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Carbon Nanostructures 
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and Raj Kishore Sharma 

1 Introduction 

Different methods have been adopted by researchers for synthesis of carbon nanos-
tructures; particularly, these synthesis methods are divided into two categories: One is 
bottom-up and second one is top-down approaches [1–6]. In the bottom-up approach, 
special emphasis will be given to the use of ionic liquids owing to their low volatility 
and hence allowing high-yield pyrolysis and covalent organic frameworks as a new 
low-temperature method for high structural control [7]. With a top-down approach, 
more focus will be on the metal organic frameworks as sacrificial templates and 
carbides for nanostructured carbon [8]. 

Bottom-up 

• Chemical vapor deposition 
• Sol–gel nanofabrication 
• Laser pyrolysis synthesis 
• Ionic liquid 
• Covalent organic framework.
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Top-down 

Lithography. 

• Chemical/template etching 
• MOF-derived carbon 
• Carbide-derived carbon and carbon onion. 

During the earth civilization, carbon has occupied a significant place mainly in 
the energy sector and has undergone a drastic transformation from coal as an energy 
source to activated carbon for electrical energy (batteries, solar cells, supercapac-
itor, etc.) [9]. The incredible properties of carbon to form linear (sp1), planar (sp2) 
and tetragonal configuration (sp3), high abundance, and low specific weight have 
evoked great interest in the scientific community [10]. Over a few years, signifi-
cant efforts have been made in the development of efficient carbon materials for 
different applications (energy storage, sensing, energy conversion, and harvesting, 
etc.); one of the advancements in this direction is the synthesis of carbon nanostruc-
tures. Low-dimensional materials with dimensions of structural elements (clusters, 
crystallites, or molecules) in the range of 1–100 nm are chiefly defined as nanos-
tructured carbons. There is an entire range of dimensionality in the carbon nanos-
tructures from zero-dimensional (fullerenes), one-dimensional (carbon nanotubes), 
two-dimensional (graphene sheets), to three-dimensional (fullerites, CNT ropes) with 
one another form “inverted carbons” that are basically mesoporous materials [11]. 
Nanodimension carbon structures comprise distinctiveness in the form of superior 
electrical conductivity, high surface area volume ratio, high porosity with outstanding 
mechanical, chemical, thermal, and optical properties [12]. In energy storage and 
conversion application, the role of nanostructuring is vast, and some of them are 
pointed here [13–16]: 

• Nanostructuring provides more active sites for charge storage. 
• High surface area owes to nanostructuring ensures a large contact between 

electrode and electrolyte. 
• Stress generated during electrochemical reactions also gets reduced due to porous 

structure. 
• Hollow and porous surfaces also provide spaces for filling other guest materials 

and hence can be used in multifunctional applications. 
• Porous network also reduces the ionic diffusion length. 

Hence, owing to these advantages, enormous research has been carried out to 
investigate the mechanism involved in controlling the dimension and surface chem-
istry of nanostructures. There are several ways in which nanostructuring can be done 
such as chemical vapor deposition, pyrolysis, covalent organic framework based, 
template oriented, and hydrothermal treatment, etc. [3]. On the basis of the process 
involved during synthesis, these methods are divided into two approaches: bottom-
up and top-down. The bottom-up approach involves the building of structures from 
small atoms and molecules through covalent or other force interactions, whereas the 
top-down approach involves the etching of bulk structures to generate the needed
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low-dimensional structures. Basically, the bottom approach is mainly focused on 
controlling the dimension, and a top-down approach is used to generate hollow or 
porous regions in the structures. However, with a top-down approach, the chances of 
defects generation and quantum effect increase due to the synthesis of small dimen-
sions. The origination of defects with the nanostructuring would have an impact on 
the properties of carbon nanostructures. Therefore, in most cases, the combination 
of these approaches is carried out which is named a hybrid approach [17]. In this 
chapter, some of the particular bottom-up approaches and top-down approaches have 
been discussed that are majorly used by the researchers in pursuit of controlling the 
nanostructures. 

