
Hamed Gholami
Georges Abdul-Nour
Safian Sharif
Dalia Streimikiene   Editors

Sustainable 
Manufacturing 
in Industry 4.0
Pathways and Practices



Sustainable Manufacturing in Industry 4.0



Hamed Gholami · Georges Abdul-Nour · 
Safian Sharif · Dalia Streimikiene 
Editors 

Sustainable Manufacturing 
in Industry 4.0 
Pathways and Practices



Editors 
Hamed Gholami 
Mines Saint-Etienne 
Univ Clermont Auvergne, CNRS, UMR 
6158 LIMOS, Institut Henri Fayol 
Saint-Etienne, France 

Safian Sharif 
Department of Manufacturing 
and Industrial Engineering 
Universiti Teknologi Malaysia (UTM) 
Johor, Malaysia 

Georges Abdul-Nour 
Department of Industrial Engineering 
University of Quebec in Trois-Rivieres 
Trois-Rivieres, QC, Canada 

Dalia Streimikiene 
Lithuanian Energy Institute 
Kaunas, Lithuania 

ISBN 978-981-19-7217-1 ISBN 978-981-19-7218-8 (eBook) 
https://doi.org/10.1007/978-981-19-7218-8 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Singapore Pte Ltd. 2023 
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors, and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, 
Singapore

https://orcid.org/0000-0002-1326-7201
https://orcid.org/0000-0002-3418-2290
https://orcid.org/0000-0001-9550-599X
https://orcid.org/0000-0002-3247-9912
https://doi.org/10.1007/978-981-19-7218-8


Preface 

Due to the sustainable development philosophy, popularized by the Brundtland 
report as “Our Common Future,” the manufacturing sector has significantly evolved 
unprecedentedly over the years, unanimously accepting that being sustainable is 
more beneficial. Since the advent of the fourth industrial wave, a growing global 
research interest has emerged toward augmenting the economic, environmental, 
and societal values of Industry 4.0 through integrating its applicable technologies 
and intelligent techniques with a sustainable manufacturing paradigm, which seeks 
to develop more sustainable products—energy-efficient, eco-friendly, and socially-
responsible—using sustainable processes and systems, i.e., those which produce 
minimal adverse environmental effects, conserve energy and natural resources, are 
harmless to people and viable to profit. To promote the research interest, this book 
offers an overview of the broad field of research on sustainable manufacturing in 
Industry 4.0. It includes the dissemination of original findings on pathways and prac-
tices of Industry 4.0 applied to sustainable manufacturing development, contributing 
new perspectives and roadmaps to those who are keen to realize the benefits of 
Industry 4.0 to transform the manufacturing sector into a more sustainable-based 
state. 

This book features ten chapters. Chapters “A Review of Global Research Trends 
on Sustainable Manufacturing” and “An Analysis of the Literature on Industry 4.0 
and the Major Technologies” shed light on how research on sustainable manufac-
turing and Industry 4.0 has evolved in recent years. Chapter “Smart Laser Welding: 
A Strategic Roadmap Toward Sustainable Manufacturing in Industry 4.0” investi-
gates laser welding in the Industry 4.0 era and examines sustainable manufacturing 
challenges using an optimization-oriented perspective. The importance of additive 
manufacturing in sustainable manufacturing development is discussed in chapter 
“The Role of Additive Manufacturing in the Age of Sustainable Manufacturing 4.0”. 
Chapter “The Impact of the Fourth Industrial Revolution on the Transitory Stage 
of the Automotive Industry” focuses on how Industry 4.0 paves the way for digital-
ization, smart manufacturing, and sustainability in the automotive industry and auto-
guided vehicles. Policies on maintenance routines and the development of predictive 
maintenance tools as one of the pillars of sustainable and smart manufacturing are
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vi Preface

discussed in chapter “Advances in Smart Maintenance for Sustainable Manufacturing 
in Industry 4.0”. A conceptual framework in the computer-aided inspection field with 
an extensive assessment is given in chapter “Smart Inspection; Conceptual Frame-
work, Industrial Scenarios, and Sustainability Perspectives”. Chapter “Sustainability 
Implications of Adopting Industry 4.0 at Different Scales in the Poultry Processing 
Industry” examines the converging points of sustainability and Industry 4.0 tech-
nologies in poultry processing plants. The latest smart technologies and systems in 
poultry processing, as well as the steps involved, were also discussed. Chapter “Hori-
zontal Collaboration Business Model Towards a Sustainable I4.0 Value Creation” 
presents a CODAS-HTFLS-Mahalanobis approach to identify horizontal collabora-
tion top variables grouped within the business model components, so as to create 
a value creation network towards sustainable manufacturing 4.0. Chapter “Assess-
ment of Industry 4.0 Adoption for Sustainability in Small and Medium Enterprises: 
A Fermatean Approach” investigates how small and medium enterprises can adopt 
Industry 4.0 functions to achieve sustainability. A rigorous review to determine indi-
cators of Industry 4.0 adoption in the context and a novel assessment method under 
Fermatean fuzzy sets were accordingly presented in this last chapter. 

We sincerely acknowledge Springer for the given opportunity. We would also like 
to thank our colleagues Ramesh Nath Premnath and Silky Abhay Sinha for their 
support and guidance in completing the book. Finally, we would like to express 
our appreciation to all of the chapter contributors for their availability and valuable 
contributions. 
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A Review of Global Research Trends 
on Sustainable Manufacturing 

Hamed Gholami , Falah Abu, Safian Sharif , Georges Abdul-Nour , 
and M. Affan Badar 

1 Introduction 

Despite having been used interchangeably in many cases, the terms ‘Sustainable 
Development (SD)’ and ‘Sustainability’ are inherently distinct—SD is the pathway 
to succeed in sustainability, that is the ideal dynamic state [1, 2]. A majority of the 
scientific community has been incorporating SD into the field of manufacturing, 
considering the growing global interest in the phenomenon as “Our Common Future 
[3]” drawn by the World Commission on Environment and Development, in 1987. 
The interest grew even larger following the revelation that our common future is inten-
sively influenced by the manufacturing sector as revealed at the Earth Summit, Rio 
de Janeiro, Brazil in 1992 [4]. From that point on, the field has experienced numerous 
revolutions complying to the fact that being sustainable has greater benefits. 

Being the core of all industrial economies, it was outlined that the manufacturing 
sector must be made sustainable with the aim of preserving the high standards of 
living already attained by industrialized societies and for enabling the sustainable 
achievement of the same standards of living by other developing societies. Thus,
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there is always a need for sustainable manufacturing development due to a number 
of prevailing issues such as the depletion of non-renewable resources, more stringent 
environmental and occupational safety/health regulations, and the growing penchant 
for environmentally-friendly products, among many others [5, 6, 7, 8]. Sustain-
able manufacturing entails the manufacturing of more sustainable products—energy-
efficient, eco-friendly, and socially-responsible—by using sustainable processes and 
systems, i.e., those which produce minimal adverse environmental impacts, conserve 
energy and natural resources, are harmless to people, and are economically viable 
[9, 10, 11, 12]. However, according to [13], “there are many insufficient attempts, 
including a partially integral approach, almost all fall short because they largely 
deal with products and processes, but fail to stress the interconnectivity among the 
three integral elements involved in manufacturing (products, processes and systems), 
and show the basis for sustainable value creation an economic growth (p. 104)”. 
This condition—a need for the development of sustainable products, processes, and 
systems—and the fact that this topic is dramatically receiving a great deal of attention 
from practitioners and researchers, thereby draws our fundamental question: how has 
research on sustainable manufacturing evolved in recent years? 

To address the question, the current research carried out a Bibliometric or Scien-
tometric analysis, which can expedite the review’s process of research trends in the 
literature concerning the subject and subsequently give guidelines and directions for 
further investigations. This would contribute to providing up-to-date overview of the 
topic, including the possible implications for facilitating the complexities involved 
in the area of sustainable manufacturing. The methodological approach has been 
effectively employed since its inception in the early literature (i.e., [14, 15] which 
presented a description of Bibliometric research, up to its adoption in very recent 
studies [16, 17, 18, 19, 20, 21]. By using this method, the current study is primarily 
aimed at accomplishing the following objectives: 

1. To present the past and present progress of the literature published on “sustainable 
manufacturing” and also its interchangeable term “sustainable production”. 

2. To characterise the most contributing countries to the understudied theme. 
3. To recognise the core journals having a significant contribution to the subject. 
4. To determine the highly contributing academic institutions to the under-

researched topic. 
5. To identify the prolific authors contributing considerably to developing the area. 
6. To outline common terminology, research topics and in-depth insights. 

Accordingly, this article is organized as follows: Sect. 1.2 clarifies the research 
methodological approach and the procedure of this study, Sect. 1.3 delivers findings 
of this overview and discusses the results according to the aforementioned objectives, 
and, finally, Sect. 1.4 provides the reader with a sense of closure on the topic.
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2 Methods 

Bibliometric analysis is a methodological approach which is applied to investigate the 
research trends in specific areas and outline the directions of such research through 
analysing the academic databases outputs [16, 22] according to co-occurrence, co-
citation, co-author, co-word, and bibliographic coupling [17, 21]. Thus, this method 
has been carried out to examine global research trends in the area of sustainable 
manufacturing. 

The data for this study was extracted from Scopus until May, 2021. However, the 
Scopus database is prominently regarded as the largest indexer of global research 
content, including titles from more than 5,000 publishers worldwide, e.g., Springer, 
ScienceDirect, Taylor & Francis, Emerald, Wiley, etc. [18, 23]. The bibliometric soft-
ware and VOSviewer were accordingly used to statistically scrutinise the descriptive 
data including annually scientific production, most frequent keyword, and providing 
visualization for co-word analysis [19, 24]. 

2.1 Criteria for the Review 

Similar to [25] and Guraja et al. [26], the documents considered for this review are 
limited to article, abstract report, book, book chapter, business article, conference 
paper, conference review, data paper, editorial, erratum, letter, multimedia, note, press 
release, report, retracted, review or short survey that were written only in English. 
We took into account all types of sources, book, book series, conference proceeding, 
journal, multi-volume reference works, newsletter, press release, report, and trade 
journal. 

It is also mentioned that utilising the quotation marks (“”) is essential to discover 
the exact phrases and to eschew lemmatization and synonym features of Scopus [20]. 
All the documents were filtered via article title, abstract and keywords to minimise 
duplication and undefined documents (without author’s name). For data consistency, 
data from May 2021 onwards were not taken into account in this study. 

2.2 Search Approaches for the Selection 

The first search string used to analyse includes the keyword of “sustainable manu-
facturing (henceforth called as Sus-Man)”, which resulted in a total of 1954 docu-
ments. The applied query was as follows: (TITLE-ABS (“sustainable manufactur-
ing”)) AND PUBYEAR < 2021 OR PUBDATETXT ((“January 2021” OR “February 
2021” OR “march 2021” OR “April 2021” OR “May 2021”)) AND (EXCLUDE 
(PUBYEAR, 2022)) AND (LIMIT-TO (LANGUAGE, “English”)). Then, the search
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string proceeds with the same course by replacing the term of “sustainable produc-
tion” (henceforth called as Sus-Pro), resulting in a large number of 6392 documents 
from the Scopus database. 

Next, the second part involves a combination of above search strings in an in-
depth analysis, but it was limited to only journal and article types; however, the 
most common study designs for word search “sustainable production” OR “sustain-
able manufacturing” (henceforth called as Sus-Man/Pro) were journal articles (n = 
4802, 58%). The query used was: (TITLE-ABS (“sustainable production” OR “sus-
tainable manufacturing”)) AND (LIMIT-TO (SRCTYPE, “j”)) AND (LIMIT-TO 
(DOCTYPE, “ar”)) AND PUBYEAR < 2021 OR PUBDATETXT ((“January 2021” 
OR “February 2021” OR “march 2021” OR “April 2021” OR “May 2021”)) AND 
(EXCLUDE (PUBYEAR, 2022)) AND (LIMIT-TO (LANGUAGE, “English”)). 

3 Results and Discussion 

This section is completed through the procedure with the adopted methods according 
to the research objectives, as presented in Sect. 1.1. It discusses the detailed analyses 
and findings on each objective in an orderly manner in the ensuing segments. 

3.1 Past and Present Progress of Research Interest 

This segment presents the emerging trends in “sustainable production (Sus-Pro)” and 
“sustainable manufacturing (Sus-Man)” to provide a general outline of documents 
according to the author’s keywords. As shown in Fig. 1, throughout the past forty-
two years from 1979 to 2021, the research interest in Sus-Pro has acquired growing 
attention. An analysis of the temporal trend of the number of publications for Sus-
Man was also performed. Interestingly, the keyword of Sus-Man is very common 
in Malaysia, which is ranked 11th among core contributing countries (outlined 
in Sect. 3.2). As a case in point, this term is commonly used by four prominent 
engineering/technology-based universities, which were found among the top fifteen 
contributors to the topic (explained in Sect. 3.4)—Universiti Teknikal Malaysia, 
Universiti Teknologi Malaysia, Universiti Tun Hussein Onn Malaysia, and Univer-
siti Utara. However, the term ‘sustainable manufacturing’ was first reported after 
13 years of publishing the oldest article, entitled “Markets for Alaskan oil”, which 
had been aimed at developing the USA’s economic, environmental, and national 
security goals [27].

The results show the research on this sustainable paradigm has considerably 
progressed, in particular, in the new millennium. A remarkable number of 857 docu-
ments were published on Sus-Pro in 2020 alone compared to 256 documents for 
Sus-Man (Fig. 1). The analyses indicate that the combination of publications on both 
Sus-Man and Sus-Pro (i.e., Sus-Man/Pro) were continuously increased every year
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Year of Publication 

Sustainable Production Sustainable Manufacturing 

Cummulative Sustainable Production Cummulative Sustainable Manufacturing 

Fig. 1 Trend in publications over the years. Note: (i) Including all document type: article, abstract 
report, book, book chapter, business article, conference paper, conference review, data paper, 
editorial, erratum, letter, multimedia, note, press release, report, retracted, review paper, or short 
survey; (ii) Including all source type: book, book series, conference proceeding, journal, multi-
volume reference works, newsletter, newspaper, press release, report, trade journal; (iii) 1954 
documents on Sus-Man: (TITLE-ABS (“sustainable manufacturing”)) AND PUBYEAR < 2021 
OR PUBDATETXT ((“January 2021” OR “February 2021” OR “march 2021” OR “April 2021” 
OR “may 2021”)) AND ( EXCLUDE ( PUBYEAR, 2022)) AND (LIMIT-TO (LANGUAGE, 
“English”)); (iv) 6392 documents on Sus-Pro: (TITLE-ABS (“sustainable production”)) AND 
PUBYEAR < 2021 OR PUBDATETXT (( “January 2021” OR “February 2021” OR “march 2021” 
OR “April 2021” OR “May 2021”)) AND (EXCLUDE (PUBYEAR, 2022)) AND (LIMIT-TO 
(LANGUAGE, “English”))

since 2006, accordingly there was a dramatic growth in the cumulative total published 
documents hitherto. It is expected to continue to rise due to the unique intellectual 
contributor of Sus-Man/Pro to ‘our common future’; however, it is unanimously 
accepted, after the Earth Summit [4], that being sustainable is more beneficial [17]. 

3.2 Core Contributing Countries 

A total of 4802 journal articles published between 1979 and 2021on Sus-Man/Pro 
is dominated by developed and emerging countries. United States, China, India, the 
United Kingdom and Germany are the top five countries, respectively, as shown in 
Table 1. In terms of publication output, there is a huge gap between the top five 
countries identified. The United States tops the list with the publication of more than 
800 research papers on the topic, followed by the United Kingdom and Germany at 
4th and 5th places among developed countries, publishing less than 400 papers for the
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Table 1 Country-wise 
growth of publications on 
sustainable 
manufacturing/production 

Country No. of articlesa National context 

1. United States 817 Developed country 

2. China 677 Emerging/developing 
country 

3. India 470 Emerging/developing 
country 

4. United Kingdom 341 Developed country 

5. Germany 335 Developed country 

6. Italy 291 Developed country 

7. Brazil 231 Emerging/developing 
country 

8. Netherlands 188 Developed country 

9. Spain 181 Developed country 

10. Australia 180 Developed country 

11. Malaysia 172 Developing country 

aOut of 4802 articles (document type) from journal (source type) 

same time period. This is less than two times of the United States publication outputs, 
generally drawing attention to the environmentally harmful effects of manufacturing. 

Nevertheless, it is interesting to look at the growth of publications on this area 
from the perspective of a developing country. Malaysia is the only developing country 
producing research outputs on Sus-Man/Pro after the top ten countries with 172 
publications (Table 1). It is adjacent to Australia with less than 8 publications to be 
listed in the top ten based on its research outputs over the past years. 

After conducting and merging the country profile and bibliometrics, the co-
authorship analysis of countries provided 174 results. As such, we applied a threshold 
of a minimum of one document published per country and excluded any articles that 
co-authored more than 25 countries. A predetermined screening criterion was also 
used to screen and verify the list of countries. Unrelated terms such as “email”, 
“university”, etc. were discarded. Finally, a total of 139 countries were selected 
(Fig. 2).

As illustrated in Fig. 2, United States is the first core contributing country among 
others in all the parameters—total link strength (586), links (92), and documents 
(817, avg. pub. year: ca. 2014). The analyses also revealed that the most and recent 
co-author network is between United States and China. Based on the minimum 
link strength between countries, the first five countries, which had high collabo-
rations with researchers from United States, are China, India, United Kingdom, 
Germany, and Australia. Meanwhile, the most co-author network for Malaysia was 
their regional neighbour, i.e., Indonesia. It is then followed by United Kingdom, 
Pakistan, and China.
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Fig. 2 Co-authorship network map of countries publishing on sustainable manufac-
turing/production

3.3 Core Contributing Journals 

The findings indicate that 4802 articles are owned by 160 journals. The top 10 
journals, with a share of 758 number of publications, are presented in Table 2. It is  
noticeable that six journals were from the United Kingdom and developing countries 
had none. The “Journal of Cleaner Production” published the maximum number 
of research articles on the understudied area, followed by the “Sustainability” and 
“ACS Sustainable Chemistry and Engineering”.

Overall, 40% of the total research articles from the top 10 journals were published 
in the “Journal of Cleaner Production” (CiteScore 13.1), which remarkably includes 
the most cited article—[28]—among others (Table 2). The publication of research 
papers on this topic in these high-impact journals signifies the scientific community’s 
growing interest and acknowledgement on the subject. 

3.4 Core Contributing Academic Institutions 

Research institutes from China has dominated the publications on research topic; 
Chinese Academy of Sciences (n = 89) and Ministry of Education China (n = 83). 
Starting with only 2 publications in 2012, Chinese Academy of Sciences had an 
incredible 89 published papers recently. With 172 publications in all, the Chinese
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Table 2 Top 10 journals publishing research on sustainable manufacturing/production 

Source title Country Publisher Scopus Cite 
Score 2020 

No. of 
articlesa 

Most cited 
article 
(times cited) 

1. Journal of 
Cleaner 
Production 

United Kingdom Elsevier Ltd 13.1 305 [28] (503) 

2. Sustainability Switzerland MDPI AG 3.9 155 [29] (131) 

3. ACS 
Sustainable 
Chemistry and 
Engineering 

United States American 
Chemical 
Society 

12.0 65 [30] (38) 

4. Green 
Chemistry 

United Kingdom Royal 
Society of 
Chemistry 

15.2 47 [31] (368) 

5. International 
Journal of 
Advanced 
Manufacturing 
Technology 

United Kingdom Springer 
London 

5.6 43 [32] (178) 

6. International 
Journal of 
Production 
Research 

United Kingdom Taylor and 
Francis Ltd 

10.8 33 [33] (84) 

7. Bioresource 
Technology 

United Kingdom Elsevier Ltd 14.8 29 [34] (180) 

8. Plos One United States Public 
Library of 
Science 

5.3 28 [35] (218) 

9. Procedia 
Manufacturing 

Netherlands Elsevier BV 13.1 28 [36] (65) 

10. 
Biotechnology 
for Biofuels 

United Kingdom BioMed 
Central Ltd 

9.9 25 [37] (93) 

aOut of 4802 articles (document type) from journal (source type)

country is well ahead of other countries—see Table 3. About 55% of the publications 
from the top 10 research institutes come from emerging and developing countries, 
with more than 280 affiliated-published papers (Table 3). The continuously increasing 
publications from such countries is a clear sign that this field of research will only 
continue to grow in the near future.
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Table 3 Top 10 research institutes working on sustainable manufacturing/production 

Affiliation Country National context No. of articlesa 

1. Chinese Academy of 
Sciences 

China Emerging/developing country 89 

2. Ministry of Education 
China 

China Emerging/developing country 83 

3. Wageningen University 
& Research 

Netherlands Developed country 78 

4. USDA Agricultural 
Research Service 

United States Developed country 44 

5. Universidade de Sao 
Paulo 

Brazil Emerging/developing country 44 

6. United States 
Department of Agriculture 

United States Developed country 40 

7. Empresa Brasileira de 
Pesquisa 
Agropecuária—Embrapa 

Brazil Emerging/developing country 35 

8. Danmarks Tekniske 
Universitet 

Denmark Developed country 34 

9. UNESP-Universidade 
Estadual Paulista 

Brazil Emerging/developing country 32 

10. CNRS Centre National 
de la Recherche 
Scientifique 

France Developed country 32 

aOut of 4802 articles (document type) from journal (source type) 

3.5 Core Contributing Authors 

Sekar Vinodh published a large number of articles on the topic with 18 research papers 
consistently every year since 2012, followed by two scientists, namely Fazleena 
Badurdeen and Norsiah Hami (Table 4). Interestingly, Norsiah Hami is the only 
scientist from developing country who was listed among the top three authors.

3.6 Common Terminology, Research Topics and In-Depth 
Insights 

The investigation reveals that Sus-Man and Sus-Pro have been often applied inter-
changeably in the subject area of Engineering and Technology; however, there is also 
an inherent difference between them—‘sustainable production’ is a broader term that 
can be used in all subject areas. As shown in Fig. 3, 1034 out of 1954 documents 
were remarkably published on Sus-Man in the Engineering and Technology area
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Table 4 Top 10 authors publishing on sustainable manufacturing/production 

Author name Institutions Country No. of articlesa Most cited article 
(times cited) 

1. Vinodh, 
Sekar 

National Institute 
of Technology 
Tiruchirappalli, 
India 

India 18 [38] (64) 

2. 
Badurdeen, 
Fazleena 

University of 
Kentucky 

United States 12 [8] (550) 

3. Hami, 
Norsiah 

Universiti Utara 
Malaysia 

Malaysia 12 [39] (9)  

4. Xu, 
Boqing 

Tsinghua 
University 

China 11 [40] (316) 

5. Liang, Yu Tsinghua 
University 

China 10 [40] (316) 

6. Gao, Liang Huazhong 
University of 
Science and 
Technology 

China 9 [41] (149) 

7. Li, Lin University of 
Illinois at Chicago 

United States 9 [42] (147) 

8. Pham, Duc 
Truong 

University of 
Birmingham 

United Kingdom 9 [43] (60) 

9. Ocampo, 
Lanndon A 

Cebu 
Technological 
University 

Philippines 9 [44] (20) 

10. Haapala, 
Karl R 

Oregon State 
University 

United States 8 [45] (73) 

aOut of 4802 articles (document type) from journal (source type)

compared to 870 (out of 6392) documents for Sus-Pro, suggesting that ‘sustainable 
manufacturing’ is the most common term for such a subject area.

The co-occurrence analysis of keywords was accordingly performed for Sus-
Man/Pro on a total of 4802 publications in 160 journals. A threshold of a minimum 
number of keywords occurrences equal to 5 was set. The analysis of Sus-Man/Pro 
resulted in 492 keywords out of a total of 13,466. Figure 4 displays the overlay 
visualization which is coloured differently based on the average publications’ year. 
The overlay visualization ranges from white (old article) to dark purple (contem-
porary article). The dominant keywords based on total link strength were “sustain-
ability” (612 total link strength), “sustainable manufacturing” (366), “sustainable 
development” (125) and “sustainable production” (118), respectively.

The analyses indicated that the links, total link strength, and occurrence for Sus-
Man is ranked higher than Sus-Pro. Link is a connection or relation between two 
items (e.g., co-occurrence of keywords) while the total link strength is a weight
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Fig. 4 Co-occurance network map of keywords from articles published on sustainable manufac-
turing/production

attribute to determine the cumulative strength of the links of an item with other items 
[24]. This could be explained by the fact that, the links and total link strength for 
Sus-Man are higher than Sus-Pro since it is a recent fascinated topic and thus more 
strongly connected to other emerging keywords such as ‘Circular Economy’ (total 
link strength: 72, avg. pub. year: 2018.9). The link between circular economy and 
sustainable manufacturing was well-argued by [13], who explained that circular
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economy can be operationalised in manufacturing through applying the 6Rs— 
Reduce, Reuse, Recycle, Recover, Redesign and Remanufacture. Other connected 
emerging keyword include ‘Industry 4.0’ (total link strength: 48, avg. pub. year: 
2019.4). 

Table 5 lists the 10 most influential articles on Sus-Man, which were ranked using 
Scopus in terms of the highest citation. The article by [8] received the highest citation 
count of 550, providing the all-inclusive overview of the concept by exemplifying 
the dry, near-dry and cryogenic machining. It is preceded by [46] with 436 citations, 
who concluded that the initiation of a new technology may modify the description of 
“what is sustainable”. Noticeably, there is a paper in the list of the 10 most influential 
articles with 213 citations—[47]—which was very recently reported, among others, 
on a fundamental query about “can industry 4.0 revolutionise the environmentally-
sustainable manufacturing wave?”

These global research trends depict a growing need for sustainable manufac-
turing development to sustainably address challenges and issues related to ecosystem 
destruction and numerous other unsustainable paradigms. There were many signifi-
cant efforts as such; however, the development is generally traced by compartmental-
ising the manufacturing’s integral elements—product, process, and system (Fig. 5). 
This may be due to sustainable manufacturing is a complex systems problem [13], 
and which it is being relied highly on the analytical approaches that make learning 
and development through the reductionism thinking and mechanism interpretation.

Figure 5 manifests a visual representation of elements, where the union is created 
by overlapping products (value design), processes (value creation), and systems 
(value recovery) based on the 6R methodology to fulfil the TBL requirements 
[1]. The colour gold was employed to denote sustainable development, thereby 
ensuring that SD is the Golden Pathway to manufacturing sustainability. Therefore, 
new technologies together with other critical success factors [46, 47] and mental 
models, on which the manufacturing encompasses interrelated elements, with inter-
connected processes, units, norms, values, behaviours, individuals and groups, which 
are influencing and being influenced by one another, are requested to sustainable 
manufacturing development [17]. 

4 Conclusion 

This article presents an analysis of the research trends in sustainable manufacturing 
area using a bibliometric analysis in the Scopus database, which is prominently 
considered as the major indexer of global scientific content. The data for the study 
was extracted until May 2021 based on the descriptive data of publication outputs and 
resulted in retrieving a total of 4802 journal articles reported between 1979 and 2021. 
The bibliometric method contributed to provide the structures and development in 
the sustainable manufacturing area so that the scientific community could penetrate 
the existing hierarchy of the publication in the context. The analyses revealed that 
publication growth was swift; the published documents were continuously increased
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Table 5 10 most influential articles on sustainable manufacturing. 

Rank Authors (Year) Title Source title Times 
cited 

1 Jayal et al. [8] Sustainable manufacturing: 
modeling and optimization 
challenges at the product, 
process and system levels 

CIRP Journal of 
Manufacturing Science 
and Technology 

550 

2 Garetti and 
Taisch [46] 

Sustainable manufacturing: 
trends and research challenges 

Production Planning and 
Control 

436 

3 Jovane et al. 
[48] 

The incoming global 
technological and industrial 
revolution towards 
competitive sustainable 
manufacturing 

CIRP 
Annals—Manufacturing 
Technology 

282 

4 Joung et al. [49] Categorization of indicators 
for sustainable manufacturing 

Ecological Indicators 279 

5 Sarkis [50] Manufacturing’s role in 
corporate environmental 
sustainability—concerns for 
the new millennium 

International Journal of 
Operations and 
Production Management 

276 

6 Rusinko [51] Green manufacturing: an 
evaluation of 
environmentally-sustainable 
manufacturing practices and 
their impact on competitive 
outcomes 

IEEE Transactions on 
Engineering Management 

243 

7 Yan and Li [52] Multi-objective optimization 
of milling parameters—the 
trade-offs between energy, 
production rate and cutting 
quality 

Journal of Cleaner 
Production 

229 

8 Ijomah et al. 
[53] 

Development of design for 
remanufacturing guidelines to 
support sustainable 
manufacturing 

Robotics and 
Computer-Integrated 
Manufacturing 

214 

9 Jabbour et al. 
[47] 

When titans meet—can 
industry 4.0 revolutionise the 
environmentally-sustainable 
manufacturing wave? The 
role of critical success factors 

Technological Forecasting 
and Social Change 

213 

10 Faulkner and 
Badurdeen [9] 

Sustainable Value Stream 
Mapping (Sus-VSM): 
methodology to visualize and 
assess manufacturing 
sustainability performance 

Journal of Cleaner 
Production 

209
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Fig. 5 Integral elements of 
sustainable manufacturing, 
from a general perspective to 
fully integrated perspective

every year since 2006. Core contributing countries, journals, academic institutions, 
and authors were also discovered. The United States and China are the countries in 
the top two, respectively, with an enormous number of publications and great collab-
oration networks. It may give an opportunity to investigators from other academic 
institutions and countries to widen their research collaborations. Furthermore, this 
study discussed some new areas considered for sustainable manufacturing which 
would be potential top topics for future research. 
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An Analysis of the Literature on Industry 
4.0 and the Major Technologies 

Hamed Gholami , Falah Abu, Jocelyn Ke Yin Lee, 
and Georges Abdul-Nour 

1 Introduction 

The value creation in industrialised nations is currently being shaped by Industry 4.0 
(I4.0), which is a new wave of industrialisation seeking to develop Cyber-Physical 
Systems (CPS) through an amalgamation between manufacturing operations systems 
and information and communication technologies (ICT), particularly the Internet of 
Things (IoT) [ 1, 2]. Following the initial three industrial revolutions, as shown 
in Fig. 1, I4.0 possesses great potential to significantly improve industrial produc-
tivity via profound changes in the interrelatedness of the systems. A CPS integrates 
information technology with the operational technologies of the physical system. 
Meanwhile, the IoT refers to an ecosystem of technologies that monitors the status 
of physical objects, captures significant data, and communicates that data to software 
applications through established networks. In I4.0, the CPS elements are essentially 
linked by IoT [3]. Other technologies that are mainly deployed in I4.0 include Big 
Data Analytics, Industrial IoT, Simulation/Optimization, Additive Manufacturing, 
Horizontal/Vertical System Integration, Virtual/Augmented Reality, Autonomous 
Robots, Cloud, and Cybersecurity [4–7].

Following this concept, a number of countries have developed their own programs 
to accelerate the adoption and advance of I4.0 technologies. The birthplace of the
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Fig. 1 Evolution of industrial waves

concept, i.e., Germany, had developed a program named “High-Tech Strategy 2020”. 
The United States developed its “Advanced Manufacturing Partnership”, France with 
“La Nouvelle France Industrielle”, China with “Made in China 2025”, and Brazil 
with “Towards Industry 4.0” (Rumo à Indústria 4.0). Such local programs, whether in 
developed or emerging countries, have the objective of disseminating the concepts 
and technologies of I4.0 to local businesses [1]. This implies that such countries 
have already conceived I4.0 concepts and technologies and subsequently matured 
with regard to the two concepts of Industry 3.0—automation and ICT usage—which 
are now being incorporated into I4.0 [8]. As I4.0 mainly entails the diffusion and 
adoption of technology, developing countries may encounter challenges in the form of 
a sluggish diffusion-adoption process as it typically flows from developed countries 
[1, 9, 10]. To demonstrate how this process is scientifically progressing, this study 
employed Bibliometric analysis, which is widely used for examining and analysing 
massive volumes of scientific data and also for investigating evolutions and possible 
areas of research in a specific field. 

With the substantially growing academic and industry interests in I4.0, hereby this 
paper by using Bibliometric analysis aims to: (i) analyse journal articles on I4.0 for 
temporal distribution patterns, (ii) demonstrate the contributions of leading countries, 
prolific authors, and top educational establishments, (iii) underline common termi-
nologies, and (iv) outline the most major technologies distributed throughout I4.0 
publications. Implications wise, this work may facilitate industrial policy-/decision-
makers, practitioners, and research experts in understanding how the emerging 
concepts and technologies of this new industrial wave have been scientifically 
progressed hitherto. 

2 Methods 

Bibliometric is a systematic analysis approach that uses statistics and quantita-
tive analysis to explore trends in global research in a particular domain [11, 12]. 
Bibliometric analysis uses keywords from the titles of the documents, keywords, 
and summaries to find the connections between terms [13]. Such analysis allows
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researchers to discover the knowledge structure, challenges, and future orientations 
of the topic [14, 15]. 

2.1 Search Strategy and Data Collection 

The dataset for the study was collected on July 26th, 2021 using Scopus. The 
central theme was journal articles comprising “Industry 4.0” in the title, abstract, 
and keywords. According to [16], the limitation of bibliometric review is that it may 
not take into account all of the most important characteristics of the text, and there 
are co-existing words that are closely related. Thus, this research has chosen the 
thematic search to follow the keywords related to I4.0 at once, which are “IR 4.0” 
and “fourth industrial revolution”. 

Firstly, we used the following combinations of queries: (TITLE-ABS (“industry 
4.0” OR “IR 4.0” OR “fourth industrial revolution”)) AND PUBYEAR <2021 OR 
PUBDATETXT ( ( “january 2021” OR “february 2021” OR “march 2021” OR “april 
2021” OR “may 2021”)) AND ( EXCLUDE ( PUBYEAR, 2022)) AND ( LIMIT-TO 
( LANGUAGE, "English")). This query string resulted in 11,755 publications with 
the oldest publication dating to 2003. 

Next, additional terms were inserted into the query string to make sure that we 
did not include any review articles in the analysis; the documents were limited to 
articles (LIMIT-TO (DOCTYPE, “ar”)) and journals (LIMIT-TO (SRCTYPE, “j”)). 
Results revealed that the papers involved in this research were available in six distinct 
languages. English with 3993 documents (98.35% of overall publications) was the 
most prevalent language among German (57; 1.40%), Italian (6; 0.15%), Spanish (2; 
0.05%), Czech and Portuguese (1; 0.02%), respectively. However, once a publisher 
submits a paper in a non-English language to Scopus for indexing, the publication 
should also contain an English title and abstract. Following that, any irrelevant arti-
cles to the keywords IR 4.0 were disregarded through reading titles and abstracts. As 
a result, 3988 articles were extracted for further analysis, as shown in Fig. 2. Nonethe-
less, if the keywords or topics did not involve any of the investigated phrases, it is 
possible that this search missed relevant articles out of the sample [16, 17].

2.2 Bibliometric Maps and Analysis 

We utilized the Scopus database, VOSviewer version 1.6.16, and Publish/Perish 
(PoP) software in the research analysis processes. Firstly, the entire record meta-
data and cited references were obtained from the Scopus database. They were then 
transferred into VOSviewer to be further cleaned up as well as into PoP software 
for additional investigation. In this regard, we used the main technical terms applied 
by VOSviewer—Links, Citation links, Co-citations links, Co-authorship links, Co-
occurrence links, Network, Weight attribute (Total link strength), Custom weight
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Fig. 2 Flow diagram of the search strategy

attributes (Documents, Occurrences, and Total citations), Density and overlay visu-
alisation maps, Average citations per publication, h-index, and g-index—in pursuit 
of [12, 18–21]. 

The search output patterns were accordingly compared between the central 
theme (keyword co-occurrences) and the sub-theme (total publication). As extracted 
keywords from the Scopus database are not similar to the VOSviewer software, 
a thesaurus file must be created to export selected keywords and subsequently 
to group all the similar keywords involving the same terms. For instance, the 
total publications in the Scopus database for the keyword “Internet of Things” is 
432 documents (10.82% of overall publications), followed by “Internet of Things 
(IOT)” 116 (2.91%), “IoT” 104 (2.60%), “Internet of Things (IoT)” 68 (1.70%), 
and “Internet Of Thing (IOT)” 66 (1.65%). Therefore, if “Internet of Things” is 
the keyword, hence keywords occurrences in VOSviewer software for “Internet of 
Things”, “Internet of Things (IOT)”, “IoT”, “Internet of Things (IoT)”, and “Internet 
of Thing (IOT)” were all counted as one term. Similarly, the following keywords 
were considered for the analysis, which is discussed in the ensuing section: Big Data
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Analytics, Industrial IoT, Simulation/Optimization, Additive Manufacturing, Hori-
zontal/Vertical System Integration, Virtual/Augmented Reality, Autonomous Robots, 
Cloud, and Cybersecurity. 

3 Results and Discussion 

This section follows the procedure based on the adopted methods for achieving the 
research objectives, as delineated in Sect. 1, accordingly presenting the analyses and 
findings in the subsequent segments. 

3.1 Historical and Cumulative Growth Trend 

Based on our formulated search string, as discussed in the previous section (Fig. 2), 
a total of 3988 journal articles written in English have been published over a span 
of eight years. Table 1 outlines the historical evolution of the major descriptors of 
scientific outputs from 2013 to 2021. In 2013, Ziesing and Hochstein published a 
paper, entitled “Engineering tools as a basis for industry 4.0”, which is recorded 
by Scopus as the oldest publication in the I4.0 context. [22] describe the case 
study of ThyssenKrupp company that is working with complex computer-aided 
tools and augmented in engineering activities. The growth in the number of docu-
ments recorded in the next three years was not promising (Table 1), rising from the 
aforementioned article published in 2013 to 92 articles in 2016. 

Table 1 Descriptive data of I4.0 publication outputs over the years 

Year TP % NCP TC C/P C/CP h g 

2021 446 0.11 235 957 2.15 4.07 14 19 

2020 1633 0.41 1154 8962 5.49 7.77 37 53 

2019 968 0.24 803 11,758 12.15 14.64 45 77 

2018 519 0.13 456 15,621 30.10 34.26 62 107 

2017 274 0.07 243 11,816 43.12 48.63 56 103 

2016 92 0.02 75 4095 44.51 54.60 26 63 

2015 41 0.01 33 3456 84.29 104.73 15 33 

2014 14 0.00 10 1559 111.36 155.90 6 10 

2013 1 0.00 0 0 0.00 0.00 0 0 

Notes TP = total number of publications; NCP = number of cited publications; TC = total citations; 
C/P= average citations per publication; C/CP = average citations per cited publication; h= h-index; 
and g = g-index
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Since this year, annual publications have continuously grown, leading to a rapid 
rise in cumulative overall publications. Significantly, publications on the topic have 
dramatically increased to 1633 articles in 2020. This trend shows an increasing 
interest in the subject as well as an expectation that the annual publications will 
keep growing due to the diffusion-adoption process which typically flows from the 
contributing countries. 

3.2 Contributing Countries on the Topic of Concern 

Table 2 displays the top ten most productive countries that have considerably 
contributed to the global expansion of I4.0 research activities. Italy was the leading 
country with 380 publications, covering 9.52% of the global total publications. In 
general, 49% of the global publications were contributed by developed countries 
such as Italy, Germany, the United Kingdom, the United States, South Korea, Spain, 
and Poland. Up to this point, Malaysia is the only developing country listed within 
the top 10 rankings. 

In addition to Table 2, the distribution of countries based on the co-authorship 
was shown in Fig. 3. Papers co-authored by scholars from several countries are 
referred to as internationally collaborative articles [23], however, the benefits of 
this collaboration include not just expanding one’s network, sharing knowledge, and 
improving notions, but also an effective approach for ranking higher [14]. Each point 
in the item density visualisation denotes colors range from white to yellow and red. 
For example, Germany is pointed to red because it is among the countries that have 
a larger number of items and higher weights (i.e., documents) compared to Northern

Table 2 Top 10 countries contributed to I4.0 publications 

Country National context TP % NCP TC C/P C/CP h g 

Italy Developed country 380 9.52 324 6360 16.74 19.63 39 64 

Germany Developed country 347 8.69 280 9437 27.20 33.70 39 92 

China Emerging and 
developing country 

331 8.29 296 8408 25.40 28.41 42 85 

United Kingdom Developed country 284 7.11 247 7155 25.19 28.97 42 78 

United States Developed country 281 7.04 236 8239 29.32 34.91 38 86 

South Korea Developed country 262 6.56 174 1638 6.25 9.41 19 32 

India Emerging and 
developing country 

251 6.29 196 3981 15.86 20.31 31 57 

Spain Developed country 232 5.81 197 3165 13.64 16.07 30 48 

Malaysia Developing country 207 5.18 138 1367 6.60 9.91 19 32 

Poland Developed country 170 4.26 140 1613 9.49 11.52 17 34 

Notes Ranking is based on TP (Total Publication) 
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Fig. 3 Density visualisation map. Note An author’s minimum number of documents = 1; A 
country’s minimum number of citations = 0; 169 meets the thresholds; 68 unrelated terms deleted 

Cyprus (ranked 95th). In VOSviewer (Fig. 3), the closer two countries are to one 
other, the more solid their bonds become [14]. 

According to the outcomes of co-authorship, the United Kingdom is the most 
connected country, linking to 63 countries through 337 co-authorships. The United 
States came in second (57 links, 297 co-authorships), followed by India (50, 172), 
Germany (49, 228), China (46, 305), and Italy (46, 206). Yet, China had the second 
highest co-authorship (305 co-authorships) after the United Kingdom in terms of 
the total link strength. Out of 101 countries, there were 43 countries that have inter-
national collaboration (links) with less than ten countries. Though, the researchers 
from Albania, Trinidad and Tobago, Georgia, North Korea, and Uzbekistan were 
not linked to any other country for producing publications on I4.0. According to 
[14], research partners, international postgraduates, visiting academics, and research 
grants may be the criteria that contribute to international collaborations. 

3.3 Core Journals, Articles, and Academic Institutions 

The findings revealed that the top ten most productive journals have been issued 
by various publishers, as listed in Table 3. Three out of the top four journals 
were published by MDPI. The topmost journal was Sustainability, with 153 arti-
cles contributing 3.83% of the overall publications, followed by Applied Sciences
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(111, 2.78%), and IEEE Access (107, 2.68%). However, the Applied Sciences had 
the lowest number of citations among the most active sources. The rest of the journals 
did not exceed a total of 100 publications. 

Interestingly, the International Journal of Production Research (IJPR) is the second 
most cited journal after IEEE Access, with 3460 and 3523 total citations, respectively. 
Although IJPR ranked 8th based on the total publications, one of their articles written 
by [24] was among the top three most cited articles, with 747 citations (Table 4).

