the proposed method, and
further, outcomes are compared with the efficiencies of existing ones. In addition,
numerical experiments are performed by applying the method to some practical non-
linear problems. The entire analysis remarkably favors the new technique compared
with existing counterparts in terms of computational efficiency, stability, and CPU
time elapsed during execution.

Keywords Nonlinear systems · Iterative techniques · Convergence order ·
Computational efficiency

1 Introduction

The systems of nonlinear equations arise by virtue of modeling the most of the physi-
cal processes or practical situations. The constructed models are generally expressed
in mathematical form as

F(x) = O, (1)

J. R. Sharma · H. Singh (B)
Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal,
Punjab 148106, India
e-mail: harman85pau@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. K. Sharma et al. (eds.), Frontiers in Industrial and Applied Mathematics,
Springer Proceedings in Mathematics & Statistics 410,
https://doi.org/10.1007/978-981-19-7272-0_39

567

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7272-0_39&domain=pdf
mailto:harman85pau@gmail.com
https://doi.org/10.1007/978-981-19-7272-0_39


568 J. R. Sharma and H. Singh

where O ∈ R
m represents the zero vector, F : Ω ⊆ R

m → R
m is a nonlinear map-

ping which is commonly represented as ( f1(x), f2(x), . . . , fm(x))T , x = (x1, . . . ,
xm)T ∈ Ω , and fi : R

m → R (i = 1, . . . , m) are nonlinear scalar functions.
Knowledge about the solution of the constructed nonlinear model plays an impor-

tant role in forecasting the future developments of the corresponding physical prob-
lem. But, as amatter of fact, obtaining the analytical solutions of nonlinear systems is
generally not feasible. To deal with this challenge, iterative methods [8, 13] offer the
numerical solution up to the desired precision. The working process of an iterative
method is based on the fixed point iteration theory, under which it locates the solu-
tion, x∗ ∈ Ω , of the given system (1), as a fixed point of a mapping φ : R

m → R
m ,

so that
x (k+1) = φ(x (k)), k = 0, 1, 2, . . . . ,

where, x (0) is the initial estimate to the solution, and the mapping φ is constrained
to satisfy some prescribed assumptions.

The most widely applied iterative procedure to find the solution to nonlinear
equations is Newton’s method

x (k+1) = φ(x (k)) = x (k) − F ′(x (k))−1F(x (k)), k = 0, 1, 2, . . . , (2)

where F(x) is continuously differentiable in some neighborhood of its solution, and
F ′(x) ∈ L(Rm, R

m) is a linear operator which is generally represented as a Jacobian

matrix
[

∂ fi

∂x j

]
m×m

. This method approximates the simple solution of (1) with the

quadratic rate of convergence. To improve the convergence rate of the method (2),
numerous iterative schemes have been presented in the literature (see [2, 4–6, 10–12,
14] and references therein). As it is evident that Newton’s scheme utilizes evaluation
of a function (F), a Jacobian matrix (F ′), and a matrix inversion (F ′−1) per iteration.
An attempt to increase the rate of convergence of an iterative method generally leads
to a technique that involves one or more additional evaluations per iteration than its
predecessor. For instance, the Potra and Pták method [9], having cubic convergence,
is one of the simplest improvements of themethod (2), which is expressed as follows:

y(k) = x (k) − F ′(x (k))−1F(x (k)),

x (k+1) = y(k) − F ′(x (k))−1F(y(k)). (3)

Clearly, the above-presented two-step scheme utilizes an additional function evalu-
ation over Newton’s method.

The practice of designing an iterative scheme, by utilizing additional evaluations,
accelerates the convergence order but it certainly increases the computational cost
per iteration in terms of mathematical operations. Optimizing the computational cost
with the improving convergence speed leads to the construction of computationally
efficient techniques. The measure of efficiency is formulated in [8, 13] to analyze
and further compare the efficiencies of iterative techniques. In addition, the necessary
parameters havebeen introduced in [11] for the thorough investigationof this concept.



A Computationally Efficient Sixth-Order Method for Nonlinear Models 569

Taking into account the above discussion, in the next section, we shall present a
simple and efficient iterative method showing the sixth order of convergence. The
computational efficiency of the developedmethod is determined, analyzed, and com-
pared with the efficiencies of existing methods in Sect. 3. Numerical performance is
investigated in Sect. 4, and concluding remarks are given in Sect. 5.

2 Development of Method

The primary objective here is to design an iterative scheme that improves the con-
vergence speed of the Potra and Pták method (3) without utilizing any additional
inverse operator. In what follows, we shall present a three-step iterative method
involving undetermined parameters, which are to be chosen in order to maximize the
convergence order. In view of this, we consider the iterative scheme of type,

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) − F ′(x (k))−1F(y(k)),

x (k+1) = z(k) − [
aI + F ′(x (k))−1F ′(y(k))(bI + cF ′(x (k))−1F ′(y(k)))

]

× F ′(x (k))−1F(z(k)) (4)

where a, b, and c are the parameters.
Before proceeding to the convergence analysis, a preliminary result (see [7]) is

stated below, which will be followed by the main theorem to show the sixth-order
convergence for scheme (4).

Lemma 1 Assume that the mapping F : Ω ⊆ R
m → R

m is n-times Fréchet differ-
entiable in a convex neighborhood Ω ∈ R

m, and let x, t ∈ Ω , then the following
expansion holds:

F(x + t) = F(x) + F ′(x)t + 1

2! F ′′(x)t2 + . . . + 1

(n − 1)! F (n−1)(x)tn−1 + Rn,

where t i = (t, i−t imes. . . . . ., t), F (i)(x) ∈ L(Rm× i−times. . . . . . ×R
m, R

m) for each i = 1, 2, . . .,
and

‖Rn‖ ≤ 1

n! sup
0<h<1

‖F (n)(x + ht)‖ ‖t‖n.

Theorem 1 Assume that a nonlinear mapping, F : Ω ⊆ R
m → R

m, is continuously
differentiable sufficient number of times in some neighborhood of its simple zero x∗,
contained in an open convex region Ω . Further, suppose that F ′(x) is non-singular
and continuous in that neighborhood, and the initial approximation x (0) is sufficiently
close to x∗. Then, the sequence of iterates generated by the method (4) converges to
x∗ with the sixth order of convergence, provided a = 7

2 , b = −4, and c = 3
2 .
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Proof Let e(k) = x (k) − x∗ be the error obtained at the kth iteration of (4). Then,
as a consequence of Lemma 1, and the fact that F(x∗) = O , Taylor expansions of
F(x (k)) and F ′(x (k)), about x∗, are developed as

F(x (k)) = F ′(x∗)[e(k) + A2e(k)2 + A3e(k)3 + A4e(k)4 + A5e(k)5 + A6e(k)6]
+ O(e(k)7), (5)

F ′(x (k)) = F ′(x∗)[I + 2A2e(k) + 3A3e(k)2 + 4A4e(k)3 + 5A5e(k)4 + 6A6e(k)5 ]
+ O(e(k)6), (6)

where e(k)i = (e(k), i−times. . . . . ., e(k)), and Ai = 1
i ! F ′(x∗)−1F (i)(x∗), i = 2, 3, . . . , and

consequently,

F ′(x (k))−1 = [I + B1e(k) + B2e(k)2 + B3e(k)3 + B4e(k)4 + B5e(k)5 ]F ′(x∗)−1 + O(e(k)6 ),

(7)
where B1 = −2A2, B2 = −3A3 + 4A2

2, B3 = −4A4 + 6A2A3 + 6A3A2 − 8A3
2, B4 = −5A5 +

8A2A4 + 9A2
3 + 8A4A2 − 12A2

2A3 − 12A2A3A2 − 12A3A2
2 + 16A4

2, and B5 = −6A6 + 10A2A5 +
12A3A4 + 12A4A3 + 10A5A2 − 16A2

2A4 − 18A2A2
3 − 16A2A4A2 − 18A3A2A3 − 18A2

3A2 −
16A4A2

2 + 24A3
2A3 + 24A2

2A3A2 + 24A2A3A2
2 + 24A3A3

2 − 32A5
2.

Denoting e(k)
y = y(k) − x∗ as the error at the first step of method (4), and using

Eqs. (5)–(7), we have that

e(k)
y = C1e(k)2 + C2e(k)3 + C3e(k)4 + C4e(k)5 + C5e(k)6 + O(e(k)7), (8)

where C1 = A2, C2 = 2(A3 − A2
2), C3 = 3A4 − 4A2 A3 − 3A3 A2 + 4A3

2, C4 = 4A5 − 6A2

A4 − 6A2
3 − 4A4 A2 + 8A2

2 A3 + 6A2 A3 A2 + 6A3 A2
2 − 8A4

2, and C5 = 5A6 − 8A2 A59A3 A4 −
8A4 A3 − 5A5 A2 + 12A2

2 A4 + 12A2 A2
3 + 8A2 A4 A2 + 12A3 A2 A3 + 9A2

3 A2 + 8A4 A2
2 − 16A3

2

A3 − 12A2
2 A3 A2 − 12A2 A3 A2

2 − 12A3 A3
2 + 16A5

2.

Using the expression (8), Taylor developments of F(y(k)) and F ′(y(k)), about x∗,
is given by

F(y(k)) = F ′(x∗)[K1e
(k)2 + K2e(k)3 + K3e(k)4 + K4e(k)5 + K5e(k)6 ] + O(e(k)7),

(9)

F ′(y(k)) = F ′(x∗)[I + L1e(k)2 + L2e(k)3 + L3e(k)4 + L4e(k)5 ] + O(e(k)6), (10)

where K1 = A2, K2 = 2(A3 − A2
2), K3 = 3A4 − 4A2A3 − 3A3A2 + 5A3

2, K4 = 4A5 − 6A2A4 −
6A2

3 − 4A4A2 + 10A2
2A3 + 8A2A3A2 + 6A3A2

2 − 12A4
2, K5 = 5A6 − 8A2A5 − 9A3A4 − 8A4

A3 − 5A5A2 + 15A2
2A4 + 16A2A2

3 + 11A2A4A2 + 12A3A2A3 + 9A2
3A2 + 8A4A2

2 − 24A3
2A3 −

19A2
2A3A2 − 19A2A3A2

2 − 11A3A3
2 + 28A5

2, L1 = 2A2
2, L2 = 4(A2A3 − A3

2), L3 = 6A2A4 −
8A2

2A3 − 6A2A3A2 + 3A3A2
2 + 8A4

2, and L4 = 8A2A5 − 12A2
2A4 − 12A2A2

3 − 8A2A4A2 +
6A3A2A3 + 6A2

3A2 + 16A3
2A3 + 12A2

2A3A2 + 12A2A3A2
2 − 12A3A3

2 − 16A5
2.

Let us denote e(k)
z = z(k) − x∗, then using Eqs. (7)–(9), the second step of method

(4) yields
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e(k)
z = M1e(k)3 + M2e(k)4 + M3e

(k)5 + M4e(k)6 + O(e(k)7), (11)

where M1 = 2A2
2, M2 = 4A2 A3 + 3A3 A2 − 9A3

2, M3 = 6A2 A4 + 6A2
3 + 4A4 A2 −

18A2
2 A3 − 14A2 A3 A2 − 12A3 A2

2 + 30A4
2, and M4 = 8A2 A5 + 9A3 A4 + 8A4 A3 +

5A5 A2 − 27A2
2 A4 − 28A2 A2

3 − 19A2 A4 A2 − 24A3 A2 A3 − 18A2
3 A2 − 16A4 A2

2 + 60A3
2 A3 +

47A2
2 A3 A2 + 43A2 A3 A2

2 + 38A3 A3
2 − 88A5

2.

Taylor expansion of F(z(k)), using Eq. (11), is established as

F(z(k)) = F ′(x∗)[P1e(k)3 + P2e(k)4 + P3e(k)5 + P4e(k)6 ] + O(e(k)7), (12)

where P1 = 2A2
2, P2 = 4A2 A3 + 3A3 A2 − 9A3

2, P3 = 6A2 A4 + 6A2
3 + 4A4 A2 − 18A2

2 A3 −
14A2 A3 A2 − 12A3 A2

2 + 30A4
2, and P4 = 8A2 A5 + 9A3 A4 + 8A4 A3 + 5A5 A2 − 27A2

2 A4 −
28A2 A2

3 − 19A2 A4 A2 − 24A3 A2 A3 − 18A2
3 A2 − 16A4 A2

2 + 60A3
2 A3 + 47A2

2 A3 A2 +
43A2 A3 A2

2 + 38A3 A3
2 − 84A5

2.

Consequently, the error equation at the (k + 1)th iteration is derivedby substituting
the expressions of (7), (10), (11), and (12) in the final step of method (4), which is
given by the expression

e(k+1) = x (k+1) − x∗ = Q1e
(k)3 + Q2e(k)4 + Q3e

(k)5 + Q4e(k)6 + O(e(k)7), (13)

where Q1 = 2(1 − a − b − c)A2
2, Q2 = (1 − a − b − c)(4A2 A3 + 3A3 A2) − (9 − 13a −

17b − 21c)A3
2, Q3 = (1 − a − b − c)(6A2 A4 + 6A2

3 + 4A4 A2) − 2(9 − 13a − 17b −
21c)A2

2 A3 − 2(7 − 10a − 13b − 16c)A2 A3A2 − 6(2 − 3a − 4b − 5c)A3A2
2 + 2(15 − 28a −

47b − 70c)A4
2, and the expression of Q4, being lengthy, is not shown explicitly here.

Ultimately, there should be an optimum selection of parameters’ values so as to
achieve the maximum possible convergence speed for the proposed scheme. In that
sense, if we choose a = 7

2 , b = −4, and c = 3
2 , then the coefficients Q1, Q2, and Q3

in Eq. (13) vanish. Further, the error equation is reduced to

e(k+1) = 2(A2 A3A2
2 − 3A3A3

2 + 18A5
2)e

(k)6 + O(e(k)7).

Hence, the sixth order of convergence is proved for the iterative method (4). �

The proposed sixth-order iterative method is finally presented below.

y(k) = x(k) − F ′(x(k))−1F(x(k)),

z(k) = y(k) − F ′(x(k))−1F(y(k)),

x(k+1) = z(k) −
[
7

2
I − 4F ′(x(k))−1F ′(y(k)) + 3

2

(
F ′(x(k))−1F ′(y(k))

)2]

× F ′(x(k))−1F(z(k)). (14)
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Clearly, the proposed method utilizes three function evaluations, two Jacobian
matrices, and one Jacobian inversion per iteration. For the further reference in this
study, the technique (14) is denoted as φ1.

3 Computational Efficiency

Solving nonlinear systems using iterative procedures involves a significantly large
number of mathematical calculations or operations. Apart from achieving the high
convergence order, an iterative algorithm shall also be evaluated on the basis of its
computational aspects. The term computational efficiency relates to the investigation
of algorithmic characteristics that how much computing resources it utilizes during
its implementation. In what follows, the concept of computational efficiency shall be
investigated thoroughly, and further, the analysis shall be carried out in this context
for the comparison of the new iterative method with the existing counterparts.

For locating the solution of a nonlinear system using an iterative method, initially,
an approximation is selected in the neighborhood of the solution. Then, the iterative
process is terminated using a specific criterion, which is generally prescribed as

||x (k) − x∗|| ≤ ε = 10−d ,

where ‘k’ is the iteration index, ‘ε’ is the desired precision, and ‘d’ is the number
of significant decimal digits of the obtained approximation. To estimate the num-
ber of iterations which are required to achieve the desired accuracy, it is assumed
that ||x (0) − x∗|| ≈ 10−1. Then, after the ‘k’ number of iterative steps, we have
the approximation: 10−d ≈ 10−rk

, and that simply provides the required estimation
k ≈ log d/ log r , where r is the convergence order. Further, let the computational cost
per iteration be represented by ‘C’, then the completed iterative process constitutes
the total computational cost which is equal to ‘kC’. The measure of computational
efficiency, conventionally known as the efficiency index, is formulated in various
manners in the literature. Ostrowski in [8] and Traub in [13] have independently pro-
vided this measure in different ways. But, defined in any way, the efficiency index
always indicates reciprocal relation with the cost of computation. Therefore, taking
into consideration the reciprocal relationship, the efficiency index be evaluated as

E = 1

kC
= 1

log d

log r

C
. (15)

Consider am-dimensional function, F : R
m → R

m , F(x) = ( f1(x), ..., fm(x))T ,
where x = (x1, x2, ..., xm)T , then the estimation of computational cost per iteration
is given by the formulation,

C(m, η0, η1,μ) = N0(m)η0 + N1(m)η1 + N (m,μ), (16)



A Computationally Efficient Sixth-Order Method for Nonlinear Models 573

where N0(m) and N1(m) represent the number of evaluations of scalar functions in
the computation of F and F ′, respectively, and N (m,μ) stands for the number of
product or quotient evaluations per iteration. The ratios η0 > 0 and η1 > 0, which
interrelate the costs of products and functional evaluations, and a ratio μ > 1, inter-
relating costs of products and quotients, are the necessary parameters in order to
express C(m, η0, η1,μ) in terms of product units. Let us note that evaluations of m
and m2 scalar functions are required, respectively, to compute a function F and a
derivative F ′. Additionally, to compute an inverse linear operator, and eventually
to evaluate F ′−1F , the technique of LU decomposition is employed that involves
m(m − 1)(2m − 1)/6 products and m(m − 1)/2 quotients, which is followed by
the resolution of two triangular linear systems requiring m(m − 1) products and m
quotients. Further, m products for scalar-vector multiplication and m2 products for
matrix-vector multiplication must be taken into account.

With the purpose to analyze and compare the efficiency of the developed method,
we have included the existing sixth-order methods developed by Bahl et al. [2],
Cordero et al. [4], Esmaeili and Ahmadi [5], Lofti et al. [6], Soleymani et al. [12],
and Wang et al. [14]. For the ready reference, these methods are expressed below,
which are denoted by φi , where i = 2, 3, . . . , 7.

Method by Bahl et al. (φ2):

y(k) = x(k) − 2

3
F ′(x(k))−1F(x(k)),

z(k) = x(k) −
[

I + 3

4
[I − F ′(x(k))−1F ′(y(k))] + 9

8
[I − F ′(x(k))−1F ′(y(k))]2

]

× F ′(x(k))−1F(x(k)),

x(k+1) = z(k) − 2[3F ′(y(k)) − F ′(x(k))]−1F(z(k)).

Method by Cordero et al. (φ3):

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) − F ′(x (k))−1[2I − F ′(y(k))F ′(x (k))−1]F(y(k)),

x (k+1) = z(k) − F ′(y(k))−1F(z(k)).

Method by Esmaeili and Ahmadi (φ4):

y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = y(k) + 1

3

[
F ′(x (k))−1 + 2[F ′(x (k)) − 3F ′(y(k))]−1

]
F(x (k)),

x (k+1) = z(k) + 1

3

[ − F ′(x (k))−1 + 4[F ′(x (k)) − 3F ′(y(k))]−1
]
F(z(k)).

Method by Lofti et al. (φ5):
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y(k) = x (k) − F ′(x (k))−1F(x (k)),

z(k) = x (k) − 2[F ′(x (k)) + F ′(y(k))]−1F(x (k)),

x (k+1) = z(k) −
[
7

2
I − 4F ′(x (k))−1F ′(y(k)) + 3

2
(F ′(x (k))−1F ′(y(k)))2

]

× F ′(x (k))−1F(z(k)).

Method by Soleymani et al. (φ6):

y(k) = x(k) − 2

3
F ′(x(k))−1F(x(k)),

z(k) = x(k) − 1

2
[3F ′(y(k)) − F ′(x(k))]−1[3F ′(y(k)) + F ′(x(k))]F ′(x(k))−1F(x(k)),

x(k+1) = z(k) −
[
1

2
[3F ′(y(k)) − F ′(x(k))]−1[3F ′(y(k)) + F ′(x(k))]

]2

× F ′(x(k))−1F(z(k)).

Method by Wang et al. (φ7):

y(k) = x (k) − 2

3
F ′(x (k))−1F(x (k)),

z(k) = x (k) − [6F ′(y(k)) − 2F ′(x (k))]−1[3F ′(y(k)) + F ′(x (k))]F ′(x (k))−1F(x (k)),

x (k+1) = z(k) − 1

2
[3F ′(y(k))−1 − F ′(x (k))−1]F(z(k)).

Denoting the computational costs and the efficiency indices, respectively, by Ci

and Ei , i = 1, 2, . . . , 7, and then taking into account the mathematical operations
or computations described above, the computational costs and the corresponding
efficiency indices are expressed as follows:

C1 = 3mη0 + 2m2η1 + m

6
(2m2 + 39m − 11 + 3μ(9 + m)) and E1 = 1

D

log 6

C1
.

C2 = 2mη0 + 2m2η1 + m

3
(2m2 + 18m + 4 + 3μ(3 + m)) and E2 = 1

D

log 6

C2
.

C3 = 3mη0 + 2m2η1 + m

3
(2m2 + 12m − 8 + 3μ(3 + m)) and E3 = 1

D

log 6

C3
.

C4 = 2mη0 + 2m2η1 + m

3
(2m2 + 12m + 1 + 3μ(3 + m)) and E4 = 1

D

log 6

C4
.

C5 = 2mη0 + 2m2η1 + m

3
(2m2 + 18m − 2 + 3μ(4 + m)) and E5 = 1

D

log 6

C5
.

C6 = 2mη0 + 2m2η1 + m

3
(2m2 + 24m − 5 + 3μ(4 + m)) and E6 = 1

D

log 6

C6
.
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C7 = 2mη0 + 2m2η1 + m

2
(2m2 + 9m + 1 + μ(5 + 3m)) and E7 = 1

D

log 6

C7
.

Here D = log d.

3.1 Comparison of Efficiencies

Consider a ratio, for the comparison of iterative methods, say φi versus φ j , which is
defined as

Π i
j = Ei

E j
= C j log(ri )

Ci log(r j )
, (17)

where ri and r j , respectively, are the orders of convergence of the methods φi and φ j .
Clearly, if Π i

j > 1 holds, then φi will be more efficient than φ j , and we symbolize
it as φi � φ j . The proposed method, φ1, shall be compared analytically as well as
geometrically with the existing methods, φi (i = 2, 3, . . . , 7), which are already
presented above. The analytical way of comparison is the resolution of inequality
Π1

i > 1 for each i = 2, 3, . . . , 7, and the results obtained are presented geometrically
by projecting the boundary lines Π1

i = 1, in (η1, η0)-plane, corresponding to the
special cases of m = 5, 10, 25, and 50, and fixing μ = 3 in each case. Let us note
here that each line will divide the plane into two parts, where φ1 � φi on one side,
whereas φi � φ1 on the other.

In view of the above discussion, we now present the comparison analysis through
the following theorem:

Theorem 2 For all η0 > 0, η1 > 0, and μ > 1, we have that

(i) E1 > E2, for η0 < 1
6 (2m2 − 3m + 19 + 3μ(m − 3)).

(ii) E1 > E3 for m ≥ 7, and E1 < E3 for m = 2, 3, but otherwise comparison
depends on value of μ.

(iii) E1 > E4, for η0 < 1
6 (2m2 − 15m + 13 + 3μ(m − 3)).

(iv) E1 > E5, for η0 < 1
6 (2m2 − 3m + 7 + 3μ(m − 1)).

(v) E1 > E6, for η0 < 1
6 (2m2 + 9m + 1 + 3μ(m − 1)).

(vi) E1 > E7, for η0 < 1
3 (2m2 − 6m + 7 + 3μ(m − 2)).

