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Foreword 

The study of porous carbon materials is a comparatively adolescent discipline. It 
primarily gained eminence through the early eighteenth century, when the beginning 
of activated charcoal with well-defined structures revealed by scientists established 
to follow the research of this enthralling substance with a renewed vigor. In 1776, 
Russian Chemist Johann Lowitz revealed the preliminary discoloration properties of 
charcoal in liquid—a characteristic that built activated charcoal as water filters with 
admired preference even today. In consequence, the discovery of Graphene by Prof. 
Andre Geim and Prof. Kostya Novoselov in 2004 affords an enormous advance up and 
new measurements to materials research and nanotechnology. The multidisciplinary 
properties of porous carbon materials have an extensive range of applications from 
the medical sector to the aerospace industry. The first volume of the journal Carbon 
appeared in 1964, and 191 volumes of this journal had been published up to 2022 
that is reflecting the massive growth of this field. This time period also observes the 
progress of a broad variety of experimental methods that are enabling the exploration 
of different characteristics of the porous carbon materials with respect to energetic, 
kinetic, structural, electronic, magnetic, and dynamic properties of porous carbon 
materials with enormous precision. The discovery of scanning probe techniques 
permitted atomic processes to be considered in unparalleled detail. The study of 
the porous carbon field in recent research ranges from phenomena correlated with 
nanotechnology and thin-film development to heterogeneous catalysis processes to 
industrial applications.
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viii Foreword

The current handbook comprises 41 chapters that are contributions written by 
numerous specialists in this carbon field globally and covers the main aspects of this 
fascinating branch of science and engineering. It should establish precious contri-
butions to all those engrossed in this discipline. The editors and authors are to be 
eulogizing on the successful completion of this Handbook of Porous Carbon Mate-
rials. It will definitely be a work of enormous and lasting significance for the scientific 
community. 

Prof. Sabu Thomas 
Vice Chancellor 

Mahatma Gandhi University 
Priyadarshini Hills 

Kottayam, Kerala, India 

Director 
School of Energy Materials 

Founder Director 
International and Inter University Centre for 

Nanoscience and Nanotechnology 

Former Director 
Professor 

School of Chemical Sciences 
Mahatma Gandhi University 

Kottayam, Kerala, India



Preface 

Porous carbon materials such as activated carbon, carbon nanotubes, carbon 
nanofibers, and graphene are the novel visionary materials of this twenty-first century. 
These carbon materials are receiving extensive attention as novel materials to guide 
the prospects in the fields of electronics, biosensors, agriculture, wastewater remedia-
tion, composite materials, energy devices, hydrogen generation, secondary batteries, 
fuel cells, etc., not simply for nanoscaled dimensions but also due to their outstanding 
porosity, surface area, exceptional mechanical, chemical, physical, and electronic 
properties. Those who manage materials can organize technology, acknowledged by 
Eiji Kobayashi, Senior Scientist of Panasonic Corporation, elucidating the signif-
icance of materials science and engineering. We would interpret this quotation as 
researchers and scientists who control properties of materials to optimize technology 
and reflect on the influential growth of materials and technology on our large-scale 
infrastructure. 

Porous carbon materials have a determinative function in the fabrication of 
numerous superior products around us. From the development of filter membranes 
to aerospace technology, none of these could be shaped devoid of these wonderful 
materials. The editors consider this porous materials science as the understanding 
of composition; characteristics of materials predicted or explained with the help 
of this information; experimental and theoretical tools intended and recognized for 
preparing, characterizing, and modifying processes. Editors also listed all-important 
application possibilities of these resulted materials. After defining porous carbon 
materials, we can simply swap this depiction for porous carbon materials discipline. 
Porous carbon materials are considered in all advanced applications due to their 
configuration, processing, characterization, and difference from the macroscopic 
materials. This difference is due to nanosized dimensions and porous structures. 

The depiction of the porous carbon materials in this handbook pursues all fields but 
comprises short details of the synergy of composition, characteristics, processing, and 
applications. Distinctively, our aim was to point out the difference between the prop-
erties of bulk and nano-porous materials. We also discuss and explain the reasons for 
these differences. To accomplish these objectives, we present a reasonable descrip-
tion of the literature of each porous carbon materials group. The layouts pursue the
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x Preface

well-established configuration of the handbook with chapters as the basic units that 
are organized into several groups. In each chapter, authors cover materials of their 
proficiency; however, they centered not only on their own work, but account the 
remarkable and significant efforts in the society, ascertain stability between refer-
ences and scientific outcomes account in tables and figures. We illustrate porous 
carbon materials in textbook approach for beginners in this field. We also comprise 
encyclopedia-like ingredients and discuss the fast space of new results. We also 
review and include recent research reports for the familiar readers. Ahead of scien-
tific and ethical accuracy, we also seem for simplicity by summarizing and easy-to-
follow text, well-planned and apparent figures which were all proficiently drawn by 
experts. 

The book is divided into eight parts depicted as Parts I–VIII that cover porous 
carbon materials: graphene, graphene oxide, fullerenes, carbon nanotubes, activated 
carbon, carbon nanofibers, noble and common porous carbon-based composites, 
hybrid structures and solutions, and selective applications, correspondingly. This 
higher-level structure conforms to the porous classification of materials, and it is 
composed of chapters. Each chapter is self-consistent and builds up of similar parts, 
history, definitions, production of the given porous carbon materials, properties, and 
applications. All of these parts are opulently illustrated and consist of a reasonable 
proportion of imperative basics and recent results. 

Our pleasurable commitment is to express gratitude to all authors, contributors, 
and colleagues who help us with the establishment of this planned and implemented 
handbook. Firstly, we need to recognize the conscientious work of the authors in 
developing the chapters which engross more attempts than a review article, and the 
reward is not so instantaneous and apparent. Their proficiency, energy, and time are 
significantly appreciated. We also would like to show gratitude for the suggestions 
and help of our colleagues in keeping in contact with several authors. Our book 
is dedicated to the memory of French Scientist Antoine Lavoisier who named the 
elements carbon, hydrogen, and oxygen and discovered oxygen’s role in combustion 
and respiration.



Preface xi

The enormous workmanship of the Springer publishing team and the incessant 
support of the managing editors Priya Vyas and Silky Abhay Sinha are also appreci-
ated. We also need to thank our colleagues and friends that the association with them 
is leaning us to understand and develop materials science aspects. Last but not least, 
we are thankful to our family members for their continuous support to complete this 
work. We wish the readers an enjoyable and advantageous time when utilizing the 
Handbook of Porous Carbon Materials, and we anticipate that it serves as a regularly 
unwrapped reference textbook. 

Vellore, India 
February 2022 

Andrews Nirmala Grace 
Prashant Sonar 

Preetam Bhardwaj 
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Part I 
Basic Sciences and Engineering



Chapter 1 
Synthesis and Fabrication of Advanced 
Carbon Nanostructures 

Anuj Kumar Tomar, Deepak Kumar, Akanksha Joshi, Gurmeet Singh, 
and Raj Kishore Sharma 

1 Introduction 

Different methods have been adopted by researchers for synthesis of carbon nanos-
tructures; particularly, these synthesis methods are divided into two categories: One is 
bottom-up and second one is top-down approaches [1–6]. In the bottom-up approach, 
special emphasis will be given to the use of ionic liquids owing to their low volatility 
and hence allowing high-yield pyrolysis and covalent organic frameworks as a new 
low-temperature method for high structural control [7]. With a top-down approach, 
more focus will be on the metal organic frameworks as sacrificial templates and 
carbides for nanostructured carbon [8]. 

Bottom-up 

• Chemical vapor deposition 
• Sol–gel nanofabrication 
• Laser pyrolysis synthesis 
• Ionic liquid 
• Covalent organic framework.

A. K. Tomar · D. Kumar · A. Joshi · G. Singh (B) · R. K. Sharma (B) 
Department of Chemistry, University of Delhi, Delhi 110007, India 
e-mail: gurmeet123@yahoo.com 

R. K. Sharma 
e-mail: drrajksharma@yahoo.co.in 

A. K. Tomar 
Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 
Jeonbuk 54896, Republic of Korea 

G. Singh 
Pondicherry University, Chinna Kalapet, Kalapet, Puducherry 605014, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. N. Grace et al. (eds.), Handbook of Porous Carbon Materials, 
Materials Horizons: From Nature to Nanomaterials, 
https://doi.org/10.1007/978-981-19-7188-4_1 

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7188-4_1&domain=pdf
mailto:gurmeet123@yahoo.com
mailto:drrajksharma@yahoo.co.in
https://doi.org/10.1007/978-981-19-7188-4_1


4 A. K. Tomar et al.

Top-down 

Lithography. 

• Chemical/template etching 
• MOF-derived carbon 
• Carbide-derived carbon and carbon onion. 

During the earth civilization, carbon has occupied a significant place mainly in 
the energy sector and has undergone a drastic transformation from coal as an energy 
source to activated carbon for electrical energy (batteries, solar cells, supercapac-
itor, etc.) [9]. The incredible properties of carbon to form linear (sp1), planar (sp2) 
and tetragonal configuration (sp3), high abundance, and low specific weight have 
evoked great interest in the scientific community [10]. Over a few years, signifi-
cant efforts have been made in the development of efficient carbon materials for 
different applications (energy storage, sensing, energy conversion, and harvesting, 
etc.); one of the advancements in this direction is the synthesis of carbon nanostruc-
tures. Low-dimensional materials with dimensions of structural elements (clusters, 
crystallites, or molecules) in the range of 1–100 nm are chiefly defined as nanos-
tructured carbons. There is an entire range of dimensionality in the carbon nanos-
tructures from zero-dimensional (fullerenes), one-dimensional (carbon nanotubes), 
two-dimensional (graphene sheets), to three-dimensional (fullerites, CNT ropes) with 
one another form “inverted carbons” that are basically mesoporous materials [11]. 
Nanodimension carbon structures comprise distinctiveness in the form of superior 
electrical conductivity, high surface area volume ratio, high porosity with outstanding 
mechanical, chemical, thermal, and optical properties [12]. In energy storage and 
conversion application, the role of nanostructuring is vast, and some of them are 
pointed here [13–16]: 

• Nanostructuring provides more active sites for charge storage. 
• High surface area owes to nanostructuring ensures a large contact between 

electrode and electrolyte. 
• Stress generated during electrochemical reactions also gets reduced due to porous 

structure. 
• Hollow and porous surfaces also provide spaces for filling other guest materials 

and hence can be used in multifunctional applications. 
• Porous network also reduces the ionic diffusion length. 

Hence, owing to these advantages, enormous research has been carried out to 
investigate the mechanism involved in controlling the dimension and surface chem-
istry of nanostructures. There are several ways in which nanostructuring can be done 
such as chemical vapor deposition, pyrolysis, covalent organic framework based, 
template oriented, and hydrothermal treatment, etc. [3]. On the basis of the process 
involved during synthesis, these methods are divided into two approaches: bottom-
up and top-down. The bottom-up approach involves the building of structures from 
small atoms and molecules through covalent or other force interactions, whereas the 
top-down approach involves the etching of bulk structures to generate the needed
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low-dimensional structures. Basically, the bottom approach is mainly focused on 
controlling the dimension, and a top-down approach is used to generate hollow or 
porous regions in the structures. However, with a top-down approach, the chances of 
defects generation and quantum effect increase due to the synthesis of small dimen-
sions. The origination of defects with the nanostructuring would have an impact on 
the properties of carbon nanostructures. Therefore, in most cases, the combination 
of these approaches is carried out which is named a hybrid approach [17]. In this 
chapter, some of the particular bottom-up approaches and top-down approaches have 
been discussed that are majorly used by the researchers in pursuit of controlling the 
nanostructures. 

Nanostructures are synthesized either by a bottom-up or top-down approach. 
The bottom-up approach relies on the attractive forces between the building blocks, 
whereas in the top-down approach, large materials are deconstructed to give nanos-
tructures [5, 6]. Though these approaches comprise various synthesis methods, the 
chapter will be confined to some recent non-traditional synthesis methods. 

2 Bottom-Up Approach 

2.1 Chemical Vapor Deposition 

In CVD, decomposition of gas-phase molecules to reactive species results in thin 
films with controlled stoichiometry and morphology. CVD allows for controlled 
deposition rates to give high-quality products having desired conformality [18]. 
Recently, the synthesis of carbon nanospheres via a non-catalytic chemical vapor 
deposition using low-rate acetylene gas with nitrogen gas was reported [19]. This 
strategy resulted in fluffy carbon nanospheres with spherical shape and regular size. 

A new dimension to this synthesis method was added by Fischer and coworkers, 
where they combined CVD and template synthesis [20]. With this combined 
approach, graphitic carbon nanofibers were obtained. These are open-ended uniform 
hollow tubes and can be converted to carbon nanofibers with increasing deposition 
time. Although the crystallinity of CVD grown nanotubes is low, it is superior to 
other methods in terms of yield and purity. 

2.2 Laser Pyrolysis 

This is a recent method for the synthesis of nanoscale particles especially for carbides 
(Fig. 1). In laser pyrolysis, a dilute mixture of vaporized precursors is decomposed 
by a laser to initiate nucleation. These nuclei aggregate and transported by inert gas 
and depending on the amount of air different nanoparticles are formed. Owing to
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Fig. 1 Schematic representation of two-stage configuration reactor for laser pyrolysis. Reprinted 
with permission from Sourice et al. [21]. Copyright 2015 American Chemical Society 

the fast nucleation and very short time in the reaction chamber, this method yields 
smaller nanoparticles than other vapor-phase methods. 

One-step synthesis of silicon-carbon nanoparticles using laser pyrolysis was 
reported by Reynaud and coworkers [21]. The authors utilized a CO2 laser to vaporize 
the reactants and beautifully utilized the working principle of laser pyrolysis. In the 
typical synthesis, firstly in the bottom stage, silicon cores are synthesized and trans-
ferred to the upper stage with a carrier gas where a carbon shell is deposited. This 
configuration prevents aerial oxidation of silicon surface. Silicon-carbon nanopar-
ticles formed by this method were found to be very efficient for application in 
lithium-ion batteries with improved cycling stability. 

2.3 Ionic Liquids 

Although ionic liquids were discovered decades ago, their application to derive 
carbon materials is a relatively new emerging field. There are a variety of benefits 
that ILs offer,

(i) most general is their negligible vapor pressure allowing much easier shaping, 
processing, and high yield under ambient thermal treatment, 

(ii) availability of a wide range of different cation/anion pairing enables a wide 
range of carbon nanostructures with varying heteroatoms,
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Fig. 2 Synthesis route for TSILs-derived N-doped porous carbon. Reprinted with permission from 
Lee et al. [23]. Copyright 2009 American Chemical Society 

(iii) as ILs are good solvents so carbon composites with various other substances 
can be easily prepared by simply mixing. 

Functional groups can be selectively introduced in ILs depending on the type 
of carbon required. Davis coined the term task-specific ionic liquids (TSILs) for 
ILs having specific functional groups attached for the desired property [22] as  
shown in Fig. 2. They selected ILs containing a nitrile group so that it can 
undergo cross-linking. They studied the effect of cations using 1-cyanomethyl-3-
methylimidazolium [MCNIm]+ and 1,3-bis(cyanomethyl)imidazolium [BCNIm]+ 

and interestingly found that rather than cation, the surface properties of carbona-
ceous materials are affected to a great extent by anion. BET surface area of 
bis(trifluoromethylsulfonylimide) ([Tf2N]−) and Cl− was found to be 700 m2/g and 
10 m2/g, respectively [23]. Similarly, for [C(CN)3]− anion species, BET surface area 
was found to be 90 m2/g, whereas boron and nitrogen-doped carbon from [B(CN)4]− 

anion exhibits BET surface area of 500 m2/g [24]. 
Nowadays, ILs containing more than one type of cation/anion forming complex 

supramolecular structure, referred to as deep eutectic solvents (DES), were discov-
ered. When quaternary ammonium salts in ILs complexes with hydrogen bond 
donors, then hydrogen bonding facilitates charge delocalization resulting in a eutectic 
mixture with a reduced melting point is formed. 

Carbon and carbon–carbon nanotube composites can be obtained by using a choice 
of DES [25]. They utilized DES composed of ethylene glycol and CCl to dissolve the 
reactants (resorcinol and formaldehyde). On heating monolith, resins were formed 
which were carbonized using thermal treatment. Results indicated high surface area 
for DES-based carbon monoliths than monoliths derived from aqueous media due 
to the structure effect of DES. Furthermore, it was found that MWCNTs form a 
homogeneous dispersion in DES by simple addition. This fact was observed in the 
SEM micrographs where MWCNTs were uniformly distributed in DES as compared 
to aqueous solvents.
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Although ILs are gaining much importance for designing functional carbon 
materials, in-depth investigation of the correlation between precursor and carbon 
nanostructure is required to design novel need tailored materials. 

2.4 Covalent Organic Frameworks (COFs) 

Covalent organic frameworks are porous crystalline polymers composed of ordered 
periodic building block skeletons extended in 2/3-dimensions. They provide a 
low-temperature synthesis method for crystalline carbonaceous materials with a 
controlled structure. Based on the building blocks, different geometries and dimen-
sions can be obtained. COFs are usually classified based on the linkage topology 
involved. These include (i) B–O (borates), (ii) C=N (imines), (iii) C=Naromatic 

(azines), (iv) C=C (alkenes), (v) C–N (β-ketoenamines), and (vi) B=N (borazines) 
[26]. Among these, C–N linkage possess high structural stability even in strong acids. 

Depending on the requirement, robust materials can be designed by Schiff’s 
base reaction of amines with aldehydes resulting in imines. Based on this strategy, 
Feng group reported the synthesis of the wafer-sized multifunctional conjugated 
polymer [27]. They carried out this synthesis of the 2D multifunctional polymer 
at the air–water interface by Schiff’s base polycondensation. Owing to the high 
stability of C=N, this polymer possesses a Young’s modulus comparable to graphene 
and conjugation lowers the band gap to 1.4 eV making it suitable for semiconductors. 

3 Top-Down Approach 

3.1 Lithography 

The term lithography originated from the Greek word lithos meaning stone and 
graphein meaning to write. Traditional lithography can generate various patterns 
by masking the required material and etching the exposed surface. Etching can be 
done by either chemicals or mechanically using high-energy electron beams. This 
gives rise to different types of lithography like optical lithography, soft lithography, 
block copolymer lithography, scanning probe, nanoimprint lithography, etc. Here, 
we will restrict our discussion to the recently emerged advanced technique, nanoim-
print lithography (NIL) only. This is the most important lithographic technique for 
designing advanced nanostructures due to its ability to generate high-resolution 
nanopatterns with high throughput and low cost [28]. In conventional methods, the 
resolution is limited due to diffraction or beam scattering but in NIL, there is no such 
restriction. In NIL, a nanostructured mold is pressed on substrate precoated with a 
polymeric material. NIL is further classified as—thermoplastic, photo, and electro-
chemical NIL. In thermoplastic NIL, the substrate is modified with a thin layer of a
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thermoplastic polymer. This is pressed with a patterned mold at the desired pressure. 
On heating, the polymer above glass transition temperature results in the required 
pattern on polymer [29]. In photo NIL, a substrate is modified with a photo-sensitive 
resist, and the mold is made transparent. After pressing in UV light, the resist becomes 
solid, and the pattern is transferred. Usually, polydimethylsiloxane (PDMS) is used 
for the transparent stamp as it offers a high-resolution pattern, and its low surface 
energy makes it easy to separate [30]. Fang group reported the use of stamps made 
of silver sulfide, a superionic conductor using electrochemical nanoimprint lithog-
raphy (ECNIL) [31]. Henceforth pressing, when voltage is applied, it results in elec-
trochemical etching to give the required pattern. Using ECNIL, three-dimensional 
micro-nanostructures (3D-MNS) were synthesized where ECNIL allowed for the 
synthesis of 3D-MNS with multilevel and continuously curved profiles on a crys-
talline GaAs wafer [32]. This suggests the high potential of ECNIL in semiconductor 
materials. 

3.2 MOF-Derived Carbons 

Metal organic frameworks (MOFs) consist of a regular array of metal ions and organic 
linkers to give crystalline porous materials [33, 34]. Uniform pore structure with 
tunable porosity makes them attractive candidates for various applications. To derive 
high surface area carbon, they can be directed carbonized or can be used as a template 
[35–38]. In 2008, the first synthesis of porous carbon from the MOF template was 
reported [35]. They carbonized furfuryl alcohol (additional carbon source) filled 
MOF-5 at 1000 °C. Such a high temperature helped in removing vaporized Zn metal 
with inert gas flow and attained metal-free carbon. The resulting carbon exhibited 
a high specific surface area of 2872 m2 g−1, useful for charge storing applications. 
This process was further refined by selecting particular MOFs to reduce the need of 
additional carbon sources to reduce the number of steps involved. It was found that 
using ZIF-8 as precursor, high surface area (3148 m2 g−1) carbon can be obtained 
without additional carbon [39]. 

Later on, it was realized that for some applications, bare carbon is not sufficient, 
and some heteroatoms may be useful for chemical functionalities and desired prop-
erties; heteroatom-doped carbon materials were searched. Here, zeolitic imidazole 
frameworks (ZIFs) seemed to be a suitable precursor for such materials. The same 
can be achieved by encapsulating the desired heteroatom rich molecule in MOF 
pores and then carbonizing the MOF. Using this strategy, synthesis of N, P, and 
S ternary-doped metal-free carbon from MOF was reported previously [40]. They 
selected MOF-5 as a template with dicyandiamide, with two heteroatom precursors 
(triarylphosphine and dimethylsuphoxide) to give high-performance carbon owing 
to the synergistic effect of heteroatoms (Fig. 3).
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Fig. 3 a–c Representative 3D structures, d–i optical micrographs before and after carbonization 
for MOF-5, MOF-177, and UMCM-1. Reprinted with permission from Li et al. [40]. Copyright 
2014 Springer Nature 

Although MOFs offer several advantages over traditional methods like tunable 
morphology, porosity, and heteroatom doping, there are some challenges to be consid-
ered. There is a strong need for low-cost synthesis methods for MOFs, and also, high-
temperature carbonization makes it difficult to have full control over morphology. 
So, low temperature and cost-effective methods are required to expand the use of 
MOFs.
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3.3 Carbide-Derived Carbon (CDC) 

CDC is a collective term used for carbon derived from binary/ternary carbides 
(MAX phase) [41]. Depending on the method of metal removal and various exper-
imental conditions, a variety of carbon nanostructures can be obtained. In this 
method, selective removal of metal atoms does not disturb the parent structure. The 
most common methods used in CDC are halogenation, hydrothermal treatment, and 
vacuum decomposition [42]. 

(i) Halogenation 

Selective removal of metal atoms from carbide was first reported in 1918 [43]. In 
this method, carbon was formed as a byproduct of treating dry chlorine gas with hot 
silicon carbide. 

SiC(s) + 2Cl2(g)SiCl4(g) + C(s) (1) 

Annealing of resulting porous carbon will remove residual chlorine. Halogenation 
of carbides up to 1000 °C produces disordered carbon, whereas above 1000 °C 
graphitization predominates. Although fluorine can also be used for some metal 
carbides but direct fluorination is aggressive and will result in either fluorocarbon or 
disintegrated SiC films. Using XeF2 for etching was found to produce non-fluorinated 
SiC that also at low temperature (120 °C) than the conventional chlorination method 
[44]. These equations and the choice of halogen become more complex in the case 
of ternary carbides due to the possibility of the formation of more than one solid 
reaction product. 

CDC formation from carbides through halogenation is also known as conformal 
transformation as it maintains the shape and volume of the parent carbide precursor 
[45, 46]. This fact was recently confirmed that even for a carbide precursor-like β-SiC 
having complex morphology, it maintains it on chlorination [47] (Fig. 4). A similar 
conformal transformation was observed for polymer-derived carbides (PDC) also 
[48, 49].

The structure of CDC mainly depends on carbide precursor and temperature. For 
TiC, the effect of halogenation temperature was studied and the results indicated 
that with increase in temperature, there is a constant increase in ordered structure 
(Fig. 5). Whereas at low temperatures, amorphous carbon was found. These results 
were further supported by quenched molecular dynamics (QMD) studies [50, 51].

(ii) Hydrothermal treatment 

The hydrothermal method was first described for the synthesis of Tyranno (Si–Ti– 
C–O) fibers in the 1990s. In this method, the metal carbides area is treated with 
supercritical water at high pressure in the temperature range of 200–1000 °C [52, 
53]. Jacobson performed Gibbs energy minimization for a large number of metal 
carbides at various temperatures and pressures under hydrothermal conditions [54] 
and found some common reaction products including carbon, MOx, CH4, CO2, CO,  
and H2 according to the following equations:
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Fig. 4 TEM micrographs of β-SiC at various chlorination stages, a as received, b chlorinated at 
700 °C, and c at 1200 °C. d SEM micrograph showing the conformal transformation. Reprinted 
with permission from Cambaz et al. [47]. Copyright 2006 John Wiley and Sons

Fig. 5 Simulated structures of TiC-CDC quenched at different rates a 600 °C/fast quenching, b 
800 °C/medium quenching, and c 1200 °C/slow quenching. Reprinted from Palmer et al. [51]. 
Copyright 2010 Elsevier

n/2MC + nH2O → Mn/2On + n/2CH4 (2) 

MC + (n + 1)H2O → MOn + CO + (n + 1)H2 (3) 

MC + (n + 2)H2O → MOn + CO2 + (n + 2)H2 (4) 

MC + nH2O → MOn + C + nH2 (5) 

MOn + yH2O → MOn · yH2O (6)  

Experimental studies indicated that water/carbide (SiC) ratio is an important factor 
for deciding the yield. When this ratio is small, both carbon and silica are deposited
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and for intermediate ratio both are formed but due to excess of water, silica gets 
dissolved. At a high ratio, neither carbon nor silica was formed. 

The hydrothermal method produces amorphous carbon as indicated by the appear-
ance of D and G bands in the Raman spectra of the product. But in the case of ternary 
carbides, the metal oxide phase may be present. As in Ti3Si2C, on hydrothermal 
treatment rutile/anatase was reported along with carbon [55]. The use of organic 
compounds like polyethylene was found to produce carbon nanotubes [56]. 

(iii) Thermal decomposition 

Metal carbides on thermal decomposition in the vacuum will also generate CDC. It 
is based on the principle of incongruent decomposition. As the melting of carbon 
is higher than that of carbide, it remains while carbide evaporates. This method is 
also a conformal process like halogenation, and due to high temperatures, carbon 
nanostructures thus produced are more ordered. Using this method, Kusunoki group 
reported epitaxial carpets of self-organized carbon nanotubes (CNTs) from SiC [57]. 
Interestingly, this was the first time when no metal catalyst was used to obtain CNTs 
of the same chirality. They also presented a model to explain the mechanism of CNT 
formation based on residual oxygen. According to this, residual oxygen is the driving 
force; at low temperatures (< 1000 °C), only graphite sheets are formed no CNT were 
formed. At temperatures around 1300 °C, there is SiO gas generated which forms 
nanotubes (Fig. 6). 

This method can also be used to produce graphene from SiC either by vacuum 
decomposition or heating in an inert environment. Its formation mechanism is as 
that for CNT assuming that prior to CNT formation, there is the formation of a thin 
graphene layer [58–61]. 

Comparisons of various properties are given in Table 1.

Fig. 6 SEM micrographs of vacuum decomposited 6H-SiC carbon nanostructures for a C-face 
oriented in high vacuum and b Si-face oriented in low vacuum. c Effect of surface modification on 
CNT growth. Reprinted with permission from Cambaz et al. [50]. Copyright 2008 Elsevier 
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Using the above methods, a variety of carbon nanostructures can be synthesized. 
Aggregation of atomic sheets of 2D materials like graphene hinders its applications 
and requires advanced methods to prevent it. Some important methods are: 

(1) Shape/orientation modified growth of graphene 

Synthesis of graphene directly on the substrate leads to restacking but one way 
to avoid this is to synthesize vertically oriented graphene. Using the CVD 
method, vertically oriented graphene was synthesized on Ni substrate where 
mostly edges are exposed and fully accessible [62]. On some substrates when 
this is not possible then instead of flat graphene sheets, modification of the 
shape of graphene to curved or crumbled sheets will also prevent aggregation. 
This modification provides additional surface area and pore volume essential 
for several applications [63]. 

(2) Intercalated graphene 

After exfoliation, insertion of typical guest molecules in graphene interlayers is 
an effective strategy to prevent aggregation with a maintained flat sheets struc-
ture. To date, various spacers have been reported including metal nanoparticles, 
carbon nanotubes, conducting polymers, etc. Based on the type of application, 
the interlayer gallery height can be fine-tuned by selecting definite spacers. 
Recently, polyoxometalates (an emerging class of materials) have been reported 
as a spacer [64]. Polyoxometalates not only prevented aggregation but also 
provided additional redox-active sites for charge storage. 

(3) 3D interconnected graphene 

This strategy is utilized in certain cases when no foreign element other than 
graphene is required. Interconnection of a large number of 2D nanosheets results 
in a complex 3D network. In this complex network, each graphene sheet is 
supported by other sheets, resulting in a porous structure having a very low 
tendency to aggregate. Although there are a variety of materials reported with 
the 3D networks, graphene hydrogels are the important ones. In the simplest 
way, hydrothermal reduction of graphene oxide will induce cross-linking at 
multiple points leading to the hydrogel. This generates a porous structure with 
vast pore size distribution making it useful for a large number of applications 
[65]. 

4 Conclusion 

The peculiar properties of carbon nanostructures require the attention of researchers 
to develop advanced synthesis approaches. There are many ways to synthesize carbon 
materials, where the structures and functions are governed by the processing condi-
tions and precursors used. Depending on the requirement and initial conditions avail-
able, this chapter summarizes various methods for the top-down and bottom-up 
synthesis of carbon nanostructures. Among different approaches, some are outdated
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and traditional methods that are inefficient to fulfill the present need of advanced 
nanostructures. This chapter discusses some of the recent methods comprising high 
yield and ecofriendly nature including laser pyrolysis, ionic liquids precursor, etc. 
Independently, both these approaches can generate different nanostructures with 
unique properties; however, they suffer from their limitations which demand consid-
eration toward the generation of some new techniques comprising both top-down 
and bottom-up approaches for developing novel materials in various research fields. 
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Chapter 2 
Fabrication of Graphene, Graphene 
Oxide, Reduced Graphene Oxide, 
Fullerene (C60) and Carbon Nanotube 
Thin Film By Langmuir–Blodgett 
Method 

Atri Mallick, Nibedita Haldar, Suman Nandy, and Chandan Kumar Ghosh 

1 Introduction 

Thin films of carbon materials those include network of graphene, graphene oxide 
(GO), reduced graphene oxides (RGO), fullerene (C60) carbon nanotube (CNT), etc., 
meet global standard in terms of flexibility, chemical stability, electrochemical tune 
ability as required for next-generation transparent conducting electrodes (TCEs) of 
various optoelectronic devices and energy storage devices. Whenever carbon-based 
transparent-conducting monolayer or multilayer thin films of specific application is 
needed to be fabricated, Langmuir–Blodgett (LB) appears to be one of the easy, 
cost-effective and simplest techniques ever. These carbon materials are very much 
stable and exist in the form of homogeneous colloidal suspensions in aqueous, as 
well as in organic polar solvents in spite of strong hydrophilicity. Herein, Coulombic 
repulsions among negatively charged sheets make them easy to collect on a substrate 
[1] by LB method as compared to other chemical techniques like transfer printing, 
electrophoretic deposition, spin or spray coating, dip coating, etc. [2–10]. As for an 
example, LB-deposited RGO shows high potentiality during hole injection in organic 
light-emitting diode. It has been identified that the recombination between electron 
and hole increases significantly by well-patterning and controlling thickness of these 
RGO films. In addition to the aspects of device application, novel properties and
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characteristic features of LB-deposited carbon network, particularly folded RGO as 
well GO sheets, are often noticed. As for another example, high-quality photoac-
tive electrodes, fabricated with LB-deposited C60 thin films, have gained immense 
interest as their thickness can easily be controlled on a molecular level. In comparison 
with indium tin oxide (ITO), LB-deposited C60 photoactive electrodes are reported 
to have better potential; thus, it has been predicted as next-generation photoactive 
electrode. CNTs are quite familiar example of carbon materials since the emergence 
of nanotechnology globally. Its unique 1D structure and extended curved π-bonding 
configuration are extremely important for innumerable optoelectronic applications, 
and all these properties are significantly tuned during the synthesis using LB tech-
nique. Metallic, semi-metallic or semiconducting LB-deposited single-walled CNTs 
(SWCNTs) have gained wide attention. Herein, it may be stated that the bilayer 
SWCNTs thin films are getting transferred by employing a multilayer film of cadmi-
umarachidate made by LB technique onto the quartz substrate and silica-based optical 
fiber sensors to detect and identify volatile, organic hazardous compounds. In recent 
time, a quasi-LB method has also been developed to deposit pure SWCNT thin 
film on different substrates including fabric. Unrolled SWCNT, known as graphene, 
acts as the building block for different allotropes, particularly fullerenes and 3D 
graphite those corresponds to various important device applications. Graphene itself 
has monolayer of carbon atoms of sp2-hybridization with 2D honeycomb-type lattice 
arrangement [11]. Owing to very high transparency in visible region as well as elec-
trical conductivity, graphene has been adopted as another promising material for 
TCE. In comparison with other TCEs like ITO or F doped SnO2 (FTO), thin films 
of graphene possess high flexibility, mechanical strength, chemical stability and low 
cost. Nowadays, graphene quantum dots (GQDs), an alternative kind of graphene 
derivative, have been developed which are basically graphene sheets of edgewise 
dimension less than 100 nm and corresponds edge-related special features. In recent 
time, intrinsic three-dimensional structures of graphene become attractive as they 
have an important role in cellular interactions. Here also, LB is the most useful and 
potent tools to fabricate thin films based on organic compounds, the structures of 
which are optimized and controlled at atomic level. In general, the materials with 
which the films are being composed of must be amphiphilic. But, till date, only a very 
few molecules have been able to constitute LB-deposited thin films without long alkyl 
chains. In a few cases, the functional molecule does not possess an ability to make a 
film at the interface between air and water by itself; they may be prepared through LB 
technique by inserting them with film-forming materials. Likewise, films, deposited 
by LB method, show very good tunable conductivity after being prepared from 
metal complex and icosanoic acid mixture. Herein, it may be stated environment-
friendly carbon-based materials have remarkable potentiality for various optoelec-
tronic applications, where LB plays significant role in their synthesis. Therefore, in 
the following sections, fundamentals of the LB technique along with their advantage 
and disadvantages will be described in the context of carbon network-based thin film.
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2 Fundamental Principles of Langmuir–Blodgett 
Technique 

Langmuir–Blodgett technique is one of the cost-effective, easy, in-demand methods 
to prepare precise monolayer structures. It includes direct formation of nanopartic-
ulate onto Langmuir trough, while synthesis commences after mixing metallic salts 
in water sub phase with subsequent exposure to gases which appears as suitable 
for particulate formation at the air/water interface. Commonly, nanoparticulates are 
produced from lipids, membranes or functionalized surfactants that injects charged 
ions in the subphase. Precursors are selectively attached with surfactant layer which 
has been spread at the air/water interface, followed by conversion into actual phase 
of the materials upon subsequent treatment to reagent gases. Spatial distribution 
of the nanoparticulate can be changed as a function of surface pressure, along with 
possibility exists for transfer of the nanoparticulates to substrates at any stage of their 
growth during monolayer formation. There are many advantages of using monolayers 
as templates for nanoparticulate films; specifically for 1D semiconductor nanostruc-
tures, e.g., SWCNTs, as they are essential components for various applications such 
as logic circuits, field-effect transistors, non-volatile memories, high-performance 
optoelectronic devices, biosensors. But, for all practical applications, their precise 
form is very much essential, possibly higher that standard lithographic limit. Unlike 
0D carbon nanomaterials, alignment becomes a critical factor for 1D carbon nanos-
tructures. Although many techniques have been developed to fabricate nanomaterials 
assembly into patterned arrays over large areas with prefixed spacing, while end-to-
end registry becomes extremely challenging. However, LB provides an easy protocol 
in regard to this. It has been noticed that ordering of LB-deposited 1D carbon building 
blocks has been achieved by these assembled architectures; these must open oppor-
tunities to investigate the impact of size and shape on collective optical, magnetic 
and electronic properties, as well as to examine other scientific properties. Herein, 
LB also acts as a promising pathway to fabricate supra-molecular assembly in which 
precisely controlled and layered structure at an ultrathin scale has been achieved for 
different allotropes of carbon nanostructures. Most importantly, Langmuir mono-
layers of carbon nanostructures are getting transferred from the liquid–gas interface 
to solid support at the time of vertical passage through the monolayers. Herein, 
Langmuir monolayers are made assembled vertically which consists mainly of an 
amphiphilic molecule with a hydrophilic head and a hydrophobic tail within these 
carbon nanostructures. These LB-deposited carbon allotropic films are composed 
of one or more monolayers which got deposited from liquid form on a substrate 
by dipping. Herein, different protocols exist to transfer monolayers from water–air 
interface on the substrate. Among them, most conventional method is the vertical 
deposition that has been demonstrated first by Blodgett and then Langmuir too. In 
this particular case, monolayer of amphiphiles at the interface between water and air 
gets collected by the displacement of a vertical plate (shown in Fig. 1). While this 
process still has not been understood completely, it is known that there is a certain
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Fig. 1 Deposition of a layer 
at the interface between 
water and air using vertical 
substrate 

critical velocity, generally represented by Um, above which the transfer process does 
not work at all. Um is of the order of a few cm/s and usually is much smaller for 
viscous layers (e.g., polymeric amphiphiles). 

2.1 Synthesis of Thin Film and Self-Assembled Structure 
of Bare and Functionalized GO, RGO by LB Technique 

Graphene, i.e., monolayer sheets of sp2-bonded carbons, has gained attention due 
their low weight, high tensile strength and conductivity. It exhibits very high elec-
trochemical activity, optical properties, chemical stability; hence, it gained lots of 
interest in modern optoelectronic devices, specifically as transducer for biosensor, 
as redox active electrode material. The key success for graphene’s applications is 
to generate a protocol to synthesis large-size uniform, aligned graphene sheets on 
any substrate. Currently, most of the graphene sheets are of very small size (~μm); 
hence, they exhibit high contact resistance due to large number of junction between 
two sheets. Thus, sheets of high area (~mm) are very much essential from device 
perspective. It has been studied that graphitization of Si-terminated SiC (0001) in the 
presence of Ar produces monolayer graphene sheets of several μm. But it appears 
to be very difficult to obtain graphene sheets on other substrate. Though physical 
processes such as plasma-enhanced chemical vapor deposition (PECVD) and chem-
ical vapor deposition (CVD) enable graphene synthesis on Cu and Ni foils, but the 
process is too specific toward substrates and very costly, thus limiting industrial 
usage [12, 13]. Owing to scalability of production of GO or RGO or graphene, LB-
based two steps synthesis protocol shows high potentiality (schematically shown 
in Fig. 2). Initially, thin films of GO are prepared by LB technique, later RGO 
or graphene thin film are being obtained by either chemical reduction or thermal 
annealing. In this context, it may be stated that most remarkable disadvantage of 
bare graphene in sensing application and catalytic activity is that due to the absence 
of any functional group, pristine graphene cannot be used for direct immobilization 
of biomolecules for sensing or redox active catalytic purposes. But, GO consists of 
lots of oxygen functional groups (–COOH, etc.,); hence, it provides more suitable 
platform for immobilization and catalytic redox activity. In this context, it may be 
stated that electrical conductivity of GO is very poor; hence, it shows very poor
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Fig. 2 Schematic diagram of GO deposition by LB technique 

electrochemical properties as well as sensitivity in biosensing. In this context, it 
may be stated that GO’s conversion to RGO has been identified to be very essential 
for electrochemical or sensing applications. In addition, the presence of functional 
groups makes RGO more environment-friendly, water-soluble and susceptible for 
catalytic charge transfer processes those are essential for device fabrication including 
sensors, photovoltaic, photoelectronic, optical communication device, etc. Though 
LB provides good platform for industrial production of GO/RGO/graphene [14], it 
requires homogeneous suspension. In spite of hydrophilicity, colloidal solution of 
GO/RGO are stable, homogeneous in aqueous as well as in N,N-dimethylformamide 
(DMF), methanol, ethanol, etc., as organic solvents are obtained. Among different 
dispersants, methanol–water (5:1 volume) mixture is found to be most suitable with 
optimum ratio. Briefly, strong electrostatic repulsion between ionized carboxylic and 
phenolic groups, situated at basal region of GO carrying negative surface charge, 
leads this stability, particularly in methanol solution [15]. Thus, formed dispersed 
sheets get easily processed to be collected onto a substrate by this LB technique with 
good tunable thickness of GO/RGO/graphene films. Prior to deposition, GO powder 
is being synthesized by either modified Hummer method or Offeman’s method [16]. 

In this context, it may be stated that these processes often provide GO sheets of 
non-uniform width; hence, they are separated by centrifugation before deposition in 
order obtain GO film with uniform thickness. Herein, it may be stated that Zheng 
et al. synthesized ultra-large GO sheets (width ~200 μm) by exfoliating graphite 
powder [17]. Importantly, stability of GO monolayer is commonly evaluated from 
hysteresis curve. It has been examined that GO monolayer, formed at the subphase, 
remains unchanged during repeated compression–expansion (Fig. 3) at the optimized 
pressure (~15 mN/m) confirming formation of highly stable film [16]. In addition, it 
is also found that surface pressure plays a crucial role in GO transfer ratio. Typical 
surface pressure—area isotherm exhibits variation in slope indicating transition of 
GO sheets from gaseous to condensed liquid, followed by solid-state phase. In the area 
versus pressure diagram, within high area region, surface pressure remains constant, 
and thus, this is referred as initial gas phase region. With decreasing area, increase 
of pressure is attributed to higher repulsion among GO sheets. Herein, GO sheets 
start to touch each other, followed by tiling over whole surface. Further increase of 
pressure indicates compression of the GO sheets beyond the closed-packed stage.
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At this point, they start to fold at the touching regions along with their edge in spite 
of overlapping. In more compressed stage, partial overlapping and wrinkling are 
being observed and formation of monolayer from interlocked GO sheets is being 
noted. It has been studied that the stable 2D GO monolayers get formed only when 
compression/expansion of GO sheets are found to be completely reversible [18]. 

It has also been investigated that when these GO sheets get self-assembled side 
by side, several unique features in morphologies, namely wrinkles, folds, overlaps, 
etc., are being generated. The degree of wrinkling significantly depends on pulling 
speeds during LB transfer, and it has been noted that higher pulling rate (~1 mm/min) 
produces higher degree of wrinkling, a structure which is known as concentrated 
graphene oxide wrinkles. Primarily, evaporation of H2O present between GO sheets 
and underlying substrate determines quality of the self-assembled GO sheets. It has 
been identified that large-sized GO sheets trap more water droplet producing more

Fig. 3 a Isotherm at different GO content. b Isotherm after 4th cycle c pressure area versus time 
GO films [16, with permission] 
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wrinkled GO sheets, while water molecules get easily vaporized in case smaller-
sized GO sheets, giving less wrinkling [19, 20]. Very specifically, high pulling rate 
does not allow larger GO sheets to be relaxed onto the substrate after evaporating 
water molecules and transfer onto the substrate, causing more wrinkling. Herein, it 
may be stated that wrinkling of GO as monolayer is crucial as many of the proposed 
tuneability like specific surface area, porosity, conductivity, etc., are only realized 
when GO is being utilized as building—blocks of 3D structures. It has been examined 
that low in-plane rigidity of pure GO sheets do not give good control over wrinkle, 
rather compression causes face-to-face sliding. This phenomenon indicates more 
viscous nature of GO films in comparison with elastic property. In this context, it 
may be stated that in-plane rigidity rather than out-of-plane rigidity plays crucial 
role in wrinkle formation. Herein, Silverberg et al. examined that cationic surfactant 
cetyltrimethylammonium bromide (CTAB) increases rigidity (in-plane) of GO; thus, 
it can be used to tune wrinkling and folding GO films. Briefly, interactions between 
CTAB’s cationic head with oxygen functional group of GO with negative charge 
lead strong binding between them. Hydrophobic tail group of CTAB of CTAB-GO 
complex causes their different types of highly viscoelastic aggregation like lamellar, 
spherical and wormlike structures facilitating controlled wrinkle formation during 
LB deposition of thin film (Fig. 4). 

LB is found to be most promising technique to prepare uniform, homoge-
neous carbon 3D thin films. The thin films of both organic [22] and inorganic 
[23] compounds can be deposited by this method. It produces thin films with the 
desired structures [24] even with range in nanometric dimension. It is capable to 
tune thickness of single layer effectively, uniform deposition on large surface area 
and the multilayers deposition with different layer compositions also [25]. A typical

a 

b 

Fig. 4 Comparative studies between GO and CTAB functionalized GO films. a Increased thickness 
for composite film (three layers); roughness remains same (left). SEM (center) and AFM (right) 
[21, with permission] 
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isotherm profile from LB deposition technique incorporates the three definite regions, 
i.e., gaseous, liquid and solid states, which influence alignment of molecules on 
top of the liquid subphase [26]. The single layer can be collapsed at the breaking 
point or by over-compressing, forming uncontrolled multilayer which can damage 
the film formation [27]. Recently, Ng et al. investigated the advancement of pris-
tine RGO electrodes for bio-photovoltaic cells [28]. In addition, RGO-containing 
nanofiber mats carry features of biosensor, biofuel cells, etc. [29], while 3D structure 
of graphene which plays a crucial role in cellular interactions. It has been studied 
that low surface energy and hydrophobicity of these 3D structures influence effi-
ciency in biocatalysts during biofilm formation. Herein, several parameters like pore 
size, surface roughness, etc., influence the cell interaction with 3D structures [30, 
31]. Like other carbon nanostructures, LB can also be adopted to prepare 3D struc-
ture of graphene as it enables effective control of the monolayer thickness, large 
area homogeneous deposition and the possibility to fabricate multilayer of different 
layer composition. Like other materials, here also typical surface-pressure isotherm 
profile consists of three distinguished regions ranging from gaseous, liquid and solid 
states correlating the molecular arrangement on top of the liquid subphase. Over-
compression leads collapse of monolayer or the breaking point that giving multilayer 
formation in an uncontrolled manner. 

Very often, graphene, GO, RGO are made composite with other inorganic nanos-
tructures for better application opportunity. In this context, it may be stated that 
the composite of 1D ZnO nanorod and 2D RGO shows remarkable memristor effect. 
Though these types of nanocomposites are widely being synthesized by hydrothermal 
technique, low temperature is rare and the research is still open in this field. Herein, 
Zhou et al. synthesized 1D ZnO nanorods and a 2D RGO hybrid nanocomposite 
adopting facile solution protocol, followed by LB technique [32]. The researchers 
exposed that these ZnO nanorods and 2D RGO nanocomposite show a reversible 
memory behavior. The narrow resistance distribution and stable behaviors of voltage 
switching can be assigned to the oxygen-vacancy associated conductive filaments 
along with ZnO nanorods. The device showed outstanding electrical reliability and 
mechanical robustness up to 1000 cycle of bending indicating flexibility of LB-
deposited RGO thin film that was used as the bottom electrode. The literature studies 
suggest that low-dimensional materials based memristors extraordinary performance 
and stability such as excellent tolerance [33, 34]. ZnO nanorods can be used as one of 
the most promising candidates due to very simple chemical composition, nontoxicity 
and including regulated oxygen vacancies and favorable properties in the resistive 
memory area [35–37]. On the other hand, RGOs are utilized as most optimistic cost-
effective electrode materials due to its excellent durability under tension and a facile 
solution-process-based large area fabrication [38, 39]. Yong et al. investigated on 
a light incident angle switchable memristor by using ZnO nanorods as a resistive 
switching medium [37]. Sun et al. discussed on development in electrical property 
utilizing ZnO nanorod-based memristors by surface hydrogen annealing process 
[37]. However, it is still challenging to evolve an acceptable structural design of 
memristors based on ZnO nanorods which can be used in practical flexible memory 
applications.
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2.2 Synthesis of Fullerene (C60) Thin Films By LB Technique 

One of the most important finding among all carbonaceous materials is the discovery 
of C60 by Kroto and Smalley et al. in the year 1985 [40]. It comprises of 60 C atoms, 
aligned 12 pentagons linking with 20 hexagons maintaining hollow sphere geom-
etry. It is little bit similar to soccer ball that is why it is named as buckyball. Being 
considered as 0D nanostructure, its diameter is found to be approximately ~7.1 Å 
[41]. Though fullerene is found with different carbon cages and symmetries with 
various number of carbon atoms, C60 has gained most attention due to it stability, 
flexibility in different device fabrications. Herein, it may also be stated that solubility 
at ambient temperature varies over wide range of solvents enabling easy preparation 
of their allotropes [42, 43]. Though earlier researches on C60 included synthesis and 
study of physiochemical properties of C60, but later, C60 assembly and their covalent 
and noncovalent interaction-mediated ordered derivatives appear as upcoming topic 
for their remarkable impact to design and fabricate different electronic devices. In 
general, such assemblies form in solution, on surface, as well as at the interfaces. 
In this context, it may be stated that bare C60 nanostructures lack of dipolar inter-
action, making hard to assemble them in the solid state [44]. However, it has been 
explored that it is very difficult to prepare pristine C60 due to its low solubility, 
particularly in organic solvents, as well as due to high aggregation even in the pres-
ence of good solvents. To overcome this issue, chemical modification with several 
chemical species like crown ethers, polyhydroxylates, oligopeptides, poly(ethylene 
glycol), hydrophilic porphyrin, etc., have been proposed [45]. Polymers with C60 at 
the main or side chain or dendrimers having C60 as the dendrons have been reported 
as well. Commonly, these above-mentioned treatments with hydrophilic molecules 
facilitate C60 to dissolve into solvents and disperse on the surface. Herein, solvents 
play a significant role in assembling C60. For example, C60 containing ammonium 
amphiphile which is soluble in water leads to long fibrous which in consequence 
aggregates in disk-like form, while C60 nanowire with high aspect ratio has been 
achieved using 1,2,4-trimethlbenzene as solvent [46–52]. Preparation of monolayer 
or multilayer C60 films depends on the methodology to incorporate its unique features 
in bulk form, while self-assembled monolayers has attracted for this purposes. Thus, 
formed 2D fullerene structures serve as n-type electrode in organic field-effect tran-
sistors, fuel, photovoltaic cells, etc. [53]. Primarily, fabrication of C60 assembly 
includes either van der Waals interaction or covalent bonding. However, physical 
processes like CVD, PECVD, etc., produce good quality of C60 assembly, but they 
are too costly for industrial application. Herein, LB has been identified as an alter-
native easy technique to obtain C60 thin film. In this process, initially Langmuir 
film is deposited after spreading amphiphilic molecules on surface of water. Thus, 
the spreaded molecules get oriented in such a way that hydrophilic parts remain 
contact with water, where hydrophobic part, e.g., C60 edge, gets oriented out from 
air. Followed by Langmuir monolayer formation, thin film of fullerene is prepared by 
transferring as—prepared monolayer onto a solid substrate, while number of layer is 
being controlled by varying the dipping cycles. Carbon soot-derived C60-based thin
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Fig. 5 Schematic 
representation of sodium 
3-mercaptoethanesulfonate 
(1st layer), 2 (2nd layer) and 
3 or 4 (3rd layer) on an ITO 
electrode [54, with  
permission]

film has been synthesized by LB technique at barrier speed ~2 cm/min at 17 °C on 
quartz substrate. In this case, it is deposited at pressure ~25 mN/m with benzene as 
spreading solvents. Though this process produces C60 film, however quality C60 film 
has been obtained in the presence of 1:1 mixture of icosanoic acid and C60 solution 
giving area per molecule ~0.07 nm2 at 25 mN/m. In this context, it may be stated that 
adding solution of C60 of benzene or CS2 to air–water interface, Langmuir films with 
C60 molecules can form after volatization of the solvent. It has been observed that 
Langmuir can be deposited on various substrates like quartz, glass, silicon, etc., using 
this procedure. Herein, Mirkin and his co-workers have deposited covalently bonded 
C60 on (MeO)3Si(CH2)3NH2 functionalized ITO surface (schematically shown in 
Fig. 5, while pressure–area characteristics (Fig. 6) significantly depend on number 
of layer [54]. 