Nanostructures are synthesized either by a bottom-up or top-down approach. 
The bottom-up approach relies on the attractive forces between the building blocks, 
whereas in the top-down approach, large materials are deconstructed to give nanos-
tructures [5, 6]. Though these approaches comprise various synthesis methods, the 
chapter will be confined to some recent non-traditional synthesis methods. 

2 Bottom-Up Approach 

2.1 Chemical Vapor Deposition 

In CVD, decomposition of gas-phase molecules to reactive species results in thin 
films with controlled stoichiometry and morphology. CVD allows for controlled 
deposition rates to give high-quality products having desired conformality [18]. 
Recently, the synthesis of carbon nanospheres via a non-catalytic chemical vapor 
deposition using low-rate acetylene gas with nitrogen gas was reported [19]. This 
strategy resulted in fluffy carbon nanospheres with spherical shape and regular size. 

A new dimension to this synthesis method was added by Fischer and coworkers, 
where they combined CVD and template synthesis [20]. With this combined 
approach, graphitic carbon nanofibers were obtained. These are open-ended uniform 
hollow tubes and can be converted to carbon nanofibers with increasing deposition 
time. Although the crystallinity of CVD grown nanotubes is low, it is superior to 
other methods in terms of yield and purity. 

2.2 Laser Pyrolysis 

This is a recent method for the synthesis of nanoscale particles especially for carbides 
(Fig. 1). In laser pyrolysis, a dilute mixture of vaporized precursors is decomposed 
by a laser to initiate nucleation. These nuclei aggregate and transported by inert gas 
and depending on the amount of air different nanoparticles are formed. Owing to
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Fig. 1 Schematic representation of two-stage configuration reactor for laser pyrolysis. Reprinted 
with permission from Sourice et al. [21]. Copyright 2015 American Chemical Society 

the fast nucleation and very short time in the reaction chamber, this method yields 
smaller nanoparticles than other vapor-phase methods. 

One-step synthesis of silicon-carbon nanoparticles using laser pyrolysis was 
reported by Reynaud and coworkers [21]. The authors utilized a CO2 laser to vaporize 
the reactants and beautifully utilized the working principle of laser pyrolysis. In the 
typical synthesis, firstly in the bottom stage, silicon cores are synthesized and trans-
ferred to the upper stage with a carrier gas where a carbon shell is deposited. This 
configuration prevents aerial oxidation of silicon surface. Silicon-carbon nanopar-
ticles formed by this method were found to be very efficient for application in 
lithium-ion batteries with improved cycling stability. 

2.3 Ionic Liquids 

Although ionic liquids were discovered decades ago, their application to derive 
carbon materials is a relatively new emerging field. There are a variety of benefits 
that ILs offer,

(i) most general is their negligible vapor pressure allowing much easier shaping, 
processing, and high yield under ambient thermal treatment, 

(ii) availability of a wide range of different cation/anion pairing enables a wide 
range of carbon nanostructures with varying heteroatoms,
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Fig. 2 Synthesis route for TSILs-derived N-doped porous carbon. Reprinted with permission from 
Lee et al. [23]. Copyright 2009 American Chemical Society 

(iii) as ILs are good solvents so carbon composites with various other substances 
can be easily prepared by simply mixing. 