Proof φ1 versus φ2 case:
The ratio in this case is

Π1
2 = 2mη0 + 2m2η1 + m

3 (2m2 + 18m + 4 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

By resolving of the inequality Π1
2 > 1, it is straightforward to deduce that η0 <

1
6 (2m2 − 3m + 19 + 3μ(m − 3)), which concludes (i). The boundary linesΠ1

2 = 1,
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Fig. 1 Boundary lines for
comparison of φ1 and φ2

in (η1, η0)-plane, are displayed in Fig. 1, whereφ1 � φ2 in the sectionwhich is below
the line for each particular case of m.
φ1 versus φ3 case:

The ratio in this case is

Π1
3 = 3mη0 + 2m2η1 + m

3 (2m2 + 12m − 8 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

It is easy to verify that, for η0 > 0, η1 > 0, and μ > 1, the inequality Π1
3 > 1 holds

form ≥ 7, andΠ1
3 < 1 holds only form = 2, 3. For 4 ≤ m ≤ 6, the inequalityΠ1

3 >

1 holds when μ > 2m2−15m−5
9−3m , and this eventually proves (ii). So, we conclude here

thatφ1 � φ3 for allm ≥ 7,whereasφ1 � φ3 form = 2, 3, but otherwise, comparison
depends on the value of μ.
φ1 versus φ4 case:

The ratio in this case is

Π1
4 = 2mη0 + 2m2η1 + m

3 (2m2 + 12m + 1 + 3μ(3 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

Resolution of the inequality Π1
4 > 1 results into η0 < 1

6 (2m2 − 15m + 13 + 3μ
(m − 3)), which concludes (iii). The boundary lines for this comparison, in (η1, η0)-
plane, are shown in Fig. 2, where φ1 � φ4 on the lower region of line for each case
of m.
φ1 versus φ5 case:

The ratio in this case is

Π1
5 = 2mη0 + 2m2η1 + m

3 (2m2 + 18m − 2 + 3μ(4 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.
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Fig. 2 Boundary lines for
comparison of φ1 and φ4

The inequality Π1
5 > 1 simply resolves into relation η0 < 1

6 (2m2 − 3m + 7 +
3μ(m − 1)), and this proves (iv). In this comparison, the boundary lines are dis-
played in Fig. 3, where φ1 � φ5 holds on the lower section of line for each particular
case.
φ1 versus φ6 case:

The ratio in this case is

Π1
6 = 2mη0 + 2m2η1 + m

3 (2m2 + 24m − 5 + 3μ(4 + m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

It is straightforward to establish the relation η0 < 1
6 (2m2 + 9m + 1 + 3μ(m − 1))

by resolving Π1
6 > 1, which eventually proves (v). The boundary lines, in this case,

are presented in Fig. 4 with φ1 � φ6 on the lower side of each line.
φ1 versus φ7 case:

The ratio in this case is

Π1
7 = 2mη0 + 2m2η1 + m

2 (2m2 + 9m + 1 + μ(5 + 3m))

3mη0 + 2m2η1 + m
6 (2m2 + 39m − 11 + 3μ(9 + m))

.

Resolution of the inequality Π1
7 > 1 results into the relation η0 < 1

3 (2m2 − 6m +
7 + 3μ(m − 2)). This concludes (vi), and the boundary lines for this case are shown
in Fig. 5, where φ1 � φ7 in the region which is below each boundary line. �

From the above comparison analysis, it can be clearly observed that the proposed
iterative method shows an increase in the efficiency index with the increasing values
ofm. We conclude this section with a note that, as large as the system is, the proposed
sixth-order method exhibits superiority over the existing methods in the subject of
computational efficiency.
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Fig. 3 Boundary lines for
comparison of φ1 and φ5

Fig. 4 Boundary lines for
comparison of φ1 and φ6

Fig. 5 Boundary lines for
comparison of φ1 and φ7
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Table 1 CPU time and computational cost for the execution of elementary operations

Functions x ∗ y x/y
√

x ex log(x) sin(x) cos(x) arctan(x)

CPU
time

0.0172 0.0484 0.0234 1.5562 1.3469 1.6938 1.6896 2.9797

Cost 1 2.81 1.36 90.48 78.31 98.48 98.23 173.24

Here x = √
3 − 1 and y = √

5 (with 4096 digits of accuracy)

4 Numerical Experimentation

In this section, the numerical experimentation shall be executed to assess the perfor-
mance of the developedmethod. The nonlinear problems arising in different physical
situations have been selected for this purpose. Moreover, to arrive at some valid con-
clusion, the outcomes of this testing need to be analyzed and further compared with
the corresponding results of the existing methods. Two of the most significant factors
which contribute toward the numerical performance of an iterative technique are (i)
Stability and (ii) CPU time elapsed during its execution on the digital platform. Let
us note that all the numerical computations, in our case, are being executed using the
software Mathematica [15] installed on the computer equipped with specifications:
Intel(R) Core (TM) i5-9300H processor and Windows 10 operating system.

In what follows, the comparison analysis shall be illustrated by locating the solu-
tions of nonlinear problems, and for the termination of iterations, the stopping crite-
rion being employed is described as follows:

‖x (k) − x (k−1)‖ + ‖F(x (k))‖ < 10−100.

In addition, the approximated computational order of convergence (ACOC) is
required to validate the convergence order established by analytical means, which is
computed by the formula (see [5]),

ACOC = ln
(‖x (k) − x (k−1)‖/‖x (k−1) − x (k−2)‖)

ln
(‖x (k−1) − x (k−2)‖/‖x (k−2) − x (k−3)‖) .

To make connection between the computational efficiency and the performance
of technique, it is necessary to estimate the parameters, η0, η1, and μ, as defined in
Sect. 3. These parameters are essential to express the mathematical operations and
functional evaluations in terms of product units. In order to achieve this, Table1
displays the CPU time elapsed during the execution of elementary mathematical
operations and their estimated cost of computation in units of products. Note that the
estimated cost of division is approximately thrice the cost of the product.

Now, we consider the following nonlinear problems to demonstrate the perfor-
mance analysis and display results in respect of the following: (i) Number of itera-
tions (k), (ii) ACOC, (iii) Computational cost (Ci ), (iv) Efficiency index (Ei ), and
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Table 2 Comparison of performance of methods for Problem 1

Method k ACOC Ci Ei CPU time

φ1 4 5.993 145.58 1230.77 0.0260

φ2 4 5.996 152.58 1174.31 0.0313

φ3 4 5.996 129.58 1382.74 0.0363

φ4 4 5.989 131.58 1361.73 0.0417

φ5 4 5.994 155.01 1155.90 0.0310

φ6 4 5.999 170.01 1053.91 0.0363

φ7 4 5.996 154.01 1163.40 0.0467

(v) Elapsed CPU time (in seconds). To illustrate the efficiency indices of techniques,
we have conveniently chosen D = 10−5 for each of the problems.

Problem 1 Starting with the system of three nonlinear equations:

x2 + y2 + z2 = 1,

2x2 + y2 + 4z = 0,

3x2 − 4y2 + z2 = 0,

the initial estimate is taken as
(− 3

2 ,− 3
2 ,− 3

2

)T
to locate the particular solution,

x∗ = (−0.6982...,−0.6285...,−0.3425...)T .

For this particular problem, the parameters used in the equation (16) are estimated
as (m, η0, η1,μ) = (3, 2.33, 0.67, 2.81). Numerical results for the comparison are
displayed in Table2.

Problem 2 Consider the nonlinear integral equation (see [1]),

u(t) = 7

8
t + 1

2

∫ 1

0
t s u(s)2ds, (18)

where t ∈ [0, 1], and u ∈ C[0, 1], with C[0, 1] being a space of all continuous func-
tions defined on the interval [0, 1].

The given integral equation can be transformed into a finite-dimensional problem
by partitioning the given interval [0, 1] uniformly as follows:

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti = t0 + ih, (i = 1, 2, . . . , k − 1),

where h = 1/k is the sub-interval length. Approximating the integral, appearing in
the equation (18), using the trapezoidal rule of integration, and denoting u(ti ) = ui

for each i , we obtain the system of nonlinear equations as
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Fig. 6 Graphical comparison of exact and numerical solution of Problem 2

Table 3 Comparison of performance of methods for Problem 2

Method k ACOC Ci Ei CPU time

φ1 3 6.000 1521.95 117.73 0.141

φ2 3 6.000 1905.30 94.04 0.188

φ3 3 6.000 1695.30 105.69 0.177

φ4 3 6.000 1695.30 105.69 0.162

φ5 3 6.000 1913.40 93.64 0.187

φ6 3 6.000 2103.40 85.18 0.203

φ7 3 6.000 2206.75 81.19 0.235

7

8
ti − ui + hti

2

⎛
⎝1

2
u2

k +
k−1∑
j=1

s j u
2
j

⎞
⎠ = 0, (i = 1, 2, . . . , k), (19)

where ti = si = i/k for each i .
We solve this problem in particular by taking k = 10. Setting the initial approxi-

mation as ( 12 ,
10· · · · · ·, 1

2 )
T , the approximate numerical solution of the reduced system

(19) is obtained as,

x∗ = (0.1001..., 0.2003...,0.3004..., 0.4006..., 0.5008..., 0.6009...,

0.7011..., 0.8013..., 0.9014..., 1.0016...)T .

The numerical solution, so obtained, is compared graphically with the exact solu-
tion in Fig. 6, and further, numerical results are depicted in Table3. Moreover, the
parameters of Eq. (16) are estimated as (m, η0, η1,μ) = (10, 3, 1, 2.81).
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Table 4 Comparison of performance of methods for Problem 3

Method k ACOC Ci Ei CPU time

φ1 4 6.000 6.27E+04 2.86 1.385

φ2 4 6.000 1.06E+05 1.68 2.401

φ3 4 6.000 1.01E+05 1.77 2.271

φ4 4 6.000 1.01E+05 1.77 2.327

φ5 4 6.000 1.06E+05 1.68 2.344

φ6 4 6.000 1.11E+05 1.61 2.250

φ7 4 6.000 1.48E+05 1.21 3.344

Problem 3 Consider the boundary value problem (see [3]), which models the finite
deflections of an elastic string under the transverse load, and it is presented as follows:

u′′(t) + a2(u′(t))2 + 1 = 0, u(0) = 0, u(1) = 0, (20)

where ‘a’ is a parameter. The exact solution of the given problem is u(t) =
1
a2 ln

(
cos(a(t−1/2))

cos(a/2)

)
. We intend to remodel the problem (20) into a finite-dimensional

problem by considering the partition of [0, 1], with equal sub-interval length h =
1/k, as

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1, where ti = t0 + ih, (i = 1, 2, . . . , k − 1).

Denoting u(ti ) = ui for each i = 1, 2, . . . , k − 1, and approximating the deriva-
tives involved in (20) by the second-order divided differences,

u′
i = ui+1 − ui−1

2h
, and u′′

i = ui+1 − 2ui + ui−1

h2
,

the system of k − 1 nonlinear equations in k − 1 variables is obtained as

ui−1 − 2ui + ui+1 + a2

4
(ui+1 − ui−1)

2 + h2 = 0, (i = 1, 2, . . . , k − 1),

where u0 = 0 and uk = 0 are the transformed boundary conditions. In particular, set-
ting k = 51, the above system reduces to 50 nonlinear equations. Further, choosing

a = 2, and selecting the initial approximation as (−1,
50· · · · · ·,−1)T , the approxi-

mate numerical solution so obtained, along with the exact solution, is plotted in
Fig. 7. Further, the numerical performance of the methods is displayed in Table4.
The estimated values of parameters, used in Eq. (16), are given as (m, η0, η1,μ) =
(50, 2, 0.078, 2.81).
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Fig. 7 Graphical comparison of exact and numerical solution of Problem 3

Table 5 Comparison of performance of methods for Problem 4

Method k ACOC Ci Ei CPU time

φ1 5 6.000 4.67E+05 0.384 45.53

φ2 5 6.000 7.92E+05 0.226 74.14

φ3 5 6.000 7.89E+05 0.227 75.09

φ4 5 6.000 7.72E+05 0.232 72.88

φ5 5 6.000 7.92E+05 0.226 74.36

φ6 5 6.000 8.12E+05 0.221 75.73

φ7 5 6.000 1.12E+06 0.159 105.05

Problem 4 Now let us take a system of nonlinear equations as follows:

tan−1(xi ) − 1 + 2

⎛
⎝

m∑
j=1, j �=i

x2
j

⎞
⎠ = 0, i = 1, 2, ..., m.

By taking m = 100, we select the initial approximation (1,
100· · · · · ·, 1)T to obtain the

particular solution,

x∗ = (0.06859...,
100· · · · · ·, 0.06859...)T .

The estimated values of the parameters in this problem are (m, η0, η1,μ) = (100,
175.24, 0.048, 2.81). Further, Table5 exhibits the comparison of the performance of
methods.
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Table 6 Comparison of performance of methods for Problem 5

Method k ACOC Ci Ei CPU time

φ1 3 6.000 4.38E+07 4.09E-03 16.34

φ2 3 6.000 8.56E+07 2.09E-03 19.42

φ3 3 6.000 8.52E+07 2.10E-03 21.59

φ4 3 6.000 8.51E+07 2.10E-03 19.16

φ5 3 6.000 8.56E+07 2.09E-03 19.27

φ6 3 6.000 8.61E+07 2.08E-03 20.45

φ7 3 6.000 1.27E+08 1.41E-03 24.33

Problem 5 At last, we consider a large system of equations:

xi + log(2 + xi + xi+1) = 0, i = 1, 2, ..., m − 1,

and xm + log(2 + xm + x1) = 0,

where m = 500. The above given system has a particular solution,

x∗ =
(
−0.3149...,

500· · · · · ·,−0.3149...
)T

,

and to obtain this solution, the initial estimate is taken as
(

1
10 ,

500· · · · · ·, 1
10

)T

. Numeri-

cal results for the performance of methods are depicted in Table6. Further, the values
of parameters are estimated as

(m, η0, η1,μ) = (500, 78.31, 0.0056, 2.81).

The findings of numerical experimentation signify the efficient and stable nature
of the proposed sixth-order method. The results are remarkable with respect to the
efficiency index and CPU time, and certainly favor the new method over its existing
counterparts. Furthermore, computation of ACOC validates the theoretically estab-
lished convergence order.

5 Conclusions

A three-step iterative technique, involving some undetermined parameters, has been
designed for the solution of nonlinear equations. The methodology to design the
technique is based on the objective to accelerate the convergence rate of the well-
known third-order Potra-Pták scheme. Analysis of convergence leads to establishing
the sixth order of convergence for a particular set of parametric values. Utilizing
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only a single Jacobian inversion per iteration, the proposed iterative method exhibits
highly economical nature when analyzed in the context of computational complexity.
This is affirmed by comparing the computational efficiency of the new method, by
analytical as well as visual approach, with the efficiencies of existing methods. Fur-
ther, numerical performance is examined by locating the solutions of some selected
nonlinear problems. The findings of this testing clearly indicate the superiority of the
proposed technique over its existing counterparts, especially for large-scale nonlinear
systems.
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New Higher Order Iterative Method
for Multiple Roots of Nonlinear
Equations

Sunil Panday, Waikhom Henarita Chanu, and Yumnam Nomita Devi

Abstract In this paper, we propose a new higher order iterative method to find
multiple roots of nonlinear equations. The combination of Taylor’s series, Newton’s
method and the composition approach are used to derive the new method. It requires
three evaluations of the function and two evaluations of the derivative of the func-
tion per iteration. The theoretical convergence of the proposed method is proved in
the main theorem which establishes sixth order of convergence. We compare the
developed method with well-known equivalent existing methods by taking various
numerical examples. The numerical results demonstrate the better efficiency of the
developed method as compared to some standard iterative methods.

Keywords Multiple roots · Nonlinear equation · Iterative methods · Error

1 Introduction

Solving nonlinear equations is one of the most important problems in applied math-
ematics, engineering and science. Sometimes, analytical methods are not applicable
to solve nonlinear equations. Let ψ : R → R be a nonlinear differentiable function
defined on an open interval D such that

ψ(x) = 0 (1)

We use iterative method for solving such nonlinear equations (1), which is defined
as

xn+1 = P(ψ)(xn) f or n = 1, 2, 3, ... (2)
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where P(ψ) is called the iterative function. Newton’s method (NM) [1, 2] is per-
haps the most popular root-finding method for solving nonlinear equations, and it is
given by

xn+1 = xn − ψ(xn)

ψ′(xn)
(3)

This is quadratically convergent in some neighbourhood of simple roots. Letα be the
root of equation (1) with multiplicity ν > 1, i.e. ψ(i)(α) = 0 for i = 1, 2, ..., ν − 1
and ψ(ν)(α) �= 0. When used for finding multiple roots of such nonlinear equations,
Newton’s method (3) is linearly convergent. The modified Newton’s method [3] is
written as

xn+1 = xn − ν
ψ(xn)

ψ′(xn)
(4)

This is quadratically convergent for the equation havingmultiple roots withmulti-
plicity ν > 1.Many researchers have developed iterativemethods using themodified
Newton method for solving nonlinear equations having multiple roots.

In 2013, Thukral [4] developed the following new six-ordermethod (TM for short)
for finding multiple roots of a nonlinear equation:

yn = xn − ν
ψ(xn)

ψ′(xn)

zn = xn − ν

( 3∑
i=1

i

(
ψ(yn)

ψ(xn)

)i/ν)(
ψ(xn)

ψ′(xn)

)

xn+1 = zn − ν

( 3∑
i=1

i

(
ψ(yn)

ψ(xn)

)i/ν)2(ψ(zn)

ψ(xn)

)ν−1(
ψ(xn)

ψ′(xn)

)
(5)

where n ∈ N.
Geum et al. [5] also developed a new sixth-order method (GM for short) in 2016

which is written as follows:

yn = xn − ν
ψ(xn)

ψ′(xn)

zn = xn − νQψ(sn)
ψ(xn)

ψ′(xn)

xn+1 = xn − νKψ(sn, tn)
ψ(xn)

ψ′(xn)
(6)

where Qψ and Kψ are weight functions, sn =
(

ψ(yn)
ψ(xn)

) 1
ν

and tn =
(

ψ(zn)
ψ(xn)

) 1
ν

.

In 2017, Qudsi et al. [6] developed the following method (QM for short) of sixth
order:
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yn = xn − t

zn = xn − t

(
1 + ψ(yn)

ψ(xn)

(
1 + 2

ψ(yn)

ψ(xn)

))

xn+1 = xn − t

(
1 + ψ(yn)

ψ(xn)

(
1 + 2

ψ(yn)

ψ(xn)

)
+ ψ(zn)

ψ(xn)

(
1 + 2

ψ(yn)

ψ(xn)

))
(7)

where t = 2ψ2(xn)
ψ(xn+ψ(xn))−ψ(xn− f (xn))

.

Moreover, Singh et al. [7] developed a new fourth-order method in 2015. In the
year 2019, Bhel et al. [8] developed multiple roots version of Ostrowski’s method
having fourth order of convergence. W. H. Chanu et al. also proposed an iterative
method of fifth order in [9], Qudsi et al. [10] developed a new iterative method of
order six, Kattri [11] proposed a new sixth-order iterative method, etc. In this work,
we have introduced a higher order iterative method for solving nonlinear equations
having multiple roots. In the following sections, we present the development of our
new method, numerical results and conclusion.

2 Development of the Method

In this section, we propose a new sixth-order method for determining the multiple
roots of nonlinear equation (1) with multiplicity ν > 1 as follows:

yn = xn − 2ν

ν + 1

ψ(xn)

ψ′(xn)

zn = xn − ψ(yn)(ν2 − 1) − (
ν−1
ν+1

)ν
(ν(ν − 4) − 1)ψ(xn)

4
(

ν−1
ν+1

)ν
ψ′(xn)

xn+1 = zn − ν
ψ(zn)

ψ′(zn)
(8)

Theorem 1 Let α ∈ R be a multiple root of multiplicity ν of a sufficiently differ-
entiable function ψ : D → R in an open interval D which is a subset of R. Let x0
be an initial guess of the root α. Then, the method defined by (8) has six orders of
convergence.

Proof Let α be a root of multiplicity ν of ψ(x) = 0 and let en = xn − α be the error
at nth iteration. Then, using Taylor expansion, we get

ψ(xn) =
(

ψ(ν)(α)

ν!
)
eνn [1 + C1en + C2e

2
n + C3e

3
n + C4e

4
n + C5e

5
n + C6e

6
n + O[en ]7] (9)



590 S. Panday et al.

ψ′(xn) =
(

ψ(ν)(α)

(ν − 1)!
)
eν−1
n

[
1 +

(
ν + 1

ν

)
C1en +

(
(ν + 2)

ν

)
C2e

2
n + O[en]7

]

(10)
ẽn = yn − α = B1en + B2e

2
n + B3e

3
n + B4e

4
n + B5e

5
n + B6e

6
n + O[en]7 (11)

where

B1 = ν − 1

ν + 1
,

B2 = 2C1

ν + ν2
,

B3 =
2

(
2νC2
1+ν

− C2
1

)

ν2

B4 = 2((1 + ν)2C3
1 − ν(4 + 3ν)C1C2 + 3ν2C3)

ν3(1 + ν)

B5 = 1

ν4(1 + ν)

(
− 2((1 + ν)3C4

1 − 2ν(1 + ν)(3 + 2ν)C2
1C2

+ 2ν2(3 + 2ν)C1C3 + 2ν2((2 + ν)c22 − 2νC4))

)

B6 = 1

ν5(1 + ν)

(
2((1 + ν)4C5

1 − ν(1 + ν)2 × (8 + 5ν)C3
1C2

+ ν2(1 + ν)(9 + 5ν)C2
1C3 + ν2C1((2 + ν)(6 + 5ν)C2

2 − ν(8 + 5ν)C4)

+ ν3(−(12 + 5ν)C2C3 + 5νC5))

)

ψ(yn) = eν
n

ψ(ν)(α)

ν! [((ν − 1

ν + 1
)ν + D1en + D2e

2
n + D3e

3
n) + 1

3ν2
D4e

4
n (12)

+ 1

15ν4
D5e

5
n + O[en]6]

where

D1 = ( ν−1
ν+1 )

ν(ν2 + 3)C1

ν2 − 1

D2 = (ν − 1)ν−1(ν + 1)−ν−2(−2(ν + 1)2C2
1 + ν(3 + ν(11 + ν + ν2))C2)

ν
)

D3 = 1

3ν2

(
(ν2 − 1)ν−2(ν + 1)−ν−3(2(ν + 1)4(3ν − 4)C3

1 − 24(ν − 1)ν2
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× (ν + 1)(ν + 2)C1C2 + 3(ν − 1)ν2(7 + ν(14 + ν(24 + ν(2 + ν))))C3)

)

D4 = (ν − 1)ν−3(ν + 1)−ν−4(−2(ν + 1)4(3 + ν(3 + ν(−9 + (−2 + 3ν))))C4
1

+ 6(ν − 1)ν(ν + 1)3(−2 + ν(−15 + ν(4 + 5ν)))C2
1C2 − 12(−1 + ν)2ν2

× (ν + 1)C1C3 + 3(−1 + ν)2ν2(−8(ν + 1)2(−1 + ν(2 + ν))C2
2

+ ν(7 + ν(37 + ν(42 + ν)))C4))

D5 = (ν − 1)ν−4(ν + 1)−ν−5(2(ν + 1)5(ν + 2)(−9 + ν(−2 + ν(22 + 15(1

+ (−3 + ν)ν))))C5
1 − 20(ν − 1)ν2(ν + 1)4(30 + ν(−11 + ν(−49 + ν

× (9ν + 5))))C3
1C2 + 30ν2(ν2 − 1)2(−18 + ν(−7 + ν(−34 + ν(−16+

× ν(20 + 7ν))))) + 120(ν − 1)2ν2(ν + 1)2(2 + ν(ν + 1)(−9 + 2ν(ν + 1)))C2
2

− 2(ν − 1)ν2(ν + 4)(ν2 + 1)C4 + 15(ν − 1)3ν4(−8(ν + 1)2(−2

+ 3ν(ν + 3))C2C3 + (11 + ν(44 + ν(115 + ν(80 + ν(65 + ν(ν + 4))))))C5))