In addition to bare C60, thin film of C60 nanocomposite has also gained atten-
tion in several optoelectronic devices. As an example, C60—dendrimers conjugated 
thin films consisting of the head groups of carbohydrate-containing dendrons have 
been synthesized using LB technique at the air–water interface. As another example, 
C60—dicyclohexylcarbodiimide conjugate gets formed between dicarboxylic acids 
and C60 through amide bond. The monolayers are observed to collapse at different 
surface pressure in comparison with bare C60 thin film. Repetitive compression and 
expansion carried out on single layer at air–water interface, indicate reversibility. 
When monolayer gets compressed to a certain value, the surface pressure during 
decompression appears very close to that of compression value. Again, recompres-
sion gives curves near to initial ones with slight reduction of deduced molecular 
area. Such cycles clearly indicates stability of the prepared films. Polar hydrophilic 
carbohydrate-dendrons gives strong amphiphilic nature among C60 derivatives and
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Fig. 6 Photocurrent versus wavelength curve of 2, 2-3, and 2-4 systems on ITO electrode, measured 
at 25 °C (irradiation ~1 Mw cm−2,0.1 M NaSO4 solution containing 50 Mm ascorbic acid) [54, 
with permission]

bulky enough too to limit irreversible aggregation. This is the first time when lack 
of hysteresis, hence reversibility is noticed for C60 films at air–water interface. 

2.3 Preparation of Pristine and Composite Carbon Nanotube 
Thin Films 

CNT has gained enormous interest in recent times as an upcoming electrode mate-
rial for transparent electronics, chemical sensors, transistors, etc. Though CNT thin 
films can be grown by several direct physical methods like CVD PECVD, etc., low 
temperature solution methods are most favorable due to cost, easy casting possibility 
on flexible substrate. LB being one of the most exquisite solution-based techniques 
to obtain oriented monolayer thin film is a well-accepted easy technique to prepare 
CNT thin film electrode. As CNT is not inherently amphiphilic, hence numbers 
of techniques like dispersing in organic solvents such as chloroform or chemical 
modification like functionalization with poly(ethylene oxide), organic molecules, 
surfactants, etc., have been developed to make CNT amphiphilic [55]. Sometimes, 
as-prepared colloidal sonication requires sonication for few hours for homogeniza-
tion and after sonication colloidal mixture is allowed to settle down so that any 
extent of immiscible material can settle out easily. Finally, a measured volume of the 
solution which is to be spread dropwise on the surface of the subphase is attained 
from top of the above-prepared solution through a micro-syringe so that any external 
disturbance does not come to the sediment. For pure CNT network film deposition 
by LB technique, mostly ultrapure water is taken as subphase (gained by reverse 
osmosis, filtration, two-stage deionization and UV sterilization), while deposition is



32 A. Mallick et al.

mostly carried out at pH ~6 and temperature ~20 °C. In the pressure-area isotherm, 
floating layer is commonly compressed at a barrier speed of 1.1 cm2/s and its stability 
is monitored by noticing area versus surface pressure curve during compression. 
The generic isotherm of virgin CNT deposition using LB technique consists of an 
expanded up to around 1 mN m−1, plateau region, followed by a significant transi-
tion region upto 10 mN m−1. Such phenomenon indicates formation of organized 
floating layer with CNTs packing. A sharp rise of pressure up to 14 mN m−1 has 
been noted at minimum trough area ~20 cm2. At higher CNT concentration, isotherm 
gets right shifted, while the plateau disappears indicating formation more organized 
condensed phase. It has also been noted that rate of increase of surface pressure is 
less for low concentrated material, possibly due to aggregated CNTs on the subphase 
surface. Herein, increasing CNT concentration limits organization and packing of 
nanotubes. In addition, higher starting pressure is also observed in this case signi-
fying coverage of water surface with CNTs. Methanol very often plays crucial role 
in thin film deposition as it facilitates CNT spreading. Briefly, methanol addition 
changes the isotherm noticeably along with overall reduction of surface pressure and 
shift of the transition point toward left side. Substrates on which CNTs are trans-
ferred are found to play very crucial role as adhesion of CNT on substrate mostly 
determines quality and stability of the film. It can be generalized that hydrophobic 
substrates such as polyvinyl chloride cause much better transfer of CNT in compar-
ison with hydrophilic substrates like quartz, silicon, etc. [56]. Often, pre-treatments 
are avoided if structurally ordered CNT is not required for particular application. 
As an example, in case of sensing applications, CNT thin films with good substrate 
coverage rather than ordered CNT show better performance randomized CNT thin 
films have higher interstices and groove which are beneficial for sensing efficiency. 
In this context, it may be stated that CNT thin film deposition appears to be very 
difficult without ant pre-treatment; however, Luccio et al. have prepared SWCNT 
thin films by depositing cadmium behenate and SWCNT alternatively [57]. Unfor-
tunately, they have found that this sandwich-type bilayer structure is stable up to 5 
number of layers due to poor adhesion of SWCNT to the substrate. Later, the same 
research group has found cadmium arachidate as suitable matrix where SWCNT can 
be easily embedded without any chemical modification [58]. Prior to LB deposi-
tion, a stable, homogeneous suspension is being prepared by mixing SWCNT into 
arachidic acid. Scanning electron microscopic image shows the absence of any single 
nanotube; thus, it suggests this mixing does not distract bundles of CNT or isolate 
SWCNTs. Generic isotherm features are repeated many times, indicating stability 
of the colloidal solution. However, it has been calculated from isotherm curve that 
area per molecule increases with increase of SWCNT amount to the arachidic acid, 
while curve shape remains unchanged up to 27% addition of SWCNTs, after that 
an abrupt change in slope, assigned to higher area per molecule, has been noted. 
This abrupt increase of area indicates that solid film gets formed at air–water inter-
face, signifying existence of closely packed cadmium arachidate and the influence 
of SWCNT appears as the partial coverage of the surface. In case of 48–100% added 
SWCNT, isotherm gets changed significantly indicating formation of single layer. At 
molecular level, it is understood as SWCNT starts to interact with ordered cadmium
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arachidate. This also corroborates with change in the isotherm slope in between 45 
and 55 mN/m. It can be inferred that when compression of the SWCNT films reaches 
higher pressure then cadmium arachidate molecules appear as closely packed and 
leads compression of SWCNT bundles. 

Though CNT plays crucial role in different applicational fields of CNT, however 
opportunity can be further improved by making composite of CNT with different 
other polymers, inorganic semiconducting materials, etc. [59–64]. Some of the 
composites in thin film form can be prepared by LB technique. As an example, 
viologens, a group of electroactive organic electrolytic materials correspond to three 
oxidation states (+2, +1 and 0) and are often used to make composite with CNT for 
electrochromic electrode [65–67]. From structural point of view, viologens have posi-
tively charged bipyridinium core, two alkylated substituents and two small counter 
anionic ions. During mixing with negatively charged CNT, new kinds of hybrid mate-
rials get formed. It has been studied that poly(viologen), the derivative of viologen, 
is highly stable at the water–air interface and facilitates layer-by-layer deposition 
of oxidized CNT by LB technique. Prior to deposition, the mixture of viologen 
and carboxylated CNT is sonicated in various polar solvents at room temperature 
to obtain its composite. Most importantly, viologen and CNT very poorly disperse 
in organic solvent-like chloroform, but their composites disperse well, enabling us 
to examine monolayer behavior of the functionalized CNT at the water–air inter-
face and provide a platform to fabricate 3D multilayers as chloroform is the best 
solvent in this case (Fig. 7). In this context, it may be stated that Fu et al. prepared 
viologen–CNT composite film on quartz, Si and ITO substrates by LB technique at 
various surface pressure [68]. On the basis of transfer ratio, they have identified that 
monolayer can be deposited by down-to-up dipping only.

Other fields of interest of CNT include various biological and biomedical appli-
cations like nanoscale biosensors, biomolecular and biocatalytic devices where thin 
film of CNT composite are mostly used. In general, biocompatible oligomers, poly-
mers are used to prepare these composites. Among them, CNT–protein conjugates 
have gained much attention as CNT exhibits high electrocatalytic activity as well as 
efficiently transfers electrons between electrode and redox active protein molecule 
[69, 70]. Herein, LB also provides an important easy pathway to prepare thin film of 
these types. As an example, CNTs (single and multi-walled)—cytochrome c conju-
gate thin film (schematically shown in Fig. 8) having significant electrochemical 
sensing property has been successfully prepared by LB technique using Tris–HCl 
subphase surface [71]. Prior to making composite, CNT is made water-soluble by acid 
oxidative method using perchloric acid (72%) and concentrated HNO3 (70%). Depo-
sition has been carried out in two barrier minitrough with barriers speed ~10 cm2/min 
at room temperature on quartz and ITO substrates. Best transfer of the materials has 
been noted at surface pressure ~10 mN/m via vertical dipping, followed by horizontal 
lifting. The average occupied through areas of cytochrome c has been found in the 
following order cytochrome c < MWCNT—cytochrome c < SWCNT—cytochrome 
c indicating that CNTs float on the water surface along with protein. Isotherm curves 
reveal the two characteristics: (1) collapsed surface is higher for CNT—cytochrome 
c conjugate monolayer, and (2) compressibility of monolayers obeys the following
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Fig. 7 A Isotherms 
corresponding to single layer 
of a 0.1, b 0.2, c 0.3 and d 
0.5 mL C12 − VMWCNT 
composites with aqueous 
solution, concentration 
~0.19 mg/mL. B Isotherms a 
C8VMWCNT and b 
C16VMWCNT composites 
monolayer with water 
subphase [68, with  
permission]

order pure cytochrome c, MWCNT—cytochrome c, SWCNT—cytochrome c. Both 
these features suggest formation of CNT—cytochrome c conjugate through molec-
ular interaction as the presence of only one collapse pressure indicates that phase 
remains unchanged during compression and co-existed CNT weakens interaction 
among proteins which is hydrophobic nature. Thus, it may be stated here, LB not 
only serves an important synthesis technique, but provides an indication of conjugate 
formation.

CNT—GO nanocomposites have also gained attention in recent time as this 
composite appears to be beneficial for many optoelectronic applications for tunable 
electrical conductivity. Intercalation of CNTs between the GO layers results in 3D 
conductive networks with controlled film thickness. Therefore, an environment-
friendly yet optimizable synthetic route requires to increase performance and higher 
sized GO—CNT-hybridized TCE. Prerequisite solution is generally used to prepare 
thin film at an average speed ~100 mL min−1 to make 5–10 mL where monolayer 
of GO—SWNT gets formed. Before compression, this has been kept for almost
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Fig. 8 Scheme of preparation of the CNTs-Cyt c conjugates monolayer thin film using LB method

20 min to stabilize the system. The compression is usually carried out by the movable 
barriers at 10 mm min−1, and the corresponding pressure got noticed on tensiometer, 
joined with a Wilhelmy plate. After completion of the required compression, film 
of GO—SWNT composite having pale brown color is noticed so far. On the other 
hand, the monolayers of nanocarbon are transferred to a specific choiceable substrate 
at several phases of compression based on the common dip coating where quartz 
substrate is used to dip in a vertical manner and taken out at speed of 0.1 mm min−1. 
The as-prepared composite film is then transferred as and when the meniscus is spread 
onto the substrate during taking it out. For this, hydrophilic surface of the substrate 
is needed to be controlled for required wetting to take place by the deposition of 
conducting layers.
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3 Conclusion and Future Aspects 

The LB offers a unique low-cost technique for large-scale synthesis of carbona-
ceous thin films. Primarily, they are produced in powder form, and then homoge-
neous colloidal solution is being prepared. Often, stability of the colloidal solution is 
increased by chemical modification and surface functionalization. The as-prepared 
solution is dropwise added to solvent where monolayer Langmuir film gets formed. 
Then, monolayer is transferred onto the substrate by vertical dipping and lifting 
process. It has been discussed that quality of thin film significantly depends on type 
of solvent, nature of substrate surface, etc. LB also provides a protocol to prepare 
patterned or oriented assembly of carbonaceous nanostructures which act as building 
blocks of several industrially important materials in bulk form. By varying synthesis 
parameters, these nanostructures can be significantly modified with porosity, surface 
area, surface texture, etc. In addition, LB also appears as low-cost technique to prepare 
carbonaceous nanocomposites for several applications, specifically for sensor and 
energy storage devices. 

Though polymer-based and polymer-derived hybrid ultrathin films are highly 
demanding, but their carbonaceous material-associated composite thin film depo-
sitions by LB technique are yet to be studied a lot which could show potential 
applications in various domains. The idiosyncratic combinations of the properties of 
those LB thin films may promise revolutionary progresses as far as performance and 
cost-effectiveness are desired. Coatings for communications and computing appli-
cations are not studied significantly which may uncover a new sight for use of these 
thin films. For gas sensing applications, the conventional LB method can be modified 
also to study the further characterizations. Defect-free and LB films with less defor-
mation are to be studied in detail. The amalgamation of molecular electronics and 
nanotubes may result in novel class of organic materials with extremely improved 
quality in regard to use in gas sensors. For space applications, highly stable and 
highly sensitive LB thin films are required which are to be optimized with further 
research. 
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Part II 
Energy Science and Engineering



Chapter 3 
Nanoporous Carbon Materials 
for Energy Harvesting, Storage, 
and Conversion 

Bhawna, Janardhan Balapanuru, Varun Rai, Vinod Kumar, 
and Kamalakanta Behera 

1 Introduction of Porous Carbon Materials 

Design and development of advanced and sustainable carbon-based materials are 
most relevant now than ever before to address some of the key global challenges 
including global warming, energy consumption, water scarcity, air pollution, etc. [1, 
2]. Toward this end, researchers are paying much attention on porous carbon materials 
(PCMs) due to their unique properties such as high-surface area, tunable pore size, 
volume, functional modifications, and high electronic conductivities associated with 
these materials. Some of the key areas that implemented these efficient porous carbon 
materials are, but not limited to water filtration, energy conversion and storage, drug 
delivery, catalysis, and sensing [3, 4].
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PCMs are mainly classified into 3 categories such as (a) macroporous (with pore’s 
diameter > 50 nm), (b) mesoporous (50 nm > pore’s diameter > 2 nm) and (c) micro-
porous (with pore’s diameter less than 2 nm) (Fig. 1d). The deep and consider-
able understanding of the structure–property relationship of these materials helped 
researchers to design the most efficient and sustainable green materials especially 
in the field of conversion and storage of energy [5]. Extensive research has been 
conducted, and there are several review articles in the literature covering the above 
aspects of PCMs for various applications [6, 7]. The prime objective of this chapter is 
to bring some of the recent work done on PCMs especially on the micro/nanoporous 
carbon materials and their composites for energy-related applications. In the present 
chapter, first, we have summarized some of the most popular methods to synthesis 
PCMs, then the applications of micro/nanoporous carbon materials in the field of 
supercapacitors, lithium-ion batteries, lithium sulfur-based batteries, solar cells, and 
CO2 capture. 

Fig. 1 a Hard-template method, reproduced with permission from [8] Copyright (2017) Creative 
Commons Attribution License, b soft-template method, reproduced with permission from [9] Copy-
right (2013) American Chemical Society, c template-free (activation) method, reproduced with 
permission from [10], d Schematic illustration comparing macro, meso, and micropores, “reprinted 
with permission from [10] Copyright (2019) Creative Commons Attribution License”
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2 Synthesis Methods of Porous Carbon Materials 

While there are several methods reported on how to prepare PCMs with specific 
pore size, volume, etc., they are mainly categorized into (a) hard-template methods, 
(b) soft-template methods, and (c) template-free methods. 

2.1 Hard-Template Method 

In this method, rigid nano or microstructured inorganic materials such as zeolites, 
clays, colloidal silica particles, and wires fibers are used as templates which later 
produces its negative replica-carbon structure [11]. It is one of the easiest and effi-
cient methods to control the pore structures to prepare highly ordered porous carbon 
nanostructures. The typical process includes (i) synthesis or choosing the desired 
template, (ii) coat or filling the template with cross-linked precursors, (iii) chemical 
or thermal treatment of the processed template to convert precursors into a solid 
carbon network, and (iv) etching away the templates using strong acid or base [8]. 
For example, as shown in Fig. 1a, two types of porous mesoporous silica templates, 
namely SBA-15 and MCM-48, were chosen to obtain hexagonal and cubic 3D-porous 
structures, respectively [8]. These templates were then filled with carbon sources 
(typically sucrose) followed by polymerization. Later, pyrolysis/carbonization was 
performed by heating at elevated temperatures ~900 °C under vacuum. The obtained 
silica/porous carbon composites were then washed with a strong etchant (NaOH) to 
remove silica templates to obtain 3D-porous mesocarbon structures called CMK-3 
and CMK-1, respectively. 

Even though highly ordered porous structures are produced by this method. 
However, the multi-step process in this method, high cost, and the usage of strong 
acid or base-based etchers limit its widespread industrial adaptability. 

2.2 Soft-Template Method 

As mentioned earlier, the disadvantages of using strong etchants drive researchers 
toward more sustainable methods such as the soft-template method. The typical soft-
template method utilizes the inherent phase-segregation ability of the self-directing 
agents such as surfactants or copolymers as templates to form porous carbon networks 
[7]. Toward this end, ionic or non-ionic nature of self-directing agents plays an 
important role in deciding the pore size of the final product. For example, ionic 
surfactants generate PCMs with a pore size ranging from 2 to 4 nm, whereas non-ionic 
surfactants produce mesoporous structures in which the size is 10 nm and above [7]. 
Unlike hard-template methods, this method does not require any additional etching
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agent since such soft-templates are either consumed or become an important part of 
the carbon network or decomposed during the carbonization process [12]. 

Even though this method has many advantages such as easy control of structure 
as well as pore sizes, premium quality product, easy handling, and scalability, it also 
suffers from a few limitations such as lower crystallinity and sensitivity to reactive 
conditions. Interestingly, these challenges can be easily addressed by using further 
chemical and thermal treatments. For example, as shown in Fig. 1b, novel porous 
nanostructured carbon monoliths were prepared via the self-assembled dual-block 
copolymer-latex template method [9]. In this method, the mixing of polystyrene latex 
with sugar, pluronic diblock copolymer solutions leads to the formation of inverse 
opal structure due to the inherent self-assembly nature of the molecules involved. 
The hydrothermal carbonization of sugar that was employed at the end helped in 
preparing the monoliths with coral-like structures with different pore sizes in the 
carbon network. 

Along with hard and soft-template methods, researchers also used other interesting 
methods to generate PCMs with various pore sizes such as in situ templates, self-
template, multiple templates, and salt-melt methods. Further details can be found in 
the recent literature reviews mentioned here [7, 9]. 

2.3 Template-Free Method 

Activation: In the typical process, natural or synthetic carbon precursors are activated 
under an inert atmosphere by physical gaseous etchants (e.g., CO2, NH3, and steam) 
and/or chemical etchants (such as KOH, NaOH, or ZnCl2) to produce high-surface 
area porous carbon materials. Figure 1c shows the physical and chemical activation 
scheme of carbon precursors [10]. The most preferred carbon precursors for this 
process are the natural biomass-derived precursors such as wood, coconut shells, 
and fossil fuels. It is worth noting that chemical and physical processes can be used 
simultaneously. For many years, the activation methods demonstrated their capability 
in producing hierarchically porous structures along with very high-surface area. 
Recently, the usage of a few supplement activation methods such as hydrothermal 
and microwave-assisted carbonizations gaining importance, mainly due to their low 
energy consumption and ease of the process. 

Hydrothermal Carbonization: In a typical autoclave setup, the source precursors 
(e.g., glucose, starch, etc.,) are thermochemically converted to porous carbons in 
the presence of subcritical water at relatively low temperatures 180–260 °C under 
self-generated pressures of 2–6 MPa. The wet-char product (also known as hydro-
char) further undergo activation via chemical, physical, or both processes to enhance 
the porosity and pore volume of the final product. In contrast to the char produced 
from the conventional dry pyrolysis, the hydro-char produced in this process has 
a significantly higher amount of oxygenated functional groups that enable an easy 
functionalization of these porous carbons.
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Microwave-assisted Carbonization: It is another interesting method to perform 
activation at relatively low temperatures while accelerating chemical reactions with 
uniform heating across the substance. Compared to conventional heating, microwave 
activation might offer increased active surface area significantly with less energy 
consumption [10]. As an added advantage, microwave assistance process can be 
performed simultaneously with chemical or physical activation processes. Overall, 
even though it is still challenging to produce ordered nanostructured carbon materials 
through the activation processes especially for energy-related applications. However, 
the ease and simplicity of the processes made them widely acceptable by the industrial 
communities for other applications including adsorption, water treatment, etc. 

To sum-up, on the synthesis methods, it is difficult to achieve highly ordered and 
scalable nanoporous carbon structures through any single method. Every method has 
some associated advantages and disadvantages. Hence, the use of a combination of the 
above-mentioned methods gaining popularity recently, mainly due to the advantages 
and flexibility that they can offer. For example, porous carbon spheres are generated 
by the combination of hydrothermal activation assisted by hard-template methods. 
Many other reviews that highlighted the importance of using a suitable method or 
combination of methods to match the requirements can be found here [7, 12]. 

3 Applications of Carbon Porous Materials 

Porous carbon compounds have displayed excellent performance in many applica-
tions. Numerous applications in the energy and environmental markets have used 
structured carbon as anode for lithium-ion batteries (LIBs) and an oxygen reduction 
reaction (ORR) electrocatalyst supported fuel cells, owing to the distinct properties 
of porous carbon compounds [13]. The design and manufacture of porous carbon 
nanoarchitectures have made significiant progress in the past, and more work needs 
to be done so as to controltheir structure, pore sizes, and surface chemistry, when it 
comes to establish utilization avenues for carbon nanoarchitectures. Figure 2 shows 
various multidisciplinary applications of PCMs.

The high-surface area, high conductivities, chemical stability of the porous 
carbon-based materials including activated carbon, carbon nanotubes, and graphene 
enable them as stand-alone electrode materials for energy-related applications. But 
the low energy density of these carbon-based materials is due to their inherent low 
capacitance demand for a further functional modification or combination with a 
suitable counter material to address these issues. Many researchers have developed 
various synthesis strategies and also designed appropriate counter components that 
are suitable and compatible with carbon materials to address these challenges. For 
example, combining carbon materials with metal oxides such as MnO2, Fe3O4, and 
TiO2 tremendously improve the specific capacitance for supercapacitor applications. 
In a similar direction, many counterparts such as metal hydroxides, conducting poly-
mers, perovskites, and heteroatom doping are used to enable them to advance func-
tional carbon-based electrodes. In the next subsections, recent progress made in the
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Fig. 2 Multidisciplinary 
applications of porous 
carbon

synthesis and application of porous carbon and porous carbon-based materials as 
electrodes for energy conversion and energy storage is covered. 

3.1 Supercapacitors 

Supercapacitors offer high energy densities and capacities with excellent cyclability 
(capability to store and release energy) and are more powerful. The storage of energy 
in a supercapacitor takes place in the electrodes, or electrolyte–electrode interface, 
by physical charge build-up and/or faradaic charge transfer. The focus of research 
in supercapacitors thus far has been to try to find novel cheap materials, as well as 
innovative and speedy methods for creating supercapacitors with better performance. 
Fabrications of supercapacitor make use of some carbon-based materials, metal 
oxides, and conducting polymers. More specifically, researchers have been paying 
more attention to carbon-based materials, especially for supercapacitor applications, 
where activated carbon (AC) is commercially accessible [14, 15]. 

Electrochemical capacitors are classified as electrical double layer capacitors 
(EDLCs) and pseudo-capacitors. Carbon-based materials often employ the EDLC 
mechanism. In electrostatic ion adsorption and accumulation on the electrode surface, 
electrode double layer hinges form, although reversible redox processes in pseudo-
capacitors store more energy in greater amounts than EDLCs. Commercial ACs 
employ high-surface area materials, excellent conductivity, and pore size that work 
with the electrolyte system. To be appropriate for EDLC capacitor design, these 
characteristics are critical. To study the characteristics of several present types of 
carbon materials, significant basic investigations have been conducted. Due to unique 
physicochemical properties associated with carbon-based electrodes, these materials
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are commercially utilized for EDLCs as they are excellent conductors and have high-
surface area ranges from 1 to 2000 m2/g [16]. Therefore, carbon-based materials are 
as an ideal choice for EDLCs. They are also highly stable in the presence of heat, 
acids, and bases, as well as in the presence of large amounts of electrolytes. Carbon 
compounds are incredibly long-lived and provide a lot of power. These qualities 
together make carbon-based materials very desirable: they are abundant, inexpensive, 
and relatively simple to produce. Because of the advantages that carbon possesses in 
the field of EDLC, several carbon designs have been developed to increase energy 
storage capacity. Carbon materials for supercapacitor applications that have recently 
been investigated include carbon quantum dots, graphene, functionalized carbon, 
activated carbon, doped carbon, carbon aerogels, and carbon nanomaterials [17]. 

Porous carbon materials suited for supercapacitor applications may be synthe-
sized using chemical activation methods such as KOH, H2SO4, AgCl, and ZnCl2. 
Researchers discovered that treating the cells with KOH activated AC (which has 
around higher specific capacitance ~ 185%) improved the specific capacitance value 
by 30% [18]. They speculated that the extra oomph might be attributed to a larger 
mesoporous surface area, i.e., 2505.6 m2/g. Similarly, comparable results were 
obtained by using ZnCl2 as an activating agent. Presence of substantial micropores 
and higher specific surface area results into greater specific capacitance [19]. 

Yushin and coworkers reported an excellent approach that includes how to increase 
the surface area of activated carbon? The increased surface area consequently results 
into increase in the specific capacitance values [20]. One activation step was done by 
KOH to synthesize polypyrrole-activated carbon. Ionic liquid was observed to have 
an extraordinary specific capacitance of 300 F/g for the activated carbon obtained 
from polypyrrole. The polypyrrole-derived activated carbon has the greatest specific 
capacitance in an ionic liquid. The capacitance increases with an increase in temper-
ature due to the fact that increased temperature results into a drop in viscosity and 
movement of ions become easy and hence an increase in conductivity of the ionic 
liquid. Further, using biomass sources, such as tea trash, porous activated carbon was 
produced and was investigated within an aqueous electrolyte [21]. The KOH elec-
trolyte was discovered to have a remarkable specific capacitance (330 F/g), which 
proved to be extremely stable throughout the operation. After 20,000 cycles, the 
retained capacitance was extremely high, at around 92%. As previously reported, 
porous activated carbon was generated responsibly by composting tree seeds. More-
over, after 5000 cycles, the thermal pre-carbonization and subsequent activation with 
KOH resulted in a material with a capacitance value of 365 F/g, with the remaining 
bulk of the original value [22]. 

Cummings and colleagues demonstrated in theoretical research that the size 
of the carbon pores (mainly micropores) should be comparable with the ion size 
of the electrolyte liquid to offer appropriate charge accommodation [23]. On the 
other hand, Simon and coworkers discovered that diffusion and desolvation signifi-
cantly constrain ion mobility in these sub-nanometer micropores, resulting in low to 
moderate charge–discharge rates. As a result, charge and discharge rates are limited to 
low to moderate levels, therefore limiting rate and power density performance [24]. 
The researchers considered this issue and developed a novel design that included
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meso/macropores within the microporous carbon structure, resulting into excellent 
capacitance retention during process of fast charging/discharging. Additionally, they 
observed that by combining micro, meso, and macropores, they were able to achieve 
a particular capacitance, i.e., the gravimetric capacitance of 374.7 ± 7.7 F g−1 at a 
current density of 1 A g−1with a porous carbon electrode [25]. 

Other elements, for example, nitrogen, sulfur, boron, phosphorous, and oxygen, 
have been used to alter the surface chemistry of porous carbon. Bandosz and 
coworkers reported that pyridinic and pyrrolitic N both could be served as faradaic 
sites for pseudo-capacitance in the pyridinic N oxide and graphitic N electrode, 
whereas positively charged pyridinic N oxide aids electrical conductivity [26]. Sun 
and coworkers discovered that other doped samples showed unequal charge distribu-
tion transfer, resulting in an increased charge transfer speed [27]. By employing dual 
doping (e.g., N, B co-doping), Kirk and coworkers claimed that this might increase 
the ability to accelerate electron transport and pseudo-capacitance [28]. Porous 
carbon materials exhibited an increase in capacitance of 30% as a result of surface 
oxygen functional groups. Another method for increasing pseudo-capacitance is 
loading transition metal oxides (RuOx or mixed oxides; Ru1−yCryO2/TiO2) [29] or  
conducting polymers like polyaniline-grafted reduced graphene oxide [30] onto the 
carbon surface. 

Supercapacitors electrode material properties such as pore sizes and its structure 
and distribution mainly govern the energy storage performance for supercapacitor. 
The macropores (>50 nm) act as the ion buffering reservoirs, the mesopores (2– 
50 nm) as electrolyte ions transport, and micropores generally as the charge storage 
sites. Moreover, the specific capacitance and the rate capability are dependent on 
the volume of both micropores and mesopores, respectively. Hierarchical porous 
carbon electrode materials with interconnected and balanced distribution of macro-
pores, mesopores, and micropores are very promising for high-performance super-
capacitor devices. Hierarchical ordered porous carbon materials (HOPC) derived 
from biowaste were used to make symmetric supercapacitor [31]. The HOPC-based 
supercapacitor device shows high-specific capacitance of 289 F g−1 at a current 
density of 0.5 A g−1, with the energy density of 40 Wh kg−1 at the power density of 
900 W kg−1. The high electrical conductivity, high-specific surface area, and pore 
volume of HOPC contribute to high performance of supercapacitor device. 

However, overall performance and long-life cycle of supercapacitor devices highly 
depend on the overall assembly and electrochemical compatibility of electrodes with 
electrolyte interface. 

3.2 Lithium-Ion Batteries (LIBs) 

Batteries such as lithium-ion (LIBs, LSBs), lithium metal anode, and lithium-air 
are very important devices for energy storage that complement renewable energy
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sources solar photovoltaic, wind energy, etc. [32]. Porous carbon electrodes are suit-
able electrode material utilized in these energy storage devices due to its strong elec-
trical conductivity, great chemical stability, and readily tailored physical and chem-
ical characteristics. Even though porous carbons have exceptional electrochemical 
performance when it comes to electron transport, they necessitate a design that takes 
into account porosity, crystal structure, morphology, electronic structure, and surface 
chemistry. Although three-dimensional structured nanoporous carbons are consid-
ered to be the most valuable sustainable materials, they are extensively investigated 
and developed as anode materials for LIBs [33]. 

Since Sony began marketing LIBs in 1991, many electronic gadgets, power equip-
ment, and electric automobiles have been supported by LIBs [34]. Structure–property 
correlations say that in order to have a high storage capacity and stability using porous 
carbon as the anode material, high conductivity, appropriate surface chemistry, large 
specific surface areas, and porosity are necessary. Furthermore, the pores in the struc-
ture should be hierarchically organized with the goal of promoting reversible interca-
lation–deintercalation of Li+ to enhance Li+ storage capacity, while also supporting 
the rate of Li+ transfer and electrolyte mobility. Modification of the electrical and 
chemical structure of the carbon skeleton by adding one or two heteroatoms (B, N, S, 
O, and P) allows for more efficient electronic conductivity, wider interlayer spacing, 
and increased absorbability of Li and electrolytes. Thus, for instance, it was proven 
that up to 600 mAh/g of graphitic carbon frameworks contains N in the 3.9% range 
[35]. 

Graphene particle analogs, pyrolysis of zeolitic imidazolate frameworks, gave up 
to 17.72 wt% high N content [36]. These particles serve as the cathode in LIBs, 
retaining the 2132 mAh g−1 capacity after 50 cycles, and 785 mAh g−1 after 1000 
cycles. The exceptional results were due to the incorporation of N into the lattice 
having hexagonal symmetry and carbon edges. Further, calculation findings showed 
that as pyridinic and pyrrolic Ns served as the active sites to adsorb Li atoms, the 
additional Li storage capacity (i.e., more than 395.21 mAh g−1) that emerged from 
doped nanopores and edges may be attributed to Li adsorption in those locations. 
The effect of porous carbons is also enhanced by including additional functional 
materials, such as silicon [37], metal oxides (Fe, Co, Ti, and Cu) [38], and metal 
sulfides [39]. Using the example above, the produced carbonaceous materials with 
pores in their bimodal mesopores (intratubular mesopores of bimodal mesoporous 
carbon nanotubes) include mesoporous Co3O4, and the material is fully surrounded 
by Co3O4 in the bimodal mesopores (CMK-5) [40]. For this particular application, 
when the composite was used as a LIB anode, the specific capacity of 781 mAh/g 
was observed at 100 mA/g, very good rate capacity, and exceptional cycle behavior. 
The need of higher gravimetric and volumetric energy density storage devices is 
continually rising, which cannot be supplied by LIB technologies alone [41, 42]. 
New rechargeable Li-based batteries were created in order to fulfill the high energy 
density need of LSBs including a space for volume expansion after sulfur loading 
and providing a conduit for Li+ and electrolyte diffusion.
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3.3 Lithium-Sulfur-Based Batteries (LSBs) 

The porous carbon is used to hold sulfur, whereas the carbon framework is where 
the active components are held. It can both absorb lithium polysulfide (LPS) and 
retain lithium-sulfur batteries (LSBs) over a long period of time. Some researchers 
proposed that, while the sulfur level in the cathode must be < 70 wt% for LSBs 
to have greater volumetric energy density, optimizing the pore structure to be able 
to achieve a high sulfur percentage is essential for practical applications [43]. The 
electrochemical performance may be diminished when the carbon pores are full of 
sulfur, but if the pores are unencumbered by sulfur, the performance improves. To 
keep the phenomena from occurring, it is recommended that a conductive carbon 
with 3D network having a very high pore volume and specific surface area might be 
used [44]. Carbon may improve the conductivity of sulfur having insulating features 
or lithium sulfides, resulting in a wide carbon/sulfur contact that facilitates charge 
transfer. Porous carbon with a high graphitization degree provides good electrical 
conductivity and a high rate of performance. During charge and discharge cycles, 
LPSs produced in sulfur cathodes cause battery deactivation and decreased cycling 
activity. 

Electrochemical alteration of carbon-based hosts (e.g., heteroatom fixing, metal 
chalcogenides, or polymers) ameliorates these issues across three primary dimen-
sions. Three primary dimensions, in physical interactions, or by chemical bonds, 
trapping LPSs. In particular, N-doping can increase the adsorption of LPSs on carbon-
based surfaces, due to strong coordination or covalent bonding [45]. In porous carbon 
with N and P dual doping, greater chemical adsorption was observed than in carbon 
mono-doped with LPSs. Carbon hosts enable electron donors and acceptors to interact 
more easily, allowing electrons to more readily interact with them (i.e., by N atom 
doping). 

3.4 Solar Cells 

Renewable resources are on the rise in order to meet growing global energy demands 
as well as to address the impacts of global climate change. Solar cells are very impor-
tant renewable considering the large abundance of solar energy. The development 
of solar cells has also been recognized as one of the most promising techniques for 
storing and utilizing solar energy as electricity. Currently, the vast majority of solar 
panels are made of crystalline silicon. One of the primary elements of solar cells 
(SCs) is the hole-collecting electrode (counter electrode; CE). Carbon materials are 
one of the interesting alternatives for platinum-carbonate conductive epoxy owing 
to their low cost, eco-friendly production, scalability, and surface area. Graphite-
carbon black combination counter electrode was studied for the first time in 1996 by 
Kay and Grätzel. They obtained a promising value of photo conversion efficiency 
(PCE) of 6.7% [46]. Carbonous materials, such as carbon nanotubes, carbon black,
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graphite, graphene, carbon nanofibers, and mesoporous carbon, have all been exten-
sively researched, and each has been shown to be an effective counter electrode [13]. 
Carbon materials have been used in the CE of CH3NH3PbI3-based perovskite solar 
cells (PSCs) for the first time. Moreover, carbon black/graphite composite was screen 
printed on the photoelectrode used in PSC. Further, in order to produce a photoelec-
trode, fluorine-doped tin oxide (FTO) glass as the substrate was used, topping with 
the compact layer of oxides of Ti (TiO2), which was followed [47] by a mesoporous 
TiO2 layer, and then a layer of ZrO2 (with a spacer layer of ZrO2). The PSC finally 
completed its production process by coating the CH3NH3PbI3 perovskite sensitizer 
on top of the mesoscopic carbon layer [48]. 

The achievement of Han’s group, using different carbon compounds as CE mate-
rials in PSCs, included the goal of improving efficiency [49–51]. TiO2 nanosheets on 
the photoelectrode resulted in a 10.6% increase in efficiency from 6.64 to 10.6%, and 
even more to about 11.6% when varying the thickness of the carbon counter elec-
trodes [52, 53]. To provide a complete analysis of PSCs behavior, separate research 
also sought to examine the link between the thickness of the carbon black/graphite 
layer ranges from 3 to 15 µm and its performance. The highest efficiency of the 
PSCs was attained when a carbon black/graphite counter electrode was used with 
an optimum thickness of 9 µm. In addition to producing hole conductor-free and 
printable perovskite solar cells, Han’s team also played a part in assisting Grätzel’s 
team in manufacturing hole conductor-free and printable perovskite solar cells [54]. 

Various carbon materials such as carbon nanotubes [47, 55], viable carbon paste 
[56], single-layered or multi-layered graphene [57], and candle soot [57] are explored 
as hole extraction materials for PSCs. The collaborative efforts of perovskite and 
carbon material researchers have resulted in a good bond between the perovskite 
layer and the carbon components. One more way to look at it is that the recombina-
tion is inhibited at the interface, and the charge collection is improved. This latest 
research has found that when B-multiwalled nanotubes (B-MWNTs) are used, the 
aforementioned characteristics improve in work function, carrier concentration, and 
conductivity [47]. Figure 3 illustrates the MWNTs CE-based PSCs design. B atoms 
were used as doping atoms on the MWNTs to enhance hole extraction and transport 
in the PSCs.

A-MWNTs’ photovoltaic performances surpass those of both the A-MWNTs and 
the B-MWNTs ([47], shown in Fig. 4a). Additionally, an Al2O3 layer was formed on 
the m-TiO2 film, functioning both as a physical barrier to considerably prevent inter-
action between CNTs and meso-TiO2, as well as an additional method for minimizing 
back electron transmission. An efficiency of 15.23% was obtained by powering the 
PSCs with B-MWNTs via TiO2/Al2O3–B-MWNTs (14.6%). The productivity of this 
hole transport material (HTM)-free carbon-based PSC could be the greatest among 
all the PSCs that did not use HTMs ([47], Fig. 4b). Once the photocurrent density 
has been measured for 600 s, it became steady and offered a PCE of 14.76% ([47], 
Fig. 4c) offered a PCE of 14.76%.

Sun [58–60] and Ma and coworkers discovered that the commercial conductive 
carbon pastes could be directly applied to the layers of perovskite. 8–9% PCEs 
were derived from HTM-free devices [61–63]. Carbon paste was examined as a
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Fig. 3 Schematic illustration of cell configuration, B-doping of MWNTs, and charge behavior in 
C-PSCs. a Schematic illustration of the C-PSC configuration. b Schematic diagram of B-doping 
of MWNTs to B-MWNTs. c Schematic illustration of charge transfer enhancement by B-MWNTs 
through (I) lowering the EF of MWNTs and (II) increasing the number of conduction carriers in 
B-MWNTs electrode. The intimate interface between perovskite and MWNTs is marked by black 
dotted rectangle in (II). “Reprinted with permission from [47] Copyright 2017 American Chemical 
Society”

Fig. 4 Photovoltaic device, energy level structures, and photovoltaic performances of C-PSC 
devices with different MWNTs. Photocurrent density–voltage curves. J–V curves measured at 
forward (a) and reverse scanning directions (b) (100 mV s−1). Measured photocurrent output at the 
maximum power point (0.76 V) and calculated PCE versus time (c). “Reprinted with permission 
from [47] Copyright 2017 American Chemical Society”
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potential HTM-free perovskite/TiO2 heterojunction solar cell constituent in place 
of noble metallic components due to their high cost. Even in the absence of encap-
sulation, Ma’s work revealed the unexpected capacity of heterojunction PSCs with 
the architecture of M–TiO2/CH3NH3PbI3/C to resist damage and remain stable for 
over 2000 h in air in the dark. These experiments strongly support the claim that the 
low-cost carbon electrodes may be processed directly on top of the perovskite layer 
without altering its structure, which gives exciting options for material and structural 
selection in the resulting device [60]. 

3.5 Oxygen Reduction Reaction (ORR) 

Many conversion and storage technologies related to energies, including metal-air 
batteries, membrane involved proton exchange, fuel cells, make use of ORR because 
of its famously slow kinetics [32, 64, 65]. The limited availability, high cost, and 
short lifespan of the state-of-the-art ORR catalysts, their commercialization took 
quite large time. Discernible and heteroatom-doped porous carbons have significant 
potential as long-term, cheap, and active ORR electrocatalysts in alkaline environ-
ments while exhibiting less sensitivity to methanol crossover effect. One can modify 
morphology, concentration, electrochemical property of the surface, and electronic 
structure of carbon materials by using heteroatoms such as N, S, B, and P. Therefore, 
we can improve the performance of oxygen adsorption and activation with respect 
to the ORR by making suitable changes to the microstructure, composition, electro-
chemical property as well as electronic structure of carbon materials [66]. Consider 
the case of the pyridinic N-doped pyridinium doped at the edge of graphitic C. This 
N-doped pyridinium helps in reduction of the energy barrier for O2 adsorption, and 
hence speed up the rate-limiting initial electron transfer. An aid to O2 adsorption and 
desorption is provided by the tertiary ammonium quaternary which might result in 
C–N bonds of shorter length and unequal electron distribution. A very effective and 
stable ORR was accomplished in an N-doped porous carbon material because of the 
simultaneous adjustment of micro or mesoporous structure and surface characteris-
tics [67]. Synergistic effects of several heteroatoms have been shown to potentiate 
the electrocatalytic activity [68]. Although porous carbon materials are known to 
serve as electrocatalysts, it is also possible to employ them as supports to aid the 
loading of non-noble metals. An example for the same is the investigation of a family 
of Fe, N-doped, and Co, N-doped porous carbon catalysts [69]. Possible applications 
in electrochemical conversion and storage remain uncharted territory. 

Electrocatalysts are commonly used in fuel cell as ORR electrocatalyst, and both 
ORR as well as OER electrocatalyst in metal-air batteries that can be recharged. 
So far platinum when supported on carbons (Pt/C) has been widely explored and 
used as ORR electrocatalyst despite some limitations such as responsiveness to 
time dependent drift, CO poisoning, and fuel cross over. OER electrocatalysts 
include metal oxides such as RuO2, MnO2, and perovskite oxides. Noble metal and
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metal oxides-based electrocatalysts have serious implication on large-scale produc-
tion and wide spread usage due to their quite high cost and very poor durability. 
Therefore, nonprecious metal-based electrocatalysts such as metal free and carbon 
nanomaterials-based ORR electrocatalyst doped with heteroatoms are promising 
alternatives. 1D CNTs and 2D graphene doped with heteroatoms N, B, P, S, Br, Cl, 
I, etc., have been used as ORR electrocatalyst. Moreover, doping free carbon nano-
materials when adsorbed with polyelectrolytes are also promising ORR electrocata-
lysts. Metal free, N-doped carbon nanotubes (N-CNTs), and their graphene compos-
ites with porous structures have been used in acidic polymer electrolyte membrane 
fuel cells. Heteroatom doped 3D ordered porous carbon nanostructures having quite 
high mechanical and chemical stability, high graphitization, and surface area are of 
significant interest in electrocatalysts and catalyst supports for fuel cells [70]. Table 
1 shows various energy harvesting, storage, and conversion devices using porous 
carbon materials. 

Table 1 Representative table showing various energy harvesting, storage, and conversion devices 
using porous carbon materials 

Porous carbon materials Devices Performance References 

Hierarchical ordered 
porous carbon (HOPC) 
from biowaste 

Supercapacitor electrodes Specific capacitance 289 
F g−1 at a current density 
of 0.5 A g−1, Energy  
density 40 Wh kg−1 

[31] 

MesoporousSi@carbon 
core–shell nanowires 

Lithium ion batteries Charge capacity of 3163 
mAh g–1 with a high 
Coulombic efficiency of 
86% at a rate of 0.2 C 
(600 mA g–1) 

[71] 

Honeycomb derived 
carbon -sulfur composite 
(Hierarchical porous 
carbon material) 

Lithium–sulfur batteries Reversible capacity of 
1101 mAh g–1 at 0.1 C 

[72] 

N-doped carbon foams 
decorated with 
heteronanostructured 
MoO2/Mo2C nanocrystals 
(MoO2/Mo2C@3D NCF) 
Cathode material 

Lithium–oxygen batteries Discharge capacity of 
500 mA h g−1at a current 
density of 100 mA g−1 

[73] 

Porous graphitic carbon 
(EC-GC) as HTM/counter 
electrode 

Perovskite solar cells PCE of 8.52%, retention 
of PCE up to 94.40% 
after 1000 h 

[74]
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3.6 CO2 Capture 

Fossil fuel burning is a major contributor to global warming [75]. For the foreseeable 
future, fossil fuels will remain the primary energy source, as clean energy options 
(e.g., wind power, solar energy) have not been extensively embraced. In the near 
future, it is projected that the CO2 level would grow as a result [76]. Carbon capture 
will probably persist, whether carried out before, during, or after combustion, as 
storage is a must. Post-combustion capture technology focuses on separating CO2 

from nitrogen after fossil fuel combustion. Reducing CO2 emissions help preserve 
a sustainable environment. Instead of preceding techniques, pre-combustion CO2 

capture is typically carried out at high temperatures and pressures in order to separate 
CO2 from H2 or CO2 from CH4. Additionally, the operation takes place in an oxygen-
rich atmosphere that contains a fuel called oxyfuel. The last step is to enable the water 
vapor to condense, following which the compressed and stored gas product will be 
condensed to eliminate the water. A pragmatic way to implement this technique, 
however, the significant demand for pure oxygen adds to the cost, making it unusable 
for most situations. 

Continuous R&D efforts have resulted in the development of some sorbents having 
considerable CO2 capture capacity, strong regeneration ability, and outstanding 
CO2 selectivity in post- or pre-combustion circumstances [77]. Conventional carbon 
capture via aqueous amine scrubbing faces some drawbacks related to their stability, 
toxicity, regeneration energy requirement, and their volatile nature [78]. Numerous 
porous solid sorbents have been developed for this purpose, including porous zeolitic 
imidazolate and metal–organic frameworks, organic polymers, and porous carbons, 
with a special emphasis on porous organic polymers and zeolitic imidazolate frame-
works [79]. Use of porous carbons as sorbents is mainly due to their lightweight, 
great stability, structural flexibility, low cost, quite good recycling performance, and 
quite low regeneration energy requirement [79]. 

Gas adsorption can also be performed by using carbon nanomaterials having 3D 
ordered porous structures with controllable pore size and configuration. Hydrogen 
storage via adsorption over carbon materials have been reported using different forms 
of carbon such as activated carbon, graphite, single walled and multiwalled carbon 
nanotubes, and carbon nanofibers. Among all of them, carbon nanofibers with large 
surface area and micropore size distribution have been reported to store hydrogen 
up to 6.5 wt% [80]. Thermal treatments and metal doping on carbon nanomaterials 
have shown some degree of improvement in hydrogen storage capacities. 

3.7 Effect of Doping on Carbon-Based Electrodes in Energy 
Storage Applications 

The electrode materials that are being used as electrodes in electric double layer 
capacitors (EDLC) include carbon-based materials such as carbon nanotubes [81],
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carbon fibers [82], graphene [83], carbide derived carbons [84], and activated carbons 
[85]. Electrical charge storage by EDLCs is based on similar principle like in elec-
trostatic capacitors, however, formation of two distinct layers of electrical charges 
between electrolyte ions and carbon electrodes (negatively/positively charged) takes 
place in case of the EDLC [86]. EDLCs preserve specific capacitance to a magnitude 
that is six to nine times higher when compared with conventional capacitors [87, 88]. 
In EDLCs, charge storage is mainly a physical phenomenon that does not involve any 
electronic transfer making EDLCs a superior candidate for applications in which high 
power is required. Further, very short charging period of time and longer life cycles 
[89] are key factors for their potential applications. One can improve the specific 
capacitance by doping heteroatoms (boron, nitrogen, phosphorous, and sulfur) on 
the surface as well as within the structure of the aforementioned carbon-based active 
materials. Heteroatoms-doped carbon materials have shown superb capacitive perfor-
mance due to contribution from pseudo-capacitance through a Faradic reaction which 
is very fast and fully reversible in nature. Furthermore, reversible Faradic reaction 
takes place without forfeiting the long cycle life and excellent power density [90]. 
So far, immense contributions related to energy storage have been made by scien-
tists to assess the impact of these heteroatoms-doped carbon-based electrode active 
materials [91, 92]. 

It is shown that the heteroatoms doping into the carbon matrix results into 
improved capacitance by improving the electrodes wettability [93]. Synthesis of 
two B- and N-doped porous carbon electrode materials with uniform mesopores 
diameter has been carried out, and the performance of the synthesized electrodes 
in both aqueous and organic electrolyte was studied [94]. The results suggest that 
the pseudo-capacitance is playing the key role in improving the capacitance by B-
or N-doping in both aqueous and organic electrolyte. Further, it is reported about 
the pseudo-capacitance effect that was induced by O-, N-doped activated carbon 
[95]. Researchers used polybenzoxazine to prepare nitrogen-enriched hierarchically 
porous carbons and observed that the largest specific capacitance (641.6 F/g at current 
density 1 A/g) in 6 molar aqueous KOH electrolyte. The observed specific capacitance 
is reported due to the large pseudo-capacitance induced by active O-III, O-II, N-5, 
and N-6 functionalities via O-, N-doping. Recently, scientists are working toward 
improving the specific capacitance via introduction of heteroatoms (O, S, B, N, and 
P) in the carbon matrix. Hasegawa et al. proposed that S-, P-, and N-doping in carbon 
matrix can be done via post-treatment route using different doping source [96]. The 
doping sources used are urea and NaNH2/NH4Cl mixture with hexamethylenete-
tramine (HMTA) for nitrogen source, red phosphorus for phosphorus source, and 
Na2S2O5 and Na2S2O7 for sulfur-doping. It is shown that S- and P-doped carbon 
aqueous electrolyte improves the specific capacitance as compared to that of N-
doped carbon and S-doped carbon displayed the highest specific capacitance in the 
organic electrolyte. The energy density is observed to be linearly proportional to the 
operating voltage window and specific capacitance. Hence, operating voltage can 
also be used as an important factor to increase the specific capacitance. Deng et al. 
have shown that other than used electrolytes, the operating voltage window can also 
be extended by P-doped porous carbon [97]. The doping with the aforementioned
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heteroatoms results into improved conductivity of the material due to introduction 
of more defects and alterations of the space charge layer density of the carbon mate-
rials due to the difference in electronegativity of the doping agent and used carbon 
material. 

3.8 Factors Affecting Performance of Carbon Materials 
as Electrodes 

There are so many factors that can affect the performance of carbon materials 
as electrodes in energy storage devices. Large surface area (implies pore surface 
contains vast amounts of charged ions) is one of the major requirements in achieving 
high capacitance of carbon-based electrodes. Micropores present in carbon elec-
trode material perform an important function while providing a huge accumulation 
platform for high energy storage through controlled diffusion effects and molecular 
sieving [98, 99]. Activated carbons generally have predominant microporosity, and 
hence, these materials have been used as the most common supercapacitor elec-
trodes. Although large surface area plays an important role for carbon-based super-
capacitors (CSs), but large surface area in excess of 1500 m2 g−1 [100] may not 
necessarily contribute to the electrode capacitance due to limited electrochemical 
accessibility to the ions. In order to improve the storage capacity, one has to generate 
large adsorbing sites that are more exposed on the surface landscape and hence helps 
in relieving the barrier for surface accessibility [101]. Significant research efforts 
have been made so as to fabricate various carbon morphologiesin which there is 
superior control over the surface topography as well as interior texture. A variety of 
synthesis methods, e.g., modified Stoeber synthesis, self-assembly, emulsion poly-
merization, and hydrothermal carbonization have been employed to construct spher-
ical carbon nanoarchitectures that feature the close-packing nature and the smallest 
surface-to-volume ratio [102]. 