Table 3 Most proactive source titles 

Source Title Publisher TP % TC Cite score 2020 WOS quartile 
(Impact factor) 
2020 

Sustainability MDPI AG 153 3.83 2094 3.9 Q2 (3.251) 

Applied 
Sciences 

MDPI 
Multidisciplinary 
Digital Publishing 
Institute 

111 2.78 477 3.3 N/A 

IEEE Access Institute of 
Electrical and 
Electronics 
Engineers Inc 

107 2.68 3523 4.8 Q2 (3.367) 

Sensors MDPI 
Multidisciplinary 
Digital Publishing 
Institute 

70 1.75 593 5.8 Q1 (3.576) 

Procedia 
Manufacturing 

Elsevier BV 63 1.58 2789 N/A N/A 

IEEE 
Transactions on 
Industrial 
Informatics 

IEEE Computer 
Society 

60 1.50 1528 17.7 Q1 (10.215) 

International 
Journal of 
Advanced 
Manufacturing 
Technology 

Springer London 57 1.43 556 5.6 Q2 (3.226) 

Technological 
Forecasting and 
Social Change 

Elsevier Inc 54 1.35 1892 12.1 Q1 (8.593) 

International 
Journal of 
Production 
Research 

Taylor and Francis 
Ltd 

52 1.30 3460 10.8 Q1 (8.568) 

Computers and 
Industrial 
Engineering 

Elsevier Ltd 49 1.23 1226 7.9 N/A 
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Table 4 Top 20 highly cited  articles  

No Authors Source Title Description Cites* Cites 
per 
Year 

1 [25] Manufacturing 
Letters 

A Cyber-Physical 
Systems architecture 
for Industry 
4.0-based 
manufacturing 
systems 

Proposed a unified 
5-level architecture 
as a guideline for 
implementing CPS 

2085 347.50 

2 [26] Business and 
Information 
Systems 
Engineering 

Industry 4.0 Presented the 
fundamental 
concepts of I4.0, 
which are 
described 
differently based 
on the IT-driven 
and the integration, 
automation, and 
decentralization of 
enterprise 
information 
systems 

1443 206.14 

3 [24] International 
Journal of 
Production 
Research 

Industry 4.0: State of 
the art and future 
trends 

It is a survey to 
inform 
communities 
within industrial 
sectors about 
current advances 
and future 
prospects in the 
fascinating subject 
of I4.0 

747 249.00 

4 [27] IEEE Industrial 
Electronics 
Magazine 

The future of 
industrial 
communication: 
Automation networks 
in the era of the 
internet of things and 
industry 4.0 

Ethernet 
time-sensitive 
networking (TSN) 
and the importance 
of 5G telecom 
networks in 
automation are the 
subjects of this 
survey 

704 176.00 

(continued)

Based on the CiteScore 2020 report, three journals have a CiteScore of 10 or above, 
which are IEEE Transactions on Industrial Informatics (17.7), Technological Fore-
casting and Social Change (12.1), and International Journal of Production Research 
(10.8). Sensors (Switzerland) is the only Q1 journal that has the lowest CiteScore 
that is 5.8. CiteScore, which has been an alternative to the Clarivate Analytics Impact
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Table 4 (continued)

No Authors Source Title Description Cites* Cites
per
Year

5 [28] Computer 
Networks 

Towards smart 
factory for industry 
4.0: A self-organized 
multi-agent system 
with big data based 
feedback and 
coordination 

Provided a smart 
factory framework 
that integrates 
smart shop-floor 
items such as 
machines, 
conveyers, and 
goods with an 
industrial network, 
cloud, and 
supervisory control 
terminal 

619 123.80 

6 [29] Computers in 
Industry 

Industry 4.0 and the 
current status as well 
as future prospects on 
logistics 

Identified and 
discussed the 
potential 
implications and 
pitfalls of I4.0 in 
the area of logistics 
management 

554 138.50 

7 [30] IEEE Access Peeking Inside the 
Black-Box: A Survey 
on Explainable 
Artificial Intelligence 
(XAI) 

Presented a 
comprehensive and 
holistic analysis 
related to 
Explainable 
Artificial 
Intelligence (XAI) 

535 178.33 

8 [31] IEEE Sensors 
Journal 

Software-Defined 
Industrial Internet of 
Things in the Context 
of Industry 4.0 

Analysed a 
software-defined 
IIoT architecture to 
identify network 
resource allocation 
and expedite 
information 
exchange 
mechanisms using 
an easily 
customizable 
networking 
protocol 

383 76.6

(continued)
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Table 4 (continued)

No Authors Source Title Description Cites* Cites
per
Year

9 [32] SAGE Open A Complex View of 
Industry 4.0 

Concentrated on 
the relevance and 
impact of I4.0 and 
Internet-connected 
technologies in 
generating value in 
companies and 
society 

372 74.40 

10 [33] IEEE Access Digital Twin and Big 
Data Towards Smart 
Manufacturing and 
Industry 4.0: 360 
Degree Comparison 

Investigated the 
roles of big data 
and digital twin in 
smart 
manufacturing 

367 122.33 

11 [34] International 
Journal of 
Production 
Economics 

Industry 4.0 
technologies: 
Implementation 
patterns in 
manufacturing 
companies 

Determined 
distinct adoption 
patterns for two 
technology layers 
of I4.0—base 
technologies and 
front-end 
technologies. It 
was found that 
firms with a high 
level of 
implementing I4.0 
tend to use most of 
the front-end 
technologies rather 
than a specific 
subset 

360 180.00 

12 [35] IEEE Access Digital Twin 
Shop-Floor: A New 
Shop-Floor Paradigm 
Towards Smart 
Manufacturing 

Provided an insight 
into Digital Twin 
Shop-Floor (DTS) 
and a guideline for 
implementing four 
components of 
DTS 

342 85.50 

(continued)

Factor, is an indicator for journal impact measurement based on Scopus citation data. 
However, it should not be used as the sole metric [14]. Therefore, we included the 
WoS quartile (impact factor) for sources comparison. The impact factor is employed 
to evaluate the journals’ relative importance, particularly for comparing to other 
journals in the same subject [23].
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Table 4 (continued)

No Authors Source Title Description Cites* Cites
per
Year

13 [36] Applied Energy Blockchain 
technology in the 
chemical industry: 
Machine-to-machine 
electricity market 

Presented two 
electricity 
producers and one 
electricity 
consumer trading 
with each other 
over a blockchain 
technology, which 
was linked to I4.0  

338 84.50 

14 [37] IEEE Access Smart Factory of 
Industry 4.0: Key 
Technologies, 
Application Case, 
and Challenges 

Proposed the 
hierarchical 
architecture of a 
smart factory with 
an emphasis on 
essential 
technologies at the 
physical resources 
layer, network 
layer, and data 
application layer 

328 82.00 

15 [1] International 
Journal of 
Production 
Economics 

The expected 
contribution of 
Industry 4.0 
technologies for 
industrial 
performance 

Analysed the 
perception of the 
Brazilian industry 
about the merits of 
I4.0-related 
technologies for 
three industrial 
performance 
metrics—product, 
operational, and 
side-effects 

299 99.67 

16 [38] International 
Journal of 
Production 
Research 

The industrial 
management of 
SMEs in the era of 
Industry 4.0 

Developed a 
framework based 
on the survey of 23 
actual cases in 
which I4.0 was  
applied in SMEs 

296 98.67 

(continued)

Table 5 includes a list of the top ten most prolific universities based on the number 
of I4.0 papers produced. According to the World University Rankings 2022, there 
were no top 100 best universities mentioned. The top two institutions are Politec-
nico di Milano in Italy (ranked 142) and Universiti Kebangsaan Malaysia (144th). 
However, it seems I4.0 has not received undivided attention from the top universities.
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Table 4 (continued)

No Authors Source Title Description Cites* Cites
per
Year

17 [39] International 
Journal of 
Production 
Research 

The impact of digital 
technology and 
Industry 4.0 on the 
ripple effect and 
supply chain risk 
analytics 

Presented the 
research 
framework by 
combining the 
results gained from 
two isolated areas, 
i.e., the influence 
of digitalization on 
supply chain 
management 
(SCM) and the 
influence of SCM 
on the ripple effect 

294 147.00 

18 [40] Journal of 
Manufacturing 
Technology 
Management 

The future of 
manufacturing 
industry: a strategic 
roadmap toward 
Industry 4.0 

Offered an 
integrative 
framework that can 
be served as a 
simple guide for 
the process of 
transition from 
traditional 
manufacturing into 
I4.0 

284 94.67 

19 [41] ACM 
Computing 
Surveys 

Cloud computing 
resource scheduling 
and a survey of its 
evolutionary 
approaches 

Presented the 
taxonomy of 
managing and 
scheduling cloud 
resources 

280 46.67 

20 [42] International 
Journal of 
Production 
Research 

A dynamic model 
and an algorithm for 
short-term supply 
chain scheduling in 
the smart factory 
industry 4.0 

Proposed a model 
and algorithm for 
short-term supply 
chain scheduling in 
smart factories I4.0 

276 55.20 

3.4 Author’s Contribution to the Development of the Topic 

Table 6 lists the 10 most prolific authors, who cover 3.14% of total publications in 
the area of I4.0. The authors were affiliated with seven countries, as follows: four 
authors from China and one author each from Austria, Italy, Spain, Brazil, Thailand, 
and Germany. The top two authors—Li, D. and Wan, J.—were from the South China 
University of Technology. Even though Wan, J. has two fewer publications than Li, 
D.; yet, he holds the most total citations of 2288.
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The most cited article (619 citations), which has been co-authored by both Li 
and Wan, i.e., Wang et al. [28], was published in the Computer Networks journal. 
This study presents a model to build up smart shop-floor objects such as machines, 
conveyers, and products as agents, as well as an intelligent negotiation mechanism 
for them to collaborate. They believe this industrial network will enable system-wide 
feedback and coordination using big data analytics to optimise system performance. 

3.5 Common Terminology and Distribution of I4.0 
Publications Based on Major Technologies 

A total of 60 author keywords with a minimum of 15 occurrences, were recorded for 
the mapping in VOSviewer. The findings were derived after renaming congeneric 
phrases and synonymic single words from a total of 10,058 keywords. For example, 
“4th Industrial Revolution” (17 occurrences, 9 links), “fourth industrial revolution” 
(146 occurrences, 46 links), “Industrial Revolution” (41 occurrences, 28 links), 
“Industrial Revolution 4.0” (30 occurrences, 16 links), “Industry 4.0” (20 occur-
rences, 28 links), “Industry 40” (15 occurrences, 16 links), and “the fourth indus-
trial revolution” (25 occurrences, 20 links) were generalized with the “Industry 4.0” 
(1652 occurrences, 103 links). Our results showed that “Industry 4.0” is the most 
often observed keyword, with 1886 occurrences and 59 links (Fig. 4). IoT and CPS, 
which are the two fundamental components of I4.0, were ranked second and fourth, 
with 390 and 239 occurrences, respectively. 

Fig. 4 Overlay visualisation map of a term co-occurrence network
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The outbreak of Coronavirus-19 (Covid-19) has made this keyword the latest term 
with an average publication of 2020.393 (Fig. 4). Importantly, Covid-19 is revealing 
deep interconnections between pandemics and “industry 4.0” (17 link strength), 
“IoT” (4 link strength), and “industry 4.0 technologies” (3 link strength) in unforeseen 
ways. Moreover, “circular economy”, which is an emerging concept mainly in the 
area of eliminating wastes, was among the top three keywords with the latest average 
publication year of 2020. 

In addition, we noticed several distributions of I4.0 publications with other 
nine major technologies, which are Big Data Analytics, Industrial IoT, Simula-
tion/Optimization, Additive Manufacturing, Horizontal/Vertical System Integration, 
Virtual/Augmented Reality, Autonomous Robots, Cloud, and Cybersecurity—see 
Table 7. I4.0 has the highest link strength with all nine major technologies. The 
most link strength recorded is between I4.0 and IoT (241 links strength). However, 
there is no link strength documented between AM and optimization/simulation, AM 
and CPS, cybersecurity and VR/AR, and cybersecurity and AM. It is also inter-
esting to see the connection between I4.0 and other keywords such as sustain-
ability (72 links strength), circular economy (38 links strength), lean manufac-
turing/production (32 links strength), sustainable development (16 links strength), 
and sustainable manufacturing/production (8 links strength). Surprisingly, there is no 
network of co-occurrences for green manufacturing/production. Delving into these 
technologies, the impact of some of them on developing the manufacturing’s integral 
elements—products, processes, and systems—have been potentially exposed [3, 4]: 

. Big Data Analytics–capable of improving direct/indirect costs, waste and emis-
sions, and product end-of-life management at the product level [43–45], energy 
consumption and environmental impact at the process level [46–48], net profit,

Table 7 Link strength of nine major technologies in I4.0 publications 

Label Keywords Link strength 

A B C D E F G H I J K 

A Big Data Analytics (BDA) 

B Optimization/Simulation 1 

C Cloud 19 3 

D Virtual/Augmented Reality (VR/AR) 6 1 2 

E Cyber-Physical Systems (CPS) 30 4 23 6 

F Industrial Internet of Things (IIoT) 15 1 24 11 24 

G Additive Manufacturing (AM) 4 – 1 4 – 1 

H Autonomous Robots 6 2 1 4 5 5 5 

I Cybersecurity 4 1 5 – 9 10 – 2 

J Internet of Things (IoT) 53 5 36 11 75 26 11 14 12 

K Industry 4.0 97 32 71 38 158 93 29 50 17 241
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operational performance, material use & efficiency, energy use & efficiency, and 
water use & efficiency at the system level [7, 48];

. Virtual and Augmented Reality–capable of improving product quality & durability, 
functional performance, and safety & health impact at the product level [47, 
49], manufacturing cost, personnel health, and operational safety at the process 
level [7, 50], net profit, operational performance, health & safety, and stakeholder 
engagement at the system level [51],

. Optimization and Simulation–capable of improving functional performance at 
the product level [52], manufacturing cost, energy consumption, environmental 
impact, personnel health, and operational safety at the process level [45, 47], 
capital charge, manufacturing cost, operational performance, material use & effi-
ciency, energy use & efficiency, water use & efficiency, waste and emission, and 
stakeholder engagement at the system level [7, 53, 54],

. Additive Manufacturing–capable of improving initial investments, material use & 
efficiency, energy use & efficiency at the product level [2, 7, 43, 55], personnel 
health and operational safety at the process level [7], net profit, operational 
performance, health & safety, and stakeholder engagement at the system level 
[45],

. Cloud–capable of improving functional performance, product end-of-life 
management, and safety & health impact at the product level [34], manufacturing 
cost and waste management at the process level [47], net profit, manufacturing 
cost, operational performance, health & safety, and stakeholder engagement at 
the system level [45, 56, 57],

. Industrial Internet of Things–capable of improving benefits and losses, product 
quality and durability, and product end-of-life management at the product level 
[34, 49, 58], manufacturing cost, waste management, personnel health, operational 
safety at the process level [7, 44, 46, 52], net profit, capital charge, operational 
performance, health & safety, and stakeholder engagement at the system level 
[44, 46, 56]. 

4 Limitations and Conclusion 

Notwithstanding its contribution, this investigation is subject to the limitations that 
may generate future research directions. First, although this study covers I4.0 research 
up to May 2021, the subject is anticipated to expand further, necessitating subsequent 
bibliometric and network analyses of the I4.0 literature. Despite the recognised theo-
retical overlap across some of the observed I4.0 themes and technologies, it is crit-
ical to rerun the presented analyses within the next few years once I4.0 studies have 
further evolved, so as to compare the new findings to those provided in this work. 
In this regard, complementary or alternate approaches such as correspondence anal-
ysis, data clustering, etc. may also be applied. The performed bibliometric structure, 
which could alter when new I4.0 publications are released, may also be tested by 
researchers. Next, the documented analyses are limited to the Scopus database, thus
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overlooking other databases such as the Web of Science may give differing insights. 
Furthermore, the current study was restricted to journal articles, thus scholars could 
also conduct bibliometric and network analyses of I4.0 studies based on more than 
just journal articles. 

In conclusion, this article has mapped out the methodological structure of the I4.0 
literature using Bibliometric analysis in order to demonstrate how the process of the 
diffusion and adoption of I4.0 concepts and technologies, which typically flows from 
developed countries, has scientifically progressed. Italy with 380 publications was 
ranked first among the contributing countries, covering 9.52% of the overall publi-
cations. In general, 49% of the global publications were contributed by developed 
countries including Italy, Germany, the United Kingdom, the United States, South 
Korea, Spain, and Poland. Malaysia was the only developing country listed within 
the top 10 rankings. Based on the identified patterns, prolific authors and institu-
tions as well as the major technologies related to Industry 4.0 were also discussed. 
Even though this study describes a ground-breaking bibliometric and network anal-
ysis concerning the I4.0 scholarship, the field’s dynamic nature necessitates ongoing 
screening and mapping in the future years. 
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Smart Laser Welding: A Strategic 
Roadmap Toward Sustainable 
Manufacturing in Industry 4.0 

Ahmad Aminzadeh, Davood Rahmatabadi , Mostafa Pahlavani, 
Mahmoud Moradi, and Jonathan Lawrence 

1 Introduction 

Industry 4.0 is the fourth significant period in the industry since the beginning of 
the Industrial Revolutions. It defines a way to make the transition from dominant 
machine production to digital production. It transforms the production and manage-
ment systems in every industry and every country into smart ones. In short, connecting 
the digital world to the physical aspect of the industry using the growing capabilities 
of the Internet of Things (IoT) and other technologies can be described as the Fourth 
Industrial Revolution [1]. On the other hand, this course associates with the emer-
gence of new technologies in robotics, artificial intelligence, blockchain, nanotech-
nology, quantum processing, biotechnology, the Internet of Things, and automo-
biles, which can facilitate their launch, further prosperity, and expansion in various 
fields. The concept of “Industry 4.0” has recently been introduced and accepted in
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the academic world and the manufacturing community. However, the shift from the 
third industrial revolution to the world of Industry 4.0 demands comprehensive study 
toward understanding irreversible transformations. The standards of this new indus-
trial revolution need to be well understood, and a clear roadmap must be developed 
and implemented to achieve a successful change. There are various elements and 
factors in these changes that also stimulate social influences. The Internet of Things 
is one of these instrumental requirements that allows machines to communicate and 
creates a cheaper production environment. 

The second important motivation and advantage of these transformations is 
"automation" in those systems act only to be influenced by each other’s performance 
[2]. On the other hand, some sensors [3] and cyber-physical systems (CPS) are 
other critical parts of this evolution and provide accessible communication between 
machines and surrounding environment. When different aspects of Industry 4.0, 
including CPS, IoT, machine-to-machine (M2M) communications, and automation, 
come together, it becomes easier to build compatible, robust, and agile systems with 
exceptional capacities. This transformation enables the communication of machines 
with human operators, leading to creating a new construction vision based on four 
fundamental concepts of 1. intelligence, 2. products, 3. communication, and 4. 
information network. 

Like the other three industrial revolutions, the fourth industrial revolution has 
affected various manufacturing industries, including welding processes, and this has 
become important for achieving the desired efficiency and effectiveness in produc-
tion. It is natural that manufacturers that cannot immediately adapt to modern market 
demand either go out of business or incur higher costs in the future. 

Nowadays, welding is an advanced technique that is used in all aspects of 
industries and modern life. Laser welding (LW) has been an essential technology 
in numerous businesses such as IT, manufacturing, health care, and beauty since 
Einstein’s establishment of the theoretical foundations in 1917. With the develop-
ment of laser applications in material processing methods, laser welding has always 
been considered a new process in various industries [4–6]. Technologies such as scan-
ning and deposition welding have led to the development of laser welding methods 
in multiple sectors such as the automotive and aerospace industries. Although in the 
’60s there were attempts to use lasers in welding, the ’70s can be considered the 
beginning of laser welding in various industries. Solid-state pulsed lasers were the 
first lasers used in laser welding for applications such as spot-on sensitive electronic 
or precision mechanical components. With the progress of laser beam production 
resources and technological advances in laser beam conduction, laser welding has 
also undergone dramatic changes. With the increasing use of sheet metal industries, 
new technologies to improve product quality and reduce costs and operating time 
have become significant. Since welding plays a vital role in producing metal prod-
ucts, new laser welding methods instead of traditional welding methods increase 
the quality of products. It also reduces the number of operations after the welding 
process in various industries. Recently, Aminzadeh et al. [7] used a real-time moni-
toring technique to define the distortion and deviation in aluminum laser-welded 
blanks via a 3D laser scanner.
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For this reason, this process is prevalent in the industry and is an attractive 
option. Although laser welding imposes complex processes in process control and 
data connectivity, it offers numerous unparalleled advantages like speed, technology, 
and costs. Compared with traditional fabrication processes, including resistance spot 
welding or conventional ARC welding, laser welding or primarily fiber laser welding 
provides easy operation. It is straightforward to learn with a fast-learning curve, 
improves energy efficiency and machine lifetime. It causes a smaller ecological 
footprint, more economical maintenance requirements, less environmental contam-
ination, and less high-volume production time. However, a lack of a road map in 
the Twins model, metaheuristic approaches, and machine learning toward potential 
advancements is a gray area in manufacturing sectors. Therefore, this chapter aims at 
introducing the use of big data (BD) and AI-ML in designing digital twins (DTs) or 
DT-based systems for laser welding applications by highlighting the current state-of-
the-art deployments. Finally, a comprehensive comparison of sustainability factors 
for different welding processes has been reviewed. 

2 Real-Time Monitoring for Smart Welding 

The technology of Laser Welding (LW) as a permanent connection technique has 
notable potential for industrial applications. As compared to conventional welding 
methods, LW shows advantages of productivity, versatility, effectiveness, deeper 
penetration, less distortion, and higher welding velocity [8]. However, LW is an 
almost complex fabrication process in which achieving acceptable joint quality 
is affected by several process variables and other factors such as defects in the 
microstructure of the base material, contamination of the workpiece surface, and 
changes in laser beam properties. Such defects alter the welded elements’ mechan-
ical characteristics, resulting in an increased risk of fatigue of the part. Therefore, 
ensuring the quality of the welded joint is a must for use in industry. For this purpose, 
quality monitoring is considered critical in modern production systems and is usually 
applied in three stages before, during, and after the process [9]. 

Since laser welding inputs (controllable and uncontrollable), noises, and distur-
bances alongside the welding circumstances affect the outputs, a promising method of 
producing the desired results is in demand to guarantee that all noises are dismissed or 
lessened; therefore, the welding process conditions maintain at their standard levels. 

One way of ensuring the mentioned conditions is monitoring the principal inputs 
means welding parameters and other influential welding conditions that may deviate 
from standard levels/constants or even change completely. Simple changes would be 
enough for some deviations of welding conditions or input parameters from desired 
levels or constants. For instance, adjusting the torch position can remove the error due 
to deviation between the actual weld seam and the torch’s trajectory. Or, if welding’s 
current becomes lower than its desired value, action will be taken to increase its level 
to the needed constants. These mentioned corrections are straightforward because 
they are applied just to some individual welding conditions and variables.
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However, some errors are related to the complex difficulties from unknown sources 
and cannot be corrected by changing individual parameters; therefore, dealing with 
these conditions needs smart and in-process control and monitoring. 

2.1 Intelligent Laser Welding Monitoring 

Due to its smaller heat-affected zone, higher operation speed, and precision, LW 
has recently become a widely employed joining technology in different industries, 
ranging from the assembly line of the vehicle’s production to micro-electric elements 
in the electronic industries. Faster, reliable, and economical detection of defects in 
industry and manufacturing processes is one of the chief concerns. Therefore, several 
developed systems with the ability of online inspection have recently been introduced 
to improve welded components’ quality plus reduce costs. Generally, non-destructive 
weld quality monitoring is classified into three main categories: 1. pre-process, 2. 
post-process, and 3. in-process [10, 11]—see Fig. 1 [12]. 

Pre-process inspection is ideal for adjusting the system prior to starting the 
welding; however, there are some limitations due to part fit-up problems. This scan-
ning process focuses mainly on the issues of seam tracking and the gaps between the 
components that will be welded to each other. The pre-process monitoring ensures a 
reliable joint by adjusting the beam spot to focus on the center gaps. In other words, 
preconditions assure a correct weld line position and, therefore, a sound welding 
condition. 

In welding with smaller, higher speed, and advanced laser beam spots that are 
more accurate, the precise position of the beam is more vital. For this purpose, seam 
tracking sensors with the ability to operate both offline and in a closed control loop 
can be used to inspect and detect the seam position and helps operators in modifying 
the part dimensions, weld line position, and clamping tolerances. 

Second, post-process inspection focuses on the final product’s global quality 
before its delivery to the customer. Although some problems of the produced elements

Fig. 1 Three monitoring 
stages 
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can be corrected by using post-processing inception, this detection method is some-
times considered distractive because it cannot recover the defective components that 
have already been fabricated. 

In this regard, modern manufacturing systems are considered online monitoring 
as in-process inspection during laser welding. Adding a quality control system to a 
laser welding machine increases productivity by quickly identifying and reducing 
the resulting number of defects in a process. Process monitoring can support the 
identification of defective welds. However, as it often lacks complete reliability, 
such detection is usually only indicative. Some of the defects are easy to detect online 
during the process, mainly if generated at the surface, while others are challenging to 
observe, particularly internal imperfections. To define the process condition correctly, 
characterizing and discovering different types of welding defects is necessary. In 
this chapter, online monitoring is considered a core of sustainability in laser material 
processing. Three classifications of the monitoring process, which were mentioned 
in this section, are shown in Table 1. 

Table 1 Three monitoring 
stages, equipment, signals, 
and objectives [13] 

Stages Equipment Monitoring 
signals 

Objective 

Pre-process Machine 
vision 
Laser 
triangulation 

Optical 
signal 

Seam tracking 
Gap 
measuring 

In-process Fusion sensors 
Laser 3D 
scanners 

Optical 
signal 
Acoustic 
signal 
Electrical 
signal 
Thermal 
signal 
Ultrasonic 
signal 

Welding 
stability 
Defect 
detection 
Pool 
monitoring 
Keyhole 
monitoring 
Feature 
prediction 
Feedback 
control 

Post-process Machine 
vision 
NDT methods 
Metallurgical 
test 
Laser 
triangular 

Optical 
signal 
Acoustic 
emission 

Defect 
classification 
Weld 
geometry
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2.2 In-Process Monitoring for Sustainable Manufacturing 

Online/in-process monitoring is the first step for achieving cloud manufacturing 
and an intelligent decision base for each system. The ever-increasing demands 
for a product with improved characteristics and quality produced at higher rates 
put an undue burden on online monitoring improvements during the automatic 
welding process. With no online monitoring devices and sensors, flaws will remain 
undetected, which can cause costly correction or repair situations. 

Recently, some employed devices, such as laser-triangulation cameras, help oper-
ators with online and in situ control and monitoring the weld bead dimension and 
geometry [14]. 

This inspecting/monitoring method has been successfully applied in several sheet 
metal processes, including vehicles’ production lines or tailor-welded blanks [6, 7]. 
However, this procedure is not capable of detecting internal flaws, and therefore 
cannot be employed in some of the fabrication processes, like remote laser welding. 
Other monitoring techniques, such as coaxial, optical radiation detection [15], coaxial 
visual detection [16], paraxial sound [17], temperature detection [18], plasma radi-
ation, and charge detection [19], have been developed for Laser Process Control 
System (LPCS) that can be used alone or in combination with 3D laser triangulation 
inspection camera. 

As mentioned before, the data transition is the linking chain in any intelligent 
system, and in this regard, the Internet of Things sensor plays a vital role in smart 
factories. With the ability to transfer real-time data and take corrective and preven-
tive measures instantly, IoT helps to reduce the maintenance time, facilitate online 
inspection and monitoring, and optimization of production systems. 

3 Robots in Welding 

Technavio Research has recently reported the day-by-day growth of robotics due to 
the development of Industry 4.0. The concept of robotics in Industry 4.0 is creating 
intelligent industrial sectors by which production lines would benefit from smart 
systems and IoT and avoid disturbances [20]. Robots are beneficial in operating 
different tasks from monitoring the machines’ conditions, analyzing, diagnosing, 
and predicting the failures to moving heavy objects [21]. They are also helpful in 
assembling products, treating dangerous materials, painting and cutting and shaping 
warehouses, polishing, etc. Kuka robots are examples of industrial robots used in 
material treatment, loading or unloading, spot, laser and arc welding, and palletizing 
or depalletizing. They are capable of delivering real-time data through IoT. The fast 
development of smart manufacturing with the help of artificial intelligence, known as 
AI, makes the traditional offline programming and teaching-playback modes obsolete
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since they cannot adapt themselves to the flexible and fast modes of modern manu-
facturing. In this regard, intelligent and automated industrial welding robots have 
been introduced and added to production lines with the aim of enhancing efficiency. 

4 Smart Decisions in Manufacturing 

Too often, intelligence factories leverage the universal shop floor data collection 
provided by intelligent manufacturing equipment, connected sensors, and a wealth 
of IoT devices to improve the performance of industrial operations significantly. 
Nevertheless, data transmission and big computing involve reorganizing the entire 
organization as operations and information technology congregate. 

Traditionally, C-suite executives think about better and faster decision-making 
because from their point of view, it’s up to them, the leaders. However, now, smart 
manufacturing’s ability to deliver data efficiently and quickly to the decision point 
is changing such long, slow-moving traditional trends of decision-making. Sustain-
ability is defined as ongoing growth in economic and social fields with a less negative 
impact on the environment. 

Intelligent manufacturing ensures obtaining all of the three aspects of sustainable 
development together with the help of Industry 4.0 components, including real-
time transferring data, reducing waste and the loss of material, enhancing produc-
tivity, cutting down costs and the time of processes, and dealing with the labor 
force challenges. In modern manufacturing systems, a researcher uses metaheuristic 
approaches and artificial intelligence in divers’ applications to define and optimize 
the influence of process parameters. 

5 Digital Twins, Big Data, and Connection Interfaces 
in Laser Welding 4.0 

Recently, the digital twin or device shadow as a part of Industry 4.0 is getting more and 
more attention between all industries and academic fairs. More precisely, digital twin-
ning is one of the top ten technology trends in the last couple of years due to its high 
applicability in the industrial sector. As this trend unfolds, manufacturing processes 
play a crucial role and are becoming increasingly digital. Generally, a digital twin, as a 
link between digital models and simulations with real-world data, creates new possi-
bilities for improved creativity, competitive advantage, and human-centered design. 
A complete real-time presentation of the state of the intelligent manufacturing system 
is a challenge; however, the emergence of a digital twin has made it possible to solve 
this problem. Undeniably, digital twin solutions, a near-real-time digital image of a 
physical object, and real-time monitoring are the most common in the ear of intel-
ligent technologies. Frequently, it is considered as part of the intelligent fabrication
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Fig. 3. Evolutionary trend of digital twin concept 

process. However, it can be employed in any field, such as production, training 
and education, marketing and business, transportation, energy, power, electronics, 
human and healthcare, sports and games, networking, and communications. Produc-
tion systems can observe, monitor, and control physical processes, produce a digital 
twin within the physical world, obtain and collect real-time data/information from 
the surrounding environments, analyze and simulate the conditions, and finally make 
decisions based on real-time communication and collaboration with humans. Inte-
grating the digital twin into intelligent manufacturing makes construction processes 
smarter, efficient, and more available. Sustainable and smart manufacturing includes 
sustainable, intelligent manufacturing facilities, systems, and services assisting and 
supporting each other. Smart manufacturing equipment has two dimensions: intelli-
gent manufacturing unit and line. A twin model unit and the line could be simulated 
in real-time condition, and all reports are considered in the design, production, logis-
tics, and sales. The following diagram, Fig. 3, shows the advanced progress in the 
digital twins’ concept, especially in manufacturing science and technology. 

6 Intelligent Manufacturing 

In the Industry 4.0 age, smart production and manufacturing processes have drawn 
attention due to the demand for sustainable development. Smart manufacturing has 
to consider sustainability features. Its facilities, such as laser beam welding and 
industrial robots, should be more intelligent, supporting their combination toward 
the smart manufacturing closed loop to perform different tasks. The systems of intel-
ligent manufacturing show a diversified trend, and a growing number of them are 
being developed for particular responsibilities and applied to actual products; there-
fore, they can significantly improve the level of intelligence. Current services in intel-
ligent manufacturing are investigated and developed, and the sustainable collabora-
tive manufacturing system platform integrates consumers, specialists, and businesses
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Fig. 4 Digital twin model. a Digital stage, b simulation and inspection, c monitoring stage, d 
physical stage 

and presents personalized services. From a lifecycle view, the intelligent manufac-
turing system is classified into three aspects: framework, enabling technology, and 
sustainable, smart manufacturing. 

The enabling technology of sustainable and intelligent manufacturing consists 
of digital twin-based, big-data-driven, artificial intelligence-driven, and Internet 
of Things (IoT)-driven. A twin model is proposed as the framework of digital 
twin-driven sustainable, intelligent manufacturing, especially for the laser welding 
process, Fig. 4. 

Primarily, sustainable and intelligent digital twin-driven consists of basic sustain-
able and smart manufacturing principles and platforms. The data of the primary 
platforms comes from the equipment layer of the platform, which includes equip-
ment, unit, production line, and production workshop. After the platform collects the 
data from the device layer, it combines cloud computing, AI, IoT, and other tech-
nologies to examine environmental, economic, and social factors comprehensively. It 
combines humans, equipment, and technology to provide virtual and physical proto-
typing data. Sensors may be included in the physical welding processes to verify the 
digital twin for improving numerical simulations’ accuracy compared to the actual 
measurements in the physical welding tests. The role of digital twins in the optimiza-
tion of the welding is obtaining the welding process window and assisting in opti-
mizing and monitoring the biological welding processes. The integration of machine 
learning and AI into the digital twins can lead to the improvement in autonomous 
decision-making capabilities. 

Digital twins will predict every possible root cause of the welding issues. Simul-
taneously, machine learning and AI will automatically recognize the issues and make 
decisions to solve the problems, correct errors, or indicate failures.
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Interactions connect all the welding digital twins through the whole welding 
lifecycle, from the designing stage to optimization, planning, production, and eval-
uation. This makes the quality evaluation of the welded structures possible during 
the first stage of designing and through all other production phases. What can ensure 
the improvement in the welding process stability and the quality of the weld are the 
interactions and connections between the physical aspects of the welding with digital 
twins via AI and machine learning. 

7 Sustainable Manufacturing and Laser Welding 

Sustainability is the capacity to continue for a long period of time, considering three 
main objectives: economic considerations, social well-being, and environmental 
effects [22]. This structured approach provided an overall structure to segregate 
all indicators that can be used by the end-user to assess sustainability. A sustain-
able manufacturing process is one that realizes economic profit while minimizing 
negative environmental impacts having conserved energy and resources. In addition 
to enhancing employee and community safety, sustainable manufacturing improves 
product safety for a particular application. It is becoming increasingly important 
for industrial production to take a sustainable approach to resource and energy use 
because of new energy laws and eco-design directives, as well as cost-effectiveness 
and companies’ environmental footprint. 

A Life Cycle Assessment (LCA) is currently the best method to evaluate the 
environmental and social impacts of a process or product [23, 24]. As a proven 
methodology for evaluating environmental impact at the process or product level, 
as well as preventing responsibility shifting from one phase to another, it has been 
proven effective time and again. Social life cycle assessment of products (SLCA) 
is defined in the Guidelines for Social Life Cycle Assessment of Products (UNEP 
2009) as a methodology that analyzes the possible positive and negative effects 
that products and services have on human beings throughout their lifetimes, such 
as health or wage issues. The demand is also increasing for products and goods 
made with sustainable methods, and customers are possible willing to pay a higher 
price for them. Manufacturing will continue to be a major influencer on economies, 
social issues, such as worker’s compensation and Occupational Safety and Health 
(OH&S); and environmental issues, such as energy consumption, wastes, and emis-
sions. Due to the linking of sustainable manufacturing to all or virtually all of the 
indicators of national and organizational sustainability, Sustainable Manufacturing 
(SM) emerged and is rapidly growing as a means to address "the sustainability chal-
lenge" that we are facing, through innovative systems, models, processes, and tech-
nologies. A batch of indicators is associated with each of these categories that would 
quantify the process’s performance and production chain [25]. Actually, Industry 
4.0 and sustainability are linked together in modern manufacturing and technology 
especially in the past decade. On the one hand, Industry 4.0 can help in achieving 
sustainable development, also assuring, for example, the preservation of resources
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on behalf of future generations. On the other, firms should be able to effectively 
use tools and opportunities pertaining to Industry 4.0 in shaping their organization, 
strategies, policies, and operations to achieve sustainable development and/or foster 
sustainability at a more general level [26]. 

A smart factory correlates with Industry 4, sustainable manufacturing, and the 
preceding. Sustainability can be viewed in different ways according to its purposes 
and applications, but the most widely accepted dimensions include the environ-
ment, society, economy, technology, and performance management. In the context 
of sustainable development, Environment, Society, and Economy are usually referred 
to as “Triple Bottom Line (TBL)”. In order to achieve sustainability, manufac-
turing processes and products must be designed in a way that poses zero environ-
mental impact and is 100% recyclable. Digital technologies help create products 
and processes, but to create sustainable development, they need to be converged 
with sustainability. In order to reap the benefits of Industry 4.0, which is sustain-
able manufacturing, manufacturers are currently focusing on such convergence. As 
part of the implementation of Industry 4.0 technologies, experts and researchers are 
addressing challenges and issues related to sustainable manufacturing through TBL. 
In Industries 4.0, the environment will be tackled in a number of ways, including 
climate change, resource depletion, and environmental protection. A new view has 
been brought to Industry 4.0, which is traditionally seen as a strategy to digitize oper-
ations and reap the rewards. In order to achieve this, Industry 4.0 technologies must 
be fully converged and coherent. Integration of all production areas, distributors, and 
customers is required to transform a manufacturing establishment into an intelligent 
factory. By providing seamless integration between Industry 4.0 technology plat-
forms and information and communication technology platforms, Industry 4.0 tech-
nologies enable more transparency across production processes and supply chains, 
enabling better utilization of energy and resources. Every aspect of manufacturing 
is affected by such connected operations, producing massive amounts of data. All 
of these data contribute to the development of environmental, socioeconomic, and 
societal strategies when they are transformed into useful information [26, 27]. 

Through its streamlined manufacturing process and recycling and remanufac-
turing initiatives, Industry 4.0 contributes to the reduction of waste generation in 
sustainable manufacturing. By incorporating different types of sensors, for example, 
any manufacturing process or operation becomes considerably more transparent. 
In addition to collecting valuable information, such sensors also provide valuable 
information on behavior, usage, failure models, performance indicators, emissions, 
and performance under the stress of the product. Through the use of various simu-
lation systems, such information is used to develop better products and processes 
while reducing environmental impacts without harming the company’s competitive-
ness [27–29]. A similarly integrated system can also manage and monitor losses 
incurred in the manufacturing and use of a product during its life cycle. As a result, 
manufacturers can develop innovative products that are competitive yet environmen-
tally friendly, thereby creating sustainable products. By allowing the development of 
equipment with much lower costs through the use of energy and resources efficiently 
through IoT, Artificial Intelligence, Machine Learning, Machine Vision, and Data
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Analytics, Industry 4.0 offers a number of advantages from an economic perspective. 
In order to lower their operating costs, manufacturers are seeking ways to improve 
their operations [30]. Although manufacturers do well to reduce costs by developing 
strategies to reduce waste (arising from manufacturing and maintenance activities), 
decreasing productivity, and increasing energy consumption, challenges continue to 
hinder their efforts. With the implementation of Industry 4.0 technologies, manu-
facturers will be able to visualize how they are optimizing and non-optimizing their 
value chains. By taking advantage of such solutions, manufacturers can optimize 
their operations and reduce operational costs while increasing productivity by right-
sizing their workers, facilities, and resources. Among other things, manufacturers 
will be able to reduce their waste generation through the use of modern and cleaner 
technologies for manufacturing and 3D printing. Industry 4.0 contributes to better 
products, which in turn benefit society as a whole in regards to the social dimension 
of sustainable manufacturing. In addition to this, better jobs will be created, which 
will result in a higher level of skill sets for workers. Consumers are expected to 
receive incentives from several manufactures to encourage them to return their old 
products and help with recycling and remanufacturing. 

In modern manufacturing systems, laser welding is one of the most important 
elements of the manufacturing field. Following the selection of the welding processes 
to be assessed for laser welding applications, the relevant sustainability performance 
categories for welding need to be selected. Regarding the nature of the process, 
sustainability depends on a number of factors during the welding process. This 
includes welding speed, power, keyhole stability, automation, and control, as well 
as the fabrication of auxiliary materials. Energy is also used in the extraction of raw 
materials, the processing of raw materials for welding filler metals, and the manufac-
turing of auxiliary materials. Therefore, the production of the individual components 
of a welding system is as important as the procurement of resources [31]. 

An important element of welding training is the sequence and procedure, not 
only from a safety viewpoint, but also to improve production. Utilizing the appro-
priate resources can also make welder training more sustainable. Virtual reality offers 
novice welders a virtual training system, the virtual welding simulation system, by 
which they can learn basic skills and torch control. In addition to saving resources, 
virtual training or augmented reality reduces costs because consumables are not 
required. As a result, this type of training is very beneficial to sustainability. In 
welding technology, sustainability depends upon numerous factors, such as selecting 
the right welding process for the application, increasing welding speed, and reducing 
rework and rejection rates. Also, it is worth mentioning that it is necessary to select 
the right welding system before all these parameters [32, 33]. 

To survey the sustainability parameters of some welding processes and also 
their comparison, Table 2 has been presented. In this comparison study, nine 
welding processes, namely, shielded metal arc welding (SMAW), gas metal arc 
welding (GMAW), gas tungsten arc welding (GTAW), plasma arc welding (PAW), 
submerged arc welding (SAW), magnetic pulse welding (MPW), ultrasonic welding 
(USW) friction-based welding (FW), and laser welding (LW) have been included. 
The most important parameters of sustainability that have been studied include
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Table 2 Comparison of sustainability factors for different welding processes 

energy consumption, destruction of the environment, welding quality and accu-
racy, reproducibility, stability, operationality, productivity and efficiency, cost, appli-
cability, complexity, limitations, and adaptability. These parameters have been 
chosen according to the latest studies about the various welding processes and their 
sustainability [34, 35]. 

In this comparison process, a weight value is allocated to each parameter. The 
scores of each of the parameters assigned to each of the processes are calculated 
from the product of the considered points and the related weight. Finally, the final 
score of each process is obtained from the sum of the scores of all of the parameters. 

As can be seen from Table 2, the total scores related to the sustainability parameters 
for the GMAW and GTAW processes are similar to each other. While the welding 
quality of GTAW is slightly better than GMAW, they are generally categorized at 
the same level of welding quality and accuracy. The total score of the PAW process 
is slightly more than processes GMAW and GTAW, which is due to the relatively 
higher efficiency of the mentioned process. 

The SAW process has achieved a higher score in most parameters compared with 
the previous processes, which in total has caused a significant score difference for 
this process. The total scores related to the sustainability parameters of the MPW, 
USW, and FW processes are close to each other. In fact, the mentioned processes 
are generally at the same level in this regard, but the scopes of their applications are 
varied from each other. 

Comparing the advantages of different processes, this can be concluded that laser 
welding is at a higher level than that of the MPW, USW, and FW processes. The 
mentioned point is due to the significant advantages of the LW method compared to 
other methods, in most parameters, including welding quality and accuracy, stability, 
productivity and efficiency, applicability, complexity, limitations, and adaptability.
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8 Conclusion and Future Research Opportunities 

Although laser welding is one of the most preferred fabrication methods, there are 
still some difficulties and challenges in employing this welding process and should 
be considered when integrating Industry 4.0. The HAZ (heat-affected zone), loss 
of alloying elements, porosity, and other defects such as cracks and insufficient 
penetration welds affect the resultant mechanical properties like the formability of 
the welded structure and an acceptable combination of input variables can control 
these failures. The challenge of obtaining the optimum combination of variables 
through a large number of experiments and a huge volume of data and deciding on 
which types of data to be analyzed should be addressed. Another challenge of the 
digitalization of laser welding is online monitoring. For this purpose, programming 
skills, knowledge of different software, and a secured transferring network to receive 
data from sensors and change them into readable data are needed [36]. Regarding 
the fact that enhanced welding quality and efficiency is a crucial part of intelligent 
manufacturing, in this chapter, the expansion of smart sensors, latest gadgets, and AI-
based ways of real-time inspection and monitoring of welding quality are reviewed 
in detail: 

1. In-process welding inspection is a perfect real-time monitoring procedure since 
the data obtained through it can be applied for adjusting welding conditions in 
real time. 

2. Inspection monitoring devices are classified and reviewed. 
3. Smart techniques and sustainable structure in welding are reviewed. 

AI has a high potential to process and mine the data and is an asset in achieving 
multiple monitoring objectives. Therefore, a developed smart quality evaluation 
system becomes the most impressive and challenging one. 

Toward future research, smart monitoring will concentrate on three features:

. An innovative acquisition platform of various welding signals.

. In-depth study of signs.

. Feedback control of welding variables. 

However, to be more precise, the entire process of welding inspection and moni-
toring remains humanized. With regard to the various welding methods and their 
applications in repairing, fabrication of medical gadgets, computer devices and 
components, micro-welding, automotive, aerospace, and electronic industry, seam 
welding is a novel topic in this concept which is considered in modern manufacturing. 
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The Role of Additive Manufacturing 
in the Age of Sustainable Manufacturing 
4.0 

Mina Ahmadi, Davood Rahmatabadi, Armin Karimi, 
Majid Haji Ali Koohpayeh, and Ramin Hashemi 

1 Introduction 

Industrial revolutions throughout history have been defined by the characteristics of 
the different emerging technologies of each moment. These features and the latest 
technologies develop the industry’s methods of production at elevated speed. At 
the same time, they stimulate economic and social change, thoroughly transforming 
humanity and how it has grown and evolved. 

Society has been into four industrial and technological revolutions, starting from 
the nineteenth century, which led to progress in all its aspects, both economically and 
socially. The First Industrial Revolution took place in the eighteenth century, aimed 
at reducing human efforts and upgrading manual production with the help of steam-
powered engines. The second Industrial Revolution has mainly focused on producing 
standard parts to raise the level of production speed, though design and flexibility 
were not high. The third revolution, with the aim of quality, flexibility, and speed 
augmentation, has brought modern technologies and automation into manufacturing 
[1].
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With the advent of intelligent automation technology, following these three phases 
of revolution is The Fourth Industrial Revolution, also known as Industry 4.0. Imple-
menting modern manufacturing systems and integrating information technologies 
is paramount for manufacturers in Industry 4.0 to stay economically competitive. 
Industry 4.0 tends to provide a more intertwined, flexible, and productive manu-
facturing process and supply chain, producing customized products based on each 
customer’s needs with less possible delivery time than the mass production system. 
By reconsideration of human roles and the digital connection of production systems, 
Industry 4.0 proposes a cyber-physical approach to initiate such intelligent factories 
[2]. 

The main pillars of Industry 4.0 in automation are Internet of Things (IoT), Big 
Data, and Cloud Computing, along with physical aspects of advanced manufac-
turing technologies, including Robots and Additive Manufacturing (AM) [1, 2]. The 
decision-making process becomes available by collecting and analyzing a great deal 
of statistical data (cloud computing and big data analytics) from physical devices 
through IoT. IoT merges the real world with the virtual world to minimize human 
intervention and improve efficiency and accuracy [1, 2]. Such records, together with 
data from design, delivery, and logistics, are Big Data that can empower organiza-
tions to achieve production excellence by meeting customers’ changing needs in the 
shortest possible time, reducing costs, and customizing freely designed products [3]. 

Accessibility to shared location-independent data is another primary concept of 
Industry 4.0 provided by cloud computing. Cloud computing can reduce the total 
number of interactions by making accessible virtual communication between opera-
tors and machines. It can also analyze data from market and customer points of view 
and provides all suggestions for individuals, equipment, and procedures automati-
cally. Remote controlling and investing in CNC machines and robots, material flow 
tracking through the manufacturing process, extracting features of parts, and using 
Big Data to optimize future parts are clear manifestations of using cloud computing 
in manufacturing. These cyber technologies ensure the emergence of smart factories 
[4]. 