Using the expression of Eqs. (9), (10), (11) and (12) in the second step of the proposed
method defined in Eq. (8), we get

ên = zn − α = E1e
3
n + E2e

4
n + E3e

5
n + E4e

6
n + O[en]7 (13)

where

E1 = 1

2ν2(1 + ν)

(
(1 + ν)2C2

1 − 2(−1 + ν)νC2
)

E2 = 1

6((−1 + ν)ν3(1 + ν)2)

(
(1 + ν)4(−7 + 6ν)C3

1 − 6(−1 + ν)ν(1 + ν)

× (−1 + ν(4 + 3ν))C1C2 + 6(−1 + ν)2ν2(1 + 3ν)C3
)

E3 = 1

6(−1 + ν)2ν4(1 + ν)3

(
(1 + ν)4(10 + ν(4 + ν(−22 − 3ν + 9ν2)))C4

1

− 6(−1 + ν)ν(1 + ν)3(−1 + ν(−13 + 4ν + 6ν2))C1C2 + 12(−1 + ν)2ν2

× (1 + ν2(2 + ν)(2 + 3ν))C1C3 + 6ν2((−1 + ν2)2(−4+
× ν(5 + 3ν))C2

2 − 2(−1 + ν)3ν(1 + ν(2 + 3ν))C4)
)

E4 = 1

30(−1 + ν)3ν5(1 + ν)4

( − (1 + ν)5(−68 + ν(−33 + ν(202

+ ν(87 + 10ν(−23 − 3ν + 6ν2)))))C3
1 + 5(−1 + ν)ν(1 + ν)4(20+

× ν(147 + ν(−77 + ν(−227 + 15ν(3 + 4ν)))))C3
1C2 − 15ν2(−1 + ν2)2(−25+

× ν(−10 + ν(−52 + ν(−26 + 5ν(9 + 4ν)))))C2
1C3 + 60(−1 + ν)2ν2(1 + ν)C1

× ((−1 + ν)2(5 + ν(−16 + ν(−12 + 5ν(2 + ν))))C2
2 + (−1

+ ν)ν(−1 + ν(6 + 5ν2(2 + ν)))C4) + 30(−1 + ν)3ν3(5(1+
× ν)2(−1 + ν(−2 + ν(5 + 2ν)))C2C3 + 2ν(1 + 4ν − 5ν4C5))

)

Using the expression of zn from Eq. (13) in the third step of the proposed method
defined by Eq. (8), we get
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Table 1 Test function with initial guess x0 and multiplicity ν

Test function ψ(x) Initial guesses Multiplicity

ψ1(x) = (cos(x) + x)15 –0.9 15

ψ2(x) = ((x − 1)10 − 1)6 –0.1 6

ψ3(x) = (x3 + x + 1)6 –0.8 10

ψ4(x) = (sin(x2) − x2 + 1)66 1.6 66

ψ5(x) = (2 − x + e3+x−x2 )9 2.49 9

Table 2 Comparison of various iterative methods

|ψ(xn)| TM GM QM NPM

|ψ1(xn)| 4.4266 × 10−9 2.6244 × 10−22646 2.2574 × 10−1923 1.2291 × 10−24937

|ψ2(xn)| 1.9439 4.4745 × 10−2050 8.8343 × 10−4052 3.0102 × 10−3150

|ψ3(xn)| 6.1462 × 10−6 1.4433 × 10−10001 2.5167 × 10−917 2.6274 × 10−12555

|ψ4(xn)| 5.5942 × 10−19 1.0763 × 10−53877 2.0935 × 10−349 3.7107 × 10−66773

|ψ5(xn)| 6.6823 × 10−26 1.8141 × 10−22160 9.9962 × 10−3692 2.2123 × 10−31653

en+1 = C1((ν + 1)2C2
1 − 2(ν − 1)νC2)

2

4ν5(1 + ν)2
e6n + O[en]7 (14)

Equation (14) shows that the newly developed method defined by (8) has sixth order
of convergence.

3 Numerical Results

In this section, we analyse the computational efficiency of the introduced iterative
method (8) using several test functions and compare it with other existingmethods. In
Table 2,we have displayed the comparison of the convergence of themethods. Table2
shows the absolute residual error (| ψ(xn) |) of the functions after four full iterations
of the methods have been completed.We have compared the newly proposed method
(NPM for short) defined in Eq. (8) with the methods given in Eqs. (5), (6) and (7)
denoted by TM [4], GM [5] and QM [6], respectively. Mathematica 11.3 software
has been used to generate the numerical results in Table2.

4 Conclusion

We have introduced a new sixth-order iterative method based on Newton’s method
for finding multiple roots of nonlinear equations. We compare the newly introduced
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method with existing methods having the same convergence order using some exam-
ples of nonlinear equations. The results given in Table2, have demonstrated the supe-
riority of the introduced method as compared to the existing methods even though
the same examples with the same initial guess are used. It affirms that the introduced
iterative method has smaller |ψ(x)| and simple asymptotic error terms. Therefore,
the introduced method is efficient than the other equivalent methods in comparison
to finding multiple roots of nonlinear equations.
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Separation Axioms in Bipolar Fuzzy
Topological Spaces

Manjeet Singh and Asha Gupta

Abstract In this paper, the definition of the bipolar fuzzy (bf) point has been gen-
eralized, and using this, the concept of separation axioms has been introduced in
bipolar fuzzy settings. Moreover, the relation between these separation axioms has
been established.

Keywords Bipolar fuzzy set · Bipolar fuzzy topology

1 Introduction

Fuzzy sets have been introduced by Zadeh [1]. After that, in every branch of science
and technology, fuzzy sets have been used to generalize all the concepts. The concept
of general topological space is generalized by using fuzzy sets to fuzzy topological
space by Chang [2]. Further, a number of papers have been devoted to generalize
almost all the concepts of general topology in fuzzy topological space(fts). Tripathy
and Borgohain [3], Tripathy and Baruah [4, 5] have investigated Different classes
in fuzzy numbers of sequence spaces. Tripathy and Ray [6] have studied mixed
fts. The concept of fuzzy sets has been generalized to bipolar fuzzy (briefly bf)
sets by Zhang [7]. After that, basic operations on bf sets have been defined by
Lee [8, 9]. Moreover, regular bf graphs have been studied by Akram and Dudek [10]
and bf topological spaces have been defined by Azhagappan and Kamaraj. Recently,
bf point, a neighborhood system, the notion of compactness, and few other properties
have been introduced in bf topological space by Kim et al. [11].

In the present work, the concept of bf point has been generalized of Kim et al.
[11] and also observed that the notion of disjointness K ∩ L = ∅ ⇔ K ⊆ coL (coL
is the complement of set L) is no longer valid for bf sets. So there is a deviation
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from general topology to bf topology, only the implication K ∩ L = ∅ ⇒ K ⊆ coL
is valid. The concept of separation axioms in bf settings has been introduced by
using the generalized bf point and the notion of disjointness. Moreover, the relation
between these separation axioms has been established.

2 Preliminaries and Definitions

In this section, we summarize some definitions and results of bf topological space
which is helpful in the following section.

Let X be a nonempty set. Then a pair K = (K+, K−) is called a bf set in X , if
K+ : X → [0, 1] and K− : X → [−1, 0] aremappings. For each x ∈ X , the positive
membership degree K+(x) is used to denote the satisfaction degree of the element
x to the property corresponding to the bf set K and the negative membership degree
K−(x) is used to denote the satisfaction degree of the element x to some implicit
counter-property corresponding to the bf set K . The empty bf set is denoted by
0bp = (0+, 0−) and defined by 0+(x) = 0 = 0−(x) for all x ∈ X . Also, the whole
bf set is denoted by 1bp = (1+, 1−) and defined by 1+(x) = 1 and 1−(x) = −1 for
all x ∈ X .

Definition 1 ([9]) Let X be a nonempty set and let K , L be two bf sets in X .

(i) We say that K is a subset of L , denoted by K ⊆ L , if for each x ∈ X ,

K+(x) ≤ L+(x) and K−(x) ≥ L−(x).

(ii) We say that K is equal to L , denoted by K = L , if K ⊆ L and L ⊆ K .
(iii) The complement of K , denoted by Kc = ((Kc)+, (Kc)−), is a bf set in X

defined as: for each x ∈ X , Kc(x) = (1 − K+(x),−1 − K−(x)), i.e.,

(Kc)+(x) = 1 − K+(x), (Kc)−(x) = −1 − K−(x).

(iv) The intersection of K and L , denoted by K ∩ L , is a bf set in X defined as: for
each x ∈ X ,

(K ∩ L)(x) = (K+(x) ∧ L+(x), K−(x) ∨ L−(x)).

(v) The union of K and L , denoted by K ∪ L , is a bf set in X defined as: for each
x ∈ X ,

(K ∪ L)(x) = (K+(x) ∨ L+(x), K−(x) ∧ L−(x)).
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Definition 2 ([9]) Let X be a nonempty set and let {Ki : i ∈ I } be a family of subsets
of X .

(i) The intersection of {Ki : i ∈ I }, denoted by⋂
i∈I Ki is a bf set in X defined by:

for each x ∈ X ,

(
⋂

i∈I
Ki )(x) = (

∧

i∈I
K+

i (x),
∨

i∈I
K−

i (x)).

(ii) The union of {Ki : i ∈ I }, denoted by
⋃

i∈I Ki is a bf set in X defined by: for
each x ∈ X ,

(
⋃

i∈I
Ki )(x) = (

∨

i∈I
K+

i (x),
∧

i∈I
K−

i (x)).

Definition 3 ([11]) Let X be a nonempty set. Suppose a collection of bf sets of X
is τ , then τ is said to be bf topology on X , if the following axioms is satisfied:

(i) 0bp, 1bp ∈ τ .
(ii) if K , L ∈ τ , then K ∩ L ∈ τ .
(iii) if {Ki : i ∈ I } ⊂ τ , then

⋃

i∈I
Ki ∈ τ .

In this case, a bf topological space is denoted by the pair (X, τ ) and each element of
τ is said to be an open bf set of X . The closed bf set is the complement of an open
bf set.

Definition 4 ([11]) Let X and Y be nonempty sets, let K ⊆ X and L ⊆ Y and let
f : X → Y be a mapping. Then

(i) The image of K under f , denoted by f (K ) = ( f (K+), f (K−)), is a bf set in
Y defined as follows: for each y ∈ Y ,

f (K+)(y) =
{∨x∈ f −1(y)K+(x), i f f −1(y) �= ∅;

0, otherwise.

and

f (K−)(y) =
{∧x∈ f −1(y)K−(x), i f f −1(y) �= ∅;

0, otherwise.

(ii) The preimage of L under f , denoted by f −1(L) = ( f −1(L+), f −1(L−)), is a
bf set in Y defined as follows: for each x ∈ X , [ f −1(L+)](x) = L+ ◦ f (x) and

[ f −1(L−)](x) = L− ◦ f (x).

Definition 5 ([11]) Let (X, τ1), (Y, τ2) be twobf topological spaces. Then amapping
f : (X, τ1) → (Y, τ2) is said to be continuous if f −1(V ) ∈ τ1, for each V ∈ τ2.



598 M. Singh and A. Gupta

3 Separation Axioms

In this section, firstly, we define the generalized form of bipolar fuzzy point and
show some properties of general topology that is not valid in bf settings. Secondly,
we define separation axioms in bf topology and discuss the relations between these
separation axioms.

Definition 6 ([11]) Let X �= ∅ be a set and x in X, (α,β) ∈ (0, 1] × [−1, 0). Then
x(α,β) with the values (α,β) and the support x is said to be a bf point in X , if for
every y in X ,

x(α,β)(y) =
{
(α,β), i f y = x
(0, 0), otherwise

The bf point has been generalized in the following definition:

Definition 7 Let x in X, (0, 0) �= (α,β) ∈ [0, 1] × [−1, 0] and K a bf set of X .
Then

(i) x(α,β) with the values (α,β) and the support x is called a generalized bf point
in X , if for every y in X ,

x(α,β)(y) =
{
(α,β), i f y = x
(0, 0), otherwise

(ii) K contains x(α,β) (i.e. x(α,β) ∈ K ), if

K−(x) ≤ β and K+(x) ≥ α
On the basis of the preceding definition, the following implications hold:

K = L ⇐⇒ for all p ∈ X, p ∈ K ⇔ p ∈ L;
K ⊆ L ⇐⇒ for all p ∈ X, p ∈ K ⇒ p ∈ L;
p ∈ K ∩ L ⇐⇒ for all p ∈ X, p ∈ K ∧ p ∈ L;

more generally,
p ∈

⋂

i∈I
Ki ⇐⇒ (p ∈ Ki , ∀ i ∈ I ),

I is any index set.
We remark

p ∈ K ∪ L ⇐ for all p ∈ X, p ∈ K ∨ p ∈ L ,

holds, but the converse of this implication does not remain valid.
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Example 1 Suppose two bf subsets K , L and K+(x) = 3
4 , K

−(x) = − 1
2 for each

x in X and L+(x) = 1
2 , L

−(x) = − 3
4 for each x in X . Now K ∪ L ⊆ X , then (K ∪

L)+(x) = 3
4 and (K ∪ L)−(x) = − 3

4 for each x in X . If p in K ∪ L such that (K ∪
L)+(p) = 3

4 and (K ∪ L)−(p) = − 3
4 , then neither p in K nor p in L .

To introduce the bf separation axioms, we have to discuss the notion of disjoint-
ness. The equivalence of set theory

K ∩ L = ∅ ⇔ K ⊆ coL .

is not valid for bf set theory; indeed, the following implication is true.

K ∩ L = ∅ ⇒ K ⊆ coL .

The separation axioms in bf settings are defined by using notion of disjointness in
bf settings. So, we get the deviation from general topology to bf topology:

Definition 8 A bf topological space is called:

1. BFT0 if for each pair consisting of two different bf points (p, q)with supports x
and y, there exists an open bf set R such that p ∈ R and q ∩ R = 0 (i.e. R+(y) =
0 and R−(y) = 0) or q ∈ R and p ∩ R = 0 (i.e. R+(x) = 0 and R−(x) = 0).

2. BFT0α if for each pair consisting of two different bf points (p, q) with supports
x and y, there exists an open bf set R such that p ∈ R ⊆ coq or q ∈ R ⊆ cop.

3. BFT1 if for each pair consisting of two different bf points (p, q) with sup-
ports x and y, there exist two open bf sets R and S such that p ∈ R, q ∩ R =
0 (i.e. R+(y) = 0 and R−(y) = 0) and q ∈ S, p ∩ S = 0 (i.e. S+(x) = 0 and
S−(x) = 0).

4. BFT1α if and only if for each pair consisting of two different bf points (p, q)with
supports x and y, there exist two open bf sets R and S such that p ∈ R ⊆ coq
and q ∈ S ⊆ cop.

5. BFTs (strong BFT1) if every bf singleton is a closed bf set.
6. BFT2 (BFT-Hausdorff) if for each pair consisting of two different bf points (p, q)

with supports x and y, there exist two open bf sets R and S such that p ∈ R,
q ∈ S and R ∩ S = 0.

7. BFT2α (strong BFT-Hausdorff) if for each pair consisting of two different bf
points (p, q) with supports x and y, there exist two open bf sets R and S such
that p ∈ R, q ∈ S and R ⊆ coS.

8. BFT2 1
2
if for each pair consisting of two different bf points (p, q) with supports

x and y, there exist two open bf sets R and S such that p ∈ R, q ∈ S and
cl R ∩ clS = 0.

9. BFT2 1
2 α if for each pair consisting of two different bf points (p, q)with supports

x and y, there exist two open bf sets R and S such that p ∈ R, q ∈ S and
cl R ⊆ co(clS).

With the help of above definitions the following implications can be noticed:
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1. (X, τ ) is BFTi =⇒ (X, τ ) is BFTiα i = 0, 1, 2, 21
2

2. (X, τ ) is BFT2 1
2

=⇒ (X, τ ) is BFT2 =⇒ (X, τ ) is BFT1 =⇒ (X, τ ) is
BFT0

3. (X, τ ) is BFT2 1
2 α =⇒ (X, τ ) is BFT2α =⇒ (X, τ ) is BFT1α =⇒ (X, τ )

is BFT0α
4. (X, τ ) is BFTs =⇒ (X, τ ) is BFT1

BFT0

BFT0α

BFT1

BFT1α

BFT2

BFT2α

BFT2 1
2

BFT2 1
2α

BFTs

Fig. 1 Implication between separation axioms

Theorem 1 A space is BFT1 if and only if every bf singleton withα = 1 and β = −1
is closed.

Proof Let p0 be an arbitrary bf singleton with support x0 ∈ X , β = p−
0 (x0) = −1

andα = p+
0 (x0) = 1. Suppose p is another bf pointwith support x , there exist O0 and

Op open bf sets such that p0 ⊆ O0 ⊆ cop and p ⊆ Op ⊆ cop0. Since every bf set is
the union of all the bf singleton, it contains, i.e., cop0 = ∪p⊆cop0 p. From cop+

0 (x0) =
1 − p+

0 (x0) = 0 and cop−
0 (x0) = −1 − p−

0 (x0) = 0, we deduce cop0 = ∪p⊆cop0Op,
and thus the cop0 is open.

Conversely, consider p1 and p2 be a pair of two different bf points with support x1
and x2. Let q1 and q2 be another pair of bf points with support x1 and x2, respectively,
such that q−

1 (x1) = q−
2 (x2) = −1 and q+

1 (x1) = q+
2 (x2) = 1. So, the bf sets coq1

and coq2 are open bf and satisfy the conditions p1 ⊆ coq2 ⊆ cop2 and p2 ⊆ coq1 ⊆
cop1.

Theorem 2 A weakest bf topology τ exists for every X, such that (X, τ ) is BFTs.

Proof Let X be any arbitrary set. Consider the collection τ of bf sets on X defined
by

τ = {O : O ⊆ X, supp(coO) is f ini te}.

We can easily prove that τ is a bf topology. Clearly, each bf point on X is bf closed,
then (X, τ ) is BFTs . Now to prove τ is the weakest bf topology, suppose σ is any
other bf topology which is also BFTs . Let R ∈ τ be any set, then supp(coR) =
{x1, x2, x3, ....., xn}. Consider the bf points pi for every i ∈ {1, ..., n} defined by
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p+
i (xi ) = coR+(xi )andp−

i (xi ) = coR−(xi )

p+
i (x) = 0 and p+

i (x) = 0 f or x �= xi

The family {pi }ni=1 of σ-closed bf sets is a finite family. From coR = ∪n
i=1 pi , we

conclude that coR is σ-closed. Hence, R ∈ σ.

Definition 9 A bft space (X, τ ) is called bf regular if for each pair having a bf point
p and bf closed set F in X such that p ∈ coF , there exists a pair of open bf sets
(R, S) such that p in R, F is subset of S and R ∩ S = ∅. A bf regular which is also
BFTs is said to be BFT3.

Definition 10 A bft space (X, τ ) is called bf α-regular if for each pair having a bf
point p and closed bf set F in X such that p ∈ coF , there exists a pair of open bf
sets (R, S) such that p in R, F is subset of S and R ⊆ coS. A bf α-regular which is
also BFTs is said to be BFT3α.

Theorem 3 A space (X, τ ) is α-regular if and only if for each pair consisting of a
bf open set R and a bf point p such that p ∈ R, there exists a bf open set S such that
p ∈ S ⊆ clS ⊆ R.

Proof Suppose p is a bf point and R is a bf open set in X such that p ∈ R. Since
coR is closed and p ∈ co(coR), by α-regularity of space X that there exists bf open
sets S1 and S2 such that p ∈ S1, coR ⊆ S2 and S1 ⊆ coS2. Since coS2 is closed,
clS1 ⊆ cl(coS2) = coS2 ⊆ R. So p ∈ S1 ⊆ clS1 ⊆ R.

Conversely, let F be a bf closed set and p be any bf point in X such that p ∈ coF .
By using the condition, there exists bf open set S1 such that p ∈ S1 ⊆ clS1 ⊆ coF .
Using the condition again, there exists bf open set S2 such that p ∈ S2 ⊆ clS2 ⊆ S1.
To complete the proof, take R1 = S2 and R2 = co(clS1) because p ∈ R1, F ⊆ R2

and R1 = S2 ⊆ S1 ⊆ clS1 = co(co(clS1)) = coR2.

Theorem 4 Every bf T3α-space is also a bf T2 1
2 α-space.

Proof Let (X, τ ) be a bf T3α-space and p, q be two different bf points with support
xp �= xq in X with values (rp,−r

′
p) and (rq ,−r

′
q), respectively. Let p1 be the crisp bf

point with support xp and value (1,−1). By using the definition of T3α-space p1 is a
bf closed set and q ∈ co(p1). Since there exists bf open sets R and S such that q ∈ R,
p1 ⊆ S and R ⊆ coS. Since p+(xp) < 1 = p+

1 (xp) and p−(xp) > −1 = p−
1 (xp), it

follows that p ∈ S. Hence, (X, τ ) is a bf T2 1
2 α-space.

Theorem 5 Every bf α-regular T0α-space is a bf T2 1
2 α-space.

Proof Let (X, τ ) be a bf α-regular T0α-space and p, q be two different bf points
with supports xp �= xq in X and values (rp,−r

′
p), (rq ,−r

′
q) respectively. Let p1, q1

be bf points with supports xp, xq , respectively, and with values p
+
1 (xp) = 1

2 (1 + rp),
p−
1 (xp) = − 1

2 (1 + r
′
p) and q+

1 (xq) = 1
2 (1 + rq), q

−
1 (xq) = − 1

2 (1 + r
′
q). Therefore,

p1, q1 are two distinct bf points in X . There exists a bf open set R such that p1 ∈
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R ⊆ coq1 or q1 ∈ R ⊆ cop1 because X is a T0α-space. Firstly, if p1 ∈ R ⊆ coq1,
there exists a bf open set S such that p1 ∈ S ⊆ clS ⊆ R because X is α-regular.
Since clS ⊆ R and R ⊆ coq1, then clS ⊆ coq1 that is q1 ⊆ co(clS). Now q(xq) =
rq < 1

2 (1 + rq) = q1(xq) and p(xp) < p1(xp), then we get q ∈ co(clS) and p ∈ S.
Now let O1 = S and O2 = co(clS) are bf open sets in X and S ⊆ co(co(clS)).
Therefore, there exists bf open sets O1, O2 in X such that p ∈ O1, q ∈ O2 and
O1 ⊆ coO2. By using the previous theorem, there exist bf open sets O3 and O4 such
that p ∈ O3 ⊆ clO3 ⊆ O1 and q ∈ O4 ⊆ clO4 ⊆ O2. Therefore, we get p ∈ O3,
q ∈ O4 and clO3 ⊆ O1 ⊆ coO2 ⊆ co(clO4). Secondly, if q1 ∈ R ⊆ cop1. We get
the similar result. So, (X, τ ) is T2 1

2 α.

Definition 11 A space (X, τ ) is called bf normal if for every pair consisting of bf
closed sets F1, F2 such that F1 ⊆ coF2, there exists a pair consisting of open fuzzy
sets R, S such that F1 ⊆ R, F2 ⊆ S and R ∩ S = ∅. A bf normal which is also BFTs
is said to be BFT4.

Definition 12 A space (X, τ ) is called bf α-normal if every pair consisting of bf
closed sets F1, F2 in X such that F1 ⊆ coF2, there exists a pair consisting of open
fuzzy sets R, S such that F1 ⊆ R, F2 ⊆ S and R ⊆ coS. A bf α-normal which is
also BFTs is said to be BFT4α.