Functional groups can be selectively introduced in ILs depending on the type 
of carbon required. Davis coined the term task-specific ionic liquids (TSILs) for 
ILs having specific functional groups attached for the desired property [22] as  
shown in Fig. 2. They selected ILs containing a nitrile group so that it can 
undergo cross-linking. They studied the effect of cations using 1-cyanomethyl-3-
methylimidazolium [MCNIm]+ and 1,3-bis(cyanomethyl)imidazolium [BCNIm]+ 

and interestingly found that rather than cation, the surface properties of carbona-
ceous materials are affected to a great extent by anion. BET surface area of 
bis(trifluoromethylsulfonylimide) ([Tf2N]−) and Cl− was found to be 700 m2/g and 
10 m2/g, respectively [23]. Similarly, for [C(CN)3]− anion species, BET surface area 
was found to be 90 m2/g, whereas boron and nitrogen-doped carbon from [B(CN)4]− 

anion exhibits BET surface area of 500 m2/g [24]. 
Nowadays, ILs containing more than one type of cation/anion forming complex 

supramolecular structure, referred to as deep eutectic solvents (DES), were discov-
ered. When quaternary ammonium salts in ILs complexes with hydrogen bond 
donors, then hydrogen bonding facilitates charge delocalization resulting in a eutectic 
mixture with a reduced melting point is formed. 

Carbon and carbon–carbon nanotube composites can be obtained by using a choice 
of DES [25]. They utilized DES composed of ethylene glycol and CCl to dissolve the 
reactants (resorcinol and formaldehyde). On heating monolith, resins were formed 
which were carbonized using thermal treatment. Results indicated high surface area 
for DES-based carbon monoliths than monoliths derived from aqueous media due 
to the structure effect of DES. Furthermore, it was found that MWCNTs form a 
homogeneous dispersion in DES by simple addition. This fact was observed in the 
SEM micrographs where MWCNTs were uniformly distributed in DES as compared 
to aqueous solvents.
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Although ILs are gaining much importance for designing functional carbon 
materials, in-depth investigation of the correlation between precursor and carbon 
nanostructure is required to design novel need tailored materials. 

2.4 Covalent Organic Frameworks (COFs) 

Covalent organic frameworks are porous crystalline polymers composed of ordered 
periodic building block skeletons extended in 2/3-dimensions. They provide a 
low-temperature synthesis method for crystalline carbonaceous materials with a 
controlled structure. Based on the building blocks, different geometries and dimen-
sions can be obtained. COFs are usually classified based on the linkage topology 
involved. These include (i) B–O (borates), (ii) C=N (imines), (iii) C=Naromatic 

(azines), (iv) C=C (alkenes), (v) C–N (β-ketoenamines), and (vi) B=N (borazines) 
[26]. Among these, C–N linkage possess high structural stability even in strong acids. 

Depending on the requirement, robust materials can be designed by Schiff’s 
base reaction of amines with aldehydes resulting in imines. Based on this strategy, 
Feng group reported the synthesis of the wafer-sized multifunctional conjugated 
polymer [27]. They carried out this synthesis of the 2D multifunctional polymer 
at the air–water interface by Schiff’s base polycondensation. Owing to the high 
stability of C=N, this polymer possesses a Young’s modulus comparable to graphene 
and conjugation lowers the band gap to 1.4 eV making it suitable for semiconductors. 

3 Top-Down Approach 

3.1 Lithography 

The term lithography originated from the Greek word lithos meaning stone and 
graphein meaning to write. Traditional lithography can generate various patterns 
by masking the required material and etching the exposed surface. Etching can be 
done by either chemicals or mechanically using high-energy electron beams. This 
gives rise to different types of lithography like optical lithography, soft lithography, 
block copolymer lithography, scanning probe, nanoimprint lithography, etc. Here, 
we will restrict our discussion to the recently emerged advanced technique, nanoim-
print lithography (NIL) only. This is the most important lithographic technique for 
designing advanced nanostructures due to its ability to generate high-resolution 
nanopatterns with high throughput and low cost [28]. In conventional methods, the 
resolution is limited due to diffraction or beam scattering but in NIL, there is no such 
restriction. In NIL, a nanostructured mold is pressed on substrate precoated with a 
polymeric material. NIL is further classified as—thermoplastic, photo, and electro-
chemical NIL. In thermoplastic NIL, the substrate is modified with a thin layer of a
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thermoplastic polymer. This is pressed with a patterned mold at the desired pressure. 
On heating, the polymer above glass transition temperature results in the required 
pattern on polymer [29]. In photo NIL, a substrate is modified with a photo-sensitive 
resist, and the mold is made transparent. After pressing in UV light, the resist becomes 
solid, and the pattern is transferred. Usually, polydimethylsiloxane (PDMS) is used 
for the transparent stamp as it offers a high-resolution pattern, and its low surface 
energy makes it easy to separate [30]. Fang group reported the use of stamps made 
of silver sulfide, a superionic conductor using electrochemical nanoimprint lithog-
raphy (ECNIL) [31]. Henceforth pressing, when voltage is applied, it results in elec-
trochemical etching to give the required pattern. Using ECNIL, three-dimensional 
micro-nanostructures (3D-MNS) were synthesized where ECNIL allowed for the 
synthesis of 3D-MNS with multilevel and continuously curved profiles on a crys-
talline GaAs wafer [32]. This suggests the high potential of ECNIL in semiconductor 
materials. 