When it comes to the physical aspects of Industry 4.0, robots and additive manu-
facturing play crucial roles. These technologies, with the help of cyber systems, 
improve productivity at a lower cost. Robots can carry out tasks autonomously in any 
environment, improving manufacturing performance, warehousing, and monitoring 
[1]. 

Due to the mass customization nature of Industry 4.0, areas of manufacturing 
need to be reshaped to meet this demand, as traditional manufacturing methods limit 
the capability of factories [2]. Additive manufacturing, mainly defined as a process 
by which sophisticated solid objects are made layer by layer, is critical in fabricating 
customized parts with advanced materials and complex geometries [2, 4]. AM is 
widely used in a variety of industries, from biomedical to aerospace and engineering 
[4]. In comparison with traditional manufacturing methods, AM can empower all 
areas of Industry 4.0 by streamlining the manufacturing processes [5]. All products 
can be printed at a specific lower speed, and as a result, logistic costs would be 
reduced [1].
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There are also specific features that can identify materials and machines for a given 
part. By evaluating the manufacturing process, storing designing and machining 
rules, and considering customer use, resources can be automatic scaling. One of 
the main limitations of conventional methods is tooling supply and manufacturing 
correct tooling, which can be inhibited through AM due to its tool-free nature. AM 
can also play the role of “rapid tooling” for the conventional approach as needed 
[1]. A distinct advantage of AM is introducing intelligent materials to the industries 
that can, in turn, provide reconfiguration possibility of printed parts and obtaining 
desired mechanical properties [2]. 

Considering electrical energy consumption and material consumption, Industry 
4.0 aims to implement sustainable manufacturing methods. In other words, its goal 
is to minimize waste and diminish environmental impacts. AM can reduce energy 
and material consumption rates by using the concept of a layer-by-layer production 
method and optimizing manufacturing orientation. To this should be added that AM 
is more cost-effective and energy-efficient when it comes to producing plastic parts 
than traditional methods [6]. 

Adopting (AM) and other advanced manufacturing technologies seem to herald 
a future in which value chains are faster, smaller, more localized, more coopera-
tive, and offer significant sustainability benefits. However, despite these future bene-
fits, AM has not been sufficiently explored from a sustainability perspective and its 
contribution to Industry 4.0. 

Therefore, this chapter focuses on the various additive manufacturing methods and 
their relationship with different Industry 4.0 components. Finally, the topic of AM 
through the lens of industrial sustainability is explored to provide a more compre-
hensive understanding of the implications of AM for improving the sustainability of 
industrial systems. 

This chapter begins by providing.

. An overview of AM,

. Materials used in AM, and

. AM different processes. 

and continues by giving information on.

. The interrelationship between additive manufacturing and Industry 4.0 compo-
nents, such as the Internet of Things, Big Data, Cloud Computing, and Robots. 

and finishes by describing the ways in which AM can enable more sustainable models 
of production and consumption and the challenges of implementation of AM in an 
extended application.



60 M. Ahmadi et al.

2 Additive Manufacturing Materials 

Industry 4.0 is moving in the field of intelligent technology and automation. In recent 
years, combining new and modern technologies such as additive manufacturing with 
information technology for economic competition as a new field in the manufac-
turing sector has received more attention. Elimination of geometric constraints for 
designers and manufacturers, reduction of waste materials, production and assembly 
stages, and control of consumables are the main advantages of 3D printing methods. 
These benefits reduce costs and production time. In 3D printing processes, poten-
tial expenses include the cost of machinery, human resources, energy consump-
tion, and raw material, eliminating the costs of mold preparation and integrated 
production reduces production costs. With the development of 3D printing methods, 
utilizing different materials and enhancing consumables are getting more attention 
[7]. Today, various 3D printing methods can use almost all materials in the industry, 
and advances are obtained in printing intelligent materials, ceramics, metal alloys, 
concrete, polymer-based composite reinforced with particles, and continuous fibers. 
In other words, 3D printing methods cover relatively all materials in different indus-
tries. Limitations have been solved, and new 3D printing fields, such as 4D printing, 
have been achieved. In the last two decades, smart material printing or so-called 
four-dimensional printing has become one of the most attractive topics in the field 
of additive manufacturing. In fact, by designing innovative materials and adding 
printing capabilities to them, 4D printing can be used without additional equipment 
compared to 3D printing [8, 9]. 

Innovative smart materials are a particular group of materials that can stabilize the 
deformation and different shapes. If proper stimulation is applied, those materials will 
be able to return to their original form. In fact, by using and printing these materials 
in different methods of 3D printing, the time dimension is also added, and the printed 
structures can deform over time, which is possible by applying different stimuli. In 
general, shape memory materials (SMM) fall into three categories polymers, alloys, 
and ceramics, of which polymers and alloys are the most popular. The limitations 
of ceramic printing due to the need for equipment with high working temperature 
capability have led to the fact that the 3D printing method has not been used to 
make ceramic structures. In the following, the two common categories of alloy and 
polymer, formal memory, and the mechanisms of each are briefly discussed. 

2.1 Shape Memory Alloys 

Shape memory alloys (SMA) are a new group of smart materials that, if subjected 
to appropriate heat treatment with a specific chemical composition, will show the 
ability to return to a predetermined shape or size. It means SMAs can recover to their 
original shape if heated to a specific temperature. These materials are also capable 
of converting heat (electrical) energy into mechanical energy. If the heating and
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cooling of these alloys are controlled by electric current, repeatable cyclic shapes 
and movements would be created several times in a row. SMAs have two unique 
characteristics: Shape Memory Effect (SME) and Pseudo elastic behavior [10]. Other 
features of these alloys are

. High corrosion resistance.

. Relatively high electrical resistivity.

. Fairly good mechanical properties.

. Long fatigue.

. High elasticity.

. Adaptability to the body. 

The most important application of these alloys is in the aerospace and medical 
industries. These alloys in most cases include Ni–Ti, Cu–Zn-Al, and Cu-Al-Ni [10]. 

The primary mechanism that controls the properties of SMAs is the crystal 
changing of the alloy. It means that the martensitic structure becomes an austenitic 
structure at high temperatures, and during the cooling process, the reverse of this 
process occurs. Many materials have martensitic transformations, but the distinct 
advantage of SMAs over other alloys is the twining phenomenon in the martensitic 
phase. While other materials are deformed by slippage and dislocation movement, 
SMAs react to stresses by changing the simple direction of their crystal structure 
through the twin boundaries [10]. Suppose a plastic deformation occurs in these 
alloys at low temperatures where the martensitic phase is predominant. In that case, 
a twin crystalline structure is formed for the alloy due to the plastic deformation. 
The original shape can be restored by heating the deformed alloy to the starting 
temperature of the austenite phase. This ability is called the Shape Memory Effect 
(SME) and results from the changes of the martensitic phase at low temperature to 
the austenite phase at high temperature [10]. In the shape memory phenomenon, the 
sample is deformed to a certain amount in a completely martensitic state. By heating 
the sample and returning it to the austenitic state, the shape of the sample returns to 
its original condition. 

2.2 Shape Memory Polymers 

Although Shape Memory Polymers (SMPs) were introduced decades later, compared 
to SMAs, they have some advantages, including

. More straightforward processing.

. Lower cost.

. Lower density.

. Higher flexibility.

. Higher formability.

. The ability to manipulate mechanical properties.

. Shape memory stimulation with various stimuli.
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For this purpose, they are getting more attention. As mentioned in the previous 
section, the SME has two main features: stabilizing the shape and recovering the orig-
inal shape. The ability to stabilize is the ability of the memory material to change 
from the original shape to the temporary shape through the programming process. 
Recoverability also indicates the power of the material to recover the original form. 
In the programming process, the SMP is mechanically deformed, and the modified 
shape is temporarily stabilized. The most important feature of the memory effect is 
stabilizing this quick and deformed form, which should not be changed by removing 
the stimulus. The shape memory cycle for polymers consists of three stages: program-
ming, storage/shape stabilization, and recovery [11]. Thermal energy is applied in 
the programming stage as long as the temperature is above the material transfer 
temperature. At this stage, it is possible to achieve the desired shape by applying 
force because it is very soft and rubbery. The storage phase requires the mainte-
nance of external load and pressure, and the part is placed into the desired shape 
temporarily. Consequently, the temperature reduces below the transfer temperature. 
In shape memory polymers, two parts are placed together as the soft part and the 
hard part. One is responsible for remembering the original shape, and the other is 
responsible for energy storage. In other words, for an SMP to be able to exhibit this 
property, it must have a force-storage phase and a force-retaining phase, by which 
external stimulation releases the stored force and the matter returns to its original 
shape. At a glance, SMPs can be divided into three categories based on their chemical 
structure, types of stimuli, and shape memory function. 

Of course, it should be noted that these SMPs have weaknesses compared to 
SMAs, the most important of which being low thermal and electrical conductivity 
and low mechanical properties, which leads to reduced recovery speed and recovery 
force. This leads to the emergence and widespread use of various reinforcements to 
expand polymer composites to overcome the mentioned limitations. 

2.3 Other AM Materials 

In addition to shape memory materials (SMMs), high entropy alloys (HEAs), piezo-
electric materials, conductive polymer, composite, multi-materials, etc. are materials 
with special properties that can be fabricated with different additive manufacturing 
techniques. One of the unusual properties of some ceramics and polymers is the 
piezoelectric effect. The piezoelectric effect is seen in many materials, including 
mono-crystals, ceramics, polymers, and composites. The generation of the electric 
potential difference in some non-conducting crystals, such as quartz, is all under 
reverse tension or pressure, and the higher the pressure or tension, the greater the 
potential difference produced [12]. By applying an external force, the dipoles of these 
ceramics are excited, and an electric field is created. Reversing the effect of force 
(for example, from tensile to compressive) changes the direction of the area. Piezo-
electric materials are used in converters and devices that convert electrical energy 
into mechanical energy or vice versa. These materials are most commonly utilized in
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sensors, and piezoelectric sensors are mainly used in high-frequency sounds in ultra-
sonic transducers for medical imaging. Alloys have long been used to improve the 
properties of materials. In high entropy alloys (HEA), there are at least five essential 
elements with approximately equal atomic percentages. The important properties of 
these elements have attracted the attention of researchers over the past few years and 
have made rapid progress in various fields of research and application [13, 14]. 

3 Advanced Additive Manufacturing Processes 

Charles Hall developed the first AM process in 1986, known as stereolithography, 
followed by further advances. 3D printing, which involves various methods, mate-
rials, and equipment, has evolved over the years and can transform production and 
assembly processes. Additive production has been widely used in multiple industries 
such as construction, prototyping, and biomechanics [15]. This technology allows 
researchers to create complex shapes that were previously impossible using tradi-
tional construction methods [16, 17]. By using 3D printing, researchers can create 
complex designs inspired by nature and multi-material designs [18, 19], remotely 
control robots [20], designs produced with machine learning and optimization algo-
rithms [21, 22], drug delivery systems [9, 23], and even small environments for 
biological tissues [24, 25]. Common 3D printing technologies include material 
extrusion, photopolymerization process, powder bed fusion, material jetting, lami-
nation process, and direct energy deposition [15]. Additive production methods have 
evolved to satisfy the printing demand of complicated components with good resolu-
tion. As an AM technology, rapid prototyping can print and fabricate large structures, 
reduce fabrication defects, and enhance mechanical properties, which are some of the 
main factors in developing AM technologies. The most commonly used AM method, 
which mainly utilizes polymer filaments, is fused deposition modeling. Production 
of powder additives by Selective Laser Sintering (SLS), Selective Laser Melting 
(SLM), inkjet printing technology, contour fabrication, stereolithography or (SLA), 
Direct Energy Deposition (DED), and Laminated Object Manufacturing (LOM) are 
examples of AM main methods. Their various applications, the appropriate materials 
for each technique, and their advantages and disadvantages are briefly described and 
introduced in the following sections. Figure 1 shows a schematic of four widely used 
additive generation methods.

3.1 FDM 

In the Fused Deposition Modeling (FDM) method, the primary material used for 
3D printed layers is a continuous filament or a string composed of thermoplastic 
polymer [27]. The string is heated in a nozzle, and its state changes to a semi-liquid
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Fig. 1 Schematic of the main AM methods: a FDM, b inkjet printing; c stereolithography, and d 
SLM [15, 26]

and later extruded onto a print screen or previously printed layers. The thermoplas-
ticity feature and rheology of the polymer filament are the main highlights of this 
method, allowing filaments to bond to each other during the printing process and 
then solidify at ambient temperature after the printing. Layer thickness, printing 
speed and temperature, raster width and direction, and the amount of free space 
(space between layers) are the central AM processing parameters that directly or 
indirectly have effects on the mechanical and microstructural properties of printed 
parts [27–29]. The distortion between layers is one of the leading causes of mechan-
ical weakness in this method [30]. The main advantages of FDM over other AM 
methods are higher speed of printing, simplicity, and lower cost. However, weaker 
mechanical properties and lower quality of the finishing surface and layer-by-layer 
appearance [31], and limitations on the number and types of thermoplastic materials 
used by FDM are this method’s drawbacks [32]. Developments in fiber/powder rein-
forced composites helped FDM enhance the properties of 3D printed components 
[33]. Still, fiber orientation, particle distribution, filler-matrix bonding, and cavities 
are principal challenges in printing 3D composite components [26, 33].
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3.2 Powder Bed Fusion 

In these processes, thin layers of very fine powders are spread and pressed on a 
plate—a laser beam bonds selectively powders of each layer in the presence or 
absence of a binder. Subsequently, layers of powders are then spread on the previous 
layers’ surface, and by repeating the same method, a final 3D shape is produced. 
Excess powder is just then removed after the process has finished. If necessary, a 
finishing process and further details such as coating, baking, and penetration are used 
to improve the properties. The distribution of the powder and its compaction, which 
determine and affect the printed part’s density, are the fundamental factors in this 
method [34]. Using laser is limited to powders, whose melting/sintering temperatures 
are low; otherwise, the laser is replaced by a liquid glue. While SLM’s utilization 
of materials is limited to certain metals, including steel and aluminum and some of 
their alloys, SLS uses various polymers, metals, and alloy powders. Laser scanning’s 
purpose during the SLS method is not to melt the powders entirely. But the increased 
local temperature of the grains’ surfaces leads to the particle’s fusion at the molec-
ular level, while, in SLM, powders are completely melted and combined after laser 
scanning, which results in higher mechanical properties [35]. Regarding the use of 
liquid adhesive, which is also known as one of the 3D printing methods, the bond’s 
rheology and chemistry, shape, and size of the powder particles, as well as the depo-
sition rate, the interactions between powder and adhesive, and the post-processing 
techniques play an essential role in production parts in this method [26, 34]. The 
liquid adhesive’s printed parts’ porosity is frequently higher than those created by 
SLM or SLS [34]. The power and scanning speed of the laser are the main parameters 
that affect such manufacturing processes. More details and information about various 
types of lasers as well as their impacts on 3D printing processes can be found in the 
article by Lee et al. [35]. Higher quality and resolution of the printed structures are 
among the advantages of powder bed melting processes, making them appropriate 
methods for creating complex structures. 

3.3 Inkjet Printing and Contour Crafting 

Inkjet printing produces ceramic structures and prints complicated and advanced 
ceramics for scaffolding in tissue engineering applications. A stable suspension of 
ceramic, such as zirconium-oxide powder, is drawn into the water through an injec-
tion nozzle on the substrate and layered in drops [36]. These droplets then can 
create continuous patterns and, as they solidify, obtain sufficient strength for holding 
subsequent layers of the printed object. This method is fast, flexible, and efficient 
in designing/printing complex components. Two principal types of ceramic inks are 
wax-based inks and liquid suspension systems. The former solidifies by melting and 
being placed on a bed, while the latter solidifies as the liquid evaporates. Ceramic 
particle size distribution, ink viscosity, solid content, extrusion rate, as well as nozzle
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size, and printing speed are the determinants that affect the quality of inkjet-printed 
parts [37]. Low resolution and lack of adhesion among layers are the significant 
shortcomings of this method. 

Like inkjet printing, the contour crafting process is the primary additive manu-
facturing method for large building structures. This method can extrude and eject 
concrete or clay paste with the help of larger nozzles at higher pressure. 

3.4 SLA 

SLA is among the pioneer additive manufacturing methods, which was developed in 
1986. This method employs ultraviolet light (or electron beam) for initiating an inter-
chain reaction of resins or monomer solution layers. Monomers (primarily based on 
acrylic/epoxy) can react to ultraviolet light and immediately turn into polymer chains 
after radicalization or, in other words, after activation. After polymerization, to keep 
the following layers, the desired pattern solidifies inside the resin layer. The non-
reactive resin is also removed after printing. To obtain the determined mechanical 
characteristics, some printed parts may be supplemented by post-processing opera-
tions, like heating or optical functions. Ceramic particles’ dispersion in monomers 
has the ability to be used for printing polymer-based composites [37]. 

3.5 DED 

High-performance super alloys will be available through the direct energy deposi-
tion method. Laser-engineered lattice and solid laser formations, conductive light-
fabrication, DMD or direct metal deposition, electron beam, and arc wire melting 
are other terms referring to DED [38]. DED uses an energy source (laser beam or 
electron) focusing directly on a small substrate area melting a raw material (powder 
or wire) simultaneously. The molten material then precipitates and solidifies after the 
laser beam moves [38]. The main difference between the two methods of DED and 
SLM is that there is no powder bed in DED, and the raw materials are fused layer-
by-layer before deposition, similar to FDM. But much higher amounts of energy are 
needed to melt metals in DED than in FDM. So, it can help fill cracks and hard-
ening of produced parts, which is limited in applying the powder bed fusion method. 
DED allows the simultaneous deposition of multiple axes and several materials [1]. 
Moreover, this technique can be combined easily with other conventional reduction 
processes like machining. This method usually uses titanium, Inconel, stainless steel, 
aluminum, and related alloys for aerospace applications. In general, the main charac-
teristic of DED is high speed [39] and a vast operating range. However, it has a lower 
level of accuracy and quality and can produce parts with less complexity in compar-
ison with SLS and SLM [38]. Therefore, this method is a commonly employed
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technique for huge components but with lower complexity. It is also an appro-
priate option for repairing large and difficult-to-repair parts. DED reduces fabrication 
time, needs lower investment, grants superior mechanical features, and controls the 
microstructure. It is used in repairing turbine engines and has different applications 
in various industries, including automotive and aerospace. Table 1 summarizes the 
materials, applications, advantages, disadvantages, and scope of separation of the 
primary additive production methods.

4 Interrelationship Between Additive Manufacturing 
and Industry 4.0 Components 

Among all transformative technologies of Industry 4.0, AM is the only one that 
associates with manufacturing, an umbrella term that describes techniques with 
the capability of fabricating 3D objects layer upon layer. It offers many consid-
erable advantages over other traditional manufacturing methods, and enabling the 
production of complex and challenging geometries might be the most notable one. 
Customization/personalization is another benefit of AM that turns it to be key manu-
facturing technology for Industry 4.0. However, AM and other Industry 4.0 elements 
can benefit from each other and connect the physical world of AM to the digitalized 
world of Industry 4.0. 

4.1 The Relationship Between IoT and AM 

Internet of Things which is known as the Industrial Internet of Things (IIoT) in the 
manufacturing world is a combination of devices and physical objects implanted 
with electronic gadgets, sensors, and software aiming at initiating the exchange, 
data, and information collection as well as facilitating communications of people, 
products, and machines. With the help of sensors attached to different machines and 
other physical objects during the fabrication stage and collecting data, IIoT affects 
real-time decision-making and leads to increased productivity and efficiency. Elec-
tronic objects used for fully functional IIoT were limited due to their production 
and implementation costs. However, due to being cost-effective and the ability of 
printing complex and functional electronic tools, AM came to help IIoT. There-
fore, integrating AM and IoT/IIoT is essential for obtaining improved products and 
processes. As far as some factors such as risk, cost, and time are concerned, AM helps 
enhance manufacturing techniques for those electronic devices that their produc-
tions were impossible by subtractive strategies. For example, AM can remove many 
conventional constraints in producing sensor structures, such as those associated with 
planar electrical systems. The result is the possibility of creating thoroughly altered 
surface topographies that can promote the angled arrangement for sensor divisions 
[41].
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Table 1 Summaries of the comparison of the main additive manufacturing methods [15, 26, 38, 
40] 

Process Material Applications Advantages Disadvantages Quality 

Filament 
Deposition 
Modeling 

Filament, 
continuous 
thermoplastic 
and reinforced 
composite, and 
waxes 

Prototypes, 
developed 
composite 
structures, 
tooling, 
casting 
patterns 

Low cost, high 
speed, simpler 
process 

Weak 
mechanical 
properties, 
limitation in 
used materials, 
layer structure 

50–200 µm 

Powder Bed 
Fusion 

Compressed 
metals 
particles, 
(limited types 
of alloys and 
polymers for 
SLS and SLM, 
ceramic 
powder for 
3DP) 

Medical, 
aerospace, 
electronics, 
tooling, 
casting 
patterns, 
functional 
parts, heat 
exchanger, net 
shape 
lightweight 
components 

High quality 
and resolution 

Low speed, 
expensive, high 
porosity for 3DP 

80–250 µm 

Inkjet 
printing and 
contour 
crafting 

UV curable 
acrylic plastic, 
wax, soil, and 
concrete 

Medical, 
building large 
components 

High speed, 
capability of 
printing large 
structures 

No adhesion 
between the 
layers, layer 
structure 

Inkjet: 
5–200 µm 
Contour 
crafting: 
25–40 mm 

SLA Photopolymer, 
liquid 
photosensitive 
resin curable 
with UV light 

Medical, rapid 
prototyping 

High quality 
and resolution 

Limited 
materials, low 
speed, expensive 

10 µm 

DED Metals and 
alloys in form 
of powder or 
wire, 
polymers, and 
ceramics 

Medical, 
coating, 
aerospace, 
repairing, 
reinforcing 

Lower cost 
and production 
time, 
improved 
mechanical 
properties, 
controllable 
microstructure 

Lower accuracy, 
poor finishing 
surface, 
limitations in 
printing 
complex 
structures 

250 µm 

LOM Paper, plastic, 
metal 

Prototypes, 
casting 
models, 
electronics, 
intelligent 
structures, 
paper 

Higher range 
of materials, 
suitable for 
constructing 
large 
structures, 
lower cost and 
production 
time 

Lower accuracy, 
poor finishing 
surface, 
limitations in 
printing 
complex 
structures 

Varies 
according to 
thickness
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On the other hand, IIoT can help AM in different areas, such as monitoring 
customer interaction during the early stages. IoT enables a cloud platform for users to 
control and monitor the production process distantly. It is a platform which integrates 
3D systems, materials, knowledge, and test data for printing, designing, and process 
planning. In other words, IoT is an excellent asset to AM optimization by collecting 
data from various sensors in real time and processing them by sophisticated digital 
techniques. It is now available for even mobile devices to use Wi-Fi and cloud 
platforms for online monitoring of 3D printers [2, 4, 41, 42]. 

4.2 The Role of Big Data Analytics in Additive 
Manufacturing 

Based on the previous description of IIoT, it is a system of interconnected computing 
devices, and digital and mechanical machines with the ability to transfer data and 
information over a network without human-to-human or human-to-computer inter-
action. It means a large amount of data is gathered from different AM machines 
and needs to be processed quickly, letting users make informed decisions. Based on 
the previous description of IIoT, it is a system of interconnected computing devices, 
and digital and mechanical machines capable of transferring data and information 
over a network without any need for human–human or human–computer interac-
tion. It means a large amount of data is gathered from different AM machines and 
needs to be processed quickly, letting users make their own decisions. This is where 
BDA comes into play. A collection of massive datasets that traditional databases and 
other software techniques cannot analyze or characterize big data. Like IIoT, BDA 
also plays a significant role in AM as it is capable of analyzing copious amounts of 
data. Due to rapid AM materials and systems developments, using big data for anal-
ysis is getting more critical. BDA comprises Company, Collaborators, Customers, 
Competitors, and Context (5Cs) in Industry 4.0 and cyber-physical1 systems envi-
ronment, which include intelligent cognition, configuration, cyber connection level, 
and conversation level of data to information. This enables a streamlined approach 
for analyzing data and, therefore, better product and system quality and reliability 
in the context of an Industry 4.0/intelligent industrial world of factories. Since AM 
involves complex and various interactions and connections between design, mate-
rials, fabrication processes, and part performance, enormous amounts of data need to 
be gathered and analyzed throughout the product life cycle for opportunities like cost 
and time reduction, defects detection, thermal distortion prediction, energy consump-
tion optimization, and enhanced efficiencies. Figure 2 illustrates how big data helps 
AM to enhance the quality of products [2, 41, 43].

1 Transformative technologies for managing interconnected systems between their physical assets 
and computational capabilities. 
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Fig. 2 The ways big data analytics are used to help AM 

4.3 The Use of Cloud Computing in Additive Manufacturing 

One major deterrent that organizations face is expensive software and hardware for 
analyzing a large amount of data and enabling on-demand, convenient access to 
a shared pool of computing resources, like servers, networks, etc. And this is the 
reason for Cloud Computing’s (CC) popularity that without being bound to specific 
machines it can analyze data over the Internet. Now there is a rapid shift from IT 
resources in organizations to CC due to its offered benefits, such as high speed, 
productivity, and improved security and performance. CC goes hand in hand with 
IIoT, which enables collecting large amounts of datasets through connected devices. 
This data can be processed and analyzed with various strategies using CC aiming at 
cost and time-saving. Utilizing CC for AM is getting more attention as AM is capable 
of generating large datasets. One example is integrating sensors for data collection 
and then processing it via cloud-based systems and software, which results in AM 
optimization in terms of design, process, time, and cost [5, 41]. 

4.4 Industrial Autonomous Robots and Additive 
Manufacturing 

An autonomous robot is defined by a certain degree of autonomy and self-sufficiency. 
It can perceive or is programmed to perceive its surroundings, settle on choices based 
on what it can see, and finally actuate movements/manipulation within the envi-
ronment. Robots’ roles in different industrial applications are significant; they are
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used in the medical, aerospace, automotive, and construction sectors. With increases 
in the quality and quantity of multipurpose robots, there are more developments 
in sophisticated robots. Additive manufacturing changes traditional manufacturing 
from assembly to logistics and robots, likewise, have profoundly impacted the indus-
trial world. Combining these two (AM and robots) includes additive manufacturing 
for robot end effectors,2 and robots used for 3D printing parts. The 3D printing robots 
can perform many tasks, ranging from new manufacturers to repairs to detecting 
damages and surveillance [2, 41]. 

5 Sustainable Manufacturing 

Sustainability is any development in Reducing, Recovering, Recycling, Reusing, 
Redesigning, and Remanufacturing in three principal dimensions so that the present 
and the next generations can meet their needs. And manufacturing is defined as 
converting raw material into goods and other services. The efficiency of such a conver-
sion process plays a crucial role in determining the environmental impacts associ-
ated with manufacturing [44].Green and sustainable manufacturing has appeared as 
a globally recognized mandate. The U.S. Department of Commerce defines sustain-
able manufacturing (SM) as “the processes of creating fabricated products that use 
non-polluting methods, conserve energy and natural resources, and are economically 
sound and safe for employees, communities, and society as a whole, and clients” [45]. 

In other words, sustainable manufacturing reduces the environmental impacts 
and enhances social and economic effects over the product’s entire life cycle. 
SM promotes eco-efficient activities to minimize pollution and supports emerging 
sustainable innovations. Therefore, the integration of i4.0 components and principles 
for assessing and developing sustainable manufacturing can maximize the economic, 
environmental, and societal values of i4.0 [46]. 

Additive manufacturing—an emerging manufacturing process—not only has the 
potential to change the landscape for product development, manufacturing, and logis-
tics, but it can also improve sustainability across a variety of industries. As a process 
in itself, AM already represents a more sustainable means of production than tradi-
tional methods. This is especially apparent due to the fact that 3D printing eliminates 
the usage of excess material and, therefore, unnecessary waste from the outset. Using 
generative design also plays a vital role in part optimization of AMed products and 
is one of the main benefits of 3D printing. In addition, a 3D printer allows on-
demand manufacturing, which helps save time and eliminate long transport routes, 
and therefore reduces CO2 footprints. 

The sustainability implications of adopting additive manufacturing can be 
classified into four stages of the product’s life cycle:

. Designing the product and the process;

2 In robotics, an end effector is a device at the end of a robotic arm designed to interact with the 
environment. 
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. Processing the input material;

. Make-to-order component and product manufacturing;

. Closing the loop. 

In terms of product and process design, additive manufacturing makes the design 
and creation of more optimized and complex products achievable due to greater 
freedom in the product’s shape and geometry, with fewer required assemblies and 
materials used. When it comes to component and product design and redesign, AM 
offers a variety of new design-free forms that allow easier fabrication and, there-
fore, easier maintenance of lightweight structures with higher operational efficiency, 
functionality, and durability. 

Like improvements in product design, AM also makes improvements in the 
process design by offering more efficient energy and natural resource use processes. 

As there is a combination of different AM technologies, so too is there consider-
able variation in the materials utilized as inputs, which can be processed via minimum 
resource use. Recycled materials can also be used as inputs for several AM processes, 
which is considered as a step toward the sustainable development of AM. Moreover, 
AM can also convert waste and by-products into products. Some studies demon-
strate that materials traditionally classified as trash can be upcycled to fabricate 
luxury products utilizing AM. 

AM enables making-to-order, customized, and personalized components at lower 
cost, while less waste is produced from a sustainability perspective in the economy. 
Attempts at closing the loop can also be obtained at different stages and scales in 
AM. Under a closed-loop system, businesses and companies reuse the same materials 
repeatedly to create new products. And these are how AM contributes to sustainable 
development [47]. 

In summary, AM has the potential of providing several sustainability advantages 
as listed here [4, 48]:

. Less raw material is required during the supply chain process.

. AM improves raw materials’ efficiency (in powder, liquid, or wire form) through 
its feature called net shape manufacturing.

. In addition to its cost-efficiency and freedom of design, AM could become an 
energy-efficient and environmentally friendly manufacturing.

. Less waste material and therefore less pollution is produced.

. Products with higher efficiency and flexibility can be achieved by AM.

. It helps create parts/products for optimized performance, such as reduced 
weight, enhanced mechanical properties, and optimally designed components by 
incorporating gas flow paths and heating/cooling channels.

. It allows the production of customized elements in short batches, at the right 
moment, and according to customers’ needs.

. The transportation costs decrease within the supply chains and transportation 
pollution. 

Components produced by AM are lighter, need less raw materials, create less waste 
material during processing, and consume less energy. It also gives longer product
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Fig. 3 Three aspects of AM’s contribution to sustainability [49] 

lifetimes by allowing replacement sections to be manufactured and remanufactured 
quickly enhancing the reliability and modular design that facilitates upgrading prod-
ucts. Therefore, this technology allows for shorter, simpler value chains by allowing 
versatility in place. Figure 3 summarizes three aspects of sustainability for AM. 

6 Challenges, Drawbacks, and Limitations of AM 

Additive manufacturing presents a great deal of opportunities for mass customiza-
tion applications and moving toward Industry 4.0 needs. Theoretically suitable and 
more practical than traditional methods, there are some challenges and drawbacks 
for AM to overcome. High costs (for both machines and part production), limited 
material, defects, unsuitable finishing surface, little application (especially for large-
scale parts), slow speed of printing, and anisotropic mechanical properties can be 
categorized as Additive Manufacturing drawbacks [15]. 

In comparison with traditional methods such as fusion modeling and casting, AM 
might be more time-consuming. In addition, layer-by-layer production with a high 
resolution imposes a high cost for materials and consumes a high amount of energy. 
Being expensive and time-consuming are the main limitations of AM in Industry 4.0, 
inhibiting mass production. Worthy of note also is that when a part is printed layer by 
layer, there would be inadvertent porosities affecting the part’s mechanical properties 
as it reduces the interfacial bond of layers. Materials’ microstructure can also vary 
inside each layer and boundary, resulting in anisotropic mechanical properties. This 
can emanate from either production methods or printing material [15].
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Since AM is widely used in Industry 4.0, another major limitation of AM is that 
there are some restrictions on printing components’ size. For instance, printing on-
site buildings with the help of SLS or SLM systems is not applicable when it is too 
large. The size of the printing part affects the structural performance, and in fact, 
the dimension of the printed parts is determined based on the deposition approach. 
Besides the size of the printed parts, retrofitting the printed structure and existing 
porosity is of paramount importance that hinders the process. The material challenge 
is another obstacle in the field of building as there are no criteria to optimize the 
mixture concerning shrinkage, extrude-ability, and flow-ability to obtain the optimum 
mechanical properties [1]. 

Simulation is a valuable part of AM. It provides users with mathematical-based 
results. In turn, before any operations, users can decide whether their part or even 
process is accurate enough and investigate different designs before producing them. 
Engineers can also study the behavior of their design under different conditions 
and environments through simulation rather than expensive experimental tests. 
There are, however, some set of issues. As simulations are intertwined with high 
computing power, costly digital equipment and software licenses are needed. Due to 
the complexity of the design and components, simulation time might take longer than 
what is reasonable, and advanced computer systems are required to solve them [41]. 
The simplifying assumption would be an excellent choice to tackle this barrier. Being 
a relatively new technology, designers and engineers are not fully experienced, and 
as a result, simulation issues are of paramount importance in this regard, generating 
a false result [3]. 

On the other hand, 3D models are needed to analyze parts and generate the neces-
sary codes to print out the parts. CAD software is the primary tool to do so, which 
encapsulates solid geometries and boundaries. Generating codes and transferring 
3D models to form CAD software into a printed object can lead to inaccuracies and 
defects, especially when it comes to curved surfaces; therefore, post-processing might 
need to eliminate these effects. Choosing the optimum printing orientation and gener-
ating supporting pillars can be removed to address this issue. Moreover, assigning 
optimum printing parameters affects the mechanical properties of the printed parts, 
but it can also have a great influence on their appearance. Choosing an optimized 
parameter, then, is a challenge in this regard. In the case of the application when a flat 
surface is more desired, this challenge stands out [15]. Merging simulation and Big 
Data in Industry 4.0 can truly address this issue to select the optimized performance 
[41]. 

Combining Additive Manufacturing with other cyber aspects of Industry 4.0 can 
also manifest the possibility of the digital thread. All these digital threads can begin 
from the designing down to the customer phase, affecting optimized productivity and 
cost. Data generation, processing, and transferring are the basics of Industry 4.0. It 
means that there is a plethora of information processing and sharing through different 
chandelles. Using Big Data, Artificial Intelligence (AI), and Machine Learning can 
help the AM function properly. All these cyber aspects of Industry 4.0 need electronic 
devices to generate, transmit, and store data. As long as AM needs this information 
to execute tasks, the digital thread becomes much more critical. AM, in effect, needs
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a 3D model generated with CAD software and simulation to assess the product’s 
behavior under different situations that can result in the development of a digital 
twin. Transferring data wirelessly through the Internet to the sensors, a digital twin 
can monitor the process and enhance the quality. The data transition via the Internet 
needs to be protected from any prospective cyber-attacks that affect the producing 
parts negatively and AM systems. Data protection from hackers to avoid losing 
confidential information is essential as well. Augmented Reality (AR) can also assess 
the physical parts and compare them with the 3D model during the process to identify 
any possible defects from the digital thread [41]. All in all, with all these flaws, 
Additive Manufacturing plays a crucial role in Industry 4.0. 

7 Summary and Future Expectations 

All three previous industrial revolutions have somehow changed the industries and 
manufacturing sectors. However, the last one, known as Industry 4.0, has brought 
integrated manufacturing systems using complex virtual information. AM, the layer-
upon-layer manufacturing process, has brought a new era of high-quality mass and 
customized intelligent production. It helps time and cost-saving, reduced complexity, 
and improves the properties of the final product. The sustainability of AM is another 
development, which has been and will be achieved through less energy consumption 
and negative impacts on the environment. IoT, cloud computing, big data, etc., as 
Industry 4.0 components, have helped AM to be more efficient and intelligent. There 
are already some AM materials and process developments, and this trend seems to 
continue in the future. Industrial sustainability has been a preference for decades; 
companies and businesses have commenced investigating even more seriously how 
manufacturing can be performed in a more productive and environmentally sustain-
able way. Sustainable development guarantees that manufacturing operations result 
in less environmental, ethical, and economic impact. 

In the future, decentralization might be possible by distributing the workload 
among factories/machines with the help of cloud services. Another future expec-
tation is the sustainable development of AM, by which AM will play a vital role 
in lessening waste resources and decreasing energy consumption by using in-time 
production. On the other hand, society will benefit from 3D printing and smart 
manufacturing by redefining the role of employees and customers. Some challenges 
and barriers of on-location production will be solved with customized fabrication. 
Future smart materials along with innovative AM processes will be introduced and 
lead to high-quality products. AM has turned out to be an enabling technology, which 
reduces product design and development timelines effectively. That is a faster and 
cheaper manufacturing process. By implementing Industry 4.0 components, AM will 
become more intelligent in the near future. Rapid prototyping, printed bulky struc-
tures, reduced printing errors, and enhanced mechanical properties of products are 
the main factors of AM development, a technology that is still in its early stages.
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The Impact of the Fourth Industrial 
Revolution on the Transitory Stage 
of the Automotive Industry 

Mina Ahmadi, Mostafa Pahlavani, Armin Karimi, Mahmoud Moradi, 
and Jonathan Lawrence 

1 Introduction 

Industrial developments have been around for quite some time; however, as stated by 
Rifkin, whenever transportation and communication systems are redesigned, and the 
energy consumption is enhanced, the new revolution in the industry would begin [1]. 
More than 20,000 parts and components in a single vehicle, sourced from different 
suppliers worldwide, make the automotive industry’s role in the economy incom-
patible with any other manufacturing industry [1, 2]. The importance of this sector 
is more evident by considering not just production and assembly processes but also 
sales and after-sales services, marketing, and maintenance of vehicles [3]. By being 
one of the most supplier-dependent and purchasing-dependent sectors, the auto-
motive industry is one of the most complex manufacturers, which has gone under 
ever-present changes since its invention in 1886 [2]. 

Shortly after the first industrial revolution in the late 18th, which brought 
steam/water-powered processes, inventors started to test automobiles with steam-
powered engines. Those engines could power vehicles to push pistons, turning the 
crankshaft and wheels through produced steam by heating water in boilers. However, 
so much added weight to a vehicle by employing steam engines—that were already
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dealing with poorly structured roads—led to the invention of internal combustion 
engines and the Otto four-stroke cycle. That invention was then applied to gas and 
petrol engines after the second industrial revolution. After the first industrial revolu-
tion and almost a century later, the transition from the first to the second industrial 
revolution with extensive advances in the industry that contributed to the emergence 
of new energy sources (electricity, gas, and oil) took place. Other highlights of the 
second industrial revolution were the growing demand for steel, chemical synthesis, 
and communication methods such as the telegraph, wireless radio, and telephone. 
Mass production based on electric power and automotive conveyors is among the 
significant accomplishments of this industrial revolution. It took another century to 
witness the third industrial revolution in the second half of the twentieth century 
with the advent of another energy source called nuclear energy that was previously 
unusable and microprocessors. The third industrial revolution saw the beginning 
of electronics, telecommunications, and, of course, computers. The third industrial 
revolution opened the door to space exploration, research, computerized systems, 
and controls in manufacturing processes by utilizing new technologies. Also, in the 
industrial world, two great inventions of this period, programmable logic controllers 
PLCs and robots, have helped usher in the age of high-level automation [1, 2]. 

Today, the term Industry 4.0, also known as the fourth industrial revolution, which 
was first used by a German professor, Klaus Schwab, in 2011, defines cyber-physical 
systems that enable the vision of intelligent machines controlling themselves during 
manufacturing processes through analyzed collected data. This information is gath-
ered and interpreted via the Internet, big data analytics, cloud computing, etc., and 
other types of software and hardware which have been created during the third 
industrial revolution and have been developing significantly [4]. 

This revolution is the age of intelligent devices, storage, and production systems 
that can independently exchange information, perform operations, and control equip-
ment without human intervention. In the corporate world of the twenty-first century, 
Industry 4.0 stands for a new era in manufacturing processes based on the inter-
connection of data flows among different actors (e.g., manufacturers, suppliers, and 
consumers) and vertical/horizontal intelligent linking of production processes inside 
organizations from the first stages to finished product [5]. 

Despite the many advantages that Industry 4.0 brings, it also causes some social 
and environmental concerns that make sustainable development more crucial than 
before. Industry 4.0 must fit into ecological and social issues without disregarding the 
importance of economic growth. As one of the largest industries in the world that is a 
pioneer in adopting Industry 4.0, the question is, “what is the role of sustainable devel-
opment in integrating the concept of Industry 4.0 into the automotive sector?” [6]. 
Sustainability design balances ethical, environmental, and social issues and economic 
factors within the product and service advancement process. That ensures that all 
business and society needs are met while the ecosystem is protected. The principles 
of the Design-for-X methodology, established by Jawahir et al., can be exploited to 
produce a sustainable product. These can help investigate and analyze the vehicle 
and its sub-systems design procedures and their impacts on the economy, society, and 
environment. Designs for manufacturing, recyclability, minimizing material usage,
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durability, maximizing energy efficiency, and minimizing greenhouse emissions are 
subsections of DfX rules [7]. 

The automotive industry is in the middle of a green transformative revolution 
driven by innovations in cloud technology. In a world where users demand a seam-
less purchasing experience, passion for mobility options, and personalized cars 
as their smartphones, we can anticipate the speed of smart technology and the 
Industry 4.0 sub-systems adoption in the automotive sector to stimulate. The durable 
trends of sustainability, security/data protection, convenience, and personalization 
are consistent, but technology is driving and changing these trends every day. 

In this chapter, the evolution of cyber-physical systems enabling digitalization in 
the automotive industry under the umbrella of Industry 4.0 is thoroughly discussed. 
Sustainable development and the challenges in the way of digitalization in the auto-
motive sector, as well as the future of the smart automotive industry, are also put in 
the following sections. 

2 Evolution of Embedded Systems to Cyber-Physical 
Systems in the Automotive Industry Through Industry 
4.0 

Due to its flexibility and versatility, an embedded system (ES), a complex set 
of microprocessor/microcontroller-based hardware and software systems, has been 
getting control of many industrial functions. This system is exclusively designed for 
performing dedicated functions either as a part of a whole mechanical/electronic or 
independent system. The basic structure of such a system includes sensors, actuators, 
analog-to-digital, and digital-to-analog converters, which were introduced during the 
third industrial revolution [8]. 

ES has presented a new configuration of an automatic closed-loop and real-time 
controller in the automotive industry since its introduction in the 1960s. By turning 
to be the seamless integral part of vehicles, ESs have mainly enhanced automo-
biles’ performance, efficiency, and functionality after the advent of semiconductor 
technology categorized as sensors, memory devices, microcontroller units, and 
transceivers employed at different levels of applications. Airbags, anti-lock braking 
systems (ABS), emission control, tire pressure monitor, climate control, navigational 
systems, satellite radio, etc., are all examples of embedded systems in automobiles 
to fulfill the demands for safety and comfort, optimized fuel consumption, and pollu-
tion reduction. Even though ESs have accelerated the technological transition of the 
automotive industry in recent years, the rapid continuous development of technology 
alongside modernization, artificial intelligence, vehicle electrification, and increased 
awareness toward global warming have driven these systems to evolve into cyber-
physical systems (CPS) in Industry 4.0. The embedded cognitive system will be at 
the heart of such transition, and CPSs communication and internal/external direct
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control of physical or digital processes are enabled by Industry 4.0 using information 
technology [8, 9]. 

Although Industry 4.0 is based on embedded and cyber-physical systems by which 
the collected data come to help machines and production sectors control themselves, 
it also stands for a new level of mechanical intelligent manufacturing processes, 
including Additive Manufacturing (AM) and Robots. 

The roles of each Industry 4.0s key components in the automotive industry’s 
digitalization are explained in the following sections. 

2.1 Robots in the Automotive Manufacturing 

Today’s world is shifting to automation, and robots, machines with the capability 
to handle a complex series of tasks automatically, have found enough significant 
applications in intelligent manufacturing to impact the value chain, especially in the 
automotive industry as a pioneer in the industrial usage of robots. These applications 
vary from welding to painting, assembling, sealing, removing materials, coating, and 
transferring parts. Pick-and-place robots, for instance, lead to an increased production 
rate by picking up and replacing components at speeded rates. Or robots with long 
arms and higher payload capabilities handle spot welding on heavy body panels. As 
an industrial sector with the largest number of applied robots, the automotive industry 
utilizes robots to increase production speed, achieve higher levels of accuracy, reduce 
labor costs, and protect employees from difficult and dangerous tasks [1, 4]. 

A Tier1 1 supplier, Brose Ostrava employs conveyor/pick-and-place robots in 
material-handling applications to transport the daily received material from more 
than 200 suppliers and machines loading and unloading in combination with auto-
mated warehouses. Handing such repetitive, hard tasks over robots lets operators and 
engineers focus on other tasks with higher importance and result in higher produc-
tivity, similar to what is happening in Continental Tier 1 supplier, which employs 
robots to operate alongside humans for carrying PCB boards. Today’s autonomous 
robots in the automotive sector could be fed by engineers, operators, and cloud-based 
systems and be controlled remotely [1]. 