Theorem 6 Every bf T4α-space is also a bf T3α-space.

Proof Let p be a bf closed point with support xp and F a bf closed set in X such that
p ∈ coF . Let p1 be bf point with support xp and with value p+

1 (xp) = 1
2 (p

+(xp) +
coF+(xp)) and p−

1 (xp) = 1
2 (p

−(xp) + coF−(xp)). Therefore, p ∈ p1, p1 ∈ coF
and p1 is closed because X is Ts-space. By using theα-normality of X and p1 ∈ coF ,
there exist two bf open sets R, S with p1 ⊆ R, F ⊆ S and R ⊆ coS. Therefore,
p ∈ R, F ⊆ S and R ⊆ coS. So, X is bf T3α-space.

From the above results, we have observed the following implications for the
separation axioms in bf topological spaces (Fig. 2).

BFT0

BFT0α

BFT1

BFT1α

BFT2

BFT2α

BFT2 1
2

BFT2 1
2α

BFTs

BFT4α

BFT3α

Fig. 2 Implication between separation axioms
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A Study of Ć i r i ć Type Generalized
Contraction Via B-Contraction with
Application

Vizender Singh and Bijender Singh

Abstract In this present paper, we introduced the notion of Ćir i ć type generalized
B-contraction for single mapping and for a pair of mappings which generalized
Banach contraction principle in a way different from recent literature. Further, we
proved some fixed point theorems using these notions. The newly established results
are supported by illustrative examples. Finally, the results are applied to solve the
Volterra type integral equations.

Keywords B-contraction · Fixed point · Common fixed point · Coincidence
point · Complete metric space · Integral equation
MSC: 47H10 · 54H25

1 Introduction

The study of fixed point theory is one of the most effective theories in contemporary
mathematical analysis. Fixed point theory is significant in itself, and has advanced
significantly during the last century. It delicately integrates analysis, topology, and
geometry with a vast spectrum of uses in disciplines such as mathematics, physics,
economics, game theory, biology, etc. In 1906, Maurice Frechet, a french mathe-
matician, first proposed the notion of metric space. After that, several extensions
of matric space have been proposed since then including fuzzy metric space, proba-
bilistic metric space, b-metric space, etc., by abolishing or modifying certain axioms,
rearranging the metric function or abstracting some axioms.

In the discipline of functional analysis, metric fixed point theory is an important
field of study. Banach, a prominent Polish mathematician, was the first to introduce
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it. Because of its importance and use in several disciplines of research, countless
researchers havemade numerous generalizations in various directions throughout the
years. The fixed point theorem, often referred to as the Banach contraction principle,
first appears in Banach’s thesis in an explicit form. It was used to prove that an
integral equation had a solution. It has been a highly common technique in addressing
existing issues in many disciplines of mathematical analysis. Since then, owing to
its simplicity and utility, it has been extended in many ways in various fields of
mathematics [1, 2, 4, 6–11, 13–15]. The map’s contractive character is diminished
in certain extensions, while the topology is weakened in other variants.

Recently, Singh et al. [12] introduced the concept of theB-contraction and proved
fixed point theorems. In this article, we introduced the notion of the Ćir i ć type
generalized B-contraction for a single map and a pair of maps, and their fixed points,
coincidence points, and common fixed points. Also, some examples provided in
support of our results show the usefulness of newly established notions. At last,
application to the integral equation for finding their solution is established.

2 Preliminaries

Definition 1 Let B = {�;� : IR+ → IR}, where � holds the following axioms:

1. � is strictly increasing i.e. ∀ �,κ ∈ R
+ such that � < κ,�(�) < �(κ);

2. limn→∞ �n = 0 ⇔ limn→∞ �(�n) = 0; where {�n}n∈N is sequence of positive
numbers;

3. � is continuous on (0,∞).

Let (E, d) be a metric space. A mapping T : E → E is said to be a Ćir i ć type
generalized B-contraction, if 0 < α < 1 and � ∈ B such that

∀�,κ∈E , (d(T�, Tκ) > 0 ⇒ �(d(T�, Tκ)) ≤ α�(K(�,κ)), (1)

where

K(�,κ) = max{d(�,κ), d(�, T�), d(κ, Tκ),
1

2
[d(�, Tκ) + d(κ, T�)]}.

Definition 2 ([3]) Let E( 	= φ) be a set and two mappings f : E → E , g : E → E
compatible on (E, d) if

lim
n→∞ d( f g�n, g f �n) = 0,

where, sequence {�n} ∈ E such that f �n = g�n = � as n → ∞, for some� ∈ E .
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Definition 3 ([4]) Let E( 	= φ) be a set and two mappings f : E → E , g : E → E
are weakly compatible on (E, d) if

f ϑ = gϑ implies that f g� = g f �,

i.e. f and g commute at coincidence points.

Definition 4 ([5]) Let E( 	= φ) be a set and two mappings f : E → E , g :
E → E are conditionally compatible on (X, d), if the set A = {{�n},�n ∈
E such that f �n = g�n as n → ∞} is non-empty, then ∃ a sequence {κn} in E such
that f κn = gκn = � as n → ∞ for some � ∈ E such that d( f gκn, g f κn) = 0 as
n → ∞.

Definition 5 ([6]) Let E( 	= φ) be a set and two mappings f : E → E , g : E →
E are reciprocal continuous on (E, d) if f g�n = f �, g f �n = g� as n → ∞,
whenever {�n} is a sequence in E such that f �n = g�n = � as n → ∞, for some
� ∈ E .

Definition 6 ([7]) Let E( 	= φ) be a set and two mappings f : E → E , g : E → E
conditionally reciprocally continuous if the set A = {{�n},�n ∈ E such that f �n =
g�n as n → ∞} is non-empty, then there exists a sequence {κn} in E such that
f κn = gκn = � as n → ∞ for some� ∈ E such that f gκn = f � and g f κn = g�
as n → ∞.

Definition 7 ([8]) A pair of self-maps f, g on metric space is called faintly com-
patible if f, g is conditional compatible and commute on a non-empty subset of
coincidence points, whenever the set of coincidence point is non-empty.

3 Main Results

Theorem 1 Let (E, d) be a complete metric space and T : E → E be Ćiri ć type
generalized B-contraction. Then T has a unique fixed point.
Proof: Let �0 ∈ E be an arbitrary point and define a sequence {�n}∞n=1 such that

�n = T�n−1, n ∈ {1, 2, ...} (2)

If �nk+1 = �nk for some nk ∈ {0, 1, 2, ...}, then proof is complete. Now let �n+1 	=
�n for every n ∈ {0, 1, 2, ...}. Let

dn = d(�n+1,�n), n ∈ {0, 1, 2, ...}.

Then dn > 0 for all n ∈ {0, 1, 2, ...}. Now Using eqaution (2), we have
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�(dn) = �(d(�n+1,�n))

= �(d(T�n, T�n−1))

≤ α�(K(�n,�n−1))

= α�(max{d(�n,�n−1), d(�n,�n+1)})
= α�(max{dn, dn−1}),

for some n ∈ {1, 2, ...}. If dn ≥ dn−1, then �(dn) ≤ α�(dn), which is contradiction.
Therefore, dn < dn−1,∀n ∈ {1, 2, ...}, we have

�(dn) ≤ α�(dn−1),

therefore, we have
�(dn) ≤ αn�(d0),

as n → ∞, �(dn) → 0, together with condition 2 in definition 1, provides

lim
n→∞ dn = 0

⇒ lim
n→∞ d(�n, T�n) = 0. (3)

Now, we shall prove that {�n}n∈N is a Cauchy sequence. Assume, on the other hand,
that ∃ ε > 0 and the sequences {an}∞n=1 and {bn}∞n=1 from N such that

an > bn > n, d(�an ,�bn ) ≥ ε, d(�an−1 ,�bn ) < ε, ∀n ∈ N, (4)

therefore

ε ≤ d(�an ,�bn ) ≤ d(�an ,�an−1) + d(�an−1 ,�bn )

≤ d(�an ,�an−1) + ε

= d(�an−1 , T�an−1) + ε.

Equation (3) and the inequality above yields

lim
n→∞ d(�an ,�bn ) = ε. (5)

As, a consequence of (3), ∃ n ∈ N such that

d(�am , T�am ) <
ε

3
and d(�bm , T�bm ) <

ε

3
, ∀ m ≥ n. (6)
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Furthermore, we will demonstrate that

d(T�am , T�bm ) = d(�am+1 ,�bm+1) > 0, ∀ m ≥ n. (7)

Assume that, ∃ p ≥ n such that

d(�ap+1 ,�bp+1) = 0, (8)

using (4), (6), and (8), we have

ε ≤ d(�ap ,�bp ) ≤ d(�ap ,�ap+1) + d(�ap+1 ,�bp )

≤ d(�ap ,�ap+1) + d(�ap+1 ,�bp+1) + d(�bp+1 ,�bp )

= d(�ap , T�ap ) + d(�ap+1 ,�bp+1) + d(�bp , T�bp )

< ε
3 + 0 + ε

3 = 2ε
3 .

It is contradiction, so (7) is true. Therefore

�(d(T�am , T�bm )) ≤ α�(K(�am ,�bm )) (9)

where

K(�am ,�bm ) = max{d(�am ,�bm ), d(�am , T�am ), d(�bm , T�bm ),
1
2 (d(�am , T�bm ) + d(�bm , T�am )).}

By condition 3 in definition 1, (5) and (9), we get

1. If K(�am ,�bm ) = d(�am ,�bm ), then �(ε) ≤ α�(ε), it is a contradiction.
2. If K(�bm ,�bm ) = d(�am , T�am ), then �(ε) ≤ α�(0), it is a contradiction.
3. If K(�bm ,�bm ) = d(�bm , T�bm ), then �(ε) ≤ α�(0), it is a contradiction.
4. IfK(�am ,�bm ) = 1

2 (d(�am , T�bm ) + d(�bm , T�am )), then�(ε) < α�(ε), it is
a contraction.

Therefore, the sequence {�n}n∈N is a Cauchy sequence. Since (E, d) is complete, this
implies that sequence �n → �,� ∈ E. On contrary, suppose that T� 	= �, then
there exist an n1 ∈ N and subsequence {�nk } of {�n} such that d(T�nk , T�n) > 0
for all nk ≥ n1. Therefore, we have

�(d(�nk+1 , T�)) = �(d(T�nk, T�)) ≤ α�(\K(�nk,�))

≤ α�(max{d(�nk ,�), d(�nk ,�nk+1), d(�, T�),

1

2
[d(�nk , T�) + d(�, T�nk )]}).

As k → ∞ and the countinuity of �, we have
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�(d(�, T�)) ≤ α�(d(�, T�)),

which is contradiction. Therefore, T� = �. Let κ( 	= �) ∈ E such that Tκ = κ.
Now

�(d(�,κ)) = �(d(T�, Tκ)) ≤ α�(K(�,κ))

= α�{d(�,κ), d(�, T�), d(κ, Tκ),
1
2 [d(�, Tκ) + d(κ, T�)]}
= α�(d(�,κ)).

Which is contradiction. Therefore, T has a unique fixed point. �
Example 1 Let E = { 1n : n ∈ N} ∪ 0 and metric d = |� − κ|, then (E, d) is com-
plete metric space. Consider a map T : E → E such that

T� =
{ 1

n+1 if � = 1
n

0 if � = 0.

Suppose that �(�) = � and take � = 1
n , κ = 1

n+1 , then d(κ, T�) = 0 and also

sup
�,κ∈E,� 	=κ

d(T ( 1n ), T ( 1
n+1 ))

d( 1n ,
1

n+1 )
= 1,

then T is not Ćir i ć type generalized B-contraction.
Example 2 Let E = [0, 1] with metric d = |� − κ|. T : E → E be a self-map
such that T� = �

4 and φ(�) = √
�, assumptions of Theorem 1 is satisfied with

α ∈ [ 12 ,∞), so T has unique fixed point.

Definition 8 Let (E, d) be a metric space and two self-maps T, S : E → E on
(E, d) are said to be Ćir i ć type generalized B-contraction if ∃, 0 < α < 1 such that

∀�,κ ∈ E, d(T�, Tκ) > 0 ⇒ φ(d(T�, Tκ)) ≤ α�(K(↔,≤)), (10)

where

M(�, κ) = max{d(S�, Sκ), d(S�, T�), d(Sκ, Tκ),
d(S�, Tκ) + d(Sκ, T�)

2
}.

Note: Every Ćir i ć type generalized B-contraction for pair of self-maps is B-
contraction but converse need not true.

Theorem 2 Let (E, d) be ametric space and two self-maps T, S : E → E be faintly
compatible satisfying Ćiri ć type generalized B-contraction with conditional recip-
rocal continuity, then T and S have a unique common fixed point.
Proof: Let a sequence {�n} ∈ E such that
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lim
n→∞ T�n = lim

n→∞ S�n = �, for some � ∈ E .

As mappings T, S are faintly compatible, then ∃ a sequence {κn} ∈ E and

lim
n→∞ Tκn = lim

n→∞ Sκn = κ,

for some κ ∈ E such that

lim
n→∞ d(T Sκn, STκn) = 0.

Since pair (T, S) as well conditionally reciprocally continuous, then

lim
n→∞ T Sκn = Tκ

and
lim
n→∞ STκn = Sκ.

Hence, Tκ = Sκ, this implies that T and S have coincidence point. As the pair (T, S)

is faintly compatible, then T Sκ = STκ. Thus

T Tκ = T Sκ = STκ = SSκ

if Tκ 	= T Tκ, then

�(d(Tκ, T Tκ)) ≤ α�max{d(Sκ, STκ), d(Sκ, Tκ), d(STκ, T Tκ),
d(Sκ,T Tκ)+d(STκ,Tκ)

2 }

i.e., �(d(Tκ, T Tκ)) ≤ α�(d(Tκ, T Tκ)), it is a contradiction. Therefore, T ans S
have common fixed point i.e., T Tκ = Tκ = STκ. �

Example 3 Let E = (2, 8) and d = |� − κ| be usual metric. Define T, S : E → E
such that

T� =
{
4 if � ≤ 4
5 if � > 4

and

S� =
{
8 − � if � ≤ 4
7 if � > 4

and φ(�) = √
�, thus all aspects of Theorem 2 is satisfied and there exists a unique

fixed point.
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4 Application

In this part, we will look at how fixed point methods may be used to solve the integral
equation of the following type.

Consider the following integral equation:

�(s) =
∫ s

0
H(s, t, w(t)) dt + g(s), s ∈ [a, b], a > 0, b > 0. (11)

In this section, we present an existence theorem for a solution of Eq. (11) that
belongs to E = (C[a, b];R), set of all continuous function defined on I = [a, b] by
using the obtained main Theorem 1. Consider

(T�)s =
∫ s

0
H(s, t, w(t)) dt + g(s), s ∈ [a, b], a > 0, b > 0.

The existence of solution of (11) is equivalent to the existence of a fixed point of T .
It is well known that E with a metric that is given by

d(�,κ) = sup
s∈[a,b]

|�(s) − κ(s)|,∀�,κ ∈ E

forms a complete metric space. Assume that the aforementioned situation exists:

1. H : [a, b] × [a, b] × R → R and g : [a, b] → R;
2.

∫ s
0 H(s, t, .) : R → R is increasing, ∀s, t ∈ [a, b];

3. ∃ 0 < α < 1 such that |H(s, t,�) − H(s, t,κ)| ≤
√

α
s |K(�,κ)|;

where K(�,κ) = max{d(�,κ), d(�, T�), d(κ, Tκ), 1
2 [d(�, Tκ) + d(κ, T�)]},

for all s, t ∈ [a, b] and �,κ ∈ (C[a, b],R). Then the integral equation (11) has
unique solution.

Theorem 3 Assume that condition above 1 − 3 are satisfied. Then integral equation
(11) has unique solution.
Proof: Let

(T�)(s) =
∫ s

0
H(s, t,ϑ(t))dt + g(s), s ∈ [a, b].

Now, by condition (i i i), ∀ �,κ ∈ (C[a, b],R), we have

|(T�)(s) − (Tκ)(s)| ≤ ∫ s
0 |H(s, t,�(t)) − H(s, t,κ(t))|dt

≤ ∫ s
0

√
α
s |K(�,κ)|dt

≤
√

α
s |K(�,κ)| ∫ s

0 dt,

therefore, we have



A Study of Ćiri ć Type Generalized Contraction … 613

|(T�)(s) − (Tκ)(s)| ≤ √
α|K(�,κ)|

or
d(T�, Tκ) ≤ √

α|K(�,κ)|.

All the aspects of the Theorem 1 are fulfilled for �(�) = �2. Therefore, integral
equation (11) has the unique solution. �

Theorem 4 Let T, S : C([a, b],R) → C([a, b],R) be two self-maps and suppose
that following conditions hold:

1. H : [a, b] × [a, b] × R → R and g : [a, b] → R;
2.

∫ s
0 H(s, t, .) : R → R is increasing, ∀s, t ∈ [a, b],

3. ∃ 0 < α < 1 such that |H(s, t,�) − H(s, t,κ)| ≤ α2

s |K(�,κ))|;
where K(�,κ)) = max{d(T�, Tκ), d(T�, S�), d(Tκ, Sκ), 1

2 [d(T�, Sκ) +
d(Tκ, S�)]}; for all t, s ∈ [a, b] and �,κ ∈ (C[a, b],R);

4. limn→∞ T�n = v = limn→∞ S�n for some v ∈ (C[a, b], I R), there exists
a sequence {κn} satisfying limn→∞ T�n = u = limn→∞ S�n for some
u ∈ (C[a, b], I R) such that limn→∞ STκn = Su, limn→∞ T Sκn = Tu and
limn→∞ STκn = limn→∞ T Sκn;

5. for all � ∈ X, S� = T� ⇒ ST� = T S�.

Then the integral equation (11) has unique solution.
Proof: Let

(T�)(s) =
∫ s

0
H(s, t,�(t))dt + g(s), s ∈ [a, b].

Now, by condition (i i i), for all �,κ ∈ (C[a, b],R), we have

|(T�)(s) − (Tκ)(s)| ≤ ∫ s
0 |H(s, t,�(t)) − H(s, t,κ(t))|dt

≤ ∫ s
0

α2

s |K(�,κ)|dt
≤ α2

s |K(�,κ)| ∫ s
0 dt,

therefore, we have
|(T�)(s) − (Tκ)(s)| ≤ α2|K(�,κ)|

or
d(T�, Tκ) ≤ α2|K(�,κ)|.

All the condition of the Theorem 2 are satisfied for�(�) = √
�. Therefore, integral

equation (11) has the unique solution. �
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Evolution of Weak Discontinuities
in Perfectly Conducting Mixture of Gas
and Dust Particles

Danish Amin and D. B. Singh

Abstract In this article, a study concerning the evolution of weak shock past plane
and axis-symmetric bodies, in a two-dimensional steady supersonic flow field has
been performed. The flow medium is considered to be a mixture of small solid
particles and conducting fluid permeated with the transverse magnetic field. The
wavefront analysis method is employed to derive transport equations describing the
evolutionary behaviour of discontinuities in the plane and axis-symmetric cases.
These equations are used to find a closed form expression for the shock formation
distance and to determine the conditions ensuring that no shock will evolve at the
wave head. In addition to this, the effect of mass concentration of solid particles,
magnetic field strength, specific heat ratio and Mach number on the distance of
shock formation is analysed and illustrated through figures.

Keywords Wavefront analysis · Dusty gas · Weak shocks · Magnetic field

1 Introduction

Studies related to nonlinear wave propagation such as acceleration waves, discon-
tinuity waves, and shock waves have been a prominent area of research from the
past many decades in the field of hydrodynamics and continuum mechanics [1–4].
This is predominantly due to the fact that nonlinearities give rise to a variety of
behaviours in hydro-dynamical quantities of the flow field, most commonly a finite
blow-up or discontinuity in the surface. Mathematically, these nonlinear waves are
characterised by the discontinuity in the normal derivative and form a significant
class of solutions in hyperbolic systems. Thus, the analysis of these waves is of
great significance from both physical and mathematical perspectives and many
studies have been documented on singular surfaces phenomena, discontinuities,
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and finite blow-ups [5–8]. In past, several studies concerning nonlinear wave prop-
agation/investigation of the wavefront in various gas-dynamic regimes have been
performed by researchers using different approaches like generalized wavefront
expansion method and wavefront analysis method. The method of generalized
wavefront expansion involves an asymptotic expansion in a neighbourhood of the
wavefront and was proposed by Anile [9]. Some of the applications of wavefront
analysis method in different gasdynamic regimes have been reported by Jeffrey
[2], Chen [4], Radha et al. [10] and Engelbrecht [11]. Recently, many valuable
contributions have been made to literature by the number of authors, some of them
include Singh et al. [12], Chaturvedi et al. [13], Singh et al. [14], Sharma et al. [15]
etc. Singh et al. [12] studied the evolution of weak shock waves in a two-dimensional
steady supersonic flow under the effect of radiation and magnetic field by using
wavefront analysis method. It has been concluded from the study that an increase
in Mach number and magnetic field in presence of radiative heat transfer enhances
the shock formation. Singh et al. [14] used the method of generalized wavefront
expansion to study the growth and decay of weak shocks in magnetogasdynamics.

Studies pertaining to weak shocks in a gas laden with small solid particles have
a significant relevance to many fields of engineering and science, and it has been
attributed with many valuable contributions in the recent years. Some of the most
famous and daily encountered problems, where it becomes quite relevant, include
nozzle flows, lunar ash flows, underground cosmic explosions, acceleration of parti-
cles within shocks, high-speed jet flights in polluted air etc.; astrophysical problems
like metallized rocket propellant, characterization of star formation, formation of
dusty crystals, macroscopic motion in interplanetary atmosphere with super-sonic
speed, coma’s collision with a planet and significant amount of other problems.
The main temptation behind the study of these propagating weak discontinuities
is the ability of these discontinuities to produce an extremely high temperature
and pressure at the center of convergence. A decent amount of research work to
encounter these problems has been reported by the number of authors (see Pai et al.
[16], Amin et al. [17], Nath [18], Anand [19], Chaturvedi et al. [13], Srivastava et al.
[20], Nath [21, 22]).

Due to high temperature prevailing within the shocks, the ionization of gas
molecules is very likely to happen and the role of electro-magnetization becomes
crucial. Therefore, to analyse the shock waves completely we need to consider the
magnetic effect simultaneously. A large number of studies have been performed
to incorporate the magnetic field effect on nonlinear wave propagation in different
gasdynamic regimes (see Sharma et al. [15], Jeffrey [23], Lustman and Geffen [24],
Siddiqui et al. [25], Singh et al. [26], and Sharma [27]). In the present article, the
evolution of weak discontinuities past plane and axis-symmetric bodies in a two-
dimensional steady supersonic flow field has been investigated via the method of
wavefront analysis. The solid particles are treated as pseudo fluid and no phase tran-
sition or no deformation occurs [28, 29]. The impact of the strength of the magnetic
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field, dust-loading parameters and Mach number on the distance of shock forma-
tion is analysed. The study here concerns with the evolutionary behaviour of shocks
when various characteristic curves start merging, i.e., the point at which the leading
characteristic intersects with the consecutive characteristics.