The pore size distribution and conductivity are very critical parameters for elec-
trode application of porous carbon materials in different devices. In Li-air battery, the 
size of the of carbon materials as cathode influences the kinetics of ORR and OER 
processes. It is found that the smaller pore sizes assist in faster kinetics of ORR and 
OER. However, small pores reduce the total pore volume and in turn not suitable to 
accommodate the discharge products of the reactions. Therefore, one has to optimize 
pore size distribution to achieve maximum performance of the devices using porous 
carbon materials. 

Advanced functionalization and structural design of progressive nanoporous 
carbons have produced unprecedented developments, yet many sectors remain where 
these advancements can still be put to use. Here, we mentioned the appealing porous 
carbon microstructure designs that have a significant beneficial influence on the prop-
erties of supercapacitors, LIBs, LSBs, ORR, and CO2 capture. Nanoporous carbons 
have a significant impact on the world, and there are several prospective avenues for
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further improving their structure, manufacturing, and application in new applications. 
As a result, it is unsuitable for broad usage. 
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DFT Density functional theory 
[DIPEA][TFSI] Diisopropyl-ethyl-ammonium bis(trifluoromethanesulfonyl)-

imide 
DMAC Dimethylacetamide 
DMF Dimethylformamide 
EDLC Electrochemical double layer capacitors 
EIS Electrochemical impedance spectroscopy 
ESR Equivalent series resistance 
[Et3NH][TFSI] Triethylammonium bis(trifluoromethylsufonyl)imide 
FSI− Bis(fluorosulfonyl)imide 
GCD Galvanostatic charge–discharge 
GO Graphene-oxide 
GPE Gel-polymer electrolyte 
HOMC Highly ordered mesoporous carbon 
IL Ionic liquids 
LAC Lignin hierarchical porous carbon 
LC Lignin-based carbon 
MD Molecular dynamics 
MOF Metal-organic framework 
TEG Thermoelectric generators 
PAA Poly(amic acid) 
PAN Polyacrylonitrile 
PBI Polybenzimidazole 
PDMS Polydimethylsiloxane 
PEEK Poly(ether ether ketone) 
PEO Poly(ethylene oxide) 
PFTE Polytetrafluoroethylene 
PF− 

6 Hexafluorophosphate 
PMMA Polymethyl methacrylate 
PVDF Polyvinylidene fluoride 
PVDF-HFP Poly(vinylidene fluoride-hexafluoropropylene) 
PVA Polyvinyl alcohol 
PVP Polyvinylpyrrolidone 
PC Propylene carbonate 
PyC Pyrolytic carbon 
PyNO3 Pyrrolidinium nitrate 
[Pyrr][TFSI] Pyrrolidinium bis(trifluoromethanesulfonyl)imide 
SC Supercapacitor 
SEM Scanning electron microscopy 
SFG Surface functional group 
SPE Solid polymer electrolyte 
TEM Transmission electron microscopy 
TEOS Tetraethoxy orthosilicate 
TFSI− Bis(trifluoromethanesulfonyl)imide 
Tg Glass transition temperature
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THF Tetrahydrofuran 
ZDPC Zeolite-derived porous carbon 
ZIF Zeolitic imidazolate framework 

1 Introduction 

Excessive consumption of energy from fossil fuel resources, increasing global 
warming, and the world’s growing population demand a search for an alternative that 
provides a clean, efficient, and sustainable energy for modern society. There has been 
growing research to develop state-of-the-art technologies for harvesting electricity 
for various portable electronics and household appliances. In recent years, a consider-
able amount of energy contribution can be acquired from sustainable energy sources, 
such as wind, geothermal, hydroelectric, solar, and biomass. However, these energy 
sources are intermittent and fail to contribute consistently due to uneven distribu-
tion, geographical location, and weather dependency. Furthermore, a highly efficient 
energy storage device is required to collect the aforementioned sustainable energy 
and also to ship it to various locations for utilization. To date, two major energy 
storage devices—batteries and supercapacitors—have the potential to be used as 
power sources commercially for a wide range of electronic devices. 

In addition to electrical storage applications, interest has emerged to develop 
energy harvesting devices for applications that vary from transportation systems (e.g., 
powering monitoring devices) to wearable personal items (e.g., powering watches). 
More recent efforts have moved toward using composite systems that generate elec-
trical current using moisture and differences in thermal properties between mate-
rials using thermoelectric generators (TEG). In the past few years, blue energy 
field has shown a significant importance because of their abundant nature which 
can be harvested from ocean wave resource. Liu et al. [1] outlined blue energy 
harvesting systems based on nanostructured carbon materials that have the potential 
for harvesting energy derived from flowing liquid, such as rain and moisture evap-
oration. Research in this area is in its infancy and different technologies are being 
developed in small-scale systems. Currently, piezoelectric devices containing GaN, 
ZnO, and polyvinylidene fluoride (PVDF), as well as triboelectric devices using 
metals, poly-dimethylsiloxane (PDMS), polytetrafluoroethylene (PFTE), and poly-
methyl methacrylate (PMMA), are used for energy harvesting. However, potential 
opportunities exist to use lignin-derived carbon materials for these devices. 

Ding et al. [2] outlined the potential for printing porous carbon films capable of 
producing 1 Vdc and a power density near 8.1 μW/cm3 using water evaporation. 
The porous carbon films were produced using carbon nanoparticles with nanosized 
pores. Also, Lebrun et al. [3] and Eddia et al. [4] utilized carbon black nanopowders 
and carbon nanopowders, respectively, when investigating energy harvesting with 
polymer composites.
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2 Supercapacitors 

The electrochemical energy storage systems are divided into two most known groups 
such as batteries and capacitors based on the storage and release of charge. In 
general, a battery that converts chemical energy into electrical energy distributes 
energy linearly to provide higher energy density. Unlike a battery, capacitors release 
energy in a shorter time; therefore, they have higher power densities. A supercapac-
itor (ultracapacitor or electrochemical capacitors) exhibits a much higher capacitance 
value but with a lower voltage range to fill the gap between batteries and capacitors. 
The journey of supercapacitors started with a 1 F capacity, and the currently available 
supercapacitors can display a capacity of more than several hundred Farads and is 
able to give charge–discharge currents up to several tens of Amperes [5]. Superca-
pacitors are widely used in several fields such as consumer and portable electronics, 
transportation and vehicles, power backup, biomedical, military, and aerospace [6]. 
Depending on the requirements of the application, supercapacitors can be used in 
complement or instead of other energy storage devices [7]. 

Supercapacitors are primarily classified into two fundamental groups such as 
electrochemical double layer capacitors (EDLCs) and pseudocapacitors based on 
the charge storage mechanism involved in the device [8, 9]. The two capacitor 
groups, along with Li-ion batteries, are depicted in Fig. 1 [10]. In EDLCs with 
high surface area and carbon-based materials as electrodes, energy is stored by pure 
physical accumulation at the electrode/electrolyte interface [11–13]. In pseudoca-
pacitors, however, energy is stored by the transfer of the charge produced by the 
reversible reduction and oxidation (redox) reactions between the electrode and elec-
trolyte [14, 15]. Considering the electrode materials utilized in pseudocapacitors, the 
predominant contribution can be obtained from the transition metal-based oxides and 
hydroxides, and also conducting polymers [16, 17]. Among several carbon-based 
materials like graphene and carbon nanotubes, activated carbons are the potential 
and promising electrode materials due to their high surface area, low cost, environ-
mentally benign features, and simple of processability. However, they go through 
inadequate energy storage capacity and low rate capability [18]. Although pseudo-
capacitive materials can overcome these issues, they still have some disadvantages 
including poor electrical conductivity of the electroactive species, low-power density, 
and cycling stability [19]. Recent studies have demonstrated a typical approach of 
combining carbon-based materials with either metal oxides/hydroxides or conducting 
polymers to understand the capacitive performance and cycle life by synergistic 
effect of pseudocapacitance and EDLC [20, 21]. In fact, some researchers suggest a 
new title, hybrid supercapacitors, for the energy storage systems prepared with this 
approach.

The specific capacitance of a supercapacitor depends on various parameters such 
as electrode material, composition of the electrode (additives), type of membrane, 
type and concentration of electrolyte, and cell architecture. However, the equivalent 
series resistance (ESR) and the Columbic efficiency should be considered when 
discussing the capacitive accomplishment of a supercapacitor. A large number of
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Fig. 1 Basic schematic comparison of a electrical double layer capacitor (EDLC), b pseudocapac-
itor, and c Li-ion battery. Reprinted with permission from Kristy et al. [10] Copyright (2014) Royal 
Society of Chemistry

works can be found that focus on the effect of these parameters on the capacitive 
performance of a supercapacitor. However, it is hard to compare the published results 
because of several independent variables rely on the process which may not be 
presented by the authors [22]. Therefore, the energy and power density calculations 
are generally considered when comparing the reported results. 

Among the various parameters listed above, electrode material can be regarded 
as the most fundamental variable for determining the supercapacitor’s performance. 
Regardless of the energy storage mechanism, recent studies put forth the impor-
tance of new electrode active materials designed with improved surface and pore 
characteristics, surface chemistry, and surface morphology toward designing the 
supercapacitors with excellent performance. 

2.1 Precursors for Electrodes 

Carbon-based materials are currently the material of choice in the electronics, auto-
motive, and aerospace industries [23] due to their excellent storage of charges electro-
statically on surfaces. These carbon materials are used predominantly to fabricate the 
supercapacitor devices; hence, it is more imminent to choose precursors to produce 
activated carbon with unique properties including large surface area, good electrical 
conductivity, low weight, and pore distribution [24]. Several advanced materials 
have been used as precursors for producing carbons, and a concise overview of every 
precursor is reported in the following sections. 

Carbide-derived carbons have been used significantly as precursors for electrodes 
in SC because of their large specific surface area and higher control of porosity 
[25]. In particular, this type of corresponding carbon materials has been obtained 
through chlorination of metal carbides at high temperatures (400–1200 °C) to remove 
non-carbon atoms and produce more uniform and disordered structures. During this 
process, the pore size distribution of the electrodes is largely tuned by the amount
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of chlorination and the temperature employed [24]. The carbide-derived carbons 
can be produced with a pore size in the range of 0.6–1.1 nm, which exhibits 1000– 
2000 m2 g−1 [26]. Several types of carbon-derived precursors have been reported 
that include SiC, B4C, and TiC [27–32]. The authors have attempted to explore the 
impact of different halogenation using chlorine and bromine in TiC to synthesize 
carbon-derived carbon; results demonstrated that the extractive step with different 
halogen does not affect the final carbon structure. However, chlorination showed a 
noticeable improvement in the texture due to the high reactivity of chlorine, which 
enhances the uptake capacity of H2 [33]. 

Similarly, precursors based on a metal–organic framework (MOF) have been 
demonstrated as novel materials to synthesize of porous carbon electrodes [34–36]. 
MOFs consist of organic and inorganic or transition metal clusters which exhibit 
high thermal properties because the pore size can be tuned by diverse temperature 
and activation process employed (Fig. 2). The pore size obtained from MOFs is 
more  than 1 cm3 g−1, and the specific surface area ranges from 800 to 3400 m2 g−1 

[37]. Zeolite-based MOFs are the most predominant materials used to achieve the 
3D porous network (shown in Fig. 2), for example, zeolitic imidazolate framework 
(ZIF-8), which exhibits an excellent surface area of 3680.6 m2 g−1and obtained 
the pore size of 1 to  4 nm [36]. In addition, zeolite templated carbons (ZTC) are 
synthesized with non-doped and nitrogen-doped materials that have a pore size of 
1.2 nm. Comparing the nitrogen-doped and non-doped ZTC, nitrogen-doped ZTC 
provides a maximum power that is four times higher than non-doped ZTC due to the 
fact of nitrogen functionality, which significantly enhances electrical conductivity 
and wettability [37].

Recycling waste from offices, households, and industrial sites is of interest to 
produce activated carbons (AC) that can eventually suppress the various issues asso-
ciated with human health and the environment [38]. Significant research has been 
proposed for the transformation of a wide range of wastes into AC. Durairaj and the 
authors have demonstrated the synthesis of AC from laboratory waste and hardboard 
waste; the results showed that laboratory waste displays the specific capacitance rate 
of 260 F g−1 which is higher than hardboard wastes value of 155 F g−1. They also  
reported that the capacitance was maintained up to 92% for laboratory waste and 71% 
for hardboard waste after 1000 cycles [39]. Similarly, different authors performed 
the efficient conversion of wastes like printed papers, filter papers, tissue papers, 
and waste papers into carbon materials [40–44]. Apart from paper waste, AC is also 
produced from industrial waste, for instance, glycerin, which is more competitive 
with the AC derived from wood. Glycerin is the predominant residue from biodiesel 
production, and Gonçalves synthesized AC from crude or unpurified glycerin. They 
produced AC through applying a chemical activation process with different reagents 
such as H3PO4 and ZnCl2. The obtained AC was applied to investigate the efficiency 
as electrodes, and the results were indicated that a specific capacitance of up to 15.5 F 
g−1 at the current density of 0.25 A g−1 was obtained which maintained capacitance 
of more than 82% after 5000 cycles [45]. Similarly, Li fabricated hierarchical porous 
carbon nanosheets from waste engine oil that showed the specific surface area of up 
to 2276 m2 g−1 with the specific capacitance of 352 F g−1 and noted that more than
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Fig. 2 Schematic of the synthesis of the a carbide-derived carbons from TiC, Reprinted with 
permission from Sławomir et al. [33] Copyright (2019) Elsevier, b ZIF-8-derived porous carbon 
(ZDPC), Reprinted with permission from Rutao et al. [36] Copyright (2017) Royal Society of 
Chemistry

87.7% of capacitance was maintained even after 5000 cycles [46]. The recent review 
from Sundriyal discussed in detail bio-waste-derived AC for supercapacitors [38]. 
Figure 3 depicts the preparation of final activated carbon from various bio-based 
waste sources [38].

Recently, renewable-based materials have attracted significant consideration as 
sustainable precursors for the production of activated carbon because of their abun-
dance and low cost. These materials possess a broad variety of functional groups 
including −OH, −COOH, and NH2, which are fundamental for achieving uniform 
morphologies and designing a variety of nano-functional materials [47–49]. Several 
types of precursors have been used from biomass, including phenols such as 
phloroglucinol, tannins, gallic acid, and other components, like cellulose, lignin, 
chitosan, and starch, are widely used to synthesize organic mesoporous carbons with 
a surface area of 500–2730 m2 g−1 [50–56]. Several methods have been considered 
to process biomass such as coating, spinning, spraying, and ink-jet printing that will 
further undergo hydrothermal treatment to prepare the carbons for electrodes; an 
example scheme is shown in Fig. 4.
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Fig. 3 A schematic representation of the production of activated carbons from various bio-waste 
materials. Reprinted with permission from Shashank et al. [38] Copyright (2021) Elsevier

Fig. 4 An illustrative example of using biomass-based precursors for producing sustainable flexible 
electrodes through applying different processes. Reprinted with permission from Herou et al. [57] 
Copyright (2018) Elsevier
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2.2 Activated Carbon Electrodes for Supercapacitors 

Among various carbon-based materials, biomass-based activated carbons (bbACs) 
are the most used electrode materials due to their economical and environmentally 
friendly advantages. A unique porous structure and surface chemistry also make 
bbACs more attractive compared to coal-based ACs. In addition to the physical 
charge accumulation as a result of bbACs’ porous structure, the heteroatoms such 
as N, O, or S present on the surface relatively contribute to the total specific capac-
itance by creating pseudocapacitance. Since the double layer formation is largely 
correlated with the interactions between the solvated ions and pores, the amount, 
size, and distribution of the pores as well as the size of the ions and the distortion 
of their solvation shell [58, 59] should be considered for constructing more efficient 
electrode materials. The most important problem that causes poor rate performance 
is mainly related to the inner-pore ion transport and diffusion distance in which its 
mechanism is very complex [60, 61]. A detailed study of connection between the 
pore size and ion size was discussed before [59, 62]. It is concluded that the capacity 
is normally increased when the pore size is larger than the ion size, which allows 
the interactions between ion and opposite pore walls without affecting the kinetics 
of electroadsorption and desorption [59]. In addition, the hierarchical 3D pores with 
interconnected micro-, meso-, and macroporous networks have the benefits of each 
pore through a synergistic effect [60]. The macro-sized pores (pore size > 50 nm) act 
as ion-buffering reservoirs to reduce the diffusion distance [63, 64], the meso-sized 
pores (2 nm < pore size < 50 nm) provide ion transport pathways with a minimized 
transport and diffuse resistance, depending on the ion size [61, 65, 66], and the micro-
sized pores (< 2 nm) enhance the formation of an electrochemical double layer. It is 
also stressed that the pore characteristics of bbACs highly vary on the biomass type 
and the synthesis methods such as chemical/physical activation or hard/soft template 
approach, which will be discussed in the next sections. 

On the other hand, the heteroatom-containing surface functional groups (SFGs) 
are responsible for the Faradaic reactions, which occur naturally due to the elemental 
composition of biomasses during thermal treatment. The important Faradaic reac-
tions that can be summarized for oxygen-containing and nitrogen-containing SFGs 
are reversible quinone/hydroquinone redox reactions and negatively charged nitrogen 
atoms present in the pyridinic and pyrrolic-ring due to the protons attached [67, 68]. 
The amount and type of the oxygen-containing SFGs are not only dependent on 
the type of biomass but also heavily affected by the activation agent because of 
the different reaction mechanisms [69]. Moreover, the presence of the SFGs mainly 
affects electrical conductivity of the electrode, which causes an increase in the specific 
capacitance [70]. 

Due to the high number of parameters that affect the efficiency of the capacitance 
of the electrode material, it is very hard to put forward a formula or a direct correlation 
between the parameters and specific capacitance. However, the following outcomes 
for a high-performance electrode material property can be made from previously 
reported works:
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• High surface area with accompanying interconnected micro-, meso-, and macro-
sized pores (note that the amount and the ratio of pores are decisive); 

• Heteroatom-containing SGFs with the ability of reversible Faradaic reactions; and 
• Good electrical conductivity and high wettability of the electrode with the 

electrolyte. 

Apart from these, one should consider the fabrication process of the electrode 
and the supercapacitor for the determination of capacitive performance. In the elec-
trode fabrication process, some additives are usually used, and these additives create 
a contradictory situation. Typically, in order to enhance the specific capacitance, 
carbon black or acetylene black is used as a conductive material. However, polyte-
trafluoroethylene (PTFE) and PVDF are generally applied as binders, which causes 
a decrease in the specific capacitance. Thus, it is obvious that the composition of the 
obtained electrode is an important factor. Moreover, the thickness of the electrode 
is another critical parameter that affects the specific capacitance of the device. It is 
reported that commercial electrode thickness extends from 10 mm to several hundred 
mm thick for high power and energy density, respectively [71]. 

2.2.1 Porous Carbon as an Electrode Material 

There has been growing research interest in utilizing porous carbon, including biochar 
and biomass-based functional materials, as an electrode for electrical double layer 
capacitors (EDLCs). When producing carbon materials from biomass sources, the 
resulting porosity, chemical constituents, and surface area play key roles in the 
usefulness in electrical, energy storage, and supercapacitor applications (Fig. 5). 
In general, carbon materials obtained from biomass-based have large surface areas, 
desirable electrical conductivity, superior chemical stability [72], and hierarchical 
pore structures with wide pore ranges (micro-, meso-, and macro-pores) that are 
fundamental to acquire high-quality energy storage features [9, 73, 74]. These types 
of porous carbons can be produced at relatively low costs [75], have a low envi-
ronmental impact, and are obtained from sustainable feedstock [76–78]. The key to 
a successful application of bio-based carbon material for energy storage and elec-
trodes lies within their structure. For example, a carbon-based material obtained 
from highly ordered mesoporous carbon (HOMC) exhibits explicit nanostructures 
in the range of 2–50 nm which has been an essential material in many important 
applications such as high-performance electrochemical energy storage [79, 80] and 
high-efficiency enzymatic catalysts and biosensors. Mesoporous carbons are unique 
as they can provide both fast mass transport of molecules and possess large specific 
surface areas. These two properties are required for many advanced industrial appli-
cations of porous carbon involving a liquid phase (e.g., energy harvesting systems and 
supercapacitors using liquid electrolytes) and large organic molecules (e.g., enzyme 
immobilization in nano-bio-catalysis processes and biosensors).

Studies indicate that the electrical conductivity and porous structure of biochar-
derived electrode materials influence the performance of supercapacitors through the
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Fig. 5 SEM image of the 
porous structure of the 
carbonized woody portion of 
a hemp stem

change of electrode-potential drop [81]. He et al. [82] reported that the conductivity 
and specific surface areas of electrodes made from activated biochar influenced the 
electrochemical performance of supercapacitors. They found that resistance is linked 
to both electron conductivity and ion mobility. High electrical conductivity of elec-
trodes and low ionic resistance of the electrolyte within biochar pores resulted in low 
equivalent series resistance of the supercapacitor [78, 83]. Many studies indicated 
that the high surface area and porous structure of the electrode contributed to suit-
able electrochemical performance of activated biochar-based supercapacitors [70, 77, 
84–86]. Furthermore, the specific capacitance of a supercapacitor may improve with 
increasing surface area and porous properties of biochar-derived electrode materials 
[81]. Besides, the elemental composition and functional groups of biochar-derived 
electrode materials can also affect the capacitive performance of the electrodes. For 
example, He et al. [82] also reported that hetero-atom containing functional groups 
(oxygen and nitrogen)improved the wetting properties of biochar-derived electrodes 
and committed to the Faradic redox reactions that result in an increase of the elec-
trodes’ specific capacitance. Song et al. [74] reported that the high oxygen groups 
(12.7–17.1 wt%) of activated corn husk carbon improved its performance in the 
supercapacitor. 

2.2.2 Carbon Fibers as an Electrode Material 

Carbon fibers-based electrodes provide outstanding mechanical strength and elec-
trochemical conductivity which are normally produced from polyacrylonitrile and 
contribute 90% of carbon fiber production and pitch is also a primary precursor for 
industries [87, 88]. Acrylonitrile is a fossil-based precursor for carbon fibers that 
are polymerized using toxic solvents and scarce catalysts to produce polyacryloni-
trile (PAN) [89]. Furthermore, numerous research activities have been exploited to
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synthesize carbon materials from various sources in order to make wearable and flex-
ible electronic devices. Although several techniques have been proposed to synthe-
size carbon fibers, the electrospinning technique is the widely used [90]. Table 1 
illustrates the source of the carbon fiber, formation process, fiber diameter as well 
as the obtained specific capacitance of the prepared electrodes. It is clearly illus-
trated that the treatment conditions play a vital role in the production of fibers with 
diameters that range up to several nanometers, which greatly influence the surface 
area and capacitance. In addition, PAN polymer contributes more than any other 
polymer, including polybenzimidazole, polyvinylpyrrolidone, and poly(amic acid), 
as a precursor for carbon fiber synthesis. Furthermore, recent works have incorporated 
transition metal-based oxide and sulfide compounds such as CoNiO2 [91], AgNO3 

[92], Ni3S2/CoNi2S4 [93], NiCo2S4 [94], MoS2 [95], CoS [96], and Ni3S2 [97] to  
improve electrical conductivity, mechanical, and thermal stability.

Currently, PAN-based fibers are expensive and unsustainable. To improve sustain-
ability and reduce the cost of carbon fibers, tremendous amount of work has been 
performed to find alternative precursor to PAN. From an economic and environmental 
point of view, carbon powder and carbon fibers produced from biomass for electrode 
applications are an attractive alternative to conventional carbon materials [88, 117]. 
These bio-based activated carbon fibers and carbon powder exhibit highly accessible 
surface area and adequate electrical conductivity, which are two key requirements 
for effective supercapacitors. Research on bio-based materials has been focused 
on producing activated carbon and carbon fibers from lignin for supercapacitor 
electrodes. 

2.3 Carbonization and Activation 

As mentioned above, biomass-based activated carbons (bbACs) synthesized by 
thermochemical conversion of biomass are widely used as an electrode material 
for energy storage applications due to their advantages. However, it is clear that 
they should be re-engineered to develop the porous texture and surface chemistry. 
Template and activation approaches with various experimental parameters are mainly 
used to produce bbACs. Although the template approach results in good surface area 
and manageable pore size distribution [118], the drawbacks of high cost and time-
consuming or cumbersome removal of the template process make it impracticable 
for high-scale applications [119]. Chemical and/or physical activation of biomass-
based carbon materials provides large specific surface area and the ability to form 
surface with heteroatom-containing functional groups. The chemical or physical 
activation can be applied in two different ways, direct and indirect. In direct acti-
vation, the biomass itself is subjected to the thermal treatment together with the 
activation agent. However, in the indirect activation, the biomass is first converted 
into pyrolytic carbon (PyC) via thermal treatment, then the obtained PyC is mixed 
with the activation agent before or during a second thermal treatment. Chemical 
activation agents such as KOH, H3PO4, and ZnCl2 are widely used, whereas steam
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and CO2 are normally employed as physical activation agents. Some advantages of 
the chemical activation process, like lower process temperature, developed porous 
structure, shorter experiment time, and ease of application, make it preferable to 
physical activation [120]. As a consequence of different reactions during the acti-
vation process, the resulting bbAC shows different pore and surface characteristics. 
Prauchner compared different activation processes to understand the influence of the 
formation of pore size distribution. The results demonstrated that physical activation 
process gives narrow pores than chemical activation but later showed higher packing 
density and higher volumetric adsorption capacity [121]. In addition, it is reported that 
regardless of the type of biomass, KOH activation led to a larger amount of aromatic 
structure, which may enhance the specific capacitance [122]. The main reason for 
these differences is due to the distinct reaction pathways during activation process. 
The proposed reactions of the most common chemical activation agents (KOH and 
H3PO4) were discussed in detail [123, 124]. As a summary, K2CO3 forms via the 
interactions between C, H2O, and KOH below 400 °C. The K2CO3 starts a decompo-
sition process which leads to the formation of CO2 and K2O at 700 °C and is entirely 
consumed at ~800 °C. When the temperature goes higher than 700 °C, K2CO3 and 
K2Ocompounds, and CO2 are reduced by the “C” to finally produce K and CO, 
respectively. It is widely accepted that the reactions between K-derived compounds 
and C are responsible for generating the pore network; the evolved gaseous products 
such as H2O, CO, and CO2 give the possibilities to contribute in the development 
of the porosity via the gasification of carbon; the intercalation of metallic K into 
the carbon leads to the expansion of the carbon lattices. In the case of H3PO4 acti-
vation, H3PO4 transforms into Hn+2PnO3n+1 at 100–400 °C; from 400 to 700 °C, it 
releases H2O and turns into P4O10, which is highly oxidative; the P4O10 reacts with 
C to produce CO2; from 700 to 800 °C, P4O10 or P4O6 undergo chemical reaction 
with C and subsequent release of CO2 and CO. The released CO2 and CO gases 
can be responsible for the formation of the pore network. It should be noted that 
the remaining K- or P-derived unreacted compounds needed to be removed from the 
carbon matrix after the activation process. Figure 6 elucidates the different processes 
such as physical treatment and chemical treatment for the production of activated 
carbons from char and biomass.

2.4 Electrolytes for Supercapacitors 

Electrolytes are a conductive medium and play an important role in the device in 
order to facilitate the ion transport in the electrodes in the cell. In supercapacitors, 
the energy is stored in the form of an electrostatic charge at the interface between 
electrode and electrolyte. There have been numerous types of electrolytes exploited to 
optimize the device; the main types of electrolytes are aqueous electrolytes, organic 
electrolytes, ionic liquids (IL), solid-, and quasi-state electrolytes. An integrated 
representation of the different electrolytes is demonstrated in Fig. 7.



82 E. S. Esakkimuthu et al.

Fig. 6 Schematic representation of different activation processes for the production of activated 
carbon [125]

Aqueous electrolytes: This type of electrolyte exhibits a narrow electrochem-
ical window compared to other types of electrolytes, which impedes the usage of 
such electrolytes in supercapacitors (SCs). However, aqueous electrolytes have some 
advantages like easy handling in the laboratory without a cumbersome process, thus 
facilitating the fabricating and assembling of the cell; inexpensive and additional 
purification [126] is not required compared to other electrolytes such as organic 
and IL electrolytes. In addition, aqueous electrolytes provide high conductivity and 
the resulting conductivity is about one order of magnitude more than non-aqueous 
(organic and IL) electrolytes [127]. Considering the aqueous electrolytes, three main 
types of aqueous electrolytes are widely used in SCs, such as alkaline, acid, and 
neutral electrolytes. The most used electrolytes are KOH, H2SO4, and KCl for alka-
line, acid, and neutral types, respectively. Although aqueous electrolytes exhibit high 
conductivity, the cell voltage is restricted to 1.0 V in the case of alkali and acid elec-
trolytes due to the decomposition of water into H2 and O2. The gas evaluation causes 
the rupture of SC electrodes, thus influencing the cell performance and safety [127]. 
On the other hand, the cell voltage can go up to 2.2 V for neutral electrolytes, which 
is reported in Ref. [128]. As water is the main component in aqueous electrolytes,
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Fig. 7 Different types of electrolytes for electrochemical supercapacitors

the operating temperature of SCs should be controlled to circumvent any freezing or 
boiling issues. 

Organic electrolytes: Organic electrolytes mainly consist of salts like LiBF4 
or LiClO4 that are dissolved in any of the organic solvents, including propylene 
carbonate (PC) or acetonitrile (ACN). This type of electrolyte is commercially used 
in a wide range of energy storage devices due to its ubiquitous energy and powder 
density. Furthermore, it covers a large electrochemical window, ranging from 2.5 to 
2.8 V, and also uses less expensive materials like Al as a current collector. Figure 7 
illustrates some typical salts and mostly used organic solvents as organic electrolytes. 
The selection and optimization of salts with solvents are essential in order to enhance 
the conductivity of SCs. Recently, several studies combined more solvents with a salt 
to improve the conductivity and viscosity of the electrolytes [129, 130]. Compared 
to aqueous electrolytes, organic electrolytes exhibit some shortcomings that include 
flammability, lower specific capacitance, poor ionic conductivity, volatility, and
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toxicity. In addition, the assembling of electrolytes should be performed under a 
controlled environment to avoid degradation and self-charge problems that could 
result from impurities like water [131]. A detailed review of electrolytes for SCs can 
be found in the Refs. [126, 132, 133]. 

Ionic liquids: Ionic liquids (ILs) or low melting point organic salts have demon-
strated their potential as alternate electrolytes for SCs because of their ubiquitous 
characteristics including non-flammability, chemical and thermal stability, low 
vapor pressure, and environmentally benign features [134, 135]. ILs are also called 
room-temperature ionic liquids and are made of cations and anions. Having a 
wide range of available cations and anions, they are generally known as “designer 
solvents,” and thus, ILs can be tuned by spanning over the selection of cations 
and anions to improve the electrochemical window and working temperature 
range. The conductivity of the IL is associated with the types of cations, such as 
cyclic, acylic, aromatic, or aliphatic, and anions. Based on the types of cations 
used in the ILs, they can be categorized into three main categories: protic, aprotic, 
and zwitterionic [135]. The most commonly employed ILs are imidazolium, 
pyrrolidinium, ammonium, sulfonium, phosphonium cations and tetrafluoroborate 
(BF− 

4 ), hexafluorophosphate (PF
− 
6 ), dicyanamide (DCA−), bis(fluorosulfonyl)imide 

(FSI−), and bis(trifluoromethanesulfonyl)imide (TFSI−) anions. Comparing 
protic ILs such as triethylammonium bis(trifluoromethylsulfonyl)imide 
([Et3NH][TFSI]), pyrrolidinium nitrate (PyNO3), diisopropyl-ethyl-ammonium 
bis(trifluoromethanesulfonyl)-imide ([DIPEA][TFSI]), and pyrrolidinium 
bis(trifluoromethanesulfonyl)imide ([Pyrr][TFSI]), aprotic-based ILs like imida-
zolium exhibit higher ionic conductivity and higher electrochemical window 
(3.0 V than 1.2–2.5 V for protic ILs) [130, 136–139]. Although ILs show a strong 
tendency as a better alternative to organic electrolytes, several issues related to 
high viscosity, low ionic conductivity, and high cost render its development at a 
commercial scale less feasible than organic electrolytes. To overcome such issues 
in ILs, mixtures containing ILs and organic solvents are usually considered for 
lowering viscosity and improving ionic conductivity. For instance, the typical 
mixture, [EMIM][BF4], and EC-PC solvents provide an ionic conductivity up to 
27 mS cm−1, and [EMIM][PF6]/PC shows excellent thermal stability and specific 
capacitance [140]. 

Solid- and quasi-solid electrolytes: These electrolytes are of great interest 
in recent years due to their excellent advantages such as improved conductivity, 
easy packaging and fabrication process, safety, and leakage-free attributes. There-
fore, they have been involved in the design of flexible and wearable electronic 
devices, micro-electronics, and printable electronics. Considering solid-state elec-
trolytes, polymer-based materials are the primary choice of interest rather than 
other solid-state electrolytes like inorganic or ceramic electrolytes [141]. Solid-
state electrolytes are divided into these categories: solid polymer electrolytes (SPEs) 
or dry-polymer electrolytes, gel-polymer electrolytes, and polymeric electrolytes 
[142–146]. Typically, SPE is composed of a polymer, for example, polyethylene 
oxide (PEO), and a salt, LiCl without any solvents. On the other hand, GPE is 
composed of polymer, (e.g., polyvinylidene fluoride-(PVDF)) with a salt dissolved
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in a solvent. The most commonly used GPEs are poly(ethylene oxide) (PEO), 
poly(methyl methacrylate) (PMMA), polyacrylonitrile (PAN), poly(vinylidene fluo-
ride) (PVDF) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), and 
poly(ether ether ketone) (PEEK) [147–149]. Among three types of solid-state elec-
trolytes, GPEs dominate over the other two types (SPEs and polyelectrolytes) of 
electrolytes because of their higher ionic conductivity that can be obtained from the 
presence of the liquid phase. GPEs exhibit poor mechanical strength when the liquid 
composition is high and a narrow temperature range that causes safety problems and 
internal short circuits. Furthermore, it is stressed that these electrolytes provide a 
limited contact surface area between electrolyte and electrode, which can lead to 
reduced cycle rate, low performance, and low specific capacitance of SCs. 

Inorganic solid-state electrolytes: A few studies have been exploited to design 
inorganic-based electrolytes for SCs despite their excellent mechanical strength and 
thermally stability. However, this type of electrolyte has no flexibility and no bendable 
nature. Some authors have demonstrated the use of inorganic electrolytes such as 
glass–ceramic electrolyte, Li2S–P2S5, a composite-solid electrolyte, LiClO4–Al2O3, 
and graphene-oxide (GO) electrolytes [141, 150–152]. 

Apart from the above-mentioned electrolytes, recently, a specific type of elec-
trolyte has been proposed that is known as redox electrolytes or redox-mediated 
electrolytes. In this case, redox active species have been added to enhance the electro-
chemical performance of SCs [144, 153–159]. For instance, Na2MO4,KI,  Cs2(SO4)2, 
1,4-dihydroxyanthraquinone, and hydroquinone were added into the solution of 
aqueous electrolytes to optimize the electrolytes and performance of SCs. A detailed 
review of these types of redox electrolytes can be found in the Ref. [133]. 

3 Sustainable Materials as Carbon Precursors 
for Supercapacitors 

Kajdos et al. [160] indicated that traditional activated carbon produced from biomass 
by pyrolysis and subsequent physical and chemical activation, such as coal, wood, 
fruit shell, and stones, results in materials with high micro-porosity and irregu-
larly curved pore structures. The limited space provided by the small pores and the 
tortuosity (i.e., twisted pathways) prevents fast transfer of molecules, especially in 
liquid states. A key factor to successfully producing bio-based conductive materials 
is through producing ordered structures with high porosity and activated surfaces 
(Fig. 8). When producing carbons from biomass sources, selection of biomass type 
and carbonization processes will influence the resulting porosity and development of 
micro-, meso-, and macro-pores. Studies indicated that the electrical conductivity and 
porous structure of biochar-derived electrode materials influence the performance 
of the supercapacitors through the change of electrode-potential drop [81, 161]. In 
particular, Sun indicated that specific area capacitance decreases as the percentage of 
microporous structure increased, suggesting that a mesoporous structure will improve
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Fig. 8 SEM and TEM images of a unordered structure from traditional carbonization [163]; b 
more ordered structure using multi-step carbonization [162] 

electrodes and that ions in organic electrolytes cannot easily transfer through micro-
pores, as compared to mesopores [81]. He also reported that the conductivity and 
specific surface areas of electrodes made by activated biochar influenced the elec-
trochemical performance of supercapacitors. They found that resistance is highly 
related to electron conductivity and ion mobility [162]. 

Xie suggested that cellulose microfibrils in the lignocellulosic cell wall can be 
selectively removed to leave nanochannels in the material [163]. The cellulose 
microfibrils were selectively removed (below 500 °C) because of their poor thermal 
stability of cellulosic carbon compared to lignin carbon [85]. This early research 
was limited to nanostructures in the mesopore (2–50 nm) range and without regard 
to pore shape. Nan [164] evaluated one-step carbonization of red oak, short rota-
tion shrub willow, and yellow-poplar without any specific activation processes to 
determine the fundamental properties of carbonized wood produced between 700 
and 1000 °C. Additional follow-up research determined the specific capacitance of 
the shrub willow treated at a pyrolysis temperature of 900 °C exhibited the highest 
specific capacitance (44 F g−1 at 10 mA g−1 current density). Conventional synthesis 
technologies have little control over the pore size distribution of porous carbon, 
producing randomly porous materials with broad pore size distributions. Tradi-
tional activated carbon produced by pyrolysis and subsequent physical and chemical 
activation of the organic precursor, such as coal, wood, fruit shell and stones, and 
polymers at high temperatures, has high microporosity and irregularly curved pore 
structures [160]. However, several research efforts have been attempted to develop 
well-structured carbons from biomass. For example, DeVallance et al. [165] detailed 
earlier work that followed a two-step process to improve the mesoporous structure 
and properties of wood-based carbon materials. 

Building on these earlier works, more recent research looked at carbonizing wood 
and other biomass for supercapacitor applications by additional activation method-
ology. Yakaboylu et al. [166] utilized slow oxidation rate, heating to 250 °C, followed 
by pyrolysis to various temperatures to produce hybrid willow and miscanthus acti-
vated carbon and reported the capacitance from 70–162 F g−1. They also reported 
that the slow oxidation rate added 25–62 F g−1of capacitance. Phiri et al. [167] 
performed similar work using willow carbonized at 600 °C under nitrogen, followed
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by heating to 800 °C with KOH activation. Using this post-carbonization KOH acti-
vation route resulted in a specific capacitance of 394 F g−1at 100 mA g−1current 
density. In other studies, Yakaboylu et al. [168] reported a capacitance of 162 F g−1at 
100 mA g−1current density for miscanthus pretreated with KOH for 18 h, followed 
by pyrolysis to 800 °C for 1 h. Jiang [169] evaluated hybrid willow carbonization 
using both indirect and direct approaches. The direct approach carbonized willow 
under CO2 conditions from 700 to 800 °C, while the indirect approach utilized pyrol-
ysis under nitrogen conditions from 250 to 750 °C and followed by CO2 activation 
at 800 °C. The capacitance of 80.9 (indirect) and 92.7 F g−1 (direct) was at current 
density of 100 mA g−1. While these results are promising, more research is needed to 
maximize the potential and improve the capacitance of wood-based activated carbon 
materials for supercapacitor applications. 

4 Lignin  

4.1 Lignin Structure 

Lignin is the second most abundant biopolymer after cellulose in the lignocellulosic 
biomass. It has an amorphous, highly branched polyphenolic macromolecular struc-
ture (shown in Fig. 9) and a high molecular weight of over 10,000 g mol−1. Lignin 
can be found in cell walls, and its function is to provide physical strength to plants. 
The chemical structure of lignin highly varies on species, geographical location, and 
process used for extraction [170]. It is rather hard to measure the degree of lignin 
polymerization; however, it can be possible after performing several depolymeriza-
tion strategies [171]. Lignin structure contains various types of functional groups 
such as phenolic hydroxyl, aliphatic hydroxyl, methoxyl, carbonyl, and carboxyl 
moieties [172, 173].

Lignin’s chemical structure is composed mainly of phenylpropane units (C9) orig-
inating from three aromatic alcohol precursors (monolignols, shown in Fig. 10): p-
coumaryl, coniferyl, and sinapyl alcohols. However, the monolignols’ ratio changes 
with respect to plants and cell walls [174]. The phenyl propanoic units are cross-
linked through a radical polymerization during their biosynthesis to produce a lignin 
structure. Lignin exhibits a hydrophobic character due to the higher content of 
aromatic rings; therefore, it is used significantly for coating applications. Softwood 
lignin contains a higher amount of coniferyl alcohol (> 95%; < 5% of coumaryl 
alcohol); hardwood lignin is composed of sinapyl units (45–75%), coniferyl units 
(25–50%), and a small amount of coumaryl alcohol (0–8%). In the case of grass-based 
plants, all three units can be found [174, 175].
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Fig. 9 Main linkages in softwood lignin. Reprinted with permission from Tingting et al. [173] 
Copyright (2017) American Chemical Society

4.2 Different Bonds and Functional Groups 

The physical and chemical properties of lignin are related to wood species, geograph-
ical region, and isolation processes employed [176]. The characterization of lignin is 
a cumbersome task due to its three-dimensional structure, different functional groups, 
various chemical links, and isolation process. The reactivity of the lignin polymer is 
highly dependent on the chemical structure and functional groups present. However, 
the hydroxyl groups and free positions in the aromatic ring determine the reactivity 
of lignin [177]. Lignin contains a variety of linkages; in particular, softwood lignin 
contains seven different linkages (Table 2) including β-O-4, α-O-4, 5-5, β-β, 4-O-
5, β-5, and β-1 [178]. Among the linkages, β-O-4 is predominant and around 50% 
of linkages can be found [174, 179, 180] in both hardwood and softwood lignin. 
All sorts of linkages between different units are clearly shown in Fig. 10, and their 
availability of percentage in different wood source lignin is illustrated in Table 1 
[181]. Due to the presence of various functional groups, lignin tends to be used in
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Fig. 10 Structure of C9 monomer units present in lignin: a p-coumaryl alcohol (4-hydroxy phenyl, 
H), b coniferyl alcohol (guaiacyl, G), c sinapyl alcohol (syringyl, S). Reprinted with permission 
from Xu et al. [171] Copyright (2014) Royal Society of Chemistry

Table 2 Major interunit 
linkage types in lignin and 
their proportions (%) in 
softwood and hardwood 

Linkage type Softwood (spruce) (%) Hardwood (birch) (%) 

β-O-4 48 60 

α-O-4 6–8 6–8 

5-5 9.5–11 4.5 

β-β 2 3 

4-O-5 3.5–4 6.5 

β-5 9–12 6 

β-1 7 7 

Others 13 5 

bio-based products and the manufacture of industrial biomaterials and biocomposites 
[182, 183]. 

4.3 Extraction Processes from Lignocellulosic Biomass 

Various chemical treatments have been used to fractionate the lignocellulosic 
biomass into its main components of cellulose, hemicellulose, and lignin and the treat-
ments can be classified into sulfur and sulfur-free, according to the chemical used for 
the extraction. In the sulfur process, kraft and lignosulphonate are separated, while 
soda and Organosolv are obtained through the sulfur-free process. The main goal 
of both processes is to extract the cellulose from lignocellulosic biomass, which
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can be achieved by depolymerizing the lignin fraction. The quality of the extracted 
components (i.e., cellulose, hemicellulose, and lignin) is greatly dependent on the 
chemical processes and lignin isolation techniques used. As a result of processing, 
the final lignin product and molecular weight are affected, along with the introduc-
tion of new functional groups. The commonly used processes—sulfur (kraft and 
lignosulphonate) and sulfur-free (Organosolv and alkali)—are summarized below. 

Kraft process is mostly used in the pulp and paper industry to produce high-quality 
cellulosic fiber by employing a mixture of sodium hydroxide (NaOH) and sodium 
sulfide (Na2S). However, the obtained lignin fractions contain a higher sulfur content, 
and they are generally burnt to produce energy in pulp mills [184, 185]. During the 
kraft process, lignin is degraded extensively and dissolved in the cooking liquor, 
and the sulfide ions present in the mixtures initiate the β-O-4 ether cleavage lignin 
polymer which leads to several fragments with low molecular weight. Finally, the 
carbon–carbon bonds are formed in lignin at the end of the process and yield a lignin 
complex [186, 187]. The corresponding kraft lignin has a hydrophobic character and 
contains aliphatic thiol groups. 

The extraction of lignosulphonate is carried out using an aqueous solution of sulfite 
(SO2− 

3 ) or hydrogen sulphite (HSO
3−) with a wide pH range and high temperature. 

This process produces specialty pulp with high reactivity for chemical applications. 
The degradation of lignin in the sulfite process is comparatively less than the kraft 
process and delignification mainly occurs through sulfonation in α-O-4 linkages. 
Lignosulphonates are already marketed in many applications. The typical lignosul-
fonate biopolymer is highly cross-linked, with around 5 wt% of sulfur contents. The 
obtained lignin is water-soluble under most conditions, and its average molar mass 
is relatively larger than kraft-processed lignin with polydispersity index of about 6–8 
[188]. It is specified that the chemicals used for cooking pulp cannot be recycled or 
reused after the process, thus leading to environmental problems. 

Sulfur-free lignin is produced from two main processes, namely solvent pulping 
and alkaline pulping, which produce Organosolv lignin and soda lignin. Soda pulping 
is used to treat annual plants such as bagasse, flax, kenaf, and wheat straw because 
it needs a less severe cooking condition than wood biomass. The lignocellulosic 
raw material is cooked with sodium hydroxide (NaOH) or a mixture of soda and 
anthraquinone under high pressure and temperature [189]. Lignin is separated from 
black liquor using an acid precipitation and liquid/solid extraction; the obtained lignin 
is sulfur-free. The average molar mass (Mn) of soda lignin is comparatively lower than 
other lignin due to multiple delignifications happening during the cooking process. 
In particular, soda lignin is widely used as a precursor for producing value-added 
products by many modification reactions [186, 190]. 

Organic solvents such as methanol, ethanol, acetic acid, and formic acid are used 
to remove lignin from annual plants and hardwood, and this process is known as 
the Organosolv process. Organosolv lignin mostly exhibits the highest quality [191, 
192] and contains a hydrophobic nature. The most common processes are all cells 
(ethanol, water) and acetosolv (acetic acid with a small amount of HCl or H2SO4). 
The cleavage of α-O-4 linkages is the dominant reaction in this process. Lignin is 
recovered from the solvent through precipitation by adjusting the concentration, pH,
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and temperature of the black liquor. The molecular weight of Organosolv lignin is 
low compared to other lignin coming from different methods; it is also a sulfur-free 
lignin. This process has a greater environmental impact and is more expensive due 
to the different organic solvents used during processing [193–195]. 

5 Lignin as a Precursor for Carbonaceous Materials 

High porosity and large specific surface area of the carbon materials in the elec-
trodes are the primary factors affecting the capacitance of supercapacitors [196]. As 
described in Sect. 2.3, different activation methods (physical and chemical) have been 
employed to control the porosity of the activated carbon and the specific surface area 
[197]. Table 3 summarizes the synthesis of electrodes from lignin and corresponding 
capacitance performed in SCs.

Activated carbon from lignocellulosic biomass has been obtained from mechan-
ical pretreatment, like milling, followed by carbonization at 600 °C and activa-
tion using KOH under argon atmosphere at 750 °C. The activated carbon was then 
extracted using acid hydrolysis. Similarly, activated carbon fibers were obtained from 
low sulphonated alkali lignin using KOH and NaOH. It has been found that KOH 
shows higher levels of specific capacitance and superior performance compared with 
NaOH [198, 199]. 

Carbonization temperature acts a crucial role in the development of porosity [200]. 
Rodríguez-Mirasol reported that inorganic minerals present in the lignin results to 
non-desirable ash content in the produced activated carbon. These issues can be 
overcome through conducting the pretreatment process as follows: pre-carbonizing 
process of the eucalyptus kraft lignin at 400 °C and subsequently a washing using 
1% H2SO4. After carbonization, the activation was performed on the pretreated 
samples with a heating rate of 10 °C min−1, and the holding time for carbonization 
was set at 2 h. The micropore volume of the chars obtained from eucalyptus kraft 
lignin was analyzed by varying the temperature and reported the BET-specific area 
value of 496 m2 g−1 at 550 °C which decreases to 278 m2 g−1 at 900 °C [201, 
202]. On the other hand, Xie tested the specific surface and pore volume at different 
carbonization temperatures; when the temperature increased from 500 to 700 °C, the 
lignin pore volume increased from 0.0087 to 0.2221 cm3 g−1 and BET surface area 
changed from 0.846 to 448.10 m2 g−1. The results demonstrated that surface area 
increment was around 340 times higher for the lignin carbon at higher temperature as 
compared to the value of 80 times for cellulose [85]. The authors applied the heating 
rate of 2.5 °C min−1, which is contrary to the method that Rodríguez-Mirasol used, 
10 °C min−1. This influence of heating rate was analyzed by Kijima for alkaline lignin 
that carbonized from room temperature to 900 °C. The reported results revealed that 
the difference in the heating rate significantly changes the specific surface area like the 
lower the heating rate, the higher the specific surface. For instance, a char obtained 
from 10 °C min−1 heating rate possesses a BET surface area of 30 m2 g−1, and 
at 1 °C min−1 heating rate, it possesses 529 m2 g−1, whereas it was increased to
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Table 3 Lignin-based electrodes for supercapacitors 

S. 
No. 

Carbon 
source 

Process condition Surface area 
(m2g−1) 

Specific 
capacitance 

Capacity 
retention (%) 

References 

1 Eucalyptus 
kraft lignin 

Precarbonization at 
400 °C and 1% 
H2SO4 washing to 
remove inorganic 
elements and reduce 
the ash content 
followed by 
carbonization 
(450–900 °C) at the 
rate of 10 °C min−1 

followed by activation 
using CO2 partial 
gasification 

213 m2 g−1 

at 450 °C 
496 m2 g−1 

at 550 °C 
463 m2 g−1 

at 800 °C 
278 m2 g−1 

at 900 °C 

NA NA [201, 202] 

2 Organosolv 
lignin 

Carbonized in Ar in a 
retort box furnace and 
the heating rate at 
150 °C h−1 until one 
of the four 
temperatures (400, 
500, 700, 1000 °C) 
was reached 

1.321 
m2 g−1 at 
400 °C 
0.846 
m2 g−1 at 
500 °C 
448.10 
m2 g−1 at 
700 °C 
432.33 
m2 g−1 at 
1000 °C 

NA NA [85] 

3 Alkali 
lignin 

Room temperature to 
900 °C without 
activation under argon 
gas. Heating rate of 
1 °C min−1 

30 m2 g−1 at 
heating rate 
of 
10 °C min−1 

529 m2 g−1 

at heating 
rate of 
1 °C min−1 

NA NA [203] 

4 Steam 
explosion 
lignin 

Hierarchical porous 
carbon from lignin 
derived through 
carbonization at 500 
to 800 °C, activation 
with KOH, hot water 
wash, and sample 
dried at 100 °C 
overnight 

3775 m2 g−1 286.7 F g−1 

at 0.2 A g−1 

In 6 mol 
L−1 KOH 

207.1 F g−1 at 
8 A g−1 

[204]

(continued)
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Table 3 (continued)

S.
No.

Carbon
source

Process condition Surface area
(m2g−1)

Specific
capacitance

Capacity
retention (%)

References

5 Lignin Lignin was converted 
to heteroatom-doped 
porous carbon using 
hydrothermal 
carbonization 
followed by chemical 
activation 

1788 to 2957 
m2 g−1 

372 F g−1 Cyclic 
stability over 
30,000 cycles 
in 1 M KOH  

[205] 

6 Lignin Conventional 
carbonization 
followed by bacterial 
activation 

1831 m2 g−1 428 F g−1 

at 1 A g−1 
96.7% after 
10,000 cycles 
at 5 A g−1 

[206] 

7 Low 
sulfonated 
alkali 
lignin 

Lignin and PEO (9:1 
ratio) were 
electrospun. 
Carbonization and 
activation at 850 °C 
under N2 

NA 344.0 F g−1 96% after 
5000 cycles 

[207]

740 m2 g−1 after washing with water. Also, well-structured lignin can produce high 
porous materials with a large BET surface area, 1000 m2 g−1 after carbonization 
[203]. It is clearly indicated that the porosity is associated with the temperature and 
the heating rate applied for thermal treatment. 