2.2 The Value of Additive Manufacturing/3D Printing 
in the Automotive Industry 

Constant competitive challenges among Original Equipment Manufacturers (OEMs) 
and their suppliers to achieve higher performance standards have driven them to

1 Companies that supply parts or systems directly to Original Equipment Manufacturers. 
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employ high-tech manufacturing processes to overcome the problem of fuel effi-
ciency, time consumption, cost, aerodynamics (in vehicles), innovation, safety, secu-
rity, and connectivity. To fulfill one of the basic demands of customers, customization 
and fabrication of complex freely designed objects with advanced and most influ-
ential attributes, additive manufacturing (AM) became one of the important parts 
of Industry 4.0. Significant advances in Additive Manufacturing/3D printing and its 
subsets, rapid prototyping,2 and rapid tooling3 have turned this technology into a 
promising method to transform the potential ways of designing, testing, and manu-
facturing [4, 10]. AM is building up a 3D-designed part layer by layer through a 
controlled material deposition. However, this technology has paved the paths for 
mass production of high-performance products in the automotive industry, designed 
scale models for testing procedures, passed rigorous verification, and finally, lighter 
and safer products, shorter lead time, and lower costs achieved [11]. Original Equip-
ment Manufacturers and suppliers in the automotive sector benefit from rapid devel-
opments and innovations in AM and advanced materials used in 3D printers. The 
automotive industry is now adopting the new strategy of AM to go through the chal-
lenge of freedom of design for the advent and production of complex but lightweight 
components. 

In the design phase of the production cycle, companies experience some difficul-
ties before deciding on the final design. But one of the most outstanding merits of AM, 
enabling producing multiple variations of products with fewer additional costs and 
design restrictions, helps automakers enhance their products’ design by benefiting 
from physical models and prototypes at higher speeds. Clay models are progressively 
replaced by CAD-designed files, which are then converted to 3D prototypes. 

Failure or malfunction of a product or part may result in catastrophic conse-
quences. Therefore, a new component must be thoroughly evaluated to determine 
whether it is performing as intended or not before sending it to the market. For these 
purposes, rapid prototyping is an ideal option in the modern world of industry. By 
employing AM for rapid prototyping, testing the quality of the desired outcome will 
be available before the final stage of production through building prototypes. By 
gaining the advantages of minimizing inventory and avoiding overproduction, more 
experiments and prototyping can be performed by AM to meet the customer’s and 
suppliers’ needs, resulting in better customized and authentic products. 

In the automotive industry, tooling’s4 role on the assembly line is prominent 
to obtain high-quality and customized tools. However, for some automobiles’ 
components, tooling and investment casting are time-consuming and too expensive 
processes. By using AM in the design phase, automakers can reduce their dependence 
on tooling and casting. Additionally, improving fuel efficiency can be achieved via 
AM’s ability to use light materials to produce lightweight structures without missing

2 Fast fabrication of a physical part, model, or assembly using 3D computer aided design (CAD). 
3 When Rapid Prototyping techniques and conventional tooling practices are used together to 
produce a mold quickly. 
4 Building the different types of components and machinery needed for production, like molds, jigs, 
and fixtures. 
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the strength. By exploiting the AM, automakers are now using additive technologies 
like Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) to print 
different end-use components, including custom spoilers, windbreakers, bumpers, 
and other cars’ parts. SLM is also employed to fabricate emission systems from 
heat-resistant Al alloys. In addition, printing pumps and valves are now available via 
sophisticated AM technology of Electron Beam Melting (EBM) [10]. 

2.3 The Internet of Things (IoT) Trends in the Automotive 
Industry 

When it first emerged, the Internet enabled the connection between people and orga-
nizations worldwide. Still, there is now a talk on the Internet of Things, shaping Infor-
mation and Communication Technologies development (ICTs) using the networked 
interconnection of everything in everyday life [1, 3]. As an emerging paradigm, 
IoT makes people’s day-to-day life easier and more convenient by providing plat-
forms for devices to communicate their physical context information like location 
or status to the Internet, other objects, machinery, or even humans [12]. Moreover, 
beyond the existing barriers between the physical and digital worlds, IoT lets physical 
objects identify their surroundings, interact with humans, and even make decisions 
and become self-controlled [13]. Since some technologies such as RFID,5 NFC,6 

or Sensor and Actuator Networks and even mobile phones cannot be considered as 
a novelty, rather than being a revolution, IoT is an evolution. However, by being 
embedded in Industry 4.0, IoT evolves more, experiencing an infrastructural revival 
in the types and number of devices it employs and how they are connected [1]. 

The automobile industry is on the brink of a revolution, and as one of the most 
critical industries, a remarkable transformation that is about to happen in this sector 
from human-guided to automated guided/self-driven and connected vehicles will 
have a long-term impact on our daily lives [8]. Of course, automobiles have been 
linked to smartphones, registered real-time traffic alerts, employed GPS and naviga-
tion systems, etc., for quite some time. Still, the vision of autonomous and connected 
cars is becoming a reality with the Internet of Things. This transformation will shift 
the automobile industry to the age of services and experiences from products, to soft-
ware from hardware to information from functionality, and complex and connected 
ecosystems from industry silos [8, 9]. 

Connected cars can interact with their surrounding environment, which means they 
can communicate and transfer data to other vehicles and external devices and infras-
tructures using sensors and either local wireless networks or the Internet. Extrapo-
lating the IoT concept to the automotive industry, it can be summarized into three

5 Radio Frequency Identification (RFID) refers to a wireless system comprised of two components: 
tags and readers. 
6 Near-Field Communication (NFC) is a set of communication protocols for communication 
between two electronic devices over a distance of 4 cm (11/2 in) or less. 
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connection branches. The first one is the connectivity of one vehicle to one or even 
more vehicles (Vehicle-to-vehicle (V2V)); the ability to wirelessly exchange infor-
mation about the speed and position of surrounding vehicles shows great promise 
in helping to avoid crashes, ease traffic congestion, and improve the environment. 
The second is the connection between cars and external infrastructures (vehicle-to-
infrastructure (V2I or v2i)). This communication model allows vehicles to share 
information with the components that support a country’s highway system, such as 
cameras, traffic lights, parking meters, and street lights. And finally, the third is a 
link between vehicles and external hardware or devices (vehicle-to-devices (V2D)), 
a particular type of vehicular communication system that consists of the exchange 
of information between a vehicle and any electronic device that may be connected 
to the vehicle itself [14]. 

The complete picture of connected cars and, as a result, autonomous vehicles 
can be achieved by managing the collected and analyzed data and connecting every-
thing to the Internet. Safety and security systems of cars, telematics, and in-vehicle-
infotainment are improving by benefiting from IoT [15]. Automatically transfer-
ring real-time data through the Internet, connected cars can send their locations to 
emergency teams in case of accidents (emergency call). Connected smart cars can 
employ IoT, integrate GPS with online services, and utilize them for driver prefer-
ences, navigating, routing, fuel station availability, traffic alerts, the expiration date 
of insurance alarm, avoiding a traffic jam, etc. Road conditions, other surrounding 
vehicles information, and in-time-diagnosis of car problems are examples of IoT 
beneficial aspects in improving the safety of vehicles and roads. Remote control 
parking, stolen vehicle recovery, online in-vehicle entertainment options, etc., are 
also the results of embedding IoT into the automotive industry [15]. 

By sensing and detecting physical objects around a vehicle using built-in smart 
sensors and processing the received external data via algorithm software, the driving 
software will define the speed and direction of the car. This is what is expected to 
happen in autonomous cars based on the technology of connected cars using IoT. 

Figure 1 shows the stages of connected cars’ evolution from the mid-1960s to the 
new mobility era going beyond 2020 based on Industry 4.0.

Phase one was the Research and Development (R&D) era, the longest; during 
nearly 30 years, great innovative ideas were proposed, but the lack of technology 
didn’t let them be implemented. Next was the era of an embedded digital commu-
nication module (DCM), e.g., mobile phones and sensors used for transferring and 
communicating data and information wirelessly to an automaker or TSP (telematics 
service provider). The infotainment (information and entertainment) era started in 
2007 and lasted for five years, introducing applications based on information sharing 
and entertainment within a car. A shift of power equation in industries, third-party 
apps, software providers, and app providers are engaged in this stage. 

Vehicle-to-vehicle or vehicle-to-infrastructure communication became possible 
by integrating electronic gadgets, smart devices, and sensors in the era of V2X inte-
gration started in 2012. And finally, the new mobility era, the stage of autonomous 
cars’ emergence and evolution, the age of embedded Industry 4.0 components in the 
automotive sector [8]. As an Original Equipment Manufacturer, Volkswagen uses
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Fig. 1. 5 stages of connected vehicles’ evolution path

IoT for monitoring returnable packages and load carriers across the supply network. 
As a result, suppliers can track components from the first point to their destinations 
through end-to-end visibility [1]. To be more specific, Smart manufacturing refers 
to data centers that are available to the users through the Internet conveniently [16]. 
The Automotive sector, with its complex requirements, is completely distinguished 
from other manufacturers. However, its ongoing revolution around designing, engi-
neering, simulations, data, analytics, and dealers’ network require compelling on-
site IT infrastructure whose maintenance seems to be a technical challenge. With the 
help of its super servers, facility of transferring and processing real-time data, cloud 
computing can help this industry overcome the issue of the flow of information and 
data. The best example of the automotive industry taking advantage of technology 
is Google’s self-driving car, which changed the impossible into the possible thing 
[17]. In case of enhancing and leveraging the safety and security of vehicles, cloud 
computing helps IoT predict mechanical failures and nullifies the downtimes, alerts 
drivers about disruption in the road condition, etc., based on shared information 
and resources via V2D, V2I, and even V2V communications [18]. The automotive 
industry can benefit from cloud computing due to its faster, better, and safer data 
processing and storage. As the leading automotive Tier 1 supplier, Bosch set up its 
Cloud Backup from Team Knowhow as an easy way of keeping its files and informa-
tion backed up securely online. Another example is a private cloud of Volkswagen,
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which provides dedicated applications for its internal operational sectors, clients, 
suppliers, and sales organizations [1]. 

2.4 Impact of Big Data and Analytics on Automotive Industry 

Big Data is characterized as high-variety, large-volume, high veracity, and high-
velocity datasets, and analyzing them using traditional processing procedures is 
hardly attainable [1, 19]. 

While volume refers to the quantity of huge and growing data on a daily basis, 
velocity represents the speed of generating and transferring the data. The term variety 
refers both to the different sources from which data is gathered and various data types. 
Finally, veracity means checking the reliability and accuracy of a large amount of 
data that comes from different sources. 4vs of big data are shown in Fig. 2. 

Internet is overgrowing these days, which means a larger amount of generated data 
should be gathered daily. Big data technology can analyze and separate data based 
on their criticality, which means more critical data from less critical ones. A clear 
picture of the situation based on interpreted data is transferred by this technology to 
fulfill business activities. 

Big data analytics has become mandatory for all industries and domains because of 
the rapid development in networking, and a higher amount of collected and stored data 
through IoT and cloud computing. However, the emphasis is on what an organization 
does with such data rather than the data volume. As an essential analytical basis for 
insights, big data leads to better decisions and strategic directions in business [3]. 

Today’s high-tech era needs a 24 × 7 connection between automakers and users, 
markets, and corporations through access channels like IoT and cloud computing.

Fig. 2. 4vs of big data 
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The received data is enormous, and automakers are keen to employ new dealing 
methods to collect, analyze, and assist them in acting on such data. Getting a deep 
insight into the continuously obtained data from external resources via IoT is some-
times banned due to data silos. A certain automaker needs to fully understand their 
customers’ priorities and place them on the agenda and adopt better strategies to 
configure the optimum incentives and marketing for the targeted group of customers 
[20]. Data management/Big data analytics is highly recommended for automotive 
industry players to protect and keep their connection with their customers. To target 
their customers ‘ priorities, they need to keep an eye on their sales, marketing, infor-
mation services, and the gathered data through apps, social media, V2V, V2D, and 
V2I connections. Exploiting data from modern connected cars to meet customers’ 
needs and optimize their experience by automakers can be done by employing 
systems capable of capturing data from customers’ experiences through different 
communication channels and getting a clear view of their preferences, analyzing 
the stored data, and finally making decisions on what is required to serve their 
goals effectively [20]. Such big data sources vary from social networks (Twitter, 
Facebook, blogs, comments and pictures, YouTube, Instagram, etc.), business and 
commercial transactions, and IoT (traffic control, weather forecast systems, secu-
rity cameras, and computers Internet-based systems). When conventional traditional 
database tools become incompetent in handling a large volume of data with great 
variety and velocity, big data comes into play. Hidden markets are then exposed, 
customer preferences are found, and cost reduction is achieved by an appropriate big 
data analysis. 

Some OEMs are now using big data analytics for optimizing transporta-
tion networks such as transportation times, routing, and truckloads; forecasting 
transportation delays; and setting alarms [1]. 

2.5 Blockchain and the Automotive Industry 

Recent advances in connected and autonomous vehicles (CAVs) made them attract 
more attention; however, due to safety, privacy, and security obstacles and concerns, a 
great uncertainty is around the re-blooming industry of the automotive. The problem 
is that these vehicles’ operation basically depends on the online network and is 
susceptible to different software and hardware faults and cyberattacks. Different 
networks model (interconnections among entities and users) such as decentralized7 

7 A decentralized network has numerous connections between nodes. However, there is still the 
possibility of connection lost within the network.
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and distributed8 networks have been proposed as a substitute for centralized9 ones. 
Among them, blockchain has become one of the most promising models [1, 21]. 

A blockchain is defined as a tamper-free/open distributed ledger capable of storing 
transactions among different parties exchanged via networks in an efficient verifiable 
way. With these abilities, this technology can make the vehicle-related experience 
much better by enabling several applications. However, the automotive industry is 
among those industries that stand to benefit from the technology of blockchain. 
Blockchain can lend itself to expanding the functionality of Connected and auto-
mated vehicles (CAVs) by improving their security, enhancing users’ privacy, and 
increasing the safety of passengers. Furthermore, the history of records on a vehicle’s 
performance and its parts is vital for a vehicular industry; for example, this recorded 
data can provide information for insurance and compensation actions in accidents. 

Another example is odometer fraud detection; blockchain can record mileage 
information online, making odometer tampering easily recognizable. Daimler (a 
German multinational automotive corporation) joined to use the Blockchain in Trans-
port Alliance (BiTA) to create blockchain standards in freight transportation. With 
the help of blockchain, it will be easy to track the automotive components through 
the supply chain, improve maintenance records, and recall products more precisely 
[22]. 

BMW is another OEM that employs blockchain to ensure the cobalt used in its 
battery is clean and is not mined by artisanal miners or even children under the risk 
of health issues or human rights abuses [1]. 

2.6 How Virtual and Augmented Reality Are Changing 
the Automotive Industry 

Virtual Reality (VR)10 and Augmented Reality (AR)11 have entered the world of 
engineering recently. Due to the pressure of reducing time-to-market, increasing 
productivity and reliability, and quality of products, the automotive industry has 
become the leading industrial sector in employing VR/AR in different processes, 
from designing to manufacturing, testing, and even training [23, 24]. By virtualiza-
tion, manufacturers can use cyber-physical systems and receive information from 
sensors and other components to create virtual models that represent the physical 
world. Both VR and AR are widely used in logistics due to the improved efficiency

8 A distributed network has several connection paths among nodes, and the possibility of dis-
connectivity has been reduced drastically. 
9 A centralized network has one central node, which is several connection paths that have been 
derived from it. 
10 A system allows users to feel they are in the real world by interacting, moving, and being immersed 
in a 3D environment. 
11 A system that uses virtual simulations for representing design workplaces and different processes. 
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they provide processes with. Logistics play a fundamental role in automotive compa-
nies by cooperating with different production processes, ensuring the supply chain 
of parts, and presenting the realization projects with the help of AR and VR. 

Primary applications of AR/VR in the automotive sector are classified as follows 
[23, 24]:

. Design: Car designing is an expensive and time-consuming process that needs 
continuous reviews and modifications before reaching the final design. However, 
VR/AR can reduce the time and cost by substituting virtual mock-ups for physical 
ones. Moreover, they bring simplification in case of trial and error by avoiding 
rebuilding mechanical/physical parts.

. Virtual Prototyping (VP): It is a subsection of the designing process and, with 
recent advances, can be used to replicate physical models with less time and cost. 
By developing VR and VP and different software and hardware, models could be 
modified easily during the first stages of the production.

. Manufacturing: Virtual Manufacturing (VM) is a term that describes using VR 
or computers for improving decision-making abilities, enhancing risk measures, 
and controlling the manufacturing processes more effectively.

. Virtual Assembly (VA): It provides assembling and disassembling of the virtual 
components, for example, how and where to mount parts in a vehicle. 

Another usage of VR is a virtual simulation of crash tests and other phenomena 
such as night driving. With the ability of VR in virtual representations of the condi-
tions of workplaces, evaluation of employees’ health, safety, and well-being measures 
is available now. 

Jaguar Land Rover (JLR) is the world’s leading automaker implementing VR 
technologies for various automotive applications, including Cave Automatic Virtual 
Environment (CAVE). That is a virtual reality space where the automobile’s parts act 
as giant projection surfaces to create a highly immersive virtual environment [24]. 

2.7 Artificial Intelligence and Deep Learning 
in the Automotive Industry 

Artificial intelligence (AI) is a broad field of computer science with multiple 
approaches. One of the most prominent applications of this technology is automating 
the driving process. Since automated driving has gained much interest in the last 
decades, much academic and industrial research has been conducted so far. This 
field is a relatively new area of industry with some advantages as well as disad-
vantages. However, the legislature of many countries put some limitations on this 
technology. 

One of the essential demands of this technology is an advanced sensor. Nowadays, 
three sensors are being utilized in semi-autonomous cars: cameras, RADAR, and 
LIDARS. For instance, CMOS is a kind of optical sensor (camera) that is widely
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used to aid in state-of-the-art self-driving cars. Furthermore, many researchers and 
engineers are trying to design more enhanced sensors. One way to improve the sensors 
is sensor fusion; the combination of some sensors will help self-driving cars better. 
Intelligent control systems in Self-Driving cars are launched by artificial intelligence. 
This science focus on the actual route planning process. That is, how the vehicle will 
move about its environment and the dynamic obstacles that it encounters. The car 
must have the ability to lane detection, object detection, and object classification. 
For this aim, the Neural Networking model, machine learning, and machine vision 
are performing. Apart from the design of Self-Driving cars, AI plays an essential 
role in manufacturing process optimization in the automotive industry. Performing 
Collaborative Robots, Automated Guided Vehicles, Painting Robots, and Automated 
Welding are examples of using AI technology in the industry, which can help to 
increase efficiency [25, 26]. 

Deep learning, also known as the deep neural network, is one of the most prominent 
branches of artificial intelligence (AI) that mimics how humans obtain certain kinds 
of knowledge. It is proven that performing deep learning in the automotive industry is 
very beneficial. For instance, one area that recently saw a considerable improvement 
in deep learning is computer vision. Also, deep learning has several well-known 
applications in image analysis and image classification. Generating an appropriately 
large amount of dataset for training networks and new tools and infrastructures for 
computation are important for this method. For the aim of data storage and processing, 
cloud computing is increasingly becoming a viable platform. Moreover, deep learning 
benefits online services such as image classifying in Google. The fact that social data 
is highly unstructured, known as big data, makes deep learning a precious tool for 
businesses to manipulate data. These companies use deep learning to decide which 
concepts might be of interest to which customers [26]. 

3 Sustainable Development in the Automotive Industry 

With today’s globalization and digitalization, countries and, particularly, organiza-
tions and manufacturers face sustainability challenges. That means they need to be 
more socially and environmentally responsible and protective while seeking high 
economic performance, referring to the term “sustainable development.” A straight-
forward definition of sustainable development is using/reusing/recycling resources 
to satisfy present needs without negatively impacting the next generations using 
these resources to meet their own needs. Sustainability guarantees long-term business 
success and improves living standards by balancing social, ethical, and environmental 
concerns and economic factors during the production processes [7]. The sustainable 
development of the automotive industry is defined as human and planet-friendly 
processes and operations, final products, and services. 

Established by Jawahir et al., Design-for-X is a framework exploited to design a 
sustainable product by analyzing and considering the manufacturing process’s impact
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on the environment. DfX principles can be applied to the following subsections in 
the automotive industry:

. Design for Manufacturing (DfM): This methodology constitutes a number of 
guidelines that are not limited to the product’s different structures, cutting lead 
time and production cost, adopting the product at the company level, etc. One 
deviator of this subsection is the Design for Assembly (DfA), which aims to 
focus on fastening and assembling guidelines.

. Design for recyclability: It includes three designs for remanufacturing, recycling, 
and disassembling the parts. That is ensuring the minimum time and costs of 
disassembling the vehicles’ parts (disassembling), returning those parts to an 
appropriate level of performance while reducing the waste (remanufacturing), 
and finally processing materials out of one form and changing them to another 
new product (recycling).

. Design for minimizing material usage: It is a set of strategies for decreasing the 
amount of material used over the production life cycle and reducing its adverse 
environmental impacts.

. Design for durability: That is ensuring that the product will not fail during a 
specific functioning period.

. Design for energy efficiency: It is reducing fuel consumption and greenhouse 
emissions by lightening the vehicle’s weight, improving engine performance, and 
finding alternative renewable and green sources of energy [27]. 

Some major elements of sustainability in the automotive sector are as follows 
[27]:

. Sustainable R&D and engineering, which refer to designing products that aim to 
develop lightweight products with improved aerodynamics while using renewable 
and recyclable raw materials. Volkswagen is one of the industries employing raw 
materials, such as cotton and natural fibers for different components’ production. 
BMW is another example of an automaker that employs sustainable design under 
economic policies. This company is substituting more plastic parts for metallic 
parts to decrease the weight and so increase fuel efficiency.

. Product’s sustainability, that is moving to electric cars and even biodegradable 
parts. Electric and automated cars introduced by implementing CPSs of Industry 
4.0 into the automotive sector contribute to sustainable development by lowering 
the released amount of greenhouse gases, decreasing air pollution, and providing 
new job vacancies, which is leading to positive social impacts.

. Sustainability in the supply chain is adopting eco-friendly operations in different 
logistics, warehousing, and distribution. For example, Scania is using bio-gas 
fuelled trucks and building gas filling stations.
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4 Challenges of the Digital Transformation 
of the Automotive Industry 

The automotive industry is about to meet a massive upheaval. Its transformation will 
be more extensive than ever before in its over 125-year history. Some critical chal-
lenges that automotive industries are facing in the way of intelligent transformation 
are as follows [1, 28]:

. Standardization—which its importance is often disregarded—is considered as a 
prerequisite for digital transformation in the automotive industry. However, due to 
the higher speed of technological developments that cause standards to fall behind 
and the lack of international/global standards in transportation systems, OEMs 
create their standards and force them on suppliers. Therefore, standardization 
challenges should be solved by paying more attention to funding standardization 
bodies and improving international cooperation relationships.

. For different companies to remain competitive in the world of Industry 4.0, they 
have to trust in and accept technologies such as IoT and blockchain in their 
companies. This acceptance and trust are nothing without data security. Therefore, 
ensuring data security is now a significant challenge and becomes more crucial 
in the future as the volume of the transferred data increases every second.

. Industry 4.0 and digitalization are considerably affecting the lives of employees. 
Working condition/environment is swiftly changing and becoming more digital-
ized soon which needs more trained specialists and operators which impose a cost 
and time burden on employers to train them. It also causes reductions in the number 
of staffs, which is not according to the social aspect of sustainability and probably 
will negatively affect society with an increased number of un-employments.

. While new technology adoption seems accessible, positive perspectives of 
employing high-tech devices are negatively affected by imposed huge costs 
of adopting and maintaining such intelligent machines and Internet-based 
infrastructures, especially for small- or medium-sized businesses.

. As one of the industries that are constantly struggling with environmental issues 
(e.g., CO2 emission), the automotive industry is now facing the problem of 
enhancing its sustainable development. They also have to deal with social sustain-
ability due to changing working environment by employing different smart devices 
and increasing unemployment rates because of robots.

. Finding renewable energy sources and using them as fuels in vehicles is another 
issue that should be addressed in terms of the automotive industry’s green 
transformative.
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5 Summary 

Digital transformation actions should address a company’s all business model as 
a cross-cutting issue and impact all key business processes. Therefore, a digitiza-
tion policy that incorporates all areas should not be treated in isolation but should 
be developed as an indispensable element of a long-term, strategic corporate plan-
ning process. The revolution of intelligent devices, storage systems, and production 
equipment, known as Industry 4.0, continuously changes the world and industries. 
As one of the world’s largest companies, the automotive industry is affected by 
this intelligent transmission from the third to the fourth industrial revolution. This 
chapter introduces the automotive industry’s evolution through history, from the first 
industrial revolution to the latest one. Different intelligent elements of Industry 4.0, 
including IoT, big data analytics, cloud computing, blockchain, virtual reality, and 
artificial intelligence, and their influences on the automotive industry, are described 
in this chapter. 

With ever-increasing fuel prices, scarcity of fossil fuel resources, and increased 
awareness toward climate change, consumers’ and businesses’ attention have been 
drawn to sustainable products. Nowadays, the automotive industry is considered 
the most prominent industry globally due to its environmental impacts and Co_2 
emissions. Sustainability in the automotive industry and its concept, which is now 
an inseparable part of the manufacturing processes, is fully explained in this chapter. 

It was concluded that although Industry 4.0 brings many advantages to the sustain-
able development of the automotive industry, it causes some challenges such as social 
sustainability by utilizing robots which are leading to redundancy in workplaces. 

The summarization of the four pillars of digitalization in the automotive industry 
is as follows:

. Connected vehicles and services: These are available to consumers through 
infotainment services in the car or on their smart devices.

. Mobility services: These are autonomous cars and robots, which a human 
controls.

. Sustainability and efficiency improvement: That is, making companies and 
products more productive, sustainable, and efficient.

. Customization: That is establishing new strategies and marketing models 
according to customers’ latest offerings. 

Integrating the automotive industry and intelligent components of the fourth indus-
trial revolution brings some challenges, such as cyber-security, which all are intro-
duced in this chapter. Finally, the future of the automotive industry under the umbrella 
of Industry 4.0 is developed based on the concept of autonomous and intelligent vehi-
cles. However, we are still far from the idea of smart cities and transportation systems 
due to the limitations and challenges of digitalization.
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Advances in Smart Maintenance 
for Sustainable Manufacturing 
in Industry 4.0 

Abdelkrim Hadjadji, Sasan Sattarpanah Karganroudi, Noureddine Barka, 
and Said Echchakoui 

1 Introduction 

Generally, when it is necessary to collect data on the state of machines, we turn to 
technicians specialized in this area. In Maintenance 4.0, as presented in Fig. 1, with 
the rise of new connected technologies, these tasks can be performed by machines, 
which maximizes the useful life of machine components and avoids failures. With 
Maintenance 4.0 technologies, data meets humans and not the opposite. Mainte-
nance processes evolve from a corrective and preventive model to a predictive one, 
changing the focus from diagnostic to prognostic. In fact, a key element of Mainte-
nance 4.0 is predictive maintenance (PdM). This approach to monitoring machine 
health uses connected devices, thanks to the Internet of Things (IoT) embedded 
system, to collect data on a variety of assets. This approach delivers cost savings 
over routine or time-based preventive maintenance since tasks are performed only 
when predicted necessary.

Some of the advantages of this new digital era include monitoring the investment 
and return on equipment, overcoming communication boundaries, and projecting the 
organization onto the market. Big Data technology alongside Artificial Intelligence 
(AI), allows determining with higher precision the useful life of equipment, the risk 
of failure, the respective impact on the shop floor, and increasing the production 
reliability. As depicted in Fig. 2, the maintenance policy in industrial sectors governs 
the type of maintenance procedure deployment in the sector.
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Fig. 1 The concept of maintenance 4.0

Fig. 2 Schematical flowchart of maintenance policy in industrial application 

This chapter aims to cover the dissemination of original findings and new tech-
nologies in the planning, implementation, monitoring, and analysis of maintenance 
processes that support sustainable production in modern manufacturing companies. 
The remainder of this study is organized as follows. In Sect. 2, time-based and 
condition-based maintenance methods are described and compared. The predictive 
and preventive maintenance approaches and their utility in Industry 4.0 are then
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presented in Sect. 3. Prognostic and health management (PHM) as an engineering 
field applied in predictive maintenance, maintenance 4.0 tools such as cyber-physic 
systems (CPSs), Internet of things (IoT), Big data, and Artificial intelligence (AI) are 
introduced in Sects. 4 and 5. Digital twins, a virtual representation of equipment along 
with its simulated behavior, is described in Sect. 6 as an advantageous practice of 
smart maintenance in sustainable manufacturing which is capable of monitoring and 
assessing the remaining useful life (RUL) of assets in manufacturing sectors. Finally, 
a conclusive presentation of challenges and future directions in Maintenance 4.0 is 
presented in Sect. 7. 

2 Time-Based and Condition-Based Maintenance 

Historically, the notion of condition-based maintenance (CBM) and time-based main-
tenance (TBM), also known as systematic maintenance, first appeared in the 1970s in 
the context of preventive maintenance, responding to a particular interest of indus-
tries adopting a purely corrective maintenance policy “run-to-failure” resulting in 
an increase in damage and breakdowns that lead to unforeseen and unscheduled 
stoppages in production processes. 

2.1 Time-Based Maintenance (TBM) «Systematic 
Maintenance» 

Time-based maintenance (TBM) is a classical preventive maintenance approach 
adopted in various industrial fields based on the assumption that failure behavior 
or aging is predictable over time, more precisely, this assumption assumes that the 
failure rate (λ) of equipment during the life cycle always follows a bathtub curve 
divided into three phases: break-in or burn-in phase (decreasing λ), maturity phase 
(constant or quasi-constant λ), aging phase (increasing λ) [1]. Knowing that equip-
ment failures truly related to aging (bathtub curve) represent only 15–20% of all fail-
ures, on the other hand, 80–85% are related to random conditions [2]. The objective 
of TBM is to reduce process losses and ensure production efficiency by improving 
equipment availability and performance and by reducing the rate of unscheduled 
failures and breakdowns [3]. Particularly applied to multi-component systems [4], 
it consists of the subsequent replacement of components likely to fail by available 
maintenance resources [5]. 

The most common systematic maintenance operations are component replace-
ment, inspections or preventive visits, checks, adjustments, calibration actions, etc. 
[6]. These operations are carried out periodically according to predetermined sched-
ules “fixed temporal periodicity” [7], or according to a periodicity of use (operating 
hours, number of units produced, etc.). TBM interventions are planned at fixed time
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intervals (expected lifetime) using information from the manufacturer’s recommen-
dations or analyses of the reliability and risk of failure (breaking down) of the equip-
ment from information collected during operation [2, 6]. The process of applying 
TBM depends mainly on two steps. First, the analysis and modeling of the failure 
data collected on the equipment by statistical studies in order to estimate the mean 
time to failure (MTTF), and second, the decision-making on the intervention which is 
usually done based on the evaluation of the operational cost (failure cost and preven-
tive actions cost) and also the evaluation of the type of the component (repairable 
or non-repairable). These decisions are based on an optimization approach, which 
allows to adjust and optimize the intervals of interventions [1]. 

The choice of TBM as a maintenance strategy is generally made because of its 
ease of management, decision-making, and execution, as well as the fact that the 
costs and charges associated with the intervention are known in advance and produc-
tion stoppages can be negotiated beforehand. [6, 8]. Several problems arise from 
the application of TBM in industry. On the one hand, the most popular in terms 
of management and planning, the individualization or separation of the intervention 
periods of each component, leads to aberrant equipment-specific TBM planning. The 
solution to this problem lies in the ABAC-ABAD method [6]. On the other hand, in 
terms of profitability and efficiency, TBM still lags far behind other preventive main-
tenance strategies (conditional and predictive), as the inevitable waste of spare parts 
and periodic interventions on functioning equipment (healthy) add to the operating 
costs of the manufacturing processes and the cost price of the finished products. 

Three obstacles also make it difficult or impossible to implement a maintenance 
plan based entirely on TBM: the technological peculiarities and specifications differ 
from one piece of equipment to another, and the recommendations and forecasts 
of machine constructors are not always reliable (several parameters, conditions and 
constraints influencing the real operation of the equipment after commissioning do 
not appear in the testing phase), the deliberate reduction of periodic maintenance 
intervals by machine constructors (to increase the replacement rate of spare parts in 
order to guarantee additional income) [9]. 

2.2 Condition-Based Maintenance (CBM) 

Condition-Based Maintenance (CBM) is another form of preventive maintenance 
with a predictive doctrine applied in several fields such as renewable energy, industrial 
manufacturing processes, medical equipment, infrastructure and buildings, etc. Its 
main purpose is to optimize the efficiency and accuracy of maintenance decisions 
and activities within the preventive framework [10], more specifically, in comparison 
with TBM as shown in Fig. 3, it consists of quasi-continuously monitoring, assessing, 
and determining the health status of a piece of equipment in operation in order to 
carry out maintenance when needed [4, 10]. These actions will contribute on the one 
hand to decrease the life cycle cost of the equipment, and on the other hand to avoid 
catastrophic failures [1]. The decision-making approach in condition monitoring can
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be based on two methods: one based on diagnosis known as CCEB (current condition 
evaluation-based) and the other based on prognosis known as FCPB (future condition 
prediction-based) [1]. The current approach applied in most industries based on 
diagnosis is considered traditional or even obsolete, the latter consists of checking 
faults and performance status of systems or components [11], in order to provide 
warnings or early alerts on the abnormal operation of the equipment [1]. In contrast, 
a new approach based on prognostics, the latter allows the estimation and prediction 
of the approximate time before the equipment will be unable to perform its required 
function (will fail) [12]. The accuracy of this prediction reflects the performance of 
a conditional maintenance policy [13]. This estimation is based on failure prediction 
techniques and algorithms [14].

This maintenance strategy can be developed for real-time decision-making based 
on data processing by statistical approaches to estimate the remaining useful life 
(RUL) of the system [15] and to accurately set the date of intervention before failure, 
thus saving the costs of unscheduled maintenance and the costs of unnecessary 
periodic maintenance actions. Of the latter, the prognostic-based approach seems 
much more superior in terms of results than the diagnostic-based one [1, 10]. The 
application of such an approach can be translated into four approaches: data-driven, 
model-based, knowledge-based, and hybrid [3]. The implementation of a condition 
monitoring policy is mainly based on the monitoring, diagnosis, or prognosis of a 
multitude of parameters such as vibration, temperature, contaminants and impurities, 
and noise levels [1]. Monitoring and diagnosis are carried out on the basis of several 
of the most popular non-destructive testing (NDT) techniques: vibration analysis, 
acoustic analysis, oil analysis, or infrared thermography using sensors or measuring 
instruments attached directly to the equipment (on-line) [16], or by periodic sampling 
by the maintenance technician (off-line). In fact, this type of maintenance actually 
provides near-real-time diagnosis or detection of the current state rather than real-
time predictions of the evolution of the degradation state of the equipment [16], in 
order to perform the necessary corrective operations when any of the state variables 
exceeds the predefined failure threshold [4, 17], also called the control-limit strategy 
[7, 18]. 

Nowadays, a major revolution in monitoring and diagnostic techniques and 
technologies and also data management [2], also called the scientific approach 
that combines statistics, mathematical programming, and artificial intelligence for 
rational decision-making through analysis of data collected in the process [1]. These 
advances have prompted the development of the maintenance function in general 
and conditional maintenance in particular, especially with the advent of the notion 
of industry 4.0 or the fourth industrial revolution as it was first known in 2011 at the 
Hannover Industrial Technology Fair [19]. 

As with any maintenance strategy, many limitations and factors affect the achieve-
ment of performance and efficiency of actions related to a condition-based mainte-
nance (CBM) strategy, the most popular of which are: intervention planning time, 
imperfect condition information (masked failure effects), uncertain failure level 
(difficulties in accurately and precisely quantifying the failure) [13].
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Fig. 3 Schematical comparison between condition-based maintenance (CBM) and time-based 
maintenance (TBM)
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3 Preventive Versus Predictive Maintenance 

Today, the manufacturing industry is faced with the obligation to adapt to the changes 
and challenges imposed by several economic, technological, and environmental 
factors. The latter has a major impact on the current situation of the industry, espe-
cially with the emergence of the notions of energy efficiency, green, renewable and 
sustainable energies, etc., triggered by the impact of climate change and greenhouse 
gas emissions (CO2). The present conditions impose the transition toward a sustain-
able industrial model based on the technological development of tools and techniques 
offering new opportunities in the era of Industry 4.0. In the light of this transition, 
and like any industrial activity, maintenance is chasing time to make the transition 
to predictive maintenance or maintenance 4.0, especially for classical preventive 
approaches. 

3.1 Preventive Maintenance (PM) 

Preventive maintenance is more than a maintenance approach or strategy adopted 
by the manufacturing industries. It is in fact a whole line of thinking that emerged 
in the 1970s in response to the traditional ’walk to failure’ practices used in correc-
tive maintenance. This reasoning includes approaches that are primarily aimed at 
eliminating the notion and phenomenon of fortuitous and unforeseeable failure or 
breakdown. Preventive maintenance is a set of actions aimed at preventing failures, 
reducing the risk of failure, and the number and time of unscheduled downtime, 
which implies an extension of the equipment’s life, it consists of intervening in a 
system before a failure occurs. According to [20], the transition to preventive main-
tenance provides the advantage of saving more than 18% of maintenance costs for 
companies adopting a purely corrective policy. In general, the preventive approach 
has two main categories: systematic maintenance and condition-based maintenance 
[20–24]. 

The two approaches of systematic and conditional preventive maintenance are 
already developed in the previous section. Overall, for systematic maintenance, the 
principle is based on the planning of maintenance activities periodically at fixed inter-
vals in time or even according to prescribed criteria of the units of use of the machine, 
these intervals are determined from the average life of the equipment based on histor-
ical data, experience feedback, and manufacturer’s recommendations. According to 
[20, 23], this approach is very costly for 92% of the equipment parts and components. 
While for condition monitoring, the principle is based on monitoring the operating 
condition and detecting the faulty behavior of the equipment in order to establish 
corrective maintenance actions at a predetermined threshold with the help of data 
analysis based on statistical approaches, manufacturer’s recommendations, feedback, 
etc. According to [21], there are three types of monitoring in CBM: On-demand moni-
toring, scheduled monitoring based on inspection, and continuous monitoring based
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on the use of sensors. It is true that preventive maintenance does not represent the 
best optimal choice in relation to the maintenance cost, time and number of stops, 
production rate and key performance indicators (KPIs), the maintenance policy to 
be adopted, but it presents the best alternative to purely corrective maintenance for 
industries [20]. 

3.2 Predictive Maintenance (PdM) 

The implementation of a predictive maintenance approach within the framework 
of Industry 4.0, also known as smart industry, gives manufacturing companies the 
possibility of reducing total downtime by 30 to 50%, increasing equipment life by 
20 to 40% [19, 25, 26], achieving savings of 30 to 40% [27], decrease the number 
of unnecessary or unplanned downtime during the equipment life cycle and also 
optimize costs (energy costs by minimizing energy consumption and decreasing 
labor costs and spare parts consumption), control and production quality [21, 26, 
28]. More specifically, according to [20, 22, 23], a PdM plan leads to a tenfold 
return on investment, with a 35–45% decrease in downtime accompanied by a good 
troubleshooting margin. Therefore, the elimination of breakdowns of 70 to 75% 
implies a 20–25% increase in production and a 25–30% decrease in maintenance 
costs, where according to [29] maintenance costs can contribute 15–70% of the total 
cost of production (cost price). While achieving such results and success implies 
profound changes in the culture and practices used, technological improvements and 
significant investments in the manufacturing process (in many cases entailing more 
than 30,000 e per equipment) [20, 21], and also the adaptation of the recruitment 
and human resources management policy with the obligations, requirements, and 
advances of the field, where PdM requires the recruitment of reliability and data 
science engineers and the training of staff [20]. 

PdM is a preventive maintenance approach that aims to improve the performance 
and efficiency of the manufacturing process by increasing the lifetime of equipment, 
which implies on the one hand a decrease in downtime and the number of unnec-
essary shutdowns accompanied by a reduction in direct and indirect costs related 
to maintenance. According to [21], in the United States, almost 33% of the main-
tenance budget is spent on unnecessary actions. The result is very high reliability, 
availability, and productivity rates by improving the safety of people and equip-
ment (a very low-risk level) [21, 23, 30]. Predictive maintenance is nowadays one 
of the most developed maintenance policies. In fact, it is a sophisticated version of 
condition-based maintenance, which is based on continuous (real-time) monitoring 
of the equipment’s operating state, It is not limited to the phase of detecting signs 
of failure and locating the fault only (breaking with other approaches), but it aims 
to anticipate impending failures, predict the faulty behavior of the system, and also 
reliably estimate the remaining useful life (RUL). These actions build the core of 
the prognostic approach [21, 31]. This approach, closely linked with PdM, is usually 
based either on data or a model [21]. The difference between these two approaches
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is not easy to determine, it is somewhat blurred, where the data-based approach 
consists of establishing analyses and interpretations on historical system data, while 
the model-based approach is applied to systems that do not have historical data [21]. 
According to [22, 32], PdM is divided into two categories depending on the failure 
detection methods: one based on statistics and the other on conditions. 

The prognosis is not only limited to estimating the remaining useful life (RUL), 
but can also be used to assess the energy efficiency of the equipment and the 
environmental effects associated with the failure [26]. This approach provides a 
detailed examination of data from feedback, manufacturer’s equipment knowledge 
and recommendations, key performance indicators (KPI), and information collected 
and gathered in the terrain by multiple well-developed sensors installed in the manu-
facturing process [24, 28, 31, 33], these data must be available with a sufficient and 
representative quantity to ensure the effectiveness of the PdM approach [31]. The 
analysis and interpretation of these data are usually done using statistical inference 
models, regression models, machine learning models, etc. [34]. 

The process of applying a predictive maintenance approach according to [35] 
is based on five modules: sensor selection and data acquisition module, data pre-
processing module, data mining module, the decision support module, and mainte-
nance action module, however, according to [22], it is based on three steps: data acqui-
sition, data processing, and maintenance action decision. The prediction approach 
adopted in the PdM concept can be based on different models: based on a physical 
model through mathematical modeling of the health state of equipment, or based 
on the knowledge characteristic to the system, or based on data-driven steering 
based on statistical models or artificial intelligence and machine learning or deep 
learning models [28], this prediction offers the advantage of planning the maintenance 
intervention in optimal time before the system deteriorates or fails [35]. 

The decision-making phase in a predictive maintenance strategy, which is gaining 
in accuracy and becomes more and more efficient in handling complex data, espe-
cially with the advent of the smart industry era and the technological development of 
emerging tools and methods in maintenance such as cyber-physical systems, Internet 
of Things (IoT), big data, data mining, artificial intelligence and machine learning 
(ML), etc. [36]. This decision efficiency essentially helps to optimize maintenance 
activities and minimize the catastrophic impact of an unexpected failure. The predic-
tive maintenance strategy is also known under the concept of e-maintenance when 
all the equipment constituting the manufacturing process are interconnected, this 
concept represents a broader and more comprehensive vision of the next generation 
of the manufacturing industry that gives many benefits and addresses the basic need 
of artificial intelligence tools in relation to the maintenance activity in manufacturing 
companies [37], this PdM integration contributes to reducing maintenance costs by 
10–40% [22, 25, 26]. It can also be adopted in a concept of outsourcing of main-
tenance activities, i.e., a whole maintenance policy purely outsourced by leaders 
and experts of the field, which will help to increase the effectiveness, performance, 
and efficiency of maintenance operations, and make manufacturing companies more 
powerful in terms of competition and competitiveness [23].
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Like any industrial activity, sustainable predictive maintenance faces many threats, 
risks, and obstacles. The most common ones are financial, environmental, and social 
obstacles, but we can also add other obstacles such as: organizational, technological, 
and also depending on the nature, type, and technological level of the industries 
[38]. The predictive maintenance strategy still remains a real challenge despite the 
explosion of computerization and digitalization notions in the last decade, it is, on 
the one hand, an important technological development in tools, techniques, and even 
in promising ideas, but on the other hand, a difficult reality on the ground and a 
situation with many obstacles and constraints risking the success of this strategy. 
More specifically, the weak commitment and resistance of manufacturing companies 
adopting traditional maintenance policies to make the transition to PdM, especially 
with the lack of investment and financial resources related to the global economic 
crisis caused by the pandemic COVID19, which now represents a real problem 
that can firstly hinder progress and research in the field, and secondly delay the 
implementation of PdM and the feedback of experience. 

In reality, PdM is not and will never be an alternative to preventive maintenance, 
but just a natural extension and inevitable development of the preventive policy 
over time under the influence of changes, technological improvements, challenges, 
conditions, and variations in the field. Therefore, the aggregation and presence of all 
these ingredients at the same time is the foundation of this current version of PdM. 
For example, if one of these elements was missing or another element occurred, it 
would never be the same version, nor the same principles and nor the same ambitions 
of the PdM as today. 

4 Prognostics and Health Management (PHM) 

4.1 PHM Concept 

PHM is a vision or discipline adopted by manufacturing companies in the context of 
maintenance activity for the assessment of the actual condition based on a comprehen-
sive set of methods, techniques, and technologies for the monitoring of the overall 
health, diagnosis, and prognosis of equipment to determine reliability, accurately 
estimate the remaining useful life (RUL bases as presented in Fig. 4) or estimated 
time to failure (ETTF) with minimum uncertainties, and predict the future state of 
potential failures and decrease the occurrence of unscheduled failures [1, 39–41], 
with the aim of optimizing the life cycle and ensuring the efficiency of maintenance 
operations [19, 42, 43]. The adoption of such a discipline makes the manufacturing 
system intelligent [44]. As a principle, PHM before being applied in maintenance 
was initially introduced in the field of medicine for the early detection of diseases 
[45].
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Fig. 4 The bases of 
remaining useful life (RUL) 
approach 

The PHM process often consists of observation, analysis, and action mainly using 
sensors, algorithms, and mathematical and machine learning models for the estima-
tion of RUL, performance, and reliability of products, subsystems, and processes 
under real-life conditions [46]. PHM is a systematic approach that also considers the 
energy consumption of processes for decision-making in the context of sustainable 
manufacturing using performance indicators such as the Energy Efficiency Indicator 
(EEI) [45]. 