2 Basic Equations

The equations governing two-dimensional steady supersonic flow in dusty-gas under
the effect of the magnetic field can be written as [12, 13]

uρx + vρy + ρ(ux + vy + mv/y) = 0, (1)

ρ
(
uux + vuy

) + px + hx = 0, (2)

ρ
(
uvx + vvy

) + py + hy = 0, (3)

uhx + vhy + 2h(ux + vy + mv/y) = 0, (4)

upx + v py − a2
(
uρx + vρy

) = 0. (5)

Here, ρ is the gas density, p is the pressure, h is the magnetic pressure, u &v are
the components of velocity in the direction of x&y axes, respectively. The geometry
factor m takes the value 0 &1 for plane and axis symmetric flows, respectively. The
quantity a2 = �p/(1 − Z)ρ is the equilibrium speed of sound in the medium, where
� = γ (1 + λβ)/(1 + λβγ ), Z = Vsp/Vg is the volume fraction of solid particles
in the mixture; Vsp & Vg is the volumetric extension and total volume of the gas,
respectively.

The quantities λ, β and γ are defined as λ = κp/(1−κp), β = csp/cp, γ = cp/cv,
where csp is the specific heat ratio of solid particles, cp and cv are the specific heat
of the gas at constant pressure and volume respectively; κp = msp/mg is the mass
concentration of solid particles, wheremsp andmg are the total mass of solid particles
and the mass of gas respectively. The relation between κp and Z is given by Z = ϑρ,
where ϑ = κp/ρsp, ρsp denotes the species density of solid particles [16].

The equation of state for the mixture of small solid particles and perfect gas is
given by [13]

p =
(
1 − κp

)

(1 − Z)
ρR∗T, (6)

where T is the temperature and R∗ is the gas constant.
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3 Characteristic Formulation

The governing Eqs. (1)–(5) can be re-written in the matrix form as follows

Ui
x + Pi jU i

y + Qi = 0, i, j = 1, 2, 3, 4, 5, (7)

where Ui
5×1, Fi

5×1 and Pi j
5×1 are given by

U =

⎡

⎢⎢⎢⎢
⎢
⎣

ρ

u
v
p
h

⎤

⎥⎥⎥⎥
⎥
⎦
; F = 1

u2−c2

⎡

⎢⎢⎢⎢
⎢
⎣

mρuv/y
−mvc2/y

0
mρuva2/y
mρuvb2/y

⎤

⎥⎥⎥⎥
⎥
⎦
and

P =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎣

v/u

0

0

0

0

−ρv/(u2 − c2)

uv/(u2 − c2)

0

−ρva2/(u2 − c2)

−ρvb2/(u2 − c2)

ρu/(u2 − c2)

−c2/(u2 − c2)

v/u

ρua2/(u2 − c2)

ρub2/(u2 − c2)

v/u(u2 − c2)

−v/ρ(u2 − c2)

1/ρu

v(u2 − b2)/u(u2 − c2)

b2v/u(u2 − c2)

v/u(u2 − c2)

−v/ρ(u2 − c2)

1/ρu

a2v/u(u2 − c2)

v(u2 − a2)/u(u2 − c2)

⎤

⎥
⎥
⎥⎥
⎥⎥
⎦

.

The eigenvalues of Pi j are

λ(1,2) = uv ± c2
[
(M2/ε) − 1

] 1
2

u2 − c2
, λ(3,4,5) = v

u
(8)

with their corresponding left eigenvectors

L(1) =
[
0, 1, − u

v , − [(M2/ε)−1]
1
2

ρv , 0
]
;

L(2) =
[
0, 1, − u

v ,
[(M2/ε)−1]

1
2

ρv , 0
]
;

L(3) =
[
1, 0, 0, − 1

a2 , 0
]
;

L(4) =
[
0, 1, v

u , ε
ρu , 0

]
;

L(5) =
[
0, 0, 0, 1 − ε, 1

]
. (9)

Here M =
[(
u2 + v2

)1/2]
/a is the upstream Mach number, ε = 1 + (b2/a2) is the

Alfven number and c = (
a2 + b2

)1/2
is themagneto-sonic speedwith b = (2h/ρ)1/2

asAlfven speed. In view of Eqs. (8) and (9), the system (7) is hyperbolic forM > ε1/2

and possesses two families of characteristic curves along dy/dx = λ(1,2). These
curves indicate the waves propagating with speeds λ(1,2) in the opposite direction.
Contrarily, if M < ε1/2 i.e., flow is subsonic then the characteristic velocity λ(1,2)

becomes imaginary and the wavefront phenomenon would not exist.
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4 Evolution of Transport Equation for Weak Shock

Assume that λ(1) represents the initial wavefront ξ(x, y) = 0 passing through the
point (x0, y0). The flow variables ahead of the initial wavefront are assumed to be
uniform having density ρ0, pressure p0, temperature T0 = Tb, velocity u0 along
x-axis and velocity v0 = 0 along y-axis. In the upcoming calculations, suffix 0 is
used to denote quantities ahead of the wavefront ξ(x, y) = 0. For the derivation
of transport equations for jump discontinuities in U , we introduce new curvilinear
coordinates ξ , y as follows [2]

ξx + λ(1)ξy = 0
ξ(x, y0) = x − x0

}
, and y = y. (10)

Here, ξ has co-ordinate property. It takes positive values ahead of the leading char-
acteristic, negative values behind the leading characteristic and zero values on the
leading characteristic.

In terms of the new coordinate system, Eq. (7) can be written as

L(i)Uξ + λ(1)λ(i)

(λ(1) − λ(i))
xξL(i)Uy + λ(1)

(λ(1) − λ(i))
xξL(i)F = 0, (11)

where xξ = 1/ξx denotes the Jacobian of transformation, U and Uy are continuous
across the wavefront ξ = 0, however Uξ and xξ are discontinuous. On using Eq. (9)
in Eq. (11) and subsequently evaluating the resulting expression on the rear side of
ξ = 0 for i = 2, 3, 4, 5 we have

ρξ = (1/a20)pξ, (12)

uξ = (−1/ρ0u0)ε0 pξ, (13)

vξ =
[{

M2
0/ε0) − 1

}1/2
/ρ0u0

]
pξ, (14)

hξ = (ε0 − 1)pξ, (15)

Setting i = 1 in Eq. (11) and differentiating with respect to ξ and subsequently
evaluating it on the rear side, we get

c20
[
(M2

0/ε0) − 1
]1/2

pξ y + ρ0u0c
2
0vξ y +

(
mρ0u0

y

)
a20vξ = 0. (16)

Plugging Eq. (14) in Eq. (16), we get
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pξ y +
[
m

2y

]
ε−1
0 pξ = 0. (17)

Integrating Eq. (17) with respect to y we get

pξ =
(
y0
y

) m
2ε0

pξ0 (18)

where, pξ0 = lim ȳ→y0 pξ , taken along ξ = 0. Also, along the wavefront ξ = 0 we
have xy = 1/λ(1), obtaining the differential coefficient of it with respect to ξ and
afterwards solving it on the rear side of ξ = 0 and using Eq. (18) in the expression
obtained, we get

xξ y′ = −
[
M2

0

{
(1 − Z0) +

(
�
ε0

)}
+ 2(1 − Z0)(ε0 − 1)

]

2ρ0(1 − Z0)a0c0
(
M2

0 − ε0
) 1

2

(
y0
y

) m
2ε0

pξ0, (19)

where, Z0 = ϑρ0. Equations (18) and (19) are the required transport equations.

5 Non-linear Steepening of Waves

In the current section, wewill examine the transport equations derived in the previous
section and their role in studying the evolutionary behaviour of shocks. Integrating
(19) with respect to y, using Eq. (18) and the fact that xξ0 = xξ

∣
∣
ξ=0− = xξ

∣
∣
ξ=0+ = 1,

which follows from Eq. (10), we get

xξ = 1 −
⎡

⎣
M2

0

{
(1 − Z0) +

(
�
ε0

)}
+ 2(1 − Z0)(ε0 − 1)

2ρ0(1 − Z0)a0c0
(
M2

0 − ε0
) 1

2

⎤

⎦y
m
2ε0
0 pξ0

∫ y

y0
α−m/2ε0dα.

(20)

Let y = Y (x) represent the body contour having with tangent parallel to the
stream line of velocity at the leading edge of the body. Therefore, dy/dx = v/u, on
differentiating it with respect to ξ and solving the resulting expression on the rear
side of ξ = 0 gives

vξ0 = u0Y
′′
0 , (21)

here, Y ′t ′
0 is the curvature of the body at the tip. On account of Eqs. (14) and (21),

Eq. (20) can be re-written as
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xξ = 1 −
⎡

⎣
M2

0

{
(1 − Z0) +

(
�
ε0

)}
+ 2(1 − Z0)(ε0 − 1)

2
(
M2

0 − ε0
)

⎤

⎦M2
0Y

′′
0 y

m
2ε0
0

∫ y

y0
α

− m
2ε0 dα.

(22)

In Eq. (22), xξ denotes the Jacobian of transformation on the rear side of ξ = 0,
for certain value y = yα it vanishes, as a result of which characteristics of the
neighbouring family ξ = constant will cross the wavefront ξ = 0 and a strong
discontinuity in the solution vector U known as shock wave comes into action. This
will happenwhenUξ is finitewhile xξ = 0, just behind thewavefront ξ = 0 andUx =
Uξ /xξ becomes infinite. The phenomenon of this kind is called steepening of the
wavefront. The investigation of expression (22) in detail for plane and axis-symmetric
flow configurations is discussed in the next section.

6 Results and Discussion

In the current section we shall discuss the supersonic flow past plane and axis-
symmetric bodies and the variation of shock formation distance with different flow
parameters. A schematic diagram describing the phenomenon is depicted in Fig. 1.

= 0Wavefront

< 0 > 0

0
0 0 > 1

0 < 1

Fig. 1 Schematic diagram of flow field and convergence of characteristics
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6.1 Plane Beak Case

Taking,m = 0 in Eq. (22) and presuming a plane beak with body contour y = Yb(x),
the sharp edge of the contour will release the initial disturbance with a vanishing
initial tangent, consequently Eq. (22) becomes

xξ = 1 − Y ′′
b (0)

χ
(y − y0), (23)

where χ = 2
(
M2

0 − ε0
)[{(

1 − Z0 + �
ε0

)
M2

0 + 2(1 − Z0)(ε0 − 1)
}
M2

0

]−1
> 0,

and Y ′′
b (0) is the radius of curvature of the body at the tip, where the body contour

starts bending.
As stated before, characterization of the formation of shock can be done by

vanishing Jacobian xξ . It is evident from Eq. (23) that on leading wavefront for
y0 < y, Jocobian will vanish provided the shape of the body has a compressive
corner at x = 0 i.e., Y ′′

b (0) > 0 with Y ′′
b (0) > χ . In addition when, Y ′′

b (0) ≤ χ then
for finite y0 > y, Jocobian will be positive, as a consequence there will be no shock
formation. Parameter χ portrays a critical limit in such a way that, when the radius
of curvature of the body surpasses this limit a shock will come into play some finite
distance away from the body. At the wavehead, the quantities vx and vξ are related
to each other as vx = vξ /xξ . Now, since the quantity vx can be interpreted in a bit
more physical way so, it will be more appropriate to work in respect of this quantity.
In view of Eqs. (14), (17) and (23) the expression for studying the decay and growth
of weak shocks can be obtained as follows

vx = vξ

xξ

= a0M0Y
′′
b(0)

1 − Yb ′′(0)
χ

(y − y0)
. (24)

It is evident from the above equation that Y ′′
b (0) > 0 with its magnitude greater

than χ , therefore a formation shock will take place and the accompanying distance
of shock formation y = yw, will be given by

yw = y0 + χ

yb ′′(0)
. (25)

Result labelled as Eq. (25) corresponds to the fact that when the denominator of
Eq. (24) becomes zero while the numerator remains finite, i.e., when the velocity
gradient at ξ = 0 is unbounded.
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6.2 Axisymmetric Case

Taking m = 1 in Eq. (22), and considering a ring shaped body y = Yw(x) with a
sharp-edged inlet releasing the initial disturbance running both inward and outwards
along the lines of characteristics. Following these assumptions Eq. (22) can be
rewritten as

xξ = 1 − Y ′′
w(0)

{
2ε0ϕ

(2ε0 − 1)

}[
y

{
(2ε0−1)

2ε0

}

− y0

{
(2ε0−1)

2ε0

}]
(26)

where ϕ =
[

M2
0

{
(1−Z0)+

(
�
ε0

)}
+2(1−Z0)(ε0−1)

2(M2
0−ε0)

]
M2

0 y
1

2ε0
0 , for the quantity within square

brackets we can find y0 < y such that it will be always positive and less than unity.
As mentioned previously, vanishing Jacobian xξ will lead to the formation of shock
on the condition that Y ′′

w(0) > 0 & Y ′′
w(0) > ϕ−1 the critical value. While, on the

other hand if Y ′′
w(0) ≤ ϕ−1 then xξ is positive and hence no shock formation. Hence

we surmise that occurrence of shock formation will happen only when Y ′′
w(0) strictly

exceeds critical boundϕ−1 with its correspondingdistanceof shock formation y = yw
can be obtained from Eq. (26) as

yw =
[

y

{
(2ε0−1)

2ε0

}

0 +
{

(2ε0 − 1)

2ε0ϕ

}(
1

Y ′′
w(0)

)]{
2ε0

(2ε0−1)

}

. (27)

From the above equation it is clear that the quantity in the square brackets will be
positive and smaller than unity. Hence, as mentioned above the formation of shock
will depend on how Y ′′

w(0) behaves with respect to ϕ−1.
The distance of shock formation for both plane and axis-symmetric cases are

specified by Eqs. (25) and (27), respectively. The effect of various parameters namely
the Mach number M0, Alfven number ε0, adiabatic index γ , the mass concentration
of solid particles κp, on the distance of shock formation has been displayed in
Figs. 2–9. For computational purpose values of different parameters involved are
taken as ε0 = 1.2, 1.4; γ = 1.4, 1.67, 2; M0 = 1.5, 2.0, 2.5, 3; Y ′′

b (0) = 0.4;
Y ′′
w(0) = 0.4; κp = 0, 0.3, 0.6; Z0 = 0.001; β = 1 and y0 = 1. The distance of

shock formation increases with an increase in κp (Figs. 2 and 3); decreases with an
increase in ε0 the magnetic field strength (Figs. 4 and 5) and γ is the adiabatic index
(Figs. 6 and 7) for both plane and axis-symmetric cases, respectively. Here the case
ε0 = 1 refers to the non-magnetic case. It can be observed from these figures that
there is an early formation of shock in the case of plane symmetry as compared to
axis-symmetry. Since the shock formation distance yw is decreasing function of M0

therefore, an increase in M0 lead to an early shock formation (Figs. 8 and 9). Hence,
it is concluded from the study that an increment in ε0 enhances the shock formation
and increment in κp increases the distance of shock formation while the increase in
γ reduces the distance of shock formation.
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Fig. 2 Variation of distance
shock formation yw with M0
for different values of κp for
plane flow, taking ε0 = 1.2
& γ = 1.4
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Fig. 3 Variation of distance
shock formation yw with M0
for different values of κp for
axis-symmetric flow, taking
ε0 = 1.2 & γ = 1.4
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Fig. 4 Variation distance of
shock formation yw with M0
for different values ε0 for
plane flow, taking κp = 0.3
& γ = 1.4

7 Concluding Remarks

The problems of propagation of weak shocks in a steady supersonic flow past plane
and axis-symmetric bodies have been examined theoretically. A derivation for the
distance of shock formation is obtained using the wavefront analysis method. The
conditions insuring that no shock will ever evolve on the wavefront have been
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Fig. 5 Variation distance of
shock formation yw with M0
for different values ε0 for
axis-symmetric flow, taking
κp = 0.3 & γ = 1.4

Fig. 6 Variation distance of
shock formation yw with M0
for different values γ for
plane flow, taking κp = 0.3
& ε0 = 1.2

Fig. 7 Variation distance of
shock formation yw with M0
for different values γ for
axis-symmetric flow, taking
κp = 0.3 & ε0 = 1.2

Fig. 8 Variation of distance
shock formation yw with ε0
for different values of M2

0 for
plane flow, taking κp = 0.3
& γ = 1.4
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Fig. 9 Variation of distance
shock formation yw with ε0
for different values of M2

0 for
axis-symmetric flow, taking
κp = 0.3 & γ = 1.4

obtained. It has been observed during the study that an increase in the magnetic
field strength enhances the shock formation and an increment in mass concentra-
tion of solid particles increases the distance of shock formation while an increase
in an adiabatic index reduces the distance of shock formation. The current study
can be relevant to problems like metallized rocket propellant, characterization of
star formation, formation of dusty crystals, macroscopic motion in the interplanetary
atmosphere with super-sonic speed, coma’s collision with a planet, and many other
daily life problems like nozzle flows, lunar ash flows, underground cosmic explo-
sions, acceleration of particles within shocks, high-speed jet flights in polluted air
etc.
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Numerical Treatment for a Coupled
System of Singularly Perturbed
Reaction–Diffusion Equations
with Robin Boundary Conditions
and Having Boundary and Interior
Layers

Sheetal Chawla and S. Chandra Sekhara Rao

Abstract A system of k(≥ 2) linear singularly perturbed differential equations of
reaction–diffusion type coupled through their reactive terms is consideredwithRobin
type boundary conditions, and the system has discontinuous source terms. The high-
est order derivative term of each equation is multiplied by a small positive parameter
and these parameters are assumed to be different inmagnitude, due towhich the over-
lapping and interacting interior and boundary layers may appear in the solution of
the considered problem. A numerical scheme involving a central difference scheme
for the differential equations and a cubic spline technique for the Robin boundary
conditions is developed on an appropriate piecewise-uniform Shishkin mesh. Error
analysis is done and the constructed scheme is proved to be almost second-order
uniformly convergent with respect to each perturbation parameter. Numerical exper-
iments are conducted to verify the theoretical findings.

Keywords Coupled system · Singular perturbation · Shishkin mesh · Bakhvalov
mesh · Discontinuous source term · Robin boundary conditions · Boundary layer ·
Parameter-uniform convergence · Finite difference scheme · Interior layer ·
Cubicspline

1 Introduction

Singularly perturbed problems occur very frequently in the fields of applied mathe-
matics and engineering such as elasticity, oceanography, optimal control theory, and
so on. Due to the presence of the perturbation parameters, these problems typically
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contain boundary oriented layers having multi-scale character. The regular occur-
rence of these types of problems and their interesting behavior make mathematicians
work for their solutions [5–9, 11–13, 15, 17–19, 21–26]. In the present work, a
coupled system of singularly perturbed reaction–diffusion differential equations is
examined on the unit interval � = (0, 1), having Robin type boundary conditions
with discontinuous source terms. It is assumed that a single discontinuity in the source
terms occur at a point η ∈ �.Let�1 = (0, η) and�2 = (η, 1).A jump in an arbitrary
function ω is defined as [ω](η) := ω(η+) − ω(η−). The objective of the considered
Robin boundary value problem is to find u ∈ C0(�)k ∩ C1(�)k ∩ C4(�1 ∪ �2)

k :

Tu ≡ −Eps u′′ + Bu = d, x ∈ �1 ∪ �2, (1)

(Rlu)i (0) = Rli ui (0) ≡ αi ui (0) − βi u
′
i (0) = pi (2)

(Rru)i (1) = Rri ui (0) ≡ γi ui (1) + δi u
′
i (1) = qi , (3)

where

αi ,βi , δi ≥ 0, γi > 0, 2αi + βi ≥ 1, γi − δi ≥ 1, for 1 ≤ i ≤ k, (4)

pi and qi are given constants for 1 ≤ i ≤ k. Eps = diag(ε1, . . . , εk) with ε1, . . . , εk,

the small perturbationparameters satisfy 0 < ε1 ≤ . . . ≤ εk ≤ 1;B(x) = (bi j (x))k×k

and d(x) = (di (x))k×1. Assume that the matrix B(x) is an L0− matrix. That is, it
satisfies the following conditions:

bi j (x) ≤ 0 for i 	= j, and bii (x) >

k∑

j 	=i, j=1

|bi j (x)|, for 1 ≤ i ≤ k, (5a)

0 < α < min
x∈�,
1≤i≤k

k∑

j=1

(bi j (x)). (5b)

for some constant α. The solution u = (u1, u2, . . . , uk)
T satisfies the following

interface conditions: [ui ](η) = 0, εi [u′
i ](η) = 0, for i = 1, 2, . . . , k. Singularly

perturbed reaction–diffusion system similar to (1)–(3) with Dirichlet type bound-
ary conditions has been studied in [2, 14, 16]. However, few works consider such
problems with Robin boundary conditions, but obtained only the almost first order
of uniform convergence independent of perturbation parameters. In [1, 4, 10], the
authors considered, a hybrid difference scheme for a coupled system of singularly
perturbed differential equations of reaction–diffusion type having Robin boundary
conditions and a cubic spline technique inside the layer region, to achieve the sec-
ond order of uniform convergence up to logarithmic factor. In the present article,
an almost second-order parameter-uniform convergence is obtained, which involves
spline technique for Robin boundary conditions, weighted average approximation at



Numerical Treatment for a Coupled System of Singularly … 631

the point of discontinuity and construction of suitable barrier functions, for a cou-
pled system of singularly perturbed reaction–diffusion equations with Robin bound-
ary conditions and having boundary and interior layers. The outline of the paper is
as follows. Section2 describes the maximum principle and the stability result for
the exact solution of the problem. The estimates, on the solution and its derivatives
are derived with an appropriate decomposition of the solution into the sum of the
smooth and singular components. In Sect. 3, a numerical scheme involving a hybrid
difference scheme combined with a cubic spline technique is constructed on a well
defined piecewise-uniform Shishkin mesh. Convergence analysis is given in Sect. 4.
Numerical results which are inline with the theoretical findings are presented in
Sect. 5.

Notation Throughout this article, C is used to denote a generic positive constant
which is independent of the small perturbation parameters εi , 1 ≤ i ≤ k and the
discretization parameter N . Also, a generic positive constant vector is denoted by
C = (C, C, . . . , C)T , which need not be same at each occurrence. Further, |v| =
(|v1|, |v2|, . . . , |vk |)T and v ≤ w is defined as vi ≤ wi , for 1 ≤ i ≤ k. The maximum
norm, denoted by ‖ . ‖G , where G is a closed subset of � is defined as ‖ v ‖G=
max
x∈G

‖v(x)| and ‖ v ‖G= max{‖ v1 ‖G, ‖ v2 ‖G, . . . , ‖ vk ‖G}.

2 Properties of the Exact Solution

Theorem 1 The problem (1)–(3) has a solution u = (u1, u2, . . . , uk)
T with ui ∈

C0(�) ∩ C1(�) ∩ C2(�1 ∪ �2) for 1 ≤ i ≤ k.

Proof Let u−(x), u+(x) be the particular solutions of the following system of equa-
tions

−Eps(u−)′′(x) + B(x)(u−)(x) = d(x), x ∈ �1,

−Eps(u+)′′(x) + B(x)(u+)(x) = d(x), x ∈ �2,

respectively. Consider the function

u(x) =
{
u−(x) + diag(p1 − Rl1u−

1 (0), . . . , pk − Rlk u−
k (0))�1(x) + P�2(x), : x ∈ �1,

u+(x) + diag(q1 − Rl1u+
1 (1), . . . , qk − Rlk u+

k (1))�2(x) + Q�1(x), : x ∈ �2,

where �1(x) = (φ11(x), . . . ,φ1k(x))T and �2(x) = (φ21(x), . . . ,φ2k(x))T are the
solution of the following boundary value problems

−Eps�′′
1(x) + B(x)�1(x) = 0, x ∈ �, Rl�1(0) = 1, Rr�1(1) = 0,

−Eps�′′
2(x) + B(x)�2(x) = 0, x ∈ �, Rl�2(0) = 0, Rr�2(1) = 1,
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respectively, and P and Q are constant diagonal matrices which are evaluated using
the fact that u ∈ C1(�)k .