W. Zhang reported hierarchical porous carbon preparation from steam-exploded 
lignin through carbonization at 500 to 800 °C under nitrogen atmosphere for 1 h and 
followed by two-step activations. First, KOH saturation on a lignin-based carbon 
(LC) matrix at 400 °C for 0.5 h and subsequently activation process was conducted 
at 700, 800, and 900 °C for 1 h in the second step. The post-treatment includes 
excessive alkali removal using hot water wash until neutral pH, followed by drying 
at 100 °C overnight. The resulting lignin hierarchical porous carbon (LAC) contains 
a microporous core and meso- and microporous channels. During the carbonization 
process, the decomposition of the oxygen-containing groups leads to a small amount 
of micro- and mesopores. In contrast, the activation leads to macroporous caves 
with several micrometers of diameters, and the authors explained that these macro-
pores are highly beneficial to retain the electrolyte and also reduce the ion diffusion 
path when the charge/discharge process happens inside the supercapacitors. The 
capacitive performance was calculated using cyclic voltammetry and galvanostatic 
charge–discharge in 6 M KOH within the potential window from 0 to 1 V. The results 
showed that the obtained LAC specific surface area was over 3775 m2 g−1 and specific 
capacitance as high as 286.7 F g−1 at 0.2 A g−1 [204]. Demir prepared the heteroatom-
doped porous carbon from lignin using a method called hydrothermal carbonization 
followed by activation. The obtained porous carbon possesses a BET surface area of 
1788 to 2957 m2 g−1, specific capacitance of 372 F g−1, and exhibits excellent cyclic 
stability over 30,000 cycles in 1 M KOH [205]. K. Zhang stated that the traditional
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activation method to synthesis porous carbons from lignin with a higher surface area 
is more complex, costly, and can cause pollution. Alternatively, they proposed a 
lignin-derived porous carbon activation using the green bacterial activation method. 
The authors employed conventional carbonization and after proceeding to bacterial 
activation process, and reported a BET surface area of 1831 m2 g−1, specific capac-
itance of 428 F g−1 at 1 A g−1, and capacity retention of 96.7% after 10,000 cycles 
at 5 A g−1. 

6 Lignin-Based Composites for Electrodes 

Electrospinning is a widely used, scalable, and cost-effective method to manufacture 
free-standing and flexible carbon fiber mats for supercapacitor electrodes. Several 
important parameters greatly influence the electrospinning process and characteris-
tics of the fibers including carbon fiber precursor types, solution viscosity, molecular 
weight of the polymer, experimental processing and condition, and design. In partic-
ular, processing parameters including the applied voltage and feeding rate lead to 
different geometries and fiber diameters [208]. Liu demonstrated that the tensile 
strength of carbon fiber depends on the size of the fiber, wherein decreasing fiber 
diameter increases the molecular order and finally improves the tensile strength [209]. 
While the electrospinning approach can utilize low-cost precursors for the produc-
tion of carbon fibers, there are few reports on the preparation of electrospun lignin 
fibers [200]. To obtain these high-quality carbon fibers, lignin is fractionated prior 
to the electrospinning process [210]. The material should be thermally stabilized, 
followed by carbonization, in order to produce carbon fibers from lignin. 

Kadla produced carbon fiber from kraft lignin through thermal spinning and 
carbonization process with a 45% yield. They also reported that inorganic impu-
rities present in the kraft lignin hinder thermal processing and the prior washing 
of lignin with dilute HCl is necessary to eliminate such issues. To facilitate fiber 
spinning, lignin was blended with polyethylene oxide (PEO), and it is noted that 
mechanical properties like tensile strength of 400–550 MPa and Young’s modulus 
of 30–60 GPa were increased with decreasing fiber diameter [211]. The glass tran-
sition temperature of lignin (Tg) is far below that of the carbonization temperature 
and must undergo thermal stabilization to prevent softening during the carbonization 
process. Braun proposed that air oxidation is a simple and cost-effective pretreatment 
for lignin thermal stabilization [212]. 

Hatakeyama has reported that softening of lignin was produced through heating, 
and the addition of phenolic compounds would give it melting properties for the 
electrospinning process [213]. In most cases, lignin combined with a high molecular 
weight polymers, for instance, PEO in either an alkali solution or organic solvent 
significantly improve the spinnability for electrospinning process and solution elas-
ticity [214]. However, the cost of the final product is significantly increased when 
blending a polymer with lignin, and it is important to minimize the proportion of 
polymer to decrease the cost. Saha produced mesoporous carbon for electrodes from



4 Lignin-Derived Carbonaceous Materials … 95

pre-cross-linked lignin (hardwood kraft) gel combined with a surfactant which acts 
as a pore-forming agent, and the activated carbon exhibited a 1.5 to sixfold increase 
in porosity with the maximum BET surface area of 1148 m2 g−1 [215]. 

The utilization of various carbon materials (fibers and mats) from lignin as free-
standing electrodes in supercapacitors is significant. Ago produced a flexible elec-
trode from an aqueous solution of softwood alkali lignin and polyvinyl alcohol (PVA) 
through the electrospinning process. Electrospun mat showed a high specific capaci-
tance (205 F g−1) compared to the solid films (6.4 F g−1) that were produced through 
the solvent casting method. The reason for the high performance of the fiber mat is 
related to the high surface area and well-developed mesoporous structure, with open 
pores available to ion/electrolyte transport [210]. 

Lai et al.  [216] prepared a mechanically flexible binder-free electrode for super-
capacitors from alkali lignin through electrospinning process followed by a stabiliza-
tion and carbonization process (Fig. 11). Due to the lack of molecular entanglements 
in alkali lignin, it is very hard to perform electrospun process of pure lignin into 
nanofibers. In order to make the lignin suitable for electrospinning process, PVA 
polymer is incorporated and 9–2 wt% of an aqueous solution containing both lignin: 
PVA with different weight ratios were subjected to electrospinning. SEM results 
showed that the increasing lignin content results in reducing the average diameter of 
the composite. The composite nanofiber exhibited an average diameter of ~100 nm, 
with a BET-specific surface area of ~583 m2 g−1. The measured gravimetric capac-
itance in 6 M KOH aqueous electrolyte showed 64 F g−1 at a current density of 
400 mA g−1 and 50 F g−1 at 2000 mA g−1 and the capacitance was reduced ~10% 
after 6000 cycles of charge and discharge [216].

Another flexible and free-standing electrode was produced from lignin and 
PVA blends and fabricated through the electrospinning process. Stabilization and 
carbonization, followed by CO2 activation, the activated carbon nanofibers were 
produced. The combined lignin and PVA with 80:20 ratio showed a surface area of 
2170 m2 g−1 with a volume of 0.365 cm3 g−1. The conductivity was measured with 
the electrolyte formed by ionic liquid and carbonate mixtures (ethylene carbonate 
and propylene carbonate) and reported 87 F g−1 specific capacitance and 38 Wh kg−1 

of energy density and stated that the ionic liquid mixture showed four times higher 
conductivity than neat ionic liquid [217]. 

A 10% acrylonitrile-butadiene rubber doped lignin was prepared under solvent-
free conditions and exhibited 2120 m2 g−1 surface area with a capacitance of 215 
F g−1, which is maintained even after 5000 cycles [218]. Sodium lignosulfonate 
and alkali lignin were mixed with polypyrrole separately to evaluate the electrode 
capacity, and it was found that alkali lignin demonstrates an increase in capacitance 
from 321 to 444 F g−1 compared to sodium lignosulfonate. Moreover, the electro-
chemical performance can be increased by incorporating high phenolic content into 
the alkali lignin via pH-driven fractionation [219]. The variation of sinapyl to guaiacyl 
units ratio in lignin significantly increased both the specific capacitance and charge 
capacity due to the formation of a quinone structure on sinapyl units, which store 
more charge in the electrodes [220]. Direct laser writing method is recently used to 
synthesis the hierarchical porous materials with large surface area, and this method
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Fig. 11 SEM images of electrospun carbon nanofiber mats prepared by combined PVA and lignin 
with different weight percentages: a PVA mat alone, brittle mat is in the inset; b PVA:lignin (30:70); 
c PVA:lignin (50:50); and d PVA:lignin (70:30), flexible mat is shown in inset. Reprinted with 
permission from Chuilin et al. [216] Copyright (2014) Elsevier

was successfully applied for lignin combined with PEO system to form a graphene 
network. The synthesized porous electrodes showed electrochemical capacitance up 
to 25.44 mF cm−2 which is superior to the materials obtained from pristine lignin 
[221]. 

Although lignin-derived nanoporous carbons are used for ESCs, the sources of 
lignin and certain processes employed for pretreatment significantly affect capaci-
tance. Therefore, the optimization of lignin chemistry with other important factors 
such as pore distribution, surface area and higher hydrophobicity are paramount to 
designing electrodes for ESCs. The pore distribution plays a fundamental role toward 
ionic conductivity, in which the micropores with a smaller pore distribution cannot 
be accessed by the ions associated with electrolytes that lead to low ionic conduc-
tivity of the materials. A study has produced hydro char from enzymatic hydrolysis 
lignin by treating with H2SO4 at 180 °C for 18 h prior to mix with KOH [222]. The 
obtained electrode samples after carbonization process exhibit the formation both 
micropores and mesopores in the range between 0.5 and 3 nm, and these pores are 
connected internally which provide an outstanding platform for ions diffusivity. On 
the other hand, surface hydrophilicity of the lignin-derived carbon electrode materials
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is mainly enhanced by incorporating heteroatoms in the skeleton and this process 
leads to improving the compatibility of electrode–electrolytes interphase [223–225]. 

Biomass-derived carbon exhibits poor energy density due to its distinct electron-
ically insulating behavior, which impedes its performance. The functionality can be 
enhanced via chemical modification of the polymer, like lignin, and requires proper 
investigation. Sudo performed the modification reactions of phenolation and hydro-
genation on steam-exploded lignin to optimize the lignin for the electrospinning 
process. They reported more than 44% carbon fiber yield with phenolated lignin, 
which is twice the yield compared to hydrogenolated lignin [213, 226]. Thunga 
employed a butyration chemical modification reaction of lignin to enhance the 
compatibility with PLA polymer to produce fine fiber through melt mixing with 
an overall concentration of 75 wt% of lignin [227]. Another approach is to deriva-
tize the lignin through hydroxyl groups to synthesize various lignin derivatives with 
ester, ether, and urethane groups. In such reactions, lignin tends to copolymerize with 
other polymers, like phenol–formaldehyde to form the lignin–phenol–formaldehyde 
resins [228]. 

The combination of lignin with different polymers such as PVA, PEO, and PVP 
produced carbon materials that were exhibited a broad potential voltage window. 
Mechanically flexible mates were made from alkali lignin and PLA with different 
compositions, of which 70:30 (lignin:PVA) composite showed a potential window 
of 0–0.8 V in KOH electrolyte [216]. Similarly, other proposed works have demon-
strated a wide potential voltage window with different electrolytes, −0.2 to 0.8 V 
from 75:25 (lignin:PVA in Na2SO4) [210], 0 to 3.5 V from 80:20 (lignin:PVA in 
BMIM TFSI:PC:EC) [217], 0 to 1.6 V and 2.0 V from 90:10 (lignin:PVA in H2SO4, 
PVA:H2SO4) [229], 0 to 1 V from 90:10 (lignin:PEO in KOH) [207], 0 to 1.6 V from 
50:50 (lignin:PAN in PVA and KOH) [230] and −0.9 to 0 V from 1:2 (lignin:PVP 
in KOH) [231]. These studies are clearly indicated that lignin can be applied for a 
wide potential window to design high-performance supercapacitors. 

Various parameters affect the performance of the porous carbon electrodes derived 
lignin for supercapacitors which include tuning of impregnation time, activation 
temperature, and impregnation ratio on pore size distribution, total pore volume, 
and specific surface area. Activated porous carbon from Kraft lignin were produced 
through activation using orthophosphoric acid at different ratios (orthophosphoric 
acid/lignin-P/L = 0.7–1.75), temperature(400–650 °C) and impregnation time (1– 
48 h). The results illustrated that increasing impregnation time considerably reduces 
the surface area and the pore volume. Activated carbon prepared at 650 °C, the surface 
area reduced from 1305 to 956 m2 g−1 when the impregnation time lasts up to 48 h. 
P/L ratio more than 1.4 and the impregnation time more than 1 h, the orthophosphoric 
acid damages the polymeric structure of the kraft lignin which leads to low porous 
volume and surface area [232]. Serrano reported that high surface area activated 
microporous carbon was obtained through chemical activation of kraft lignin using 
ZnCl2in the temperature range of 400–500 °C. ZnCl2 activation method allowed to 
prepare the activated carbon with BET surface area upto 1800 m2 g−1 with 40% 
yield. Pore distributions were also studied by changing the impregnation ratio of
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ZnCl2/lignin and reported that upto the ratio of 2.3, the mesoporous distribution 
remained in the low-size range below about 5 nm in diameter [233]. 

7 Supercapacitor Fabrication and Electrochemical Study 

As mentioned above, the capacitive performance of a supercapacitor is controlled by 
various parameters such as active electrode material, electrode composition, addi-
tives, thickness of the electrode, concentration and class of the electrolyte, type of 
separator, and current collector. The analysis technique is also a crucial component 
to calculate the capacitive performance. The comparison of the analysis methods has 
been discussed in detail in the well-known paper by Stoller and Ruoff [71]. 

Cyclic voltammetry (CV) is one of the well-known techniques for determining 
the electrochemical behavior of the electrode material. The current on the working 
electrode is plotted versus the applied voltage to give information about the electro-
chemical changes of an analyte or of a material that is adsorbed onto the electrode 
[234]. CV has become the main process for evaluating the performance of capac-
itor devices because of the relationship between the response currents to repetitive 
linear voltage modulation at sweep rates [235]. In AC-based supercapacitors, a quasi-
rectangular shape indicating an excellent capacitive behavior is expected. However, 
some deformity in the rectangular shape is usually observed. This may be from (i) 
the reversible or irreversible redox species or (ii) coating failures during the set-up 
process of a three-electrode system. To understand the pseudocapacitive effect of 
reversible or irreversible redox reactions, it is strongly recommended to conduct CV 
analysis for more than 10 cycles. To avoid coating failures, nickel foam types of 
current collectors are generally used for electrode-active material holders. It should 
be kept in mind that the capacitive contribution of Ni-foam should be subtracted 
from the total capacitive performance. 

The galvanostatic charge–discharge (GCD) technique is employed to calculate the 
capacitance for ultracapacitors in industry [71]. In the GCD technique, the specific 
capacitance is calculated from the discharge curves after excluding the IR drop 
and the whole GCD curve gives charge capacity and Coulombic efficiency of the 
electrode material. In AC-based supercapacitors, the symmetric triangular shape of 
the GCD curves proving the capacitive behavior is expected. However, like in the 
CV technique, distortion in the symmetry with slight tailing may be observed due 
to the pseudocapacitance effect from the O, N surface functional groups attached to 
the carbon framework [236]. 

Electrochemical impedance spectroscopy (EIS) is also widely used to determine 
the resistance of a supercapacitor which consists of electronic contributions and 
ionic contributions [237]. The Nyquist plots obtained from the EIS data were used to 
determine the combined resistance of intrinsic resistance of electrode materials, ionic 
resistance of electrolyte and contact resistance between the electrode and current 
collector, and the electrode conductivity and charge-transfer resistance [238]. The 
semicircle that intersects the real axis at the high-frequency region and the plot that
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transforms to a vertical line (Warburg line) at the intermediate-frequency region are 
mainly observed in AC-based supercapacitors. At the low-frequency region, a vertical 
line presents the domination of the capacitive behavior at the electrolyte-carbon 
interface due to the penetration of the electrolyte ions into pores [239]. 

The specific capacitance of a supercapacitor is given in different units such as 
gravimetric capacitance (F/g), volumetric capacitance (F/cm3), and areal capacitance 
(F/cm2). They are calculated based on single electrode by the following equations: 

C(F/g) = 2 × 
i × ∆t 

m × ∆V 

C
(
F/cm3

) = 2 × 
i × ∆t 

v × ∆V 

C
(
F/cm2

) = 2 × 
i × ∆t 

S × ∆V 

where i,∆t, m, ν, S, and∆V are discharge current, discharge time, mass, volume and 
the surface area of the electrode, and the working voltage window, respectively. As it 
is seen, they can be converted to each other easily if the exact mass, final density and 
the surface area of the electrode are known. The unit in which the specific capacitance 
is given depends on the character of the practical application. Up to date, most of 
the researchers generally preferred to present their data in gravimetric capacitance 
value, especially for EDLCs. Nevertheless, when the development of electronics 
advances into more small, thriving of more technological is needed for the produc-
tion of electrode materials that deliver both high areal and volumetric capacitance, 
without compromising the gravimetric capacitance, high rate, and cycling perfor-
mances [240]. The main issue here is the intrinsic low densities of carbon nanoma-
terials which result in low volumetric capacitance [241]. To overcome the limitation 
originated from the porous structure of carbon-based materials various approaches 
such as heteroatom doping for additional pseudocapacitance, metal–carbon compos-
ites, and tuning pore structure are still in progress [242]. The density of carbon is 
significantly improved due to doping of heavy hetero atoms which do not affect the 
number of pores and but increase the amount of electrochemically active functional 
groups on the surface [243, 244]. However, we still need much more research on 
reducing the intrinsic density of highly porous carbon-based materials. 

As a result, due to the high number of parameters and differences originated 
from the analysis techniques, the determination of the capacitive performance of a 
supercapacitor may be complicated. However, those parameters are required to be 
reported properly in the literature [245]. Therefore, it is thought that the comparison 
of the obtained results with similar works and commercial ACs should be made for 
further development of supercapacitors.
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8 Computational Modeling Techniques for Supercapacitors 

Multiscale modeling is the most powerful and efficient method that provides in-depth 
knowledge about the physicochemical properties of materials. By implementing a 
bottom-up paradigm, numerical simulations can anticipate laboratory work and opti-
mize the system of interest for energy-related applications. Density functional theory 
(DFT) and molecular dynamics (MD) simulations are the fundamental methods 
routinely applied to compute the properties of diverse materials at the atomic and 
molecular levels. DFT method can be employed for systems containing a few tens of 
atoms to account for the properties of small molecules and analyze reactivity. There-
fore, the DFT method is limited for investigating large systems, like supercapacitors 
(SCs), since it requires extensive computational cost to represent porous electrodes 
and electrodes. On other hand, MD is a successful method to illustrate the interaction 
between the particles or molecules and obtain their dynamical evolution behavior at 
the nanoscale. A comprehensive analysis of theoretical approximations, algorithms, 
and applications of computational modeling can be found in the reference of Frenkal 
and Smit [246]. Salanne group successfully applied MD simulation methods to study 
the separation of the positive and negative ions that occurs inside the porous disor-
dered carbons, electrified interphases of carbide-derived carbons, and diffusivity of 
charges [247–252]. Several MD systems for SCs have been reported, and one of the 
studied MD models is presented in Fig. 12. Celene developed a realistic model for 
SCs with ionic liquid electrolytes, and the obtained results revealed that the increase 
in capacitance is not only due to the large surface of the carbons but pore size and 
microstructure also show a crucial role. The charging process is mainly associated 
with the exchange of ions in the bulk electrolyte in the electrode without affecting 
the total volume of liquid [247].

There has been a significant increase in applying molecular modeling techniques 
to understand the ion transport mechanisms involved in different types of electrodes 
such as carbon nanotubes [253], spherical shells [254], two-dimensional (2D) nano-
materials [255], electrical double layers [256, 257], nitrogen-doped graphene [258], 
oxygen-defects containing graphene [259], and MOF electrodes [260]. A detailed 
review of publications using MD simulation for designing SC electrodes can be found 
in the Refs. [261, 262]. 

9 Conclusions and Perspectives 

Supercapacitors (SCs) are considered to be one of the potential power storage devices 
that can provide high energy density and long cycling durability. Their unique 
features, such as high-power density, fast charge/discharge capability, and long oper-
ating lifetimes with good safety, allow use in a broad range of electronic applications 
such as wearable and portable electronic devices. Porous carbon-based materials, 
like activated carbons (ACs), are the fundamental choice of electrodes for SCs due
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Fig. 12 MD snapshot of simulation shell containing the confined coarse-grained IL (BMIM-PF6) 
between two porous electrodes (top) and the structural changes of the electrodes at different voltages 
(bottom) (Color scheme—blue: carbon atoms, red: BMIM+ ions, and green: PF− 

6 ions). Reprinted 
with permission from Celine et al. [247] Copyright (2012) Springer Nature

to their low cost, tunable porosity, and larger surface area. It is reported that AC 
pore size between 2 and 5 nm can be beneficial to obtain higher energy density 
and enhance the power capability of SCs. Numerous polymers have been reported as 
precursors to produce a broad range of porous and specific surface area ACs. Consid-
ering the depletion of fossil resources and climate change, alternate precursors for 
ACs are important because most polymers are synthesized from petrochemicals. Due 
to concerns about the environment, wood biomass-based materials have drawn much 
attention for SCs due to their abundance, inexpensive, and environmentally friendly 
characteristics; electrochemical capacitance from biomass is also more competitive 
for commercial ACs. Among biomass components, lignin is the second most abun-
dant biopolymer, after cellulose, and has been considered as a vital precursor for ACs 
and carbon fibers due to its aromatic character and variety of functional groups. Typi-
cally, ACs can be produced using carbonization at high temperatures (500–1000 °C), 
followed by chemical activation using different chemical activation methods, such 
as potassium hydroxide, phosphoric acid, and zinc chloride, and physical activation 
methods, like steam and carbon dioxide. Although lignin-based materials exhibit 
several advantages, there are still challenges to be addressed: 

• The composition of lignin in lignocellulosic biomass is highly dependent on plant 
type, origin, and location. The percentage of lignin content, complex structure
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of lignin, and unexpected chemical reactions during activation greatly affect the 
final structure of lignin. Therefore, a clear understanding of lignin’s functional 
groups and molecular weight is important before proceeding to the synthesis of 
porous carbon. 

• Electrospinning is the predominant process to produce carbon fiber for SCs. Lignin 
creates compatibility issues, like spraying the solution on the collector rather than 
creating fiber, during the electrospinning process. Such issues impede commercial 
valorization of lignin for producing carbon fiber mats and ACs. To overcome this 
issue, current research has been carried out with the addition of polymers in the 
lignin solution. 

• Modification of lignin can enhance the preparation of hierarchical porous lignin-
derived carbons with a high specific surface area. Therefore, different modifica-
tions can be tested for creating graphitic carbon with appropriate pore structures 
to improve the electrochemical performance of SCs. 

• The addition of metal-oxide and metal-carbide materials in lignin can advance 
the preparation of a broad range of porous carbons with a large electrochemical 
voltage window. 

• Density functional theory, reactive, and classical molecular dynamics modeling 
methods can be employed to understand both physical and chemical properties 
of lignin. Pyrolysis modeling might aid in the optimization of the carbonization 
process of lignin toward the formation of carbon fibers and pores. The molec-
ular dynamics simulation method can provide deep insights into electrochemical 
capacitance, diffusivity of charges, and electrified interfaces with different elec-
trode pore sizes and electrolytes. These integrated modeling methods will help to 
scale up further research and development in the SCs research field. 
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Chapter 5 
Porous Carbon Materials 
for Supercapacitor Applications 

Manas Mandal, Krishna Chattopadhyay, Amrita Jain, 
and Swapan Kumar Bhattacharya 

1 Introduction 

With environmental consciousness, the advancement of energy conversion and 
storage has been a great challenge for the fulfillment of the enormous energy demand 
our modern society. Day-to-day discovery of portable electronics and smart tech-
nologies needs further breakthroughs to accomplish high power and energy and defi-
nitely long-running energy storage strategies. Recently, electrochemical capacitor, or 
supercapacitor, or ultracapacitors got tremendous attention toward materials science 
researchers as it has some unique features like high-power density, moderate energy 
density, fast charging capacity, and extraordinary cyclic stability [1–4]. Based on 
their charge storage phenomena, it can be categorized into two types: electrochemical 
double layer capacitors (EDLCs) and pseudocapacitors [5]. The charge accumulation 
at the interface of electrode/electrolyte results the capacitance in EDLCs, whereas 
the fast Faradaic redox reaction is responsible for the capacitance in pseudocapacitor. 
The transition metal oxides/hydroxides/sulfides and conducting polymers are used as
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Fig. 1 Schematic representation of carbon supercapacitors 

pseudocapacitive materials. On the other hand, carbonaceous materials like activated 
carbon, graphene, carbon nanotube, aerogel etc., are used in EDLCs. Carbon super-
capacitors assemble with two electrodes immersed in an aqueous or non-aqueous 
electrolyte and an electrolyte ion permeable porous membrane separator (Fig. 1). 

Carbon nanomaterials have been extensively developed in energy storage applica-
tion because of its different architectures and tunable surface chemistry. Furthermore, 
it has high electrical conductivity, high electrochemical stability, excellent mechan-
ical properties, and wide operating temperatures [6–8]. However, the most important 
criterion is the high specific surface area (SSA) of carbon materials for enhanced 
gravimetric capacitance. The different types of carbon-based materials with high 
SSA and high conductivity are depicted in Table 1 [9].

Every material has its unique structure and distinctive electrochemical properties. 
Such as zero- and one-dimensional carbon materials allow fast adsorption/desorption 
of the electrolyte ions on their surface, indicating high-power density. On contrary, 
two-dimensional graphene can deliver high charging/discharging rate and volumetric 
energy density. Porous 3D carbon materials acquire higher surface areas and meso-
porous structure, providing higher energy densities [10]. 

2 Synthetic Strategies of Porous Carbon Materials 

Porous carbon materials have been synthesized following different methods, viz., 
carbonization–activation methods, template methods, pyrolysis methods, etc.
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Table 1 Various types of carbon-based materials with their properties 

Material Carbon 
onions 

Carbon 
nanotubes 

Graphene Activated 
carbon 

Carbide 
derived 
carbon 

Templated 
carbon 

Dimensionality 0-D 1-D 2-D 3-D 3-D 3-D 

Conductivity High High High Low Moderate Low 

Volumetric 
capacitance 

Low Low Moderate High High Low 

Cost High High Moderate Low Moderate High 

Structure 

Reprinted with permission from Simon et al. [9]. Copyright 2013 American Chemical Society

2.1 Carbonization–Activation Methods 

Generally, porous carbon prepared by this method is called activated carbon. The 
name of this process implies that it involves two different steps, viz., carbonization 
and activation. Carbonization produces the nonporous carbon material by pyrolysis, 
whereas the activation methods introduce the pores into the nonporous material 
chemically or physically forming activated carbon. 

2.1.1 Carbonization 

Carbonization is a method by which a carbonaceous residue is produced by thermal 
decomposition of organic substances (pyrolysis) under an inert atmosphere. A large 
number of different kinds of reactions like dehydrogenation, condensation, hydrogen 
transfer, crosslinking, and isomerization simultaneously occur during this process 
[11]. These various types of reactions help to release the volatile materials leaving 
behind the nonporous carbonaceous residue. This residue is also called as coal char 
or biochar. 

2.1.2 Activation 

In this step, the nonporous carbonaceous residue is treated with activating agents, 
also known as pore-forming agents or porogens. With activation agents, nonporous 
residue undergo oxidation reactions to create required pores into it. Based on the 
activating agents used in activation methods, these are categorized as either chem-
ical or physical activation method [13]. The chemical activation process uses KOH, 
NaOH, Na2CO3, K2CO3, ZnCl2, or H3PO4 as activating agents, whereas CO2, O2,
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Fig. 2 BET surface area vs activation temperatures of porous carbons for different chemical poro-
gents (KOH, NaOH, ZnCl2, and CaCl2). Reprinted with permission from Gao et al. [12]. Copyright 
2018 Elsevier 

air, or steam in physical activation. Both the processes have several advantages and 
disadvantages as well. The chemical activation is comparatively low-temperature 
process which produces highly meso-porous carbon with high mass of yields and 
Brunauer–Emmett–Teller (BET) surface area (Fig. 2). On contrary, physical activa-
tion requires high activation temperatures with longer time and produces relatively 
lower yields with small pore sizes and low specific surface area (SSA). In spite of 
these advantages, physical activation process is more feasible and useful for industrial 
scale production than chemical activation, as it exhibits low corrosion. 

2.2 Template Methods 

Template methods are well-known approach by which morphological information is 
transferred from a pre-prepared template to the derived porous carbon. 

2.2.1 Hard Templates 

The hard template method, also known as nanocasting, is an efficient route for the 
preparation of porous carbons with highly uniform pore structure and pore size distri-
butions. However, this method is costly and laborious as it includes various steps. 
The important steps involved in this method are (i) synthesis of a hard template 
with specific morphology, (ii) good contact of the template with carbon sources, (iii)
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Fig. 3 Schematic diagrams of ordered meso-porous carbon preparation using a hard template and 
b soft template methods 

heating at high temperature under inert conditions, and (iv) acid or alkali etching 
of the template (Fig. 3a). The extreme stability of the hard templates toward a very 
high-temperature facilitates the preparation of highly crystalline or sometimes single-
crystal materials using this process. Templates with uniformly ordered porous struc-
ture can be easily prepared using SiO2 [14, 15], ZnO [16, 17], MgO [18, 19], TiO2 

[20], Al2O3 [21, 22] or zeolite [23], etc. 

2.2.2 Soft Templates 

Soft templates do not have solid shapes like hard template. Generally, block copoly-
mers (BCPs) or self-assembly of amphiphilic small molecules are used to prepare 
soft templates under appropriate condition. In addition of proper solvent, these 
molecules turn into micelles due to strong interaction forces, such as hydrophilic 
and hydrophobic interactions [24], hydrogen bonding [25], and electrostatic interac-
tions [26] between them. Then, the micelles blended with carbon precursor result in 
heterogeneous matrix which produces porous carbon materials during the carboniza-
tion (Fig. 3b). The size and architecture of the pores can be tuned by varying the 
ratio of solvent and micelle. Therefore, a soft template should have the capability to 
accumulate into nanostructures and supporting the porogens of soft template before 
the development of carbon skeleton. Dai and coworkers successfully synthesized the 
ordered meso-porous carbons (OMCs) by soft template technique using micelles of 
amphiphilic block copolymers for the first time [27]. 

2.2.3 Self-template Methods 

In activation methods and hard/soft template methods, a pore generator chemical 
species, known as porogen, is required. The self-template method uses in situ
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self-generated porogens to synthesize the porous carbon without addition of any 
external porogens. The metal–organic frameworks (MOFs), ethylenediaminetetraac-
etates (EDTA)-based salts, biomass-based organic salts, etc., are used as self-
generated porogens in self-template methods. These materials serve as both a 
source and a spontaneous template for the final carbon material. Therefore, self-
template synthesis of porous carbon includes following steps: (i) precipitation, 
(ii) pyrolysis, and (iii) washing (Fig. 4). The organic ligands are carbonized to 
produce the carbon matrix. During washing, the inorganic atoms or particles are 
washed out to form meso- and macro-pores. J ayaramulu et al. reported two-
dimensional nanoporous carbon sheets (NPSs) from rod-shaped potassium-based 
MOF {K3[C6H3(CO2)(CO2H0.5)(CO2H)]2}(H2O)2 (denoted as K-MOF). The 2D 
NPSs were obtained upon two-step carbonization process at 450 °C and 800 °C 
where K-containing rod-shaped hollow structure and 2D NPSs were formed, respec-
tively. Potassium was removed by etching with 5 wt% HCl followed by washing the 
product with a water–ethanol mixture for several times [28]. The as-prepared porous 
sample having a BET surface area of 1192 m2 g−1 showed excellent electrochemical 
performances. The highest specific capacitance for the sample was calculated to be 
233 F g−1 at scan rate of 5 mVs−1in 1MH2SO4 electrolyte with good rate capability. 
Yu et al. used ethylenediaminetetraacetic acid disodium zinc salt (EDTANa2Zn) for 
the preparation of hierarchical porous carbons (N-doped) by direct pyrolysis. The 
EDTANa2Zn acts as C-precursor, N-source, as well as porogen [29]. Pyrolysis gener-
ated nano-ZnO and Na2CO3 act as self-template to form meso-pore in carbon matrix. 
The sample prepared at 700 °C, having BET surface area of 1368 m2 g−1 with high 
N-content showed a maximum specific capacitance of 275 F g−1 with excellent rate 
capability in 6 M KOH electrolyte. 

Fig. 4 Schematic diagrams for the self-template synthesis of porous carbon including precipitation 
(i) pyrolysis, (ii) washing, and (iii) steps
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2.3 Pyrolysis Methods 

Although, the porous carbon with uniform pore size distribution and high specific 
surface area can be prepared using traditional carbonization–activation methods and 
templating methods, the porogens or the template need to be removed completely 
(Fig. 5). In that context, pyrolysis methods are more useful. During pyrolysis method, 
organic sources are decomposed and release gases like CO2, H2O, NH2, and CO. 
These produced gases act as porogens. By optimizing the pyrolysis parameters, 
like heat rate, temperature, and time of carbonization, the pore size distribution and 
specific surface area of the porous carbon can be fine-tuned. Xu et al. prepared 
distinct hollow carbon nanospheres with surface area of 3022 m2 g−1 following a 
simple carbonization of polyaniline-co-polypyrrole (PACP) hollow spheres [30]. The 
as-prepared materials achieved the maximum specific capacitance of 203 F g−1 at 
specific current of 0.1 A g−1. 

3 Typical Features of Carbon Materials 
for Supercapacitors Electrode 

The porous carbon materials are an emerging electrode of supercapacitor because of 
its exceptional chemical and physical properties, such as high SSA with controlled

Fig. 5 Schematic illustration for the preparation of conventional hollow carbon nanosphere by a 
templating method and b by pyrolysis method. Reprinted with permission from Xu et al. [30]. 
Copyright 2015 Springer Nature 
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pore structure, high electrical conductivity, good corrosion resistance, easy process-
ability and compatibility in composite, high-temperature stability, and relatively low 
cost [31]. 

3.1 Large Surface Area 

Different types of porous carbon materials have been developed as promising active 
materials for supercapacitor application. Ordered meso-porous carbons (OMCs) with 
a precise range of pore sizes have comparatively large SSA (∼1000 m2 g−1) that 
provides the double layer capacitance. Carbon aerogels having surface area ranging 
from 500 to 800 m2 g−1, with comparatively small pore sizes is unfavorable for 
electrolyte ion diffusion. On contrary, macro-porous carbon materials have rela-
tively lower surface area (∼600 m2 g−1). Among all types of porous carbons, mixed 
porous carbon like activated carbon with micro-, meso-, and macro-pores show the 
largest SSA (∼3000 m2 g−1) and high electrochemical activity in terms of specific 
capacitance, energy, and power thereof [32]. 

3.2 Hierarchical Porosity 

Hierarchical porosity implies the presence of multi-scale pores having different sizes 
in a porous system. The pores with the diameter of smaller than 100 nm are known as 
nanopores. Based on the width or diameter (dpore) of pores, the International Union 
of Pure and Applied Chemistry (IUPAC) classified these nanopores into following 
(Fig. 6a) [33]:

(i) Micro-pore: The pore having diameters less than 2 nm (dpore < 2 nm). This type 
of pores is again classified into two types: ultra micro-pore (dpore < 0.7  nm)  
and super micro-pore (0.7 nm < dpore < 2 nm).  

(ii) Meso-pore: The pore having diameters greater than 2 nm and lesser than 50 nm 
(2 nm < dpore < 50 nm).  

(iii) Macro-pore: The pore having diameters greater than 50 nm and lesser than 
100 nm (50 nm < dpore < 100 nm). 

In hierarchical porous carbons (HPCs), not only the presence of multi-scale pores 
but also an interconnection between them is an essential criteria to form a hierar-
chical network. These interconnected pores are beneficial for the infiltration of the 
electrolytes [34]. So that it can provide high electrochemically accessible surface 
area and decrease the ion diffusion path. An ion diffusion path in the hierarchical 
porous material is schematically represented in Fig. 6b, where the electrolyte ions 
enter the macro-pore first and then goes into the smaller pores which are directly 
interconnected. In an electrochemical capacitor, the macro-, meso- and micro-pores
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Fig. 6 a Different kinds of nanopores based on IUPAC scale. b Schematic diagram of an ion 
diffusion path in a hierarchical porous material

play important roles individually and contribute to the total capacitance (Fig. 7). The 
micro-pores provide large surface area which acts as the main sites for the charge 
accumulation, whereas macro-pores and meso-pores serve as the ion-buffering reser-
voirs and provide channels for the rapid ion transport, respectively [34–36]. The 
macro-pores acting as the ion-buffering reservoirs store the electrolyte ions for meso-
/micro-pores, and therefore, an easy and rapid ion transfer occur by reducing the 
effective diffusion pathways and enhance the electrochemical performance. Gener-
ally, the fast ion transport provides high specific power and the rate capability of the 
supercapacitor electrode. The time for the ion transport (τ ) greatly depends on its 
diffusion coefficient (D) and transport path (L) according to the equation: τ = L2/D. 
Therefore, the superior ion transport kinetics can be achieved by reducing the ion 
transport path and enhancing the ion diffusion coefficient [37].

However, the pore size has the important role in determining the capacitance for 
porous carbon supercapacitor. If the size of the pore is bigger (~doubled) than the 
diameters of the hydrated electrolyte ions, also termed as solvated ions or solvation 
shell, is beneficial for higher capacitance. Because the high pore size allows the 
formation of double layer within the pore. The value of the capacitance decreases 
with decreasing the pore size. But when the size of the pore is much smaller (~1 nm) 
than the solvated ions, capacitance is sharply increased. This is due to the distortion 
of the solvated ions in the smaller pore resulting in closer approach of the ion center to 
the active surface area of the electrode [38]. The research by Raymundo-Piñero et al. 
supports the above fact, and they showed that an ample size of pore is more significant
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Fig. 7 General trend of the 
capacitance value with pore 
size of the porous carbon

to achieve high capacitance in different types of electrolyte. They reported that the 
effective optimal pore size is ~0.7 nm and ~0.8 nm in case of aqueous (KOH) and 
organic (tetraethylammonium tetrafluoroborate, TEABF4 in acetonitrile) electrolyte, 
respectively [39]. 

3.3 Electrochemical Performance in Different Electrolytes 

Porous carbon electrode has excellent electrochemical stability in different types 
of electrolytes with wide range of operating potential. The main factor on which 
the operating potential window depends is electrolyte. As the decomposition poten-
tial of water is 1.23 V, the supercapacitor devices can be operated up to 1.2 V in 
traditional aqueous electrolyte like KOH, H2SO4. However, the neutral aqueous 
electrolyte such as Na2SO4 provides the maximum operating voltage up to 1.9 V 
[40]. The common organic electrolytes such as TEABF4 in acetonitrile or poly-
carbonate are suitable for the operating voltage as high as 3 V [41]. The different 
types of electrolytes affect the electrochemical performances of the porous carbon 
supercapacitor differently. Chen et al. investigated the electrochemical performances 
of biomass-derived porous carbon in different aqueous-based such as KOH, H2SO4, 
Na2SO4, and organic electrolyte, tetraethylammonium tetrafluoroborate in propylene 
carbonate (Et4NBF4/PC) [42]. Due to smaller size of solvated H+ and K+ ions, the 
porous carbon showed high capacitance in H2SO4 and KOH electrolyte. Although 
the bigger size of Et4N+ and BF− 

4 is not suitable for high capacitance, but it shows 
high rate capability due to shorter ion diffusion path. The higher operating potential 
of Et4NBF4/PC and Na2SO4 helps to achieve high energy density according to the 
formula E = 1/2CV 2. Another class of electrolyte, i.e., ionic liquids has drawn great 
interest as a promising electrolyte because of their some unique properties such as 
high thermal stability, non-flammability, low vapor pressure, intrinsic ionic conduc-
tivity, and excellent operational voltage greater than 3 V [43]. The electrochemical
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Table 2 Electrochemical performances of the porous carbon supercapacitor in various electrolytes 

Electrode Electrolyte Potential Capacitance References 

Hierarchical PC 6 M KOH 1.0 V 338.5 F g−1 at 1 A g−1 [44] 

N, O, P-doped PC 1 M Na2SO4 1.9 V 69.8 F g−1 at 
0.1 A g−1 

[40] 

PC network 1 M Et4NBF4 in 
acetonitrile 

2.7 V 208 F g−1 at 0.75 A 
g−1 

[45] 

Hierarchical PC 1 M H2SO4 
1 M Na2SO4 
6 M KOH  
1 M Et4NBF4/PC 

1.0 V 
1.6 V 
1.0 V 
2.5 V 

266 F g−1 

211 F g−1 

309 F g−1 

168 F g−1 at 0.5 A g−1 

[42] 

Meso-porous 
graphene 

EMIMTFSI 4.0 V 244 F g−1 at 5 A g−1 [46] 

Micro-pore-rich 
activated carbon 

EMIMFSI 3.5 V 120 F g−1 at 0.5 A g−1 [47] 

Hierarchical PC EMIMBF4 3.8 V 217 F g−1 at 0.1 A g−1 [48] 

TEABF4/PC: Tetraethylammonium tetrafluoroborate in propylene carbonate; EMIMTFSI: 1-ethyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide; EMI–FSI: 1-ethyl-3-methylimidazolium 
bis(fluorosulfonyl)imide; EMIMBF4: 1-ethyl-3-methylimidazolium tetrafluoroborate; PC: Porous 
carbon 

performances of different porous carbon supercapacitor in various electrolytes are 
depicted in Table 2. 

3.4 Different Kinds of Morphology 

High-surface area is really essential for supercapacitor electrodes, but to get 
maximum capacitance, whole surface area should be accessible to the electrolyte 
ions. But practically, it is not achievable. To increase the surface accessibility, the 
surface topography can be modified with abundant adsorbing sites. Therefore, signif-
icant research efforts have been devoted to engineering diverse carbon morphologies 
with controlled surface topography and interior texture. 

3.4.1 One-Dimensional Porous Carbon Electrode 

Due to the unique anisotropic properties, one-dimensional (1D) porous carbon mate-
rials such as carbon nanofibers, carbon nanorods carbon nanowires, and carbon 
nanobelts have many advantages over the other nanostructures. These 1D nanos-
tructures can deliver fast axial electron transport and provide short ion diffusion 
path, high ion-accessible specific surface area and excellent mechanical strength. 
The contact resistance is greatly reduced due to the more exposed edges which
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behave as contact points. Furthermore, surface functionalization can be easily done 
chemically to improve the electrochemical performance. 

Na et al. fabricated nitrogen and fluorine doped carbon nanofibers by a simple 
hydrothermal treatment followed by carbonization and vacuum plasma process [49]. 
The as-prepared material exhibited meso-porous nature with highest BET specific 
surface area of 596.1 m2 g−1. It also exhibited maximum specific capacitance of 
252.6 F g−1 at 0.5 A g−1 in 1 M H2SO4 electrolyte. Cai et al. reported inter-bonded 
carbon nanofibers for high-performance supercapacitor. They first prepared cellulose 
nanofibers by electrospinning method using cellulose acetate solution. In second step, 
the desired porous materials were synthesized by hydrothermal treatment followed by 
carbonization process. The as-prepared material exhibited maximum specific capac-
itance of 241.4 F g−1 at specific current of 1 A g−1 with excellent cyclic stability [50]. 
Using lignin as precursor, Berenguer et al. fabricated flexible interconnected porous 
carbon fibers with high SSA and excellent conductivity. The desired electrode mate-
rial was prepared by electrospinning method followed by thermostabilization and 
carbonization treatments. The interconnected nature of the fibers helps to increase 
the charge transfer process and electrochemical performances as well [51]. Micro-
and meso-porous 1D carbon nanobelts with high SSA up to 1208 m2 g−1 were synthe-
sized by “stripping and cutting” strategy from tofu using a molten salt-assisted tech-
nique by Ouyang and coworkers. This material achieved high specific capacitance 
of 262 F g−1 at specific current of 0.5 A g−1 with high cyclic stability [52]. Jin et al. 
fabricated wood-based fibers by melt-spinning process and then finally prepared the 
activated carbon fibers by carbonization-activation at 850 °C under steam–nitrogen 
mixture [53]. Comparatively, longer activation time produces highly meso-porous 
structure, which is easily reachable by the electrolyte ions up to the inner micro-
pores. The as-prepared materials exhibited maximum capacitance of 280 F g−1 at 
0.5 A g−1 with excellent stability. 

3.4.2 Two-Dimensional Porous Carbon Electrode 

Two-dimensional (2D) porous carbon materials are excellent in energy storage which 
can provide high conductivity due to their sp2 hybridized nature, high SSA with high 
electrochemically active sites. 

Fan et al. reported 2D porous carbon nanosheets supercapacitor with superior 
rate performance. They prepared the porous material following a combined method 
of intercalation, thermal treatment, and potassium hydroxide activation using mont-
morillonite as nano-template and gelatin as carbon source. The porous nature of 
the nanosheets reduces the ion transport path and enhances the pore accessibility 
toward electrolyte ions and thus achieved excellent rate performance, with a high 
specific capacitance of 246 F g−1at a ultrahigh specific current of 100 A g−1 [54]. 
Xu and coworkers synthesized layered 2D porous carbon materials (Fig. 8) by a wet-
chemical synthesis method using Sonogashira–Hagihara cross-coupling polycon-
densation. The BET surface specific area of the as-prepared material was measured
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Fig. 8 SEM (a, b) and TEM images (c, d) of  2D porous carbon material at different magni-
fications. Reprinted with permission from Xu et al. [55]. Copyright 2021 Royal Society of 
Chemistry 

to be 575 m2 g−1 with hierarchical pore structure. The electrode material achieved 
high specific capacitance of 378 F g−1 at the specific current of 0.1 A g−1 [55]. 

3.4.3 Three-Dimensional Porous Carbon Electrode 

Three-dimensional ordered porous carbon (3D-OPC) has shown remarkable potential 
in energy storage and conversion applications due to its some unique properties like 
large SSA with uniform pore structure, high electronic and ionic conductivity, and 
low cost. 

Zhao et al. reported three-dimensional hierarchical ordered porous carbons (3D 
HOPCs) using templating technique. They used nano-array of silica (SiO2) sphere, 
triblock copolymer P123 and sucrose as hard template, soft template, and carbon 
source, respectively. The 3D HOPCs having SSA of 1182 m2 g−1 achieved maximum 
specific capacitance of 247 F g−1 at specific current of 1 A g−1 with excellent rate
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performance. Moreover, the 3D HOPCs supercapacitors showed high percentage 
(91%) of capacitance retentions after consecutive 10,000 cycles [56]. Li et al. 
prepared three-dimensional graphene-like carbon nanosheet network using a surfac-
tant (Tween-20) as C source. The as-prepared material acquired hierarchical porous 
structure with a SSA of 2017.3 m2 g−1 [57]. It exhibited ideal capacitive behavior 
with maximum specific capacitance of 316.8 F g−1 at a specific current of 1 A g−1 

in 1 M KOH electrolyte. 

3.5 Electrochemical Characteristics of Porous Carbon 
Supercapacitors 

Generally, supercapacitor stores charge in two ways: (i) via Faradaic fast electron 
transfer or/and (ii) via non-Faradaic charge storage mechanism. However, each type 
of supercapacitor can be identified from their electrochemical characteristics in terms 
of cyclic voltammograms (CVs) and galvanostatic charge/discharge (GCD) curves 
[58]. In general, a pure porous carbon electrode shows electrical double layer capac-
itive behavior giving rectangular CV curve (Fig. 9a) and a triangular-shaped GCD 
curve indicating linear voltage response (Fig. 9c). Usually, EDLCs exhibit the capac-
itance which is potential-independent and so is the obtained current in CV plot. 
However, surface functional groups/doping atoms on the carbon can add pseudoca-
pacitance and therefore deviations from its ideal electrochemical signatures in terms 
of CV curve (Fig. 9b) and GCD curve (Fig. 9c) occur. 

3.5.1 Capacitance of Porous Carbon Supercapacitor 

There are many ways by which capacitance of a supercapacitor can be expressed like 
specific or gravimetric capacitance, volumetric capacitance, and areal capacitance. 
The gravimetric capacitance which depends upon the mass of the active material is 
usually expressed in Farads per gram (F g−1), whereas the areal capacitance depends 
upon the foot print area, and the capacitance values are expressed in Farads per 
square centimeter (F cm−2). Furthermore, the volumetric capacitance is calculated

Fig. 9 Schematic CV curve of a EDLC, b pseudocapacitor, and c corresponding galvanostatic 
charge–discharge curves 



5 Porous Carbon Materials for Supercapacitor Applications 131

per volume, and the values are indicated in F cm−3. Depending upon the applica-
tion and necessity, the values are expressed differently, but gravimetric and areal 
capacitances are the two mostly used units to express capacitance of a device. The 
calculation of the capacitance also depends upon the type of working electrode used. 
There are certain scenarios where the calculation of areal capacitance can be difficult, 
for example, when metal foams are used as substrate and also for porous materials. 
On the other hand, gravimetric capacitance requires the exact mass of the electrode 
material used during the capacitance calculation. Though both the techniques are not 
free from errors, each technique has their own set of advantages and disadvantages 
when it comes to design and structure of the working electrode. 

The electrochemical performance in terms of gravimetric capacitance of the 
porous carbon materials can be improved by increasing the SSA or the ample pore 
size. However, the volumetric capacitance is limited due to low bulk density of porous 
carbon [59]. But it is important to have the high volumetric capacitance for the prac-
tical applications. Therefore, doping with heavier heteroatoms is a highly effective 
method for the enhancement of the density of the porous carbon which leads to 
enhanced volumetric capacitance (Table 3).