Guillén et al. [40] and Atamuradov et al. [47] proposes a PHM process model 
designed by ISO 13374/OSA-CBM that contains three phases: detection and condi-
tioning, diagnosis, and prognosis described in ISO 133811. This PHM model in 
the e-maintenance concept gives manufacturing companies the advantage of being 
conscientious and competitive. In a general view, as presented in Fig. 5, a PHM  
system model comprises several steps under four main headings: process prepara-
tion steps, data management process, PHM milestones, and finally the adoption of 
PHM results, however, an effective PHM system model requires three key steps: esti-
mating and determining the current health state, predicting the degradation behavior, 
future state and remaining life (RUL), estimating and evaluating the extent of damage 
and the impact on system performance [41, 47].

4.2 PHM for the Manufacturing Industry 

The implementation of a PHM discipline within manufacturing processes requires 
first a reliability assessment and criticality analysis to prioritize critical components,
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Fig. 5 Schematical descriptive view of Prognostics and Health Management (PHM)

followed by a cost analysis, then choosing the right sensor types for the system and 
data types, before the adaptation and implementation of the collection process. This 
data will be exploited afterward in the framework of diagnosis and also prognosis in 
order to predict the future state together with RUL and to improve the performance, 
safety, and profitability of the process [42, 44, 47]. This profitability is often linked 
to the ratio between the volume of initial investments and the benefits obtained by 
the application of the PHM. 

According to [47], the implementation of a PHM discipline consists of seven key 
steps: data acquisition, data pre-processing and processing, detection and localiza-
tion, diagnosis, prognosis, maintenance decision- making, and execution from the 
human–machine interface. The application of such a discipline often leads to radical 
changes and modifications in the plans, practices and policies of production, mainte-
nance, logistics, etc. [40]. For maintenance, PHM’s main objective is to advance and 
expand the use of preventive techniques, particularly predictive techniques, at the 
expense of corrective techniques [43]. A PHM project (PHM4SMS) for intelligent 
manufacturing systems was launched by the NIST (National Institute of Standards 
and Technology) in 2013 [42]. This organization has gathered all the key needs and 
priorities of manufacturing companies in terms of PHM strategies and maintenance 
policies [43]:

. Providing the means, techniques, and technological tools necessary for the success 
of the PHM process (monitoring and detection, diagnosis, and prognosis).

. Implementing and preparing the data management process in order to provide real 
data to achieve optimal efficiency and accuracy of diagnosis and prognosis.

. Determining key performance indicators from the different surveillance tech-
niques.

. Promote and encourage the exchange of PHM knowledge and experience between 
the manufacturing community. 

The use of this discipline of PHM in manufacturing industries remains very 
limited, almost rare, where their principles still seem very complex and difficult 
to apply because of several factors despite the huge technological development of 
tools and techniques caused by the arrival of the fourth industrial revolution “industry 
4.0”. These factors, on the one hand, are of a financial nature (lack of investments
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especially for small and medium-sized enterprises (SMEs)), social (lack of exper-
tise and qualification of staff), technological (data collection and processing), etc. 
On the other hand, they depend directly on the complexity of the manufacturing 
processes which consist of various interacting equipment with different designs and 
architecture, different failure modes and degradation rates, different and interdepen-
dent operations and tasks, different data types, and also RUL different, the thing that 
complicates the decision- making in terms of prognosis and adopted maintenance 
policies and that implies multiple PHM techniques and tools [42, 45, 48, 49]. Mean-
while, the application of the PHM approaches separately for elementary and typical 
components by using prognostic techniques such as vibration analysis, infrared ther-
mography, oil analysis, ultrasonic analysis, etc., proves to be very reliable and effi-
cient [48]. According to [45, 49], the main challenges for the implementation of a 
PHM approach for manufacturing processes are:

. Equipment-specific failure modes and rates.

. Complex and distinct equipment architecture and design.

. The many peculiarities and details of production operations.

. Difficulties and complexity in terms of scheduling.

. The need for comprehensive prognostic tools and techniques capable of studying 
and processing data from the entire process accurately and efficiently, i.e., studying 
and processing data from several failure modes, parameters, components, and 
subsystems simultaneously (on all levels).

. The technological tools and techniques used require a significant investment in 
the manufacturing structure.

. In return, there is a lack of resources for the research and development of PHM 
models and practices, especially for SMEs [44]. 

5 Maintenance 4.0 Tools 

At the beginning of the twenty-first century, and in the era of the fourth industrial revo-
lution, recent technologies such as cyber-physical systems (CPS), internet of things 
(IoT), internet of systems (IoS), Big Data, etc., have been converted in the industry as 
main components of digital transformation in the framework of Industry 4.0. These 
have been adopted by manufacturing companies in multiple industrial applications 
such as maintenance, more specifically predictive maintenance or also maintenance 
4.0, specifically addressing issues related to maintenance decision-making in direct 
relation to big data analysis and interpretation, failure prediction, and remaining life 
estimation (RUL). In this regard, they can position themselves and stand up to the 
fierce economical competition.
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5.1 Cyber-Physical Systems (CPS) 

Cyber-physical systems represent the latest technology of intelligently connected 
production devices, sensors, and autonomous intelligent monitoring, control, sensing 
and diagnostic systems equipped with a set of computational and physical techniques 
and tools fully aligned with human needs [35, 50]. The concept of CPS was first intro-
duced in 2006 by the American scientist Hellen Gil at the National Science Founda-
tion (NSF) in the USA around 2006 [28, 51]. The activity of CPS is decentralized and 
self-organized and they are characterized by homogeneity and flexibility in working 
with each other in different disciplines and modes of operation [52, 53]. This key 
element of Industry 4.0 has several automated sensors (mechatronic components) 
and is distributed across all equipment for data collection, storage, and analysis. 
CPSs represent the link between the virtual and the physical world, more exactly, 
they give the possibility to merge the virtual world with the real industrial world by 
eliminating all boundaries between them, and they also allow decentralized decision-
making [35, 51, 53–55]. These systems provide continuous process monitoring and 
data exchange through a virtual space (IoT tools) and allow remote diagnosis and 
effective decision-making in terms of real-time maintenance, thus contributing to the 
creation of intelligent manufacturing processes [51, 52, 56, 57]. 

The contact and interaction of CPSs with humans are usually done through Human 
Machine Interfaces (HMIs) [52]. In the industrial sector, especially in the context of 
predictive maintenance or maintenance 4.0, the use of this technology is often known 
as CPPS (Cyber-Physical Production Systems) [58, 59]. Apart from the manufac-
turing industry, CPS technology is widely used in a multitude of fields such as 
aerospace, automotive, energy, health, and transportation [53]. 

5.2 Internet of Things (IoT) 

IoT is considered as the main factor in the emergence of the Industry 4.0 prin-
ciple (intelligent industry) and as the basic technology of cyber-physical systems. 
Simply, it is the network linking the CPS ensuring the interconnection and interaction 
between the physical devices of the process, which allows the automatic collection 
and retrieval of the huge flow of data generated by the various devices of the process 
constituting the notion of Big Data. The IoT also provides the possibility of data 
transmission via the internet, and it is the atmosphere that allows direct access to 
process data, virtualization of resources, interconnection, cooperation, intercom-
munication, and machine-to-machine (M2M) interaction in a transparent way and 
without human intervention [35, 51, 55–58]. The adoption of this internet-based 
technology by manufacturing companies helps to improve intercommunication and 
interaction between machines, increase the performance and quality of maintenance 
operations, and avoid unexpected failures, as well as resource optimization and cost 
reduction [55].
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The concept of IoT is widely spread in various fields, and the most popular 
different IoT technologies are Extensible Messaging and Presence Protocol (XMPP), 
Data Distribution Service (DDS), Advanced Message Queuing Protocol (AMQP), 
Message Queue Telemetry Transport (MQTT), Open Platform Communications-
Unified Architecture (OPC-UA). The latter is the most practiced and used by large 
manufacturing industries [56]. According to [53], the design of IoT systems is in the 
form of three layers (multi-layer system), namely: IoT platform layer, IoT applica-
tion layer, and IoT industrial solutions layer. This design provides several advantages 
in terms of process efficiency and flexibility. In the industrial sector, especially in 
the context of predictive maintenance or maintenance 4.0, the use of this technology 
is often known as IIoT (Industrial Internet of Things) [28, 51, 58, 60]. According 
to [60], in a survey of a set of manufacturing companies on the adoption of this 
technology as part of a predictive maintenance policy, almost 44% of companies are 
already applying it, and 27% are planning to use it in the near future. 

5.3 Big Data 

The collection, processing, and analysis of real-time Big Data from CPS is a strategic 
phase for the intelligent transformation of the maintenance function, especially for 
PdM in relation to failure prediction, planning, and optimization of interventions, 
and is mainly done by artificial intelligence tools and techniques such as machine 
learning (ML) and deep learning (DL) or by models and statistical approaches based 
on data and information collected by CPS [55]. The objectives of this approach are the 
implementation of models and algorithms for failure prediction, continuous process 
control and monitoring, and failure diagnosis and prognosis. 

The concept of Big Data is mainly characterized by four parameters such as the 
volume of data, the variety of data, the speed of analysis and production of new 
data, and also the quality and value of data [55]. Big Data in the manufacturing 
industry is synonymous with huge, diverse, complex data of different volumes and 
nature from several sources reflecting the actual state of the process impossible to 
analyze and process by conventional techniques and tools. These data are usually 
a mixture of structured, unstructured, and semi-structured data [36]. According to 
[36], types of data can be classified into Big Data, Structured, unstructured, and 
semi-structured data, Time-stamped data, Historical data, Operational data, Identity 
data, Asset data, and Environmental data. These different types of data originate from 
sources such as equipment design, machine operation, equipment health conditions 
(conditional maintenance), periodic interventions (systematic or corrective mainte-
nance), deliverable quality, process logistics, value chain costs, customer require-
ments and conditions (feedback), operator behavior, and environmental conditions 
[36].
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5.4 Artificial Intelligence (AI) 

Artificial intelligence is the keyword in the transition to Industry 4.0, it is a powerful 
technology that compensates for the deficiencies and ineptitude of traditional tech-
niques and approaches practiced in industry. AI is strongly linked, appropriate, 
specific, and exclusive to Big Data in order to answer critical questions, remedy 
weaknesses and shed light on key process issues, specifically in the analysis and 
processing phase of big data. The latter is done mainly through the use of techniques 
such as machine learning (ML) on data collected from different sources to detect 
the abnormal operation of equipment, extract and guess the degradation patterns of 
components, know the relationships between different parameters and components, 
strengthen the decision-making in terms of maintenance and failure prediction and 
process optimization, where it offers manufacturing companies several economic 
benefits on finance, production, logistics, maintenance, etc. Especially in the predic-
tive aspect, these benefits are gained thanks to AI in effectiveness and prognostic 
accuracy in terms of failure prediction and remaining life estimate (RUL), in speed 
and quality of maintenance interventions by reducing the error rate, in planning 
and efficiency of maintenance plans, in profitability and optimization in terms of 
resources and investments. 

5.5 Connection Interfaces 

Represent spaces and platforms for communication, sharing of actual equipment 
status, information exchange, and storage of useful data linking different disciplines, 
partners, customers, and suppliers in the process. They offer the advantage of remote 
expertise in the context of Maintenance 4.0 for complicated maintenance operations, 
or unusual failures and breakdowns. In several disciplines or domains, these inter-
faces are the means of communication and interaction with humans, such as Human 
Machine Interfaces (HMI). Nowadays, all these key components present the foun-
dation of Industry 4.0 such as CPS, IIoT, Big Data, and connected interfaces like 
the Cloud and the cooperation, coordination and interaction between them and the 
human, play a key role in the industrial transition in particular and the economic 
transition in general toward the sustainable context or the factory of the future (FoF) 
and smart manufacturing. These technologies in the context of Maintenance 4.0 help 
on the one hand to improve the performance of equipment, the quality of products, 
and the efficiency and profitability of manufacturing processes, and on the other 
hand, to overcome the difficulties and limitations related to the classical tools and 
techniques used in industry. In other words, these technologies strongly contribute 
to the transformation of manufacturing companies and the flexibility of operations 
by creating an intelligent industrial atmosphere in the framework of the orienta-
tion toward Industry 4.0, the driving force of a sustainable industry. Virtual reality
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can be used in this sense to facilitate man–machine contact, improve the quality of 
interventions and help operators to take optimal solutions. 

The challenge today is to make these key technologies of Industry 4.0 (CPS, IIoT, 
Big Data, etc.) autonomous and capable of interacting with other objects, devices, 
and external systems from different domains and disciplines. This challenge extends 
to make real-time information exchanges using connected and common interfaces 
without human intervention [56, 57] and also to protecting and securing the data 
and information shared through these components which are not immune to cyber 
threats. 

6 Digital Twins and Real-Time Monitoring, Tools 
of Efficient Production Management 

The emergence of new technological and innovative trends in the era of the fourth 
industrial revolution such as CPS, IoT, Big Data, AI, and Digital Twins (DT) has 
prompted the development of new production methods addressing key issues for the 
transition to sustainable and smart manufacturing. Digital Twins in this context of 
Industry 4.0 and despite the significant delay in aspects related to DT standards, the 
formal framework of the DT concept, and safety, considered as one of the robust 
and promising technologies offering advantages of efficiency, competitiveness, and 
profitability, especially for the manufacturing industries. 

6.1 Digital Twin’s History 

The appearance of the concept of digital twins dates back to the beginning of the 
twenty- firstcentury with the emergence of simulation as a powerful tool in the scien-
tific as well as the industrial world, exactly, this technological trend was first intro-
duced by Michael Grieves in 2002–2003 as part of his course on Product Lifecycle 
Management (PLM) [61–66]. Afterward, this concept was presented to the general 
public by NASA (National Aeronautics and Space Administration) in 2012 within its 
technology roadmaps [61–63, 67]. Today, DT technology is increasingly recognized 
and attracting interest from researchers in academia and also from manufacturing 
companies, where it has been considered according to Gartner in three consecutive 
years (2017, 2018, 2019) as one of the ten most promising and strategic technology 
trends in the world [61, 62, 68].
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6.2 Digital Twins Concept 

DTs play a key role in virtualizing and digitizing the main complex physical objects, 
functions, and systems constituting manufacturing processes, they represent the 
global virtual version, copy or model of the real and multidisciplinary physical 
world (production process) that encompasses and integrates the interacting set of 
all key physical components (products, resources, orders), their data, monitoring, 
control, planning and scheduling tools, and the history of any process [58, 68], in 
order to improve the productivity and efficiency of production operations, increase 
process performance and flexibility, and continuously optimize production manage-
ment, which strongly contributes to the achievement of significant cost savings and 
reduction of costs and expenses during the process life cycle [62, 63, 65]. In other 
words, DT is seen as the manifestation of physical entities in the digital (virtual) 
domain [66]. 

A DT system collects all data, information, and details related to the physical 
entity during its life cycle, from the design phase to the decommissioning or end-
of-service phase. This system enables real-time condition monitoring and control, 
entity modeling, continuous behavior prediction and real-time decision support, and 
optimization of the performance of physical entities in the real world in order to 
maximize the profitability of the production process and improve operating times 
[61, 63, 65, 66, 68]. According to the IDC (International Data Corporation), a 30% 
improvement in cycle times is expected in five years for companies adopting this 
technology [61, 66]. DT can be summarized as seamless integration between virtual 
space and the real physical world, which provides and feeds manufacturing processes 
with data and information on production management, actual equipment status, and 
potential failure behavior globally promoting process intelligence and flexibility with 
the aim of consolidating the key principles of sustainable and smart industry [62, 69]. 

DTs can be divided into two pillars as virtual DTs of the physical entities of the 
manufacturing process, and predictive and decisional DTs based on physics-based, 
data-based, or hybrid models and which have the main objective of event prediction 
and process optimization [58]. In some contexts [68], TDs can also be decomposed 
into three pillars with the addition of the projection of DTs through the integration and 
adoption of the results generated by predictive DTs into the manufacturing process. 
The design of DTs includes three dimensions: physical part, virtual part, and the 
connection between the two [63, 69]. While in some works of literature, the complete 
design of DTs includes five dimensions by adding data and services [62, 63]. 

6.3 Advantages of Digital Twins s for Manufacturing 
Industries 

According to [68], the main benefits of the DT concept are as follows:

. Real-time status monitoring and remote control.
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. Excellent efficiency, accuracy, and safety of the operations performed.

. Prediction of failures with optimal accuracy and optimization of maintenance 
planning (PdM).

. Study of system behavior and risk assessment in virtual space to minimize losses 
and eliminate the danger.

. Better collaboration, consistency, and interaction within and between teams.

. Efficient, fast, and rational decision support process.

. Faster and smoother adaptation to market changes and customization of products 
and services.

. Facilitates communication, interaction, and real-time exchanges by improving 
documentation. 

The concept of DTs is a recent technology that has not been widely adopted 
by manufacturing companies around the world. The applications of DTs within the 
manufacturing industries are mainly concentrated in the fields of:

. Design, especially for the manufacture of complicated and costly prototypes 
(aeronautics and aerospace).

. Production mainly for condition monitoring (KPIs), resource, and supply chain 
management.

. Predictive maintenance, especially in prognostics and process health management 
(PHM) for real-time monitoring, prediction of remaining equipment life (RUL), 
and also for decision-making to optimize intervention planning [62, 63, 68]. 

DT technology still faces many challenges in the manufacturing domain mainly 
related to safety, data quality, accuracy and correctness of failure predictions and 
remaining life (RUL) (optimizing tolerance intervals and minimizing uncertainties), 
real-time simulations, Big data management, and fast and rational decision-making 
for the development of the smart manufacturing concept [68]. 

7 Manufacturing and Maintenance at the Heart 
of Sustainability 

7.1 Sustainable Manufacturing 

The concept of sustainability first appeared in the 1980s within the manufacturing 
industry under the name “cleaner production”, focusing essentially on production as 
an axial function in the industrial sector with the objective of improving the degree 
of exploitation of raw materials by minimizing the resulting losses and rejects along 
the manufacturing cycle [70]. This vision of sustainability is fully consistent with 
the Japanese “Muda” approach based on Value Stream Mapping (VSM) within the 
framework of the Lean philosophy [71].
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According to [72], the idea of sustainable development was first introduced 
in 1987 in the Brundtland Report at the World Commission on Environment and 
Development. 

The concept of sustainability is a multidisciplinary field based on three funda-
mental dimensions: social, economic, and environmental [73–76], also known as 
performance indicators according to the Global Reporting Initiative (GRI) [72]. 

In the era of Industry 4.0, the adoption of new technologies (CPS, IoT, Big Data, 
IoS…etc.) as part of the digital transformation of the manufacturing industry has 
significantly influenced the sustainability of core manufacturing activities (produc-
tion, maintenance, logistics…etc.) under the requirements of the various dimensions 
of sustainability, including process and production line performance, productivity, 
and profitability of the maintenance activity and reduction of wasted expenditure, 
energy efficiency, human reliability, reduction of environmental impact…etc. [74]. 

According to [73], the sustainable manufacturing approach is mainly based on four 
strategic pillars covering all the concerns of the industrial world, the stages related to 
the life cycle of the product from the reception of the raw material to the delivery of 
the finished product, contributing significantly to achieving the global objectives of 
sustainability in terms of efficiency, profitability. These pillars are: waste reduction, 
material efficiency, resource efficiency, and eco-efficiency. 

Today, sustainability is attracting the attention of researchers in the academic 
world and also manufacturing companies, several studies and a variety of methods 
have been developed with the aim of achieving sustainable manufacturing, [71] have  
reviewed in the literature the use of sustainability-oriented VSM also called “Sus-
tainable VSM” in manufacturing processes by proposing both a set of sustainability 
indicators to identify the effect on economic, social, and environmental sustainability. 

The reduction of waste and consumption of raw materials is only part of the solu-
tion, there are other solutions that can be relied upon in the context of sustainability, 
including increasing the functional life of products, preserving raw materials, and 
rationalizing technological development to make it suitable for current and future 
needs. 

According to [76], the adoption of the “6R” concept (reduce, reuse, recycle, 
recover, redesign and remanufacture) within manufacturing processes can support 
the achievement of the goal of sustainable manufacturing. 

7.2 Sustainable Maintenance as Part of Sustainable 
Manufacturing 

The integration of sustainability concepts into most of the key activities of the manu-
facturing processes can only be achieved with the inclusion of sustainable mainte-
nance, which is one of the main foundations of sustainable manufacturing aiming
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primarily at maintaining the balance between the different dimensions of sustain-
ability, optimizing the life cycle management of assets, increasing the life and utiliza-
tion rate of machines, minimizing the consumption of materials and non-renewable 
energy (conventional and fossil fuels), reducing pollution and improving environ-
mental conditions, reducing costs, improving equipment performance and system 
productivity [76–79]. 

Sustainable maintenance is the typical version of maintenance 4.0 ensuring short, 
medium, and long-term sustainability (economic, social, and environmental), value 
creation, satisfaction of needs, availability and performance of the industrial process 
for future generations [80]. Indeed, sustainable maintenance is a collective version 
merging all existing maintenance policies from corrective to predictive or M4.0 in a 
way that helps to extract the best features and properties of each policy in order to 
achieve the objectives of sustainability. 

In contrast to the classification of [72–76] of the sustainability dimensions in 
sustainable manufacturing (economic, environmental, social), [77, 78] have divided 
sustainable maintenance according to its significant impact into four dimensions: 
technical, economic, environmental, social and safety. 

In line with the current trend of Industry 4. 0 and the adoption of its technological 
tools at the heart of the maintenance activity, [81] the software publisher Dassault 
Systems offers Manufacturing Operations Management (MOM) with the DELMIA 
application and the 3DEXPERIENCE platform, as well as Manufacturing Execu-
tion Systems (MES), which enables manufacturing process efficiency and resilience, 
continuous and remote equipment monitoring, control and diagnostics, maintenance 
planning and management, and the use of artificial intelligence for decision support. 
As shown in Fig. 6, the overall concept of sustainable maintenance is in the context 
of sustainable manufacturing. 

In their report, the European Commission [82] identified nine (9) critical success 
factors (CSFs) that are essential in managing maintenance activities in small and 
medium-sized enterprises (SMEs) in order to implement a sustainable and lean 
maintenance approach. 

The major challenge facing manufacturing companies today in implementing a 
sustainable maintenance policy is to overcome the difficulties and constraints related

Fig. 6 The concept of sustainable manufacturing and maintenance 
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to the complexity of manufacturing operations, the fierce competition in the economic 
market, and especially those related to the sudden change in practices and habits of 
previous policies that will undoubtedly cause destabilization in the manufacturing 
process. 

8 Challenges and Future Directions 

The concepts of maintenance 4.0, innovative technologies, and artificial intelligence 
correspond today to a new way of organizing the means of production. This new 
form of industry, which holds great promise for consumers, is the convergence of 
the digital world and financial and economic operations with the products that exist 
in our reality. It should be noted that Maintenance 4.0 touches multiple aspects 
such as economic, social, political, and environmental. The priority of adopting 
Maintenance 4.0 in maintenance routines of manufacturing sectors is recognized by 
industrial companies. In terms of challenges and future directions, there are a number 
of measures to be taken into account in order to be able to challenge this novelty. To 
this end, it would be interesting to list in summary form the possible actions that we 
have retained in this perspective: 

(1) Study and exploration of new prognostic techniques and approaches capable of: 

– Simultaneously monitoring multidisciplinary systems 
– Monitoring the various parameters and factors of dysfunction 
– Simultaneously studying all the different failure modes and the interaction 

between them and the influence of one on the other 
– Predict the different degradation behaviors 
– To estimate the remaining life (RUL) of the system, knowing that most of 

the prognostic techniques and approaches proposed in the previous research 
are limited to the study of a single failure factor or mode, these techniques 
are also unable to estimate the remaining life (RUL) characteristic of the 
complete system. 

(2) Proposal of tools and techniques to improve the flexibility of predictive mainte-
nance under different conditions and situations in order to optimize and reduce 
the planning and preparation time of interventions. 

(3) Development of algorithms and data processing tools capable of accurately 
processing and manipulating large heterogeneous data from different sources at 
the same time. 

(4) Achievement of the objective, especially with the economic crisis linked to the 
Covid19 pandemic, of preparing the efficient approach and proposing the ideal 
path for the transition and transformation phase at a lower cost for industries 
adopting traditional corrective or preventive maintenance policies. Therefore, 
do not just implement the maintenance 4.0 policy with its key components for 
the digital and intelligent transformation in the framework of Industry 4.0.
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(5) For the manufacturing industry, currently, the challenge is to define the general 
framework (the core), the environment, and the steps for the application or 
implementation of a maintenance 4.0 policy or predictive maintenance appro-
priate to all manufacturing sectors, so that each company can adjust it according 
to the manufacturing process it has, while respecting the requirements, needs, 
details, characteristics, and particularities of each equipment, operation, stage, 
area of manufacturing, etc. 

(6) Development and strengthening of cybersecurity of manufacturing processes 
adopting those key technologies to the digital transformation such as CPS, IoT, 
connected interfaces, Cloud, Big data, etc. These provisions are to be recom-
mended against cyber risks and attacks. It should also be noted that these tech-
nologies have not yet proven to be effective in protecting data. In addition, 
each manufacturing process has a wide variety of highly confidential data and 
information. 

(7) Increasing and improving the skills of the personnel that are essential for the 
successful transition to the smart and sustainable factory in order to be able to 
keep pace with the technological development of industrial processes. 

(8) In-depth study of the impacts, advantages, and disadvantages caused by the 
adoption and use of these technologies in the industrial sector, in particular 
for the manufacturing industry, in order to rationalize investments in an equi-
table way ensuring the sustainability of the key elements of the manufac-
turing processes including the human being, as the main aim of this techno-
logical development in the era of industry 4.0 era is to facilitate work and 
optimize human performance, not to eliminate or exclude it altogether (the self-
congratulatory benefit provided by these technologies will inevitably contribute 
to rising unemployment rates, negatively influencing economic recovery). 

(9) Careful study of the economic impact, i.e., the profitability of adopting mainte-
nance 4.0 as predictive maintenance. This can be done independently or linked 
to a whole Industry 4.0 program by manufacturing companies in the short and 
medium-term, especially SMEs (lack of financial resources, lack of research 
and development teams). 
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1 Introduction 

Metal manufacturing knew such an evolution these recent years that it made possible 
the creation of such complex parts to answer the needs of many different industrial 
sectors among automobile and aerospace which are the most demanding. These parts 
are posited complex by their geometric details, features, and innovative shapes. In 
addition, like every manufactured part, they need to go under the quality control 
process that consists of dimensional and geometrical controls to make sure that the 
part corresponds to the specifications that were indicated before the manufacturing 
and to ensure the functionality of the product. Manufacturing companies give signif-
icant importance to this process which makes them keep their place in competitive 
markets by producing high-quality components [1]. However, in the modern era 
where the industries reduced so much their manufacturing time, the inspection of 
the parts is the most time-consuming and usually needs human intervention. Even 
though research on rigid parts inspection reduces the cost and operation time of 
the inspection by digital tools, the inspection of non-rigid parts remains still an 
important challenge. For example, a test set of non-solid components in Bombardier 
Aviation™ as a large industrial company requires 60 to 75 h of operation [2–4]. 
Therefore, an accurate inspection in a short period became a necessity for manu-
facturing companies without omitting the cost. And the highlight of this evolution 
was the appearance of the Computer-Aided Inspection (CAI) allowing for easy 3D 
scanning of a product to create a digital replica of it stored as a point cloud. The CAI
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opened doors for a new way of inspection, less time- and money-consuming, reducing 
the human intervention by a large margin. A novel method of real-time 3D scanning 
of aluminum 5052-H32 laser-welded blanks as semi-flexible parts’ inspection based 
on lean manufacturing concept has been already presented by our research team 
[5]. Finite element analyses and simulations are also applied in non-rigid inspec-
tions to define the influence of process parameters in laser material processing and 
optimization of objective functions based on genetic algorithms and metaheuristic 
approaches [6–8]. The CAI uses advanced data acquisition methods instead of tradi-
tional and tactile tools such as calipers, optical comparators, and gauges. The CAI 
methods are capable of creating a point cloud of inspection surfaces using contact or 
contactless scanners to fulfill the inspection that is most of the time non-destructive. 
Back in time, the quality inspection was usually done by using micrometers, calipers, 
gauges, optical comparators, and manual Coordinate Measuring Machines (CMM) 
but those processes are slow and require a lot of programming and planning before 
beginning to function. They also need contact with the fixture and can be a redundant 
and tedious process to double-check practical errors. Over the past few years, digital 
data acquisition devices have been advancing drastically and rapidly such as 3D optic 
and laser scanners [9, 10] along with computational algorithm and calculation devel-
opments that made possible the use of computer-aided inspection (CAI) methods. In 
this regard, 3D data acquisition devices make it possible to obtain the coordination 
of points on the inspection surfaces of parts, called point clouds, by scanning the 
surface of parts during the inspection process. From point clouds obtained a scan 
mesh is generated, simplified, and optimized using mesh smoothing and decimation 
methods [11, 12]. The objective of the scan mesh is to represent the geometrical 
shape of the part in the most accurate way with the least required data volume which 
can be translated to the mesh size. CAI methods help to make an automatic time-
saving inspection by both applying tolerancing methods and computational meshing 
tools. Those methods make it easy to compare a computer-assisted model (CAD) 
with a photocopying mechanism in a standard communication system to define the 
geometric deviations from the surface of the parts during the production process. The 
issue related to this test is the link system. In fact, the CAD model is located in the 
Design Coordinate System (DCS) and the scanning data is in the Measurement Coor-
dinate System (MCS), and the registration systems built into the computer-assisted 
registration are required to synchronize the two types in one system. 

Depending on the type of test components such as simple or complex geometry, 
rigid or non-rigid behavior, industrial applications, and tolerance requirements, a 
variety of computer-assisted methods can be found. On one hand, solid registrations 
are used for solid components to adapt the scanning model in a free environment 
in relation to the CAD model. On the other hand, non-solid parts know complex 
registration as the deviation of the geometric parts can exceed tolerance due to the 
compatibility of the components in the free state. This complication opens the door 
to two categories of non-rigid part inspection: physical fixtures inspection methods 
and fixtureless non-rigid registration methods. Operational limits and drawbacks 
of using fixtures encouraged industrial sectors towards using fixtureless inspection 
methods that firstly appeared in 2002 [13]. Figure 1 shows a framework hierarchy
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for automated inspection using a 3D scanner [14]. Here, rigid and non-rigid parts 
have been discussed in detail and then a novel digital model is presented for parts’ 
inspection in industrial application. 

Fig. 1 Framework hierarchy for automated inspection using a 3D scanner
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2 Data Acquisition Methods 

The technical drawing of each manufactured part goes through a lot of investigation 
and steps before its validation and acceptance from the engineers to make sure that 
any misunderstanding of the parameters has been cleared. It is the first step in the 
manufacturing process. This is done to make sure that the final product will respond 
to the different dimensional and geometrical criteria defined such as the dimensions, 
angles, and precision sought for each part of the workpiece. Even though all those 
actions are taken to make sure that the manufacturing of the part will be as precise as 
we can, we can’t omit the importance of the measurement and data acquisitions of the 
workpiece to make it possible to validate the manufacturing work. Thus, the biggest 
issue the modern manufacturing field is facing is that the traditional measurement 
and data acquisition methods require human intervention, skillful operators, and 
most of all they are time-consuming. Some methods were developed to increase the 
efficiency of the 3D topography of surfaces like the spiral sampling [15] but with the 
increasing demands of customers that not only expect higher quality, lower price, 
and higher performance, but also require the earliest delivery of the product, better 
and less time-consuming methods had to be chosen. 

Advances in 3D scanning technology allow the creation of a digital scanning 
model from a visual object. Advanced measurement systems and specific scanners 
can be classified as contact and non-contact scanners. Contact scanners knew their 
origins in 1933 by Abbot and Firestone [16]. The affected profilometer is still the most 
common sharpness measuring device in the machinery industry and has been devel-
oped over time. Those scanners are now based on Coordinate Measuring Machine 
(CMM) technology that can be controlled manually or automatically by the system. 
These devices contain a three-axis probe, in which each axis has a built-in refer-
ence (Fig. 2a). Communication scanners are very reliable as they are not sensitive to 
color or visibility and are more accurate and less expensive than certain communi-
cation scanners. However, data acquisition from these devices is slow and the probe 
contact may affect certain non-solid components that cause unwanted flexibility 
during the scanning process [17]. Non-contact scanners use lasers and optics (e.g., 
using integrated device sensors (CCD) introduced in Fig. 2b) to scan numerically 
the geometrical position of the part as point clouds. Unlike contact scanners, those 
devices are faster while there is no physical contact between the scanner and the 
operating environment. The accuracy of the data obtained by non-contact scanners is 
low compared to contact scanners but still, the accuracy is acceptable for industrial 
testing systems. As flexible as they may seem to like, non-contact scanners have 
some limitations and disadvantages. Highlighting, display, or location color may 
affect the data acquisition of these devices. The limitations of non-contact scanners 
can be reduced by using temporary paint that does not show to make the scan more 
reliable [18]. These limitations can add noise to the cloud of available points where 
the validity of appropriate testing methods needs to be validated.
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Fig. 2 a Contact scanner based on CMM [19] b principle of a laser triangulation sensor [20] 

3 Quality Control Based on 3D Geometrical Inspection 

Almost every industry, at different levels, is required to use quality control. No 
matter what kind of industry or job, each company needs to evaluate its production 
quality to improve its product, continue to compete, and maintain a good reputation. 
Quality control not only removes incomplete components but also ensures a complete 
evaluation of the product quality of the product. Assessment tasks can be divided 
into the following three broad categories [21] where general tasks are listed in each 
category: 

• Gross inspection: This is the first step of inspection as it is done with the bare 
eye to obtain diagnostic information of the workpiece. It’s done by comparing the 
visual form of a workpiece to its CAD model [22]. 

• Dimensional and geometrical inspection: In this step, different dimensions of a 
workpiece are measured to verify if they respond to the tolerance requirements 
[23]. 

• Micro inspection: This step inspects the manufacturing quality of the workpiece 
to verify the integrity of the parts such as the surface roughness and porosity [24]. 

Quality control is an important function in the lifecycle of mechanical products, 
especially in a seamless manufacturing process. To date, components and organiza-
tions must be tested to ensure that they meet their definitions. The test results provide 
important information about the behavior of production processes. For example, an 
intolerance hole could indicate that the cutter had removed the worm and should 
be replaced. Tolerancing is the process of ensuring partial exchange by controlling
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the geometrical dimensioning variations present in the fabricated parts. Tolerance 
comes from specifying the extent to which the size is allowed to vary. In other words, 
tolerance ensures component performance and production quality. According to the 
literature, tolerance can be defined as the following [25]: 

• Direct tolerance method, which includes size limitation and addition/subtraction 
tolerance. 

• Typical tolerance notes, dealing with the tolerance of all sizes. 
• Geometric Dimensioning and Tolerancing (GD&T), to ensure the compatibility 

of the components made with the sign described in the design phase. 

Geometric Dimensioning and Tolerancing (GD&T) is a core aspect of inspection 
and control quality. Basically, GD&T is a system credited to Stanley Parker who 
developed the concept of “true position.” The purpose of geometric dimensioning and 
tolerancing is to define and communicate engineering tolerances. It makes it possible 
to define the allowable variation by describing the nominal geometry of CAD and 
engineering drawings using symbolic language. In the manufacturing and production 
industry, GD&T is widely applied in the manufacturing field for workpieces with 
complex shapes in different industrial disciplines. Generally, all types of industrial 
parts could be categorized as rigid and non-rigid parts. This division opens the door 
to a variety of definitions and approaches to tolerance. Methods for tolerating non-
solid components should be considered, compliant, and permitted to deliver such 
material during the evaluation and performance of the organization. It first appeared 
in 1996 [26] in the construction of high-end vehicles, and the tolerance analysis of 
non-solid parts appeared in time. In this context, the tolerance of the profile is given a 
place in the free form of components to control land diversity. This profile tolerance 
can be defined in terms of the datum (names) known as related profile tolerances. 
Related profile tolerances are used in cases involving a combination of free-form 
spaces and other geometric features [27]. Once tolerance is allocated, geometric and 
size requirements must be confirmed in the testing process component. Figure 3 
shows the classification of certain specification methods used for geometric sizes 
and tolerance for non-solid components [28].

In the era of automation, production standards such as ASME Y14.5 and ISO-GPS 
were developed to improve the quality and standard of GD&T. Also, the American 
Society of Mechanical Engineers (ASME) has developed rules, definitions, require-
ments, defaults, and recommended practices to make that happen. They say that 
equipment and parts should be tested in a free form that is represented by a mark on 
the drawings. However, testing of non-solid parts should take into account the compli-
ance with the defects of these components. As a result, specific requirements, based 
on ASME Y14.5 and ISO-GPS standards, for geometric reduction and tolerance for 
non-solid components have been developed as shown in Fig. 4.
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Fig. 3 Categorization of particular specification methods used for the geometric dimensioning and 
tolerancing of non-rigid parts

Fig. 4 Graphical representation of existing inspection methods 

4 CAD Model and Scan Data Registrations 

The main objective of computer-aided inspection (CAI) is to make it possible to 
compare the computer-aided design (CAD) with the data acquired from methods 
cited in the previous section. Workpieces being categorized as rigid and non-rigid, 
different registration methods have been developed to make it possible to inspect 
every part. In fact, rigid registration is the primary step in computer-aided inspection 
for non-rigid parts. The rigid and non-rigid registration methods are discussed in 
detail in the following sections.
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4.1 Rigid Registration 

The main purpose of the robust registration is to bring CAD and scanning models 
as close as possible to the standard communication system without disabling both 
types [2]. It uses the conversion matrix to effectively translate and rotate models 
without making changes to their structure. Historically, CAI first appeared in 1992 
by Besl and McKay [29], the Iterative Close Point (ICP) algorithm is one of the 
strongest and most robust registrations. Although different approaches emerged over 
the years such as those presented by Li and Gu in 2004 [19] or Savio in 2007 [30], 
ICP is still widely applied in different domains, for example for an inspection of an 
aircraft [31], it has its place among the most reliable and statistically robust methods 
of registration. Figure 5 shows the result of an ICP algorithm when applied on CAD 
and scan models of a workpiece that are not in the same coordinate. 

The ICP algorithm can be applied using the four following steps: 

• Match each point from the point cloud set to the closest point in the reference set 
(CAD). 

• Estimate the combination of rotation and translation to find the transformation 
matrix. 

• Transform the source points using the obtained matrix. 
• Iterate (re-associate the points). 

A transformation matrix that includes translation and rotation in ICP registration 
is measured and calculated in each iteration to reduce the distance between the two 
types. The key calculation used in this algorithm is the Hausdorff distance [32]. It 
measures the distance between CAD mesh and cloud point data obtained for scanning. 
It can be defined as the distance between all the points of an empty set to one point 
of another empty set. We can show that in Eq. 1 where dH (X, Y) is the Hausdorff 
range and (X, Y) are two empty subsets.

Fig. 5 Result of ICP applied on a CAD (green) and its scan (orange) model 
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dH (X, Y ) = max

{
sup 
x∈X 

inf 
y∈Y d(x, y), sup y∈Y 

inf 
x∈X d(x, y)

}
(1) 

An algorithm, as strong as ICP and as used as it, has definitely been subject to a 
lot of improvements and upgrades. The evolution of the different fields where ICP is 
being used had made it clear that we can’t use the same algorithm that appeared nearly 
three decades from now. The ICP has been modified and improved to reduce the initial 
calculation time in 1995 [33] by proposing a more robust approach to using random 
cloud point models. The algorithm also knew the strategy of reducing [34] or reducing 
the error of the transformation metrics. Advances in the search for the closest points 
using the corresponding points from previous ICP duplication and search only in a 
small area near those points have made a significant improvement in the processing 
time of the algorithm [35]. The registration process also has been improved by some 
techniques to accelerate the process and upgrade efficiency [36]. Color registration 
has been also implemented to improve the efficiency of the transformation of the sets 
[37], although not all the scanners can acquire the colors from the workpieces, this 
variant of the algorithm can’t be ignored. The ICP knew many more improvements, 
and many variants for the algorithm have been investigated [34]. 

4.2 Non-rigid Registration 

Rigid registration, which is the first step in the registration process, is not sufficient 
and is not a reliable method to be used on non-solid applications as they have many 
limitations to be kept in mind. Considering the flexibility of the components in the 
free state, comparisons between CAD and scanning models cannot identify defects 
and measure their size in the scanning model. To solve this problem, CAI methods 
for non-solid components are used to distinguish between errors, such as geometric 
deviations and distortions in relation to the CAD model, as well as flexibility due to 
compliance with non-solid components. As already mentioned, the standard methods 
of mitigation and testing of non-solid components set up over-restricted testing mate-
rials to compensate for the dynamic variability of these components and to ensure 
that the standard setting best reflects the performance of the session. 

Before introducing non-solid registries and their methods, a better understanding 
of the compatibility of non-solid components is required. The conceptual defini-
tion (coherence) of non-solid parts is related to the flexibility and geometry of the 
components. In fact, the higher the degree of coherence of the components means 
the higher flexibility of these components. Therefore, the flexibility of the non-solid 
components in the free state is due to the consistent behavior of these components. By 
looking at the information of the completed analysis, [K] {u} = {f}, corresponding 
(C) is defined in Eq. 2 

C = {u}t { f } (2)
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where {f } is the force vector, [K] is the global stiffness matrix, and {u} is the  
displacement vector. The flexibility is defined as the inverse of stiffness ([K]−l) 
accordingly. 

Due to the behavior of the non-rigid parts, it is clear that their compliance will 
affect the inspection process. The deformations caused by their weights will get in 
the way of the registration of the workpieces. To counter this behavior, fixtures and 
jigs are used to put those non-rigid parts in their assembly position. This way the 
inspection process will be simpler, and we can register the workpiece the same way 
we do with a rigid part. However, a number of downsides exist in using fixtures 
such as their time-consuming setup process, considerable acquisition and operation 
expenses, and limitations of standard fixtures in some scenarios. The companies find 
themselves in the obligation to design and manufacture costly conformation jigs 
to try to recreate as much as possible the assembly state of the parts. That being 
said, those disadvantages made it obvious that fixture registration was not the best 
solution. Researchers have tried to avoid the use of those fixtures by numerically 
deforming the data acquired by the scan until it matches the CAD or vice versa. 
Thereby elastically deforming the data to reach an optimal assembly shape while 
avoiding any manufacturing defects of the jigs. The fixtureless CAI methods are 
divided into four modes as (i) automatic vision inspection, (ii) metric factor, (iii) 
boundary reconstruction, and (iv) simulated displacement. Fixtureless testing of non-
solid parts can be done by non-solid registration methods classified as simulated 
displacement. These methods are actually based on compensating for the flexibility 
of non-solid components in a free environment with optical migration. The main 
idea of the non-invasive methods is to enable comparisons between scan and CAD 
models by compensating for the variable variability of the part while leaving the 
error areas firm. 

5 Intelligent Factory Based on Computer-Aided Inspection 
(CAI) 

In the context of Industry 4.0, inspection is a fundamental stage towards sustainable 
manufacturing in industrial applications. In fact, the importance of this process has 
already been mentioned above as it turns physical parts into information to make 
it possible for manufacturers to evaluate the quality of the parts made and their 
conformity to specifications pre-defined on the CAD model. Inspection is among 
the main contributors to the value of a product. The main concern of Industry 4.0 
being time management and cost reduction, planning every task is then critical to 
assure the best results. As a matter of fact, inspection planning is popping out as a 
key element for the upgrade of Inspection 4.0. Many advanced methodologies for 
sampling strategy design have been thought of as the current practices, in general, 
see the operator as the main actor, and this is due to the lack of information circling 
both at a system level and for the machine during the measurement. Intelligence
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Fig. 6 Inspection planning in coordinate measurement system 

and mostly artificial intelligence (AI) is needed to optimize the sampling strategies. 
From those methodologies, we can name the Point Distribution, Choice of sample 
size, and Path planning and probe configuration [38]. Figure 6 shows, as an example, 
inspection planning in the coordinate measurement system. 

Reducing the human intervention in the era of Industry 4.0 gave way to the imple-
mentation of industrial robotic arms with server computers, sensors, and actuators 
in a way it can be useful in any field, making it possible for the automation of non-
destructive testing (NDT) [39]. The process of data acquisition can be very redundant 
and human intervention can make mistakes and is for sure not as precise and accurate 
as a robotic arm controlled by a computer. A part can be sent to the NDT facility with 
some basic information about the piece, the data will be collected automatically and 
the best way of scanning/inspecting (type of probe, pathway, registration method) 
will be exported from the database, and the robotic arms and computers will apply 
the pre-defined sequences of actions to inspect the part. Basically, these elements are 
the foundation of an intelligent factory in the concept of Industry 4.0. 