Theorem 2 (The continuous maximum principle) Assume u1, . . . , uk ∈ C0(�) ∩
C2(�1 ∪ �2). Further assume that the solutionu = (u1, . . . , uk)

T satisfiesRlu(0) ≥
0, Rru(1) ≥ 0, Tu(x) ≥ 0 in �1 ∪ �2 and [u′](η) ≤ 0, then u(x) ≥ 0, for all x ∈ �.

The following lemma provides the stability result for the solution of the considered
problem.

Lemma 1 Let u = (u1, . . . , uk)
T be the continuous solution of (1)-(3). Then

‖u‖� ≤ C max{‖Rlu(0)‖, ‖Rru(1)‖, ‖Tu‖�1∪�2}.

The following lemma describes the estimates on the exact solution and its derivatives.

Lemma 2 Let u be the exact solution of (1)–(3). Then for each i = 1, . . . , k, and
x ∈ �1 ∪ �2, u and its derivatives satisfy the following estimates:

|u(m)
i (x)| ≤ Cε

− m
2

i (‖Rlu(0)‖ + ‖Rru(1)‖ + ‖d ‖�1∪�2) for m = 0, 1, 2.

|u(3)
i (x)| ≤ Cε

− 1
2

1 ε−1
i (‖Rlu(0)‖ + ‖Rru(1)‖ + ‖d ‖�1∪�2 + √

ε1‖d ′‖�1∪�2), and

|u(4)
i (x)| ≤ Cε−1

1 ε−1
i (‖Rlu(0)‖ + ‖Rru(1)‖ + ‖d ‖�1∪�2 + ε1‖d ′′‖�1∪�2).

To establish the parameters-uniform convergence of the numerical scheme, the solu-
tion u is decomposed into a sum of a smooth component v and a layer component w,
such that u = v + w.

The smooth component, v is defined to be the solution of the following system:

Tv(x) = d(x), x ∈ �1 ∪ �2,

Rlv(0) = B−1d(0), Rrv(1) = B−1d(1), v(x) = B−1d(x), x ∈ {η−, η+},

and the layer component, w solves the following:

Tw(x) = 0, x ∈ �1 ∪ �2,

Rlw(0) = Rl(u − v)(0),Rrw(1) = Rr (u − v)(1),

[w](η) = −[v](η), [w′](η) = −[v′](η).
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Now for 1 ≤ i ≤ k, we define the layer functions used to derive the estimates on
the layer component

Eεli
(x) := e−x

√
α/εi ) + e−(η−x)

√
α/εi , (6)

Eεri
(x) := e(η−x)

√
α/εi + e−(1−x)

√
α/εi . (7)

Bounds on regular and singular components can be obtained in the similar lines
as in [16, 20] for Robin boundary conditions also.

Theorem 3 Assume that the coupling matrix B satisfies (5a). Then for all x ∈ �1 ∪
�2 and i = 1, . . . k, the smooth component v and its derivatives satisfy the following
estimates:

|v(m)
i (x)|�1∪�2 ≤ C(1 + ε

(1− m
2 )

i ). f or m = 0, 1, 2, 3, 4.

Lemma 3 Let the coupling matrix B satisfies (5a). Then for all x ∈ �1 ∪ �2, i =
1, . . . k,and m = 0, 1, 2, 3, 4,, the following estimates hold on the smooth component
v and its derivatives:

|v(m)
i (x)|�1∪�2 ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
(
1 +

k∑

q=i

ε
−( m

2 −1)
q Eεlq

(x)
)
, x ∈ �1,

C
(
1 +

k∑

q=i

ε
−( m

2 −1)
q Eεri

(x)
)
, x ∈ �2.

Lemma 4 For 1 ≤ i ≤ j ≤ k and 0 < s ≤ 3/2, there exists a unique point x (s)
i, j ∈

(0, η
2 ) such that ε−s

i Eεli
(x (s)

i, j ) = ε−s
j Eεl j

(x (s)
i, j ). Also, ε−s

i Eεli
(η − x (s)

i, j ) = ε−s
j Eεl j

(η −
x (s)

i, j ). On [0, x (s)
i, j ) ∪ (η − x (s)

i, j , η) we have ε−s
i Eεli

(x) > ε−s
j Eεl j

(x) and on (x (s)
i, j , η −

x (s)
i, j ) we have ε−s

i Eεli
(x) < ε−s

j Eεl j
(x). Similar results hold for the domain �2.

Lemma 5 Let the coupling matrix B satisfies (5a). Then for i = 1, . . . , k, the layer
component w and its derivatives satisfy the following:

|wi (x)| ≤ C

{ Eεlk
(x), x ∈ �1,

Eεrk
(x), x ∈ �2,

|w(m)
i (x)| ≤ C

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k∑

q=i

Eεlq
(x)

ε
m
2

q

, x ∈ �1,

k∑

q=i

Eεrq
(x)

ε
m
2

q

, x ∈ �2, for m = 1, 2

|w(3)
i (x)| ≤ C

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k∑

q=1

Eεlq
(x)

ε
3
2
q

, x ∈ �1,

k∑

q=1

Eεrq
(x)

ε
3
2
q

, x ∈ �2,

‖εiw
(4)
i (x)‖ ≤ C

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k∑

q=1

Eεlq
(x)

εq
, x ∈ �1,

k∑

q=1

Eεrq
(x)

εq
, x ∈ �2.
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Theorem 4 For 1 ≤ i ≤ k, if the layer component w is decomposed as follows:

wi (x) =
k∑

q=1

wi,εq (x).

Then,

|w′′
i,εq

(x)| ≤ C

{
min

{
1
εq

, 1
εi

}Eεlq
(x), x ∈ �1,

min
{

1
εq

, 1
εi

}Eεrq
(x), x ∈ �2,

|w′′′
i,εq

(x)| ≤ C

{
min

{
1

ε
3/2
q

, 1
εi

√
εq

}Eεlq
(x), x ∈ �1,

min
{

1
ε
3/2
q

, 1
εi

√
εq

}Eεrq
(x), x ∈ �2.

3 Discretization of the Problem

To resolve boundary and interior layers, we consider the standard finite difference
scheme, with N mesh intervals on a piece wise-uniform variant of Shishkin mesh on
�N = �N

1 ∪ �N
2 . The transition parameters are defined as follows:

σεlk
:= min

{
η

4
, 2

√
εk

α
ln N

}
, σεrk

:= min

{
(1 − η)

4
, 2

√
εk

α
ln N

}
,

σεlm
:= min

{
σεlm+1

2
, 2

√
εm

α
ln N

}
,σεrm

:= min

{
σεrm+1

2
, 2

√
εm

α
ln N

}
,

for m = k − 1, . . . , 1. The interval [0, η] is divided into intervals [0,σεl1
], . . . ,

(σεlk−1
,σεlk

], (σεlk
, η − σεlk

], (η − σεlk
, η − σεlk−1

], . . . , (η − σεl1
, η]. To get a

piecewise-uniform mesh, we subdivide [0,σεl1
] and (η − σεl1

, η] into N/2k+2 mesh
intervals and other subintervals (σεlm

,σεlm+1
] and (η − σεlm+1

, η − σεlm
], for m =

k − 1, . . . , 1, into N/2k−m+3 mesh intervals of uniform length and on (σεlk
, η − σεlk

]
a uniformmesh having N/4mesh intervals. In the similar manner, divide the interval
[η, 1]. Let h j = x j − x j−1 be the j th mesh step and � j = h j +h j+1

2 , clearly x N
2

= {η}
and �

N = {x j : j = 0, 1, . . . , N }.
On a piecewise-uniform variant of Shishkinmesh�

N
, the continuous problem (1)

is discretized by considering a cubic spline scheme for Robin boundary conditions
and a central finite difference scheme at the interior points of the domain for the
differential equations. Define the discrete finite difference operator TN as follows:

TNU := −Eps δ2U + BU = d, for all x j ∈ �
N
, (8)
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where δ2Y (x j ) = (D+Y (x j )−D−Y (x j ))

� j
, D+Y (x j ) = Y (x j+1)−Y (x j )

h j+1
,

D−Y (x j ) = Y (x j )−Y (x j−1)

h j
, d(η) = h N

2
d(η−h N

2
)+h N

2 +1
d(η+h N

2 +1
)

h N
2

+h N
2 +1

.

and the boundary conditions are discretized as

(RN
l U )i (x0) ≡ αiUi (x0) − βi S+Ui (x0) = pi , (9)

(RN
r U )i (xN ) ≡ γiUi (xN ) + δi S−Ui (xN ) = qi , (10)

where S+Ui (x0) and S−Ui (xN ) for 1 ≤ i ≤ k are obtained from the one sided limits
[3, 4]

S′(x j+) = −h j+1

3
Mi (x j ) − h j+1

6
Mi (x j+1) + Ui (x j+1) − Ui (x j )

h j+1
, (11)

S′(x j−) = h j

6
Mi (x j−1) + h j

3
Mi (x j ) + Ui (x j ) − Ui (x j−1)

h j
, (12)

Substitute Mi (x j ) from −μi Mi (x j ) + ai1(x j )u1(x j ) + . . . + aik(x j )uk(x j ) =
fi (x j ) to (11)–(12), to get the approximation for the one sided first-order derivatives
at the boundary points. Therefore, the discretization (9)–(10) for the Robin boundary
conditions reduce to the following:

[3εi

h1

(
αi + βi

h1

)
+ aii (x0)βi

]
Ui (x0) +

[−3εiβi

h2
1

+ aii (x1)βi

2

]
Ui (x1)

+ βi

m∑

k=1
k 	=i

aik(x0)Uk(x0) + βi

2

m∑

k=1
k 	=i

aik(x1)Uk(x1) = 3εi pi

h1
+ βi fi (x0) + βi

2
fi (x1),

(13)
and

[−3εiδi

h2
N

+ aii (xN−1)δi

2

]
Ui (xN−1) +

[3εi

hN

(
γi + δi

hN

)
+ aii (xN )δi

]
Ui (xN )

+ δi

m∑

k=1k 	=i

aik(xN )Uk(xN ) + δi

2

m∑

k=1k 	=i

aik(xN−1)Uk(xN−1)

= 3εi qi

hN
+ δi fi (xN ) + δi

2
fi (xN−1).

(14)

Lemma 6 (The discrete maximum principle) Suppose the mesh function Y satisfies
RN

l Y(x0) ≥ 0, RN
r Y(xN ) ≥ 0 and TNY ≥ 0, for all x j ∈ �N , then Y ≥ 0 for all

x j ∈ �
N

.
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Proof Let Yi (zi ) = min
x j ∈�

N {Yi (x j )}. Assumewithout loss generality that Y1(z1) ≤
Yi (zi ) for 1 ≤ i ≤ k. If Y1(z1) ≥ 0, then the proof is complete. Suppose that
Y1(z1) < 0, then we complete the proof by showing that this leads to a contradiction.
If z1 = {x0}, then RN

l1
Y1(x0) < 0 and if z1 = {xN }, then RN

r1 Y1(xN ) < 0, which is a
contradiction. Then, for x j ∈ �N

(T NY)1(z1) = −ε1δ
2Y1(z1) +

k∑

m=1

a1m(z1)Ym(z1) < 0,

which leads to a contradiction. Similarly, we can prove the required result in the
other case also. •

A consequence of the discrete maximum principle is the following stability result.

Lemma 7 Suppose U is a numerical solution of (8)–(10), then

‖U‖
�

N ≤ max

{
‖RN

l Y(0)‖, ‖RN
r Y(1)‖, 1

α
‖d ‖�N

1 ∪ �N
2

}
.

Proof Define the function �N± (x j ) := max{‖RN
1 U(0)‖, ‖RN

r U(1)‖, ‖T NU
‖�N

1 ∪�N
2
}(2 − x j , . . . , 2 − x j )

T ± U(x j ). From this, we can conclude that

RN
l �N± (0) ≥ 0, RN

r �N± (1) ≥ 0 and T N �N± (x) ≥ 0 for each x ∈ �N
1 ∪ �N

2 .

From the discrete maximum principle, it follows that �N± ≥ 0 for x ∈ �
N
, which

leads to the required bound on U •
Decompose the discrete solution U into the sum U = V + W, where Vis the

solution to

TNV(x j ) = d(x j ), for all x j ∈ �N ,

RN
l V(0) = Rlv(0), V(η) = v(η), RN

r V(1) = Rrv(1),

and W is the solution to

TNW(x j ) = 0, for all x j ∈ �N ,

RN
l W(0) = Rlw(0), RN

r W(1) = Rrw(1),

[W](η) = −[V](η), [DW](η) = −[DV](η),

where the jump in the discrete derivative of a mesh function Z at the point xi = η is
defined by



Numerical Treatment for a Coupled System of Singularly … 637

[DZ](η) := D+Z(η) − D−Z(η).

4 Convergence Analysis

In this section, we discuss the consistency of the proposed method and derive the
parameters-uniform convergence.

Consider the truncation error at the boundary point, x0 = 0:

τ0,ui = Rc
i,0ui (x0)+R+

i,0ui (x1) +
∑

k=1
k 	=i

Qc
k,0uk(x0) +

∑

k=1
k 	=i

Q+
k,0uk(x1)

− F−
i,0 − Fc

i,0 fi (x0) − F+
i,0 fi (x1),

where

Rc
i,0 =

[3εi

h1

(
αi + βi

h1

)
+ aii (x0)βi

]
, R+

i,0 =
[−3εiβi

h2
1

+ aii (x1)βi

2

]
,

Qc
k,0 = βi aik(x0), Q+

k,0 = βi

2
aik(x1),

F−
i,0 = 3εi Xi

h1
, Fc

i,0 = βi fi (x0), F+
i,0 = βi

2
fi (x1).

Using (1) and the Taylor’s series expansion, we have
τ0,ui = T0,0ui (x0) + T1,0u′

i (x0) + T2,0u′′
i (x0) + T3,0u(3)

i (x0) + T4,0u(4)
i (η),where

η ∈ (0, 1) and

T0,0 = Rc
i,0 + R+

i,0 − 3εi αi

h1
− Fc

i,0aii (x0) − F+
1,0aii (x0),

T1,0 = h1R+
i,0 + 3εi βi

h1
− βi aii (x1)h1

2
, T2,0 = h2

1R+
i,0

2
+ εi (Fc

i,0 + F+
i,0) − h2

1F+
i,0aii (x1)

2
,

T3,0 = h3
1R+

i,0

3! + εi h1F+
i,0 − F+

i,0aii (x1)h3
1

3! , T4,0 = h4
1

4! R+
i,0 + εi h2

1

2
F+

i,0 − F+
i,0aii (x1)h4

1

4! .

It is obvious to note that

T0,0ui (x0) + T1,0u′
i (x0) = 0, T2,0 = 0, T3,0 = 0, T4,0 = εiβi h2

1

8
.

Thus, the truncation error for ui , 1 ≤ i ≤ k at x = x0 is given by

|τi,0| ≤ Cεiβi h
2
1‖u(4)

i (x0)‖(x0,x1)
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Now, by using Theorems 4 and 5, we have

|τi,0| ≤ C(N−1 ln N )2,

Similar result holds for the boundary point xN = 1.
By a Taylor expansion for the function φ and j = 1, . . . , N/2 − 1, N/2 +

1, . . . , N , we have

|( d2

dx2
− δ2)φs(x j )| ≤

⎧
⎨

⎩

C(x j+1 − x j−1)|φs |3 (15)
Ch2|φs |4, x j+1 − x j = x j − x j−1 = h (16)
C maxx∈[x j−1,x j+1] |φ′′

s (x j )|. (17)

To evaluate the truncation error for the regular component, we consider the fol-
lowing cases:

Case (i) For x j /∈ {σεlm
, η − σεlm

, η + σεrm
, 1 − σεrk

}.
Using (16) and the bounds defined in Theorem 4, we have

|((T N − T )v)s(x j )| ≤ Cεs(x j+1 − x j−1)
2|vs |4 ≤ C N−2.

Case (ii) For x j ∈ {σεlm
, η − σεlm

, η + σεrm
, 1 − σεrk

}.
Using (15) and the bounds defined in Lemma 3, we have

|((T N − T )v)s(x j )| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cεs(x j+1 − x j−1)
(
1 +

k∑

q=s

ε
− 1

2
q Eεlq

(x j−1)
)
, x ∈ �1,

Cεs(x j+1 − x j−1)
(
1 +

k∑

q=s

ε
− 1

2
q Eεrq

(x j−1)
)
, x ∈ �2,

For s ≥ m, we have

|((T N − T )v)s(x j )| ≤ C
εs√
εm

(hεm + hεm+1),

and for s < k, using Lemma 2, we have

|((T N − T )v)s(x j )| ≤ C
εs√
εm

(hεm + hεm+1).

To evaluate the truncation error for the singular components on different subintervals,
we consider the following cases:
Case (i) For x j ∈ [σεlk

, η − σεlk
] ∪ [η + σεrk

, 1 − σεrk
].

Consider first that x j ∈ [σεlk
,

η
2 ]. Using (17) and bounds on singular components,

we have
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| [(TN − T)w]s(x j ) |≤ C(εs

k∑

q=s

Eεlq
(x)

εq
) ≤ C(‖ Eεlk

‖[x j−1,x j+1]) ≤ C N−2.

A similar result can be proved for x ∈ [ η
2 , η − σεlk

]. Similar result can be proved
for the other subinterval.
Case (ii) For x j ∈ (0,σεl1

) ∪ (η − σεl1
, η) ∪ (η, η + σεr1

) ∪ (1 − σεr1
, 1).

(16) and Lemma 5, yields

| ((TN − T)w)s(x j ) |≤ Ch2‖εsw
(4)
s ‖ ≤ C

(
h2

k∑

q=1

Eεlq
(x)

εq

)
≤ C(N−1 ln N )2.

Case (iii) For x j ∈ [σεlm
,σεlm+1

) ∪ [η − σεlm+1
, η − σεlm

) ∪ [η + σεrm
, η + σεrm+1

) ∪
[1 − σεrm+1

, 1 − σεrm
), where 1 ≤ m ≤ k − 1.

Using Theorem 4, we get

| ((TN − T)w)s (x j ) = (|
m∑

q=1

εs (
d2

dx2
− δ2)ws,εq (x j ) +

k∑

q=m+1

εs (
d2

dx2
− δ2)ws,εq (x j )|. (18)

Consider the first part of (18) for s ≤ m, and use the definition of point x (s)
i, j to get

|
m∑

q=1

εs(
d2

dx2
− δ2)ws,εq (x j )| ≤ ‖

m∑

q=1

εsw
′′
s,εq

‖[x j−1,x j+1] ≤ C N−2,

and if, s > m, using the bounds on singular components and following the analysis
as in the Case(i), we get

|
m∑

q=1

εs(
d2

dx2
− δ2)ws,εq (x j )| ≤ ‖

m∑

q=1

εsw
′′
s,εq

‖[x j−1,x j+1] ≤ C N−2.

For the second part of (18), using bounds on singular components, we get

|
k∑

q=m+1

εs(
d2

dx2
− δ2)ws,εq (x j )| ≤ Cεs(h j + h j+1) ‖

k∑

q=m+1

w′′′
s,εq

‖≤ C N−2.

Case (iv) At the point xN/2 = η , hN/2 = hN/2+1 = h , and σεl1
= σεr1

= √
ε1
α
ln N .

It follows that
|(TN (U − u))1(η)| ≤ C(N−1 ln N ).

Likewise, it can be proved that



640 S. Chawla and S. C. S. Rao

|(TN (U − u)) j (η))| ≤ C(N−1 ln N ), 2 ≤ j ≤ k.

Using the weighted average approximation at the point of discontinuity, cubic spline
technique for the Robin boundary conditions, and with suitably constructed mesh
functions and barrier functions, nearly second-order parameter-uniform convergence
of the proposed method is proved in the following main result.

Theorem 5 For problem (1)–(3), suppose that u and U are the exact and numerical
solutions, then

‖U − u‖
�

N ≤ C N−2 ln2 N .

Proof For m = 1, . . . , k, define the mesh functions θ1m , θ2m , θ3, and θ4 as follows:

θ1m(x j ) :=
j∏

i=1

(
1 +

√
α

2εm
hi

)
, θ2m(x j ) :=

j∏

i=1

(
1 +

√
α

2εm
hi

)−1
,

θ3(x j ) :=
j∏

i=1

(
1 +

√
α

2ε1
hi

)
, θ4(x j ) :=

j∏

i=1

(
1 +

√
α

2ε1
hi

)−1
.

Now, for m = 1, . . . , k, define the barrier functions �m , �mη, and �η as follows:

�η(x j ) :=
{

θ3(x j )

θ3(η)
, 0 ≤ x j ≤ η,

θ4(x j )

θ4(η)
, η ≤ x j ≤ 1.

�m(x j ) :=

⎧
⎪⎪⎨

⎪⎪⎩

x j

σεlm
, 0 ≤ x j ≤ σεlm

,

1, σεlm
≤ x j ≤ 1 − σεrm

,
1−x j

σεrm
, 1 − σεrm

≤ x j ≤ 1,

and

�mη(x j ) :=

⎧
⎪⎪⎨

⎪⎪⎩

θ1m (x j )

θ1m (η−σεlm
)
, 0 ≤ x j ≤ d − σεlm

,

1, d − σεlm
≤ x j ≤ d + σεrm

,
θ2m (x j )

θ2m (η+σεrm )
, d + σεrm

≤ x j ≤ 1,

For i 	= N
2 , define the mesh function

�±(x j ) := C(N−1 ln N )2
(
1 +

k∑

m=1

�m(x j ) + θmη(x j )(1, . . . , 1)
T ± (U − u)(x j ),

and for i = N
2 , define

�±(x j ) := C(N−1 ln N )2(1 + �η(x j ))(1, . . . , 1)
T ± (U − u)(x j ).

Apply discrete maximum principle to conclude the result •



Numerical Treatment for a Coupled System of Singularly … 641

5 Numerical Results

The numerical results are presented for two test problems to show the efficiency and
applicability of the theoretical results. The piece wise-uniform Shishkin mesh �N is
constructed for the choice of α = 0.95 as per the criterion (5b).

Example 1 Consider the first singularly perturbed reaction–diffusion problem with
discontinuous source term and robin boundary conditions

−ε1u′′
1(x) + 2(x + 1)2u1 − (1 + x3)u2 = f1(x), x ∈ �1 ∪ �2,

−ε2u′′
2(x) − 2 cos(

π

4
)u1 + 2.2e1−x u2 = f2(x), x ∈ �1 ∪ �2,

2u1(0) − √
ε1u′

1(0) = 1, u2(0) − √
ε2u′

2(0) = 0,

u1(1) + √
ε1u′

1(1) = 0, 2u2(1) + √
ε2u′

2(1) = 1,

where

f1(x) =
{
2ex f or 0 ≤ x ≤ 0.5,
1 f or 0.5 < x ≤ 1,

and

f2(x) =
{
10x + 1 f or 0 ≤ x ≤ 0.5,
2 f or 0.5 < x ≤ 1.

Example 2 Consider the second singularly perturbed reaction–diffusion problem
with discontinuous source term and robin boundary conditions

− ε1u′′
1(x) + 3u1(x) − (1 − x)u2(x) − (1 − x)u3(x) = f1(x), x ∈ �1 ∪ �2,

−ε2u′′
2(x) − 2u1(x) + (4 + x)u2(x) − u3(x) = f2(x), x ∈ �1 ∪ �2,

−ε3u′′
3(x) − 2u1(x) − 3u2(x) + (6 + x)u3(x) = f3(x), x ∈ �1 ∪ �2,

u1(0) − √
ε1u′

1(0) = 1, 2u2(0) − √
ε2u′

2(0) = 2, u3(0) − 2
√

ε3u′
3(0) = 1,

u1(1) + √
ε1u′

1(1) = 2, 2u2(1) + √
ε2u′

2(1) = 1, u3(1) + √
ε3u′

3(1) = 2,

where

f1(x) =
{
exp(x) f or 0 ≤ x ≤ 0.5,
2 f or 0.5 < x ≤ 1,

f2(x) =
{
cos(x) f or 0 ≤ x ≤ 0.5,
4 f or 0.5 < x ≤ 1,
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and f3(x) =
{
1 + x2 f or 0 ≤ x ≤ 0.5,
3 f or 0.5 < x ≤ 1.