3.2 MOF-Derived Carbons 

Metal organic frameworks (MOFs) consist of a regular array of metal ions and organic 
linkers to give crystalline porous materials [33, 34]. Uniform pore structure with 
tunable porosity makes them attractive candidates for various applications. To derive 
high surface area carbon, they can be directed carbonized or can be used as a template 
[35–38]. In 2008, the first synthesis of porous carbon from the MOF template was 
reported [35]. They carbonized furfuryl alcohol (additional carbon source) filled 
MOF-5 at 1000 °C. Such a high temperature helped in removing vaporized Zn metal 
with inert gas flow and attained metal-free carbon. The resulting carbon exhibited 
a high specific surface area of 2872 m2 g−1, useful for charge storing applications. 
This process was further refined by selecting particular MOFs to reduce the need of 
additional carbon sources to reduce the number of steps involved. It was found that 
using ZIF-8 as precursor, high surface area (3148 m2 g−1) carbon can be obtained 
without additional carbon [39]. 

Later on, it was realized that for some applications, bare carbon is not sufficient, 
and some heteroatoms may be useful for chemical functionalities and desired prop-
erties; heteroatom-doped carbon materials were searched. Here, zeolitic imidazole 
frameworks (ZIFs) seemed to be a suitable precursor for such materials. The same 
can be achieved by encapsulating the desired heteroatom rich molecule in MOF 
pores and then carbonizing the MOF. Using this strategy, synthesis of N, P, and 
S ternary-doped metal-free carbon from MOF was reported previously [40]. They 
selected MOF-5 as a template with dicyandiamide, with two heteroatom precursors 
(triarylphosphine and dimethylsuphoxide) to give high-performance carbon owing 
to the synergistic effect of heteroatoms (Fig. 3).
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Fig. 3 a–c Representative 3D structures, d–i optical micrographs before and after carbonization 
for MOF-5, MOF-177, and UMCM-1. Reprinted with permission from Li et al. [40]. Copyright 
2014 Springer Nature 

Although MOFs offer several advantages over traditional methods like tunable 
morphology, porosity, and heteroatom doping, there are some challenges to be consid-
ered. There is a strong need for low-cost synthesis methods for MOFs, and also, high-
temperature carbonization makes it difficult to have full control over morphology. 
So, low temperature and cost-effective methods are required to expand the use of 
MOFs.
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3.3 Carbide-Derived Carbon (CDC) 

CDC is a collective term used for carbon derived from binary/ternary carbides 
(MAX phase) [41]. Depending on the method of metal removal and various exper-
imental conditions, a variety of carbon nanostructures can be obtained. In this 
method, selective removal of metal atoms does not disturb the parent structure. The 
most common methods used in CDC are halogenation, hydrothermal treatment, and 
vacuum decomposition [42]. 

(i) Halogenation 

Selective removal of metal atoms from carbide was first reported in 1918 [43]. In 
this method, carbon was formed as a byproduct of treating dry chlorine gas with hot 
silicon carbide. 