4 Understanding of Charge Storage Mechanisms in Porous 
Carbon 

4.1 Electrochemical Double Layer Model Using 2D 
Electrode Materials 

The first electrochemical double layer model (EDL) was given by Helmholtz [72], 
and in his model, he explained the phenomenon of the charge separation which 
takes place at the interface of electrode–electrolyte, assuming that the surface of the 
electrode is planar. Helmholtz model is picturized in Fig. 10a, and from the figure, it 
can be seen that the charges those are accumulated at the surface of the electrode are 
counterbalanced by the electrostatic absorption with the ions of electrolyte which 
results in the formation of oppositely charged two-layers at the interface. Concept of 
this study was very similar to the traditional parallel plate capacitors, and therefore, 
the capacitance of Helmholtz layer is given by using Eq. 1: 

C 

A 
= 

εr ε0 

d 
(1)

where, ε0 (8.85 × 10–12 Fm−1) is the vacuum permittivity, εr is the dielectric constant 
of the electrolyte material which is dimensionless, d (m) is the average distance 
between the conductive layers, and A (m2) is the surface area of the electrode which 
is accessible.
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Table 3 Comparison between the gravimetric and volumetric capacitances of reported porous 
carbon materials 

Electrode Electrolyte Gravimetric 
capacitance 

Volumetric 
capacitance 

Specific 
current/scan 
rate 

Reference 

N-doped PC 
nanosheets 

6 M KOH 305 F g−1 287 F cm−3 2 mV s−1 [60] 

P, N-doped PC 1 M H2SO4 205.7 F g−1 261 F cm−3 0.5 A g−1 [61] 

PC 6 M KOH  
1.5 M 
Et4NBF4/AN 

271 F g−1 

156 F g−1 
252 F cm−3 

145 F cm−3 
2 mV s−1 [62] 

Micro-porous 
carbon 

1 M H2SO4 198 F g−1 180 F cm−3 2 mV s−1 [63] 

PC 6 M KOH 262 F g−1 214 F cm−3 0.05 A g−1 [64] 

High density 
porous graphene 
macroform 

6 M KOH 238F g−1 376 F cm−3 0.1 A g−1 [65] 

N, P, S-doped 
hierarchically PC 
Spheres 

6 M KOH 274 F g−1 219 F cm−3 0.5 A g−1 [66] 

N, P, O-doped PC 
spheres 

6 M KOH  
0.5 M H2SO4 

356.9 F g−1 

434.7 F g−1 
760 F cm−3 

925 F cm−3 
1 A g−1 

0.1 A g−1 
[67] 

N, S-doped 
hierarchical PC 

6 M KOH 358.0 F g−1 243.4 F cm−3 0.5 A g−1 [68] 

N-doped 
hierarchical PC 

1 M H2SO4 242 F g−1 306 F cm−3 0.5 A g−1 [69] 

Hierarchical 
pomegranate-like 
PC 

4 M H2SO4 398 F g−1 278.6 F cm−3 0.5 A g−1 [70] 

F, N-doped PC 
nanosheets 

1 M H2SO4 266 F g−1 255 F cm–3 1 A g–1 [71] 

Et4NBF4/AN: Tetraethylammonium tetrafluoroborate in acetonitrile; PC: Porous carbon

Depending on the electrolyte used, the value of the dielectric constant εr and 
thickness (d) of the Helmholtz layer is used to normalize the areal capacitance (per 
m2) of the Helmholtz layer (CH ). For example, the dielectric constant value of water 
is around 78 [73], and for most of the solvents used for EDC application, this values 
lies in between 1 and 100 at room temperature [73–75]. Usually, this value is not 
so important at sub-nanometer scale; even sometimes, it is smaller than that of bulk 
electrolyte [73]. In the Helmholtz model, linear potential drop taking place between 
Helmholtz layer is also discussed, however, the charges which are in excess at the 
surface of the electrode are usually not completely compensated by the Helmholtz 
layer, especially when the concentration of solution is not so high [74]. Moreover, 
it is difficult to have a single stable compact layer from counter ion layer from 
electrolyte as ions in the electrolyte are always in movement because of thermal
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Fig. 10 Schematic diagram of electrochemical double layer model: a Helmholtz model, b Gouy-
Chapman model, and c Gouy-Chapman-Stern model. Reprinted with permission from Shao et al. 
[7]. Copyright 2020 Royal Society of Chemistry

fluctuation. Further improvement in this model was done by Gouy-Chapman [76, 77]; 
in their model, they have introduced a new layer called as diffused layer between the 
electrode and the bulk electrolyte, taking into consideration of the thermal fluctuation 
as per the Poisson-Boltzmann equation [1]. The Gouy-Chapman model was presented 
in Fig. 10b. The distribution of ions on the diffuse layer highly depends on the 
distance because of the electrostatic attractions which decreases from the surface of 
the electrode to the bulk of the electrolyte. In case of monovalent electrolytes, the 
average thickness of the so-called diffuse layer also called as Debye length; λD is 
given as 

λD =
/

εr ε0RT 

2(ZF)2 C0 
(2) 

where ε0 is the vacuum dielectric constant (F m−1) and εr is the relative permit-
tivity of the electrolyte. R (J mol−1) is the ideal gas constant, T (K) is the absolute
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temperature, F (C mol−1) is the Faraday constant, and C0 (mol m−3) is the  bulk  
electrolyte concentration. Diffuse layer capacitance CD can be calculated from the 
Poisson-Boltzmann equation which can be written as 

CD = 
εr ε0 

λD 
cosh

(
zFφ 
2RT

)
(3) 

where φ (V) is the electrical potential, F (C mol−1) is the Faraday’s constant, R 
(J mol−1) is the ideal gas constant, T (K) is the temperature, and ε0 and εr are 
the vacuum and relative dielectric constant (F m−1). As per Eq. (3), differential 
capacitance CD is not considered as a constant, instead, this model suggested a “U” 
shape of the differential capacitance with respect to the potential of the electrode, 
which is in-line with the experimental results, obtained using NAF solutions with Hg 
in low concentration [78]. Also the capacitance which was experimentally measured 
with liquid electrolytes was far below from the prediction from the model [79]. The 
main shortcoming of this model was to consider that point charges can virtually 
reach to the surface at zero distance which in turn leads to the infinite value of 
capacitance. To fix these issues, Stern improvised the model of Gouy-Chapman by 
taking into consideration the real size of ions as a result of which an additional 
compact layer called as Stern layer was created which is in series with diffuse layer, 
this arrangement can be seen from Fig. 10c [80]. This compact layer (Stern layer) is 
very much similar to Helmholtz layer from the point of physics, having thickness of 
xH (m). The electrochemical double layer capacitance from this model is given by 
the following equation: 

1 

CDL 
= 

1 

CH 
+ 

1 

CD 
= 

X H 
ε0εr 

+ λD 

ε0εr cosh
(
zFφ 
2RT

) (4) 

where CH is the capacitance of Stern (Helmholtz) layer and CD is the capacitance 
of diffuse layer, these capacitance are measured in F m−2. Overall electrochem-
ical double layer capacitance is calculated by calculating the smallest capacitance 
obtained between CH and CD. In case of highly concentrated electrolytes, thickness 
of the diffuse layer drops to zero, so the Helmholtz capacitance is the only one to be 
considered. For sure, Gouy-Chapman-Stern model was a milestone that predicted a 
more realistic gross feature of the EDL, and the theoretical observations were close 
to experimental results. But this model also suffers from some limitations, like this 
model has not considered the ion-ion correlation effects, which are very important 
especially in solvent-free ionic liquid-based electrolyte systems [74, 81]. Similarly, 
considering a linear potential drop within the compact layer was inappropriate in high 
electrode polarization with high concentration electrolytes [74, 82]. Whatsoever, the 
Gouy-Chapman-Stern model has provided a constructive and well predicted interpre-
tation of the electrochemical double layer that has certainly helped us in developing 
EDLC field from last few decades.
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4.2 Capacitance in Nanoporous Carbon-Derived Electrodes 

There are many factors which decide the overall electrochemical performance of 
nanoporous carbon-derived EDLC electrodes, like electrical conductivity, presence 
of the surface groups, and the most important are the BET specific surface area (SSA), 
pore size, and pore size distribution. Though most of the carbon materials possess 
high conductivity because they have high density of electronic state at Fermi level, 
but still there exist some carbon materials which have semiconducting properties like 
SWCNTs which has specific diameter and also specific helicity or bilayer graphene 
[83, 84]. Because of this semiconducting nature, the drop of the current near potential 
of zero charge is usually seen in a cyclic voltammogram curve (CV), and because of 
this, a CV which is closed to butterfly shape is obtained in a three-electrode system, 
and a trapezoid-shaped CV is seen in a two-electrode system [73]. In general, the 
capacitance value of carbon-based electrode in electrochemical double layer capac-
itor cell is strongly dependent on the surface area of material and pore size and 
structures of the material, and therefore, a detailed characterization of the surface 
and textual properties is utmost important to analyze how the specific surface area, 
pore size, and its structures affect the electrochemical performance of carbon-based 
supercapacitor cells. Although the porous carbon is usually complex materials with 
different kind of structures which includes local graphitized and disorder arrange-
ments of carbon, and hence, it is impracticable and tough to predict their local struc-
tures (in real) and long-range structures [85, 86]. However, there are now various 
kind of experimental techniques which are well developed and sufficiently advanced 
to predict and analyze the materials up to great extent like gas sorption, electron 
microscopy, NMR, neutron scattering, X-ray scattering, and in situ techniques [87]. 
In addition to the experimental techniques, modeling and simulation methods like 
density functional theory, pair distribution function, Monte Carlo method, and gas 
sorption techniques are the most widely used to study the pore structures of porous 
carbon materials in more detail ways [87]. 

4.3 Capacitance with Respect to Specific Surface Area (SSA) 

Gouy, Chapman and Stern proposed in their model that the overall double layer 
capacitance achieved is directly proportional to the specific surface area of the mate-
rial used, and this theory triggered the race to enhance the specific surface area of 
the active material which will in turn increase the overall capacitance values. Several 
research groups had developed their interest in activated carbon and the activation 
techniques by which the surface area and pore volume can be increased. But, after 
some time, it was realized that the gravimetric capacitance of active material was 
limited even if the most porous samples which has very high surface area were used 
[88–91]. Ji et al. studied that the area-normalized capacitance was decreased by 4– 
5 μF cm−2 when the SSA was above 1500 m2 g−1 [92]. This is usually because
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of the presence of micro-pores, specially narrow sub-nanometer size micro-pore in 
porous carbon was too small to accommodate the ions of electrolyte [93, 94]. As 
a conclusion, still, there are no clear trends established between specific area and 
capacitance. 

4.4 Capacitance with Respect to Pore Size 

There is a quite established proposition which states that it is always preferred to 
have pore size of active material (for example, carbon in case of EDLCs) larger than 
the solvated ion size of electrolyte, as in this scenario, pores of active materials are 
accessible to electrolyte ions [90]. In other words, carbon materials whose pore sizes 
are smaller than the solvated electrolyte ions do not contribute to capacitance, and 
hence, they are considered as useless. If we take into account, the most commonly 
used electrolytes; the size of free ions and ions with solvated shells varies in between 
few to tens of Å. For example, the size of free tetraethylammonium cation is around 
0.68 nm, and when it is dissolved in acetonitrile, the size increased to 1.3 nm. Clearly 
in this situation, large micro-pore and meso-pore carbons are considered as an ideal 
candidate for achieving high capacitance value. 

5 Structure–activity Relationship with Heteroatom Doped 
Carbon Materials 

Although the prediction on acquiring capacitance is much higher, the volumetric and 
gravimetric capacitance of carbon nanomaterials are restricted to 400 F cm−3 [95] and 
300 F g−1 [96], respectively. This is because of sole involvement of physical charge 
storage phenomena without any contribution of fast Faradaic redox reactions. There-
fore, doping with heteroatoms could be an effective strategy for the enhancement of 
capacitance. The charge storage mechanism in porous carbon is discussed in Sect. 4. 
However, self-doped porous carbon from various biomass precursors or doping with 
heteroatoms like, O, N, P, B during activation process adds some more advantages 
like enhanced wettability due to polarized surface, improved intrinsic conductivity, 
and better electrochemical performances resulting from the introduction of faradaic 
pseudocapacitance of the redox active sites [97]. The structural distortions and elec-
tronic structure modulations generally occur due to the size and electronegativity 
differences between the dopant atoms and carbon. The total electrochemically active 
surface of the electrode material where electrolyte ions are accumulated is defined as 
“electrolyte infiltration” [98]. The porous hierarchical polar surface resulting from 
heteroatom doping facilitates a fast and adequate electrolyte infiltration which estab-
lishes multidirectional pathways for rapid ion transfer and therefore improves the
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electrochemical performance. The electrolyte infiltration is directly related to the 
wettability of an electrolyte which is measured by contact angle meter [99]. 

The enhancement of electrochemical performances of oxygen doped carbon mate-
rials is mainly due to the increasing wettability of the electrode material to the elec-
trolyte, fast Faradaic redox reactions contributing pseudocapacitance, and increased 
pore utilization ratio. However, oxygen functionalization can decrease the surface 
conductivity and prevent the electrolyte ions from entering the pore. He et al. thor-
oughly investigated the reasons for capacitance enhancement in oxygen containing 
carbon nanofibers. In acidic aqueous electrolyte, H3O+ ion attracts the electrons 
on the O atom of the functional groups, and therefore charge separation occurs 
which facilitates the redox reaction. While the adsorption/desorption reaction of the 
hydrated ions of alkaline aqueous electrolyte in the pore causes the pseudocapaci-
tance [100]. Wang et al. investigated the pseudocapacitive behavior of the O-doped 
carbon cloth which was prepared by annealing the carbon cloth in presence of air at 
low temperatures. They concluded that micro-pores having oxygen functional groups 
can give high pseudocapacitance than surface of pristine carbon plane, by facilitating 
the faradaic redox reactions due to increased ion-accessible area [101]. 

Nitrogen-doping in porous carbon materials distorts the structure and creates 
defects and available active sites. Doping with nitrogen atom can cause a shift of 
the Fermi level toward valence band in carbon materials, accelerating the electron 
transfer [102]. It can also enhance the wettability by increasing the polarity and 
charge density of the materials. In carbonaceous material, generally, five types of N-
functionalization are encountered, such as pyrrolic nitrogen (N-5), pyridinic nitrogen 
(N-6), pyridonic nitrogen (N-5), quaternary or graphitic nitrogen (N-Q), and pyri-
dinic oxide (N-X) (Fig. 11) [103]. Due to the electron donating nature, pyridinic 
and pyrrolicnitrogens serve as electroactive center in electrochemical capacitor. The 
graphitic nitrogen helps to improve the electronic conductivity and creates addi-
tional defects. However, all types of nitrogen can add pseudocapacitance to the total 
capacitance [104]. 

Fig. 11 Schematic illustration of N atom doped porous carbons



138 M. Mandal et al.

Liu et al. prepared N-doped porous carbons from pyrrole and Na-metal using a 
three-step process which involves solvothermal, pyrolysis, and acid washing of metal 
salts. The meso-porous carbons with high specific surface areas of 2000 m2 g−1 

were obtained at high-temperature pyrolysis. The as-prepared materials perform 
as excellent electrode materials for supercapacitor with exceptional rate perfor-
mances, long lifetime, and high-power density [105]. Zhu et al. prepared high-level 
N-doped (up to 8.71%) micro-porous carbon materials having high specific surface 
areas by a facile Schiff-base reaction of 3,3'-diaminobenzidine and p-phthalaldehyde 
in ethanol solvent and a subsequent single-step carbonization-activation process. 
The as-prepared material exhibited high gravimetric capacitance with excellent rate 
capability and electrochemical stability [106]. 

The electrochemical activities of different heteroatoms doped porous carbon 
materials are depicted in Table 4. Although there is no linear relation between 
the heteroatom types/content and supercapacitive performances, the electrochemical 
activity is greatly enhanced by doping with heteroatoms like O, N, S, and B.

6 Conclusions and Prospects 

Supercapacitors are getting enormous importance as these can make a bridge 
between a conventional capacitor and a battery. Porous carbon materials offer low-
cost electrode materials having high SSA (1500–2000 m2 g−1) and extraordinary 
electrochemical performances. For the porous carbon-based supercapacitive elec-
trodes, the conventional synthesis strategies like carbonization-activation, templating 
methods, salient features to act as electrode in supercapacitors, and heteroatom 
functionalization have been discussed in this chapter. 

Generally, physical activation methods are used to produce porous carbon elec-
trodes for commercial purpose. The porogens like H2, CO2, and air are used in 
physical activation to create porous carbons with high SSA. The porogens used 
in chemical activation methods do the same job as physical porogens do but they 
are highly toxic in nature and produce various pollutants during chemical activa-
tion. Therefore, the chemical activation method requires environment friendly green 
methods to prepare porous carbons at a reasonable cost. 

Recently, the porous carbon doped with heteroatom such as O, N, S, and B have 
been thoroughly investigated for the supercapacitor materials. The introduction of 
these heteroatoms improves the electrochemical performances of the material by 
increasing electronic mobility, extrinsic defects, and wettability. However, the func-
tional mechanisms of porous carbon electrodes doped with different heteroatom 
are largely dependent on their size and electronegativity difference. Therefore, an 
appropriate choice of dopants with their relative ratios is highly desirable. 

The capacitance of porous carbon supercapacitor mainly comes from the fast 
and reversible ion adsorption–desorption at the carbon/electrolyte interfaces. For the 
enhancement of the electrochemical performances, the interface accessibility and
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Table 4 Supercapacitive performances of porous carbon materials doped with heteroatoms 

Electrode material Heteroatom 
content 

Surface 
area 
(m2g−1) 

Specific 
capacitance 
(F/g) at specific 
current (Ag−1) 
or scan rate 
(mVs−1) 

Electrolyte Reference 

N-rich 
meso-porous 
Carbons 

N: 19.10 wt% 458 252 at 0.2 A g−1 1 M H2SO4 [107] 

N and B co-doped 
PC 

N: 15–20%, 
B: 10–13% 

955 188 at 0.5 A g−1 6 M KOH [108] 

N-doped PC 
nanofibrous 
microspheres 

N: 2.4 at.%, 
O: 6.1 at.% 

1147 113 at 5 mVs−1 EMIMTFSI [109] 

Honeycomb-like 
PC foam 

N: 1.1 at.%, 
O: 11.2 at.% 

1313 260 at 2 mVs−1 1 M Na2SO4 [110] 

N/S-doped PC N: 4.5 at.%, 
S: 5.8 at.% 

1339 464 at 0.2 A g−1 6 M KOH [111] 

N-doped PC 
superstructures 

N: 3.46 wt%, 
O: 7.99 wt% 

1375 364 at 0.6 A g−1 6 M KOH [112] 

N-doped 
micro-porous 
carbon spheres 

N: 8.71 at.%, 
O: 7.89 at.% 

1478 292 at 1 A g−1 6 M KOH [106] 

PC nanorods N: 1.47 at.%, 
O: 0.62 at.% 

1559 187 at 0.05 
A g−1 

1 M H2SO4 [113] 

N/S-co-doped 
carbon nanobowls 

N: 3.3 wt%, 
S: 1.7 wt% 

1567 279 at 0.1 A g−1 6 M KOH [114] 

3D interconnected 
S-doped PC 

S: 5.2 wt% 1592 320 at 0.2 A g−1 6 M KOH [115] 

N-doped PC 
nanosheets 

N: 2.10 at.%, 
O: 7.11 at.% 

1786.1 339 at 0.25 
A g−1 

6 M KOH [116] 

N-doped 
multi-chamber 
carbon 
microspheres 

N: 4.58 wt%, 
O: 2.12 wt% 

1797 301 at 0.2 A g−1 6 M KOH [117] 

2D PC nanosheets N: 1.54 at.%, 
O: 6.59 at.% 

1907 221 at 1 A g−1 EMIMBF4 [118] 

N and S-co-doped 
hierarchical PC 

N: 1.88 at.%, 
S: 1.87 at.% 

1975 333.4 at 0.1 
A g−1 

6 M KOH [119] 

S-doped PC 
nanosheets 

S: 9.6 wt% 2005 312 at 0.5 A g−1 6 M KOH [120] 

B/N-co-doped 
carbon nanosheets 

N: 3.1 at.%, 
B: 0.5 at.% 

2362 235.6 at 0.5 
A g−1 

1 M Na2SO4 [121]

(continued)
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Table 4 (continued)

Electrode material Heteroatom
content

Surface
area
(m2g−1)

Specific
capacitance
(F/g) at specific
current (Ag−1)
or scan rate
(mVs−1)

Electrolyte Reference

N-rich PC 
nanosheets 

N: 9.4 at.%, 
O: 4.7 at.% 

2406 250 at 0.5 A g−1 EMIMBF4 [122] 

EMIMTFSI: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide; EMIMBF4: 1-ethyl-
3-methylimidazolium tetrafluoroborate; PC: Porous carbon

carbon/electrolyte compatibility should be highly improved. Therefore, the intro-
duction of nanopores to the porous carbon material and doping pseudo-active sites 
improves the interfacial interactions. 
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Chapter 6
Recent Advancement of Luminescent
Graphene Quantum Dots
for Energy-Related Applications

Poonam Rani Kharangarh, Rachna Rawal, Shalu Singh,
and Preetam Bhardwaj

1 Introduction

1.1 Background of Graphene Quantum Dots from Graphene

The most abundant and fascinating element is carbon which has been attracted more
attention owing to their tremendous “physical and chemical” belongings. In 1991,
carbon nanotubes (CNTs), allotropy of carbon, were discovered by Iijima [1]. More
than a decade, “Geim andNovoslov” [2] from “University ofManchester” conducted
some experiments on graphene to develop monolayer graphene by using tool called
as “scotch tape method.” After two years, “Geim and Novoslov” [2] got a “Nobel
Prize” award in “physics” on behalf of the new invention on graphene. To date,
nanomaterials prepared from carbon which is known as “carbon-based nanomate-
rials (CBNs).” Nowadays, CBNs brought a lot of attention with the recent tech-
nologies in terms of nanomaterials. The several forms of “carbon” like “amorphous
carbon,” “three-dimensional graphite (3D)” and “two-dimensional (2D) diamonds,”
“2D graphene oxide (GO),” [3] “one-dimensional carbon nanotubes (1D-CNTs),” [1]

P. R. Kharangarh (B) · R. Rawal
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
e-mail: prk6@njit.edu

P. R. Kharangarh
Department of Physics, New Jersey Institute of Technology, Newark, NJ 07901, USA

S. Singh
Department of Chemistry, Bundelkhand University, Jhansi, Uttar Pradesh 284128, India

Department of Chemistry, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

P. Bhardwaj
School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014,
India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
A. N. Grace et al. (eds.), Handbook of Porous Carbon Materials,
Materials Horizons: From Nature to Nanomaterials,
https://doi.org/10.1007/978-981-19-7188-4_6

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7188-4_6&domain=pdf
mailto:prk6@njit.edu
https://doi.org/10.1007/978-981-19-7188-4_6


148 P. R. Kharangarh et al.

nanodiamonds (NDs) [4], “zero-dimensional graphene quantum dots (0D-GQDs)”
[5, 6] and “0D-fullerene,” “carbon quantum dots (CQDs)” [7], etc., have been discov-
ered. Out of various forms of carbon, GQDs have gained numerous attention of
researchers because of “quantum confinement,” size, and “edge effects.” These are
a type of 0-D material obtained by cutting the micrometer 2-D graphene sheets into
nano-sheets. The main uses of GQDs in “solar cells, light-emitting diodes (LEDs),
batteries, sensors, drug carriers and photo-catalytic [8–12],” and supercapacitors [13–
16] are found to be much superior in comparison with the outmoded semiconductor
QDs.

1.2 Outlooks of Graphene Quantum Dots (GQDs)

Although a lot of work has been done to resolve many challenges of GQDs but still
many issues of GQDs have yet to be addressed in order to come across the necessities
for application purpose. Our aim is to produce low-cost GQDs in terms of mass
production to meet the requirements for industrial level. To reach at industry level,
we need to produce high-quality GQDs with small budget. The very low product
quantum yield (QY) of GQDs has been achieved so far. It is a big task to improve
the QY in case of fragments of graphene due to variation in size effects.

Moreover, the informed yields of GQDs from 7 to 44.3% [17–23] were found to
be lower in comparison with traditional semiconductors. The obtained shifts with
different colored such as red and blue from PL by adding impurity by using various
dopants such as chlorine, sodium, potassium, boron, and nitrogen for the determi-
nation to tune the energy (emission) of GQDs [23–30]. These described approaches
were inadequate because of requirement for exclusive resources and extraordinary
techniques which is shown in Fig. 1. In future, GQDs will be more promising and
challenging materials as they are used in various applications. Once, all the above-
mentioned challenges were solved. This review addresses the existing all approaches
through “top-down and bottom-up” with selecting green precursors for synthesizing
GQDs in “Sect. 2” as shown in Fig. 2. “In Sect. 3,” several energy storage applica-
tions such as “supercapacitors,” “lithium cell batteries,” “photovoltaic thin film solar
cells,” and “fuel cells” related with GQDs will be studied are shown in Fig. 3. At
last, a summary with conclusions will be explained in brief.

2 Synthesis Methods

2.1 Top-Down Method

The “top-down” methodologies include the formation of “GQDs” via the “chemical
or physical” cutting ways of reasonably microscopic structures of graphene. Green
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Fig. 1 Challenges of graphene quantum dots

Fig. 2 Different synthesis methods of graphene quantum dots
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Fig. 3 Energy storage applications of graphene quantum dots

and low-cost raw materials were selected as the most representative sources for
this method. Though, this method can be dividing up into routes of hydrothermal,
solvothermal, ultrasonic and microwave-assisted, oxidative cleavage, and electro-
chemical oxidation by an approach with various characteristics of fabrication is
provided.

2.1.1 Hydrothermal Method/Solvothermal Method

The “hydrothermal method” is a facile, eco-friendly, and fast process in terms of
the fabrication procedures for GQDs by cutting the “carbon” sheets into small frag-
ments below with higher pressure and higher temperature. Many researchers used
hydrothermal method to produce uniform GQDs. The strongest oxidizer compounds
among “conc. sulfuric acid (H2SO4), nitric acid (HNO3)” have been used for the
treatment of carbon materials before the reactions happen. Firstly, the preparation of
GQDs (5–13 nm) was reported from graphene oxide (GO) as a precursor material by
using “hydrothermal method” under alkaline conditions for 10 h via strong oxidizing
agents like H2SO4/HNO3 acid during the oxidation [18, 31]. Later on, modification
in the fabrication process was described by giving high temperature to produce green
fluorescent fine crystalline GQDs [32]. After some years, graphene-based materials
and their modification by doping of nitrogen and boron elements have become so
popular in many applications such as solar cells, batteries, gas sensing, and biosen-
sors. The variation of nitrogen concentration shows a significant role to control the
luminescence behavior of GQDs from violet to yellow via hydrothermal approach
which effects the size andmorphology for the preparedmaterial [32].Asweknow, the
semiconducting properties can be improved or controlled by doping in the conven-
tional semiconductor (SCs). Due to the presence of defects, the quality of materials
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gets reduced. Although, the doping helps to increase the carrier concentration in
graphene allows the production of novel material. In general, adding of impurities
in graphene derivatives can be classified as either substitutional doping or chemical
doping via molecule adsorption. The bandgap of graphene can be opened by substi-
tutional doping which has been proved by the theoretical work doping elements in
graphene [26–29]. The structure and variation in electronic properties were effected
through doping which have been investigated through “first-principles density func-
tional theory (DFT) and ab initio calculations” [33]. Some various dopants such
as “ceria [29], fluorine [34], potassium [35], sulfur [27, 28], chlorine [36], sele-
nium [37] as well as co-dopants like B- and N-doped GQDs [38], N-S-doped GQDs
[39], and N-P-doped GQDs [40]” helped in modification of the electron density and
also improve the luminescent properties at higher temperature through hydrothermal
process. On the other hand, solvothermal method is a type of synthetic method in
which the final product was prepared by using organic solvents instead of water.
It is very highly economical, cost-effective, and non-toxic method. However, it is
essential to check the nature of used chemical as well as physicochemical properties
of the organic solvents which shows a very significant effect on their morphology
of final products. The most common solvents such as “benzene, dimethylformamide
(DMF), dimethyl sulfoxide (DMSO), methanol (CH3OH), dichloromethane (DCM)
or methylene chloride, conc. sulfuric acid (H2SO4), and nitric acid (HNO3)” have
been used to split GO into GQDs used and water. Shin et al. [41] used a unique
solvothermalmethod based on “novel acid-free and oxone-oxidant-assisted synthesis
ofGQDsusingvarious natural carbon resources, includinggraphite,multiwall carbon
nanotubes (MWCNTs), carbon fibers (CFs), and charcoal (C)” [41]. But this method
has some limitation in terms of durability and controlling the size of nanoparticles
through the oxidizing agents, when the reaction takes place.

2.1.2 Ultrasonic and Microwave-Assisted and Ultrasonic (US) Method

Microwave-assisted method is a rapid heating, low-cost, and widely used method
to produce GQDs in order to remove the limits with longer time reaction occurred
by using oxidative cleavage, hydrothermal, and solvothermal methods. It not only
helps to improve the quantum yield but also shorten the reaction time. The formed
interaction leads to the motion (rotation and vibrational) of polar molecules and
produces heat within the material. This method can be employed to prepare the
nanoparticles as it is a combination of high speed reaction with homogenous heating
for the selected materials. In 2012, the “electrochemiluminescent (ECL) two-color
GQDs were fabricated such as greenish-yellow luminescent GQDs, i.e., gGQDs
which is unreduced and bright blue luminescent GQDs, i.e., bGQDs which is further
reduced with NaBH4 through the cleavage of GO in acidic medium by microwave-
assisted method” [42]. By using this method, this group was able to improve the
yield and reduce the time for the oxidation reaction. The nano-sheets of GO were
preserved in acidicmedium by using nitric acid (3.2M) and con. sulfuric acid (0.9M)
for three hours, while for the preparation of gGQDs, they used NaBH4 as a reducing
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agent resulting in reducing gGQDs within 2 h having size 2–7 nm in diameter. They
demonstrate that the change in structure causes for blue shift in PL of the bGQDs after
reduction instead of change in dimension. The observed PLQYs for bGQDs (22.9%)
were found to be higher than gGQDs (11.7%), respectively. These ECL-active GQDs
are supposed to have favorable applications to make an improvement of novel ECL
biosensors due to their low cost, low cytotoxicity and excellent solubility. After four
years in 2016, GQDs were synthesized by using the microwave-assisted pyrolysis
method. Though, GQDswere prepared by adding aspartic acid (Asp) andNH4 HCO3

in 20 mL water and heated by microwave irradiation for 10 min [43]. The final
product was obtained in the narrow range (~1.8–2.4 nm) by dialysis membrane for
7 h after purification with blue PL under the UV light ray with emission wavelength
of 365 nm. The prepared GQDs keep low cellular toxicity and higher photostability
which is found to be more sensitive for pH value as well as Fe3+ ions. Consequently,
GQDs could assist as a fluorescent probe for Fe3+ ions detection which has been
further used for live cell imaging.

On the other hand, “ultrasonic”method has been considered to be commonmethod
for synthesization of nanoparticles. The formation of small bubbles in distilled water
(DI) in the ultrasonic waves produces instant higher pressure and higher energy due
to breaking of C–C bond, reduction, and crumpling. But the use of ultrasound (US)
method is to speed up the chemical, in degradation, and hydrolysis reactions. For
instance, GQDs were reported for large-scale production through an “ultrasonic-
assisted liquid phase exfoliation” tool which is eco- friendly, quick, and indus-
trial purpose method [44]. This present work shows the preparation of GQDs by
selecting various graphitic carbonwhere acetylene blackwas dispersed in “N-methyl-
2-pyrrolidone (NMP)” solvent under mild ultrasonication conditions for completely
one hour. As a result, a gray colored liquidwas obtainedwhich exhibits the dispersion
of GQDs and some other residual precipitates. To get a homogeneous gray dispersion
of GQDs, centrifugation was done through the frequency of 10,000 rpm for another
half an hour so that these present precipitates will be removed. Finally, a very small
sized somewhere between 2 and6nmGQDswere observedwith thickness from0.4 to
2 nmwhich indicates amonolayer showing strong excitation-dependent PL behavior.
Interestingly, a unique method was presented by reported one [45] who combined
the “merits of microwave-assisted and ultrasonic-assisted processes.” They demon-
strated the “white light-emitting GQDs (WGQDs),” which have been synthesized
by a “facile two-step microwave-assisted hydrothermal method.” The “white light-
emitting diode (WLED)” based on WGQDs exhibits superior performance of white
electroluminescence in comparison with WLED built on the GQDs or CDs. So, it
exhibits that WGQDs can be used as a “single-phase white light-emitting phosphor”
which is supposed to be highly expectant tomake an improvement in the performance
of WLED based on carbon nanomaterials (CNMs). The limitation of this method is
the requirements for device so-called microwave or ultrasonic reactor is costly and
exclusive for industrial outcomes.
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2.1.3 Oxidative Cleavage or Oxidation Cutting Method

It is the extreme commonly used process to attain mass production due to its modest
and real features. In this process, the C–C bonds were fragmented by using strong
oxidizing agents such as “H2SO4, HNO3, or some other oxidizers” for the fabrication
of GQDs. A regular procedure was shown to tune the nano-size of GO, where GO has
been prepared by one of the famous methods known as modified Hummer’s method
[46]. Also, the performance of GQDs for heavy metal ions with small detection limit
in Pb2+ was determined. The reason is behind that the highly surface area concerned
with GQDs can increase the interaction between “active sites” and “target ions”
providing the ability of collections for metals. The final prepared product is assumed
to make a progress in the development of graphene-based nanosensors as well as
in biomaterial field. Also, GQDs were fabricated by selecting different precursor
materials such as “fullerenes C60, carbon nanotubes (CNTs), and “carbon fibers
(CFs).” In 2015, an experiment was demonstrated to produce GQDs with a size of
2–3 nm by using fullerene as a precursor material [47]. This work has revealed the
production of GQDs through “oxidation and cage opening of fullerene.” Thismethod
is relatively so simple to produce GQDs, which have potential uses in photodiodes
and for biological purpose. In addition, the obtained fluorescent GQDs from carbon
fiber were oxidized by conc. “H2SO4 or HNO3” at higher temperature [23], where
dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) were used as polar
organic solvents. As a result, the variation in size of the GQDs was observed with the
reaction temperature. These obtained well-synthesized GQDs with low cytotoxicity
can be used as an eco-friendly material in bio-imaging. The major limitation of this
method is cause of burning or explosion due to strong oxidizing agents as well as
the difficulty in post-processing route.

2.1.4 Electrochemical Oxidation

It demonstrates high levels of stability and the uniform size of GQDs. In this tech-
nique, “graphite, graphene, or CNTs” have been used as a “working electrode” and
were cut into the fragments of graphene with maximum “redox potential” (±1.5
to ±3 V). This procedure follows two methods. The first one is “C–C bonds of
graphene or CNTs” which has been directly broken through “electrochemical oxida-
tion,” while further one includes an oxidation of “water” successfully changes into
a “hydroxyl free radical (·OH) or an oxygen free radical (O)” and splits them into
fragments of graphene. The informed filter film of graphene was used as a working
electrode, Ag/AgCl and Pt wire as a reference and counter electrodes, and the phos-
phate buffer solution (PBS) as an electrolyte was applied to synthesize GQDs [23]
The final prepared green luminescent GQDs were found to be stable in water for
several months without any alterations. Similarly, GQDs by using MWCNTs were
demonstrated which is cut by a two-step electrochemical oxidation with selecting
propylene carbonate containing LiClO4 as the electrolyte [48]. The obtained GQDs
with highQYs, good photostability, and their luminescent behavior are advantageous
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for bio-imaging applications.Along that thismethod has some drawbacks that it takes
longer time in prefabrication of raw ingredients as well as in purification. Moreover,
it is challenging to understand for production purpose due to the low yield.

However, as top-down method has many advantages, it limited with final product
yield with the necessity of costly equipments under critical fabrication environments
for longer reaction time to control the size for the ultimate production. We need
another strategy known as bottom-up method which will allow precisely to control
the size of GQDs during synthesis. Similarly, the used organic precursors must have
difficulty in procedures which have been originated for demanding.

2.2 Bottom-Up Method

This method is quite simple. In “bottom-up strategy,” some organic and natural
renewable rawmaterials are used as startingmaterials via temperature measurements
agree to particular control of the products in terms of morphology. Though, this
method can be divided up into routes of carbonization and fullerene with various
characteristics of fabrication which has been carried out.

2.2.1 Carbonization Method

It is an ecologically, sustainable, and superficial process where “organic molecules or
polymers” were applied during carbonization for dehydration process. The obtained
GQDshadbeenpolydispersed due to difficulty in controlling the size and the structure
precisely by using this method. For example, in 2017, green-colored PL with single-
layerGQDs (SLGQDs)was prepared by using green precursormaterial glucose using
this method [49]. The carbonization method was used to prepare both GQDs and GO
by using “citric acid (CA)” [50]. This group used “polycyclic aromatic hydrocarbon
(PAHs)” as the starting material for luminescent GQDs. This work will be more
beneficial for low-cost fabrication of GQDswith biological and optoelectronic areas-
related applications. Also, the produced GQDs were recorded at various pH as it
shows a significant role in the development of “GQDs from CA.” The synthesized
GQDs [51] from corn powder as a green precursor attain a broad application of rice
husks, showing remarkable benefits in both economical as well as environmental
[52]. Besides that, this method has a drawback that the synthesized GQDs with
much more dispersive in nature having difficulty in controlling uniform size and
structure.

2.2.2 Controllable Synthesis

This scheme includes the synthesization of GQDs which have uniform size, shape,
and perfect number of carbon atoms having “phenyl-containing compounds step by
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step through controllable fabrication insolvent which should be organic in nature.
Many researchers used this process to fabricate GQDs having 168, 132, and 170
carbon atoms [4]. The “2',4',6'-trialkyl phenyl molecules (TPM)” have been attached
at edges of GQDs in order to keep them from recombining. There is a reduc-
tion in possibility for the GQDs overlapped with each other and an improve-
ment in dispersibility in the organic phase due to difficulty caused by expansion
of TPM in three-dimensional (3-D) direction.” In addition, “sulfur-doped GQDs
(S-GQDs) were prepared by one-pot method with bright blue emission from 3-
mercaptopropionic acid (MPA) and 1,3,6-trinitropyrene (TNP)” [54]. In brief, put
the mixture of MPA and TNP for ultrasonic and kept into a bomb reactor through
heating around 200 °C for 10 h. The collection of suspended S-GQDs, which is pale
yellow colored, was completed after dialysis and freeze. These prepared S-GQDs
can be used as a sensing probe for silver ions detection having high sensitivity. These
fabricated S-GQDs have many applications in bio-imaging, sensing, optoelectronic
devices, and catalysis to make this work more attractive. Besides that, this method
has limitation which includes multistep complex reactions that take longer time with
low yield during synthesis.

3 Energy-Related Applications

Nowadays, environmental pollution is increasing day by day. To reduce the pollution,
our society needs somemore energy storage devices for long run. This kind of critical
condition is an important issuewhich has to be pointed out.Currently, the applications
of energy storage such as “supercapacitors, (SCs),” “batteries,” “fuel cells,” and “solar
cells” became more popular due to the higher necessity of our society.

A lot of metal oxides [55], conductive materials [56], polymers [57], and sulfides
[58] were used for enhancement of energy-related applications till now. GQDs or
fragment of graphene is considered to be promising element due to different prop-
erties such as broader area of surface, highly porous, higher intensity of PL with
transparent nature. So, it has worth to bring together the energy storage applications
of GQDs.

3.1 Electrochemical Capacitor/Supercapacitors

This is based on the principal with two different mechanisms by transfer and storage
for a charge which are basically central features of an electrochemical capacitor
or supercapacitors (SCs). In common, the most three common categories for SCs
include: (i) “electrical double-layer capacitors” (EDLCs), (ii) “pseudocapacitors,”
and (iii) “hybrid” SCs. Since first one corresponds to the mechanism of “absorp-
tion and desorption” for ions with charge storage at the interface of working elec-
trodes, while other one involves the mechanism of a “Faradaic reaction have redox



156 P. R. Kharangarh et al.

phenomenon. However, the main advantage of EDLC is that it shows high perfor-
mance of fast charge storagewhich has low specific capacitance. For the development
of SCs, a higher surface area for working electrode with low resistivity and broad
potential window are essential. To date means till now.

For energy storage devices, SCs/micro-supercapacitors (MSCs) became more
attractive due to their unique properties. The electrochemical double-layer capacitors
(EDLC) and pseudocapacitors (PSCs) are two main types of SCs/MSCs. In most of
cases, the SCs/MSCs electrodematerial prepared by usingGQDs exist with an EDLC
having “charge adsorption”mechanism on the surface of the “working electrode.” To
fulfill the demands of highly flexible, lightweight, and transparentmaterials, SCs paid
more attention. Till now, more work on highly dispersed GQDs in different solutions
have been done in terms of energy storage devices as SCS due to their unique proper-
ties [59]. The simple electro-depositionmethodwas used to investigateGQDs//GQDs
symmetric micro-supercapacitors (SMSCs) in aqueous and ionic liquid (IL) elec-
trolyte, and the obtained results were compared with GQDs//MnO2 asymmetric
micro-supercapacitors (ASMSCs) [60]. This group also reported GQDs//MnO2 by
usingMnO2 andASMSCs.As a result, GQDs//MnO2 AMSCs show two times higher
specific capacitance (1107.4 µF/cm2) and energy density (0.154 µWh/cm2) with
good stability in comparison with that of GQDs//GQDs SMSCs (468.1 µF/cm2) in
aqueous electrolyte and GQDs//GQDs SMSCs in EMIMBF4/AN.

In addition, few layer graphene sheets (FLGs) and activatedFLGpowders (aFLGs)
were synthesized using ultrasonication and chemical activation resulting the calcu-
lated specific capacitance of aGQD film (~236 F/g) on the glassy carbon electrode
(GCE) was higher in comparison with aFLGs (Csp ~ 172 F/g), GQDs (Csp ~ 108
F/g), and FLGs (Csp ~ 63 F/g) [61]. Later on, an experiment was performed of
uniform deposition onto the three-dimensional graphene (3DG) via electrochemical
method in symmetrical supercapacitors. It is found that the composites prepared by
“GQD–3DG” aremore stabilizedwhich displays the value ofCsp around 268 F/gwas
more than (~90%) in comparison with pure “3DG electrodes (Csp ~ 136 F/g)” [62].
However, the composite of polyaniline (P) doped in GQDs (GQDP) was prepared
from the GO flakes via chemical oxidation of aniline showing an excellent value
for Csp of 1044 F/g by selecting a particular current density (~1 A/g) with cyclic
rate which has outstanding “retention rate” (80.1%) after 3000 cycles [63]. Further-
more, GQD-HNT nanocomposites (NCs) were fabricated of halloysite nanotubes
(HNTs) combined with GQDs by the “pyrolysis of citric acid (CA),” where the func-
tionalization of HNTs was done with “3-aminopropyl-triethoxysilane (APTES)” for
increasing the storage sites of chargewith fast diffusion for energy storage application
[64]. They obtained the value ofCsp (363 F/g at 6A/g) for prepared “GQD-HNT”NCs
by selecting an electrolyte of 1 M Na2SO4 aqueous solution with excellent specific
energy (Esp) and power densities, respectively. The obtained stability (~88%) was
found better even after 5000 cycles at a same current density. The reported cobalt (II)
chloride doped graphene quantum dots (Co (II) Cl2–GQDs) can exhibit a reversible
redox reaction of Co2+ ↔Co4+ in KOH electrolyte (pH ~ 12) with specific pseudoca-
pacitance (Cs ~ 300 F/g) were found to bemore in comparisonwithGQDs [13]. Later
on, different electrode materials were reported using GQDs by selecting different
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metals like ceria [29], sulfur [14], Fe(II)S-GQDs [15], and NiCo2O4-GQDs [16]
which exhibits higher specific capacitance with good cyclic stability in different elec-
trolytewhich are given in Table 1. These all various electrodematerials have potential
applications that canbedrawnout for a different varieties for inorganic salt electrodes.
Conducting nanofibers were prepared by using polyvinyl alcohol (PVA), GQDs, and
poly3,4-ethylenedioxythiophene (PEDOT) can be used in symmetrical supercapac-
itor applications through electro-spinning and electro-polymerization tools which
exhibits higher Csp (~291.86 F/g), higher energy with more specific power at 2.0
A/g, superior stability with retention rate (~98%) even after 1000 cycles in compar-
ison with PVA/PEDOT (Csp ~ 220.73 F/g), and PEDOT (Csp ~ 161.48 F/g) [65].
Furthermore, GOQDs@NiAl-LDH electrode material was reported [66] with Csp ~
869 F/g at 1 A/g with retention rate (~69.6%) after increment in cycles (~2000). In
addition, Mn3O4-graphene QDs [67], multilayer NiO@Co3O4@graphene quantum
dots hollow spheres [68], and NiCo2O4@GQDs composite [69] demonstrated super-
capacitors electrode material which will be a promising energy storage and power
output technologies that can be used for practical energy conversion and storage
devices for enhanced high-tech supercapacitors. But still it is more challenging to
get higher specific capacitance experimentally, which is far away from the theoret-
ical calculations due to low electrical conductivity as well as blockage in migration
of ions channels for thick electrodes. Table 1 explains the summary of all parame-
ters such as electrode material, electrolyte, capacity or retention rate, and specific
capacitance from cyclic voltammetry measurements.

3.2 Batteries

Lithium and sodium batteries have been widely developed due to their unique prop-
erties such as higher capacity, longer life cycle, and lower cost. In addition, the use
of GQDs as a supporting material helps in enhancing the electrical features of the
batteries. TiO2 has been widely used which acts as an anode in Li-ion batteries. A
lot of experiments were done by using these composites such as TiO2/GQDs [70],
GQDs-Si [71], GPE-PAVM:QD [72], and VO2@GQD [73] applied on Li-ion battery
have led to enhance the performance in batteries. Such kind of improvements are
very cost effective. Therefore, GQDs are supposed to be suitable material which
provides better energy storage in practical as well as commercial worthwhile.

3.3 Fuel Cell

The electricity was generated by fuel cell through a reaction of hydrogen fuel reacts
with oxygen electrochemically. Fuel cells can supply of electricity with the constant
flow of fuel and oxygen to carry on the reaction chemically. These energy-related
tools are ecological and eco-friendly. The various kind of these cells were reported
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Table 1 Comparison table of different parameters for various electrode materials

Materials for WE (CSF) (in
µF/cm2) or
(in F/g)

Electrolyte CY /CR (%)
with no of
cycles

References

GQDs//MnO2 AMSCs;
GQDs//GQDs;
GQDs//GQDs SMSCs

1107.4;
468.1

Na2SO4 (0.5 M) and
EMIMBF4/AN (2 M)

[60]

aGQD film 236 [61]

GQD–3DG composite for
10 h

268 Conc. H2SO4Sol >90% [62]

GQDP 1044 80.1% after
3000

[63]

GQD-HNT NC 363 Na2SO4 aq sol 88% after
5000 cycles

[64]

Co(II)Cl2-GQDs 300 KOH aq Sol — [13]

Fe(II)S-GQDs 476.2 K4Fe(CN)6 — [15]

NiCo2O4/GQDs 481.4 KOH aq sol 65.88% after
300 cycles

[16]

PVA-GQD/PEDOT 291.86 H2SO4 aq solution 98% after
1000 cycles

[65]

GOQDs@NiAl-LDH 869 — 69.6% after
2000 cycles

[66]

Mn3O4-GQDs 452.72 KOH aq sol 72% after
100 cycles

[67]

NiO@Co3O4@graphene
quantum dots hollow
spheres

1361 76.4% after
3000 cycles

[68]

NiCo2O4@ GQDs
composite

1242 KOH sol 99% after
4000

[69]

WE—working electrode;CSF—specific capacitance; andCY /CR—capacity/capacity retention rate;
NC—nanocomposites

which are essential components [74, 75]. The costly metals like palladium (Pd),
platinum (Pt), silver (Ag), and gold (Au), etc., were used to prepare the electrode
materials which leads to expensive fuel cells which is not easily affordable. After
doing a lot of research, the functionalized GQDs can be used as efficient electrodes
for fuel cells and hence as a result, there was an improvement of the catalytic activity
as well as stability [76, 77]. Now onward, GQDs have been widely used as cathode
materials for fuel cell.
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3.4 Photovoltaic Thin Films Solar Cells

Solar cells are a renewable energy source, which converts sunlight to electricity
exhibits clean environment. There is a development of various solar cells due to
unique characteristics of GQDs to improve the power conversion efficiency. Some
of the well-known solar cells have been founded such as “silicon (Si) [78], cadmium
telluride (CdTe) [79–82], polymers [83–85], silicon/GQD heterojunction [86], semi-
conductor/GQD [87], and conductive polymer-doped GQD solar cells [78].” The
almost popular solar cells are considered to be combination for “hybrid of Si and
GQDs” with improved power conversion efficiency (~16.55%). Also, a “crystalline
silicon with GQD heterojunction solar cell with a conversion efficiency of 6.63%”
[78] was also reported. They designed energy band structure of GQDs in such way
resultingmore andmore electron–hole pairswill be photo-generatedwhich have been
separated at the junction interface. Along that, it helps to prevent carrier recombina-
tion at the anode via electron blocking layer. The increment in “open-circuit voltage
(V oc)” of the device was observed, while the “short-circuit current (Jsc)” decreased
with decrease in size. As a result, barrier in heterojunction increased due to increment
in hole transportation. A dissociation and absorption improvement of “poly-3-hexyl
thiophene (P3HT)” mixed with GQDs in the organic solar cell system were reported
[88]. In addition, P3HT acting as a donor, phenyl-C61-butyric acid methyl ester
(PCBM) as an acceptor, and polyethylene glycol (PEG) as an adhesive agent were
used to make an improvement in interaction between active layers of GQDs. They
did three different trials with chain lengths of PEG. The stronger electronic effect
in the active layer in P3HT was observed due to shorter PEG chains. Their findings
demonstrate that improved optical absorption by presence of rich functional groups
in GQDs which increase Js. Also, the fill factors and power conversion efficiency
(~7.6%) were increased due to higher conductivity in GQDs. At last, GQDs have
potential applications as hybrid materials which enhanced the bending flexibility
of the organic solar cells. Thus, the investigation of unique features of GQDs will
proceed to be a part of solar cells future technologies.

4 Conclusions and Future Challenges

In this section, we discussed various fabricationmethods ofGQDs. Themain fabrica-
tion method for the preparation of GQDs was based on cleavage of carbon materials
through the repetition of oxidation and reduction. The most important character-
istics that are highlighted in this chapter are simple fabrication process with low
cost, uniform morphology with optical properties, and high quantum yields. The
various optical behaviors of GQDs have been discussed. The role of functionalized
luminescent GQDs plays an important role to optimize and boost PL properties.
The variation in PL colors was obtained due to lack of understanding of PL mecha-
nism. Since after discovery in 2010, graphene material became so popular because
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of their unique physical and chemical features. However, many researchers put a
significant effort for the applications of GQDs which are basically fragments of
graphene. We discussed how GQDs are significant material which we are likely
to be useful for many applications like supercapacitors, lithium-ion batteries, elec-
trodes, fuel cells, and photovoltaic thin films solar cells. We have been concisely
introduced different fabrication methods of producing GQDs and discussed their
current energy storage applications. It is necessary to some new methods for fabri-
cation of GQDs to remove present moieties that might be reason not getting high
PL QY. We require novel methods to achieve high PL QY which should not require
the complete removal of graphitic impurities as a precursor material entirely for
future developments. In addition, there were reproducibility issues during synthesis
of photovoltaic thin films devices which effects in conversion efficiency although
GQDs are supposed to perform a crucial role in specific devices. The uniform size
and molecules on surface are essential to be tuned during the preparation of effective
devices. All these critical issues need to be solved for further development.We expect
that future researchers will investigate new methods to solve these difficulties.
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Chapter 7 
Recent Progress of Carbonaceous 
Materials in Third Generation Solar 
Cells: DSSCs 

Nandhakumar Eswaramoorthy, Ravuri Syamsai, Senthilkumar Nallusamy, 
Selvakumar Pitchaiya, and M. R. Venkatraman 

1 Introduction 

Presently, environmental pollutions, especially issues with the air pollutions due 
to the usage of fossil fuels, have attracted increasing amounts of research efforts. 
Fuels, driven by solar energy, is a hypothetically approach for resolving these 
glitches. Since, solar energy is considered to be one of the cleanest and largest 
exploitable energy resources that can potentially encounters the need for world’s 
energy elsewhere fossil fuels pollutant energy sources. In the world of photovoltaic 
(PV) technology, solid-state thin film-based technologies are one of the most feasible 
approaches to address the world’s expanding energy needs by converting the abun-
dant solar energy into electricity [1, 2]. Among various emerging third genera-
tion thin film solar cell technology (organic solar cells (OSCs) and dye-sensitized
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solar cells (DSSCs)), perovskite solar cells (PSCs) have technologically advanced as 
an efficient solution for commercial deployment at low-cost. Nonetheless, holding 
facile material preparation approaches and low-cost device fabrication expenditures 
promises a commercialization viability [3–5]. Presently, perovskite devices are at the 
integral attention owing to their striking optoelectronic research application within 
two decades of research effort. However, one of their major hindrances of bringing 
these PSCs to a pilot and therefore market viability is their meager long-standing 
device steadiness [6]. Hence, vital measures for achieving extended device stability 
are; remolding the active/transporting layer interfaces by substituting suitable and 
exhibiting stable peer materials, or by entailing more counter balanced add-ons-based 
materials into the precursors. 

In this context, carbonaceous materials are found to be the best candidates for 
the past few decades exhibiting higher durability, cost-effective, and at the ready 
accessible and market viable production. To begin with, carbonaceous materials 
was initially introduced as an electrode material. With their novel optoelectronic 
behaviors, were further deployed as an effective hole transporter in promising third 
generation solar cells. Later it was found to be an ideal material exhibiting an 
ideal work function (5.0 eV) equivalent to that of the high-cost back contact mate-
rials: Pt/Au/Ag/Al in third generation solar cells. Furthermore, these carbon-based 
materials can be facile deposal using commonly available deposition approaches 
as follows; spray-coating, spin deposition, doctor-blade method, inkjet/3D printing 
and the roll-roll fabrication method [7, 8]. Nevertheless, carbon materials known 
for their gleaming dual role (both as an electrode cum back contact) in HTL-free 
PSC devices, attracted researchers to emphasize on carbon-based materials [9]. In 
this regard, recent researchers have started deploying several carbonaceous materials 
(graphene oxide (GO), reduced graphene oxide (rGO) and CNT (single and multi-
walled)) as their electrode cum transporting materials. Yang et al. [10] established at 
first on using the carbon material as both a hole transporter and as a back contact elec-
trode in HTL-free PSC devices. To improve the long-standing stability and enhanced 
efficiency of the fabricated devices at low-cost, carbonaceous materials will be the 
key source in replacing unstable and high-cost organic small molecules and long 
polymer-based HTMs [11, 12]. 