As the solutions of theExamples 1 and 2 are not known, to find the pointwise errors
and rate of convergence, the double mesh principle is used. Let U be the solution
of the numerical method on the mesh �N and Û be the solution of the numerical
method on the mesh having the mesh points x̂i , which contains the mesh points of
the initial mesh and their middle points. For different values of N and ε1, ε2, which
takes the values from the set

Sε1,ε2 = {(ε1, ε2)|, ε1 = 10− j , 0 ≤ j ≤ 16, ε2 = 10−l , 0 ≤ l ≤ j}.

For different values of N and ε1, ε2, ε3, which takes the values from the set

Sε1,ε2,ε3 = {(ε1, ε2, ε3)|, ε1 = 10− j , 0 ≤ j ≤ 12, ε2

= 10−l , 0 ≤ l ≤ j, ε3 = 10−k, 0 ≤ k ≤ l}.

We compute �N
ε1,ε2

:= ‖(U − Û)(x j )‖�
N and �N

ε1,ε2,ε3
:= ‖(U − Û)(x j )‖�

N . The
parameter-uniform error is calculated by the formula

�N := max
Sε1 ,ε2

{�N
ε1,ε2

} and�N := max
Sε1 ,ε2 ,ε3

{�N
ε1,ε2,ε3

}.

The numerical order of convergence of the method is calculated using the formula

pN := ln(�N ) − ln(�2N )

ln(2 ln N ) − ln(ln(2N ))
.

The maximum pointwise parameter-uniform error �N and the parameters-
uniform numerical order of convergence of the present method for Examples 1 and
2 are presented in Table1. From the Table1, we observe that the proposed numerical

Table 1 Maximum pointwise parameter-uniform error �N and the parameter-uniform rate of
convergence pN for Example 1 and Example 2

N Example 1 Example 2

�N pN �N pN

64 4.24E-02 0.97 9.28E-02 0.54

128 2.51E-02 1.46 6.92E-02 1.16

256 1.11E-02 1.85 3.62E-02 1.62

512 3.83E-03 1.96 1.43E-02 1.86

1024 1.21E-03 1.91 4.78E-03 1.95

2048 3.87E-04 – 1.49E-03 –
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Fig. 1 The (1a) is the plot of the component U1 and the (1b) is the plot of the component U2 of
the numerical solution of Example 1 for ε1 = 10−16, ε2 = 10−14 and N = 256a
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Fig. 2 The (2a) is the plot of the component U1, the (2b) is the plot of the component U2 and the
(2c) is the plot of the component U3, of the numerical solution of Example 2 for ε1 = 10−8, ε2 =
10−6, ε3 = 10−4 and N = 512

method is parameters-uniformly convergent of order almost two, which is in agree-
ment with the theoretical findings. Figure1 shows the presence of overlapping and
interacting boundary and interior layers for ε1 = 10−16, ε2 = 10−14 and N = 256
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for Example 1.We can also see the presence of overlapping and interacting boundary
and interior layers in Fig. 2 for ε1 = 10−8, ε2 = 10−6 , ε3 = 10−4 and N = 512 for
Example 2.
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Double-Diffusive Convection with
the Effect of Rotation in Magnetic
Nanofluids

Monika Arora, Mustafa Danesh, and Avinash Rana

Abstract A linear stability analysis is performed to investigate the effect of rotation
and solute for a thin horizontal layer of water-based magnetic nanofluid (WMNF )
and ester-based magnetic nanofluids (EMNF ). The fluid is heated and salted from
below, subject to rotation around the vertical axis. As stated in Buongiorno (J Heat
Transf 128, 240–250, 2006, [1]), Brownian diffusion and thermophoresis are the
significant slip mechanisms in nanofluids. In this work, we consider these two along
with magnetophoresis since we are dealing with magnetic nanofluids. A numerical
method is employed using MATLAB’s EIG function to solve the resulting eigen-
value problem. The effect of various parameters of the problem which govern the
flow has been observed at the onset of convection in the gravity environment in a
rigid-rigid boundary condition through neutral stability curves (NSCs). The effect
of rotation is investigated using the Taylor number (TA). We analyse this significant
parameter in rigid-free and free-free boundary conditions also with respect to both
the environments (gravity and microgravity) and find that the increment in the value
of TA contributes to system stability under both the environments in all the boundary
conditions.
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1 Introduction

Double-diffusive convection (DDC) has gained much attention after the work of
Stommel [2]. This process occurs due to two density gradients with different molec-
ular diffusivities. The process of DDC provides a deep understanding in the fields
of oceanography, astrophysics, and chemical engineering, to name a few. There are
two constituents (heat and salt in oceanography, heat and helium in astrophysics, and
two different solutes in chemical engineering) having different molecular diffusivity
which contribute in the reverse way to the vertical density gradient, resulting in the
same qualitative behaviour on DDC with variation in time and space scales of the
motion. Reviews of Turner [3] and Huppert and Turner [4] are useful sources of
information on double-diffusive convection and related fields. For more studies on
DDC, the reader is referred to [5–10] and references therein.

2 Physical Model of the Flow

An infinite horizontal layer of incompressible MNF heated and salted from below
is considered. The fluid is assumed to occupy the layer z ∈ [0, d] with gravity, g,
acting along the negative z-direction. The magnetic field H acts outside the layer.
The system rotates with the angular velocity Ω [see Fig. 1]. The temperature and the
volumetric fraction of nanoparticles are assumed to be constant on the boundaries.

Fig. 1 Geometric structure of the physical model
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3 Mathematical Formulation of the Problem

Following [11, 12], the governing equations for the present problem, known as
equation of continuity, equation of momentum, equation for nanoparticles, equation
of thermal energy,Maxwell’s equations,magnetization equation and solutal equation,
respectively are:

∇ · u = 0, (1)

ρ f

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u + μ0(M · ∇)H − ρgk + 2ρ f (u × Ω), (2)

∂φ

∂t
+ u · ∇φ = ∇ · (DB∇φ + DT

∇T

Tc
− DH∇H), (3)

(ρc) f

(
∂T

∂t
+ u · ∇T

)
= ∇ · (k1∇T ) + ρpcp

(
DB∇T · ∇φ + DT

∇T · ∇T

Tc
−DH∇T · ∇H) + (ρc) f DTC∇2C, (4)

∇ · B = 0, ∇ × H = 0, B = μ0(M + H), (5)

Meq = H
H

MsφL(αL) = H
H

Meq(Hφ, T,C), (6)

∂C

∂t
+ u · ∇C = DS∇2C + DCT∇2T . (7)

We assume that the temperature and the volumetric fraction of nanoparticles are
constant on the boundaries. Therefore, Boundary Conditions (B. C.) are:

w = 0, T = Th, φ = φ0, C = C0 at z = 0,
w = 0, T = Tc, φ = φ1, C = C1 at z = d.

}
(8)

with
∂w

∂z
= 0 on the rigid surface and

∂2w

∂z2
= 0 on the stress-free surface.

Non-dimensional form of Eqs. (1)–(7):

∇ · u = 0, (9)
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1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u + λ1(M · ∇)H − (Rnφ − RaT + Rs

Les
C

+ RanNφTφ − RsnNφCφ + ρ1 − ρ2φ)k + TA
1/2(u × k),

(10)

∂φ

∂t
+ u · ∇φ = 1

Le
∇2φ + Na

Le
∇2T − N ′

a

Le
∇2H, (11)

∂T

∂t
+ u · ∇T =∇2T + Nb

Le
(∇φ · ∇T ) + NaNb

Le
(∇T · ∇T )

− N ′
aNb

Le
(∇H · ∇T ) + Nct∇2C, (12)

χ2∇ · M + ∇ · H = 0, (13)

M = H
H

(1 + χ)

χ2

{
χ

1 + χ
H − Mp1

Mp3
T + M ′

p1

M ′
p3

φ + M ′′
p1

M ′′
p3

C + χ2 − 2χ

1 + χ

}
, (14)

∂C

∂t
+ u · ∇C = 1

Les
∇2C + Nct∇2T, (15)

where

ρ1 = d3ρ f

κμ
(1 + αTc − α′C1)g, ρ2 = d3ρ f

κμ
(φ0 − φ1)(αTc − α′C1)g,

λ1 = μ0M0H0d2

κμ
, Nφ = φ0 − φ1

1 − φ0
.

B.C. (8) become :

w = 0, T = Th
Th − Tc

, φ = φ0

φ0 − φ1
, C = C0

C0 − C1
at z = 0,

w = 0, T = Tc
Th − Tc

, φ = φ1

φ0 − φ1
, C = C1

C0 − C1
at z = 1.

⎫⎪⎬
⎪⎭ (16)
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Non-dimensional parameters:

Ra = ρ f gαd3(Th − Tc)

μκ
(Rayleigh number), Le = κ

DB
(Lewis number),

Pr = μ

ρ f κ
(Prandtl number), Rn = (ρp − ρ f )(φ0 − φ1)gd

3

μκ
(Concentration Rayleigh number),

Na = DT (Th − Tc)

DBTc(φ0 − φ1)
(Modified diffusitivity ratio), N ′

a = DH H0

DB (φ0 − φ1)
(Modified diffusitivity ratio),

Rs = ρ f gα′d3(C0 − C1)

μDS
( Solutal Rayleigh number), Les = κ

DS
(Solutal Lewis number),

Nct = DTC (C0 − C1)

k(Th − Tc)
(Soret parameter), Nct = DCT (Th − Tc)

k(C0 − C1)
(Dufour parameter),

Mp1 = μ0χ
2H2

0 (Th − Tc)

ρ f gαd(1 + χ)T 2
h

(Magnetic parameter), Mp3 = μ0χH
2
0

ρ f gαdTh
(Magnetic parameter),

M ′
p1 = μ0χ

2H2
0 (φ0 − φ1)

ρ f gαd(1 + χ)φ20
(Magnetic parameter), M ′

p3 = μ0χH
2
0

ρ f gαdφ0
(Magnetic parameter),

M ′′
p1 = μ0χ

2H2
0 (C0 − C1)

ρ f gα′d(1 + χ)C2
0

(Magnetic parameter), M ′′
p3 = μ0χH

2
0

ρ f gα′dC0
(Magnetic parameter)

Nb = (ρC)p(φ0 − φ1)

(ρC) f
(Modified particle density increment), TA = 4Ω2d4

ν2
(Taylor number).

Here ν = μ
ρ f

is the kinematic viscosity, RaN = (1 − φ0)Ra and Rsn = (1 − φ0)
Rs
Les

.

4 Solution of Steady State

Here

ub = 0,

and pb, Tb, φb, Mb, Hb, and Cb all are functions of z only.

Then Eqs. (10)–(15) reduce to

− dpb
dz

+ λ1Mb
dHb

dz
− Rnφb + RaTb − Rs

Les
Cb − RanNφTbφb

+ RsnNφCbφb − ρ1 + ρ2φb = 0, (17)

d2φb

dz2
+ Na

d2Tb
dz2

− N ′
a

d2Hb

dz2
= 0, (18)
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d2Tb
dz2

+ dTb
dz

{
Nb

Le

dφb

dz
+ NaNb

Le

dTb
dz

− N ′
aNb

Le

dHb

dz

}
+ Nct

d2Cb

dz2
= 0, (19)

χ2
dMb

dz
+ dHb

dz
= 0, (20)

Mb = 1 + χ

χ2

{
χ

1 + χ
Hb − Mp1

MP3
Tb + M ′

p1

M ′
p3

φb + M ′′
p1

M ′′
p3

Cb + χ2 − 2χ

1 + χ

}
, (21)

1

Les

d2Cb

dz2
+ Nct

d2Tb
dz2

= 0. (22)

Using the B.C. (16), and following [1, 13, 14], we solve the Eqs. (17)–(22), to
obtain the solution of steady state. The following results are obtained.

ub = 0, p = pb(z), Tb = Th
(Th − Tc)

− z,

φb = φ0

(φ0 − φ1)
− z, Hb = 1 − Mp1

Mp3
z + M ′

p1

M ′
p3

z + M ′′
p1

M ′′
p3

z,

Mb = 1 + 1

χ2

(
Mp1

Mp3

)
z − 1

χ2

(
M ′

p1

M ′
p3

)
z − 1

χ2

(
M ′′

p1

M ′′
p3

)
z, Cb = C0

(C0 − C1)
− z.

(23)

5 Linear Analysis

Here we take very small perturbations to

u, p, T, C, M, φ, H .

By substituting perturbed variables into Eqs. (9)–(15) and linearizing about the
steady state, we get the following set of linearized perturbation equations:
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1

Pr

∂∇2w

∂t
= ∇4w −

{
RaMp3 − RasM

′
p3 − Rs

Les
M ′′

p3

}
∂∇2

Hψ

∂z
+

{
Ng − Ra

Mp3M
′
p1

M ′
p3

+Ran(1 + Nφz) − Rs

Les

M ′′
p3Mp1

Mp3

}
∇2
H θ

−
{
Ra

Mp3M
′
p1

M ′
p3

− RasM
′
p1 − Rs

Les

M ′′
p3M

′
p1

M ′
p3

+Rn + RanNφ(1 − z) − RsnNφ(1 − z)
}∇2

Hφ +
{

Rs

Les

M ′′
p3M

′
p1

M ′
p3

+ Rs

Les
M ′′

p1

− Rs

Les

M ′′
p3Mp1

Mp3
− Rsn(1 + Nφz)

}
∇2
HC − TA

1/2 ∂ξ

∂z
, (24)

1

Pr

∂ξ

∂t
= ∇2ξ + TA

1/2 ∂w

∂z
, (25)

∂φ

∂t
= w + 1

Le
∇2φ + Na

Le
∇2θ − N ′

a

Le

∂∇2ψ

∂z
, (26)

∂θ

∂t
=∇2θ + w − Nb

Le

∂φ

∂z
+ NbN ′

a

Le

∂2ψ

∂z2
−

{
Nb

Le
+ 2NaNb

Le
− NbN ′

aMp1

LeMp3

+NbN ′
aM

′
p1

LeM ′
p3

+ NbN ′
aM

′′
p1

LeM ′′
p3

}
∂θ

∂z
+ Nct∇2C, (27)

∂2ψ

∂z2
= − (1 + χ2)

(1 + χ)
∇2

1ψ + Mp1

Mp3

∂θ

∂z
− M ′

p1

M ′
p3

∂φ

∂z
− M ′′

p1

M ′′
p3

∂C

∂z
, (28)

∂C

∂t
= w + 1

Les
∇2C + Nct∇2θ, (29)

where ∇2
H = ∂2

∂x2
+ ∂2

∂y2
, Ng = Mp1Ra and Ras = ρ f gαd3(φ0 − φ1)

μκ
.

We obtain Eq. (24) by applying curl of a curl of linearized momentum equation
and then taking its vertical component. Equation (25) represents the effect of rotation
which is obtained by considering kth component of curl of linearized momentum
equation.
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Further, we assume

[w,φ, θ,ψ,C] = [w(z),φ(z), θ(z),ψ(z),C(z)] exp[σt + i(kx x + ky y)]. (30)

Here kx , ky are the wave numbers in x-direction and y-direction respectively, and

k =
√
k2x + k2y .

On substituting (30) into Eqs. (24)–(29) we get:

σ

Pr
(4D2 − k2)w = (4D2 − k2)2w −

{
Ng − Ra

Mp3M ′
p1

M ′
p3

− Rs

Les

M ′′
p3Mp1

Mp3
+ Ran

{
1 + Nφ

(
z + 1

2

)}}
k2θ +

{
Ra

Mp3M ′
p1

M ′
p3

− RasM
′
p1 + Rn − Rs

Les

M ′′
p3M

′
p1

M ′
p3

+ Ran

Nφ
(1 − z)

2
− RsnNφ

(1 − z)

2

}
k2φ + 2

{
RaMp3 − RasM

′
p3 − Rs

Les
M

′′
p3

}
k2Dψ

+
{

Rs

Les

M ′′
p3Mp1

Mp3
− Rs

Les

M ′′
p3M

′
p1

M ′
p3

+ Rsn

{
1 + Nφ

(z + 1)

2

}
− Rs

Les
M

′′
p1

}
k2C − 2TA

1/2Dξ,

(31)

σ

Pr
ξ = (4D2 − k2)ξ + 2TA

1/2Dw, (32)

σφ = w + 1

Le
(4D2 − k2)φ + Na

Le
(4D2 − k2)θ − 2N

′
a

Le
(4D2 − k2)Dψ, (33)

σθ = w + (4D2 − k2)θ − 2

{
Nb

Le
+ 2NaNb

Le
− NbN ′

aMp1

LeMp3
+ NbN ′

aM
′
p1

LeM ′
p3

+NbN ′
aM

′′
p1

LeM ′′
p3

}
Dθ − 2Nb

Le
Dφ + 4NbN ′

a

Le
D2ψ + Nct (4D

2 − k2)C, (34)

{
4D2 − k2(1 + χ2)

(1 + χ)

}
ψ − 2Mp1

Mp3
Dθ + 2M ′

p1

M ′
p3

Dφ + 2M ′′
p1

M ′′
p3

DC = 0, (35)

σC = w + 1

Les
(4D2 − k2)C + Nct (4D

2 − k2)θ. (36)

with B.C.
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w = 0, θ = 0, φ = 0, C = 0 at z = ±1,
Dw = 0, 2(1 + χ)Dψ − kψ = 0 at z = −1,
D2w = 0, 2(1 + χ)Dψ + kψ = 0 at z = +1.

⎫⎬
⎭ (37)

The eigen value problem generated by Eqs. (31)–(36) with (37) is solved by
Chebyshev pseudospectral method [15].

6 Results and Discussion

For the analysis, dimension of nanoparticles and thickness of the layer are consid-
ered as 10 nm and 1 mm respectively. Sources of physical quantities are [16, 17].
We investigate here the effect of the important parameters governing the flow such
as Taylor number which characterizes the effect of rotation, Lewis number, which is
defined as the ratio of thermal diffusivity and mass diffusivity and is used to charac-
terize fluid flows where there is simultaneous heat and mass transfer and Rayleigh
number which is the parameter to characterizes heat transfer by natural convection.

Figure2 shows the NSCs for �φ, Les , Rs, and TA. Change in the value of critical
thermal Rayleigh number Rac determines the behaviour of these parameters. If Rac
value goes up on increasing the value of any of these parameters then that parameter
delays the onset of convection. On the other hand, if Rac decreases on increasing
the value of any of these parameters then that parameter destabilizes the system. In
other words, the system gets stabilized if on increasing the value of any one of these
parameters, the NSCs shifts upwards. If the NSCs shifts downwards on increasing
the value of any one of these parameters then system becomes unstable. In view of
this argument, we see from Figure 2, �φ, Rs, and TA delays the onset of convection
while Les hastens the convection process.

We have also solved the same problem taking into account all three types of
boundary conditions viz., Rigid-rigid (BC1), Rigid-free (BC2), and Free-free (BC3).
The effect of rotation in terms of TA associated with three different values of Rs has
been displayed in Table1 for gravity and in Table2 for microgravity. The tables
display that for any fixed value of Rs, the value of the critical thermal Rayleigh
number Rac and the critical magnetic thermal Rayleigh number Ngc increases with
an increase in the value of TA showing the stabilizing propensity of TA at the onset
of convection. An intriguing point to note here is that as the value of TA increases
from 103 onwards, there is a high jump in the values of Rac and Ngc.
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Fig. 2 NSCs for different values of �φ, Les , Rs and TA for a WMNF and b EMNF. Here αL = 2,
d = 0.001,�φ = 0.01,Na = 10, Le = 100,Rs=500,Les = 70,TA = 250,Nct = 0.5 andNtc = 0.005
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Table 1 The values of the critical thermal Rayleigh number Rac and the critical wave number kc
in the gravity environment forWMNF and EMNF . Here αL = 2, d = 0.001, �φ = 0.01, Na = 10,
Le = 200, Les = 70, Nct = 0.5 and Ntc = 0.005

Rs TA BC1 BC2 BC3

(WMNF ) (EMNF ) (WMNF ) (EMNF ) (WMNF ) (EMNF )

kc Rac kc Rac kc Rac kc Rac kc Rac kc Rac

100 100 3.10 537 3.11 741 2.62 443 2.62 609 2.14 353 2.14 484

101 3.11 537 3.11 742 2.63 443 2.63 610 2.15 354 2.15 485

102 3.15 543 3.15 750 2.69 451 2.69 621 2.24 364 2.24 500

103 3.51 594 3.51 822 3.14 511 3.14 706 2.78 434 2.79 599

104 4.90 841 4.90 1164 4.57 762 4.57 1054 4.21 686 4.21 949

105 7.38 1493 7.36 2069 6.85 1380 6.82 1920 6.28 1272 6.24 1760

300 100 3.10 553 3.10 766 2.62 459 2.62 634 2.14 370 2.14 509

101 3.10 554 3.11 767 2.62 460 2.63 635 2.15 371 2.15 511

102 3.15 560 3.14 775 2.69 467 2.69 646 2.24 381 2.24 525

103 3.51 610 3.51 846 3.13 527 3.14 730 2.79 451 2.79 624

104 4.90 857 4.89 1189 4.57 778 4.56 1079 4.21 702 4.20 974

105 7.38 1509 7.35 2093 6.85 1396 6.81 1935 6.27 1287 6.24 1785

500 100 3.10 569 3.10 791 2.62 475 2.62 659 2.14 386 2.14 534

101 3.10 570 3.11 792 2.63 476 2.63 660 2.15 387 2.15 536

102 3.15 576 3.15 800 2.69 483 2.69 671 2.23 397 2.23 550

103 3.50 626 3.50 871 3.13 543 3.14 755 2.78 467 2.79 649

104 4.90 873 4.89 1214 4.58 794 4.56 1103 4.21 718 4.20 999

105 7.37 1525 7.35 2118 6.84 1412 6.81 1959 6.27 1303 6.24 1809

7 Conclusions

Effects of various non-dimensional paramerters have been discussed using linear
stability theory on the onset of convection by considering thin horizontal layer of
WMNF and EMNF which is heated and salted frombelow.Effects ofBrownianmotion,
thermophoresis and magnetophoresis have been embodied in the study. It has been
observed that the role of �φ, Rs, and TA is to make the system stable while Les
hastens the convection process. The effects of Rs and TA are found to be stabilizing
in both the environments (gravity and microgravity). We have also observed that
with higher rotation rates much better stability of the system can be maintained in
the gravity as well as in the microgravity environment.