5.1 Digital Twins (DT) 

First and foremost, scanning inspection is among the main contributors to value not 
only for a product but also for a whole factory. As being said, it is definitely one of the 
key processes to upgrade during the era of Industry 4.0 as this revolution’s goal is to 
automate the traditional manufacturing and industrial practices using modern smart 
technologies. Human intervention is being less and less required as it was mentioned 
above for its time-consuming tasks. Recently, a numerical solution has been presented 
on product lifecycle management at the University of Michigan Lurie Engineering 
Center as Digital twins (DT) [40]. There is a correlation relation between CAI and
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DT model. In this regard, Airbus A350™ is an example of advanced aircraft which is 
entirely based on a 3D digital mock-up. This technology is facilitating a significant 
decline in progress time and development. Generally, the first stage is to generate a 
virtual version of the asset that is known as a digital twin. Moreover, all along its 
cycle, with intelligent and dynamic data modeling. In Fig. 7 is illustrated a basic 
representation of how DT can help manufacturing factories. A twin model manages 
data in an extra robust approach for operators to easily identify essential simulations, 
reports, device history, and results. Also, by providing a virtual interpretation of 
the product lifecycle, it permits us to make better decisions and predict problems. 
Basically, the digital twin concept is based on three steps, 3D definition, 3D in context, 
and 3D as a service. The first step includes using the best technology and process to 
obtain the real world and create a 3D definition by generating point clouds via 3D laser 
scanning. Then, the 3D model should be capable of evolutions, a variety of revisions, 
and structures of the asset or product. Finally, the model should be customized with 
3D functionalities to recommend services to each actor of the product lifecycle in a 
way that will improve operational outcomes. 

The digital twin can be utilized for any asset, equipment, or machine in a factory 
or complete factory [41]. The real idea of Digital Twin began from product lifecycle 
management (PLM) earlier than new technologies such as the Internet of Things, 
Smart Manufacturing, and Industry 4.0. Twin’s structure has multiple elements to 
simulate states and then future circumstances of the manufacturing process. In current 
trends, sensors play a key role to collect any sort of data in real-time conditions. The 
smart network software has been developed and tried to visualize physical plants in 
the digital world. Incidentally, networks are diverse from various wired and wireless 
networks. Now, the digital twin has major questions related to a user persona, value 
chain, its supporting data model, inputs, user interfaces, benefits, and supporting 
business models. It is worth mentioning that the current factory system simulation is

Fig. 7 A general model of digital twin 
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based on four stages namely machine state monitoring, forklift movements, constraint 
management, asset position, and orientation. All these data should be transmitted by 
a real-time network connection which provides whole information for different types 
of the value chain in manufacturing sectors. In this regard, in our model, Internet of 
things is considered as the core of data transmission from all the units. 

5.2 The Internet of Things (IoT) 

The industry knew such a development lately in all its different aspects and with the 
upcoming 4.0 revolution being one big step towards the future many technologies 
had to keep up with its pace. One of the key elements of Industry 4.0 development 
is the Internet of things. It may be described as the network of physical objects. 
The Internet itself was one of the greatest achievements of humankind as it made it 
possible to connect people all over the globe and made access to information so much 
faster and easier. Due to its importance, it seems that anything related to the Internet 
may just be as beneficial to the development of modern technologies. The Internet of 
things (IoT) serves the same purpose as the “common” Internet as it connects objects 
that are embedded with software, sensors, machine learning, real-time analytics, and 
multiple other technologies for the purpose of exchanging data with other devices 
and systems over the cloud. The cloud being a non-physical network to gather the 
information and made it for storage, it is also easy to access, and the follow-up can be 
done in a matter of seconds. The most common example of IoT is smart houses; it’s 
an environment that you can control by a single device. A smartphone can turn off the 
lights, open the windows, or heat up the oven with clicks. It seemed futuristic at first, 
but it became reality in no time. Now imagine all the machines of a factory controlled 
from a distance with a single device and with machine learning those machines can 
also be automated and gain autonomy at some point. With this kind of technology, 
the privacy and security of the industry can also be upgraded. In the industry, all the 
modern machines have sensors that acquire so much information in a very short time 
but mostly those machines are not related one to another and it takes time to gather 
all the information of a factory. Apart from that, some tasks are redundant, take a lot 
of time, and human error can affect the results a lot because the appearance of robots 
in different steps of the industry became so much important to its development. IoT 
can make it one step further as it can make the usage of machines and robots so 
much more efficient and precise. New opportunities and possibilities will surely be 
available thanks to IoT as it is a new field that knows no barriers or limitations due 
to the aspect of the Internet being so vague and limitless. 

An example of an intelligent factory will be presented to give an idea of how things 
might evolve later. We will separate a product life into four different steps and explain 
how the IoT can revolutionize that. The inventory, the manufacturing, the inspection, 
and then the customer. Thanks to IoT a cloud network will connect all those different 
steps assuring constant feedback, information storage, and communication. Firstly, 
the design of the product will be made responding to the demands of the customer
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Fig. 8 a Digital factory based on industry 4.0 concept. b Digital twin data flow from device 

and then sent to the network. A small check in the inventory will be the next step 
to see the availability of the raw materials that will be sent to the manufacturing 
process. The design that had already been analyzed made it possible to extract a 
manufacturing protocol that will be sent to the machines to create the product. The 
next step will be the inspection, and like in the manufacturing process, the data 
collected will dictate which kind of inspection methods and tools will be used to 
acquire the best scan possible. The material, rigidity, and size of the product are the 
most important factors in this step. After the inspection, the data is analyzed, and if 
everything checks, the product is sent to the customer. All these steps are automated 
without any need for human intervention. The time-consuming and repetitive aspect 
of some actions will be reduced this way and the human error will be completely 
erased. At this point, the only human work that is left might be the maintenance 
of the different machines but even that can be at some time delegated to robots as 
sensors will send the information to the cloud of a failing part in a machine. Figure 8 
is a representation of the basics of Industry 4.0 in sustainable manufacturing [42]. 

5.3 Sustainable Inspection 

Managing jobs in an environmentally and socially responsible manner—“sustain-
able manufacturing”—is no longer just a good thing to have, but it is important for 
business. Companies around the world are facing rising costs in building materials, 
capacity, and compliance in line with the high expectations of customers, investors, 
and local communities. Many businesses have begun to take important steps to 
grow greenery to ensure that their development is economically and environmentally
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sustainable. Their pioneer experience shows that environmental development goes 
hand in hand with increased profitability and competitiveness. However, many small 
and medium manufacturing enterprises have not yet had these wonderful opportuni-
ties. They may be struggling to make ends meet, or they may be feeling overwhelmed 
by the demands of their customers, or they may not have the knowledge and resources 
to invest in the environment, or they may simply not know where to start. 

“Sustainable manufacturing” is the official name for an exciting new way to do 
business and build value. It is behind many of the green materials and processes. Busi-
nesses of all kinds are already involved in new initiatives and initiatives that help 
promote a healthy environment, increase their competitiveness, reduce risk, build 
trust, drive money, attract customers, and make a profit. There is no single defini-
tion for sustainable manufacturing but the United States Department of Commerce’s 
Sustainable Manufacturing Initiative summarizes it this way: “The creation of manu-
factured products that use processes that minimize negative environmental impacts, 
conserve energy and natural resources, are safe for employees, communities, and 
consumers and are economically sound.” Simply put, sustainable manufacturing 
is all about reducing the various business risks that come with any manufacturing 
activity while maximizing new opportunities arising from improving your processes 
and products. 

There is no clear work done towards the application of sustainability in the inspec-
tion field but by applying the aspects presented in Fig. 9, we can present a vision for 
sustainable inspection [43]. Being a key process to define the quality and efficiency of 
a product, the inspection should definitely lean towards sustainability in the upcoming 
years. With the help of the Industry 4.0 revolution, the human intervention will be 
minimized and that can ensure safety for more employees by not including them in 
processes that use radiations like the laser inspection or might be redundant and don’t 
provide a great work environment, and in an environmental level, we will be able to 
minimize the waste and destruction of parts as the manufacturing process will evolve 
with the predictions for upcoming parts with the help of the smart inspection. The 
constant feedback between both inspection and manufacturing processes will assure 
more sustainable results. The possibilities that can be created from this relationship 
will be a key for the constant improvement of the inspection process towards sustain-
ability. In fact, the improvement in inspection steps can result in lowering the energy 
and resources consumed during this process and at the same time be money-saving 
which opens doors to new investments and improvements in the different steps of the 
lifecycle of a part. It is obvious that sustainable manufacturing and inspection will 
improve drastically all the aspects of businesses and not just the environmental ones. 
A combination of the Industry 4.0 revolution and sustainable inspection appears to 
be the future of the manufacturing industry.
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Fig. 9 Three-dimensional aspects of sustainable manufacturing 

6 Conclusion 

This study proposed a systematic review of the works done in the field of 3D 
geometric inspection and its importance in the manufacturing industries. The 
methods cited in this review englobe aspects of inspection in the era of Industry 
4.0 with the criteria towards different fields and types of parts. Inspection, as a core 
of quality control, is one of the most important in the production cycle of a part. In this 
regard, its development is not to be neglected. As we move more towards Industry 
4.0, the implementation of its ideas should be part of the development of dimensional 
and 3D geometrical inspections that already exist. To this end, the exact data of a 
manufactured part is acquired and compared to its CAD model to verify whether it 
meets the assembling and functional requirements without any human intervention. 
A fully automated and intelligent Inspection 4.0 in its industrial use is in its way 
wherein an automated factory with the least human intervention is the main goal. 
Finally, a digital twin’s model has been proposed for an industrial application based 
on Industry 4.0 answering the question that can it be possible at some point to use 
artificial intelligence to delegate redundant inspection works to machines expecting 
feedback from them as well as an auto-maintenance at some point?



Smart Inspection; Conceptual Framework, Industrial Scenarios … 141

References 

1. Pinjala SK, Pintelon L, Vereecke A (2006) An empirical investigation on the relationship 
between business and maintenance strategies. Int J Prod Econ 104:214–229 

2. Karganroudi SS, Cuillière J-C, Francois V, Tahan S-A (2016) Automatic fixtureless inspection 
of non-rigid parts based on filtering registration points. Int J Adv Manuf Technol 87:687–712 

3. Sattarpanah Karganroudi S, Cuillière J-C, François V, Tahan S-A (2018) “What-if” scenarios 
towards virtual assembly-state mounting for non-rigid parts inspection using permissible loads. 
Int J Adv Manuf Technol 97:353–373 

4. Karganroudi SS, Cuillière J-C, François V, Tahan S-A (2017) Assessment of the robustness 
of a fixtureless inspection method for nonrigid parts based on a verification and validation 
approach. J Verif Valid Uncertain Quantif 2 

5. Aminzadeh A, Karganroudi SS, Barka N, El Ouafi A (2021) A real-time 3D scanning of 
aluminum 5052–H32 laser welded blanks; geometrical and welding characterization. Mater 
Lett 296:129883 

6. Aminzadeh A, Aberoumand M, Rahmatabadi D, Moradi M (2021) Metaheuristic approaches 
for modeling and optimization of FDM process. In: Dave HK, Davim JP (eds) Fused depos. 
model. based 3D print, Springer International Publishing. https://doi.org/10.1007/978-3-030-
68024-4 

7. Aminzadeh A, Parvizi A. Deep drawing of tailor laser welded blanks: experimental and finite 
element investigation n.d.:1–38 

8. Aminzadeh A, Karganroudi SS, Barka N (2021) A novel approach of residual stress prediction 
in ST-14/ST-44 laser welded blanks; mechanical characterization and experimental validation. 
Mater Lett 285:129193 

9. Zhang S (2010) Recent progresses on real-time 3D shape measurement using digital fringe 
projection techniques. Opt Lasers Eng 48:149–158 

10. Bi ZM, Wang L (2010) Advances in 3D data acquisition and processing for industrial 
applications. Robot Comput Integr Manuf 26:403–413 

11. Karbacher S, Haeusler G (1998) New approach for the modeling and smoothing of scattered 
3D data. Three-Dimensional Image Capture Appl 3313:168–177 

12. Jones TR, Durand F, Desbrun M (2003) Non-iterative, feature-preserving mesh smoothing. In: 
ACM SIGGRAPH 2003 Pap., pp 943–9 

13. Blaedel K, Swift D, Claudet A, Kasper E, Patterson S (2002) Metrology of non-rigid objects 
14. Pathak VK, Singh AK, Sivadasan M, Singh NK (2018) Framework for automated GD&T 

inspection using 3D scanner. J Inst Eng Ser C 99:197–205. https://doi.org/10.1007/s40032-
016-0337-7 

15. Wieczorowski M (2001) Spiral sampling as a fast way of data acquisition in surface topography. 
Int J Mach Tools Manuf 41:2017–2022 

16. Abbott EJ (1933) Specifying surface quality. Mech Eng 55:569–572 
17. Leake JM, Borgerson JL (2013) Engineering design graphics: sketching, modeling, and 

visualization. Wiley 
18. Lehmann KM, Azar MS, Kämmerer PW, Wentaschek S, Hell ENF, Scheller H (2011) The effect 

of optical conditioning of preparations with scan spray on preparation form. Acta Stomatol 
Croat 45 

19. Li Y, Gu P (2004) Free-form surface inspection techniques state of the art review. Comput Des 
36:1395–1417 

20. Park J-S, Jang W-J, Lee S-B, Park C-S (2008) Acquisition model for 3D shape measurement 
data. Int J Precis Eng Manuf 9:16–21 

21. Spyridi AJ, Requicha AAG (1990) Accessibility analysis for the automatic inspection of 
mechanical parts by coordinate measuring machines. In: Proceedings, IEEE Int. Conf. Robot. 
Autom., pp 1284–1289 

22. Ishiwatari H, Sato J, Fujie S, Sasaki K, Kaneko J, Satoh T et al (2019) Gross visual inspection by 
endosonographers during endoscopic ultrasound-guided fine needle aspiration. Pancreatology 
19:191–195

https://doi.org/10.1007/978-3-030-68024-4
https://doi.org/10.1007/978-3-030-68024-4
https://doi.org/10.1007/s40032-016-0337-7
https://doi.org/10.1007/s40032-016-0337-7


142 I. Houban et al.

23. Nguyen CHP, Choi Y (2018) Comparison of point cloud data and 3D CAD data for on-site 
dimensional inspection of industrial plant piping systems. Autom Constr 91:44–52 

24. Schebesch K-M, Doenitz C, Haj A, Höhne J, Schmidt NO (2020) Application of the endoscopic 
micro-inspection tool QEVO®in the surgical treatment of anterior circulation aneurysms-a 
technical note and case series. Front Surg 7:101 

25. Talebi S, Koskela L, Tzortzopoulos P, Kagioglou M, Krulikowski A (2020) Deploying 
geometric dimensioning and tolerancing in construction. Buildings 10:62 

26. Liu SC, Hu SJ, Woo TC (1996) Tolerance analysis for sheet metal assemblies 
27. Li Y, Gu P (2005) Sculptured surface tolerance verification with design datums. Int J Prod Res 

43:1465–82 
28. Abenhaim GN, Desrochers A, Tahan A (2012) Nonrigid parts’ specification and inspection 

methods: notions, challenges, and recent advancements. Int J Adv Manuf Technol 63:741–752 
29. Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Sens. fusion IV Control 

Paradig. data Struct., vol 1611, pp 586–606 
30. Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann 

56:810–835 
31. Ravishankar S, Dutt HNV, Gurumoorthy B (2010) Automated inspection of aircraft parts using 

a modified ICP algorithm. Int J Adv Manuf Technol 46:227–236 
32. Henrikson J (1999) Completeness and total boundedness of the Hausdorff metric. MIT 

Undergrad J Math 1:69–80 
33. Masuda T, Yokoya N (1995) A robust method for registration and segmentation of multiple 

range images. Comput Vis Image Underst 61:295–307 
34. Rusinkiewicz S, Levoy M (2001) Efficient variants of the ICP algorithm. In: Proc. third int. 

conf. 3-D digit. imaging model, pp 145–52 
35. Greenspan M, Godin G (2001) A nearest neighbor method for efficient ICP. In: Proc. Third 

Int. Conf. 3-D Digit. Imaging Model., p 161–8 
36. Zhu L, Barhak J, Srivatsan V, Katz R (2007) Efficient registration for precision inspection of 

free-form surfaces. Int J Adv Manuf Technol 32:505–515 
37. Li X, Du S, Li G, Li H (2020) Integrate point-cloud segmentation with 3D lidar scan-matching 

for mobile robot localization and mapping. Sensors 20:237 
38. Moroni G, Petrò S (2018) Geometric inspection planning as a key element in industry 4.0. In: 

Int. Conf. Ind. 4.0 Model Adv. Manuf., pp 293–310 
39. Mineo C, Vasilev M, Cowan B, MacLeod CN, Pierce SG, Wong C, et al (2020) Enabling robotic 

adaptive behaviour capabilities for new industry 4.0 automated quality inspection paradigms. 
Insight-Non-Destructive Test Cond Monit 62:338–44 

40. Malik AA, Bilberg A (2018) Digital twins of human robot collaboration in a production setting. 
Procedia Manuf 17:278–285 

41. Lu Y, Liu C, Kevin I, Wang K, Huang H, Xu X (2020) Digital Twin-driven smart manufacturing: 
connotation, reference model, applications and research issues. Robot Comput Integr Manuf 
61:101837 

42. Dobrin C (2014) Industry 4.0, M2m, Iot\&S-All Equal? Acta Univ Cibiniensis 64:40–5 
43. O. Toolkit (2011) OECD sustainable manufacturing toolkit, ed: OECD, Publishing, Paris, 

France, http://www.oecd.org/innovation/green/toolkit

http://www.oecd.org/innovation/green/toolkit


Sustainability Implications of Adopting 
Industry 4.0 at Different Scales 
in the Poultry Processing Industry 

Derrick Kpakpo Allotey, Ebenezer Miezah Kwofie, and Dongyi Wang 

1 Introduction 

Industry 4.0 is an advanced manufacturing model that is formed by a set of tech-
nologies that makes production systems and industrial activities more integrated, 
virtual and digital to provide tremendous innovation and competitiveness growth 
[1, 2]. These technologies include Artificial Intelligence, Robotics, Cyber Physical 
Systems, Big Data Analytics, Virtual Reality, Augmented Reality, Internet of Things 
(IoT), Internet of People (IoP) among others [3]. These components are interwoven 
to produce facets namely Smart Manufacturing, Smart Factory, Smart Supply Chain, 
Smart Product Development and Smart Life Cycle Analysis [4, 5]. With regards 
to sustainability, it has been appreciated for its contribution to sustainable manu-
facturing and environmental management [1, 2, 6]. From the eco-environmental 
perspective, the use of these technologies helps to optimize the resource usage and 
reduce the wastage or losses of material flow the hole production and processing 
streams. [6]. For social sustainability, the smart and autonomous production systems 
can support employee health and safety, by taking over monotonous and repetitive 
tasks, which can result in higher employee satisfaction and motivation [1]. However, 
the technology has not been sufficiently explored from a sustainability perspective 
due to its novelty and the different degrees of implementation in different production 
systems to identify possible barriers to sustainability in its adoption [7]. There exist 
possible negative effects of the Industry 4.0 on sustainability. The metals and other 
elements used in manufacturing the physical components of the technologies, lead
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to land resource usage and environmental pollution, through the mining activities 
deployed to get them as well as the effect of layoff of labour force with limited 
technological skills in employing the Industry 4.0 technologies at specific aspects of 
the production and supply chain [7]. 

The poultry industry has been one of the thriving sub-sectors of the Food and 
Agriculture Industry [8]. The poultry industry has a market value of USD 310.7 billion 
in 2020 and is expected to rise to USD 322.5 billion in 2021 with a compound annual 
growth rate of 3.8%. The market is expected to reach 422.97 USD billion by 2025 
[9]. It is also projected that the global consumption of poultry meat would hit 151.83 
kilotonnes by 2030 [10]. This very high consumption rate can be attributed to the 
highly nutritious and cheap meat and eggs produced from the poultry production and 
processing industry. Chicken meat (white meat) and eggs do not provide only high-
quality protein but also very important and highly required minerals and vitamins. 
Chicken meat also has less fat (3 g of fat/100 g) as compared to dark (red) meat (5 
to 7 g/100 g) [11]. Poultry production is also characterized by the higher conversion 
rate of feed to meat (2–2.5 kg) in comparison with other livestock like ruminants (red 
meat) which require about 7 kg of feed to produce 1 kg of meat. Poultry production 
is also very attractive due to the short production cycle which takes about 7–8 weeks 
[12]. 

Traditional poultry processing has been very prevalent in both rural and urban 
settings. The poultry process line involves the major facet steps: transportation of 
birds, pre-slaughter, slaughtering, processing (bleeding, scalding, removal of head 
and feet, evisceration, carcass washing, chilling, deboning, cutting) value addition, 
utilization of by-products and packaging [13, 14]. Another major challenge faced 
is inadequate protocols used for poultry meat inspection [15, 16]. There are also 
problems regarding the processing, storage and cold transportation system for the 
poultry products. Another major challenge faced is inadequate protocols used for 
poultry meat inspection [15, 16]. This sometimes causes fluctuations in their supply 
rates [17]. Also, the repetitive motions, prevailing pay rates and cool temperature of 
processing plants render these jobs difficult to carry out. There are also high costs 
associated with training workers to be very precise and fast especially at the cutting 
section of the processing line [18]. To meet the ever-increasing demand of poultry 
products as well as addressing the pertinent challenges in the poultry processing 
industry, companies are adopting new manufacturing technologies. Fortunately, this 
industry has received enough attention with regard to the application of Industry 
4.0 to the different aspects of the processing regarding automated evisceration [19], 
the use of 3-D imaging for cutting and portioning of the meat [18], smart meat 
inspection [20], smart meat packaging [21] among others [12, 14, 22–24]. However, 
there could also be some negative implications of Industry 4.0 to different dimensions 
of economic, social and environmental sustainability which elicit their evaluation. 

This chapter therefore presents an evaluation of the application of Industry 4.0 
technologies at different levels of implementation: traditional processing (devoid of 
Industry 4.0), fully employed Industry 4.0 and a hybrid application of traditional 
and Industry 4.0 components, under the umbrellas of economic, environmental, and 
social sustainability. This would highlight the different forms and levels at which the
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Industry 4.0 technologies are applied in the poultry processing industry. Moreover, 
findings from this assessment would inform interested stakeholders in the poultry 
industry on how to apply these new concepts and the trade-offs associated with 
adopting the technologies at the different levels of implementation. It would also 
inform the technology designers of possible sustainability barriers which would be 
considered in future developments in sustainable manufacturing. 

2 Traditional Poultry Processing 

Conventional poultry production is an essential part of rural farm household activities; 
a few birds are reared with little or no feed complement to generate eggs and meat 
for home consumption and any excess is selling [25]. 

2.1 Transportation of Bird 

Transporting of birds can be very stressful for the birds which usually leads to 
shrinkage and loss in weight. To avoid this, special modules are used on transport 
trucks for even air flow and good ventilation [13]. The process flow chart for the 
poultry processing is summarized in Fig. 1.

2.2 Unloading and Pre-slaughter 

Care must be taken when unloading birds to prevent bruises and breaking of bones. 
At large plants, the broilers are unloaded onto conveyor belts. Feeding is withheld 
for 8–12 h prior to killing to reduce the amount of feed in the gut and also to prevent 
tearing during evisceration which can cause faecal contamination to the carcass [13]. 

2.3 Slaughtering and Processing 

2.3.1 Stunning 

Usually killing is preceded by stunning. The process of stunning involves dipping 
the birds in saline water with electric current at relatively low voltages (20 V) to keep 
them temporarily unconscious [13]. The purpose of this process is to immobilize the 
birds and make them insensible to the killing process. Stunning also helps to initiate 
and maximize bleeding [14]. There exist other mechanical and gaseous methods for 
the stunning process.
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Fig. 1 System boundary for poultry processing (Dusty rose boxes—input/outputs for processes, 
purple—Industry 4.0 practices)

2.3.2 Killing and Bleeding 

In slaughtering the birds, an incision is made to the jugular vein, carotid vein and 
trachea, or by just above the heart of the birds [23]. This is done by a very sharp 
knife. In small scale processes, the birds are placed in funnel-shaped kill cones while 
in largest plants, they are placed on shackles [13]. The efficiency of bleeding has 
a great effect on the subsequent downstream processes [14]. Maximum bleeding is 
highly required so there would be no dark spots on the meat [13]. 

2.3.3 Scalding 

The birds are scalded to help loosen the feathers for easy defeathering or picking. 
Conventionally, hot water baths have been used for scalding but recently steam
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scalding has been introduced and employed on the large-scale plants [19]. This is 
done between 50–58 °C [23]. Scalding at high temperatures, to help easy picking, 
affects the yield in terms of overscalding which ‘cooks’ the meat and reduces the fat 
and collagen content. Feathers can be removed by either hand picking or abrasive 
and rotating actions of rubber or metallic fingers in tub-style pickers [13]. 

2.3.4 Evisceration 

Evisceration is the stage where the internal organs are removed as well as the head 
and feet [26]. In this process, the dead birds are cut around the vent and the inedible 
parts such as the small-scale farmers perform evisceration on flat surface while the 
large plant eviscerate the birds on shackles [13]. The evisceration is performed by 
supporting the bird with one hand and inserting the fingers of the other hand through 
the incision in abdomen [19]. 

2.4 Carcass Processing 

2.4.1 Chilling 

The carcasses are chilled for a period of time to prevent microbial growth as they 
await cutting and deboning The most common chilling method are cold water chilling, 
air chilling and spray chilling [19]. Technically, air chilling is regarded as a cheaper 
method since there is an absence of water and also a cooling tower, and other ancillary 
equipment but has higher production cost due to longer times needed for cooling but 
water chilling method is regarded as more efficient and timesaving. With regard to 
the meat quality, air chilled meat maintains the natural moisture and colour while 
absorption of water, as occurs in water chilling, affects the sale price and cooking 
process due to the added water. 

2.4.2 Cutting and Deboning 

After chilling, the carcass is typically cut and deboned in different portions to accom-
modate a variety of different products: drum sticks, thighs, breasts, wings and more 
[26]. After cutting, the meat can be stored at room temperature for four hours, after 
which it should be cooled to reduce microbial contamination [12]. Control of the 
quality of poultry meat includes the following controls: storage space temperature 
(2–4ºC), meat colour, meat elasticity, odour, and meat size or weight according to 
specifications [12, 19].



148 D. K. Allotey et al.

2.5 Packaging 

Packaging helps to protect the integrity of the processed meat and against microbial 
contamination. It also helps in easy transportation and retailing of the meat prod-
ucts. There are three types of packaging methods in the poultry processing industry: 
aerobic, anaerobic and modified atmospheric [14]. Ultrasound applications to meat 
prior to packaging have also been studied [22]. To maintain customer satisfaction 
with quality poultry products, each retailer must include an expired information label 
and treatment when the product is on display [12]. 

3 Industry 4.0 Advances in Poultry Processing 

3.1 Transportation of Birds 

Trucks transporting birds from the farms to slaughterhouse are equipped with sensors 
that monitor environmental properties. They are attached to the cages or modular 
bins where the birds are loaded. They measure temperature, humidity, ammonia 
and carbon dioxide levels [27]. Blockchain technologies are also employed in the 
transportation of the birds to the slaughterhouse For example Transport Genie, a 
blockchain system, during the transportation of birds from farm to destination, uses 
blockchain technologies to keep an electronic record of all activities throughout 
the transportation value chain: loading, transport phase and unloading phase [28]. 
This track could include every input and output from each link in the supply chain, 
from breeder, hatchery, producer, producer, slaughterhouse, processor, retailer and 
consumer [29]. 

3.2 Automated Killing and Evisceration Lines 

High-speed automated bleeding equipment employs a railing system that positions 
the neck of the suspended birds in such a way that the blood vessels can be opened 
with precision [19]. Automated systems usually consist of a head puller where an 
automated guide rail first positions the head into a trough-like structure. While the 
carcass is moving on the shackle line, the head is pulled back and the neck. The 
oesophagus and trachea are removed at the same time to save labour [19]. Automated 
rehanging of carcasses from different shackle lines to the other is labour saving, more 
hygienic as birds do not touch each other on the sorting table and a more homogenous 
rigour mortis process [19].
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3.3 Portioning and Cutting 

3.3.1 3-D Imaging for Portioning 

The DSI Portioning System has two separate scanning systems. The structural scan-
ning system determines the three-dimensional (3-D) topology of the meat. The cut 
placement is determined by a 3-D imaging system. When the portioner determines 
the optimal cuts, an algorithm is executed to cause the cutters to cut and portion the 
meat at specified loads [18]. 

3.3.2 Automated Water Jets for Cutting 

An automated finely focused water jet is used for cutting (instead of a knife). Speed 
of cutters (jets) is controlled by the thickness of the meat whereby cutters move 
relatively slower to ensure a complete cut of very thick meat or parts that contain 
tendons [18]. There is automated speed control of the cutting system so that the fillets 
can arrive at the specific desired time for cutting. It can process about 180-200 fillets 
per min [18]. 

3.3.3 Fillet-Harvesting Robot 

GRIBBOT is a chicken fillet-harvesting robot with 3D vision, a custom-designed 
gripper, and a transport system to present the breasts to the robotic arm. The 
GRIBBOT gripper has a curvature and textured surface to better hold the meat while 
it pulls the fillets from the bone [23]. It mimics the human hand and has a scrap 
function to reduce meat loss. The robot vision is a visual perception system with a 
RGB-D camera [24]. 

3.4 Automated Hyperspectral-Based Inspection System 
with Smart Sensors 

Hyperspectral imaging is an emerging smart tool for quality evaluation purposes. It 
shows a convincing attitude to detect and evaluate chicken meat quality. The method 
can detect bone fragments as well as faecal contamination [20]. Smart sensors are 
traditional sensors embedded with intelligence and can perform calculation, conver-
sions and interfaced functions that facilitate self-diagnostics and self-adaptation [4]. 
After certain calculations and signals, the system can flag any deviation as suspect 
and these birds are either removed from the line or are more thoroughly inspected. 
Several systems are already equipped with ‘fuzzy-logic’ that allows them to ‘learn’ 
as new variables are introduced. Robots help in the transfer and rejection of the 
carcasses [19].
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3.5 Packaging 

3.5.1 Smart Packaging 

Freshness indicators and sensor-based devices (biosensors and oxygen sensors) can 
be integrated into the meat packaging system to monitor the environment of the meat 
product and provide signals such as temperature, shelf life, spoilage status, etc. [30]. 
Another dimension is the interactive packaging which is the ability of sensors to detect 
internal and external changes and to act by changing its own properties. Techniques 
used to correct change include oxygen scavengers and moisture absorbing systems 
[21]. 

3.5.2 Traceability System 

Bar code labels and radio frequency identification tags are the most important data 
carrier devices in the food packaging industry [30]. These are used in conjunction 
with blockchain technologies where activities at every stage of the value chain are 
recorded into a large database with encryptions and redistributed among all the links 
in the chain (slaughterhouse to the plate) has proven to enhance traceability. It helps 
to build trust among farmers, processing companies and consumers [19]. 

4 Sustainability Implications for Transition to Industry 4.0 

4.1 Overview and Scenario Selections 

In evaluating the sustainability implications for the transition from traditional poultry 
systems to more advanced systems where Industry 4.0 is fully implemented, the envi-
ronmental and economic analyses of three scenarios were considered. The scenarios 
represent three different levels of implementation of the Industry 4.0 technologies. 
A first scenario where the product system is based on the traditional process, thus, 
a normal large plant which operates devoid of Industry 4.0 technologies. In the 
second scenario, a hybrid system which involves a degree of Industry 4.0 implemen-
tation. This hybrid could be considered as semi-Industry 4.0 where some advance 
manufacturing practices are used. The third scenario where all parts of the process 
including manufacturing and supply chain fully employ technologies as incorporated 
in Industry 4.0. A comparative analysis is then carried out to assess these scenarios 
using the triple bottom line of sustainability-environmental, social and economics as 
well as product-process safety.
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4.2 Techno-Environmental Impact Assessment 

4.2.1 Method 

The techno-environmental assessment of the three scenarios is performed following 
the life cycle assessment (LCA) methodology. In all the three scenarios, it is assumed 
that the poultry farm (where the birds are reared), the slaughterhouse and the carcass 
processing plant are at the same location hence the environmental impact due to 
transportation activities are excluded. The functional unit for LCA is 1 kg of packaged 
meat. This contains life cycle inventory where quantitative data on the different inputs 
and outputs defining the individual process are presented. This data was mainly 
sourced from available literature and Ecoinvent Database. The environmental impacts 
resulting from the inputs are evaluated through a life cycle analysis conducted in 
the OpenLCA software. Impact categories studied were Global Warming Potential 
(GWP), Abiotic Depletion Potential (ADP) and Cumulative Energy Demand (CED). 
The life cycle inventory included the environmental impact associated with the robot 
production of the robot. 

4.2.2 Results 

LCI from the different processes as by the scenarios are presented in Table 1. Environ-
mental impacts resulting from the LCA are also presented in Fig. 2. Some processes 
were excluded from the LCI since there was no quantitative flow of input and output. 
The LCI does not incorporate data on how robots and automated systems offset 
or reduce the resource and emissions on the processing plant since there is limited 
quantitative data describing these offsets. But it contains the LCI on the production 
of the cyber physical system. 

Table 1 LCI on the Different 
Scenarios per functional unit 

S1 S2 S3 

Inputs 

Water, kg 8.4 10 1 

Fuel (Natural gas), kg 0.072 1.02 2.3 

Electricity, kWh 0.13 2.6 3.8 

Outputs 

Methane, mg 7.51 17.6 20.6 

Carbon dioxide (fossil), g 55.1 75 85 

Carbon mono-oxide, mg 10.1 32 38 

Nitrogen dioxide, mg 75.01 88.2 100.1 

Sulphur dioxide, mg 105 127 142
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Fig. 2 Environmental impact results from the three scenarios. 1(GWP-kg CO2), 2 (g Sb eq ADP), 
3(CED-MJ eq) 

4.3 Techno-Economic Sustainability Analysis 

4.3.1 Method 

Techno-economic indicators employed for the evaluation were Total Capital Cost, 
Production Cost, Process Capacity and Process Loss (Meat loss). The Total Capital 
Cost includes the total cost of the equipment (purchasing and installation. The 
Production cost entails cost of birds (raw material) and utilities (electricity, water, 
fuel, packaging) as well as labour costs. Production Capacity is defined as the total 
sales (or revenue) which is determined as the product of the production rate (how 
much meat produced per day) and the selling price of 1 kg of chicken meat (priced 
at $5per kg). Meat loss is defined as the cost of chicken meat (or pieces) that are lost 
along the various parts of the processing line. 

4.3.2 Results 

Results from the economics are summarized in Table 2.
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Table 2 Economic 
performance of the three 
implementation scenarios 

Indicators S1 S2 S3 

Total capital cost, $ 80,000 280,000 500,000 

Production cost, $/kg of meat 2.5 11 17 

Production capacity, $ 50,000 90,000 150,000 

Meat loss, $ 300 150 50 

4.4 Discussion 

Sustainable Manufacturing 4.0 does not only involve how Industry 4.0 tools help 
to reduce environmental, economic and social burden associated with processing 
systems but also should involve the sustainable manufacturing of the technologies 
tools used to achieve this. From the environmental impact results, the fully auto-
mated system posed the greatest danger to the environment. This is not expected 
since Industry 4.0 practices are highly acclaimed for its contribution to a sustainable 
environment through advanced technologies to minimize emissions and resource 
usage. 

However, the inclusion of environmental impact associated with the manufac-
turing of the robots and other cyber physical systems, in the sustainability evalua-
tions, has received little attention. The high energy demand required to smelt and 
mould metals, steel, aluminium, etc. relays into a proportionally high cumulative 
energy demand (CED). The burning of fuel needed to produce the high heat energy 
also results in high emission of gases that contributes to Global Warming Potential 
(GWP). The mining activities carried out to obtain the raw metals and ores for the 
manufacturing of the robots also pose a heavy burden on the land (resource depletion) 
on par with the air pollution associated with these activities. 

Sustainability evaluation studies can be channelled into the cyber physical systems 
production to identify hotspots needed to reduce the environmental burden associ-
ated with the processes. On the other hand, more surveys and research studies can 
be conducted to quantify the extent at which the Industry 4.0. practices reduce envi-
ronmental impact when incorporated into the poultry processing lines as well other 
production lines in the food and agriculture industry. On the pathway to achieving 
Sustainable Manufacturing 4.0, this could then be compared to environmental impact 
of the technology production system to determine the balance and the facet which 
needs to be improved. 

From the economic analysis (Table 2), capital cost and production costs are highest 
in S2 and S3. This is mainly because of the very high cost of the industrial robots, 
averagely USD 50,000 which is also due to both the expensive materials used for their 
construction, (the metals and electronic elements) and the highly powerful software 
embedded in them. This is the same as the automation systems. The high electric 
power demand, averagely 8 kW, of these robots and automated systems contribute 
significantly to the total production costs. Studies can be conducted to specifically
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determine the offsets in labour cost against the operating costs in semi-automated 
and fully automated poultry processing plants. 

The loss in the poultry process factory diminishes sharply from S1 to S3. The better 
optimization by incorporating blockchain technologies and the better precision of the 
cyber physical systems as the full Industry 4.0 practices helps to minimize resource 
usage and loss at the slaughterhouse and processing plants. The results also show 
that there are always trade-offs regarding the implementation of the Industry 4.0 
practices in the capital cost, production cost and production capacity. Since there 
are differences in trends between the environmental and economic impacts some 
decisions of implementation level affect the economic performance (negatively or 
positively), the converse can occur in the environmental impact. 

5 Conclusion 

The available technologies such as blockchain, big data analytics, cyber physical 
systems, IoT, etc. in Industry 4.0, which produce a tapestry of interconnections 
between humans (labour) and technologies, have been applied in diverse forms 
of manufacturing and production systems, with the poultry processing industry 
not left out. Sustainability has also been a great concern as industries strive to 
meet its demanding goals while still maximizing their profits. On the pathway to 
achieve Sustainable Manufacturing with adoption of Industry 4.0 technologies, three 
scenarios were created with different implementation levels, a traditional process, 
semi-automated and fully automated systems. Environmental and economic impact 
assessments were conducted for the three scenarios Life Cycle Analysis (LCA) was 
employed for the environmental impact assessment. Impact categories studied were 
Global Warming Potential, Results from the LCA showed an unexpected trend in 
the impact results. Thus, the semi and fully automated systems posed higher env. 
Economic performance of the system. Industry 4.0 is very promising in contributing 
to sustainable manufacturing in terms of increasing production capacity, minimizing 
loss and optimizing processes. However, a careful study on how to make the produc-
tion of the cyber physical systems (robots) more sustainable and quantitively defining 
the offsets in resource usage and emissions associated with it application would go 
along to enhance sustainable poultry processing as well as the manufacturing industry 
as a whole. Tradeoffs among individual economic and environmental impacts with 
different Industry 4.0 adoption levels would also contribute massively to this new 
revolution.
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Horizontal Collaboration Business Model 
Towards a Sustainable I4.0 Value 
Creation 

Georgina Elizabeth Riosvelasco-Monroy, Iván Juan Carlos Pérez-Olguín, 
Julieta Flores-Amador, Luis Asunción Pérez-Domínguez, 
and Jesús Andrés Hernández-Gómez 

1 Introduction 

Sustainable Manufacturing 4.0 establishes disruptive events toward business model 
creation; through Industry 4.0 elements. Horizontal collaboration seen as one of I4.0 
elements, integrates within a value creation network; seen as an alliance where a 
common goal is set, addressing opportunities for supply chain integration. Being 
laid out as the new alternative from vertical collaboration, horizontal collaboration 
is a strategic move in which enterprises can gain competitive advantage, knowledge 
transfer, information sharing, information technology, economies of scale, among 
other benefits. In order for horizontal collaboration can become a long-term value 
creation network, enterprises must effectively carry out certain factors defined by the 
alliance, to stimulate common goals such as a sustainable manufacturing 4.0. 

In this chapter, we present a new understanding of horizontal collaboration as a 
value creation network through a business model integration to influence collabora-
tive projects seeking for a position within a supply chain and enhancing sustainable 
manufacturing 4.0 development. This chapter is organized into five sections: Sect. 2 
an introduction to supply chain horizontal collaboration; Sect. 3 a review of business 
model components as a framework of an enterprise’s structure as an integration of
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horizontal collaboration factors; Sects. 4 and 5 a research framework of multi-criteria 
decision-making techniques presenting a CODAS-HTFLS-Mahalanobis approach 
to identify horizontal collaboration top factors grouped within the business model 
components. Section 6 displays COHRV Model for sustainable manufacturing 4.0 
environment. 

2 Supply Chain Horizontal Collaboration 

Collaboration is defined as a status when two or more enterprises work on a joint 
venture or alliance where a common goal is set, addressing opportunities for supply 
chain integration; specifically, a growing involvement for enterprises [1, 2]. A collab-
orative supply chain is a cooperation and business philosophy between enterprises 
that share tangible and intangible assets, and joint tasks [3, 4, 5]. Introducing, from 
literature, three types of collaboration: (1) vertical, joint ventures between customers, 
suppliers, and the enterprise; (2) horizontal, enterprises from the same echelon 
working together sharing information and resources; and (3) lateral, benefiting from 
both alliances, vertical and horizontal [2, 6, 7]. 

Horizontal collaboration exposes an increment in academic interest, being laid 
out as the new alternative from the vertical collaboration [8]. Defined as a (1) strategy 
that eases the joint venture of techniques and processes, allowing enterprises to add 
value within their supply chain for creating and developing new technology [9, 10]. 
Presenting characteristics such as creating a new organizational structure by making 
available intellectual and machinery assets (Trejo et al. 2010). A strategic move in 
which enterprises can gain competitive advantage, knowledge transfer, information 
sharing, information technology, and economies of scale, among other benefits. 

Even though it lays down its beneficial side, horizontal collaboration lacks a model 
or methodology for an effective implementation thus reducing an already higher 
percentage at initiative failure [11]. In order for horizontal collaboration to become 
a long-term partnership and a value creation network, enterprises must effectively 
carry out strategies developed through a horizontal collaboration business model. 

3 Business Model Research Framework 

A business model is well known as a visual framework of each enterprise’s internal 
and external structure, which enhances the essential elements that consider each 
activity such as value proposition, available resources, supply chain structure, and 
market necessities [12, 13, 14, 15]. From this perspective, a horizontal collabora-
tion framework is designed and proposed through a business model. To reach this 
objective, horizontal collaboration factors are grouped within three business model 
components (1) Content, what activities are selected from the alliance, (2) Structure, 
how does these activities are linked; and (3) Governance, who will be responsible
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for the compliance of the activities and strategies developed through this business 
model. 

3.1 Content Component 

The enterprise content involves those activities that satisfy customers’ necessities, 
as well as its service and profitability [16], aligning each enterprises’ strategy [17]. 
Table 1 lists the horizontal collaboration factors regarding the what content of the 
collaboration.

3.2 Structure Component 

Considering a series of points for structuring each activity, such as prioritizing and 
handling with neutrality the structure, implementing the right IT interfaces [20]. Table 
2 shows the horizontal collaboration factors that take part in the how to structure and 
link the collaboration.

3.3 Governance Component 

Each enterprise activity must have a design network of roles and responsibilities for 
the newly defined activities, ensuring transparency [16, 17]. Table 3 presents the list 
of horizontal collaboration factors related to the who in the collaboration.

4 Multi-criteria Decision-Making Techniques (MCDM) 

MCDM techniques have been used by researches in the academic field to evaluate 
a set of alternatives from a variety of criteria [40, 41]. Diverse MCDM techniques 
have been suggested for satisfying different conditions, such as supplier selection 
[42], identifying critical factors for organizational culture in innovation [43], and site 
selection for a desalination plant [44]. 

A decision matrix is presented as a method for an MCDM problem which shows 
the evaluation values of each variable with respect to each criterion. Table 4 shows 
the MCDM decision matrix for m HC factors X = {x1, x2, . . . ,  xm} evaluated on a 
finite set of n criterion C = {C1, C2, . . . ,  Cn}.