This chapter rationales to offer a brief analysis on the advances in research 
area for the enhancement of the PV performances in third generation energy 
harvesting devices by utilizing various carbonaceous (0-dimensional quantum dots 
to 3-dimensional carbon black) and their derivative materials in an effort greatly 
enhance the device’s efficiency as well as its long-term stability. It is concluded with 
the result that carbon-based materials play a crucial role in providing long-term stable 
and low-cost solar cells for scale-up and commercialization.
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2 History of Solar Cells 

In 1839, Alexandre Edmond Becquerel [13] reported the photovoltaic effect for the 
first time in a semiconductor/liquid junction-based cell. Two electrodes of platinum 
coated with silver halide-based materials, which were separated by a membrane when 
kept inside an acidic electrolyte bath under illumination produced electricity. It was 
also observed that there is change in current with respect to the wavelength of the 
illuminated light and the current generation was maximum for the blue light. 

On the other hand, photovoltaic effect for the first time in solid junction-based 
cell was discovered in 1877 by Day and Adams [14]. Two platinum wires were 
connected to the opposite ends a solid selenium bar like structure, and under the 
illumination of light it produced detectable amount of current. Though the authors 
during that time reported that it is due to the crystallization process, in the later 
stage after a significant development in the semiconductor research it was found 
to be a photovoltaic phenomenon. Following this in 1883 Fritts [15] developed a 
selenium-based thin film PV device where selenium in molten state was introduced 
between gold and another metal (other than gold), in which a gold/selenium junction 
was able to generate current under illumination. Further several other materials such 
as copper/copper oxide, thallium metal-based sulfides and so forth were tried by 
different researchers. A major breakthrough in solid junction-based solar cells was 
achieved by Scaff and Ohl [16], through the invention of p–n junction in 1940, which 
on further improvement in 1954 [17], led to a silicon solar cell with an efficiency 
of 6%, now after a series of developments silicon-based solar cells have reached 
efficiencies over 35% using multiple junction and concentrator-based technologies. 

3 Generation of Solar Cells 

The solar cells are generally categorized into different generations, based on the 
technology, the preparation method and its evolution [18]. The first-generation solar 
cells consist of different type of wafer-based technologies predominantly based on 
silicon. Monocrystalline, polycrystalline and amorphous silicon-based solar cells fall 
under this category. These, silicon-based solar cells have been studied intensively in 
the last 50 years and have developed commercial modules with an efficiency of above 
20% [19]. Though silicon is among the most a substantial amount of material in the 
earth’s crust which exists in the form of silicon di oxide, these solar cells require high 
quality silicon which involves purification of silicon in a reactor at a temperature of 
1000–1200 °C. 

Polycrystalline wafers were made by melting down the silicon and the molten 
silicon was made into blocks and were further cut into wafers. Monocrystalline silicon 
solar cells were grown by crystal growth technique known as Czochralski method 
[20], here crystal ingot is formed by dipping the crystal nucleus in the molten silicon 
and it is withdrawn and rotated in a way that cylindrical ingot is formed, and the
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formed ingot was found to be devoid of defects. These crystals were cut into slices in 
the form of wafers. As the monocrystalline silicon has less lattice imperfection, the 
power conversion efficiencies were found to be higher than the other two counterparts. 
Amorphous silicon solar cells are based on coating of thin layer of amorphous Si over 
a conducting substrate and are used in solar cells. Though the efficiencies were less 
compared to crystalline silicon solar cells, these are used in low power applications 
and it also has the advantage of being used in flexible solar cells. 

Second generation solar cells are the thin film-based cells, which have also entered 
into the commercial market. As these cells require only low quantity material for 
coating, they have the potential for low-cost production. Gallium Arsenide (GaAs), 
Cadmium telluride (CdTe), Copper Indium Selenide (CIS), Copper Zinc Tin Sulfide 
(CZTS), Copper Indium Gallium Selenide (CIGS)-based solar cells fall under this 
category [21]. For selected configurations, power conversion efficiencies of about 
20% have been obtained [22] at the laboratory scale and above 15% have been 
obtained in the commercial modules, respectively. Still the usage of toxic material 
such as arsenide, cadmium and selenium and scarcity of materials such as indium and 
tellurium are considered as a limiting factor for a longer run. Copper Zinc Tin Sulfide 
(CZTS) which is the latest in this category has overcome all the disadvantages stated 
above. But being a quaternary material, the material formation is always complex, 
and it requires lot of prerequisites to be satisfied for the material to be of pure phase. 

DSSC, QDSSC, perovskite solar cells and organic photovoltaics come under the 
category of third generation solar cells [23]. Dye-sensitized solar cells and quantum 
dot-sensitized solar cells which come under this category depends on the sensitizer 
for the light absorption and the electrons produced are transferred to the semicon-
ductor layer, through which it reaches the outer circuit. Dye-sensitized solar cells 
and quantum dot-sensitized solar cells require redox electrolyte for the dye regen-
eration and a continuous process to occur. Whereas in perovskite solar cells a hole 
conductor is used, and the electrolyte leaking problem is not present here. However, 
dye-sensitized solar cells have the advantage of usage of low-cost material, low 
toxicity level and also its color can be tuned by changing the dye, this makes it a 
great prospect for window applications and more over they can also work under 
diffused light conditions. Quantum dot-based solar cells also has its advantage of 
tunable bandgap with respect to its size, still the efficiencies are very poor to hit the 
commercial market. 

4 Classifications of Carbonaceous Materials 

Carbon—the sixth element in the periodic table, which is the basis of all life forms, 
the most abundant among the other elements found in this universe, on earth and even 
in our human systems. Its ability to combine with different elements and molecules 
and its flexibility has attracted the interest of the scientific community. Figure 1 
shows the existence of carbon in many forms is called allotropy as shown in are 
follows: grapheme (G), reduced graphene oxide (rGO), graphdiyne and carbon with
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different structures of carbons such as nanotubes, fullerenes, C60, carbon nanohorns, 
nanoonions, nanotori and nanowall–an advantageous property used by industrial 
and academic fields for a wide range of applications [24–27]. In the PV technology, 
carbonaceous materials—exhibiting an ideal work function (about −5.0 to −5.1 eV) 
is equivalent to that of the high-priced and high-conductivity gold electrode, which 
makes them a promising substitute for achieving enhanced photovoltaic performance. 
Due to their versatility, e.g., they exhibit different band energy orientations and their 
electronic properties can be tuned. Moreover, these carbon-based materials tend not 
to react with halides present in the perovskite structure and are therefore forgiving 
to ion migration, intrinsically stable and hydrophobic to moisture (and thus can act 
as water-repellent barriers). With these criteria, the usage of carbonaceous materials 
was found to be much beneficial in extending their long-term PSC device stability. 
Moreover, the fairly inexpensive and readily available fabrication of the carbonaceous 
materials on an industrial scale has promoted the commercialization of PSCs [27]. In 
addition, recent researchers have engrossed on fabricating PSCs with such carbon-
based materials that tend to achieve superior charge transport architecture, which 
could be fundamental toward further increasing the performances of the constructed 
PSCs. 

Fig. 1 Different carbonaceous material structure. “Reproduced with reprinted with permission 
from Wan et al. [24]. Copyright 2009 American Chemical Society”



170 N. Eswaramoorthy et al.

5 Dye-Sensitizer Solar Cells 

Photo electrochemical cells are the basics for the dye-sensitized solar cells. The 
photovoltaic effect was first discovered in 1839 by Becquerel, a silver chloride dipped 
platinum foil was used as electrode in a bath containing electrolyte and counter elec-
trode, this arrangement upon illumination developed a voltage between the junction 
and this was termed as photovoltage. But the concept behind sensitization of semicon-
ductors was discovered around 1980s in the field of photography using silver halide 
coated semiconductor [28]. In both the processes the photo induced dye molecules 
inject an electron into the semiconductor conduction band. Further it was observed 
that when the same dye was chemisorbed onto the semiconductor surface the perfor-
mance was enhanced and this led to the development of modern dye-sensitized solar 
cells. 

Dye-sensitized solar cells based on zinc oxide was first published in 1972, where 
zinc oxide (ZnO) [29] was sensitized using chlorophyll and it showed the possibility 
of generation of electricity, by exciting the dye (chlorophyll) molecules using photons 
and the electrons were transferred to the outer circuit through the semiconductor. This 
work created a lot of interest among the research community working in the area of 
solar photovoltaics. But the efficiency was low and almost remained the same due to 
the poor surface area of the ZnO single crystals which were used as photo anode. As 
the dye being the light harvester here, the amount of dye adsorbed plays a significant 
role in the performance of these solar cells and the poor dye loading was identified 
as the reason behind the low efficiency in the ZnO-based solar cells. In 1991 Swiz 
scientist Professor Gratzel [30, 31] came up with a solution of using mesoporous 
TiO2 network to enhance the dye adsorption to a greater extent and it was considered 
as a breakthrough as the cell using this configuration of mesoporous TiO2 network 
along with the ruthenium based organic dyes exhibited an efficiency of over 7%. 

The modern dye-sensitized solar cells consist of an anode, a cathode and an 
electrolyte. The anodes are also known as photoanodes as it holds the dye which 
is responsible for the absorption of light. The architecture of the dye-sensitized 
solar cell is given in the Fig. 2 Photoanode consists of a soda lime glass which is 
coated with transparent conducting oxide material such as fluorine doped tin oxide 
(FTO), making it to conduct electrons from the semiconductor to the outer circuit. 
A mesoporous wide bandgap semiconducting material is coated over the FTO and a 
dye is chemisorbed over the surface of the semiconductor. This whole setup is known 
as photoanode. The cathode consists of FTO plate typically coated with a thin layer 
of platinum or a carbon-based material. The cathode material should possess high 
catalytic property for the continuous compensation of the redox electrolyte. The 
redox electrolyte is used to make the oxidized dye to get back to its initial state and 
the electrolyte should also be able to percolate into the pores of the mesoporous 
semiconductor.
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Fig. 2 Schematic diagram of dye-sensitized solar cell 

5.1 The Factors that Play Crucial Role in the Selection 
of DSSC Compounds 

Photoanode 

The photoanode’s purpose is to carry electrons from the chemisorbed dye to the 
outer circuit via the photoanode. The main requisite of a photoanode is it should be 
mesoporous in nature, which is essential for effective dye-loading. As a photoanode 
material, wide bandgap semiconductors are commonly employed because they are 
more stable under illumination. Narrow band gap materials, on the other hand, are not 
applied to avoid unwanted photo-corrosion. One strategy for improving the DSSC’s 
energy conversion efficiency is to increase dye loading over the cross section of the 
photoanode [32]. To achieve a high dye loading capacity, mesoporous wide bandgap 
semiconductor semiconductors with a large surface area are preferred. The position 
of the conduction band, which must be lower than the dye’s lowest unoccupied 
molecular orbital (LUMO) level for fast electron transfer to be feasible, is another 
essential consideration. Low toxicity, high chemical stability, high refractive index 
(which is required for light to diffuse throughout the entire mesoporous network), 
and high dielectric constant (which can reduce fast recombination of electrons at 
the semiconductor/dye interface site through electrostatic shielding) are the most 
commonly desired properties of a photoanode material. 

Sensitizer 

Light harvesting ability of the dye-sensitized solar cells is an important prospect, and 
it determines the efficiency of the dye-sensitized solar cell [33, 34]. Dye which is 
chemisorbed over the semiconductor surface is responsible for this. For the effective
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functioning of the dye in the dye-sensitized solar cells, the following properties are 
desired for the dye. (I) Broader absorption spectrum to absorb most of the solar 
irradiation. (II) Higher molar extinction throughout the absorption spectrum. (III) 
Lowest unoccupied molecular orbital (LUMO) level of the dye should lie above the 
conduction band of the semiconductor for effective electron transfer. (IV) Potential of 
the highest unoccupied molecular orbital level of the dye should be positive compared 
to the redox electrolyte to avoid recombination of oxidized dye. (V) The lifetime of 
the excited state of the dye should be higher for an efficient electron transfer. (VI) The 
dye should have good solubility and it also should not get desorbed by the electrolyte. 
Organometallic dyes based on ruthenium are considered to be efficient sensitizers. 

Redox electrolyte 

The work of the redox electrolyte in dye-sensitized solar cells is to regenerate the dye 
which gets oxidized after electron generation [35]. The redox in turn gets regenerated 
by the electron which enters from the outer circuit through the counter electrode side. 
For a good electrolyte to be used in DSSC, the following properties are desired. (1) 
Electrochemical potential of the electrolyte should be more negative compared to the 
dye for the reduction to take place. (2) The open circuit voltage of the cell depends on 
both counter electrode and electrolyte and the redox potential of it should be positive. 
(3) As the electrolyte regenerate the oxidized dye by providing an electron, it in 
turn gets oxidized and it should be reversible at the counter electrode surface for the 
continuous functioning of the cell and it also should not react with the photoanode. (4) 
The electrolyte should be able to transport up to 20 mA/cm2 without any ohmic loss 
of significant value. (5) The long-term stability of the electrolyte is also important. 
Triiodide-based redox electrolytes (I-/I3-) satisfy the above requirements and are 
used in DSSC. 

Counter electrode 

A counter electrode’s primary function is to collect and transport electrons from 
the outside circuit to the redox electrolyte. As a result, it should be conducting and 
have a minimal overvoltage for the reduction of the redox couple. If it has good 
optical reflection, then it may be useful for the light which gets transmitted through 
the photoanode to pass through the photoanode for a second time after suffering 
reflection from the counter electrode. Most effective counter electrodes used in dye-
sensitized solar cells are the platinized FTO and carbon-based materials, respectively 
[36, 37]. 

5.2 Components of Dye-Sensitized Solar Cell 

5.2.1 Transparent Conducting Oxide (TCO) 

The work of a transparent conducting oxide substrate in dye-sensitized solar cell is 
to hold the semiconductor layer attached to it and it also acts a current collector.
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Electrons produced by the dye reaches the TCO substrate through TiO2 and it further 
reaches the outer circuit. As most of the light enters the device through the TCO to 
reach the dye, the TCO should have high transparency in the visible region without 
any parasitic absorption and should have low electrical resistivity. Fluorine doped 
SnO2 (FTO) and Tin doped indium oxide (ITO) are the most used TCO. However, 
it has been reported that FTO is more stable than ITO at temperatures which is 
required for the TiO2 deposition (> 350 °C) [38]. Due to the increase in resistance 
of the ITO substrates at temperature above 350 °C it is not preferred and moreover, 
the corrosion resistance of FTO is also found to be higher. So, FTO substrates are 
generally preferred over ITO substrates as transparent conducting oxide in dye-
sensitized solar cells. 

5.2.2 Photoanodes 

In general metal oxides such as TiO2 [39], ZnO [40], SnO2 [41] and Nb2O5, whose 
bang gap was greater than 3 eV were employed as photoanodes [42, 43], a schematic 
of the typical DSSC was shown in the Fig. 3a The morphology and bandgap of 
these semiconducting materials greatly influence the overall efficiency of the solar 
cells. The photoanode performance was greatly affected by corrosion resistance, 
surface area, electronic conductivity, bandgap and the semiconducting material’s 
morphology (0D, 1D, 2D and 3D) [44]. Various existing literature explains the effect 
of nanostructure morphology on the performance of the DSSCs [45–49]. Three crys-
talline forms of TiO2 were extensive studies as photoanode for DSSCs, namely, 
anatase, rutile and broolite, with 3.2 eV, 3.0 eV and 3.4 eV, respectively. TiO2 with 
0D,1D, 2D and 3D were also studied in detail for DSSCs [45, 50, 51].

OD TiO2 were advantageous for dye loading because of their high surface area 
[52, 53] On the other hand, the 1D structure of TiO2 has a better transport prop-
erty with less surface area. Therefore, a hybrid of this 0D and 1D can provide high 
surface area and good electronic transport properties [54]. Also, 3D TiO2 hybrid 
morphologies can provide higher efficiency solar cells overcoming the drawback of 
the 0D and 1D TiO2-based structures with good electronics, transport and surface 
area properties [54–56]. Qiang et al. used a TiO2-1D/3D structure as shown in the 
Fig. 3b on a flexible titanium substrate and achieved an efficiency of 9.1% [56]. 
Mathew et al. proposed TiO2-based nanoparticles-based film as a photoanode using 
a porphyrin-based sensitizer. They achieved an efficiency of 13% due to their high 
surface area and maximum dye loading, which can be boosted further by using single 
crystal TiO2 as these are extremely reactive [57]. also, the {001} of anatase TiO2 

single crystal has more surface energy in comparison with {101} facets [58]. But 
these nanoparticles-based photoanodes are limited by lattice mismatch [12], crystal-
lographic morphology random network and misaligned crystallites [59]. Localized 
surface plasmon resonance of the noble metals can be used as a strategy to improve the 
light scattering and total light absorption coefficient of the dye-sensitized photoanode 
of DSSC which in turn could be used to enhance the efficiency of the DSSC [60, 
61]. It has also been reported that plasmonic metallic nanoparticles (NPs) can induce
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Fig. 3 a Schematic showing the construction and components of a DSSC cell (a) “Reprinted 
with permission from Yum et al. [43]. Copyright 2011 American Chemical Society”. b Schematic 
representation of TiO2 photoanodes with 0D TNPs on 1D/3D hybrid structure with J-V curves 
(b) “Reprinted with permission from Mehmood et al. [56]. Copyright 2008 American Chemical 
Society”. c Schematic explaining the importance of Nanotube support on electron transport along 
with SEM images of carbon fiber electrodes with dispersion of TiO2 NP on SWCNT at 50 µm 
and 1 µm (c) “Reprinted with permission from Kongkanand et al. [64]. Copyright 2007 American 
Chemical Society”. d Schematic of TiO2/Graphene composite and its behavior under UV excitation, 
(d) “Reprinted with permission from Williams et al. [65]. Copyright 2008 American Chemical 
Society”

localized electric field which can excite dye molecules more effectively than far-field 
light and this can enhance the light absorption of the adsorbed dye molecules and 
this can increase the generation of photo-excited electrons [62]. Further, Kong et al. 
[63] proposed a method of an SWCNT to TiO2-based catalyst to improve charge 
separation and carrier transport to electrode surface. This hybrid was successfully 
demonstrated with a proof change in fermi level equilibrium by 100 mV; overall 
efficiency was doubled [63, 64]. Whereas when SWCNT/MWCNT were employed 
with TiO2, CNT’s improved the roughness of the electrode and charge recombina-
tion properties and electronic transport properties as shown in Fig. 3c The maximum 
MWCNT was optimized to be at 0.3 wt% without compromising the cell efficiency. 
Graphene has better surface contact with the TiO2 than the MWCNT and SWCNT 
because of its phytochemical properties, charge transfer characteristics [65] as illus-
trated in Fig. 3d Overall, the graphene/TiO2 photoanode delivered efficiency of 6.97% 
with 0.6 wt% loading.
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5.2.3 Electrolytes 

The Electrolytes of DSSCs are one of the critical vital components deciding the 
overall efficiency. These electrolytes are responsible for regenerating dye and circuit 
closer by extending charge transport between photoanode and counter electrode. 
Extensive research and efforts are being made to engineer a stable and efficient 
electrolyte to match the 3rd generation solar cells to its theoretical values (Table 1). 

The first DSSC prototype used an iodide/triiodide electrolyte redox couple without 
any additives with 7–8% efficiency. Later many formulations and additives were 
proposed and demonstrated with improved stability and performance and boosted the 
efficiency to 14% [84, 85]. Organic solvent-based electrolytes were mostly employed 
for DSSC because of their cost-effective, low light adsorption, non-toxicity and 
stability under irradiation and dark conditions with wide electrochemical potential 
window [61, 62, 86, 87]. ACN, one of the most preferred organic electrolytes for 
DSSC due to its chemical stability, low viscosity and solubility, and electrochemical 
potential window of > 4 V [87] with a maximum reported efficiency of 14%. But the 
stability and toxicity are still questionable. To solve these issues, alternatives such

Table 1 Comparation of different electrolyte-based DSSCs 

Type Electrolyte Jsc 
(mA/cm−2) 

Voc (V) FF 
(%) 

PCE 
(%) 

References 

Liquid Iodide/triiodide 12.71 0.667 0.53 4.50 [66] 

LiI/I2/4-tertbutyl pyridine 6.37 0.64 0.46 4.75 [67] 

TBAI/I2/EC 9.99 0.780 42.4 3.67 [68] 

NH4F/H2O 8.06 0.73 0.71 4.18 [69] 

Iodolyte AN 50 13.1 0.7 63.6 5.87 [70] 

Polymer 
and 
starch 

PEG/Lil/MPII 10.7 0.60 0.59 3.9 [71] 

(PAN/VA)/MPN/LiI/DMPII/TBP//I2 15.44 0.797 0.73 9.03 [72] 

PAN/PC/EC/TPAI/BMII/I2 20.1 0.694 0.702 8.44 [73] 

MPII/NaI/(PC-EC) 15.6 0.65 0.64 6.47 [74] 

(PAN-VA)/(PVdF-HFP)/ACN/LiI/I2 11.47 0.78 0.70 6.30 [75] 

PhSt/HEC/Lil/DMF 9.02 0.57 0.60 3.02 [76] 

Gel 
Polymer 

PVA/PEO 16.41 0.63 0.61 6.26 [77] 

PAN/P (VP-co-VAc) 17.77 725 mV 0.64 8.11 [78] 

I2/MPII/TBP/NaI(PEO-CMC) 10.03 0.75 0.69 5.18 [79] 

S-GO/PVDF-HFP and PEO 12.53 0.77 0.44 4.24 [80] 

PEO:EC:PC:Pr4N+I− + KI:I2 16.93 672.3 mV 60.62 6.90 [81] 

PAN-EC-(PC-I2)-TBAI 12.9 582 mV 46 3.45 [82] 

HFP PGE/PVDF 24.66 587 mV 0.763 16.93 [83] 
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as 3-methoxy propionitrile, methoxyacetontrile propylene carbonate, butyrolactone 
and N-methyl-2-pyrrolidone were investigated [85, 88–91]. 

On the other hand, nonvolatile and solvent-free ionic liquids were investigated for 
DSSCs with advantageous properties over organic electrolytes instability and ionic 
conductivity [92–94]. The ionic liquids of imidazolium salts [92] were employed 
to improve the stability of the solar cell. Later SeCN-/(SeCn)3− redox couple was 
used as a solvent-free ionic electrolyte; still, the device performance of these elec-
trolytes was poor. Bai et al. proposed ionic liquid with ruthenium sensitizer (Z907Na) 
and achieved 8% efficiency with 1.5G illumination [93]. With imidazolium iodides 
and optimized concentrations of ionic liquid-based electrolytes reported over 10% 
efficiency [95, 96]. At present, iodide/triiodide redox couple were commercially 
employed for DSSCs, which delivered efficiency of over 11.9%. However, its lower 
redox potential also lowers its open circuit potential because the energy mismatch 
between the (S+/S) results in a potential loss. To resolve this energy mismatch, one 
electron redox mediators such as cobalt, nickel and ferrocene-based electrolytes were 
developed [97, 98]. 

Leakage and packaging issues on device fabrication and stability have been a 
critical barrier to the commercialization of the DSSCs. gel electrolytes, a polymer 
network (PVDF, PAN, PEO, etc.) to electrolyte salts significant advancement in 
DSSCs packaging and development [99, 100]. These polymer gel electrolytes can 
deliver excellent ionic conductivity (10–3 to 10–5 S/cm) and good stability with an 
excellent interface between photoanode and counter electrode [88, 100–102] making 
them compatible with printing or roll to roll fabrication processes [103–106]. Carbon 
and its derivates-based composite polymer electrolytes were employed for their 
conductivity and electron transfer [107, 108] as illustrated in Fig. 4a, b. Gun et al. 
[109] experimentally proved that with lower concentrations (0.4 wt%) of graphene 
oxide with iodide/triiodide-based electrolyte shown in Fig. 4c along with the SEM 
images and anodic sweep voltammetry graphs in Fig. 4d, the efficiency was improved 
from 6.9% to 7.5% with 0.4 wt% GO gel electrolyte. In continuation, Venkatesan 
et al. [106] synthesized and employed graphene oxide sponge as a nanofiller in a PEO 
and PVDF based electrolyte for printable DSSCs. The influence of graphene oxide 
nanofillers on conductivity and diffusivity was studied with different concentrations. 
The addition of 1.5 wt% fillers showed improved recombination resistance at the elec-
trolyte and lower charge transfer resistance at the counter electrode (Pt)/photoanode 
interface with an energy efficiency of 8.78%. The higher efficiency combines both 
open circuit potential and fill factor with a cell stability retention of 86% over a 
500 h stability test. Chiao et al. [110] reported polymer-dispersed MWCNT gel 
electrolyte for DSSCs to enhance efficiency, the synthesis protocol was illustrated 
in Fig. 4e. Figure 4f shows the dispersion stability of the MWCNT/POEM hybrid 
electrolyte and its corresponding steady state voltage performance were given in 
Fig. 4g The electrolyte with 0.25 wt% MWCNT/polyoxyethylene segmented oligo 
(amide–imide) delivered an efficiency of 6.86% in an I/I3 electrolyte system. Mohan 
et al. [111] employed activated carbon/Lil/PAN polymer gel electrolyte. The ethy-
lene was synthesized by mixing and hot pressing PAN with ethylene carbonate,
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propylene carbonate, iodine and 4-tert butyl pyridine and 1-N-butyl-3-hexyl imida-
zolium iodide. The electrical conductivity of the synthesized PAN/activated carbon 
electrolyte is found out to be around 8.67 × 10–3 S/cm, an efficiency of 8.42%. 

Ho et al. has incorporated polyaniline/carbon black with 1-propyl-3-methyl imida-
zolium iodide and used it as a DSSCs electrolyte [112, 113]. This incorporation 
enhanced the overall efficiency by 30% compared to the unmodified electrolyte; the 
higher efficiency resulted from the extended transfer surface, with a catalytic I3-ions 
reduction. Usui et al. has demonstrated the incorporation of CNT’s, carbon black, 
carbon fibers with 1-ethyl-3methylimidazolium bis(trifluoromethyl sulfonyl)imide 
gel electrolyte [85], the photographs of the gel electrolyte were shown in Fig. 4h. It 
noted that the electrolytes with the carbon materials have an improved fill factor and 
reduced resistance, thereby improving efficiency [114]. There photocurrent densities 
were given in Fig. 4i.

Fig. 4 a Schematic of the DSSC. (a) reused “Reprinted with permission from Mohan et al. [111]. 
Copyright 2013 Royal Society of Chemistry”. b A schematic showing carbon and its derivatives. 
(b)“Reprinted with permission from Badenhorst et al. [108]. Copyright 2019 Elsevier”. c SEM 
images of Graphene oxide with photographs of GO dispersed in different solvents. d Anodic sweep 
voltammetry of GO with different concentrations on Pt electrode (c, d) “Reprinted with permission 
from Gun et al. [109]. Copyright 2012 Elsevier”. e Schematic representation of POEM Wrapping 
on MWCNTs and its interaction with electrolyte. f Homogeneity dispersion study of MWCNT. g 
Current/Voltage curves of POEM wrapped CNT under various electrolytes. (e, f, g) were “Reprinted 
with permission from Wang et al. [110]. Copyright 2012 Royal Society of Chemistry”. h Photograph 
of MWCNT ionic gel in vial and scooped with specula. i Photo current density/voltage performance 
of MWCNT gel electrolyte 
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5.2.4 Counter Electrodes 

Platinum is the most used counter electrode for DSSC applications due to its elec-
trochemical properties and compatibility with I/I3 based redox couples. The closest 
match to platinum is carbon; low-cost material, highly conductive, tunable phys-
iochemical properties and I/I3 reduction properties. Researchers employed carbon-
based nanomaterials to replace platinum-based electrodes as illustrated in Fig. 5a 
Murakami et al. used carbon black as a counter electrode for DSSC. They found out 
that the carbon layer has no influence on the short circuit potential, and the open 
circuit and thickness were inversely proportional [115]. The efficiency of the fabri-
cated device using carbon black counter electrodes was around 9.1% with 14.5 µm 
thick layers. Imoto et al. used a TiO2/carbon powder hybrid as a counter electrode 
[116]. The employed porous carbon provided enough space for the triiodide ions 
to penetrate the counter electrode by reducing efficiently. Using these hybrids, they 
reported an efficiency of 3.8% with an electrode thickness of 153 µm. Also, all carbon 
counter electrodes were proposed by Meng et al. using these all carbon electrodes 
can be advantageous for graphite-based substrates, thereby providing flexibility and 
electrical conductivity [117]. These all carbon-based DSSCs shows an efficiency of 
6.46%, which was on par with Pt/FTO efficiency at 6.37%.

Lee et al. used MWCNT as a replacement for Pt in DSSCs as these CNT have 
a large surface area, high electrical conductivity, control over defects. These defect 
rich edge planes as shown in the TEM images of MWCNT (Fig. 5b) provide faster 
interface kinetics of electrode and electrolyte [118]. Overall the MWCNT-based 
counter electrode achieved an efficiency of 7.67%, which was also in line with the Pt-
based solar cell at 7.83% as projected in Fig. 5c. In continuation, Ho et al. [119] used  
a hybrid Pt/CNT-based counter electrode as shown in Fig. 5d, e and achieved an 8% 
efficiency, which can be attributed to the rough electrode surface and electrocatalytic 
behavior of the Pt/CNT hybrid structure and suppressed the Pt/CE performance as 
shown in the Fig. 5f. Wang et al. investigated the performance of graphene as a counter 
electrode on various substrates [120]. The graphene transferred on PET substrate. 
The results show that the higher thickness of graphene layers showed improved 
results than Pt as seen in current voltage curves. But the overall efficiency was as 
poor as 0.51% due to the significant resistance value. In continuation, Aksay et al. 
reported that the oxygen functional groups in graphene and catalytic performance of 
the material were directly proportional. An efficiency of 4.99% was obtained with a 
1/3 C/O ratio. 

The surface functionalization was carried out to modify the chemistry further 
and to engineer the surface properties of the carbonaceous-based counter electrode. 
These functionalized molecules were selected based on the application requirements, 
such as metallic structures for plasmonic and catalysis applications. 

Luminescent molecules for surface enhanced Raman substrates, etc. In the case 
of DSSC, the surface functionalization was mainly carried to change the wettability 
at the electrode/electrolyte interface [121, 122]. Roy et al. [121] had engineered the 
functionalized graphene-based counter electrode for DSSC by using thermolyzed 
ethyl cellulose. The fabricated electrode exhibits a lower charge transfer resistance
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Fig. 5 a Cross sectional schematic projection of DSSC with counter electrode. (a) “Reprinted 
with permission from Murakami et al. [115]. Copyright 2006 IOP Science”. b TEM micrograph of 
bamboolike MWCNT and its schematic marking basal and edge planes. c Current–Voltage perfor-
mance MWCNT and Pt counter electrode. (b, c) “Reprinted with permission from Lee et al. [118]. 
Copyright 2009 American Chemical Society”. d Photograph of MWCNT with Pt nanoparticles, 
H2PTCL6 and POEM. e TEM image of MWCNT in dispersion. f I-V performance of DSSC with 
Pt/CE and Pt Np/MWNCT/CE. (d, e, f) “Reprinted with permission from Law et al. [119]. Copyright 
2010 Royal Society of Chemistry”. g Photograph of PET substrate with graphene film. h Current– 
Voltage curves of graphene and Pt-based DSSC. i CV graphs of graphene and Pt electrodes in 
10 mM Lil and 1 mM I2 electrolyte

of 1 Ω cm2. This performance was also stable in cobalt and sulfur-based elec-
trolytes apart from the traditionally used triiodide-based electrolyte. The enhanced 
performance of the electrode was attributed to the functionalization of the carbon 
counter electrode as it prevented the material from restacking thereby boosting overall 
efficiency and stability (Table 2).

Choi et al. [122] had proposed Poly (maleic anhydride-co-p-acetoxy styrene)-
block-poly(p-acetox styrene)/CNT as a counter electrode for DSSC. The Modified
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CNT showed more stability in terpineol resulting in more facile CNT growth, thereby 
improving the overall fill factor and overall efficiency. In continuation, Alba et al. 
[134] has functionalized CNT via ozonolysis and employed it in DSSC applications. 
This functionalization via the ozonolysis method preserves “O” containing groups of 
C–O, O–C, COOH and C–OH on the carbon surface, which aids overall efficiency. 

6 Remedial Measures to Be Taken on Its Challenge 
Perspectives 

The challenge is, however, to resolve three crucial challenges in order to ensure 
progress in creating next generation solar cells and the development of technical 
applications while utilizing these carbonaceous materials in photovoltaics. First, 
carbon-based devices with higher recombination losses suffer from a high Schottky 
barrier on the interface between the carbon and metal electrodes. As a second require-
ment, the carbon materials require better carrier doping to decrease the series resis-
tance losses when used as a transporting layer. Third, its transparency is crucial to 
enhance the photocarrier generation efficiency of carbon-based solar cells due to the 
management of solar light within the structure. It is believed that regardless of the 
fact that this is still a highly undeveloped field, continuous efforts to address the 
above-mentioned issues will make carbon nanomaterials stronger for photovoltaic 
applications. 

7 Conclusions and Challenge 

A summary of the recent progress of carbonaceous nanomaterials for photovoltaic 
solar cells is presented in this chapter. The development and manufacturing of solar 
cells using carbon-based nanomaterials has shown to be a potential application. In 
addition to the metal electrode (such as Ag, Al, Au and Pt) replacement, hole transport 
layers have been found to be effective and can be achieved using these carbon-based 
materials in third generation solar cells (both PSCs and DSSCs). The device without 
high-cost counter electrode metals which was replaced by the novel, facile and low-
cost carbonaceous materials proved to exhibit an improved PV device. Thus, the 
carbonaceous materials can still not be made to cost a reasonable amount to fabricate 
solar cells that are strong, reliable, have a high production rate, and feature enhanced 
device performance along with the flexibility and weight advantages they offer. As 
a result, it has been established that utilizing carbonaceous material for increasing 
the performance and stability of third generation solar cells such as DSSCs, OSCs 
and PSC is both simple and effective. Therefore, the introduction of carbonaceous 
materials at various position of the components used in the third generation solar 
cells correspondingly found to increase the light-harvesting ability of the active layer,
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boosting the charge transfer at the interface layers and most likely accelerates/extracts 
the charges at the transporting layers. Due to the carbonaceous material’s dual impact 
on both optical and electrical properties, there was an associated enhancement in 
device performance for third generation solar cells. Chapters such as this one will 
not only organize this technology well, but will also provide valuable direction for 
future research. 
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Chapter 8 
Carbon-Based Materials as Electrodes 
for Biofuels Electrosynthesis 

Danilo Perez 

1 Relevance of Biofuel in Low-Emission Economy 

The Intergovernmental Panel on Climate Change (IPCC) concluded that global 
warming is one of the most serious climate change consequences, attributing a rele-
vant role to anthropogenic greenhouse gas emissions (GHG). Among other conse-
quences, it is expected a sea-level rise, more frequent and extreme weather events, 
and cyclones. All these will have an impact on human health, long-term business 
growth, communities, and the environment, hence, on the overall human well-being. 

Due to the greenhouse effect and the long lifespan of CO2 in the atmosphere, it has 
been pointed to as one of the key issues to work on. Reducing the CO2 emission to net-
zero has become the backbone of many countries’ strategies to stop climate change. 
Therefore, low-emission economy plans are being designed to avoid surpassing the 
quantity of CO2 that can be emitted before it starts to accumulate in the atmosphere, 
called carbon budget. In this context, the development of new technologies will play 
a pivotal role in the transition toward these new economic models. 

Energy for manufacturing is an important source of CO2, particularly to produce 
the heat needed during production, such as drying milk power or hot water for beer 
brewing and equipment cleaning. 

The overall energy consumption can be reduced via improving control systems that 
allow adapting the process condition, or monitoring of specific equipment, although, 
probably the most effective action is to replace the fossil fuels with renewable sources. 
Important advances have been achieved by companies such as Asaleo Care that 
managed to reduce their greenhouse gas emissions (GHG) by 46% when started to 
use geothermal steam [1].
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However, the use of renewable energies instead of fossil fuels has proven to be far 
from easy to process such as the calcination needed for cement production, as over 
850 °C are needed. It can be argued then that a solution here is a strong emission 
pricing policy, where the inherent cost of emitting GHG will incentivize emissions 
reduction, decentralizing the decisions to invest, innovate, and solve technical issues 
[2]. 

Emissions pricing is indeed an effective tool to encourage a behavior change and 
promote investment, yet not sufficient to ensure an efficient transition toward the net-
zero goal. Consequently, a range of complementary actions, regulations, and policies 
are needed to accelerate the development and implementation of technologies that 
support these behavioral changes from households to the industry [2]. 

According to data from the International Energy Agency, as in 2018 about 8 billion 
tons of CO2 were emitted by the transport sector, representing 24% of the global 
emissions from energy. Road passenger leads the emissions with 45.1%, including 
cars, motorcycles, buses, and taxis, whereas trucks and lorries represent the 29.4% 
corresponding to the Road freight. In third and fourth place are Aviation with an 
11.6% (81% passengers, 19% freighting), and shipping with a 10.6%, respectively. 
Interestingly, while rail and others are far below with a 1% and 2.2%, respectively, 
the latter relates mostly to transportation of oil and gas [3] (Fig. 1). 

Given the big share of transport emission related to road passenger, it seems 
reasonable aiming to improve the fuel efficiency and electrification of the light fleet. 
To do this, some governments are introducing schemes where importers would be 
responsible for the fuel efficiency, via either a fee or through a rebate associated with 
the emission intensity. Simultaneously, governments are funding electrical vehicle

45.1% 29.4% 11.6% 10.6% 

1.0% 

2.2% 

Road passenger Road Freight Aviation Shipping Rail Other 

Fig. 1 Global transport emissions by sub-sector, as percentage of the 8 billion tons of CO2 emitted 
in 2018. Based on data from [3] 
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Table 1 CO2 emissions by sector of energy, in Mt CO2 per year 

Sub-sector Year % In 2018 

1990 1995 2000 2005 2010 2015 2018 

Electricity and heat 
producers 

7622 8163 9358 10,970 12,508 13,373 13978 42 

Other energy 
industries 

975 1068 1195 1403 1643 1637 1613 5 

Industry 3955 3938 3875 4928 6088 6316 6158 18 

Transport 4609 5025 5770 6499 7012 7717 8258 25 

Residential 1832 1849 1830 1903 1897 1864 2033 6 

Commercial and 
public services 

765 718 696 773 810 826 850 3 

Agriculture 398 402 340 398 396 412 428 1 

Fishing 18 18 19 24 23 20 19 0 

Final consumption 
not elsewhere 
specified 

342 191 159 181 205 201 177 1 

Self-elaboration with data from [5] 

(EV) infrastructure to push light fleet electrification forward. It is noteworthy here that 
an EV is as green as the fuel used to produce the electricity that charged its battery; 
therefore, there is much more to do beyond EV deployment. In fact, electricity 
and heat producers account for 42% of the total energy emissions, hence, far more 
significant than transport as seen in Table 1. 

Even if travels are drastically reduced, mass transport modes are favored, trans-
portation keeps improving its efficiency and vehicles shift to electricity and hydrogen, 
fuels are still needed for aviation, ocean shipping, and trucking. Although this demand 
is expected to be reduced over time, it has been estimated that by 2050 about 80% 
of the transportation fuel needs to be liquid fuel, and 50% by 2075. 

The relevance of the energy sector and the accelerated climate change have put 
pressure on the R&D efforts to find low-carbon fuels. Thus, biofuels emerge as a 
sector with great potential. Biofuels are produced in biorefineries, where renewable 
raw materials are transformed into energy, energy carriers, and a broad range of 
valuable elements in a sustainable manner [4]. 

Additionally, bioprocesses are capable to produce energy carriers such as 
hydrogen and methane, or valuable compounds from a variety of feedstocks, 
including organic wastes. Thus, bioprocesses and particularly bio-electrosynthesis 
are changing the paradigm, considering wastes as resources, and arguably, very few 
processes can be more sustainable than those reclaiming energy and resources from 
waste streams.
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Table 2 Estimated storage capacity and timeframe for discharging for selected technologies 

Discharging time Storage capacity 

Technology Min Max Min Max Unit 

Fly wheel 3 s 1 h 1 10 Kwh 

Battery 4 min 10 h 2 90 MWh 

compressed air energy storage (CAES) 8 h 4 Day 10 50,000 MWh 

Pumped hydro storage (PHS) 11 h 42 Day 0.1 50 GWh 

Hydrogen 1 h 50 Day 3 2000 GWh 

Substitute natural gas source (SNG) 3 h >1 Year 12 50 TWh 

1.1 Energy Storage Requirement 

In the current international scenario, where stronger climate action is demanded 
by society and policies are expected to become stricter, technological devel-
opment beyond incremental improvements seems necessary in several aspects 
simultaneously. 

The energy matrix is one of the topics that have drawn high attention levels during 
the last decade, accelerating the development of renewable energies significantly 
reducing its costs. In this context, an energy matrix based on renewable energies 
alone seems like the only sustainable path and more likely than ever. However, the 
transition toward a 100% renewable matrix implies a series of complexities due to 
the inherently fluctuant nature of renewable energy and lack of capacity to face peak 
demands. 

On the other hand, fossil fuels are easily burnt or stored, which confers storing 
capacity and quick generation on demand. Several technologies have been developed 
to store renewable energies, such as electric batteries, flying wheels, pumping water, 
compressing air, and power-to-gas. As seen in Table 2, hydrogen and substitute 
natural gas have a better storage credentials in terms of the amount of energy and the 
extended discharge time, although the required investment is significantly reduced 
when the already available massive storing and distribution capacity of the natural gas 
infrastructure can be used, usually requiring storage as methane, whit the capability 
of working off-grid if required.1 

2 Bio-Electrochemical Systems 

At the wavefront of the technological revolution to add value to waste streams are bio-
electrochemical systems (BES). Although BES is a platform that includes different 
types of devices and technologies, stand-out microbial electrolysis cells (MEC),

1 http://www.europeanpowertogas.com/ 

http://www.europeanpowertogas.com/
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microbial desalination cells, microbial electrosynthesis cells (MES), and microbial 
fuel cells (MFC) [6]. 

MFC is probably the most spread and well-known BES. As suggested by its name, 
an MFC aims to produce electrical energy from the chemical transformation through 
bio-electrochemical reactions [7]. This device requires microorganisms capable to 
degrade the organic matter to produce electrons and protons, although it also needs 
an electric system to conduct those electrons from the anode to the cathode. This 
simple description implies the necessity of the electric interaction between microbial 
cells and solid-state electrodes. 

The electrical energy produced in an MFC is considered carbon neutral despite 
the CO2 produced during the oxidation reaction, as it can be re-used for biomass 
growth such as animal and plant sediments that can feed later the MFC. 

A MEC, on the other hand, needs an electrical input to produce valuable 
compounds and energy carriers such as methane and hydrogen. When hydrogen 
is targeted, the electrons are used for hydrogen evolution following the reaction 2H+ 

+ 2e− → 2H2, 0 V versus NHE or 2 H2O + 2e− → H2 + 2 OH–, and − 0.828 V 
versus NHE, depending on whether the reaction occurs in an acidic or alkaline solu-
tion. Although most of the electrons come from the oxidation reactions that occur at 
the anode, an external supply is required to enhance hydrogen production [8]. 

These examples display the BES flexibility to use a variety of feedstocks as wastes 
to produce a variety of valuable compounds, energy, and energy carriers. A BES 
capacity to treat/produce a given compound depends essentially on the enzymatic 
arsenal of the biological component of the bio-electrodes. This highlights the impor-
tance of the electrodes colonization, to establish the bio-electrode capacity to harness 
the biochemical machinery, establishing an effective mechanism of electron transfer 
between the solid-state electric system and the biofilm and planktonic microbes 
present at the main reaction chamber [9]. 

Interestingly, the associated enzymatic machinery to a given consortium can also 
represent limitations and operational issues. This is the case that hydrogen-producing 
MECs struggle to eliminate the methanogenic activity. To achieve this, a very short 
hydraulic retention time and even oxygen injection has been reported necessary. Gil-
Carrera et al. reported doubling the methane production of their hydrogen-producing 
system when the cathodic area was doubled, pointing toward a different variation of 
the system [10]. 

Thus, a variation of the described MEC targeting methane production was devel-
oped later, using hydrogen as an intermediate product. This particular application 
exhibits the capability for energy recovery from wastes. The methane can then act 
as an energy carrier suitable for long-term storage, while its production removes 
organic matter from waste streams. This combination makes these BES a platform 
that may play a pivotal role in the circular bio-economy. 

In a typical methane-producing MEC, the circuit begins at the anode, where the 
microorganisms oxidize the organic matter (measured as chemical oxygen demand, 
COD), generating protons, CO2, and electrons. The latter is transferred through an 
external circuit to the cathode, where hydrogen is generated. Separating the two 
chambers is a membrane (either for anion or cation exchange), that prevents the
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Fig. 2 Single-chamber bio-methane electrosynthesis in a MEC 

contact between the oxygen present at the anode and the hydrogen generated at the 
cathode [11]. If cathode-generated hydrogen would reach the anode, it could be re-
oxidized (known as hydrogen recycling), negatively affecting the overall performance 
of the device [11]. 

In 2009, the feasibility of a single-chamber reactor was demonstrated [12]. The 
design (see Fig. 2) has attracted attention from researchers to evaluate different 
bacterial sources as well as a variety of environmental conditions such as temperature 
and substrate. By eliminating the requirement of a membrane, the design becomes 
more appealing for wastewater treatment applications, as it represents a direct capital 
cost, higher maintenance, and a more complex design that impedes the industrial 
deployment of the technology [13]. 

The absence of a membrane also eliminates the associated pH gradient, dimin-
ishing both potential losses and internal resistance, reducing the energy input 
necessary to drive the reaction [11], and hence increasing the methane production 
rate. 

An appropriate electrode material enhances the electron transfer between the elec-
trode and the bacterial population, achieving higher efficiency and a lower cathodic-
overpotential [14]. However, as multiple factors such as cell type, design, materials, 
and operational parameters influence the MEC performance, an optimization for the 
given application is recommended. 

2.1 Biofilm Development 

Biofilm formation is a process in which microbes self-immobilize or attach to a 
surface, covering themselves with an extracellular polymeric matrix (EPS). Biofilms 
play an important role in industrial microbiology, either needing to promote or block 
its formation [15]. 

Biofilm formation and maturation correspond to a process that implies a series 
of stages, including the basic stages described below:



8 Carbon-Based Materials as Electrodes for Biofuels … 195

(a) Initial or reversible Attachment, commonly due to weak and reversible Van der 
Waals forces or hydrophobic effects. 

(b) Irreversible attachment, at this stage the cell would achieve a more permanent 
attachment by using pilla-liked structures for anchoring. 

(c) Expansion, here new cells are included, either by cellular growing or by 
aggregation from motile planktonic cells. 

(d) Maturation, when cells can begin to actuate at a bigger organization level than 
individual cells (based on Quorum sensing communication). The production of 
extracellular polymeric substance (EPS) begins, forming slimy protection that 
connects all the cells as a unit. 

(e) Dispersion, a mature biofilm will reshape itself based on the interactions with 
the medium. This process includes losing parts of the biofilm that will travel 
downstream to colonize new sites, among other mechanisms. 

Despite the reversible and weak nature of the initial cellular attachment to either 
biotic or abiotic surfaces, it is crucial for the biofilm formation of a functional bio-
electrode. Some physical, architectural, and topographic features of the electrode can 
benefit the adhesion, including surface roughness, microbial and surface charges, 
hydrophobic and electrostatic interactions. 

In this sense, the initial attachment of the electroactive bacteria onto the surface of 
the electrode is facilitated by the ability of the bacteria to donate electrons either by 
direct electron transfer mechanisms as in Geobacter sp., Shewanella sp. or through 
mediator-assisted electron transfer as in Pseudomonas sp., etc. 

It can be inferred then that biofilm formation, regardless of their nature, shares a 
formation process and structure, but electroactive biofilms (EAB) will exhibit partic-
ular electrochemical properties. The clearest of these differences is that EABs are 
formed over a surface capable to exchange electrons with the EAB, either accepting 
or donating them. Structurally, this capacity of extracellular electron exchange 
requires components such as pili (to form nanowires), c-type cytochromes, or electron 
mediators. 

However, the role of the electrode in bio-electrode formation goes beyond simply 
electron acceptance/donation. The solid-electrode acting as the base of the bio-
electrode should promote the initial attachment, as EABs are more conductive and 
prone to electrochemical interactions than planktonic cells. 

The differences between planktonic cells and EABs pass the mere fact of cellular 
aggregation. The flocs/aggregates of cells will usually be covered by the EPS, an 
exopolysaccharide matrix that allows the formation of channels that benefit the nutri-
ents flow through the matrix. However, the inherent heterogeneity of biofilms—unlike 
individual planktonic cells—brings the possibility of metabolic cooperation, creating 
microenvironments that accommodate specific metabolic capacities. 

Unlike biofilms, planktonic cells are theoretically fully available for accessing 
nutrients from the bulk electrolyte. As a general rule, better nutrient access translates 
into higher microbial performance. However, in the biofuel and BES context, the 
high reaction rates allow shorter hydraulic retention times that make washing out a 
real concern for operators [16].
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Fig. 3 Schematic of the selective enrichment of exoelectrogens in the biofilm, and cooperative 
association among bacterial groups 

Increasing the retention time of the cells is crucial to allow the microbes to carry on 
their metabolism but is not the only reason to look forward to cellular immobilization. 
Planktonic cells are more exposed to environmental fluctuation such as temperature, 
feedstock, and pH, and this translates into a more robust and resilient operation when 
a mature biofilm is used [17, 18] (Fig. 3). 

2.2 Overpotentials 

Needing a potential much higher than the theoretical to carry on the desired reaction 
is commonly found in the literature. For a methane-producing MEC, over 0.5 and 
0.6 V have been reported to be necessary for carrying on methane electrosynthesis 
by independent groups [19, 20], surpassing the −0.244 V versus SHE and −0.410 V 
via direct EET and indirect EET, respectively [14]. This is likely due to imperfect 
electrode materials and mass transfer-related overpotentials, which translate into 
more energy consumption and hence poorer energy efficiency overall. 

The microbe-electrode interface plays a key role on the energy efficiency of 
the system, as it corresponds to physical space where the reactions take place. For 
this reaction to happen, a series of steps need to be carried on, mostly referred to 
electrochemical steps as per listed below:
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1. Mass transport: This step includes the reactants transport from the bulk to the 
electrode surface, and this step is strongly affected by the fluid dynamic of the 
system; hence, it can be improved by agitation and mixing. 

2. Preceding reactions: This step corresponds to the preliminary reactions or 
phenomena required for the reagents to be ready for reacting. For example, some 
molecules need to be absorbed, preliminary protonation or disassociation among 
other possible preliminary chemical reactions. 

3. Electron transfers at the interface. 
4. Surface conversions, which can include chemical reactions, desorption, etc. 
5. Mass transport from the interface into the bulk of the electrolyte. 

The overall reaction rate is limited by the slowest step. Each step can be a cause 
of overpotential, corresponding to one of the three categories: ohmic (ηo), activation 
(ηa), and transportation (ηc). The overpotential can be defined as the sum of those 
three [21], as shown in Eq. 1. 

η = ηo + ηa + ηc (1) 

There is a linear relationship between the ohmic potential drop and the current 
obtained. As the Ohmic overpotential relates to Ohm’s Law, it combines the resis-
tances of electrodes, electrolyte, membrane (when present), current collector, and 
the contact, and hence, it is intimately related to the materials choices. However, 
unless the electronic resistance is particularly high due to a poor material choice, 
or electrode passivation, the ohmic overpotential is predominantly controlled by the 
ionic resistance [21]. 

The material selection and electrode architecture will also directly affect steps 2 
and 3 previously described, involved in the activation overpotential. Although the 
bioreactor operation, feeding, and lack of appropriate mixing are also involved here, 
a poor mix could contribute to build up electrons over the surface as consequence of 
the reagent concentration gradient that may be formed between the reaction site and 
the bulk of the electrolyte. This gradient would make difficult for new electrons to 
arrive, phenomena related to the steps 2 and 5 listed above (preceding reactions and 
mass transport). 