658 M. Arora et al.

Table 2 The values of the critical magnetic thermal Rayleigh number Ngc and the critical wave
number kc in the microgravity environment for WMNF and EMNF . Here αL = 2, d = 0.001,
�φ = 0.01, Na = 10, Le = 200, Les = 70, Nct = 0.5 and Ntc = 0.005

Rs TA BC1 BC2 BC3

(WMNF ) (EMNF ) (WMNF ) (EMNF ) (WMNF ) (EMNF )

kc Ngc kc Ngc kc Ngc kc Ngc kc Ngc kc Ngc

3.0e-
5

100 3.10 3079 3.10 3058 2.62 2116 2.62 2092 2.14 1371 2.14 1350

101 3.11 3086 3.11 3065 2.63 2123 2.63 2099 2.15 1379 2.15 1358

102 3.15 3153 3.15 3132 2.69 2194 2.69 2178 2.24 1455 2.24 1436

103 3.50 3754 3.50 3732 3.14 2797 3.14 2777 2.78 2044 2.79 2032

104 4.90 7398 4.89 7358 4.56 6091 4.56 6053 4.21 4966 4.20 4940

105 7.37 22897 7.34 22765 6.84 19592 6.81 19437 6.27 16673 6.23 16544

4.0e-
5

100 3.10 3167 3.10 3156 2.62 2189 2.62 2173 2.14 1431 2.13 1416

101 3.11 3174 3.10 3162 2.63 2196 2.63 2180 2.15 1439 2.14 1424

102 3.15 3243 3.15 3231 2.69 2269 2.69 2254 2.24 1516 2.24 1504

103 3.50 3851 3.50 3840 3.14 2880 3.15 2870 2.78 2117 2.79 2112

104 4.90 7533 4.89 7508 4.56 6213 4.55 6189 4.21 5078 4.18 5064

105 7.37 23133 7.34 23027 6.84 19809 6.80 19677 6.26 16874 6.23 16766

5.0e-
5

100 3.11 3257 3.09 3255 2.62 2263 2.62 2255 2.14 1491 2.14 1483

101 3.11 3264 3.10 3262 2.63 2271 2.62 2263 2.15 1499 2.15 1492

102 3.14 3333 3.15 3332 2.69 2345 2.69 2338 2.24 1578 2.23 1573

103 3.51 3949 3.50 3950 3.14 2966 3.15 2964 2.77 2190 2.79 2194

104 4.90 7670 4.88 7660 4.56 6337 4.55 6326 4.20 5190 4.19 5189

105 7.37 23371 7.34 23289 6.84 20028 6.80 19918 6.26 17076 6.22 16990
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Modeling for Implications of COVID-19
Pandemic on Healthcare System in India

R. Sasikumar and P. Arriyamuthu

Abstract The COVID-19 pandemic has affected the global healthcare system in
many countries. India has faced complex multidimensional problems concerning the
healthcare system during the COVID-19 outbreak. This article explores some of the
implications of COVID-19 on the health system. Also, we attempt to study health
economics and other related issues. We have developed the susceptible-exposed-
infection-recoveredmodel, logistic growthmodel, time interrupted regressionmodel,
and a stochastic approach for these problems. These models focus on the effect of
preventionmeasures and other interventions for a pandemic on the healthcare system.
Our study suggests that the above models are appropriate for COVID-19 at break
and effective models for the implications of the pandemic on the healthcare system.

Keywords COVID-19 · Markov chain · Logistic growth model · SEIR model ·
Time interrupted regression model · Healthcare system

1 Introduction

The continuous spread of the COVID-19 outbreak is a new strain that has an impact
at the global level and has become the greatest health challenge in the world. The
COVID-19 pandemic has affected different people in various ways. The most impor-
tant symptoms are fever, dry cough, tiredness, etc. The World Health Organization
(2020) explained that some common symptoms are loss of taste, smell, and rashes
on the skin. It’s high time to develop a medical solution for this. Lack of hospi-
tals, physicians, health experts, and hospital beds are the severe scenarios facing
India nowadays. Curfews, social distancing, self-isolation, and vaccinations all have
a role in preventing pandemic transmission and high population density might make
effective measures difficult. The Batch Markovian arrival process has been proposed
by Neuts [1]. Assumptions are the Markov arrival process and its application to

R. Sasikumar · P. Arriyamuthu (B)
Department of Statistics, Manonmaniam Sundaranar University, Tirunelveli 627012, India
e-mail: arriyamth@gmail.com

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
R. K. Sharma et al. (eds.), Frontiers in Industrial and Applied Mathematics,
Springer Proceedings in Mathematics & Statistics 410,
https://doi.org/10.1007/978-981-19-7272-0_46

661

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7272-0_46&domain=pdf
mailto:arriyamth@gmail.com
https://doi.org/10.1007/978-981-19-7272-0_46


662 R. Sasikumar and P. Arriyamuthu

the stochastic model described by Chakravarthy [2]. Briggs has a long history of
usingMarkov chains in public health decision-making and epidemiological research
[3]. An application of the Markov model for economic (or) financial evaluation
and medical decision-making was described by Sonnenberg and Beck [4]. Govern-
ments have taken effective steps such as partial lockdowns with social distancing,
and isolations and vaccinations to reduce the transmissions of a pandemic, Zhang
et al. [5]. Ozili and Arun have proposed mitigation measures for the intense effect
on the global economic status [6]. Modeling for interventions taken to minimize the
transmission rate of a pandemic in India byMandal et al. [7]. In this study, the impor-
tance of increasing immunity, social distance, and lockdown measures concerning
these measures can be useful in flattening the pandemic discussed by Bhola et al.
[8]. Lopez et al. to reflect the environmental situation investigated the susceptible-
exposed-infection-recovered model which presented dead, quantified, and protected
population compartments [9]. Cano et al. defined the dynamics of the COVID-19
outbreak using a simpleMarkovmodel [7]. Several types of analysis have beenmade
on the COVID-19 outbreak and describe the Ebola virus with demographic effects by
Rachan [10]. The susceptible-exposed-infection-recovered model for demographic
effects such as birth and mortality rate during COVID-19 outbreak was described
by Hamzah et al. [11]. Analysis, forecast, simulation, and optimal controls for the
Ebola virus used the susceptible-exposed-infection-recovered model by Porter [12].
The current pandemic is rising quickly and spreading to millions as evidenced by
the many recorded cases in India by Sarkar et al. [6]. Many countries used vaccines,
curfews, and self-isolation to control the COVID-19 pandemic. T. M Chen et al.
are interested in studying the transmission patterns of the outbreak and the impact
of further interventions [7]. A survey of social economic evaluation levels in many
countries in the social mix through the R package by Chen and Zhou [13]. According
to Adly et al. [14], the most definite answer for the public health system is to conduct
tests as soon as possible to permit the rapid identification of active patients, effective
treatment methods, and immediate self-isolation for susceptible cases. Describe the
deterministic model for the impact of social distancing on the transmission dynamics
of the COVID-19 outbreak in South Africa by Nyanadza et al. [15]. An analysis of
the impact of lockdown measures taken to control the transmission dynamics of
the COVID-19 outbreak in India was conducted by Youkta et al. [16]. Elinor Aviv-
Sharon and Asaph Aharoni used generalized logistic modeling to characterize the
transmission pattern and trace the trajectory of the COVID-19 outbreak, aswell as the
impact of specific interventions [17]. Details about the global preventive measures
were described by Kumar et al. [18]. Verhulst developed the original logistic growth
modeling for the biological population.
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Table 1 Details about the
demographics of India

Total population 1.38 billion

Ratio of old age people 9.25

Years of median age 28.4

Population size above 65 years old 6.2%

Number of doctors 1/1457 population

Number of nurses 1/457 population

Beds per 100 population 0.55 Beds

Life expectancy 68 Years

Population density 464 per km2

2 Overview of Indian Healthcare System and Changes
in the COVID-19 Pandemic During this Period

Our country comprises 28 states and 8 union territories. Table 1 presents an overview
of India’s demographics.

The capacity of hospital beds is mostly determined by a country’s income level.
Our country has an average of 0.55 beds per 100 people depending on income level.
The pandemic has negatively affected global health and daily life. Contingency plans
for an expected surge of cases were also added to the current scenario. Medical
personnel, homoeopathic and ayurvedic practitioners, medical students, volunteers,
sanitary workers, ex-servicemen, teachers, doctors, and others were identified across
themunicipal corporation to create an online information pool of 15.8million human
resources for a variety of activities needed to combat the outbreak. It was also critical
to match the demand for medical equipment and pharmaceuticals with the rising
supply of infrastructure and human resources. The demand for personal protective
equipment increased as private hospitals became involved. The spread of COVID-
19 disease affected human health, psychological problem, and economic status, and
related restrictions were implemented to control the unexpected adverse effects on
human health. There are also other challenges described by Singh et al. [19].

3 Propose Models and Materials

3.1 Data Sources

The data for India and other states were taken from the official websites of the ICMR
(http://www.icmr.gov.in), the website of COVID-19 India (http://covid19india.org).
These data were used in a study on the impact of COVID-19 on the Indian healthcare
system.

http://www.icmr.gov.in
http://covid19india.org
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3.2 Susceptible-Exposed-Infection-Recovered Model

This model is a compartmental model to study infectious disease and divides the
population into four components such as Susceptible (S), Exposed (E), Infectious
(I), and Recovered (R). Susceptible populations are thosewho are at risk of becoming
infected.Thepeoplewhohavebeen infectedwith the sickness and are able to converse
with others are said to be infected. Exposed people have been exposed to the disease
but are not yet contagious, while recovered persons have recovered from their illness.
The parameters (β, γ, and σ) are explained as follows: β is a transmission parameter,
which is the number of effective contacts per unit of time per infected individual; γ is
the rate of recovery in a specific time; and σ is the rate at which infected individuals
become infectious. The differential equations that describe this model are as follows:

dS

dt
= βS(t)I (t) (1)

dE

dt
= βS(t)I (t) − σ E(t) (2)

d I

dt
= σ E(t) − γ I (t) (3)

dR

dt
= γ I (t) (4)

Subject to the conditions, S(0)>0, E(0)≥0, I(0)≥0, R(0)≥0.

We consider this model, where the total population N = S + E + I + R (i.e.,
four components if added should be equal to the total population). We assume that
the new individuals were a result of contacts within the susceptible group S(t). The
transmission parameter β (contact rate) is giving a force of infectious λ = β(I(t)/N(t))
and the number of new infectious cases out of S(t) and into E(t) as βI(t)S(t)/N(t). The
exposed persons progress to active cases in 2 weeks at a constant progression rate
(k) n giving the number of individuals moving out of E(t) and into I(t) as kE(t). The
infectious cases are denoted to recover at a constant rate σ. The cumulative number
of recovered cases moving out of I(t) into R(t) is given by γ I(t). Given this model, we
assumed the values of β, γ, and σ [20]. Jakhar et al. [20] describe for such parameters.
We are assigning a basic reproduction ratio of 1.5, β to be 0.1, σ to be 0.1. Also, the γ

is assumed to be 0.2 and the average infectious period is chosen to be 5 days (Fig. 1).

3.3 Logistic Growth Model

Thismodel is increased at the onset, but decreases at a later stage, as it approaches the
maximum. In current COVID-19, the highest limit will be the cumulative population
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D

Fig. 1 Relationship between each step of the SEIR model

and the growth certainly comes down when a greater proposition of the population
is infected. The reason for utilizing logistic growth modeling for the COVID-19
pandemic is that it has been proven that the epidemic grows exponentially in the
early phases and then decreases in the later stages. This model is presented as y(t) =

c
1+a(e−bt )

where y(t) denotes the number of individuals at any given time t, c denotes
the limiting value, the maximum capacity for y.a = (c/y0) − 1, and “ b” is the rate
of change. The number of cases at the beginning, also called the initial value, denotes

c
(1+a)

and the maximum growth rate (t) is log(a)/b. . When y= c (the population size
is maximum), y/c will be one. Hence, the (1-(y/c)) will be zero and the growth will
be zero. The optimum parameter values can be obtained by nonlinear least square
method.

3.4 Interrupted Time Series Multiple Regression Model

The model is the strongest, quasi-experimental tool for evaluating the longitudinal
impact of interventions. The impact of immunization on the incidence of new
cases and death cases was assessed using time interrupted regression analysis [21].
Figure 6 shows the diagrammatic representation and the results of the analyses are
presented in Table 3.

4 Implications of Preventive Measures

This section focuses to identify the spread of the COVID-19 pandemic associated
with preventive measures taken in India, such as a discussion about the impact of
curfew, social distancing, and corresponding other interventions using the incidence
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Table 2 The growth rate of the epidemic is based on lockdown duration

Lockdown duration of the first
wave

Lockdown duration of the
second wave

Growth rate in percentage

Year—2020 Year—2021

24.05.2020 to 14.04.2020 10.05.2021 to 17.05.2021 15.06 7.5

15.04.2020 to 03.05.2020 18.05.2021 to 24.05.2021 7.5 11.1

04.05.2020 to 17.05.2020 25.05.2021 to 31.05.2021 6.4 16.0

18.05.2020 to 31.05.2020 01.05.2021 to 07.06.2021 4.63 23.9

of daily cases. Assess the death rate about the epidemic control measures performed
by India’s healthcare system.

4.1 Impact of Lockdown Strategy

The purpose of this study is to discuss the effect of lockdown strategy to tackle
the COVID-19 outbreak. Table 2 shows the growth rate of the epidemic during the
COVID-19 outbreak in India.

In addition, we discovered that there are pre- and post-lockdown measures in
India. Our government announced that the curfew would begin in May 2021 during
the second wave. The peak of the second wave would have arrived in mid-May 2021.
Figures 3 and 4 show the complete lockdown measures based on the SEIR model.

4.2 Effects of Social Distancing Based on a Stochastic
Approach

Social distancing is a key part of preventing the spread of the pandemics and it
is the best form of response in managing the affected rate of COVID-19. But a
large population density can make this action challenging. The study of this section
is clear and discusses the effect of social distancing through a simple stochastic
approach. We propose the simple Markov chain to represent the impact of social
distancing on the transmission dynamics of a pandemic. Figure 2 describes how
individuals can transmit between states. After becoming symptomatic, they migrate
from the susceptible population to becoming infected, then to being contagious virus
(shedding). They may become ill and die as a result.

We use the transition probabilities, s0–s7 follow an Erlang distribution. This distri-
bution is a special case of the gamma distribution, denoted as ε but scaled when
various outcomes from a state are possible from Fig. 2. We observed the dynamics
when individuals move from one state to another. The transition probability, s0, can
be denoted through a desired basic reproduction number, R0, as it can be simply
shown that
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Fig. 2 Explain the Markov chain and how individuals can transmit between states after infection

R0 = s0

∞∑

i=0

(1 − s2 − s5)
i + s0

∞∑

i=0

s2(1 − s2 − s5)
i

∞∑

j=0

(1 − s3 − s6)
j (5)

During the pandemic, Halloran defined the basic reproduction number as the
average number of secondary infected individuals caused by primary cases [22]. The
basic reproduction number on the day the values are implemented is used to reduce the
number of people infected by each shedding or sick individual. Our study discussed
the effect of social distancing rate on virus infection based an epidemiological model.
We consider the constant rate ρ (0 < ρ <1), where ρ0 means perfect social distancing.
But also investigate the impacts of ρ = 0.1, ρ= 0.2, and ρ = 0.3.

The capacity of the COVID-19 infection is modified as follows:

λ =
{

β I (t)/N , t0 ≤ tlock
ρβ I (t)/N , t ≥ tlock

(6)

The dynamic system of differential equations, including the assumption in
pandemic in India, is defined by

S′(t) = −λS(t) + Srec (7)

E ′(t) = λS(t) − kE(t) + Erec (8)

I ′(t) = kE(t) − γ I (t) (9)

R′(t) = γ I (t) (10)
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We used next-generation matrix method and the basic reproduction number of the
model system (Eq. (1)), where,

A =
[
0 β

0 0

]
, B =

[
k 0

−k γ

]

.

The product of AB-1 is given by AB−1 =
[

β

γ

β

γ

0 0

]
with the spectral radius defined

by

v(AB−1) = R0 =
{

β/γ, t0 ≤ t < tlock
ρβ/γ, t0 ≥ tlock

(11)

4.3 Mortality Trends

The COVID-19 pandemic becomes a serious health problem in all states in India.
Maharashtra is the center of the COVID-19 virus by records. Gujarat and Telangana
reported the same percentage of infected cases. Gujarat has a greater rate of deaths,
and meanwhile Delhi has a lower percentage of infection cases than Karnataka, but
it has a higher percentage of deaths. Mostly, the COVID-19 pandemic is infecting
the male community in India, with a high affected rate of individuals between 30 and
40 years. In these, ages above 60 years are mainly reported as deaths by Joe et al.
[23]. Now, we discussed the growth model of mortality trends. Also, we identify
the relationship between COVID-19 death counts and population density in India
through some statistical methods (see Table 4 and Fig. 7).

5 Analysis and Results

We have identified that before the implementation of the lockdown on March 2020
and the second lockdown announcement onMay2021.However, this peak has shifted
to mid-August 2020 and July 2021 following the enforcement of severe countrywide
lockdown. The following is an analysis of the scenario in India before and after the
lockdown.

We observed from Figs. 3 and 4 the contribution of different immigration param-
eters during pre- and the post-lockdown pandemic situations in India. Also, we iden-
tified the effect of the lockdown strategy to tackle the COVID-19 outbreak. Here,
the pre-lockdown situation is considered an as initial condition, after that the post-
lockdown situation will be considered. From this study, we observed that the data
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is significant during the 2020 lockdown and non-significant during the 2021 lock-
down. According to Table 2, the growth rate decreases after the 2020 lockdown and
increases after the 2021 lockdown. According to this study, India’s quarantine looks
to be beneficial or effective in delaying the epidemic’s peak.As a result, these findings
are extremely beneficial to get time for preparedness in the healthcare system.

Fig. 3 Pre-lockdown pandemic situation
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Fig. 4 Post-lockdown pandemic situation

5.1 Results for Effect of Social Distancing

The following figures describe the several social distancing constant rates involving,
and then changes to susceptible, exposed, recovery and death trajectory.

In this study, the effect of social distancing is discussed. We represent through a
constant rate ρ (0 < ρ < 1), R0 (basic reproduction number) will be determined using
a stochastic approach and the value of ρ will be determined using the SEIR model.
Here ρ = 0 is the perfect social distance and the value of ρ will be considered in
three categories 0.1 (10%), 0.2 (20%), and 0.3 (30%) and investigated for exposed
infection and recovery path (see Fig. 5).
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Fig. 5 a Shows fit the SEIR model and consider the social distancing = 10% (i.e., ρ = 0.1). b
Shows fit the SEIR model and consider the social distancing = 20% (i.e., ρ = 0.2). c Shows fit the
SEIR model and consider the social distancing = 30% (i.e., ρ = 0.3)

5.2 Result for Vaccination Intervention Using Time Series
Multiple Regression Models

This section displays the results of the impact of the vaccine on the incidence of new
cases and death cases. Then a detailed regression analysis of new incidence cases,
mortality, and vaccination growth due to COVID-19 in India (Table 3).

From this section, vaccination intervention is discussed on the basis of time series
multiple regression model. Here vaccine (y) is considered as dependent variable and

Table 3 Regression coefficients, 95% CI, and parameters value

Variables Estimate Std. error t_value Pr(> |t |)
Y −1.951e + 09 1.034e + 09 −1.886 0.0617

x1 5.655e + 03 2.357e-03 2.399 0.0180

x2 1.843e + 02 1.278e + 02 1.443 0.1518
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Fig. 6 Fit the time series multiple regression model for vaccine intervention on incidents of new
cases and death cases

incident cases (x1) and death cases (x2) are independent variables. The incident case
coefficient values will be discussed if the vaccination increases. So, we conclude that
the vaccination in 2021 is significant (see Fig. 6).

5.3 Results for COVID-19 Mortality Trend

This result fits the growth model on death counts. We classified three phases and
observed the coefficient values. Then,weobserved that phases two and threewere less
than the first phase (see Table 4). We discovered from this study peck of death counts
by the end of 2020. In addition, we investigated the impact of India’s population
density on the pandemic spread and mortality. After that, we observe a moderate
association between the COVID-19 pandemic and population density (see Fig. 7).
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Table 4 Parameter values for growth model

Estimate Std. error t_value Pr(> |t |)
Phase 1 4.374e + 05 5.784e + 02 756.22 < 2e-16

Phase 2 2.494e + 00 1.576e-01 15.82 < 2e_16

Phase 3 2.470e + 01 2.232e-01 110.63 < 2e-16

Fig. 7 Averaged death counts due to COVID-19 with population density in India

5.4 Reviews and Descriptions of Other Implications

1. The effect of public health interventions

These treatments have the impact of controlling public health problems; the main
goal is to stop an outbreak from spreading and reduce the size of the epidemic. In
the absence of a safe antiviral, public health initiatives, including social isolation,
contact tracing, mask fabrication, effective quarantine, and travel restrictions, are
used to stop and reduce outbreak pressure. Whereas public awareness of the virus
and personal protection (e.g., self-isolation) has been developed. These measures
guide the changes in medical seeking development and epidemiological characteris-
tics. The differences in prediction based on different health strategies and the travel
restriction effects were most significant. Also, different studies on the implications
of contact tracking and self-isolation, but it was denoted that improving reporting
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and quarantine rates. Yue Xiang’s various discussions on the implications of public
health interventions are discussed above [24].

2. The economic impacts

India is a developing country and it has the second highest population with the fifth-
largest economy. Kavita Singh studied the economic effects of a pandemic on people
with chronic illnesses in India, focusing on underserved metropolitan areas and rural
populations [19]. While the restoration of economic activity among persons infected
with COVID-19 appears to be resulting in economic recovery, economic modeling
indicates that the average economic value per individual life lost in the pandemic
in India is 7.09–8.22 times the country’s GDP per capita. Instead of a nationwide
lockdown, Arora P demonstrates how a lockdown policy implemented within Indian
states in the event of a pandemic can result in substantial unemployment [25].

3. The effect of policy and technology

We identified the high recovery rate from the outbreak in India as an output of
significant technological impacts. The COVID-19 disease has tested the country’s
epidemic preparedness in terms of its health infrastructure, interventions of policy,
and communication technology. Initially, the impact of a time and one of the most
strict lockdown policies was observed to reduce the spread of disease. Similarly, it
used the country to prepare critical medical infrastructure, public resources, and tech-
nological advances. Isha Goel provided an overview of India’s epidemiological state
and highlighted the potential consequences of policy and technology changes [26].

6 Discussion

The COVID-19 pandemic has various implications for the world economy as well as
for many aspects of human health, education, the physical of individuals, etc. In this
study, we investigated the impact of a few factors on the healthcare system during
COVID-19 as well as the illness spread related to preventive measures performed in
India. In this section, the data was separated into pre-lockdown and post-lockdown:
in the lockdown period implemented on the years 2020 and 2021, the infection and
recovery rate paths are determined using the SEIR model. From this, the lockdown
period on 2021 is significant which means that infection rate is decreased and simul-
taneously recovery has increased; in the lockdown period in 2021, the data is not
significant which means the infection rate doesn’t change, which has been shown
in Figs. 2 and 3. Next the Markov chain is used to determine the effect of social
distancing. The transition probability state is applied to the death state in the popu-
lation; from this the basic reproduction number (R0) value is determined with this
SEIR model. The social distancing contact rate (ρ) is separated into three (0.1, 0.2,
and 0.3) and using this exposed, infection, and recovery rates are analyzed. From this,
we can conclude that if the social distancing percentage increases, then the infec-
tions will decrease. The infection and death rates are analyzed based on the time
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series multiple regression model in vaccine intervention. Using this public health
intervention is discussed. The regression and coefficient values are calculated for the
vaccination coverage increase and death decrease. As the death count increases after
May 2021, the path is determined using the growth model; COVID-19’s mortality,
population density, and impacts are also discussed. Finally, other implications and
their reviews and descriptions are also discussed.

7 Conclusion

Our research found that the most effective public health intervention is to conduct
screening tests as soon as possible to aid in the rapid identification of infected cases,
quick treatment, and immediate isolationof susceptible cases.Wealso discovered that
pandemic-related preventive strategies, such as social distancing, wearing masks in
public places, self-hygiene, and remote working and learning, can all have a signif-
icant impact on pandemic transmission. In addition, the above-mentioned model
might be used to design and prepare health systems in this study. This research
provided a systematic approach to avoid recording, and controlling the spread of
COVID-19.
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