Suggesting a series of MCDM techniques for determining horizontal collaboration 
factors hierarchical analysis. The specific techniques are as follows (1) HFLTS, 
which delimits the values that an expert panel will use for each evaluation; (2) AR,



160 G. E. Riosvelasco-Monroy et al.

Table 1 Content component items from horizontal collaboration factors 

Code Content component items References 

C01 Logistics [18, 19, 20, 21, 22] 

C02 Delivery performance [18, 21, 22, 23] 

C03 Marketing and sales events [18] 

C04 Complementary assets [18, 24] 

C05 Process performance [18, 25, 26] 

C06 Problem solving and support [18] 

C07 Paperwork and administrative 
process support 

[18] 

C08 Production flexibility [21, 24, 26, 27, 28, 29, 30, 31] 

C09 Focus strategy in limited 
resources 

[32] 

C10 Information sharing [9, 11, 19, 23, 25, 28, 29, 31, 33, 34, 35, 36] 

C11 Trust [11, 19, 21, 22, 28, 29, 30, 31, 34, 35, 36] 

C12 Performance metrics [2, 37] 

C13 Incentive alignment [23, 31, 33] 

C14 Channel alignment [25] 

C15 Operational performance [25, 28, 29, 30, 38] 

C16 Negotiation performance [11, 20, 22, 23, 28, 31, 33, 35, 38] 

C17 IT implementation [20, 22, 23, 38] 

C18 Technology implementation [9, 24, 30, 39] 

C19 Forecasting [25, 27] 

C20 Waste reduction [25] 

C21 Resources sharing [11, 21, 29, 34] 

C22 Knowledge transfer [9, 28, 29, 34, 39] 

C23 Goal alignment [9, 28, 29, 35] 

C24 Research & Development [9, 35] 

C25 Enterprise performance [21, 28, 35] 

C26 Initiation phase [39] 

C27 Development phase [39] 

C28 Commercialization phase [39] 

C29 Value creation [21] 

C30 Joint purchases [38]

a technique that incorporates the acquired knowledge from the literature review and 
the AHP decision; and (3) CODAS, a combinative technique that uses two sets of 
distance measure to determine the hierarchy from the factors evaluated, where the 
authors propose, the use of the Mahalanobis distance measure instead of the Taxicab 
distance for the secondary measure set.
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Table 2 Structure component items from horizontal collaboration factors 

Code Structure component items References 

E01 Marketing and sales events [18] 

E02 Word of mouth publicity [18] 

E03 Economies of scale [18, 31, 32] 

E04 Process performance [18, 25, 26] 

E05 Problem solving and support [18] 

E06 Paperwork and administrative 
process support 

[18] 

E07 Costs [26] 

E08 Innovation [9, 21, 26, 28, 34, 35] 

E09 Quality [26, 34] 

E10 Sustainability [26] 

E11 Cluster strategy [32] 

E12 Focus strategy in limited 
resources 

[32] 

E13 Supply chain integration [23, 23] 

E14 Information sharing [9, 11, 19, 23, 25, 28, 29, 31, 33, 34, 35, 36] 

E15 Customer performance [21, 23, 28] 

E16 Common interest [11, 36, 38] 

E17 Openness [9, 11, 29, 36] 

E18 Trust [11, 19, 21, 22, 28, 29, 30, 31, 34, 35, 36] 

E19 Cooperation [36] 

E20 Leadership [36] 

E21 Decision synchronization [29, 33, 34] 

E22 Operational performance [25, 28, 29, 30, 38] 

E23 Organizational structure 
compatibility 

[9, 19, 28, 34, 38] 

E24 IT implementation [20, 22, 23, 38] 

E25 Distribution centres and 
warehouses compatibility 

[19, 24, 31] 

E26 Technology implementation [9, 24, 30, 39] 

E27 Geographic area compatibility [20, 22, 27, 33] 

E28 Business strategy [34] 

E29 Communication [11, 30, 31, 34] 

E30 Research & Development [9, 35] 

E31 Enterprise performance [21, 28, 35] 

E32 New Product Development 
phases 

[39] 

E33 Transaction cost analysis [39]

(continued)
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Table 2 (continued)

Code Structure component items References

E34 Market strategy [21, 27, 28, 39] 

E35 Networking [20, 21, 27, 28] 

E36 Joint purchases [38]

4.1 Criterion Weight 

Introduced by [43] AR is used as a technique for reducing the ambiguity of the values 
obtained from an expert panel. This, by incorporating the weighted values determined 
by the average of the following analysis (1) AK, the weighted value of the frequency 
of variables identified through a literature review; and, (2) AHP, the weighted value 
as a result of a complex hierarchy decision. Using w AR  j = γw  AK j + (1 − γ )w AH P  

j ; 
where γ represents the impact from the dimensional criterion weighting that will 
have of respect to the decision makers; w AK j is the obtained weighting from the 
literature review for the critical dimension j; w AH P  

j is the AHP weighting for the 
critical criterion j; and finally, w AR  j is the ambiguity reduction weighting for the 
critical criterion j . 

The above criterion weight proposal integrates n documented research provided 
by experts, additional to the expert panel that participated in the weighting values in 
this paper. 

4.2 Analytic Hierarchical Process (AHP) 

Created by Thomas Saaty in the 1970s, AHP is recognized as an MCDM methodology 
that deals with multi-criteria ranking and a set of tangible and intangible alternatives 
[45]. Its importance lies in the capability to structure hierarchically each complex, 
multi-person, multi-criteria problem throughout a construction of a pairwise compar-
ison matrix [58]. It considers three main components, such as (1) decomposing the 
elements of the complex problem into a hierarchy, facilitating the decision makers 
to identify the major components in an efficient way, (2) providing a measurement 
methodology called pairwise comparison matrix, an off-diagonal relationship of one 
side and placing the reciprocals in the transposed positions, for establishing priorities 
among the elements; and, (3) calculating the priorities and consistency of the data 
provided by the expert panel. 

This matrix uses a 9-point scale, also known as Saaty judgement scale [58] and 
the main axioms considered are [43]:

1. Reciprocal judgments, where A is a matrix of paired comparisons ai j  = 1/ai j  . 
2. Condition of homogeneity of the elements, the elements are compared in the 

same order of magnitude.
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Table 3 Governance component items from horizontal collaboration factors 

Code Governance component item References 

G01 Delivery performance [18, 21, 22, 23] 

G02 Marketing and sales events [18] 

G03 Word of mouth publicity [18] 

G04 Economies of scale [18, 31, 32] 

G05 Process performance [18, 25, 26] 

G06 Problem solving and support [18] 

G07 Paperwork and administrative 
process support 

[18] 

G08 Production flexibility [21, 24, 26, 27, 28, 29, 30, 31] 

G09 Innovation [9, 21, 26, 28, 34, 35] 

G10 Quality [26, 34] 

G11 Sustainability [26] 

G12 Cluster strategy [32] 

G13 Focus strategy in limited 
resources 

[32] 

G14 Multidisciplinary team [11, 34] 

G15 Information sharing [9, 11, 19, 23, 25, 28, 29, 31, 33, 34, 35, 36] 

G16 Customer performance [21, 23, 28] 

G17 Common interest [11, 36, 38] 

G18 Openness [9, 11, 29, 36] 

G19 Trust [11, 19, 21, 22, 28, 29, 30, 31, 34, 35, 36] 

G20 Cooperation [36] 

G21 Activities prioritization [36] 

G22 Leadership [36] 

G23 Performance metrics [37] 

G24 Decision synchronization [29, 33, 34] 

G25 Incentive alignment [23, 31, 33] 

G26 Partner selection [11, 19, 25, 27, 38] 

G27 Confidence [38] 

G28 Commitment [31, 34, 38] 

G29 Organizational structure 
compatibility 

[9, 19, 28, 34, 38] 

G30 Negotiation performance [11, 20, 22, 23, 28, 31, 33, 35, 38] 

G31 Outsourcing [24] 

G32 Geographic area compatibility [20, 22, 27, 33] 

G33 Opportunity [28, 33] 

G34 Confidentiality [20, 33] 

G35 Business strategy [34]

(continued)
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Table 3 (continued)

Code Governance component item References

G36 Communication [11, 30, 31, 34] 

G37 Resources sharing [11, 21, 29, 34] 

G38 Knowledge transfer [9, 28, 29, 34, 39] 

G39 Absorption capacity [9] 

G40 Goal alignment [9, 20, 29, 35] 

G41 Business model identification [35] 

G42 Enterprise performance [21, 28, 35] 

G43 Market strategy [21, 27, 28, 39] 

G44 Stock market reaction [39] 

G45 Networking [20, 21, 27, 28] 

G46 Stakeholder identification [11]

Table 4 Multi-criteria decision matrix 

Criterion 

Factors Xi / Cj C1 C2 C3 · · · Cn 

X1 X11 X12 X13 · · · X1n 

X2 X21 X22 X23 · · · X2n 

X3 X31 X32 X33 · · · X3n 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 
Xm Xm1 Xm2 Xm3 · · · Xmn

3. Condition of hierarchical structure or reuse dependent. 
4. Condition of rank order expectations, which are structured in alternatives and 

criteria. 

4.3 Hesitant Fuzzy Linguistic Sets (HFTLS) 

HFTLS is presented as a tool for experts to deliver their assessments using linguistic 
expressions [46]. Suggesting the use of HFTLS to determine the hierarchy of hori-
zontal collaboration factors within three business model concepts. The advantage 
that this tool presents as a MCDM technique, is that it gives the expert panel the 
requirements when there are doubts present in a qualitative context. The basic terms 
and operations for HFTLS application are as follows: 

Definition 1 Let T be a linguistic term set, T = {T0,  . . . ,  Ti }; an HFLTS, HT, is an 
ordered finite subset of the consecutive linguistic term of T. When HT (τ ) = {}, the
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HFLTS is called an empty set; in the case of HT (τ ) = T the set is denominated a 
full HFLTS, and when HT (τ ) = {μ : μ ⊆ τ }, μ is a subset of T. 

Definition 2 Let T be a linguistic term set, T = {T0, . . . ,  Ti }, and HT, H 1 
T and 

H 2 
T be the three HFTLS. The HT + (upper bound) and HT- (lower bound) are 

defined as HT+ = max(ti ) = t j , ti∈HT and ti ≤ t j∀iand HT − = min(ti ) = 
t j , ti∈HT and ti ≥ t j∀i . 
Definition 3 The complement of an HFTLS, HT , is defined as Hc 

T = T − HT = 
{ti : ti ∈ T and  ti /∈ HT }. In addition, the evolutive complement of HT is

(
Hc 

T

)c = 
HT , due Hc 

T = T − HT then
(
Hc 

T

)c = T − Hc 
T = T − (T − HT ) = HT . 

Definition 4 The union between H 1 
T and H

2 
T is defined as H 1 

T ∪ H 2 
T ={

ti /ti ∈ H 1 
T or ti ∈ H 2 

T

}
. In other words, the union of two HFTLS is the set of elements 

included in both H 1 
T and H

2 
T . 

Definition 5 The intersection between H 1 
T and H

2 
T is defined as H

1 
T ∩ H 2 

T ={
ti /ti ∈ H 1 

T and ti ∈ H 2 
T

}
. This means that the intersection of two HFTLS is the 

set that contains the elements included in H 1 
T and also included in H

2 
T . 

Definition 6 The linguistic interval with upper bound and lower bound limits 
obtained from maximum and minimum linguistic terms are called envelope of 
HFTLS, Env(HT ), and is defined as Env(HT) =

[
HT+, HT−

]
. 

Definition 7 The comparison between H 1 
T and H

2 
T is defined as H 1 

T (τ) > 
H 2 

T (τ)i f  Env(H 1 
T (τ)) >  Env

(
H 2 

T (τ)
)
and H 1 

T (τ) = H 2 
T (τ)i f  Env(H 1 

T (τ)) = 
Env

(
H 2 

T (τ)
)
. 

4.4 Combinative Distance-Based Assessment (CODAS) 

CODAS is presented as a decision-making methodology for MCDM problems, which 
enhances features not performed by other MCDM techniques [40]. The main objec-
tive of this method is to determine the hierarchical alternatives by using two distance 
measures. Used in different situations, CODAS is proposed as an alternative to select 
the desire industrial robot from a five criteria and m alternatives matrix [40], or, devel-
oped as a CODAS analysis to enhanced organizational culture factors through an 
innovation in Industry 4.0 [43],and, a selection of the best location for a desalination 
plant in Libya [44]. 

CODAS uses two distance methods, being the Euclidean distance as the main 
distance measure and, the Taxicab distance as the secondary distance measure, calcu-
lated by the negative ideal distance [40]. Resulting the desirable alternative, the one 
that presents a greater distance from the negative ideal solution [40, 43, 44]. From this 
point forward, the authors address a CODAS methodology by evaluating different 
distances, particularly Mahalanobis distance.
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Presenting the steps for developing the CODAS method, modifying the original 
terms and the way to rank the preference score [40]: 

Step 1. Construction of the decision matrix. 

T = [T ]n×m = 

⎡ 

⎢⎢⎢ 
⎣ 

t11 t12 · · ·  t1m 

t21 
... 
tn1 

t22 
... 
tn2 

· · ·  
... 

· · ·  

t2m 
... 

tnm 

⎤ 

⎥⎥⎥ 
⎦ 

(1) 

where Ti j  , shows the value of the i alternative in the criterion j , i ∈ {1, 2, . . . .,  n} 
and i ∈ {1, 2, . . . .,  m}. 

Step 2. Calculating the normalized decision matrix. 

ni j  = 

⎧ 
⎨ 

⎩ 

t i j  
max 

i 
t i j  
i f  j∈Nb 

min 
i 

t i j  

t i j  
i f  j∈Nc 

(2) 

where Nb y Nc are a set of significant dimensional criteria. 
Step 3. Calculating the normalized weight in the decision matrix by ri j  = w j ti j  . 

Where w j is the criterion’s weight value j , with 0 < w  j < 1 and
Σ m 

j=1 w j = 1. 
Step 4. Defining the ideal negative solution with ns = ns j 1xm  and ns j = min 

i 
ri j  . 

Step 5. Calculate the main distance and secondary distance of the negative idea 
solution alternatives. 

Step 6. Grounding the relative evaluation matrix as Ra = hik  nxn  and hik  = 
(Ei − Ek) + (ϕ(Ei − Ek) × (Ti − Tk)). Where i ∈ {1, 2, . . . .,  n} and ϕ shows a 
threshold function to recognize the equality of the distances of the two alternatives 
defined by: 

ϕ(x) =
{
1 if  |x | ≥ r 
0 if  |x | < r 

(3) 

r value is set by the decision makers, within a range parameter of 0.01 and 0.05. For 
the purposes of the present study r = 0.03. 

Step 7. Defining the score from each evaluated alternative, through Ti = Σ n 
k=1 tik . 

Step 8. Rank the alternatives by Ti score value. 
For this proposal, the Ti score value is being selected with the lowest value as the 

best option among the alternatives. Due to the fact, that by observing the research 
results, this criterion presents a ranking aligned to the expert panel’s decision-making 
matrix evaluation aggregated to the preference values (Ti ) obtained for each alterna-
tive. If used the inverse criterion, the first chosen alternatives within the ranking are 
the worst alternatives evaluated by the expert panel.
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4.5 Distance Measures Between Two Sets 

Continuing with the above definitions, this section keeps going on to Definition 8. 
Introducing a new combined distance measure set using Mahalanobis distance as 
a secondary measure. The following definitions demonstrate the distance measures 
from two collections of HFTLS [47]. 

Definition 8 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The similarity measure is defined as ρ(H 1 

T , H 2 
T ) were 0 ≤ 

ρ(H 1 
T , H 2 

T ) ≤ 1; ρ(H 1 
T , H 2 

T ) = 1 ⇔ (H 1 
T = H 2 

T ); ρ(H 1 
T , H 2 

T ) = ρ(H 2 
T , H 1 

T ). 

Definition 9 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ  }, H 1 
T and H

2 
T 

be two HFLTS. The relationship between distance and similarity measure is defined 
as ρ(H 1 

T , H 2 
T ) = 1 − d(H 1 

T , H 2 
T ). 

Definition 10 Let T be a linguistic term set, T = {Tα : α = −τ, . . . , τ }, of aHFLTS.  
The linguistic terms, Tα, Tβ ∈ T , the distance measure between Tα and Tβ is defined 
as d

(
Tα, Tβ

) = |α − β|/(2τ + 1). Where 2τ + 1 is the number of linguistic terms 
in the set T . 

Definition 11 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The Hamming distance of H 1 

T (xi ) and H 2 
T (xi ) can be defined as: 

D1
(
H1 

T (xi ), H2 
T (xi )

) = 
1 

L 

LΣ 

l=1

||δ1 l − δ2 l
||

2τ + 1 
(4) 

Definition 12 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The Hamming-Euclidean distance of H 1 

T (xi ) and H 2 
T (xi ) can be 

defined as: 

D2
(
H1 

T (xi ), H2 
T (xi )

) = 

( 

⎝ 1 
T 

TΣ 

l=1

(||δ1 l − δ2 l
||

2τ + 1

)2 
⎞ 

⎠ 
1/2 

(5) 

Definition 13 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The generalized Hausdorff distance of H

1 
T (xi ) and H 2 

T (xi ) can 
be defined as: 

D3
(
H1 

T (xi ), H2 
T (xi )

) = 

( 

⎝ max 
l=1,2,...,T

(||δ1 l − δ2 l
||

2τ + 1

)λ 
⎞ 

⎠ 
1/λ 

(6) 

where λ >  0, for  λ = 1 the generalized Hausdorff distance becomes the Hamming-
Hausdorff distance, for λ = 2 the generalized Hausdorff distance becomes the 
Euclidean-Hausdorff distance.
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Definition 14 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The hybrid Hamming-Hausdorff distance of H 1 

T (xi ) and H 2 
T (xi ) 

can be defined as: 

D4
(
H1 

T (xi ), H2 
T (xi )

) = 
1 

2

(
1 

T 

TΣ 

l=1

|
|δ1 l − δ2 l

|
|

2τ + 1 
+ max 

l=1,2,...,T

(|
|δ1 l − δ2 l

|
|

2τ + 1

))

(7) 

Definition 15 Let T be a linguistic term set, T = {Tα : α = −τ,  . . . , τ }, H 1 
T and 

H 2 
T be two HFLTS. The hybrid Euclidean Hamming-Hausdorff distance of H 1 

T (xi ) 
and H 2 

T (xi ) can be defined as: 

D5
(
H1 

T (xi ), H2 
T (xi )

) = 
1 

2 

( 

⎝ 1 
T 

TΣ 

l=1

(||δ1 l − δ2 l
||

2τ + 1

)2 

+ max 
l=1,2,...,T

(||δ1 l − δ2 l
||

2τ + 1

)2 
⎞ 

⎠ 
1/2 

(8) 

Definition 16 The Taxicab distance between two terms, ni j  and ns j , in m dimen-
sional space can be defined as Ti = Σ m 

j=1

||ni j  − ns j
||. 

Definition 17 The Mahalanobis distance between two terms, ni j  and ns j , in m  
dimensional space can be defined as: 

Mi =
/(

ni j  − ns j
)
C−1(ni j  − ns j

)
(9) 

where C−1 is the inverse covariance matrix. 

Considering CODAS methodology Step 5, which establishes the calculation of 
a main and secondary distance of the negative ideal solution alternatives; defini-
tions 11–15 are contemplated for the main distance calculation and, for this paper’s 
proposal, definitions 16–17 are used for the secondary distance calculation. After-
ward, to fulfill CODAS  Step 7 a score will  be  defined from each evaluated alternative 
and a comparative analysis will be performed; thus, evaluating the reliability showed 
by the incorporation of Mahalanobis distance as the secondary distance measure for 
CODAS methodology. 

5 CODAS-HFTLS-Mahalanobis Framework 

Contributing to academic literature in horizontal collaboration, this chapter presents 
an analysis for hierarchizing horizontal collaboration factors using CODAS method-
ology with a new combinative distance measure equation. Centering data from an 
expert panel, whose experience in the academic field enhances horizontal collabora-
tion factors for MCDM techniques. The expert panel is composed of five experts, from
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Fig. 1 Proposed MCDM flow diagram to identify HC variables’ hierarchy 

the disciplines of Industrial Engineering, Economics, Bioengineering, and Business 
Administration; with skills like innovation management, operations management, 
optimization, production planning, regional development, and business administra-
tion. Figure 1 conceptualizes the flow chart followed to reach this paper’s main 
objective, considering the assigned linguistic terms, and the CODAS methodology 
utilizing Mahalanobis distance as part of the distance measure set for hierarchizing 
HC variables. 

5.1 CODAS-HFLTS for Identifying Hierarchical HC Factors 
with Proposed Mahalanobis Distance 

From the horizontal collaboration, factors were identified from a literature 
compendium and then, grouped within three business model components, presented 
in Sect. 3. From this point on, a decision-making matrix has been designed as of 
considering the 2018 OSLO Manual, selected for its approach of an innovation 
framework that can be applied to every type of economic activity [48] to identify the 
dimensions or capabilities needed to measure innovations activities. For the outcome 
in this chapter, just two out of the six components are taken into account (1) Internal 
dimension, all enterprise’s capabilities acquired through time and experience,and, 
(2) External dimension, external factors that contribute or impact an enterprise’s 
innovation. From these two components, five sets of criteria are determined for the 
MCDM decision matrix, presented in Table 5.

The decision-making matrix was presented to the expert panel, who provided an 
evaluation from the horizontal collaboration factors presented in Tables 1, 2, and 3. A  
linguistic terms scale was used to measure each factor, where meaning of Excellent 
(code S8, value 8), Very strong (code S7, value 7), Strong (code S6, value 6), Fine 
(code S5, value 5), Middle good (code S4, value 4), Unbiased (code S3, value 3), 
Medium insignificant (code S2, value 2), Insignificant (code S1, value 1) and, Null 
(code S0, value 0). Afterward, an aggregated and normalized matrix was obtained
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Table 5 Innovation 
dimensions for the 
decision-making matrix [48] 

Dimension/Types of 
capabilities 

Elements 

Internal dimension/Business 
capabilities 

Business resources (BR) 
Management capabilities 
(MC) 
Workforce skills and human 
resource management (WS) 
Technological capabilities 
(TC) 

External dimension/Measure 
of external factors 

External business 
environment (EB)

from the expert panel evaluation, setting out the maximum value criteria (Step 1), as 
shown in Table 6.

Then, an ambiguity reduction is performed by developing a criterion weight calcu-
lation, as described in subsection 2.4.1. Reducing the availability of information gives 
certainty to researchers and decision-makers in a specific area [49]. The AR is being 
presented by [43] as a criterion weight calculation to reduce ambiguity. Table 7 
displays the weighing values determined by the variable’s frequency (w AK j ).

To obtain the w AH P  
j , a pair-wise comparison matrix was developed through 

a 9-point scale, and then generating a standardized autovector to obtain wj, the 
normalized average value. Continuing with the consistency index by calculating 
CI = (λmax−nc)/(nc−1) and, the consistency ratio CR = CI/RI which is accepted 
when is not greater than 10% of the random index (RI). Taking into account that nc = 
5 and its equivalent RI = 1.12, the CI and RI obtained were 0.0959 and 8%, respec-
tively demonstrating the consistency index of the AHP methodology. AHP weight 
assessment for each dimension is BR = 0.3419, MC = 0.2670, WS = 0.0835, TC = 
0.1957, and EB = 0.1118. Table 8 displays the AR criteria assessment thus reducing 
the uncertainty between the information from previous researches and the expert 
panel evaluation.

The process following each criterion evaluation, is taken from the CODAS 
methodology, calculating the normalized decision matrix (Step 2), the weighted 
normalized decision matrix (Step 3), and the negative ideal solution (Step 4). 

5.2 Mahalanobis Distance 

Next, CODAS methodology Step 5 is obtained through proposing a series of distance 
sets for determining the alternative with greater distances. For the main distance 
measure sets, the authors present the collection of distance measures proposed by 
[47] for representing an expert panel hesitant preference in evaluating linguistics 
variables, as is the case developed in this paper.
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Table 6 Aggregated decision matrix 

Code BR MC WS TC EB Code BR MC WS TC EB 

C01 S8 S6 S7 S5 S6 E27 S8 S6 S7 S5 S6 

C02 S7 S7 S7 S5 S7 E28 S7 S7 S6 S5 S8 

C03 S7 S6 S6 S4 S7 E29 S8 S8 S7 S7 S6 

C04 S6 S8 S7 S8 S6 E30 S5 S7 S8 S8 S6 

C05 S7 S7 S8 S8 S8 E31 S6 S7 S8 S7 S5 

C06 S6 S8 S8 S8 S5 E32 S7 S6 S7 S8 S5 

C07 S8 S8 S6 S5 S6 E33 S7 S6 S7 S7 S6 

C08 S8 S7 S8 S8 S8 E34 S8 S7 S7 S6 S8 

C09 S8 S8 S7 S6 S7 E35 S8 S6 S7 S6 S7 

C10 S7 S8 S7 S7 S6 E36 S4 S7 S7 S5 S6 

C11 S8 S8 S7 S7 S8 G01 S4 S7 S8 S6 S8 

C12 S7 S8 S7 S7 S7 G02 S4 S6 S6 S5 S7 

C13 S8 S7 S8 S6 S5 G03 S7 S5 S5 S3 S8 

C14 S7 S8 S7 S6 S7 G04 S5 S8 S6 S4 S5 

C15 S8 S7 S8 S7 S8 G05 S6 S8 S8 S7 S7 

C16 S8 S8 S6 S6 S8 G06 S7 S7 S8 S7 S7 

C17 S5 S7 S8 S8 S6 G07 S6 S6 S7 S4 S5 

C18 S6 S7 S8 S8 S6 G08 S5 S6 S8 S8 S8 

C19 S7 S7 S7 S7 S6 G09 S6 S7 S8 S8 S6 

C20 S7 S8 S7 S7 S7 G10 S6 S7 S8 S8 S8 

C21 S8 S7 S7 S7 S6 G11 S6 S7 S8 S8 S6 

C22 S5 S8 S8 S8 S6 G12 S8 S7 S6 S5 S6 

C23 S8 S8 S7 S7 S7 G13 S7 S8 S6 S5 S6 

C24 S7 S8 S8 S8 S6 G14 S6 S5 S8 S6 S7 

C25 S8 S8 S8 S8 S6 G15 S6 S7 S8 S7 S6 

C26 S6 S6 S7 S8 S6 G16 S6 S6 S7 S8 S7 

C27 S6 S8 S7 S8 S6 G17 S6 S6 S5 S6 S6 

C28 S8 S8 S7 S7 S6 G18 S8 S7 S5 S4 S7 

C29 S7 S8 S7 S7 S8 G19 S8 S8 S7 S6 S8 

C30 S8 S6 S5 S5 S6 G20 S7 S7 S8 S7 S7 

E01 S6 S7 S8 S5 S8 G21 S7 S8 S6 S6 S7 

E02 S6 S6 S5 S2 S6 G22 S8 S8 S7 S7 S6 

E03 S8 S7 S7 S5 S6 G23 S7 S6 S8 S7 S7 

E04 S8 S8 S7 S7 S8 G24 S6 S8 S6 S6 S6 

E05 S7 S7 S7 S7 S7 G25 S7 S8 S6 S6 S6 

E06 S8 S7 S8 S4 S5 G26 S6 S7 S7 S7 S7

(continued)
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Table 6 (continued)

Code BR MC WS TC EB Code BR MC WS TC EB

E07 S8 S8 S6 S6 S8 G27 S6 S7 S6 S6 S8 

E08 S5 S8 S8 S8 S6 G28 S8 S7 S7 S6 S8 

E09 S7 S8 S8 S7 S8 G29 S8 S7 S7 S6 S6 

E10 S7 S7 S8 S6 S6 G30 S7 S7 S7 S6 S7 

E11 S8 S8 S6 S5 S6 G31 S8 S7 S6 S6 S6 

E12 S7 S8 S7 S6 S5 G32 S7 S8 S6 S5 S5 

E13 S5 S7 S6 S6 S6 G33 S8 S6 S6 S8 S8 

E14 S5 S8 S7 S7 S6 G34 S8 S8 S8 S7 S8 

E15 S5 S7 S7 S7 S7 G35 S8 S8 S7 S7 S7 

E16 S8 S6 S6 S5 S7 G36 S8 S7 S6 S6 S6 

E17 S6 S6 S5 S5 S7 G37 S5 S8 S7 S6 S6 

E18 S7 S7 S6 S6 S8 G38 S6 S7 S7 S7 S7 

E19 S7 S7 S7 S6 S7 G39 S8 S8 S7 S7 S7 

E20 S7 S8 S7 S5 S7 G40 S8 S7 S7 S7 S8 

E21 S6 S8 S6 S4 S6 G41 S8 S8 S6 S7 S7 

E22 S5 S8 S7 S7 S7 G42 S7 S7 S7 S7 S7 

E23 S7 S8 S7 S7 S6 G43 S7 S7 S7 S7 S8 

E24 S6 S8 S7 S7 S6 G44 S8 S6 S6 S4 S5 

E25 S6 S6 S6 S6 S6 G45 S7 S8 S6 S7 S6 

E26 S6 S7 S7 S8 S6 G46 S8 S7 S6 S6 S6 

BR = Business resources, MC = Management capabilities, WS = Workforce skills & human 
resources management, TC = Technological capabilities, EB = External business management

Table 7 Acquired knowledge weight assessment 

Business Model Criteria BR MC WS TC EB Total 

Content 95 107 112 85 55 454 

Structure 60 103 91 66 50 370 

Governance 84 137 116 80 92 509 

Score 239 347 319 231 197 1333 

Weight (WAK) 0.1793 0.2603 0.2393 0.1733 0.1478

Table 8 Ambiguity reduction criteria assessment 

Criteria BR MC WS TC EB 

w AK j 0.1793 0.2603 0.2393 0.1733 0.1478 

w AH P  
j 0.3419 0.2670 0.0835 0.1957 0.1118 

w AR  j 0.2606 0.2637 0.1614 0.1845 0.1298
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• Main distance measure: D1: Hamming distance, D2: Hamming-Euclidean 
distance, D3: Hamming-Hausdorff distance, D4: Hybrid Hamming-Hausdorff 
distance, and D5: Hybrid Euclidean Hamming-Hausdorff distance. 

Then, for the secondary distance measure set, the authors propose Maha-
lanobis distance and its generalizations against Taxicab distance measure, on 
the assumption that Mahalanobis distance provides a higher coefficient against 
Taxicab distance. The Mahalanobis distance is characterized by presenting the 
same distance between neighbors within a large multivariate data, e.g., stretching 
the sphere from a set of points correcting the scales of the variables and their 
correlation [50, 51, 52]. 

• Secondary distance measure: T1: Taxicab distance, M1: Mahalanobis 
(Cov(r i j  ),r i j  ), M2: Mahalanobis (Cov(r i j  ),ns), and M3: Mahalanobis 
(Cov(ns),ns), all three M1,2,3 distances from Definition 17. 

Continuing with CODAS methodology, these distance combination sets were 
used to construct the relative evaluation matrix (Step 6), from which the preference 
score was obtained for each evaluated alternative (Step 7) and; finally, displaying the 
hierarchize HC variables (Step 8). Table 8 shows the top 20 hierarchized horizontal 
collaboration alternatives from each distance combination. 

From Table 8, a concordance analysis was performed for each Mahalanobis 
generalization, contrasting against the Taxicab distance results, used traditionally in 
CODAS methodology. Table 9 displays the aforementioned where it can be observed 
that M2 results maintain a higher proportion in concordance compared to T1 results.

5.3 Sensitivity Analysis 

For the sensitivity analysis, the preference scores previously calculated were used. 
The Cronbach’s alpha coefficient obtained where 0.9542 from T1 distance; 0.9528 
from M1 distance; 0.9548 from M2 distance; and, 0.9541 from M3 distance, all 
used as the secondary distance measure. The previous values show the internal high 
consistency from the obtained calculations; however, it is important to observe that 
the M2 distance displays a higher coefficient against the other distances for the 
secondary distance measure. 

Similar results are presented by analyzing the correlation matrix for each main 
and secondary distance combination set, where by generalizing them, an average 
value of correlations is obtained as follows 0.884 from T1 distance; 0.883 from M1 

distance; 0.890 from M2 distance; and, 0.887 from M3 distance. These results are 
considered high in every case, nevertheless for the M2 distance is slightly higher than 
the rest. 

Figure 2 displays the comparison regarding which main distance measure provides 
better results against the secondary distance measure sets. The data is presented in 
Table 9 from a graphic point of view. From this graphic, it can be observed a 0.94 
from D1 distance; 0.91 from D4 distance; 0.73 from D2 distance; 0.52 from D5
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Fig. 2 Concordance analysis from Taxicab distance versus Mahalanobis distances 

distance; and, 0.06 from D3 distance. The above sustains the proposal to use the 
Hamming and Mahalanobis (Cov(r i j  ),ns) distances, as the primary and secondary 
distance measures, respectively, for the CODAS methodology Step 5. 

6 COHRV Business Model for a Value Creation Network 

The previous section describes the process from which HC variables have been 
hierarchize; analyzing the best distance measure set, which resulted in Hamming-
Mahalanobis (Cov(r i j  ),ns) distances, as the primary and secondary distance 
measures, respectively, for CODAS Step 5. From this point forward, the HC variables 
now listed through a preference score can be identified through the obtained rank. 

From the authors’ preference, the Top 30 HC factors are identified by ranking them 
in an ascending form. Creating a model for enterprises to establish responsiveness 
and a flexible supply chain towards a sustainable manufacturing 4.0 environment. 
Table 10 displays the Top 30 HC factors obtained from the Hamming-Mahalanobis 
CODAS-HFTLS methodology.

Enterprises participating in a joint venture can add experience, flexibility and 
teamwork; as well as, complementing each other capabilities [29, 36]. From the
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Table 10 Taxicab distance versus Mahalanobis distance concordance analysis 

(T1) M1 M2 M3 

Top 5 Top 
50 

All 
data 

Top 5 Top 
50 

All 
data 

Top 5 Top 
50 

All 
data 

Average 

D1 1.00 0.86 0.87 1.00 1.00 0.96 1.00 0.88 0.91 0.94 

D2 1.00 0.92 0.78 1.00 0.98 0.91 1.00 0.84 0.74 0.91 

D3 0.00 0 0.02 0.00 0.12 0.30 0.00 0.00 0.09 0.06 

D4 1.00 0.48 0.71 0.60 0.74 0.87 1.00 0.48 0.71 0.73 

D5 0.60 0.26 0.39 0.60 0.62 0.69 0.60 0.44 0.52 0.52 

Average 0.72 0.50 0.55 0.64 0.69 0.75 0.72 0.53 0.59

above list, the horizontal collaboration factors of higher priority are grouped within 
three components (1) Concept, 13 variables; (2) Structure, 5 variables; and, (3) 
Governance, 12 variables (Table 11).

6.1 Content Component 

The Content component groups the what activities to implement a horizontal collab-
oration model. From the MCDM analysis, thirteen horizontal collaborations have 
been hierarchized, being:

1. Firm performance (score −2.1430), measuring enterprises’ performance 
throughout the horizontal collaboration to follow improvement or growth, 
in innovation, financial and operational level, cost, quality, and delivery 
improvements [7, 35]. 

2. Production flexibility (score −0.2.1288), enterprises must consider volume or 
capacity flexibility, as production changes through the alliance project. 

3. Trust (score −1.9493), a condition required for horizontal collaboration to 
occur; enhancing trust by sharing information, efforts, and resources throughout 
a focused partner selection with similarities, so the connection can be built [53]. 

4. Operational performance (score −1.1702), combining and adjusting opera-
tions may lead to reducing supply chain errors, costs, and time. 

5. Goal alignment (score −1.6551), a mutual definition of goals must be taken 
into account; thus, providing motivation and recognition of fairness [33]. 

6. Research & Development (score −1.5480), defining specific market demand 
and knowledge, leading to innovative products or services within the HC. 

7. Process performance (score −1.5334), integrating processes and capaci-
ties seeking efficiency, and information sharing for supply chain integration. 
Training and knowledge transfer may occur for this to gain the proper structure.
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Table 11 Top 30 horizontal collaboration factors through Hamming-Mahalanobis CODAS-
HFTLS methodology 

Hamming-Mahalanobis Codas HFLTS 

HC variables Code Score Ranking 

Confidentiality G34 −2.315826554 1 

Firm performance C25 −2.143032496 2 

Production flexibillity C08 −2.128808161 3 

Trust C11 −1.949310563 4 

Process performance E04 −1.949310563 5 

Quality E09 −1.721317641 6 

Operational performance C15 −1.710244678 7 

Goal alignment C23 −1.655163687 8 

Business strategy G35 −1.655163687 9 

Absorption capacity G39 −1.655163687 10 

Research and Development C24 −1.548059985 11 

Process performance C05 −1.533405156 12 

Trust G19 −1.522122279 13 

Commercialization phase C28 −1.34714842 14 

Communication E29 −1.34714842 15 

Leadership G22 −1.34714842 16 

Value creation C29 −1.344040601 17 

Goal alignment G40 −1.334679522 18 

Business model identification G41 −1.262313667 19 

Focus strategy in limited resources C09 −1.222276552 20 

Negotiation performance C16 −1.134999034 21 

Costs E07 −1.134999034 22 

Performance metrics C12 −1.041265189 23 

Waste reduction C20 −1.041265189 24 

Quality G10 −0.916119543 25 

Market strategy E34 −0.898332373 26 

Commitment G28 −0.898332373 27 

Process performance G05 −0.80055555 28 

Problem solving and support G06 −0.79440757 29 

Cooperation G20 −0.79440757 30

8. Commercialization phase (score −1.3471), planning ahead for this phase will 
bring trust and guidance for the innovative product and service designed. Enter-
prises must take into account launching time, market testing, and after-sales 
support, among others [39].
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9. Value creation (score −1.3440), enhancing value creation from the alliance, 
cultivating a collaborative culture where enterprises acknowledge the relation-
ship and each firm’s responsibility within the HC. 

10. Focus strategy on limited resources (score −1.2222), bringing forward each 
enterprise’s limited resources; e.g., production quality, marketing sales, and 
design capability, among others. From this point forward, partners can build a 
specific content for a horizontal collaboration value creation network. 

11. Negotiation performance (score −1.1349), joint definition of rules, contracts, 
legal protection where enterprises align strategic agreements involving opera-
tional, financial, and legal areas. 

12. Performance metrics (score −1.0412), identifying desirable key outputs, such 
as waste, inventory, costs reduction; increased quality in delivery times, produc-
tion processes, and bringing improvements to the new value creation network 
[22]. 

13. Waste reduction (score −1.0412), emphasizing market requirements with the 
purpose of obtaining optimization in production lines, delivery time, logistics; 
gaining reduction in waste, CO2, inventory, and production turnover. 

6.2 Structure Component 

The Structure component groups the activities for the how to link enterprises in the 
collaboration. From the analysis, the Structure component listed 5 factors, described 
below: 

1. Process performance (score −1.9493), specifying which process will be 
combined, redesigned for reducing instability, and improving efficiency and 
flexibility within the new value creation network. 

2. Quality (score−1.7213), the link between the performance metrics defined in the 
horizontal collaboration project; e.g., waste elimination, customer complaints, 
continuous product and service monitoring, and delivery time, among others 
[26]. 

3. Communication (score −1.3471), implementing IT infrastructure, enhancing 
multidisciplinary team information and knowledge exchange to strengthening 
enterprises communication within the horizontal collaboration project. 

4. Costs (score −1.1349), achieving reduction, economies of scale, distribution, 
and logistics costs; considering an overall supply chain costs element through 
implementing a horizontal collaboration value creation network. 

5. Market strategy (score −0.8983), creating value inside the market by devel-
oping new technology, products, or services that establish a leading position, 
focusing horizontal collaboration enterprises in a win–win situation [9].
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6.3 Governance Component 

The last component from the business model perspective, includes activities that 
focus on who has to take action within the horizontal collaboration. From the analysis, 
the Governance component contains 12 factors, such as:

1. Confidentiality (score −2.3158), enterprises multidisciplinary team must take 
into account confidentiality as a core value within the new network, for 
horizontal collaboration to work effectively. 

2. Business strategy (score−1.6551), enterprises can leverage liabilities by devel-
oping a business strategy from a multidisciplinary team that works toward 
gaining market opportunities. 

3. Absorption capacity (score −1.6551), enterprises must partner taking 
into account the capacity of decision-making from the management level. 
Which firm, owners, have a promotion and decision-making towards inter-
organizational ventures, investing in R&D, improvements, multidisciplinary 
teams for creating innovative products and services [54]. 

4. Trust (score −1.5221), a key element that will evolve during the horizontal 
collaboration relationship, gaining strength by relying in each partner, according 
to goal alignment. 

5. Leadership (score −1.3471), there’s an enterprise with a higher leadership 
standard, who must work for the greater good of the horizontal collaboration 
project, focusing strategies, multidisciplinary teams, and resources towards the 
aligned goals and benefits. 

6. Goal alignment (score −1.3346), defined as a content component, goal align-
ment must be down-scaled to the multidisciplinary team so they work focused 
in each goal assigned [28]. 

7. Business model identification (score−1.2623), as a sustainable manufacturing 
4.0 presents a disruption in business model, enterprises working jointly must 
determine who will enact in the new supply chain, how will they link each 
department, process, and innovation towards aiming for the new value network. 

8. Quality (score −0.9161), multidisciplinary teams must fulfill the quality 
component, being certified, sharing, and training the rest of the team for search 
quality in every aspect of the horizontal collaboration project. 

9. Commitment (score −0.8983), a level of commitment among enterprises must 
be taken into account and build upon the horizontal collaboration, for a supply 
chain sustainability and a sharing of information, innovation, process, and 
operational performance [35]. 

10. Process performance (score −0.8005), a multidisciplinary team must be 
created thinking about the management of the new, improve or share processes 
within the horizontal collaboration. 

11. Problem solving and support (score −0.7944) , enterprises must partner up 
taking into account a team capable of supporting and solving the horizontal 
collaboration new problems ahead; e.g., IP legal work, supply chain network, 
management paperwork, among others.
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Fig. 4 COHRV Model for the deployment of horizontal collaboration strategies 

12. Cooperation (score −0.7944), enterprise size and organizational culture simi-
larities gain strength allowing a mutual coordination toward knowledge transfer 
and innovation [54]. 

The authors’ horizontal collaboration business model (COHRV Model) 
contributes toward a disruptive business model presenting horizontal collaboration 
as a framework for enterprises to develop strategies for innovation and new product 
development. Figure 4 shows the four blocks of business model COHRV where 
each horizontal collaboration factor identified as of higher priority are considered 
for enterprises to deploy strategies for joint projects and develop a value creation 
network from a business model that contemplates two or more enterprises. 

7 Conclusions 

As the supply chain gains globalization or suffers from a healthcare pandemic, enter-
prises must focus on strategies for the challenge it represents to implement new strate-
gies, technologies, or partnerships. From the lack of knowledge to the investment 
cost, enterprises must find alternatives to upgrade themselves inside their supply
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chain network. Horizontal collaboration is been seen as the new vertical integration, 
where competitors work jointly towards a common goal. 

Literature provides two perspectives (a) theoretical views, where information 
is gathered and displayed from a qualitative or meta-analysis; or (b) empirical 
views, in which data is collected from case studies in certain sectors, i.e., logis-
tics service providers, or by type of enterprises regarding size, geographic area or 
supply chain. Researchers display several variables for its field use. Although, they 
tend to be distinct between each research; presenting a few similar ones like infor-
mation sharing, decision synchronization, trust, and partner selection. Nonetheless, 
it lacks a model or methodology for enterprises, to plan and perform a horizontal 
collaboration in short to long-term relationship. 

This chapter presents a model responding to the what, how and who has to 
contribute to the horizontal collaboration, by presenting a Top 30 list clustered within 
three business model components (1) Content, (2) Structure and, (3) Governance. 
This is achieved by gathering items from a literature compendium and, evaluating 
them through an MCDM method. This is accomplished by proposing a horizontal 
collaboration hierarchy through the Hamming-Mahalanobis (Cov(r i j  ), ns) distance 
from a CODAS-HFLTS methodology. For this to be reached, an analysis was devel-
oped through each set of distance measure described and followed in CODAS-HFLTS 
methodology. Mahalanobis distance (Cov(r i j  ), ns) was selected as the secondary 
distance measure set, resulting in a higher coefficient against the other distances. 
Mahalanobis distance takes into account the correlation between variables [38, 55] 
that can be identified and analyzed relative to a base group [56]; hence, highlighting 
a solution for an MCDM through a combinative distance-based assessment. 

The Top 30 list, facilitates the planning and development of a horizontal collabo-
ration, giving reassurance and trust in the project ahead. Laying foundations for the 
horizontal collaboration as one of Industry 4.0 elements, through a disruptive busi-
ness model for sustainable manufacturing 4.0 to be performed. Therefore, creating 
an environment where innovation can be achieved by making accessible new prod-
ucts and services to customers, gaining permanence or position within the supply 
chain. This chapter contributes to the sustainable manufacturing 4.0 literature by 
proposing a disruptive horizontal collaboration business model in a twofold: first, 
conceptualizing an initial list of horizontal collaboration factors, clustering them in 
three business model components, which helps structure the what, how and who 
can contribute within an alliance. Thereby, facilitating enterprises the developing 
of a horizontal collaboration from a business model perspective, easing up trust 
between the participating enterprises. Second, the horizontal collaboration factors 
list is put through an MCDM technique proposed by the authors, by implementing 
Mahalanobis distance as the secondary distance measure set from a CODAS-HFLTS 
method, enhancing the importance in using Mahalanobis as a distance that’s capable 
of measuring the distance between several variables by contemplating its correlation; 
and by this, obtaining a Top 30 list.
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Assessment of Industry 4.0 Adoption 
for Sustainability in Small and Medium 
Enterprises: A Fermatean Approach 

Mahyar Kamali Saraji and Dalia Streimikiene 

1 Introduction 

The manufacturing industry’s complexity and demand have constantly expanded 
recently. Increasing worldwide competitiveness, market instability, the desire for 
highly customized products, and reduced product life cycles are formidable obstacles 
for businesses; Therefore, it is believed that current approaches for value generation 
no longer meet the rising demands for cost-effectiveness, adaptability, sustainability, 
and stability [1, 2]. As a result, against this backdrop, trends and new buzzwords 
such as internet of services (IoS), digitalization, internet of things (IoT), and cyber-
physical systems (CPS) have become increasingly remarkable, motivating Germany 
to launch Industry 4.0 as part of its high-tech strategy in 2011 [3]. Industry 4.0 is a 
transition in the manufacturing industry, and it introduces an entirely new viewpoint 
on how production might work with emerging technologies to achieve maximum 
output with minimal resource use [4]. Furthermore [5], concluded that Industry 
4.0 could be defined by basic concepts: decentralization, interoperability, real-time 
capacity, modularity, virtualization, and service orientation. Decentralization is the 
continuous interchange of information that enables cyber-physical systems to make 
choices autonomously in real-time [6]. Interoperability strives to facilitate system-to-
system communication, allowing users to embrace open standards [7]. The real-time 
capacity entails instantaneous data collection and swift and agile decision-making 
facilitation [8]. Modularity is defined by the adaptability of the whole manufacturing 
process, which permits the reorganization of production lines by linking and decou-
pling modules [9]. Virtualization facilitates the production of cloud-based virtual 
versions of physical systems, enabling simulation operations in real-time [6]. Service
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orientation comprises software customization services based on each organization’s 
requirements [10]. 