Therefore, the difference of potential required for activation (effectively producing 
current) and the potential to achieve the equilibrium is considered as the “activation 
overpotential”. However, this difference in potential can also be attributed to slow 
preceding/following surface reactions, as may occur when catalytic decomposition 
or crystallization is involved [21]. In practice, this implies a faster reaction than 
the mass transfer capacity of the system, which can be either a limiting number of 
reactants reaching the reaction site or a slow departure of products. Thus, depletion 
of reactants or accumulation of products will be produced over the electrode. 

Here again, the material choice will be involved. In a bulk non-porous electrode, 
the biofilm can only develop over the surface, indirectly limiting increased currents 
due to the limited amount of exoelectrogens capable to effectively interact with the
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electrode [9]. Contrarily, new materials such as felts offer a 3D open structure with 
a greater specific surface (surface per electrode volume). 

The scale of the pores is also crucial for effectively provide an attachment site 
for the exoelectrogens. The typical exoelectrogens range between hundreds of nm to 
µm, forming biofilms that will adapt to the available topography [9]. Therefore, if 
the pores are too small, it will not act as a site for bacterial colonization, but even if it 
does and gets clogged with the biofilm, zones with very little or no mixing within the 
electrode thickness are unavoidable. Therefore, the pore size distribution will have 
an effect over the overall process, due to the combination of the direct surface are 
neglected of access to the reagents coming from the bulk of the solution. This could 
also translate into a nutrients mass transfer deficit that can limit the performance of 
the biofilm (when used in the BES), with the consequent further yield reduction that 
could drastically change the nutrient usage of the microbial consortium [22]. 

This effect can be counteracted by enhancing the convection via a more intense 
mixing/stirring. When the convection component is minimized, the mass transport 
depends entirely on diffusion and migration mechanisms, driven by the concentra-
tion gradient, and the electrical field, respectively [21]. Thus, due to the intrinsic 
relationship of fluid dynamics over mass transport, it ultimately will be key for the 
overpotential and overall energy consumption of the process [23]. 

The mass transport could control the overall reaction rate if the reaction occurs 
sufficiently fast over the electrode surface. This highlights the crucial role of 
the material selection over the system performance, as it will greatly determine 
the surface reaction rate, and the mass transport near the reaction interface; the 
balance between these two phenomena will determine whether reactants/products 
will increase/decrease their concentration near the electrode, affecting the obtained 
current [21]. 

When a balance is reached, and the reaction occurs instantaneously upon arrival, 
the concentration over the electrode is null and the obtained current is known as the 
critical current. The corresponding reaction rate is then the maximum achievable for 
the given mass transport capacity of the system. Assuming that the system relies on 
diffusion, the current density could be estimated with the equation below, where F 
is the Faraday constant, n the number of electrons involved, D the diffusion coef-
ficient of the reactant, C* the concentration at the bulk, and δ, the thickness of the 
diffusion layer (boundary where the concentration is different to that on the bulk of 
the electrolyte) [21]. 

il = 
n ∗ F ∗ D ∗ C∗ 

δ 
(2) 

Understanding the source of the overpotential offers the implicit opportunity to 
reduce their impact. In this sense, different approaches have been taken to increase 
the overall energy efficiency by reducing the overpotentials. One approach is to 
tailor the electrode materials to enhance the electrode-microbe electron transfer [14]. 
In the context of methane production using graphite felt electrodes, an effective
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overpotential reduction and improved microbial electrocatalysis activity have been 
reported following this last strategy. 

Reducing overpotentials is a common interest among researchers, another 
approach to this was aiming to improve migration via imposing different voltages 
control strategies [23]. The authors claimed that moving from anodic control to a 
cathodic control strategy reduced the anodic reaction overpotential by 30%, while 
the cathodic overpotential remained steady. Other researchers have favored one elec-
trode reaction surface, by modifying the relative surface area [10, 17, 24]; these 
experiences suggest that the best electrode to be favored depends on the targeted 
product. Thus, methane-producing MEC would be befitted from a bigger cathodic 
surface area, whereas it would have a detrimental effect on the performance of a 
hydrogen-producing MEC. 

Therefore, the mass transport capacity limited to diffusion and migration, 
combined with the chemical nature of the electrode material and architecture, are the 
major sources of overpotentials. Acknowledging this is crucial for the preparation of 
a strategy to counteract these effects; nevertheless, the best manner to address this 
will depend on the specific constraints and process conditions where each system 
operates. However, designing electrodes with a porous structure that facilitates fluid 
dynamics and mass transport through its thickness can be considered a good design 
guideline, as it would avoid reactants/product gradients, hence, including agitation 
would also avoid dependency on diffusion and migration, but it has a direct impact 
on the upfront cost, the structural design of the reaction vessel, and operational costs, 
so it needs to be carefully evaluated. 

The importance of understanding the role of overpotentials is that it acknowledges 
the competence for electrons between exoelectrogens and non-exoelectrogens using 
CO2 or sulfate as the electron acceptor, with the inherent advantage of being soluble. 
Therefore, it can be considered that a bio-anode is effectively competing with those 
dissolved and easily available in the neighborhood electron acceptors. Later, and 
after the electrons have traveled through the electrical component, they can reach the 
bio-cathode. Here again, the cathodic potential must surpass the bio-anode potential, 
but not the available electron acceptors nearby [9]. This inherent thermodynamic 
hierarchy of electron donors and acceptors works as an essential input for the material 
selection during the system design, as only a narrow range of energy can effectively 
be harvested. 

3 Electrode Material and Bio-Electrodes 

The microbes found in the consortium of BES are as varied as the operational 
designs; however, Shewanella, Geobacter, and Escherichia are genera commonly 
found. Species of those genera are well suited to BES as they can mediate in the 
electron transfer mechanism between dissolved substances and solids, so they are 
known as exoelectrogens that form part of electrochemically active biofilm (EAB) 
[9].
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The presence of bio-electrodes is arguably the most essential feature of a BES. The 
term bio-electrode emphasizes the role of the microbial consortium and its interaction 
with the solid-state electrode. The achievable performance by a given feedstock 
is modulated by a series of factors, including operational condition, but also the 
electrode material, as it will contribute to the electroactive microbial communities 
maturation over its surface [25]. The developed microbial community formed over 
the electrodes, and its interaction with them will determine the biochemical pathways 
available for the system. Therefore, it can be understood that the overall efficiency 
of the system is in part controlled by the interaction between design factors such 
as the cathode material, structure, and operational parameters such as the metabolic 
diversity of the inoculum and applied potential [26]. Understanding these interactions 
will enable to conduct valuable chemical productions from by-products or wastes 
from a variety of processes. Interestingly, the interaction between these parameters is 
not constant; the inherent population dynamics within biofilms during its maturation 
will be perceived as an electrical modification of the surface of the electrode, leading 
the bio-electrode open circuit potential (OCP) evolution over time [26]. 

To improve the EET between the microbial cells forming the biofilm and the 
solid-state electrode that acts as physical surface is necessary to understand that this 
interaction is inherently a surface reaction. Thus, the electrode material will affect 
this interaction through its inherent biocompatibility and its topographical features. 
Fortunately, these factors can be selected and improved on desired to a given extent by 
pre-treating materials, materials combination, etc. [27]. This combination of material 
approach allows to use high conductivity collectors and carbon-based coatings to 
improve the biocompatibility, also allowing to design the topography and chemistry 
of the final electrode [28]. The coating would thus act as a sink for disposing of the 
electrons removed from the dissolved organic matter by the bio-anode [9]. 

The microbe-electrode interaction implies the need for an appropriate electroac-
tive microorganism that will carry on the desired biochemical reactions. It also simul-
taneously suppose an appropriate design of the electrode, in terms of the configura-
tion, location, and material to comply with the electrical conductivity and microbial 
compatibility necessary [29]. Thus, the solid-state electrode that will act as the base 
of the bio-electrode also needs to promote its colonization by the consortium, and 
further development of a healthy biofilm [30]. 

To effectively have a bio-electrode, an extracellular electron transfer is an electrical 
requirement [31]. To have this pathway, the appropriate electroactive biofilm needs to 
mature over the electrode. This mature biofilm starts with the microbial colonization 
of the electrode that acts as physical support for its development. Nevertheless, 
there are many factors influencing this process; chemotaxis (microbial movement 
promoted by chemical gradients) can play a significant contribution as the microbial 
adhesion is strongly modulated by the presence of divalent ions such as Mg2+ and 
Ca2+, encouraging the biofilm formation. However, other forces such as the advective 
flow, preventing the attachment encouraged by share forces, electrostatic and Van 
der Waals interactions will play the contrary role, so the overall balance needs to be 
controlled if the process is to be controlled [28].
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A mature and healthy biofilm as has been referred above—usually—accounts with 
a series of different function that contribute to establish the extracellular electron 
transfer pathway between the biofilm and the solid-state electrodes. An important 
function, especially important during the initial stages of maturation, is the anchor 
that allows others to attach to this organic matrix. Other relevant function is the 
exoelectrogens, which account with redox-active pilus-like proteins capable of act 
as electrical conductive structures called nanowires [32]. This nanowires allow the 
extension of the interaction beyond the direct vicinity of the cell into the surrounding 
matrix [33]. A farther reach can be achieved when shuttles or mediators are used, 
and this implies the synthesis of specific molecules that will diffuse through the 
matrix into the wider surrounding, therefore, eliminating the need of direct physical 
contact. In the context of electromethanogenesis for example, hydrogen plays the role 
of shuttle [9] while fermentative bacteria can enhance the overall CH4 production 
yield via producing H2 and CO2, which is effectively a substrate for methanogens 
that originally comes from cellular lysis products. 

However, and regardless of the particular metabolic capacities, composition, and 
maturation state of the biofilm, there is an agreement that one way of enhancing its 
overall production is via increasing the surface area available. On BESs, the electrode 
surface area will provide more reaction sites, and the roughness benefits the bacterial 
attachment and electrode colonization, whereas the mass transfer dynamics are partly 
determined by the 3-D structure as well [26]. These guidelines are important, as the 
ultimate purpose of including bio-electrodes is to maximize the electron transfer 
between the microbial cells and the power supply. The electron transfer can be 
monitored as the volumetric current density (A m−3) of the device, which can be 
either directly measured or calculated as the product of the current density (A m−2) 
and the specific surface area of electrodes (m2 

electrode m−3) [9]. 
A very wide range of performance can be found in the literature, even for specific 

applications such as methane production. This range of performances relates to the 
biocompatibility and architectural morphology of the electrodes, and operational 
conditions that modulate the bacterial performance such as temperature, organic 
load, and the applied voltage, particularly relevant for MECs. In this regard, it is 
possible to find a range of values from −1200 mV [14] to 1800 mV [34]. When 
carbon-based electrodes are used, the values are restricted to the range between − 
850 and 1000 mV. 

3.1 Electrode Material and Architecture 

The carbon source, operational conditions, and BES design have an unquestionable 
role in the constitution of the microbial community growing in a BES. Some studies 
have shown that when it comes to the bio-cathode community, the MEC design may 
be the most relevant factor [35]. 

In addition to the compatibility, practical issues also need to be foreseen as 
they will reshape both the electrodes and device geometry and overall architecture.
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Fouling, for instance, can alter the electrode resistance, or clog the flowing spaces if 
they are too small, all producing a detrimental effect on the performance [28]. 

Avoiding direct contact between electrodes is a basic consideration, particularly 
relevant in single-chamber BESs, unlike for typical two-chambered systems. At a 
laboratory scale, rigid supports are commonly used [34]. For instance, Yang et al. 
operated an H-type reactor with a 4 cm bridge, so their electrodes could only be 6 cm 
apart [36], whereas Guo et al. used a 9-cm-diameter cylinder, and thus, the electrodes 
were as close as 2 cm apart. Although avoiding contact is crucial regardless of the 
electrode material, the carbon-based material manageability allows more radical 
designs that reduce the distance and increases the surface area. Graphite granules, for 
instance, were used as electrodes and support for the bacteria growth, filling the whole 
compartment so that the electrodes were just 0.5 cm apart [37]. Other researchers 
work with a sandwich-like electrode [12, 13, 20] that uses a nonwoven cloth to keep 
the electrodes together without direct contact, minimizing ohmic overpotentials. 

Table 3 offers a summary of relevant literature, where different electrodes have 
been used under different conditions. Besides the compatibility consideration previ-
ously commented, the literature suggests regarding the electrodes design, that specific 
surface area and open 3D structure show a positive correlation with the current density 
obtained, whereas electrode separation has the opposite trend [38]. In this sense, it 
has been reported that bio-electrochemical systems are benefited from porous mate-
rials with a low gravimetric density and high conductivity, although 3-D structured 
tends to be clogged by biofilm overgrowth [39].

As expected, due to the greater surface area available for chemical reactions, 
porous electrodes outperform bulk material electrodes (non-porous). Nevertheless, 
the use of a porous matrix for the electron transfer between the biofilm and the 
electrical system is necessary but not sufficient. A series of considerations such as 
the thermodynamic hierarchy previously mentioned need to be taken into account to 
allow the EAB energy requirements to be satisfied. Additionally, as the microbes are 
expected to form a mature biofilm, macrostructure inherently thicker than isolated 
cells, the scale of the porous raises as an important feature that needs to allow 
nutrients/products delivery/removal considering the long-term development of the 
biofilm without clogging [9]. 

In this regard, packed bed bio-electrodes such as those used by Villano et al. [31] 
are interesting, as the materials are cheap and every piece needs to be in direct contact 
with another in order to work as a conductive unit. This tight configuration will also 
create nooks and crannies to be colonized by the biofilm, reducing the effective 
porosity, thus affecting the overall volume usage. In addition, the biofilm growth 
in these reduced spaces can lead to dead zones where the nutrients/products flow 
is insufficient, with the expected detrimental effect on the obtained current density 
and overall performance. A practical alternative is the use of stainless steel meshes, 
providing superior mechanical properties, high conductivity, and low cost that will 
traduce in a manageable electrode design able to provide an appropriate range of 
porous sizes suitable for biofilm growth. However, surface modifications or coating 
are recommended to improve the attractiveness for bacterial colonization [9].
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Brush-like electrodes avoid biofilm-related clogging thanks to the use of a central 
electron collector that simultaneously works as the core of the design, spacing fibers 
such as graphite or other microbial-friendly material. Nevertheless, it is commonly 
agreed that monolithic porous electrodes such as carbon felt are more suitable for 
most BESs applications as they account for a high surface area per unit of volume 
with pores accessible for microbes, disposed of in an open 3D structure. All these 
features contribute to reaching a higher current density, although the cost is still a 
concern for important applications for as wastewater treatment [9]. 

3.2 Carbon Materials 

It has been proposed in the literature that carbon-based bio-anodes can be inverted 
and operated as bio-cathodes when a suitable consortium is present. This capacity is 
based primarily on the biocompatibility and electrical conductivity of materials such 
as carbon and graphite felts, rods, cloths, and granules that also offer great specific 
surface area per unit of volume [35]. 

The use of carbon-based electrodes initially became popular in MFCs and later 
transferred to other BESs due to their chemical stability, good conductivity, and low 
cost [61]. It has been suggested that the similarity between felts and the natural habitat 
of the electrogenic bacteria allows them to use functional groups such as carboxylic 
acids, alcohols, and quinones to attach [27], essential for long-term operations as 
will assist the biofilm development. 

On the other hand, carbon-based electrodes imply electric performance limita-
tions. In the methane-producing context, current densities reported remain below 
10 A m−2. Additionally, the poor kinetics of hydrogen evolution of carbon-based 
materials requires elevated overpotentials, leading to energy losses estimated at 35% 
when operating at +200 mV and 62% at −200 mV [25]. Nevertheless, this electric 
limitation may be overcome by the superior capacity of porous carbonaceous mate-
rial to interact with microbes and metallic electrodes, leading to diverse strategies of 
electrode designs. 

The simple method of coating electrodes with materials such as graphite layer has 
introduced electrodes into the open three-dimensional structures, improving electron 
transfer efficiencies and fiber interconnectivity without affecting the inherently good 
electrical conductivity of metallic materials [27]. It is noteworthy that the precursor 
and manufacturing process of the carbon-based material will impact the properties 
of the final electrode. With carbon and graphite felts the most common materials to 
this use, the graphitization process at either 1500 or 220 °C will have a significant 
impact in the overall performance of the final electrode and its cost [27]. 

An enhanced wettability, via either plasma, thermal, or chemical treatment, will 
improve the overall performance of the electrodes as the electrolyte ions would access 
more easily the voids within the 3-D structure. Additionally, metallic nanoparticles, 
graphene, and carbon nanofibers have been used to enhance their conductivity [27]. 
Following this logic, platinum is currently considered a viable alternative due to its
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low overpotential and feasibility of coating onto a wide selection of materials such as 
brushes, cloths, rods, and plates [44] and significantly improves the methane produc-
tion of MECs as it boosts the hydrogen evolution. Promoting hydrogen evolution in 
the methane-producing context results beneficial as it allows the engagement of 
multiple metabolic pathways, particularly Hydrogenotrophic methanogenesis [31], 
a metabolic route typically considered secondary on the mesophilic production of 
methane, that has exhibited a production rate significantly superior to the typical 
Acetoclastic methanogenesis and became a hot topic in the field during the last 
decade. 

It is well-known favorable hydrogen evolution of platinum electrodes, and this 
has led to use of this material to coat electrodes, or directly build them from it. These 
electrodes are technically feasible despite its sensitivity to chemicals as sulfide, 
commonly found in waste streams. Nevertheless, the inherently negative environ-
mental impact and elevated prices of platinum have limited its use to laboratory scale 
and mostly in the foundational studies area [61]. Interestingly, even when hydrogen 
production is targeted and abiotic electrodes are useful, bio-electrodes seem to be 
preferred due to features like their self-regeneration capacity, inherent low cost, and 
remarkable flexibility to promote a wide range of specific reactions [37]. A good case 
in point are the bio-cathodes used in the wastewater treatment field, where they have 
been reported to resist those conditions and reduce CO2 into bio-methane among 
other valuable molecules [37]. 

3.3 Electrode-Microbe Interaction 

Microorganisms forming part of the biofilm exchange electrons with the solid-
state electrode, to support the respiratory or anaerobic oxidation of electron donors 
such as organic compounds. This electron exchange is typically relying on c-type 
cytochromes, a heme-containing protein typically found in bacteria and archaea [35]. 

The c-type cytochromes are necessary for the electron transfer, but not sufficient. 
At the cathode, the biofilm needs specific enzymes capable to catalyze the reaction 
between electrons and protons, such as hydrogenases. This is an example of why bio-
cathodes accounting with the capacity of enzymatic machinery outperform expensive 
metal electrodes [35]. 

An underlying factor in these mechanisms is the portion of contact between the 
growing EAB and the electrode. In this regard, it has been proposed in the litera-
ture the Brunauer–Emmett–Teller (BET) method as the “one truly valid method” 
to determine the bio-electrochemically active surface area. This calculation would 
need to determine first the total BET active surface and the biofilm-covered area, 
requiring chronoamperometric response analysis of the porous electrodes, and the 
diffusion coefficient from an electroactive component [26]. This method is accurate 
but complex to implement, and even harder to establish as a comparison parameter 
as not all the parameters are commonly known, nor easily determined.
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BET reports pores at the nm scale, an interesting metric for electrode roughness. 
However, this roughness metric is not relevant from a biofilm development point 
of view, as any pore under the µm scale is likely to be clogged and, thus, behave 
similarly to a non-porous bulk electrode. 

A different approach to assess biofilm development is the use of SEM images. 
Studies following this approach commonly provide images from before and after 
colonization. Unfortunately, the time between them is usually short and, thus, it does 
not provide information regarding the long-term pores clogging associated with the 
biofilm growth [9]. 

The biofilm composition is certainly influenced by the surface roughness, 
electrode topography, carbon source, and overall bioreactor setup and operation 
[35]. Population dynamics is in fact a field that attracts important attention from 
researchers, probably because it will determine the potential capacity of the whole 
system as it provides the enzymatic machinery available, as previously mentioned. 
Many studies report the population composition [7, 40, 59, 62], which varies 
according to the conditions. In a hydrogen-producing MEC fed with acetate without 
methanogenic inhibitor presence, the community was dominated by Proteobacteria 
and Bacteroidetes as seen in Fig. 4 [35]. 

Among the proteobacteria, dominant on the described system is possible to find 
Shewanella and Geobacter previously mentioned, often used as pure culture in some 
studies [35, 63–66]. These two dominant genera are known metal-reducing, gram-
negative bacteria that use the heme C-type cytochrome as the main extracellular 
electron transfer mechanism. Nevertheless, these bacteria have been proven to also 
be capable to establish electrical connections through filamentous conductive pili 
structures. This diversity of mechanism makes it hard to understand deeply the elec-
tron transfer mechanism acting in fully developed bio-electrodes, leading to the use 
of pure cultures. However, it is currently accepted the existence of direct and indi-
rect electron transfer mechanisms, and the former needs direct contact between the

Proteobacteria, 46% Firmicutes, 25% Bacteroidetes, 17% 

Tenericutes, 2% 

Actinobacteria, 3% 

Chlorobi, 2% 

Spirochaetes, 2% 

Unclassified bacteria, 2% 

Fig. 4 Microbial community composition in a hydrogen-producing MEC fed with acetate, self-
elaboration with data from [35] 
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microbial cells and the solid-state electrode, while the indirect mechanism relies on 
shuttles and extracellular substrates [35]. 

3.4 Electron Transfer Mechanisms in BES 

The existence of electrical and microbiological components is a peculiarity of BESs, 
combining biological and electrochemical processes over the bio-electrode surface. 
At the interface of these three phases (microbial cell, electrode, and bulk electrolyte), 
the dissolved organic matter is oxidized to free electrons that are later transferred 
either directly to the electrode (direct EET) or through a soluble electron acceptor 
(indirect EET) [63]. 

Direct EET 

It is indispensable for this mechanism the direct microbe-electrode contact, through 
outer membrane proteins such as the c-type cytochrome mentioned earlier, or conduc-
tive pili forming nanowires, without any soluble redox compound taking place 
[63]. The commonly found Geobacter and Shewanella genera are metal-reducing 
bacteria and therefore need acceptors like Fe(III) oxides present in the neighborhood. 
Although some species have been reported to produce nanowires structures electro-
chemically active, connecting the cytochromes present in their membrane directly to 
the electrode. These electrochemically active conducts extend the reach of the direct 
mechanisms beyond the cell’s immediate environment and hence allows biofilms to 
grow in 3D, and not as a monolayer over the electrode. This thicker biofilm translates 
into the overall higher performance of the BESs [63]. 

The Mediated electron transfer mechanism 

Direct cellular-electrode contact is not always mandatory nor possible; in this respect, 
some electron shuttles can be used to communicate both surfaces. Flavins and 
phenazines are examples of self-produced mediators, although some gram-negative 
bacteria species have been reported to be capable of utilizing externally introduced 
molecules as mediators, such as the case of neutral red, thionine, and methyl viologen 
among others. When external mediators are used for enhancing the overall electron 
exchange, an increase of the obtained current is expected, but the selectivity and 
stability fall behind the performance achieved by a direct EET [63]. 

Indirect electron transfer 

A third mechanism that has drawn attention during the last decade, especially due 
to the involvement of bio-methane production as a renewable energy storage mech-
anism, and method for energy reclaiming from wastes is the indirect EET. An indi-
rect EET relies on reduced intermediate metabolites such as hydrogen and formate 
to incentivize the electron exchange. Hydrogen, for instance, can be produced by 
fermentative microorganisms or purely electrochemical methods, becoming anyways 
an electron donor for the reduction reaction.
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Both direct and indirect electron transfer mechanisms have been reported to take 
place during the methane electrosynthesis in MECs [63]. Regardless of the electron 
exchange mechanism that the microbes conforming to the bio-cathode are able to 
use, the bio-cathode could use the electrons to reduce protons, sulfate, nitrate, or 
CO2, which is a key step in biofuel production. 

The CO2 reduction into CH4 via extracellular electron transfer mechanism was 
reported successful in 2009, using a two-chambered MEC with a coulombic effi-
ciency reaching 96% [56]. From this point forward, a new variant of the MECs 
was born, producing either hydrogen—as initially intended—or methane, embracing 
the methanogenic activity inherent to the MECs environment rather than trying to 
eliminate it from the bio-cathode. 

When methane is targeted, multiple metabolic pathways should be engaged, where 
acetotrophic (starting from acetate) and hydrogenotrophic (starting from CO2 and 
H2) are arguably the two most relevant pathways. 

Figure 4 depicts the existing methanogenic pathways. Among the most 
commonly found bacteria in methane-producing bio-cathodes are Methanobac-
terium, Methanobrevibacter, and Methanosaeta, being the two first being from 
hydrogenotrophic and the latter acetoclastic pathways, respectively. This suggests 
that CO2 could be reduced via using electrochemically produced hydrogen and the 
hydrogenotrophic capacity from bio-cathodes, becoming thus a potential biogas 
upgrading alternative. 

This approach is possible to be carried on in a MEC. Reducing CO2 into methane 
is possible when an external voltage is applied using the metabolic capacity of a bio-
cathode [30]. Initially, anaerobic digestion (AD) was thought to produce methane 
mostly from acetate reduction and just a fraction from reactions involving hydrogen 
or other substrates [67]. Figure 4 summarizes the main metabolic pathways related to 
methane production. Currently, it is well accepted that the existence of two mecha-
nisms, direct and indirect, including extracellular electron transfer (EET) as detailed 
above [49] (Fig. 5).

3.5 Catalysts for Hydrocarbon Synthesis 

A promising renewable fuel for the de-fossilization of the energy matrix is the hydro-
carbons synthesized from waste streams such as CO2 emissions and syngas produced 
from inorganic waste. In this context, activation of both H2 and CO is crucial and 
requires from catalysis such as metal sulfides, metal carbides, and nitrides, as these 
usually are capable to dissociate H2 into H species, hence promoting the hydrogena-
tion reaction of the CO that could be either dissociated into C and O or not over the 
metal surface [68]. 

Although the specific hydrocarbon synthesis mechanism is still a matter of discus-
sion, Fig. 6 schematizes the simplified mechanism that has been proposed and 
accepted.
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Fig. 5 Main metabolic pathways involved in methane production

Fig. 6 Schematic of the Fischer–Tropsch synthesis mechanism 

Interestingly, some materials as cobalt and ruthenium have some kink sites that 
have been reported to help on the dissociation of CO, encouraging the adsorption of 
O by the H, with consequent water formation [68]. This simultaneously promotes 
the combination of the adsorbed C with H to form different combinations, that can 
go from C to CH3, resulting in an uncertain mix of molecules as the final result [69].
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3.6 Enzymatic Electrosynthesis 

Bio-commodities, such as hydrocarbons, are currently drawing important interest 
as a possible path for running the chemical industry without the carbon footprint 
burden. This process has taken the knowledge developed for biosensors, although 
these applications have significantly different requirements. A good case in point 
is the need for low currents and potential commonly aimed in the biosensor space 
to avoid the occurrence of counter-reactions, whereas in the energy and high-value 
molecule synthesis space the opposite tends to be true, this explains why in the 
biosensors enzymes are usually preferred rather than whole microorganisms [70]. 
Nevertheless, all processes based on biocatalysts tend to share some features that 
make them attractive during this re-foundational moment of the industry, such as: 

– Biocatalysis processes tend to be operated at mild conditions and produce less 
waste than traditional methods, reducing operational expenses and simplifying 
specialized equipment 

– Genomic information availability, and the possibility of genomic expression 
control, including enzymatic engineering to promote/inhibit specific functions 
or increase stability under industrial conditions 

– Development of industrial fermentation and recombinant proteins, making avail-
able great amounts of custom enzymes, is characteristic that also leads to intellec-
tual property generation, hence, making the research and development investments 
more economically attractive [71]. 

From this last point, it is worth mentioning that among the multiple classifications 
and types of enzymes existing, the oxidoreductases are capable of catalyzing the elec-
tron transfer between molecules or to electrodes, hence, of importance in the context 
of biofuel production in bio-electrochemical systems. Particular interest is paid to 
the fact that can use compounds such as hydrogen, sulfur, and heme among others 
[70]; this variety allows these enzymes to take part in multiple possible steps along 
with the reaction mechanism. However, those BES that utilize complete microbial 
cells as catalysts accounts for a wide enzymatic arsenal to perform either oxidation 
or reducing reactions with a wide range of substrates. 

To emulate the enzymatic flexibility of whole microbial cells, but narrowing to the 
particularly interesting reactions for the desired application multiple enzymes can 
be immobilized over the catalyst surface, offering some benefits such as per listed 
below, and to some extent, these can be considered as a synthetic biology approach 
to select and concentrate in a single step just those desired reactions. 

– Fewer unit operations 
– Smaller reactor volume and shorter times cycles 
– Higher volumetric yield and less waste generation. 

Additionally, the development of AND recombinant technology, enzyme libraries 
expansions, and establishment of a well-developed vendor market of target enzymes 
makes it easier to think and act on the possibility of looking for the desired chemical
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Table 4 Reaction engineering versus enzyme engineering approaches for chemoenzymatic process 
design 

Factor Enzyme engineering Reaction engineering 

Main parameter Volumetric productivity Activity and operational stability 

Determined by Concentration of substrate and 
reaction rate 

Combination of enzymes desired 
activity, selectivity, and stability 

Key to success Identify efficient biocatalyst, this is 
achieved by a thorough screening of 
libraries 

Enzymatic stability, using whole cells, 
stabilized lysate, lyophilized enzymes, 
immobilized enzymes, etc. 

Focus Make the enzymes sufficiently active 
to maintain high reactions rates 

Systematic alteration of reaction 
conditions to optimize the desire 
activity 

Source Self-elaboration from [71] 

reaction, finding the enzymes that perform that chemical transformation and design 
chemoenzymatic process for the specific BES application. In this sense, there are 
two main methods of addressing the chemoenzymatic process design, focusing on 
engineering either the reaction of the enzymes, as presented in Table 4. The discus-
sion is strongly determined by factors such as the nature of the process, stage of 
development, number of reactions/steps involved, costs, timeframe, and regulations 
among others. 

4 Electrodes Manufacturing Methods 

Improving the electric conductivity and catalytic activity of electrodes is key for 
the operation of BES. Aiming for these improvements, several methods have been 
developed, and material tested. Hybrid bio-cathodes with graphite felts and other 
materials have been used to improve microbial attachment and growth [35]. 

In the case of biofuels production, such as bio-methane, cathodes are more rele-
vant. In this sense, evidence suggests that nickel-based materials reduce the ohmic 
overpotential, hence improving the overall efficiency of the process. On the other 
hand, porous carbon materials have a higher overpotential but achieve a much greater 
surface area that benefits microbe-electrode interaction, crucial for bio-cathode’s 
operation. These differences have led to the development of a number of electrode 
types with different benefits, architectural, and topographic features [35]. 

In the literature can be found different strategies to improve the three-dimensional 
architecture design of the electrodes, a simple way of doing so is to add/subtract sheets 
of felts to modify the thickness of the final electrode [27]. This approach allows the 
indirect management of the electrode features. The total surface area is directly 
modified electrode, to determine the extent of this change depends on a variety of 
different methods can be used (physical methods, adsorption of gases, structural or 
electrochemical characteristics).
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The second relevant architectural design feature altered directly by modifying the 
3D design is the flow patterns around the electrode and through the open structure 
of the felt, a phenomenon that can be better understood by studying the Darcy’s law 
that relates the differential pressure and the velocity of a fluid flowing through a 
control volume unit of a porous material [27]. Hence, by understanding how these 
phenomena relate to the architectural design of the electrode, the porosity of the felt, 
mass transfer limitation can be avoided, and the flowing patterns improved to achieve 
an overall better performance by avoiding inhibitory concentrations of metabolites 
or gradients. 

Thirdly, as has been discussed, the electrode topography influences the biofilm 
formation by providing appropriate pores for its colonization. Figure 7 schematizes 
how the biofilm is expected to grow over selected electrode materials, exemplifying 
how pores too small can be clogged and will not be colonized by the exoelectrogens. 

Fig. 7 Schematic of the biofilm development over different types of electrodes
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Table 5 Selected works using densely piled electrodes 

Reference Coating Current collector 

[38] Graphene powder with PTFE Stainless steel mesh 

[72] Activated carbon/goethite powders with PTFE Stainless steel mesh 

[21] Nano molybdenum carbide (MO2C)/CNT composite with 
PTFE 

Carbon felt 

4.1 Densely Piled Electrodes 

Piling is an electrode preparation method commonly used for electrochemical 
systems, as it produces 3D porous electrodes. It consists basically of using a roller 
press from an emulsion of the desired material. For instance, Zhang et al. used a 
graphite particle emulsion on polytetrafluoroethylene (PTFE), over a range from 6 
to 48%. The authors recommend a 30% PTFE is optimal, stating that increases the 
porosity and wettability that increases the microbial attachment and electron transfer, 
while a higher PTFE content would diminish the electric conductivity and thickens 
the biofilm, hence, more easily clogging the pores [9]. 

Table 5 shows some researchers that used this method to produce their bio-
electrodes with a variety of coating or particles that fill the pores of the current 
collectors made from stainless steel meshes, carbon felts, and nickel foam, although 
open structures were not achieved. These works effectively achieved high current 
densities, probably attributable to the scale of the pore comprehended between nm 
and µm. These pores are usually too small for effective colonization, as the biofilm 
thickness ranges between tens to hundreds of µm, although it could easily clog by 
biofilm growth but not colonized. This would lead to performance comparable to 
non-porous electrodes with improved electrode surface [9]. 

4.2 Cell Embedded Electrodes 

It seems natural to maximize an intimate microbe-electrode contact to embed the 
living cells within the 3D matrix. The fabrication of such an electrode requires 
the harvest of the consortium with the desired metabolic machinery, mix it with 
appropriate carbon nanoparticles, and coat the electrode collector such as carbon 
cloth [9]. 

A key element of this type of electrode is the lack of macro-scale pores. By 
embedding living cells into the close structure of the electrodes, the nutrients/products 
flow is neglected; thus, isolated cells trapped within the electrode are incapable to 
interact with the electrode’s surroundings. Table 6 depicts some examples of works 
using this method for constructing electrodes [9].
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Table 6 Selected works using embedded cell electrodes 

Reference Construction Inoculum 

Typical case Carbon nanoparticles (300 nm) and 
PTFE spread over carb cloth 

MFC microorganisms 

[73] Cells with copper powder (<65 µm), 
soaked in CaCL2 for hardening 

Ochrobactrum anthropi SY509 

[74] MWCNT powder mixed with inoculum 
over carbon paper 

G. sulfurreducens 

[75] E. coli on Fe3O4/CNT nanocomposite 
onto carbon paper 

E. coli 

4.3 Packed Bed Electrode 

As has been mentioned, the main issue with embedded electrodes is the lack of 
macroscale pores. Packed bed electrodes, on the other hand, achieve a structure 
where pores are both suitable for exoelectrogens colonization and allow sufficient 
space to avoid biofilm clogging. These macroscale pores are achieved using granules, 
such as activated carbon and granular graphite on the scale of mm. Given the random 
nature of these electrodes, they tend to be used to fill completely the compartment, 
and the electrolyte flows through the open 3D structure of the electrode [9]. 

However, using this type of electrode is no warranty of a suitable macroscale pores 
structure. Some authors have replaced the typical graphite granules with activated 
carbon granules of minor diameter, increasing the surface area. However, activated 
carbon granules also have pores under the µm scale, thus, unsuitable for exoelectro-
gens colonization. In addition, the typical electric conductivity of activated carbon 
is lower than the typical graphite granules, thus increasing the ohmic overpotential 
required due to the increased internal resistance. 

Many researchers use packed bed electrodes [23, 25, 76], nevertheless, in the 
context of a bio-circular economy, seems noteworthy the case of Wang et al. and 
their rubber granules electrodes. As a way to recycle tires, the researchers used 
rubber granules of about 4–8 mm to prepare a conductive paste with graphite, and 
then, the resulting coated granules were used to fill the MFC chamber. Although 
the granules had a high specific area, the conductivity was poor, and the packing 
was loose. This translated into an increased internal resistance and smaller energy 
consumption to pump the electrolyte through the packing material. 

This last example highlights how the design of the electrodes needs to balance 
Multiphysics effects, considering fluid dynamics, diffusion, bacterial colonization, 
biocompatibility, and electrical conductivity to achieve the optimal design for the 
particularities of the system.
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4.4 Coated Electrodes 

It is well known that carbon-based materials have a series of features that make 
them “good” electrodes, such as adequate electric conductivity, relative inertly to 
chemical reactions, low costs, and variety of presentation as graphite rods, plates, 
or disks. Nevertheless, in a BES context, biocompatibility plays a crucial role in the 
overall performance as the substrate that will act as the template for the bio-electrode 
development should not just lack toxicity, and resistance to microbial degradation but 
also provide the structural architecture for biofilm growth. In this sense, the electrical 
characteristics of these materials are their weakest feature, and so researchers have 
tried a variety of coating to improve them: 

– Multi-walled carbon nanotubes (MWCNTs) 
– MWCNT/SnO2 nanocomposite 
– MECNT/MnO2 nanocomposite 
– in situ exfoliated grapheme 
– Au/Pd nanoparticles 
– graphite paste with Fe3O4 and Ni2+ 

– polyaniline nanostructures 
– sulfonated polyaniline/vanadate composite 
– redox-active aromatic compounds. 

An important factor for the deployment of BESs is the commercial availability of 
the materials. In this sense, carbon paper and carbon cloth are more commercially 
available and therefore commonly used. Carbon paper is prepared via compressing 
multiple layers of graphite fibers (µm thick each fiber). Carbon cloth instead is made 
of woven arrays of hundreds of graphite fibers. As both materials are produced from 
graphite fibers, the conductive of the final material is relatively high, which helps to 
reduce the ohmic overpotential of the BES. 

Many different methods have been developed to apply the conductive coating 
over materials such as carbon paper working as an electron collector. Table 7 shows 
some examples of conductive polymers used to improve the carbon paper features, 
achieving higher surface roughness and hydrophilicity. 

Electrochemical deposition can also be utilized as a method for coating the elec-
trons collectors, either preparing an ink or a slurry. This method has been used by

Table 7 Selected conductive 
polymers used to coat carbon 
papers 

Reference Conductive polymers 

He et al. Plasma-based N+ ion 

[77] Mesoporous carbons 

[78] Multilayer polyethyleneimine/graphene films 

[79] Electrochemical deposits CNT network and 
chitosan 
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researchers to coat carbon cloth with ammonium bicarbonate ammonium nitrate, 
ammonium sulfate, nitric acid, and phosphate buffer [9]. 

Regardless of the method used, even when a high roughness is achieved with the 
previously mentioned modifications, when the pores are sub µm scale a significant 
portion of the effective surface area is not available for colonization, hence, reducing 
the actual bioelectrode surface. In this regard, both carbon paper and carbon cloth 
have been reported to achieve tens of µm space. Although spaces on this range may 
be colonizable for exoelectrogens, in long-term operation these are expected to be 
easily clogged. 

Therefore, it is important here to bear in mind the role of the pore size discussed 
earlier, as some of these modifications have been reported to reduce the spacing, or 
even bridging the gaps. This will translate into a surface covered by the biofilm just 
reaching the projected geometric surface of the electrode. 

4.4.1 Stainless Steel 

Stainless steel is a common material of choice in the electrochemical environment, 
especially in the industrial application context. However, the smooth surface, among 
other features, makes this material adequate for the food industry because microbes 
would not easily attach, an undesired particularity in the context of BES. 

Nevertheless, due to its mechanical features, it is easily manageable to create 
3D structures that guide biofilm growth. The lack of microbial affinity can be over-
come using coatings, and this allows to significantly improve its biocompatibility, 
promoting the colonization. Lamp et al. for instance, reported using a flame synthesis 
method to deposit carbon nanostructures onto a stainless steel mesh, with the outcome 
of an improved current density and exoelectrogens affinity [9]. 

4.4.2 Carbon Felt 

Carbon felt is a monolithic material when carbon fibers are randomly placed, forming 
a porous conductive structure. The pores in the carbon felt tend to range between 
tens to hundreds of µm, which jointly with the carbon affinity/biocompatibility make 
these pores colonizable by exoelectrogens of both external and internal surfaces. 
Additionally, carbon felt is easily modifiable by either applying coatings or by simply 
layering up to increase the thickness of the electrode or to preserve the characteristic 
open structure, as shown in Table 8.

Other materials have been deposited over carbon felt electrodes, such as MNO2, 
RuO2, polypyrrole/graphene oxide composite, and polyaniline nanowires. All these 
looking to improve the carbon felt electrodes’ current densities. Interestingly, some 
authors have reported Coulombic efficiencies over 100% [14], hypothesizing that 
may relate with methanogenic corrosion, and hence, the cathode itself would act 
as the electron donor for the methane generation [52] following the reaction given 
below [14] and later using those protons for reducing the CO2
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Table 8 Selected modifications of carbon felt electrodes 

References Method Improvement 

[80] Anodization Creates micro cavities, 1 µm 

[81] Chemical vapor deposition Grew CNTs over the fibers 

[82] Electro polymerization and 
Electrophoretic deposition of CNTs 

Prepared electrodes with polyaniline

2C0 + 3H2O → CH4 + HCO− 
3 +H+ (3) 

4.4.3 Carbon Brush Electrode 

As suggested by the name, carbon brush electrodes have a twisted electron collector 
(usually wires) that forms an axis from where the fibers trapped between the wires 
spread radially. Brush-like electrodes have been extensively used by a number of 
research groups [38, 52, 83], following the same pattern, but modifying the design 
to the system particularities. The lengths of the radial fibers can be determined to fit 
the physical space available, providing an open structure colonizable, and unlikely 
to be clogged by a biofilm. Nevertheless, the gaps between the individual fibers 
vary along the fiber’s length, getting smaller near the central axis, thus reducing the 
microbe-electrode direct interaction. 

4.4.4 Carbon Nanotube Coated Textile Electrode 

As discussed earlier, a variety of polymers have been used to improve the elec-
trodes’ affinity with exoelectrogens, building the electrodes around good electrically 
conductive materials that work as electron collectors. Most of the cases rely on the 
biocompatibility and conductivity of carbon-based fibers, so the construction base of 
the electrode acts as a substrate to organize the CNT special disposition. This logic 
was followed by Xie et al. although instead of using a stainless steel mesh, they used 
a porous textile coated with CNT layers to produce the desired open 3D structure 
with pores between tens to hundreds of µm. 

This approach would allow a more relax and innovative electrode design for BES 
and was reported to provide a total surface area of about 10 times the projected area 
of the electrode, and a strong microbial attachment to the electrode. 

4.4.5 Carbonized Textile/Fiber Electrode 

A nonwoven textile has a roughness and topography that seems adequate for elec-
trode fabrication. However, the materials are not good electric conductive, nor are
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inherently appropriate for exoelectrogens colonization. These issues were overcome 
by researchers as Wang et al. that carbonized textiles by applying 1000 °C for 
approximately 30 min in absence of oxygen, replacing the oxygen with nitrogen gas. 
According to the authors, about 8 A m−2 was achieved with this material, thanks to 
the successful colonization of internal surfaces. A different group also working with 
carbonized textiles reported up to 30 A m−2, although just for a short-term operation. 

These research groups state that the continuous fiber, inherently obtained from the 
solution blown fibers used to deposit the carbon fibers, is that the resulting electron 
pathway is continuous. Nevertheless, the overall structure is also more compact and 
the size of the pores tends to be smaller when compared to commercially available 
carbon felts [9]. 

A similar methodology has been used with Kenaf stems, resulting in a 3D porous 
material with a central channel of about 4 mm, and an external diameter of 10 mm. 
The walls exhibited microporous of 25 and 60 µm. According to the microscopy 
analysis, this network of channels that were effectively colonized by exoelectrogens, 
reportedly achieving up to 32 A m−2. 

Interestingly, and despite the colonization of outer and inner channels, the biofilm 
penetration was estimated at less than 100 µm. This would probably arise from the 
valves present in the structure that would account for an open hole far inferior to 
the exoelectrogen size. A variety of materials has been tested, proving its feasibility, 
and avoiding the presence of valves, such as pomelo peels, mushrooms, and corn 
stem. Nevertheless, using these natural templates would significantly reduce the bio-
electrodes costs, they may have some structural limitations such as the Kenaf stems’ 
valves. 

4.5 Reticulated Vitreous Carbon (RVC) Electrode 

Textiles are not the only material becoming electrodes by carbonization. One of the 
most common monolithic materials used as electrodes is the reticulated vitreous 
carbon, which is obtained after carbonizing a sponge. Therefore, the resulting mate-
rial has both the continuous conductive electron pathway expected from a monolithic 
material but also has the open 3D open and porous structure typical from sponges. In 
fact, RVC materials are usually classified based on the number of pores per unit of 
length, known as PPI (pores per inch). He et al. reported achieving 50 A m−2 in an 
MFC using RVC 10PPi as electrodes, although biofilm clogging was not investigated, 
despite the 5 months of operation [9]. 

It is noteworthy here that full carbonization is not mandatory to make an electrode 
out of a sponge. It is also possible to apply a thin layer of conductive polymer over 
the natural sponge template, via either chemical vapor deposition of nickel, titanium 
oxide, or any other method. This would effectively produce a conductive electrode 
with an open 3D structure, with a roughness appropriate for delivering a surface area 
greater than the projected area of the electrode.



8 Carbon-Based Materials as Electrodes for Biofuels … 221

5 Fabrication and Modifications 

The inherent characteristic of carbon-based materials have made of them the preferred 
materials to mediate the microbes-metallic electrode interaction. This use has led to 
a variety of strategies for coating of carbon-based felts, that started as a method to 
improve the EET but quickly developed into an improved 3D open structure and fiber 
interconnexion that would not affect significantly the overall electrical conduction of 
the system [27]. Therefore, the manufacturing procedure (felt used, and its precursor) 
will affect the properties of the final electrode. 

5.1 Plasma Treatment 

Wettability has been indicated to be the weakest feature of carbon-based materials. To 
reverse this situation, some material treatments have been developed to improve this 
property. Plasma treatment consists of the exposure of the carbon felt to a radiofre-
quency generator under variable oxygen pressure for a determined time. This treat-
ment has been reported to induce the augmentation of functional groups with oxygen 
and doping nitrogen onto the surface of the carbon fibers. These modifications would 
translate into an enhanced reactivity. 

The improved wettability comes from increased hydrophilicity provided by 
nitrogen doping, a consequence of the treatment. These nitrogen dopants are also 
highly electronically affine to the adjacent carbon atoms that act as oxidation reac-
tion active sites. As a result of this, both the positive carbon atoms’ basicity and the 
electrical conductivity of nitrogen-doped carbon will increase. 

Researchers testing a variety of oxygen pressure, and time exposure have reported 
that phenolic groups could be favored rather than carboxyl groups. In either case and 
despite the increment on the functional group’s quantity over the surface, the total 
surface area is not significantly increased. 

Therefore, plasma treatment can induce an improved electrochemical perfor-
mance by increasing the active oxygen and nitrogen functional groups in the surface 
of the carbon-based material, which will enhance the electrochemical interaction 
between the electrode surface and the electrolyte [27]. 

5.2 Thermal Treatment 

As suggested by the name, thermal treatment consists of directly exposing the felt 
material to a high temperature, commonly on a furnace that allows for oxygen and/or 
nitrogen flow. As with plasma treatment, here the hydrophobicity of the material is 
improved.
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Zhong et al. have also reported an increment on C–O groups, leading to better 
electrochemical performance. This improved performance relates to the increased 
conductivity, the number of active sites, and wettability obtained from the nitrogen 
groups doping on graphite felts obtained when the material is treated between 600 
and 900 °C under an NH3 atmosphere [27]. 

5.3 Chemical Treatment 

This treatment aims to increase the number of oxygens absorbed onto the felt surface. 
To achieve that absorption, the felts are commonly boiled in nitric or sulfuric acid, 
requiring a thorough rinse and drying after the treatment before being apt to work 
as an electrode, but effectively improves the electrochemical performance of the 
material. The source of this performance improvement has been associated with the 
increased C–O and C=O functional groups. 

Increasing these functional groups’ presence can also be achieved via electro-
chemical oxidation, requiring the application of voltage to the material immersed in 
sulfuric acid. This method is expected to improve hydrophobicity and electrocatalytic 
activity. 

Similar results have also been obtained with low-cost reagents such as ethanol 
and hydrazine hydrate, achieving an improvement of the hydrophilic properties 
and activity by including carbon nanoparticles and oxygen and nitrogen functional 
groups. 

A further improvement can, however, be achieved by combining chemical and 
thermal treatments. By activating carbon felt with KOH at 800 °C has been reported 
to include COOH, CH=O, and OH functional groups, but also, forming micropores 
over the surface [27]. 

An enhanced wettability, via either plasma, thermal, or chemical treatment, makes 
it easier for electrolyte ions to access the voids within the 3-D structure. Additionally, 
metallic nanoparticles, graphene, and carbon nanofibers have been used to enhance 
their conductivity [27]. Following this logic, and due to its low overpotential and 
feasibility of coating onto a wide selection of materials, makes platinum an alternative 
[44] and significantly improves the hydrogen evolution necessary for engaging the 
Hydrogenotrophic methanogenesis [31]. Although, as previously discussed Pt and 
Pt-coated electrodes are limited to laboratory scale. 

6 Final Comments 

In the context of biofuel production, such as hydrogen and methane, cathodic reac-
tions are crucial. The use of bio-cathodes brings many benefits, but at the same time 
requires the use of base materials that promote the development of the biofilm that 
will contribute to the enzymatic arsenal.
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Two main approaches have been used to produce bio-electrodes with enhanced 
performance. The first strategy is increasing the specific surface area, which can 
be achieved by either use of porous materials or surface modifications. The second 
strategy also relies on surface modifications, aiming to improve the electron exchange 
between the base material and the biofilm. 

When it comes to increasing the specific surface area, an open 3D structure— 
with pores colonizable by exoelectrogens—seems to be appropriate, and using bulk 
porous materials is one of the easiest ways to achieve it. Nevertheless, using an elec-
tron collector as stainless steel coated with carbon nanotubes, cell-embedded carbon 
fibers, or other conductive and biocompatible coatings has opened the possibility for 
designers to develop 3D designs that simultaneously include macro-organizational, 
architectural considerations, without compromising the micro-scale porosity. 

The development of coating has also opened the possibility to enhance the extra-
cellular electron transfer and catalytic activity, promoting positively charged function 
groups over the electrode, to induce the initial attachment of gram-negative bacteria, 
hence, initiating the biofilm maturation. 

The diversity of methods and technological possibilities translate into the possi-
bility to layout the size distribution of the pores to enhance the hydrogen evolution 
while maximizing the specific surface area coated with biocompatible materials, so 
the bio-electrodes are a suitable substrate for colonization, avoiding pores clogging 
due to the biofilm growth. All these imply somehow the involvement of carbon fibers 
and carbon-based bulk materials due to their known chemical resistance, low cost, 
and biocompatibility. Therefore, it is fair to say that carbonaceous porous material 
development plays a pivotal role in the future of biofuels, hence, the establishment 
of the low-emission economy. 
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Chapter 9 
Photoluminescent Carbon Dots: A New 
Generation Nanocarbon Material 

Anju Paul and Anandhu Mohan 

1 Introduction 

Carbon dots (CDs), also known as carbon quantum dots, are photoluminescent zero-
dimensional carbon materials first reported in the year 2004 by Xu et al. [1, 2]. They 
are spherical amorphous sp2 hybridized carbon core possessing one of its dimensions 
less than 10 nm [3]. Since its discovery, many research groups are attracted by their 
multifaceted properties among which fluorescence receives the supreme attention. 
They have emerged as a rising star in the nanocarbon family with fascinating poten-
tials and find applications in various fields like sensing, bioimaging, optics, drug 
delivery, energy harvesting, photocatalysis, and so on [4, 5]. They are character-
ized by tunable excitation and emission, chemical inertness, thermal stability, high 
quantum yield, good aqueous solubility, inexpensive synthetic methods, non-toxicity, 
high biocompatibility, and easy functionalization and surface passivation [6]. Size, 
as well as surface states, determines the physicochemical properties. Carbon dots are 
treated as exceptional substitutes for inorganic semiconductor dots owing to these 
intriguing properties as biocompatibility is considered as one among the prominent 
advantages in the realm of nanoscience. CDs could overcome the toxic nature and 
low photoluminescence of these traditional inorganic dots, and their outstanding 
electronic properties make them electron donors and acceptors which assist in elec-
trochemical photoluminescence. They can be considered as a semiconductor having 
typical bandgap and exceptional optical characteristics.
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Fig. 1 Different properties of CDs 

Carbon dots cannot be treated as a mere carbon core, but it consists of elements 
such as oxygen and hydrogen. The relative proportion of these elements is decided 
by the method of preparation in addition to the synthetic technology [7]. It is possible 
to incorporate elements like sulphur, nitrogen, and potassium by choosing a precise 
source for the synthesis. Studies prove that doping with elements improves the prop-
erties. Tuneable photoluminescence and electron transfer properties can be consid-
ered as features of various surface functional groups [8]. Functionalized carbon dots 
can be synthesized in a single step. At the same time, it is possible to do surface 
functionalization and passivation in separate stages of preparation also [9]. These 
modifications can significantly improve the properties. 