SiC(s) + 2Cl2(g)SiCl4(g) + C(s) (1) 

Annealing of resulting porous carbon will remove residual chlorine. Halogenation 
of carbides up to 1000 °C produces disordered carbon, whereas above 1000 °C 
graphitization predominates. Although fluorine can also be used for some metal 
carbides but direct fluorination is aggressive and will result in either fluorocarbon or 
disintegrated SiC films. Using XeF2 for etching was found to produce non-fluorinated 
SiC that also at low temperature (120 °C) than the conventional chlorination method 
[44]. These equations and the choice of halogen become more complex in the case 
of ternary carbides due to the possibility of the formation of more than one solid 
reaction product. 

CDC formation from carbides through halogenation is also known as conformal 
transformation as it maintains the shape and volume of the parent carbide precursor 
[45, 46]. This fact was recently confirmed that even for a carbide precursor-like β-SiC 
having complex morphology, it maintains it on chlorination [47] (Fig. 4). A similar 
conformal transformation was observed for polymer-derived carbides (PDC) also 
[48, 49].

The structure of CDC mainly depends on carbide precursor and temperature. For 
TiC, the effect of halogenation temperature was studied and the results indicated 
that with increase in temperature, there is a constant increase in ordered structure 
(Fig. 5). Whereas at low temperatures, amorphous carbon was found. These results 
were further supported by quenched molecular dynamics (QMD) studies [50, 51].

(ii) Hydrothermal treatment 

The hydrothermal method was first described for the synthesis of Tyranno (Si–Ti– 
C–O) fibers in the 1990s. In this method, the metal carbides area is treated with 
supercritical water at high pressure in the temperature range of 200–1000 °C [52, 
53]. Jacobson performed Gibbs energy minimization for a large number of metal 
carbides at various temperatures and pressures under hydrothermal conditions [54] 
and found some common reaction products including carbon, MOx, CH4, CO2, CO,  
and H2 according to the following equations:
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Fig. 4 TEM micrographs of β-SiC at various chlorination stages, a as received, b chlorinated at 
700 °C, and c at 1200 °C. d SEM micrograph showing the conformal transformation. Reprinted 
with permission from Cambaz et al. [47]. Copyright 2006 John Wiley and Sons

Fig. 5 Simulated structures of TiC-CDC quenched at different rates a 600 °C/fast quenching, b 
800 °C/medium quenching, and c 1200 °C/slow quenching. Reprinted from Palmer et al. [51]. 
Copyright 2010 Elsevier

n/2MC + nH2O → Mn/2On + n/2CH4 (2) 

MC + (n + 1)H2O → MOn + CO + (n + 1)H2 (3) 

MC + (n + 2)H2O → MOn + CO2 + (n + 2)H2 (4) 

MC + nH2O → MOn + C + nH2 (5) 

MOn + yH2O → MOn · yH2O (6)  

Experimental studies indicated that water/carbide (SiC) ratio is an important factor 
for deciding the yield. When this ratio is small, both carbon and silica are deposited
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and for intermediate ratio both are formed but due to excess of water, silica gets 
dissolved. At a high ratio, neither carbon nor silica was formed. 

The hydrothermal method produces amorphous carbon as indicated by the appear-
ance of D and G bands in the Raman spectra of the product. But in the case of ternary 
carbides, the metal oxide phase may be present. As in Ti3Si2C, on hydrothermal 
treatment rutile/anatase was reported along with carbon [55]. The use of organic 
compounds like polyethylene was found to produce carbon nanotubes [56]. 