On the other hand, academic research on Industry 4.0 focuses predominantly on 
large businesses and just moderately on Small and Medium Enterprises (SMEs). 
However, many large enterprises collaborate with SMEs [11, 12]. As a result, 
large enterprises’ actions influence the decisions of their smaller partners and their 
demands and influence the configuration of SMEs concerning the technical advance-
ments resulting from Industry 4.0. Consequently, it is crucial to evaluate how SMEs 
adopt Industry 4.0 and how the latter affects SMEs’ generation of industrial value 
[13]. On top of that, the future of SMEs, which are vital contributors to most sectors 
and nations, mainly relies on their ability to adapt to customer expectations while 
preserving a competitive edge in their market [14]. To this end, SMEs must continu-
ously enhance their industrial management procedures, including planning, resource 
use, production control, and operational performance measurement and evaluation 
[15]. For instance, the adoption of Enterprise resource planning (ERP) systems was 
handled differently in small and medium-sized enterprises (SMEs) than in large 
enterprises since SMEs frequently have lower levels of digitization than their global 
businesses, which is likely to impact the implementation of CPS. In addition, other 
SMEs are involved in specialized markets, delivering small-batch or custom-made 
items. Frequently, these enterprises require simplified versions of the equipment and 
instruments utilized in the manufacturing facilities of large enterprises [16]. There-
fore, investigating the perspective of SMEs on the feasibility of adopting Industry 
4.0 contributes to a complete understanding of the organizational consequences 
throughout industrial value chains [17]. 

Besides, Industry 4.0 adoption has gained greater visibility and importance 
due to its implications for achieving sustainability [18]. Traditional manufacturing 
methods are infamous for their negative environmental impacts. Traditional indus-
trial processes and technologies are responsible for increased resource use, global 
warming, severe environmental damage, and pollution [19]. Industry 4.0 may signif-
icantly contribute to sustainability by reducing carbon footprints, using renewable 
energy, and developing technological solutions beneficial for individuals and society 
[17]. The growth of Industry 4.0 facilitates more transparent resource optimization. 
By implementing Industry 4.0 techniques, it is possible to increase production effi-
ciency and innovation, affecting environmental and social sustainability [20]. All 
things considered, Industry 4.0 adoption could benefit SMEs while it is a path to 
sustainability, motivating the present study to figure out Industry 4.0 adoption indi-
cators for sustainability and propose a Multi-Criteria Decision Making (MCDM) 
framework to evaluate Lithuanian SMEs concerning the identified indicatros. To this 
end, a regrious review was conducted, at first, to figure out the indicators. Afterward, 
a novel integrated CRiteria Importance Through Inter-criteria Correlation (CRITIC)-
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method 
under Fermatean fuzzy sets is proposed to evaluate the Lithuanian SMEs in terms of 
adopting industry 4.0 for sustainability. The main contributions of the present study 
are presented below:
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1. Finding the indicators of industry 4.0 adoption for achieving sustainability in 
SMEs and proposing a comprehensive framework of indicators for evaluating 
the SME’s performance. 

2. Proposing an assessment framework to evaluate the performance of SMEs based 
on the identified indicators. Fermatean fuzzy sets have endorsed the present 
framework to deal with uncertainty and indeterminacy in decision-making. 

3. Applying the proposed assessment framework to evaluate five Lithuainain SMEs 
to study the applicability and efficiency of the proposed framework in dealing 
with real-life problems. 

The present study is organized as follows: The identified indicators were intro-
duced and presented in Sect. 2. The proposed method and the preliminaries of 
Fermatean fuzzy sets are presented in Sect. 3. The results of applying the proposed 
method for evaluating the Lithuanian SMEs are presented in Sect. 4 using tables 
and figures. Section 5 provided a sensitivity analysis to study the sensitivity of the 
proposed method concerning the weight changes. The results of the present research 
are discussed in Sect. 6. Moreover, broad conclusions are provided in Sect. 7. 

2 Industry 4.0 Adoption Indicators for Sustainability 

2.1 Profitability 

Industry 4.0’s effects on profitability have been extensively recognized. Numerous 
economic sustainability opportunities have been linked to implementing Industry 4.0 
technology advancements, including additive manufacturing, the industrial internet 
of things (IIoT), data analytics, and cloud service [3]. Industry 4.0 enables organiza-
tions to have flexible production processes and analyze vast volumes of data in real-
time, enhancing planning and accurate decisions. On top of that, I4.0 could benefit 
enterprises through resource efficiency, boosting innovation, improving reliability 
and capacity, and minimizing inventory costs [21]. Also, Industry 4.0 is anticipated 
to play a crucial role in the transition of industrial and social organizations toward 
sustainable growth. Industry 4.0 promotes high-efficiency improvements, resulting 
in enhanced organizational performance across all three aspects of sustainability [22] 
[23]. 

2.2 Emissions Reduction 

As industrial emissions account for even more than Forty percent of global green-
house gas emissions, it is considered that the digitalization of production and the 
rise of industry 4.0 provide various chances to cut carbon emissions [24]. The IIoT 
and AI-based manufacturing, for instance, boost the efficiency and adaptability of
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production, decrease waste, and lower the greenhouse gas index per unit. Further-
more, Industries will tend to have been energy-intensive with high carbon dioxide 
emissions soon. On the other hand, it is anticipated that advanced manufacturing will 
revolutionize the sector and its associated supply chains and significantly decrease 
the fossil-carbon footprint per unit of product or product service, thereby assisting 
societies in achieving environmental and social sustainability [25, 26]. The opportu-
nities provided by Smart manufacturing for the creation of new markets, including 
the transition from large-scale production to product customization and even device 
personalization, could improve the marketplace and play a role in the embodiment 
of a low-carbon future, thereby furthering the ecological sustainability. 

2.3 Economic Development 

When technological trends and design concepts of Industry 4.0 are embraced across 
the business ecosystem, it is thought that digitalization may significantly contribute 
to the sustained economic development of nations. Industry 4.0 is anticipated to 
create jobs rather than eliminate them [27]. Even though Industry 4.0 eliminates 
several low-skilled occupations, it generates limitless digitalization-related employ-
ment prospects. Industry 4.0 might enable less-developed nations to leapfrog their 
unrealized industrial progress and hasten the modernization of their economies [28, 
29]. Industry 4.0 is anticipated to have additional effects on management and future 
employment, enabling the creation of new business models that will have a significant 
impact on industry and sectors of the economy, ultimately affecting the entire product 
lifecycle, developing a different way of producing goods and conducting business, 
allowing the optimization of processes and boosting the company’s competitiveness 
[4, 30]. In contrast, the growth of the circular economy is aided by the sustainability 
of operations management brought about by the use of Industry 4.0 digitalization 
[31]. Given that the ramifications of Industry 4.0 extend beyond the supply chain 
or industry borders and encompass distribution channels and the marketplace, the 
proliferation of smart manufacturing will present good chances for different facets 
of sustainable economic growth [32]. 

2.4 Business Model Innovation 

Industry 4.0’s implications for business elements allow identifying several transfor-
mation strategies for obsolete models. First, an enhancement of the conventional 
business model through incremental innovation in value generation, as well as value 
delivery, has already been outlined; Second, radical innovation has been defined as 
diversifying the actual business model by reconfiguring value-networked ecosys-
tems; third, a new business model paradigm founded on the amortization of goods 
and services has been presented [33, 34]. Furthermore, industry 4.0 has a significant
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impact on business models due to the fact that this new production paradigm requires 
a new mode of communication throughout supply chains. Industry 4.0 entails the 
existence of a comprehensive communication network linking businesses, suppliers, 
resources, logistics, factories, and customers [35]. Each sector improves its config-
uration in real-time based on the needs and conditions of related sections in the 
network, maximizing the revenue for all cooperatives with little resource sharing. 
The issue of business models is resolved in light of how a company’s positioning aids 
in comprehending how to earn profits from Industry 4.0. Positioning as an Industry 
4.0 user and provider influences SME business models [4]. 

2.5 Human Resource Development 

Industry 4.0 and digital transformation are significantly altering human resources’ 
working ways. Experts think that system simplification, automation, and improved 
decision-making may considerably increase human resource productivity [36]. AI 
and data analytics technologies, for instance, can help managers identify relevant 
patterns from employee data and offer customized career development or educa-
tional methods based on every employee’s behavior, experience, talents, person-
ality, and learning habits. Using IoP in a business environment, also known as social 
intranets, enables employers and employees to connect more openly and interactively, 
closing the communication gap between leaders, managerial levels, and employees 
[29]. Moreover, graphical and simulation systems such as AVR provide one of the 
most efficient methods for industrial training. AVR provides a cheaper, safer, faster, 
and more effective learning environment. Before committing to complex or deli-
cate repairs, maintenance professionals, for instance, might rehearse them safely 
and increase their preparedness [37]. In addition, organizations may use AI and 
advanced analytics to examine the background of a particular employment post 
and select the most qualified individuals with the necessary skills from the pool 
of current talent. In turn, digitally connected human resource development programs 
provide several chances for socioeconomic sustainability, such as staff productivity 
and overall business efficiency [38, 39]. 

2.6 Sustainable Resources Development 

Industry 4.0’s digital revolution promotes environmental sustainability through 
resource transformation and sustainable energy. Industry 4.0 radically revolution-
izes civilizations’ production, commerce, consumption, and lifestyle [40]. Digital-
izing energy technologies, such as wireless networks and blockchain technology, has 
created significant prospects for the sector’s advancement [41]. Smart grids facili-
tating the convergence of power networks and renewable technologies are an example 
of generally accepted digitalization implications [29]. concluded that Industry 4.0’s



192 M. Kamali Saraji and D. Streimikiene

contribution to energy sustainability begins with digitizing the supply side of the 
energy sector, specifically by reducing the operational and maintenance costs of 
energy plants and energy generation facilities, enhancing the efficiency and safety of 
energy delivery networks, and enhancing the overall visibility and control of energy 
production and delivery operations. Sustainable energy development is only one 
of the benefits of Industry 4.0 adoption. Also, efficient allocation and production 
systems, advanced digital manufacturing techniques, and smart material planning 
have considerably increased material efficiency and cost savings, opening the road 
for sustainable development [42]. Furthermore, decentralization, interoperability, 
consolidation, and real-time capacity of Industry 4.0 have significant time efficiency 
implications for manufacturing cycle time [21]. 

2.7 Efficiency and Productivity 

Industry 4.0’s effects on manufacturing productivity and efficiency are well-
documented. Industry 4.0’s digitalization of production permits developing and 
implementing a hybrid systems engineering ecosystem to endorse the product person-
alization philosophy [43]. Consequently, the asynchronous manufacturing capabil-
ities of the lean supply chain would enable mass-production-capable production 
facilities to successfully meet ever-changing client demands, even though they are 
of small-batch or even a single-item production [44, 45]. Alternately, automation 
and interoperability assist in manufacturing efficiency and productivity by allowing 
essential maintenance, monitoring machine effectiveness, enhancing scheduling 
efficiency, and decreasing machine downtime. Moreover, industrial automation 
decreases human interference, resulting in fewer human mistakes, decreased risk, and 
fewer safety problems [46]. On top of that, it is concluded that industry 4.0 enhances 
flexibility and resource efficiency by turning disconnected and manual manufac-
turing operations into interconnected and digitalized, interoperable systems in an 
innovative environment that can enable decision-making across massive actual data, 
tangible interactions, and cooperation with machines, sensors, and operators, thereby 
enhancing decision-making processes and accelerating collaboration [29, 47]. 

2.8 Ecological Responsibility 

Owing to the emergence of proactive and reactive environmentally friendly prac-
tices, Industrial 4.0 and the digitalization of the industrial sector have significant 
consequences for socioeconomic sustainability [48]. For instance, additive manufac-
turing technologies enable the creation of new eco-friendly items. Eco Balance, Life 
cycle assessment, and eco-efficiency benchmarking are information-intensive envi-
ronmental management approaches [49]. Industry 4.0, directed by smart technolo-
gies and manufacturing mechanisms, would potentially minimize industrial waste,
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overproduction, goods mobility, and energy use [26]. From the economic sustain-
ability perspective, the digital revolution would enable enterprises to acquire market 
knowledge and other environmental sustainability prospects [22]. Regarding waste 
reduction and material efficiency, the productivity effects of Industry 4.0, empow-
ered by production flexibility, collaborative production management, design modu-
larity, and supply chain-wide knowledge management capabilities, present numerous 
opportunities for environmental sustainability [50]. 

2.9 Flexible and Agile Production 

Today’s manufacturers face demand instabilities, product customization require-
ments, and decreased product and production technology longevity. Industry 4.0 aids 
enterprises’ sustainability under these conditions by allowing enterprises to estab-
lish a more flexible and agile production system [51]. Intelligent Next-Generation 
Enterprise Resource Planning (ERP), big data analytics, digital twins, and indus-
trial simulation allow businesses to effectively manage environmental uncertainties, 
micromanage change processes, and transform their current business model(s) in a 
turbulent business environment [52]. In the context of Industry 4.0, the digitalized 
virtual intimacy and cloud-based ability to connect across value chains, intelligent 
production plants, and decentralization would establish an agile and lean manufac-
turing ecosystem that allows rapid reaction and adaptation strengths in response to 
adapt and environmental uncertainties [53, 54]. 

2.10 Social Welfare Improvement 

Numerous employment options and an increase in minimum earnings due to the 
skill-intensive nature of new professions in the context of Industry 4.0 can effec-
tively combat economic inequality [55]. In addition, the new marketing and distri-
bution strategies and the resources, materials, and production efficiency provided 
by smart-digitized manufacturing are anticipated to increase the worldwide avail-
ability and affordability of goods and services [56]. Furthermore, Industry 4.0 and 
the new paradigm of digitalized production can provide excellent chances to reduce 
income and wealth inequality [57]. Numerous employment options and an increase 
in minimum earnings due to the skill-intensive nature of new professions in Industry 
4.0 can effectively combat economic inequality [58]. Moreover, Business model 
innovation within Industry 4.0, the PaaS model, in particular is altering the notion 
of ownership by diminishing the value of prized assets and facilitating the afford-
ability of commodities when required [22]. In other words, digital transformation is 
integrating and utilizing digital technology to boost production and social welfare. 
Beyond products, digitalization impacts the business model, management systems, 
organization, and the entire value chain [59].
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2.11 Job Creation 

According to studies, industry 4.0 substantially influences the recruiting industry. In 
Industry 4.0, robotic systems, autonomous machines, and intelligent devices replace 
people in various tasks, including inventory monitoring, quality management, and 
product distribution [28, 60]. Furthermore, Industry 4.0 technologies support the 
TBL ideas through enhanced productivity, monitoring of energy usage, reduced 
resource consumption, a secure work environment, higher staff satisfaction, and new 
employment development [61]. Moreover, collaboration in public policy is required 
to investigate the future environmental and social benefits of digital technology. In 
other words, Industry 4.0 and the digitalization of the manufacturing sector lead to 
a sustainable future economy, creating many sustainable manufacturing-related jobs 
[29]. Besides, scholars anticipate that Industry 4.0 will destroy a sizable part of low-
to middle-skilled positions and counteract the automation-related job loss by creating 
countless new job openings in informatics, system integration, process engineering, 
and mechatronics [62]. The social and environmental sustainability consequences 
of Industry 4.0 are also not confined to generating job possibilities associated with 
digitalization [29]. 

2.12 Manufacturing Cost Reduction 

By incorporating existing technologies to support a more viable approach for Industry 
4.0 requirements, technology companies could indeed reduce these costs while 
gaining access to a more significant segment of consumers, thereby boosting their 
revenues and reaching marginal cost reduction, which requires a more extensive 
convergence of technological developments and standardized solutions [21, 63, 64]. 
Industry 4.0’s cost-saving benefits for the manufacturing sector are extensively 
studied. The improved process controllability, accident prevention and real-time 
monitoring, non-stop production, improved manufacturing quality and precision, 
maintenance efficiency, lower human errors, higher equipment effectiveness, stream-
lined procurement processes, quality decision-making, material/resource/energy effi-
ciency, and reduced human resource costs are some Industry 4.0 advantages for 
reducing the manufacturing cost [65–67]. 

2.13 Modularized Production 

Numerous businesses are attracted to Industry 4.0 due to the promise of person-
alized and customized manufacturing at the exact cost of mass production [68]. 
Industry 4.0 and the underpinning intelligent digital technologies can promote 
sustainability by empowering firms to adopt a modular system for manufacturing
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processes, engineering, production, and distribution [69]. Moreover, based on I4.0, 
intelligent machines and elements in a digital network generate a so-called cyber– 
physical platform that supports modular and variable manufacturing as a require-
ment for unique single-item production [70, 71]. Also, the modular product design 
provides benefits such as a quicker time to market, decreased production costs and 
complexity, increased product quality, a longer operational lifetime, and energy and 
material economy [72]. Furthermore, the supportive involvement of Cyber–Physical 
Production Systems (CPPS) and IIoT and interoperability would enable the phys-
ical modularization of manufacturing equipment, infrastructures, or entire produc-
tion networks, conditions that allow production facilities to be easily converted 
and utilized for substitute processes and technologies without high reconfigura-
tion and automation costs [73]. Production modularization offers further sustain-
ability benefits, including increased productivity, enhanced process stability, product 
customization, and decreased waste and lead times [74]. 

2.14 Security Improvement 

The consequences of Industry 4.0 on risk management and planning are varied. 
End-to-End (E2E) visibility will increase as a result of the implementation of IIoT, 
semantic technology, cloud data, and advanced analytics, as well as the elimination 
of information silos and the streamlined flow of data regarding plant capacity, inven-
tory level, procurement schedules, machine conditions, and transportation routes [26, 
75]. In turn, the data-driven E2E accessibility leads to a decrease in manufacturing 
risk and improved stability. In addition, many Industry 4.0-related advancements 
incorporate sophisticated safety precautions, such as open SAFETY, for manufac-
turing machines’ safe and dependable running. Industry 4.0-compatible solutions 
for maintenance management that enable autonomous and real-time troubleshooting 
and problem-solving of assets greatly minimize safety concerns in dynamic produc-
tion situations [46, 76]. Consequently, Industry 4.0 enables producers to recognize 
possible problems in real-time and take preventative measures before they become 
actual threats. Smart safety wearables Intelligent cameras, AI-based location aware-
ness systems, and smart sensors may identify and report any human or machine 
activity that poses a safety danger. Industry 4.0 has also been linked to the rising use 
of safer and more smart Collaborative Robots (cobots) in intelligent factories [29]. 
As a result of improvements in AI, machine learning, data analytics, and smarter 
cobots now have enhanced danger recognition and risk evaluation capabilities. Intel-
ligent cobots better perceive the world surrounding them, decrease operational risk, 
and make the human workforce safer [77, 78].
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2.15 Personalization 

Industry 4.0 offers new possibilities for product customization. Manufacturers may 
remain competitive in the era of digitalization by using the production customiza-
tion strategy, the most recent differentiation strategy [79]. Industry 4.0 improves 
manufacturing processes’ adaptability to construct items with a high degree of 
personalization, similar to the artisanal manufacturing age. This circumstance is 
particularly pertinent to SMBs owing to their agility. Industry 4.0 helps manufac-
turers adapt to increased customization since buyers value individualized services 
and goods more than conventional offers. By focusing on high-margin items and 
production process innovation, SMEs may maintain their competitive edge over 
multinational rivals by producing customized products with short lead times [80]. 
The current availability of additive manufacturing and smart factory production flexi-
bility enables manufacturers to create Ultra-Personalized Products (UPPs) depending 
on customer preferences and novel concepts. As a result of introducing flexible large-
scale production systems, customers may obtain UPPs at a much more reasonable 
cost, and producers can earn a more significant profit per product unit [80]. More-
over, data mining technologies have represented a growing to engage and interact 
with customers directly and gather and analyze a vast quantity of data about client 
preferences and consumption patterns [81]. Also, AI-based production planning and 
digital twin models contribute to the optimal synchronization of concurrently created 
UPPs’ manufacturing practices and operations at the production level [82]. 

2.16 Supply Chain Digitization and Integration 

Traditional supply chains are transformed into the Digital Supply Network (DSN) 
due to technological advancements such as IIoT, Blockchain, cloud computing, and 
sophisticated analytics [29, 83]. Ghobakhloo [29] mentioned that DSN consists of 
three distinct functional levels. At the physical-digital layer of the value network, 
signals are gathered using smart technology, machine vision, and actuators. Machine 
and process controllers convert physical world signals into meaningful digital data, 
including the control system and control systems. Artificial intelligence (AI) and busi-
ness analytics capabilities in most current ERP packages provide actionable insights 
from digital records at the digital-digital layer. Tangible resources across the supply 
network autonomously execute AI-driven choices based on the digital record at the 
digital-physical layer. The real-time, dynamic, integrative, intelligence, scalable, and 
agility characteristics of DSNs provide numerous benefits, including deeper customer 
integration, financial flow integration, increased operational efficiency, marketing 
effectiveness, ad hoc dynamic planning, collaborative planning, collaborative product 
design, and supply chain-wide workload equality [66, 75]. In addition, DSNs may 
dramatically reduce digital waste and provide supply members with competitive
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differentiation owing to improved data gathering and administration, information 
integration, and physical process execution [67]. 

3 Methodology 

The present study evaluates five Lithuanian SMEs’ performance in adopting industry 
4.0 for sustainability. To this end, The CRITIC method, proposed by Diakoulaki 
et al. [84], is applied to compute the objective weight of indicators. Afterward, the 
TOPSIS method evaluates the SMEs concerning the identified indicators. Several 
studies integrated these two methods to deal with MCDM problems under various 
types of fuzzy environments. For instance [85], integrated these two methods to 
select a hybrid REs System for households using crisp numbers. Xu et al. [86] 
combined these two methods to select a set of Pareto solutions determined by a 
novel non-dominated sorting genetic algorithm [87]. integrated these two methods 
to assess low-cost airlines’ financial performance and service quality [88]. combined 
these two methods to evaluate the financial performance of Serbian banks using crisp 
numbers. Also, Adalı and Tuş [89] integrated CRITIC with several MCDM methods, 
including TOPSIS, to rank hospital sites using crisp numbers. 

However, the present study integrated CRITIC and TOPSIS under Fermatean 
fuzzy sets to deal with uncertainty and indeterminacy in decision making. Fuzzy sets 
(FSs) theory has been widely utilized by scholars to deal with uncertainty and impre-
cision. Atanassov [90] developed the concept of Intuitionistic fuzzy sets (IFSs), an 
extension of the standard fuzzy theory in which the sum of belongingness degree 
(BD) and non-belongingness degree (NBD) should always be less than or equal 
to one. After that, Yager [91] suggested Pythagorean fuzzy sets (PFSs) to address 
the constraints of IFSs and deal with ambiguity, uncertainty, and imprecision in 
real-world applications. Numerous researchers have applied PFSs to various fields, 
including diagnosing diseases, managing hospital waste, sustainable supplier assess-
ment, evaluating pharmacological therapy, and improving pattern recognition [92]. 
Nevertheless, whenever the squared summation of BD. and NBD is more than one, 
Pythagorean fuzzy sets are inapplicable, which prompted [93] to design Fermatean 
fuzzy sets (FFSs) to overcome the problem mentioned above. In particular, the cube 
total of BD. and NBD is below or equal to one in FFSs, allowing FFSs more capable 
of adequately addressing complicated MCDA concerns. 

Regarding the experts, the present study asked three experts’ opinions concerning 
the five Lithuanian SMEs based on identified indicators. To this end, linguistic 
variables are used shown in Table 1.
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Table 1 FFNs. and 
equivalent linguistic terms 

Linguistic terms FFNs 

Medium−Low (ML) (0.4, 0.5, 0.93) 

Low (L) (0.25, 0.6, 0.92) 

Very Low (VL) (0.1, 0.75, 0.83) 

Extremely Low (EL) (0.1, 0.9, 0.65) 

Medium (M) (0.5, 0.4, 0.93) 

Extremely High (EH) (0.9, 0.1, 0.65) 

Very High (VH) (0.8, 0.1, 0.79) 

High (H) (0.7, 0.2, 0.87) 

Medium−High (MH) (0.6, 0.3, 0.91) 

3.1 Preliminaries 

Definition 1. Senapati and Yager [93] Let Δ a restricted universe of discourse; 
consequently, the first equation is shown as a fermatean fuzzy set. 

F = {⟨ fi , (bF ( fi ), nF ( fi ))⟩| fi ∈ Δ } (1) 

In which bF : Δ → [0.1] indicates the belonging degree of the element fi ∈ Δ in 
an FFS, and bF : Δ → [0.1] shows the non-belonging degree of the element fi ∈ Δ

in an FFS. Also, the condition 0 ≤ (
b f ( fi )

)3 + (nF ( fi ))3 ≤ 1 must be fulfilled for 
each fi ∈ Δ. 

Definition 2. Senapati and Yager [93] Assume γ = (
bγ , nγ

)
, the indeterminacy 

degree of an FFS is shown by Eq. 2. 

πγ = 3

/
1 − b3 γ − n3 γ (2) 

where bγ and nγ ∈ [0, 1], and 0 ≤ b3 γ + n3 γ ≤ 1. 

Definition 3. Senapati and Yager [93] Let  λ = (bλ, nλ) an FFS, the score and accuracy 
functions of γ is computing by Eqs. 3 and 4 

Fs(γ ) = b3 γ − n3 γ | − 1 ≤ Fs(γ ) ≤ 1 (3)  

Fa(γ ) = b3 λ + n3 γ | 0 ≤ Fa(λγ ) ≤ 1 (4)  

Moreover, The following comparable methods may be employed to rank γ1 =(
bγ1 , nγ1

)
and γ2 =

(
bγ2 , nγ2

)
. 

(a) If Fs(γ1) > Fs(γ2) then γ1 > γ2 
(b) If Fs(γ1) < Fs(γ2) then γ1 < γ2
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(c) If F(γ1) = Fs(γ2) then, 

I. If Fa(γ1) > Fa(γ2) then γ1 > γ2. 
II. If Fa(γ1) < Fa(γ2) then γ1 < γ  . 
III. If Fa(γ1) = Fa(γ2) then γ1 = γ . 

Definition 4. Senapati and Yager [93] assume γ = (
bγ , nγ

)
, γ1 =

(
bγ1 , nγ1

)
and γ2 =(

bγ2 , nγ2

)
are three FFSs. Some operators for FFSs are presented using equations five 

to eleven. 

γ c = (
nγ , bγ

)
(5) 

γ1 ∩ γ2 =
(
min

{
bγ1 , bγ2

}
, max

{
nγ1 , nγ2

})
(6) 

γ1 ∪ γ2 =
(
max

{
bγ1 , bγ2

}
, min

{
nγ1 , nγ2

})
(7) 

γ1 ⊕ γ2 =
(

3

/
b3 γ1 + b3 γ2 − b3 γ1 b3 γ2 , nγ1nγ2

)
(8) 

γ1 ⊗ γ2 =
(
bγ1bγ2 , 3

/
n3 γ1 + n3 γ2 − n3 γ1 n3 γ2

)
(9) 

lγ =
(

3

/
1 − (

1 − b3 γ
)l 

,
(
nγ

)l
)

, l > 0 (10)  

γ l =
(
(
bγ

)l 
,

3

/
1 − (

1 − n3 γ
)l
)

, l > 0 (11) 

3.2 Proposed FF-CRITIC-TOPSIS 

Step 1. A matrix for experts’ opinions 

Assume that, {E1, E2, . . . ,  Em} be a set of SMEs, {I1, I2, . . . ,  In} a set of indicators, 
and

{
DE1, DE2, . . . ,  DE  p

}
a group of Decision Experts, supporting each enter-

prise Ei concerning an indicator I j using Fermatean fuzzy linguistic variables. The 

decision matrix (D) is D =
(
ok i j

)
, f ori  = i, . . . ,  m; j = 1, . . . ,  n, while ok i j  indi-

cates the given idea regarding the enterprise (i) concerning the indicator (j) by kth 
decision experts [94]. 

Step 2. Experts’ significance 

FFNs present DEs’ significances; then ωk = (bk, nk) is the importance of kth decision 
expert. Equation 12 is used to calculate experts’ significance.
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ωk =
(
b3 k + π 3 k ×

(
b3 k 

b3 k+n3 k

))

Σ p 
k=1

(
b3 k + π 3 k ×

(
b3 k 

b3 k+n3 k

)) , K = 1, . . . ,  p; ωk ≥ 0, 
pΣ 

1 

ωk = 1. (12) 

Step 3. Aggragation 

Fermatean fuzzy weighted averaging (FFWA) operator aggregates individual deci-

sion matrices. Let 
◦ 
A = (

ai j
)
m×n be the aggregated FF-decision matrix, where. 

ai j  = 

⎛ 

⎝ 3
 ⎡⎟
⎟⎟1 − 

r⊓

k=1

(
1 −

(
bk i j

)3)ωk 

, 
r⊓

k=1

(
nk i j
)ωk 

⎞ 

⎠ (13) 

Step 4. CRITIC 

Step 4.1. A matrix for scores 

Constructing a matrix, Λ = (
ki j
)
m×n , for scores is the first step of CRITIC, 

constructed by Eq. 14. 

ki j  = 
1 

2

[(
b3 j − n3 j − ln

(
1 + π 3 j

))+ 1
]
, for i = 1, .  .  .  ,  m (14) 

Step 4.2. Normalization 

The normalized score matrix Λ̃ =
(
k̃i j
)

m×n 
is constructed by Eq. 15. 

k̃i j  = 

⎧ 
⎨ 

⎩ 

ki j−k− 
j 

k+ 
j −k− 

j 
, j ∈ Nb 

k+ 
j −ki j  

k+ 
j −k− 

j 
, j ∈ Nn 

(15) 

where k− 
j = min 

i 
ki j  and k

+ 
j = max 

i 
ki j  . 

Step 4.3. Standard deviation 

Standard deviations are computed by Eq. 16. 

σ j =

 ⎡⎟⎟⎟
Σ m 

i=1

(
k̃i j  − k j

)2 

m 
(16) 

Step 4.4. Correlation 

Correlations are calculated by Eq. 17.
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r j t  =
Σ m 

i=1

(
k̃i j  − k j

)(
k̃i t  − kt

)

/
Σ m 

i=1

(
k̃i j  − k j

)2Σ m 
i=1

(
k̃i t  − kt

)2 
(17) 

Step 4.5. Information quantity 

The information quantity is computed by Eq. 18. 

ν j = σ j

(
nΣ 

t=1

(
1 − r j t

)
)

(18) 

Step 4.6. Weight determination 

Equation 19 is used to determine the weight of indicators.

w j = ν jΣ m 
i=1 ν j 

(19) 

Step 5. Fermatean fuzzy positive and negative ideal solutions 

S+ =
{(

max 
i 

ki j | j ∈ J
)

,

(
min 
i 

ki j | j ∈ j ,
)

| i = 1, . . . ,  m
}

= {
k+ 
1 , k

+ 
2 , .  .  .  ,  k+ 

n

}
(20) 

S− =
{(

min 
i 

ki j | j ∈ J
)

,

(
max 

i 
ki j | j ∈ J ,

)
| i = 1, . . . ,  m

}

= {
k− 
1 , k

− 
2 , .  .  .  ,  k− 

n

}
(21) 

Step 6. Relative closeness 

Relative closeness to the fermatean fuzzy ideal solutions is calculated by Eq. 22 [95]. 

R(Ki ) = Y − 
i 

Y − 
i + Y + 

i 

for i = 1, . . . ,  m 

where 

Y − 
i = dis

(
S−, zi j

)
= w j 

 ⎡⎟
⎟
⎟ 1 

2

[(
(
bi j

)3 −
(
b− 
j

)3)2 +
(
(
ni j

)3 −
(
n− 
j

)3)2 +
(
(
πi j

)3 −
(
π − 
j

)3)2
]

Y + 
i = dis

(
S+, zi j

)
= w j 

 ⎡⎟⎟
⎟ 1 

2

[((
bi j

)3 −
(
b+ 
j

)3)2 +
((

ni j
)3 −

(
n+ 
j

)3)2 +
((

πi j
)3 −

(
π + 
j

)3)2
]

(22)
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4 Results 

In the first step, the decision-making matrix should be constructed. It is assumed 
that the importance of the first expert is (0.8, 0.45, 0.67), for the second one is 
(0.75, 0.55, 0.74), and the third one is (0.8, 0.5, 0.71). Table 2 shows the decision-
making matrix.

After determining the significance of the DEs, the aggregated decision-making 
matrix must be generated, as depicted in Table 3.

Next, it is necessary to generate and normalize the score matrix. In Table 4, the  
normalized score matrix is displayed. In addition, Table 4 displays the standard 
deviation, the amount of data, and the weight of the indicators.

Table 5 indicates the positive and negative ideal solutions.
The relative closeness and result ranking of the enterprises are displayed in Table 

6.
According to the results, the preference order of the SEMs concerning the iden-

tified industry 4.0 adoption indicators for sustainability is E5 > E2 > E4 > E3 > 
E1. 

5 Sensitivity Analysis 

This section determines the weight of various indicators and assesses the method’s 
sensitivity to the weight change. In other words, n sets of indicator weights must be 
specified for the sensitivity analysis if there are n indicators. Each set has the most 
critical (weighted) and least important (unweighted) criteria, whilst others contain 
weights between the most and least important criteria [96]. The preceding stage 
should generate sixteen sets of indicator weights for the sensitivity analysis. The 
proportional value of each indicator in each set is displayed in Table 7.

SMEs were also ranked for each set after determining the weight of indicators 
in each set. Figure 1 displays the outcomes of the sensitivity analysis. According to 
Fig. 1, the proposed method is weight dependent, yet E5 is the optimal enterprise in 
most cases.

6 Discussion 

According to the results, the most critical indicator is “flexible and agile produc-
tion.“ Generally speaking, by implementing a new technology, Industry 4.0 may 
help manufacturing organizations achieve cost-efficiency and flexibility in indus-
trial manufacturing processes. Agile manufacturing establishes a real-time produc-
tion system that can rapidly switch between product models or business units in
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Table 2 Decision-making matrix 

E1 E2 E3 E4 E5 

I1 DE1 MH H ML L EH 

DE2 ML M ML MH H 

DE3 L L ML ML M 

I2 DE1 MH ML L MH MH 

DE2 H MH ML VL H 

DE3 MH M L M MH 

I3 DE1 L MH ML H MH 

DE2 MH ML L VH H 

DE3 MH H ML L H 

I4 DE1 L H M H H 

DE2 M H VL ML MH 

DE3 L MH M M M 

I5 DE1 H ML L EH VH 

DE2 ML ML M M MH 

DE3 EL MH MH ML L 

I6 DE1 M M VL L M 

DE2 M ML ML L L 

DE3 L ML ML ML VH 

I7 DE1 VL MH H ML L 

DE2 ML ML M L MH 

DE3 ML H H L M 

I8 DE1 M MH H M H 

DE2 ML VH H MH H 

DE3 ML MH MH ML H 

I9 DE1 ML MH H L VL 

DE2 MH MH ML VH ML 

DE3 MH ML MH L L 

I10 DE1 ML M MH MH L 

DE2 H MH ML EH M 

DE3 ML ML H ML VL 

I11 DE1 ML ML ML M ML 

DE2 H MH ML M H 

DE3 H ML MH MH M 

I12 DE1 M MH ML H ML 

DE2 VH M M M MH 

DE3 ML ML M MH L

(continued)
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Table 2 (continued)

E1 E2 E3 E4 E5

I13 DE1 ML ML H MH ML 

DE2 VL MH VL M ML 

DE3 EL H L ML ML 

I14 DE1 MH M ML M H 

DE2 VH MH ML M H 

DE3 EH MH M ML H 

I15 DE1 MH M H EH ML 

DE2 VL MH H H L 

DE3 VL H ML MH ML 

I16 DE1 H MH H ML VH 

DE2 H H VH L MH 

DE3 MH MH VH ML M

Table 3 Aggregated decision-making matrix 

E1 E2 E3 E4 E5 

I1 G(0.47,0.45,0.93) G(0.56,0.37,0.92) G(0.40,0.50,0.93) G(0.46,0.45,0.93) G(0.77,0.20,0.81) 

I2 G(0.64,0.26,0.90) G(0.51,0.39,0.93) G(0.31,0.57,0.92) G(0.49,0.44,0.93) G(0.64,0.26,0.90) 

I3 G(0.54,0.38,0.93) G(0.60,0.31,0.91) G(0.37,0.53,0.93) G(0.68,0.24,0.88) G(0.67,0.23,0.88) 

I4 G(0.37,0.41,0.96) G(0.67,0.20,0.88) G(0.44,0.53,0.92) G(0.57,0.39,0.91) G(0.61,0.23,0.91) 

I5 G(0.53,0.45,0.91) G(0.49,0.42,0.93) G(0.50,0.41,0.93) G(0.73,0.27,0.84) G(0.65,0.26,0.89) 

I6 G(0.44,0.46,0.93) G(0.44,0.46,0.93) G(0.35,0.57,0.92) G(0.32,0.56,0.92) G(0.64,0.28,0.90) 

I7 G(0.35,0.57,0.92) G(0.60,0.31,0.91) G(0.66,0.25,0.89) G(0.32,0.56,0.92) G(0.49,0.42,0.93) 

I8 G(0.44,0.50,0.92) G(0.69,0.15,0.88) G(0.67,0.23,0.88) G(0.51,0.36,0.94) G(0.70,0.20,0.87) 

I9 G(0.55,0.36,0.92) G(0.55,0.36,0.92) G(0.60,0.31,0.91) G(0.59,0.34,0.91) G(0.30,0.61,0.91) 

I10 G(0.55,0.38,0.92) G(0.51,0.40,0.93) G(0.60,0.31,0.91) G(0.74,0.25,0.83) G(0.36,0.57,0.92) 

I11 G(0.64,0.27,0.90) G(0.49,0.43,0.93) G(0.49,0.42,0.93) G(0.54,0.36,0.93) G(0.57,0.35,0.92) 

I12 G(0.63,0.28,0.90) G(0.51,0.39,0.93) G(0.47,0.43,0.93) G(0.62,0.29,0.90) G(0.46,0.45,0.93) 

I13 G(0.28,0.70,0.86) G(0.60,0.31,0.91) G(0.52,0.44,0.92) G(0.51,0.39,0.93) G(0.40,0.50,0.93) 

I14 G(0.81,0.14,0.77) G(0.57,0.33,0.92) G(0.44,0.46,0.93) G(0.47,0.43,0.93) G(0.70,0.20,0.87) 

I15 G(0.43,0.55,0.91) G(0.62,0.29,0.90) G(0.64,0.28,0.90) G(0.78,0.18,0.80) G(0.37,0.53,0.93) 

I16 G(0.67,0.23,0.88) G(0.64,0.23,0.90) G(0.77,0.10,0.81) G(0.37,0.56,0.92) G(0.67,0.33,0.87)

response to the customer’s product type and quantity requirements. Agile manufac-
turing, unlike lean manufacturing, prioritizes flexibility over cheap cost. For agile 
manufacturing to implement a corporate-wide adaptable strategy, delivery, produc-
tion machinery, workers, and the organization must be flexible. On top of that, agile 
manufacturing may be a foundation for adopting or even inventing Industry 4.0 tech-
nologies, according to another take on the relationship between agile manufacturing
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Table 4 CRITIC results 

E1 E2 E3 E4 E5 σ j ν j w j Rank 

I1 0.11 0.30 0.00 0.10 1.00 0.252 0.218 0.055 14 

I2 0.00 0.49 1.00 0.57 0.00 0.339 0.257 0.065 4 

I3 0.44 0.69 0.00 1.00 0.98 0.501 0.238 0.060 11 

I4 0.00 1.00 0.06 0.52 0.74 0.378 0.217 0.055 15 

I5 0.08 0.00 0.01 1.00 0.58 0.280 0.257 0.065 5 

I6 0.29 0.27 0.03 0.00 1.00 0.264 0.223 0.056 13 

I7 0.03 0.78 1.00 0.00 0.40 0.362 0.254 0.064 6 

I8 0.00 0.94 0.85 0.24 1.00 0.492 0.237 0.060 12 

I9 0.77 0.77 1.00 0.95 0.00 0.563 0.311 0.079 1 

I10 0.38 0.30 0.54 1.00 0.00 0.361 0.241 0.061 10 

I11 1.00 0.00 0.04 0.32 0.48 0.304 0.277 0.070 3 

I12 0.00 0.73 0.94 0.11 1.00 0.453 0.245 0.062 7 

I13 0.00 1.00 0.65 0.68 0.36 0.435 0.216 0.054 16 

I14 1.00 0.24 0.00 0.05 0.58 0.309 0.279 0.070 2 

I15 0.05 0.46 0.51 1.00 0.00 0.331 0.243 0.061 9 

I16 0.64 0.55 1.00 0.00 0.64 0.456 0.245 0.062 8

Table 5 Positive and 
negative ideal solutions 

S+ S− 

I1 G(0.77,0.20,0.81) G(0.40,0.50,0.93) 

I2 G(0.31,0.57,0.92) G(0.64,0.26,0.90) 

I3 G(0.68,0.24,0.88) G(0.37,0.53,0.93) 

I4 G(0.67,0.20,0.88) G(0.37,0.41,0.96) 

I5 G(0.73,0.27,0.84) G(0.49,0.42,0.93) 

I6 G(0.64,0.28,0.90) G(0.32,0.56,0.92) 

I7 G(0.66,0.25,0.89) G(0.32,0.56,0.92) 

I8 G(0.70,0.20,0.87) G(0.44,0.50,0.92) 

I9 G(0.60,0.31,0.91) G(0.30,0.61,0.91) 

I10 G(0.74,0.25,0.83) G(0.36,0.57,0.92) 

I11 G(0.64,0.27,0.90) G(0.49,0.43,0.93) 

I12 G(0.46,0.45,0.93) G(0.63,0.28,0.90) 

I13 G(0.60,0.31,0.91) G(0.28,0.70,0.86) 

I14 G(0.81,0.14,0.77) G(0.44,0.46,0.93) 

I15 G(0.78,0.18,0.80) G(0.37,0.53,0.93) 

I16 G(0.77,0.10,0.81) G(0.37,0.56,0.92)
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Table 6 FF-TOPSIS outputs 

Companies Y + 
i Y − 

i R(Ki ) Rank 

E1 0.17 0.09 0.34 5 

E2 0.14 0.13 0.49 2 

E3 0.14 0.12 0.47 4 

E4 0.13 0.13 0.48 3 

E5 0.13 0.13 0.52 1

and Industry 4.0. Manufacturing agility could be achieved without affecting the 
knowledge and skills of the workforce. Substantial utilization of the organization’s 
technological resources necessitates knowledgeable personnel and inventiveness, 
which is needed for agile production [97, 97]. 

Furthermore, the present research employed a new fermatean fuzzy CRITIC-
TOPSIS method to evaluate Lithuanian SEMs concerning the identified indicators. 
The results indicated that the proposed method could effectively resolve multi-criteria 
problems characterized by uncertainty and indeterminacy. The primary benefits of 
the FF-CRITIC-TOPSIS are presented below. 

• The proposed methodology could be applied to problems under conventional, 
Intuitionistic, and Pythagorean fuzzy sets in addition to Fermatean fuzzy sets. 

• FFNs were used to address the ambiguity and uncertainty inherent in multi-criteria 
problems. Additionally, the degree of indeterminacy was addressed at every level 
of the suggested approach, which improved its efficiency; thus, the proposed 
model could effectively deal with complex multi-criteria problems. 

• Objective weights were determined using the CRITIC approach to avoid subjec-
tivity, which might be viewed as a benefit over conventional techniques. Conse-
quently, the FF-CRITIC-TOPSIS may produce more precise results than previous 
approaches. 

7 Conclusions 

The present study investigated how SMEs adopt industry 4.0 functions to achieve 
sustainability. For this purpose, a rigorous review was done to determine indicators 
of Industry 4.0 adoption in SMEs; consequently, a novel assessment method was 
proposed to evaluate the SMEs concerning the identified indicators. The results 
indicated that agile and flexible production is the essential indicators; thus, it could 
be concluded that Industry 4.0 could benefit SMEs by boosting their flexibility and 
agility through employing digital technologies. It has become more critical during the 
Covid-19 pandemic due to the digital transformation, which highlights flexibility and 
agility at both organizational and individual levels, especially regarding the delivery 
of products and services. On top of that, the proposed method could determine
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Fig. 1 Sensitivity analysis
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indicators’ weight without subjectivity, making the proposed method a practical 
approach to dealing with various multi-criteria problems in different areas. 

The present study has a number of limitations, including, first, the assumption 
that indicators are independent with no interdependence; second, the experts’ unfa-
miliarity with MCDM as well as how to assist difficulties using linguistic variables 
made data collection time-consuming. In addition, it is suggested that the proposed 
methodology be applied in other places for future study and that further expert 
comments be solicited about the highlighted issues. Also recommended is using 
the Stepwise Weight Assessment Ratio Analysis (SWARA) approach to determine 
subjective weights and compare the results to the proposed method. 
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