(iii) Thermal decomposition 

Metal carbides on thermal decomposition in the vacuum will also generate CDC. It 
is based on the principle of incongruent decomposition. As the melting of carbon 
is higher than that of carbide, it remains while carbide evaporates. This method is 
also a conformal process like halogenation, and due to high temperatures, carbon 
nanostructures thus produced are more ordered. Using this method, Kusunoki group 
reported epitaxial carpets of self-organized carbon nanotubes (CNTs) from SiC [57]. 
Interestingly, this was the first time when no metal catalyst was used to obtain CNTs 
of the same chirality. They also presented a model to explain the mechanism of CNT 
formation based on residual oxygen. According to this, residual oxygen is the driving 
force; at low temperatures (< 1000 °C), only graphite sheets are formed no CNT were 
formed. At temperatures around 1300 °C, there is SiO gas generated which forms 
nanotubes (Fig. 6). 

This method can also be used to produce graphene from SiC either by vacuum 
decomposition or heating in an inert environment. Its formation mechanism is as 
that for CNT assuming that prior to CNT formation, there is the formation of a thin 
graphene layer [58–61]. 

Comparisons of various properties are given in Table 1.

Fig. 6 SEM micrographs of vacuum decomposited 6H-SiC carbon nanostructures for a C-face 
oriented in high vacuum and b Si-face oriented in low vacuum. c Effect of surface modification on 
CNT growth. Reprinted with permission from Cambaz et al. [50]. Copyright 2008 Elsevier 
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Using the above methods, a variety of carbon nanostructures can be synthesized. 
Aggregation of atomic sheets of 2D materials like graphene hinders its applications 
and requires advanced methods to prevent it. Some important methods are: 

(1) Shape/orientation modified growth of graphene 

Synthesis of graphene directly on the substrate leads to restacking but one way 
to avoid this is to synthesize vertically oriented graphene. Using the CVD 
method, vertically oriented graphene was synthesized on Ni substrate where 
mostly edges are exposed and fully accessible [62]. On some substrates when 
this is not possible then instead of flat graphene sheets, modification of the 
shape of graphene to curved or crumbled sheets will also prevent aggregation. 
This modification provides additional surface area and pore volume essential 
for several applications [63]. 

(2) Intercalated graphene 

After exfoliation, insertion of typical guest molecules in graphene interlayers is 
an effective strategy to prevent aggregation with a maintained flat sheets struc-
ture. To date, various spacers have been reported including metal nanoparticles, 
carbon nanotubes, conducting polymers, etc. Based on the type of application, 
the interlayer gallery height can be fine-tuned by selecting definite spacers. 
Recently, polyoxometalates (an emerging class of materials) have been reported 
as a spacer [64]. Polyoxometalates not only prevented aggregation but also 
provided additional redox-active sites for charge storage. 

(3) 3D interconnected graphene 

This strategy is utilized in certain cases when no foreign element other than 
graphene is required. Interconnection of a large number of 2D nanosheets results 
in a complex 3D network. In this complex network, each graphene sheet is 
supported by other sheets, resulting in a porous structure having a very low 
tendency to aggregate. Although there are a variety of materials reported with 
the 3D networks, graphene hydrogels are the important ones. In the simplest 
way, hydrothermal reduction of graphene oxide will induce cross-linking at 
multiple points leading to the hydrogel. This generates a porous structure with 
vast pore size distribution making it useful for a large number of applications 
[65]. 

4 Conclusion 

The peculiar properties of carbon nanostructures require the attention of researchers 
to develop advanced synthesis approaches. There are many ways to synthesize carbon 
materials, where the structures and functions are governed by the processing condi-
tions and precursors used. Depending on the requirement and initial conditions avail-
able, this chapter summarizes various methods for the top-down and bottom-up 
synthesis of carbon nanostructures. Among different approaches, some are outdated
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and traditional methods that are inefficient to fulfill the present need of advanced 
nanostructures. This chapter discusses some of the recent methods comprising high 
yield and ecofriendly nature including laser pyrolysis, ionic liquids precursor, etc. 
Independently, both these approaches can generate different nanostructures with 
unique properties; however, they suffer from their limitations which demand consid-
eration toward the generation of some new techniques comprising both top-down 
and bottom-up approaches for developing novel materials in various research fields. 
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