This chapter will describe recent advances in CDs mainly focusing upon synthetic 
routes among which those from green sources are given prominence, their physical, 
structural, and optical features, and various applications. Also, it ends with a future 
outlook and conclusions about the current field (Fig. 1). 

2 Synthetic Strategies of CDs 

The origin of carbon dots is an accidental discovery as a by-product during the arc 
discharged synthesis of carbon nanotube [10]. After the first reports of synthesis,
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many advanced synthetic routes were proposed. Many reports propose readily avail-
able natural plant materials and green waste biomass as sources. Biocompatibility 
and high yield through cost-effective protocol are regarded as the exceptional advan-
tage of utilizing green waste biomass as the precursors. Synthetic approaches may 
be categorized as top-down and bottom-up methods [11]. Fragmentation of carbona-
ceous materials like graphite [12], carbon fibres [13], carbon nanotube [14], and 
coal [15] by means of arc discharge, laser ablation, acid treatment, electrochemical 
oxidation, and ultrasonic methods comes under top-down methodologies. But, in 
the bottom-up method, precursors are carbonized by thermal pyrolysis, microwave-
assisted synthesis, and hydrothermal treatments [16]. Highly efficient carbon dots of 
various compositions can be obtained via bottom-up methods. Many natural mate-
rials like citric acid [17], orange juice [18], lemon juice [19], egg white [20], glucose 
[21], and chitosan [22] were used as carbon sources in the bottom method. Altering 
the synthetic methods as well as precursors can change the parameters such as surface 
state, the extent of functionalization, quantum confinement effect, and so on [23]. 
These diverse techniques also offer chances in tuning the size and possibilities for 
the incorporation of heteroatoms as constituents in carbon dots. This section mainly 
consolidates the synthetic protocols utilizing various precursors, methodologies, and 
reaction conditions in which greener approaches are discussed in detail. 

2.1 Top-Down Approaches 

2.1.1 Laser Ablation 

Laser ablation is a facile technique that can prepare surface state tunable CDs in 
which the source is irradiated by a laser. Even though it is a rapid technology, it 
is limited by some disadvantages. It is an expensive method that can develop only 
low quantum yield dots. At the same time, it consumes a lot of energy and cannot 
make sure the control size of carbon dots [24]. It is carried out in three stages. High 
energy created by the laser pulse is absorbed by the carbon material. Electrons from 
atoms are stripped, and as a result, a strong repulsive force produces a high electric 
field fragmenting the precursor material into carbon dots [25]. Sun et al. reported the 
synthesis by laser ablation in which the precursors were graphite powder and cement 
with argon acting as the carrier gas [1]. The sample, upon surface passivation, resulted 
in photoluminescence which was not detectable before. Yu et al. prepared CDs from 
toluene via laser ablation. By using the laser furnace, they could obtain carbon dots of 
controlled size [26]. But, this process has a demerit that it requires extreme conditions 
of temperature and pressure which is not suitable in terms of energy and efficiency.
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2.1.2 Chemical Oxidation 

Chemical oxidation is considered as a convenient method to produce carbon dots in 
high yield and purity without the use of elaborate equipment. Here, carbon substrate is 
oxidized by a strong oxidant like HNO3 or H2SO4. Since it is an oxidation process, 
many oxygen comprising functional groups such as –COOH,–OH are introduced 
which in turn increases the hydrophilicity and aqueous solubility of the material. A 
limitation of this method is the non-uniform size distribution of synthesized particles 
[28]. Sun et al. proposed an efficient method for the manufacture of heteroatoms-
doped CDs through chemical oxidation using concentrated sulphuric acid. It was 
inferred that temperature has a great influence on sulphur content [29]. In another 
work, Bao et al. oxidized carbon fibres in nitric acid to get carbon dots. They have 
varied different reaction parameters like temperature, the concentration of nitric acid, 
and reaction time so that they could get a series of different colour emitting carbon 
dots. This was an innovative work to synthesize multicolour carbon dots via chemical 
oxidation [30]. Thus, emission wavelength can be tuned by the selection of starting 
material and duration of acid treatment. Both non-toxicities and multicolour emission 
have wide applications in bioscience. Xu and co-workers also prepared carbon dots 
via chemical oxidation using sucrose as the carbon substrate and phosphoric acid 
as the oxidant. They could also obtain carbon dots with different colour emissions. 
CDs could emit green and yellow colours without surface passivation [31] (Fig. 2). 

Fig. 2 Synthesis of yellow- and green-emitting CDs through chemical oxidation of sucrose. 
Reprinted with permission from Xu et al. [27]. Copyright 2014 Elsevier
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Table 1 Synthetic methodologies of CDs and their advantages 

S. 
No. 

Source Synthesis 
method 

Advantage Disadvantage Colour References 

1 Toluene Laser ablation Fast, efficient, 
tunable 
surface state 

Less size 
control, low 
quantum yield 

Red 
and 
blue 

[26] 

2 Carbohydrate Chemical 
oxidation 

Easily 
accessible, 
simple 
apparatus 

Harsh conditions 
and numerous 
steps involved 

Red, 
blue, 
green, 
yellow 

[36] 

3 Sodium 
citrate and 
urea 

Electrochemical 
carbonization 

Stable, high 
purity, size 
controllable 

Time-consuming Blue [37] 

4 Ascorbic acid 
and ammonia 

Ultrasonic 
treatment 

Ultra-small 
particle size, 
simple 
preparation 

Long exposure 
time, high 
energy cost 

Blue, 
green 

[38] 

5 Sodium 
citrate 

Hydrothermal 
treatment 

Easy, low cost Poor size control Blue [39] 

6 Citric acid Microwave Cost-effective, 
non-toxic, 
desired 
morphology 

Poor size control Blue [40] 

2.1.3 Electrochemical Carbonization 

It is a single-step, stable synthetic route with high purity and yield. Even though it has 
complicated steps in the methodology and time consuming, it can produce size and 
morphology controllable carbon dots [32]. Both electrodes and electrolytes have a 
definite command over the properties. The degree of graphitization and size of carbon 
dots have a direct relationship with applied potential. The first synthesis in this method 
is demonstrated by Zhou et al. from multi-walled carbon nanotube in acetonitrile 
solution. The dark brown solution obtained was purified by removing acetonitrile, and 
it showed blue emission under UV light. These dots displayed outstanding excitation 
and size-dependent photoluminescent properties [33]. 

On the other hand, many research works were developed by altering the carbon 
precursors like graphite rod [34] and carbon fibres [35]. The features and sources of 
some synthetic methods can be summarized in Table 1. 

2.1.4 Ultrasonic Treatment 

In order to overcome the limitations of other top-down methods of using harsh 
chemicals and purification after synthesis, ultrasonic energy is widely used in carbon 
dot synthesis. It is an appropriate method in which huge carbon precursors can be
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fragmented by the treatment of ultrasonic sound waves of high energy. Dang et al. 
prepared CDs from the oligomer-polyamide resin by this method. Less crystalline, 
aqueous soluble carbon dots having functional groups at the surface are obtained [41]. 
Similarly, ultrasonication of citric acid, urea, and poly(ethylene glycol) produced 
carbon dots which can be used as a lubricant. A small-sized carbon core provided a 
rolling effect to act as a good lubricating agent [42]. 

Low quantum yield values, high cost and specific complicated equipment require-
ments, and harsh conditions of temperature and pressure are the limitations of top-
down methods [16]. Hence bottom-up syntheses are preferred which are discussed 
in the next section. 

2.2 Bottom-Up Approaches 

In bottom-up synthesis, carbon precursors are converted to small spherical forms via 
certain chemical and physical conditions like heat, pressure, and microwave which 
could assist in molecular transformation. It includes hydrothermal, microwave-
assisted, and thermal decomposition [16, 43, 44]. Highly efficient CDs can be synthe-
sized by this versatile method, and surface functionalization or doping can be done 
in the same synthesis step which is not possible in the case of top-down methods 
[45]. 

2.2.1 Hydrothermal/Solvothermal Treatment 

It is a cost-effective synthesis involving the carbonization of various precursors in 
a high-pressure hydrothermal reactor. Researchers are very much attracted to this 
technique because of the simplicity in procedure and eco-friendliness. It is a single-
step synthesis by which we can perform inherent doping. Usually, elements such as 
nitrogen, sulphur, and phosphorous are used for doping. Numerous works have been 
reported in which organic molecules, biomolecules, and waste biomass have been 
taken as the precursors for the synthesis. Fluorescent CDs were first synthesized 
by hydrothermal treatment by Zhang et al. from L-ascorbic acid. Ascorbic acid was 
dispersed in water and heated at 180 °C in an autoclave for 4 h followed by membrane 
dialysis [46]. Other precursors include papaya [47], glucose [48], apple juice [49], 
orange juice [18], milk [50], egg white [20], and cornstalk [51]. Chitosan was chosen 
as the precursor to obtain amino functionalized CDs by Liu et al. by heating at 
180 °C for 12 h [22]. These fluorescent CDs could act as excellent bioimaging agents. 
Schematic representation for hydrothermal synthesis of CDs is given in Fig. 3.

Similarly, solvothermal carbonization is also considered to be a popular method-
ology to fabricate CDs. Solvothermal treatment of carbohydrates in phosphoric acid 
to yield yellow- and red-emitting CDs is reported [52]. Fe3+ and apoferritin detection 
was done by N-doped carbon dots synthesized by a cost-effective, eco-friendly single-
step solvothermal treatment of ethylenediamine tetra-acetic acid and urea in ethylene
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Fig. 3 Scheme for hydrothermal synthesis

glycol at 150 °C by a 3-h process. These carbon dots were proved to be an efficient 
fluorescent probe, and its application can be extended in biosensing, bioimaging, and 
life science [53]. Figure 4 shows a scheme for the solvothermal synthesis of CDs from 
lemon juice in formamide by Ding et al. These CDs of average size 5.7 nm exhibited 
fluorescent emission at 704 nm which may be attributed to their surface states. They 
possess excellent photostability and high biocompatibility so that they can be used as 
a potential probe for bioimaging [54]. Synthesis of CDs via hydrothermal treatment 
from various organic molecules is given in (Table 2). 

Fig. 4 Solvothermal synthesis of CDs from lemon juice in formamide. Reprinted with permission 
from Ding et al. [54]. Copyright 2019 Elsevier 

Table 2 Synthesis of CDs via hydrothermal treatment from organic molecules 

S. No. Precursor Colour Size (nm) References 

1 Sodium citrate Blue 1.59 [39] 

2 Citric acid Violet 6–15 [55] 

3 Glucose Blue 1.65 [56] 

4 Folic acid, phosphoric acid Indigo 13.2 [57] 

5 Histidine Blue 3–5 [58] 

6 Dopamine Blue, green, yellow 3.8 [59] 

7 Ammonium citrate Indigo 4.8 [60] 

8 Streptomycin Violet 2.97 [61] 

9 Citric acid and ethylenediamine Blue 2–6 [62]
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2.2.2 Microwave-Assisted Synthesis 

It is an efficient, economical, and rapid synthetic methodology for obtaining carbon 
dots of desired morphology by the irradiation of electromagnetic radiations through 
carbon precursors. This technology is rapidly developing owing to the significant 
interaction of carbon sources with microwaves [63]. Numerous studies have been 
reported to develop CDs of distinct morphology by microwave heating. Zhu et al. 
used saccharides to obtain CDs with controlled morphology with a size of 3.7 nm [21]. 
In another work, citric acid is irradiated by microwave radiations in a domestic oven 
by using tryptophan as the passivating agent. Water-soluble CDs of size 2.6 nm were 
obtained by centrifugation at 10,000 rpm [64]. Recently, Vaccinium Meridionale 
Sawartz extract was chosen as the source and about 80% mass fraction of thermally 
stable CDs were obtained only in 5 min. This method is preferred when compared to 
hydrothermal or electrochemical methods when the time consumption for the process 
is considered [65] (Fig. 5). 

Fig. 5 Microwave-assisted synthesis of CDs for the sensing of Co2+. Reprinted with permission 
from Zhao et al. [66]. Copyright 2019 Elsevier
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Fig. 6 Thermal decomposition from fennel seeds for the synthesis of CDs. Reprinted with 
permission from Dager et al. [69]. Copyright 2019 Springer Nature 

2.2.3 Thermal Decomposition 

In this protocol, carbon precursors are heated at elevated temperatures. It is an 
irreversible decomposition involving both physical and chemical changes. Cost-
effectiveness, short reaction time, solvent-free methodology, choice of numerous 
precursors, and simple operations are considered as the advantages of this method. 
Morphology, as well as optical characteristics, may be optimized by altering reaction 
temperature and time taken for synthesis [67]. Feng and co-workers prepared CDs 
from citric acid using diethylenetriamine as the passivating agent. These CDs were 
water-soluble fluorescent structures having size 5–8 nm [68]. Dager et al. reported 
the thermal decomposition of fennel seeds to obtain fluorescent CDs without any 
surface passivation. These highly photostable CDs exhibited excitation-independent 
emission. The scheme for the preparation for this reaction is given in Fig. 6. 

3 Natural Biomass as the Source for the Fabrication of CDs 

Numerous synthetic protocols were introduced utilizing natural biomass as the carbon 
precursors. Hazardous and toxic solvents are creating environmental issues, and 
expensive sources can be eliminated by the use of these green routes. Waste and 
biomass valorization is considered key factor when the preservation of the environ-
ment is concerned. Hence, during recent times, waste biomass has been abundantly
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utilized as the green precursors for syntheses. Biomass refers to any biodegrad-
able waste, residues from agriculture, and industrial or municipal waste [70]. In 
many works, fruits, vegetables, plant parts, fruit peels, etc., are used as the sources. 
CDs synthesized from broccoli via hydrothermal treatment were used for sensing 
silver ions. Water-soluble blue fluorescent CDs were obtained by the method [71]. 
In another work, garlic was taken as the precursor to obtain fluorescent CDs via 
the hydrothermal method by Zhao et al. Outstanding optical properties of the nano-
material prove to be used in bioimaging applications [72]. Table 3 summarizes the 
applications of carbon dots synthesized from plants and other green sources.

Even though many synthetic protocols propose mass production of CDs, reported 
results are limited in number. The choice of carbon precursors was found to be 
one of the key factors of yield. Since acid treatment for macroscale synthesis may 
lead to severe environmental issues, nowadays waste biomass is replacing hazardous 
sources. There are works in which 120 mg CDs are produced from 1 g coffee grounds 
[86], 3 g CDs are obtained from 10 g bee pollens [87], and so on. Hydrothermal 
treatment of waste biomass like grass [88] and pomelo peel [89] could also obtain 
stable, photoluminescent CDs in a high yield. Through plasma-induced pyrolysis, 
chicken eggs were used to produce 10 g CDs [20]. In a one-pot synthesis, Yang 
et al. synthesized 120 g of CDs from Chinese ink [90]. From the above works, it is 
observed that the carbonization procedure significantly affects the yield of CDs. 

4 Unique Properties of Carbon Dots 

The remarkable features of CDs may be attributed to the surface functional groups like 
carboxyl group, an amino group, or hydroxyl groups [92]. The surface states as well 
as these functional groups greatly influence the fluorescent properties. The optical 
features can be optimized by varying the synthesis methods, chemical composition, 
and dopants. Absorption spectra generally appear between 230 and 290 nm can 
be assigned as π − π* transition of C = C bond [93]. Surface functionalization 
and passivation can alter the absorbance to a great extent. Furthermore, carbon dots 
exhibit excitation-dependent photoluminescence features. Tunable emission colours 
are obtained by surface passivation, altering the molecular weight of precursors 
and surface states [94]. CDs of various colours ranging from UV to red have been 
fabricated, out of which blue and green are more common. Many researchers have 
explained the photoluminescence in terms of quantum confinement [95]. In addition 
to these fascinating properties, scientists have fabricated CDs with high quantum 
yields. Aqueous solubility and biocompatibility are the other key features providing 
a breakthrough for CDs to be applied in many biomedical applications, imaging, and 
sensing (Fig. 7).

Clinical diagnosis utilizes fluorescence imaging as a powerful tool owing to its 
high sensitivity and low cost. Conventional fluorophores like organic dyes and inor-
ganic quantum dots are less preferred because of their poor fluorescence and toxicity. 
In such a situation, biomedicine is demanding a biocompatible nanomaterial with
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Fig. 7 a UV–visible absorption spectrum, b photoluminescence spectrum in the absence of borax, 
c UV–visible absorption spectrum, and d photoluminescence spectrum in the presence of borax. 
Reprinted with permission from Fan et al. [91]. Copyright 2014 Elsevier

flexible design via an easy synthetic route which is fulfilled by CDs. Not only blue 
or green fluorescence, recently CDs with deep red emission with two or multiphoton 
properties were synthesized by many research groups. These long-wavelength emis-
sions can be explained by the structural features of carbon cores as well as fluo-
rophores on the surface. The exact photoluminescence mechanism can be identified 
only by detailed investigation including functional groups, cross-linking, molecular 
weight, and so on. Overall emission is a contribution of carbon core, surface state, 
and molecular fluorophores. In many synthetic procedures, it is seen that the photolu-
minescence mechanism is dependent on organic fluorophores, but a longer reaction 
time leads to high carbonization which further results in loss of these fluorophores, 
thereby decreasing quantum yield. 

Widespread applications of CDs have been restricted as the majority of them 
are able to emit blue light. In this aspect, red-emitting CDs are receiving more 
prominence. Most of the works report that emission in the longer wavelength region 
is owing to CDs size, surface state, and doping elements. Red-emitting CDs can find 
recent applications such as imaging-dependent surgeries, drug delivery, in vitro and 
in vivo bioimaging, phototherapy, and so on.
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The efficiency and luminescence of CDs are usually enhanced by introducing 
surface functional groups and surface defects. Doping with elements improves radia-
tive recombination and creates novel energy levels which further results in excitation-
independent emissions and better quantum yield. Varying colour emission can also 
be explained by these mechanisms. Lulu et al. reported that the application of blue 
fluorescence in the ultraviolet region causes high photodamage in the biological 
matrices [96]. Such a limitation can be nullified by achieving long-wavelength emis-
sion. They have reported the synthesis of water-soluble intense infrared emission 
with high quantum yield, exhibiting two-photon properties also. It is believed that 
red fluorescent CDs can have the advantages of high photostability, easy surface 
modification, and low cytotoxicity. Hence, they find applications in the biomedical 
field such as drug delivery, two-photon bioimaging, and tissue engineering. 

5 Characterization of Carbon Dots 

In addition to carbon atoms, CDs may also contain elements like oxygen, hydrogen, 
nitrogen, sulphur, and so on depending on the functional group present on the surface 
as well as doping. Some bottom-up synthetic methods can incorporate heteroatoms 
without any surface passivation or functionalization. The crystallinity of the CDs 
is generally studied by X-ray diffraction. Most of the CDs prepared are amorphous 
in nature. A broad peak at 180 represents the amorphous nature of the synthesized 
material. UV–visible absorption spectrum analyses the electronic transmissions, and 
it indicates the presence of carbonyl and ethylenic bonds. Photoluminescence studies 
are usually performed to detect the emission spectra and the dependence of excitation 
on emission. Fourier Transform-Infrared Spectroscopic studies and X-ray photoelec-
tron spectroscopy help to identify the functional groups and elements in the nanos-
tructure. Inherent doping from the precursors and hybridization of elements can be 
identified by these methods. Morphological studies can be carried out by transmission 
electron microscopy. The size, shape, and dispersion of CDs are estimated from this 
technique. It is a reliable technique to confirm the amorphous nature of the material 
(Fig. 8).

Since the source also has traces of other elements, separation and purification of 
CDs are one of the limitations to getting desired definite nanostructures. There are 
many methods utilized for the analytical separation of CDs from bulk carbon. Most of 
the bottom-up methods propose purification with dichloromethane; thereby, most of 
the unreacted moieties can be avoided. Additionally, most of the procedures separate 
the CDs with the desired size by means of dialysis, electrophoresis, ultracentrifu-
gation, chromatography, and so on. Structure, size, composition, and shape are the 
prominent factors determining the characteristics. Hence, characterization is consid-
ered to be very important on the way to various applications. Microscopic studies 
also give us an idea about the dispersion and possibilities of agglomeration. Identifi-
cation of phase and crystallinity is done by X-ray diffraction. Information regarding 
the purity of the sample may also be obtained. At the same time, amorphous CDs
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Fig. 8 a TEM image of CDs, b UV/visible absorption spectra, and c photoluminescence emission 
spectra of the CDs. Reprinted with permission from Sun et al. [97]. Copyright 2015 Springer nature

cannot be well studied by this technique. The state of carbon in the sample is anal-
ysed by Raman spectroscopy. By comparing the D band and G band intensities, it 
is possible to identify the purity of the sample also. Ultraviolet–visible spectroscopy 
and photoluminescence spectroscopy are utilized to study the optical properties as 
well as photoluminescence of the samples. These characterization techniques are 
together utilized to calculate the quantum yield of CDs. 

6 Carbon Dot and Their Nanocomposites 

Recently, many efforts have been taken for the fabrication of novel nanocomposite 
materials consisting of carbon dots. Different matrices for the synthesis include 
metal nanoparticles, metal oxides, carbon nanomaterials, ferrites, tungstates, and 
so on. These composites can amalgamate the physical, chemical, mechanical, and 
magnetic properties of the matrix and optical characteristics of CDs. Metal nanopar-
ticles can be prepared from corresponding metal ions by using CDs as they can act as 
a reductant in the process [98]. In the same way, combining CDs with metal oxides 
extends the photoresponsive region even to visible spectra. Metal oxides such as 
zinc oxide and titanium oxide are well studied in this area. Hydrothermal synthesis 
at 200 °C for 2 h was carried out to synthesize TiO2/CDs, and this nanohybrid could 
obtain 9 times better results in hydrogen production from water splitting than the 
bare TiO2 [99]. Binary metal oxides such as ZnFe2O4 and CuBi2O4 are also utilized 
as the matrix for the incorporation of CDs so that numerous reaction sites are formed 
by interfacial charge transfer [100]. But in the case of carbon nanomaterials like 
graphene and graphene oxide, in spite of good surface area and thermal conductivity, 
some applications are limited due to precipitation and agglomeration. These limita-
tions can be nullified by combining them with CDs. Thus, the efficiency of materials 
can be significantly improved by the preparation of nanohybrids in which CDs act 
as nanofillers.
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7 Catalytic Applications of Carbon Dots 

CDs act as promising heterogeneous catalysts since they satisfy many desirable prop-
erties of a good catalyst such as low cost, good yield, aqueous solubility, biocompat-
ibility, high surface area, and diverse porous structure. These quasi-spherical nanos-
tructures are mostly preferred for photocatalytic applications owing to their fluores-
cent properties. They are used for selective oxidation reactions, visible light-induced 
acid catalysis, photo-enhanced hydrogen bond catalytic reactions, photocatalysts 
for CO2 conversion, water splitting, and electrocatalysis. CDs are made up of sp2-
hybridized carbons and possess electron transfer properties which promote them to 
act as potential catalysts. Upconverted photoluminescence improves photoinduced 
electron transfer and drives them to be used as visible light-responsive catalysts. 
Additionally, CDs are capable of light-harvesting when incorporated in composites 
which leads to photoexcited electron transfer across their interface creating holes. 
This emphasizes the photoinduced electron transfer which assists them to act as 
photosensitizers, electron mediators, and photocatalysts [101]. 

Photocatalytic degradation is considered an effective tool as well as a necessity 
for the sustainable existence of the environment. Organic pollutants are increasing 
day by day with the development of industries which in turn have an adverse effect 
on the environment. Only active radical species from photocatalyst can degrade these 
organic pollutants. But, a large bandgap in conventional photocatalysts is considered 
to be a limitation for the purpose. Since CDs are able to absorb more light in the 
area, they can act as a sensitizer and transmit the photogenerated electron into the 
semiconductor, thereby enhancing the photocatalytic activity. Numerous works have 
been done to study the photodegradation of dyes and organic pollutants (Fig. 9).

Yuzhi et al. synthesized CDs by electrochemical etching methodology, and they 
studied the effect of CDs in aldol condensation. The irradiation with visible light 
resulted in improved catalytic activity with prolonged existence [103]. Xiao et al. 
reported the fabrication of CDs/SiO2 porous nanocomposites by electrochemical 
synthesis. These nanocomposites have been used for selective oxidation of cis-
cyclooctene [104]. Catalytic activity was shown by the carbon dots synthesized from 
duck blood via the hydrothermal method. Characterization techniques throw light 
towards the presence of the elements like nitrogen and oxygen along with carbon. 
These carbon dots show outstanding peroxidase-like catalytic activities and could 
be utilized as a sensor of glucose [105]. P-nitrophenol reduction was carried out 
by Cu-doped carbon dots prepared from CuCl2. 2H2O and EDTA via hydrothermal 
synthesis. The fluorescence property of the catalyst can be utilized for analysing the 
catalytic ability of the Cu-doped samples [106].
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Fig. 9 Au/CD 
nanocomposites acting as 
photocatalyst for selective 
oxidation of cyclohexane. 
Reprinted with permission 
from Liu et al. [102]. 
Copyright 2014 Americal 
Chemical Society

8 CDs for Sensor and Bioimaging Applications 

A wide range of analytes such as small molecules, drugs, anions, and cations can be 
detected by utilizing the fluorescence of CDs. Surface functional groups can interact 
with metal ions like Hg2+, Cu2+,Ag+, and Pb2+ and can be sensed with high selectivity 
and sensitivity [107]. The chelating ability of functional groups has an effect on the 
sensitivity of CDs. Another factor affecting the efficiency of sensing is pH (Fig. 10).

CDs are excellent candidates for biomedical applications due to their good 
biocompatibility, photochemical stability, and low cytotoxicity. Doping could 
improve the optical properties of CDs. Nitrogen- and sulphur-doped CDs are directly 
used for imaging of peritoneal macrophages of mice. It is found that, even after 
continuous excitation for 20 min, there was no reduction in photoluminescence [109]. 
This identifies the photostability of the nanomaterial and reveals the possibility of 
applications in bioimaging. Also, surface passivating agents can be used in minor 
concentrations for bio-labelling and it is demonstrated by using polyethylene glycol 
in CD synthesis. There was no prominent toxicity while conducting in vivo imaging 
in mice [110]. CDs as fluorescent labels for imaging in various cell lines have been 
investigated. There are research works in the labelling of cell lines like Ehrlich ascites 
carcinoma cells, HeLa cells, human lung cancer (A549), HepG2 cells, Escherichia 
coli (E. coli), and NIH-3T3 fibroblast cells.
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Fig. 10 Schematic illustration of the formation and cellular imaging application. Reprinted with 
permission from Wen et al. [108]. Copyright 2021 Elsevier

9 Conclusions and Future Scope 

CDs have attracted recent research while considering the benefits over semicon-
ductor quantum dots. Low cytotoxicity, high biocompatibility, water solubility, and 
tunable fluorescence are the key features of CDs. This chapter covers the synthetic 
strategies, properties, and recent advances in the applications of CDs as potential 
sensors and optical probes. Multicolour fluorescent emissions have been achieved 
by successive works by researchers. But the proper mechanism for photolumines-
cence is still beyond reach. Reproducibility with controlled morphology and size is 
still under the realm of research. Hence, there is potential interest in bringing up CDs 
with desirable size, shape, morphology, and functional groups. With the remarkable 
features, CDs could become a substitute for organic and inorganic quantum dots. 
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Chapter 10 
Carbonaceous Nanostructures-Based 
Photocatalysts for Sustainable H2 
Production 

E. Nandhakumar, E. Vivek, E. Vaishnavi, M. Prem Kumar, 
Perumal Devaraji, P. Selvakumar, and N. Senthilkumar 

1 Introduction 

The consumption of fossil fuels (coal, natural gas and oil) has increased as the anoma-
lous growth of industries, power plants and automobiles, resulting in a scarcity of 
fossil energy resources and triggers a serious problem such as energy crisis and global 
warming. As a result of this, environmental pollution and energy depletion have 
drawn attention to the urgent need for alternative forms of clean energy production. 
So, the researchers are paying considerably attention to utilize hydrogen as renew-
able energy source and making possibilities via photocatalytic hydrogen generation 
[1, 2].
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Hydrogen (H2) is a clean, eco-friendly and non-hazardous resource because while 
it combusts only water is produced during the combustion process [3, 4]. The genera-
tion of H2 using a semiconductor photocatalytic technique is a promising solution for 
generating energy by converting solar energy to fuel [4, 5]. At first, the photocatalysis 
method of hydrogen production was reported by Fujishima and Honda in 1972 using 
Titanium dioxide (TiO2) [6]. TiO2 is among the most stable semiconducting material 
for photocatalytic hydrogen production because of its good stability and nontoxicity 
[7]. It has the bandgap (Eg) of 3.2 eV which offers to absorb the solar spectrum in 
the range of ultraviolet region [3]. In addition, the photocatalytic efficiency of TiO2 

is quietly low as of the rapid recombination occurred in the photogenerated hole pair, 
which hinders the practical application. Therefore, it is important to limit the charge 
carrier’s recombination rate occurs in semiconductor photocatalyst [8]. However, 
the researchers are trying to improve the properties of photocatalyst through various 
combinations of catalyst. 

On the other hand, various carbon-based nanomaterials are attracted for its high 
stability, wide photo-absorbance property and high conductivity. Moreover, the 
discoveries of carbon nanotubes (CNTs), graphene, carbon nanofibres (CNF) and 
other carbon materials emerge as a building block in the arena of nanotechnology 
[9]. Carbon can exist in the various forms like CNT, CNFs [10], horns [11], flasks [12], 
carbon spheres [13, 14] and calabashes [15]. Carbon-based material has a tenable 
combination of sp, sp2, sp3 hybridization [14]. Carbonaceous materials have been 
classified with their dimension which includes carbon dots, fullerenes, graphene, and 
graphite material as zero-dimensional (0D), one-dimensional (1D), two-dimensional 
(2D) and three-dimensional (3D) structures, respectively (Fig. 1). Along with that 
graphene is a marvel material with 2D structure of regular lattice arrangement with 
hexagonal pattern in sp2 hybridized form of carbon atoms [16, 17]. Therefore, the 
carbon-based nanomaterials have great attention in the field of semiconductor-based 
photocatalytic method of hydrogen production.

In this chapter, we discussed the recent advancements in carbon-based nanomate-
rials for photocatalytic H2 generation. We specifically discussed the different carbon 
materials based on their dimensions as well as the role of interface engineering 
between carbonaceous structures and other semiconductor nanomaterials. 

2 Fundamentals of Hydrogen Evolution 

2.1 Basic Principle 

Three basic steps are involved in the photocatalytic process, namely (1) absorption of 
light and generation of photoexcited electron and holes in the valance band (VB) and 
conduction band (CB), respectively, and (2) separation and migration of photoexcited 
electron and holes to the surface of the photocatalytic materials; these two steps are 
deciding the efficiency of the process because the recombination of photoexcited
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Fig. 1 Different types of carbonaceous nanostructures “Reprinted with permission from Jun et al. 
[18]. Copy right 2018 Elsevier”

charge carries could occur in the femtosecond in the bulk. Many semiconductor 
photocatalyst have been developed to enhance the charge separation efficiency which 
could enhance the photocatalytic activity. 

For instance, noble metals such as Au, Ag and Pt [19], CdS/CdSe/Pt heterostruc-
ture, [20], Zn–Ag–In–S/Co3O4 [21], Cu/TiO2 [22], (Au/AgAu)@CdS [23] are  
greatly mitigates the recombination rate of photoexcited charge carriers. The 
Schottky junction between the metal and semiconductor interface increases charge 
transfer and reduces recombination [19]. In addition to that, introduction of carbon-
based materials such as fullerene [24] g-C3N4 [25] and RGO [26] to semiconductor 
materials predominantly increases the charge mobility and greatly reduces their 
recombination. The effective utilization of electron–hole pair creates for surface 
redox reaction. For effective reduction of proton, the conduction band potential of 
photocatalyst should be negative and very close to the reduction potential of proton 
versus normal hydrogen electrode (NHE). On the other hand, in case of oxidation 
of water the valance band potential of semiconductor material should be greater 
than the 1.23 eV versus normal hydrogen electrode. The basic process involved in 
photocatalyst is illustrated in Fig. 2.

The apparent quantum yield (AQY) of photocatalytic H2 evolution is calculated 
based on the below formula: 

AQY (%) = 
Number of reacted electrons 

Number of incident photons 
× 100% (1)
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Fig. 2 Graphic representation of photocatalytic water split reaction

AQY (%) = 
Number of evolved H2 molecules × 2 

Number of incident photons
× 100% (2) 

2.2 Use of Sacrificial Agents 

Efficiency of photocatalysis reaction was greatly decreased by recombinations of 
charge carriers. Sacrificial agents such as CH3OH, triethylenetetramine, aqueous 
solution of sodium sulphide and sodium sulphate could use to hinder the recom-
bination of electron and hole. Sacrificial agents can be utilized to scavenge indeed 
an electron or hole for the evolution of hydrogen or oxygen. Sacrificial agents that 
scavenge hole, like methanol, esoteric the hole and oxidize it to CO2. Because of this 
approach, electrons excited to CB have a longer lifetime and are effectively imple-
mented for reduction. In this context, the electron scavenging reagent like silver 
nitrate plays a vital role which is exactly opposite to the previously mentioned hole 
scavenger, as the oxidation takes place of holes. Because hole scavengers have a 
lower oxidation potential compared to water molecules, the thermodynamical and 
kinetic limitations are massively diminished. It is to be understood that water split-
ting is an arduous process involving a change in free energy (ΔG = 237 kJ/mol). 
Because of the large reductions in ΔG, it eliminates the four-electron process of 
molecular oxygen production. The nature of the sacrificial agents, as well as their 
oxidation/reduction potential, influences the decrease in ΔG. With environmental 
concerns in mind, it is also implied that methanol be replaced by eco-friendly alco-
hols such as glycerol and carbohydrates. The use of glycerol is highly beneficial due
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to its superior hydrogen content per molecule; however, carbon to hydrogen ratio is 
lower than that of methanol. Nevertheless, H2 generation via water splitting reaction 
through a sacrificial agent, including such glycerol or methanol, could be regarded as 
a simple objective as it less challenging compared to overall water splitting reaction 
(OWSR) without the use of a sacrificial agent [27]. Considering the OWSR’s rate of 
advancement over the past three decades, we believe it has the potential to be a big 
energy-conservation solution. 

2.3 Band Alignment 

Another interesting technique for promoting separation of photogenerated electron– 
hole pairs is heterojunctions fabrication. Heterojunctions are formed by joining two 
photocatalysts (PC-1 and PC-2) together via mechanical or electrostatic forces, as 
well as chemical bonds. The interface plays a major role to ensure fast transfer of 
charge carriers. The semiconductor heterojunctions are classified into three types: 
(i) Type-I (ii) Type-II and Z-scheme heterojunctions are shown in Fig. 3. In Type-I 
heterojunction (Fig. 3b), the two photocatalyst are activated by incident light and 
then the electrons from PC-2 with higher conduction band (CB) transfers to PC-1 
with lower CB position beneath the force of electrostatic field. Meanwhile, photogen-
erated holes are transferred from lower VB to higher VB positions. As a result, the 
photogenerated and holes are gathered on PC-1. In Type-II heterojunction (Fig. 3c), 
the transfer of electron is similar to Type-1 from PC-2 to PC-1 [28]. Moreover, the 
holes transfer is reverse to Type-1 from PC-1 to PC-2. For this event, the reduction 
reaction is occurred for PC-1 when photogenerated electrons are collected on PC-1 
and the holes on PC-2 for oxidation reaction. The development of a heterojunction 
could result in enhance of charge separation by guiding the flow of electrons and 
holes at the interface. And also, the charge recombination is suppressed, thus can 
substantially improves photocatalytic activity [29, 30].

2.4 Surface Functionalization 

Carbon nanomaterials have a propensity to agglomerate due to their high surface 
energy and high Van der Waals force between them. Weak dispersibility in solvents 
is a cause of these aggregation phenomena, which limits their application. So, carbon 
materials must be functionalized to modify their physiochemical properties to over-
come this constraint [31]. The surface functionalization is a process of modifying 
the chemistry of the material surface to achieve a desire property. Depending on the 
types of interactions between active molecules and carbon atoms, functionalization 
techniques are broadly classified into physical functionalization and chemical func-
tionalization (Fig. 4) [32]. The physical functionalization (non-covalent) techniques 
include high impact mixing, rubbing, high shear mixing, ultrasonication, etc. These
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Fig. 3 Schematic diagram of semiconductor material heterojunction formation for photocatalytic 
hydrogen production

procedures can keep them from aggregating, but they may break apart throughout 
the process and lowering the aspect ratio. As a result, it is a time-consuming and 
ineffective approach. Chemical functionalization (covalent) is a method of attaching 
functional groups using covalent bonds by means of chemical treatment. This method 
can improve their dispersion stability and wetting or adhesion property so covalent 
factualization is the most preferred technique for changing the surface energy of the 
carbon materials without distressing its electrical, optical or mechanical properties. 
In this scenario, functionalizing the carbon nanomaterials using different chemical 
treatments is considered to be an effective strategy for improving the efficiency in 
the field of hydrogen generation via solar-mediated water splitting [33].
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Fig. 4 Functionalization methods of carbon nanotubes “Reprinted with permission from Jun et al. 
[18]. Copyright 2018 Elsevier” 

3 Carbon Material Nanostructure 

3.1 0D Carbonaceous Materials 

For the past two decades, chalcogenides quantum dots were appreciated for its opto-
electrical properties and application in various fields ranging from biology to tech-
nology. However, the prominent toxicity is associated with such limits their industrial 
applications. Highest market cost of such toxic dots leads the new entrant carbon-
based dots to be a promising alternative. The King of the element, namely carbon 
and their derivatives, can satisfy the profound quality in emerging economies [34, 
35] The history of carbon materials revealing the chemistry of the quantum effects in 
0D carbon material can solve the puzzle of their excellent properties (Fig. 5a) [36]. 
As a consequence of the quantum effect of matter at smaller atomic levels, discrete 
bandgap systems and edge effects are created with remarkable properties [37, 38].

3.1.1 Carbon Dots 

Since, after the discovery by Xu et al. carbon dot research fired up its perfor-
mance in photocatalysis and sensor applications [39, 40]. These sp2 hybridized 
carbon materials are known for superior stability, low toxicity, and tunable optical, 
conducting properties, etc., [41]. Functionalizations of C-dots make them as good 
photon absorber and excellent electron acceptor and donor [42–44]. 

A blend of mixed crystal TiO2 with carbon dots (CQDS) was synthesized, charac-
terized and revealed outstanding performance for H2 production by Tang et al. [45, 
46]. The yield of H2 was 280 μ mol h−1, which was higher than that using pure TiO2 

alone. CQDS act as an electron storage medium which may enhance charge transfer
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Fig. 5 a Evolution in carbon materials from the year 1859 to 2012 was “Reprinted with permission 
from Tian et al. [47]. Copyright 2018 Elsevier,” b pictorial illustration of photocatalytic mechanism 
for water splitting by GQDS and CQDS, c GQDS different synthesis approaches reproduced with 
permission from “Reprinted with permission from Shen et al. [48]. Copyright 2012 Royal Society 
of Chemistry”, d S-doped GQDs hydrogen splitting mechanism in 80% of ethanol/aqueous medium 
at pH 8 reproduced with permission from reference “Reprinted with permission from Gliniak et al. 
[49]. Copyright 2017 Wiley”

and inhibit e−-h+ pair recombination. The incorporation CQDS into TiO2 shifted the 
absorption and emission to visible region showing that electrons can be transferred 
from CQDS to TiO2. The inhibition of e−-h+ recombination was proved by weaker 
PL spectra of CQDS –TiO2 system. The hydrogen treatment of CQDS-TiO2 exhibited 
a better H2 generation activity than pure TiO2 due to improved optical activity of 
CQDS-TiO2. 

The CQDs-TiO2 samples showed prompt photocurrent response, while hydrogen-
treated CQDs-TiO2 indicated and enhanced photocurrent response. Such an observa-
tion clearly brings out the influence of CQDs in TiO2 on H2 yield improvement. Siu 
and co-workers investigated on photocatalytic hydrogen production of CQDs/TiO2 

nanosheets with major (001) plane. Furthermore, many previous reports on carbon 
quantum dots composites showed superior hydrogen gas (116.1 mol g−1 h−1) produc-
tion [50, 51]. C-dots can also show high performance as co-catalyst in water splitting 
reaction. Wang et al. [44] reported that CQDs/g-C3N4 composite are well suited for 
enhanced hydrogen production of 2.34 mmol g−1 h−1 but g-C3N4 alone showed only 
0.51 mmol g−1 h−1. The catalytic efficiency is four times that of pure material. The
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interaction of CDs and g/C3N4 hybrid improves charge transport capabilities as well 
as inhibits electron–hole recombination at the interface [52, 53]. 

Nitrogen-doped CQDs nanocomposite serves as an excellent material for photo-
catalytic H2 production. In addition to the early research, the superior photocat-
alytic activity was illuminated under visible and NIR irradiation using N-CDs/CdS 
nanocomposites, where lattice acid as a sacrificial reagent (consume the photogener-
ated holes by providing electron). The low visible light photocatalytic H2 evolution 
rate (14.8 mmol h−1 g−1) was achieved due to their rapid electrons (CB) and holes 
(VB) recombination for pure CdS. Shi et al. proved that the incorporation of N-CDs 
could successfully separate the charge carriers of cadmium sulphide, consequently 
enhancing the photocatalytic performance of N-CDs/CdS. The highest photocatalytic 
activity was found when 5 wt% N-CDs were loaded, with an optimum H2 evolution 
rate of 58.9 mmol h−1 g−1, which is approximately 5 times greater than cadmium 
sulphide alone. The H2 production rate decreased after the addition of N-CDs, which 
could be attributable to an excess of N-CDs covering the surface of CdS, resulting in 
lesser active sites for H2 production [54]. Additionally, these heterostructure carbon 
dots composite materials have high durability for hydrogen production. 

3.1.2 Graphene Dots (GQDs) 

Graphene dots with its incredibly smaller size, less than 30 nm, behave dually as 
graphene and quantum dots. GQDs derived from a 2D graphene exist mostly in ellip-
tical or circular shapes, and even some GQDs are triangular and hexagonal [55, 56]. 
These ultra-small GQDs with its interesting quantum confinement and edge effect 
properties usually emit green or blue fluorescence (quantum yields of GQDs are 
mostly at a range between 2 and 22.9%). These dots have superior biocompatibility, 
low toxicity, good chemical stability and enhanced luminescence compared to that 
of inorganic semiconductor dots. GQDs possess bandgaps between 2.2 and 3.1 eV 
[57, 58]. Figure 5c shows the traditional Nano synthesis approach for GQDs. Eco-
friendly, cheapest earth-abundant carbon materials were predominantly utilized for 
synthesizing GQDs [59]. Since 2008, after the discovery of GQDs, many researchers 
have consistently made progress in systematic tailoring and functionalization. After 
purification and chromatographic separation, these materials can be characterized 
by using material science techniques. Furthermore, the resulting GQDs function as 
a promising catalyst for hydrogen production and opens new prospects for carbon-
based materials research Fig. 5b [60]. Figure 5d illustrates the implication of graphene 
dots as a photocatalytic material to split water for large-scale hydrogen genera-
tion in the near future. For example, graphene oxide (GO) has better lifetime for 
200 days with photocatalytically water efficient of 575 μmol h−1 g−1 [61–63]. The 
contibution of graphene is more to improve the Water Splitting under light driven 
conditions [64]. N-doped graphene dots can be efficiently synthesized from carbon 
nano-onions using laser ablation method. Calabro et al. proved that the heteroatom-
doped graphene resulted in an efficient catalytic property [65]. Theoretical work 
also suggested that tailoring the bond environment of carbon atoms in graphene by
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heteroatom (boron, nitrogen and sulphur) can enrich the mobility of hole and elec-
tron, respectively, henceforth enhancing the water splitting reaction [66, 67]. Table 1 
illustrates hydrogen production efficiency of graphene materials. Yeh et al. employed 
nitrogen-graphene oxide quantum dots for water splitting application under visible 
light [68–70]. The rate of hydrogen generation efficiency of sulphur-doped graphene 
in the presence of different sacrificial electron donors was investigated by Tung 
et al. The results revealed that the highest performance up to 80% was detected 
in ethanol/aqueous medium at pH 8. Subsequently, a plausible mechanism for the 
improved water splitting (30,519 μmol h−1 g−1) and prolonged lifetime of the catalyst 
was justified by conducting the experiments in the presence of H2O2 [68, 71, 72]. In 
order to achieve enhanced photocatalytic performance, it is necessary to combine the 
graphene dots with TiO2. Figure 6a, b illustrates the reaction mechanism of the dual 
role of graphene dots as a sensitizer (for efficient light absorption) or as a co-catalyst 
(for enhanced charge separation) on biphasic TiO2. Compared to single-phase TiO2, 
the anatase/rutile nature of P-25 TiO2 resulted in efficient charge transfer which in 
turn, promotes hydrogen production rate up to 29,548 μmol g–1 h–1. This heterojunc-
tion provides systematic separation of electron–hole pairs, in addition dots amplify 
the photocatalytic behaviour of TiO2 [62, 64]. Similar to this work, many researchers 
investigated the graphene dots modified TiO2 nanotubes, titania nanosheet [57, 73, 
74] for enhancing the photocatalytic efficiency under UV light irradiation. Many 
worthwhile efforts have been made on the functioning of nitrogen-doped GQDs with 
TiO2 by Yeh et al. Also, Sudhagar et al. reported the sensitizing effect of GQDs on 
TiO2 nanowire and various TiO2 nanostructure [75].

To conclude, GQDs has played an eminent role in enriching the photocatalytic 
H2 evolution. Graphene dots’ co-catalyst can also function as an efficient photo-
harvester and facilitates the improving electron transfer property. As an alternative 
material for TiO2, composites of ZnO nanowire and graphene dots were replaced by 
many scientists and the water splitting was illustrated under solar irradiation [76]. 
In this system, graphene dot function as aid in harnessing the visible light as well 
as enhance the separation of charge carriers of metal oxide by trapping the electrons 
and thereby delaying the recombination of charge carrier present in TiO2 which 
results in better photocatalytic performance. Fabrication of graphene dots onto the 
surface of metal sulphide nanoparticles was clearly explored by Tian et al. and Lei 
et al. [62, 76, 77]. Also, Dinda et al. reported on covalent linking of rhodamine dye 
with graphene dots to produce hydrogen efficiently under visible light without any 
co-catalyst [78]. Henceforth, the graphene dots can play a dual role as co catalyst as 
well as photosensitizer in H2 evolution. Still the reason regarding the exact role of the 
graphene quantum dots system in hydrogen production mechanism is unclear. With 
current efforts to better study the behaviour of GQDs and develop new nanomaterial 
functionalities, it is expected that novel applications will prosper in the near future.
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Fig. 6 a and b the enhanced hydrogen generation by decoration of graphene QDs onto the bi-
phase TiO2 nanostructures “Reprinted with permission from Raghavan et al. [64]. Copyright 2020 
American Chemical Society”

Carbon Nanotubes (CNTs) 

The carbon nanotubes (CNTs) were discovered in 1991 by Sumio Iijima; it offers 
large surface area, excellent thermal conductivity, high electron emission, high 
thermal and chemical stability [86–89]. In the recent past decade, CNTs employed 
in photocatalytic applications have both metallic and semiconducting capabilities 
due to the chiral indices of the CNTs [90, 91]. CNTs have the potential to solve the 
challenges that semiconductors have in photocatalysis. 

CNTs are a one-dimensional structure of carbon allotropes; it is like tubular 
containing graphite. Also, CNTs are hollow cylinder, while rolling it formed single 
or multilayered graphene. The carbon nanotubes were classified into two types, 
(i) single-walled carbon nanotubes (SWCNTs) and (ii) multiwall carbon nanotubes 
(MWCNTs). The difference between SWCNTs and MWCNTs is listed in Table 2. A  
single-walled carbon nanotubes (SWCNTs) can be thought of as a single molecule
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Table 2 Comparative of SWCNTs and MWCNTs properties 

SWCNTs MWCNTs 

Graphene arranged in single layer Graphene arranged in multi-layer 

For synthesis catalyst is required It is possible to produce without catalyst 

Difficult to do bulky synthesis required suitable 
growth control and environment condition 

Easy to synthesis in bulk 

During functionalization defect should be more When using the arc-discharged technique, the 
chances of defect is reduced 

SWCNTs can be easily twisted MWCNTs cannot be easily twisted 

It is easy for evaluation and characterization It has very complex structure 

Fig. 7 a and b the formation of single-walled carbon nanotubes by rolling a graphene sheet along 
lattice vectors results in armchair, zigzag, and chiral tubes which are the three types of carbon 
nanotubes; c Proposed mechanism diagram of photocatalytic hydrogen production of Z-scheme 
g-C3N4/CNTs/CdZnS. “Reprinted with permission from Feng et al. [104]. Copyright 2021 Elsevier” 

with a wide range of structural characteristics such as diameter, length, and chirality. 
The pure SWCNTs are visualized as tubular shell rolled of graphene sheet layered 
by benzene kind hexagonal rings of carbon atoms [92–94] 

From these two different structures, it is possible for three different types of CNTs. 
They are armchair, zig-zag and chiral-type CNTs which are represented by indices of 
n and m. Therefore, when n = m represents armchair, when m = 0 represents zig-zag 
and other configurations represent chiral nanotubes [95–99]. Figure 7a, b represents 
the types of SWCNTs. The diameter and chirality are calculated by the following 
equation [100] 

D = a
(
n2 + nm + m2)1/2 /π
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θ = tan−1
[
31/2 m/(m + 2n)

]

The circumference of SWCNTs has 10 atoms usually and tube thickness is one-
atom-thick only, this nanotube have an aspect ratio of length- diameter was about 
1000, so it can be nearly considered as one-dimensional structures [95]. SWCNTs 
have a diameter of ≈1 nm consisting of only one atomic sheet which can be visu-
alized by rolled graphene (i.e. honeycomb structure sp2 of carbon atom) sheet. 
The sp2-bonded carbon materials give better mechanical properties [98]. The one-
dimensional SWCNTs are attracted researcher to explore 1D physics in the quantum 
regimes and new optoelectronic devices. Moreover, the most prominent property 
in SWCNTs is charity-dependent metallicity. CNTs have high thermal conduc-
tivity (3000 W/m/K, comparable to diamond), good chemical and environmental 
stability. Along with these properties, the lightweight of carbon nanotubes makes 
them extremely promising for use in industries such as aerospace [101]. MWCNTs 
are sp2 carbon made of elongated cylindrical nano-objects, and their diameter ranges 
from 3 to 30 nm, and they can grow to be several centimeters long, and therefore, their 
aspect ratio can range between ten and ten million. These MWCNTs can be distin-
guished from SWCNTs and double-wall carbon nanotubes. In MWCNTs, the wall 
thickness is constant along the axis; therefore, the inner channel is straight. A multi-
walled carbon nanotube is made up of as many large molecules as the number of walls, 
and each molecule is as long as the nanotube itself. Carbon materials are mostly used 
as supporting materials for semiconductor photocatalysts. In addition, photocatalyst 
hydrogen (H2) production was achieved by hybrid photocatalyst of semiconductor– 
carbon photocatalysts. The surface chemistry of carbon materials influences the 
interaction between semiconductor nanoparticles and carbon materials [102]. In this 
aspect, Wang et al. fabricated the MWCNTs as a supporting material of ZnxCd1−xS 
nanoparticles by the solvothermal process, where Zn(AC)2·2H2O, CdCl2·2/5H2O 
and thiourea were used as the precursor material to prepare ZnxCd1−xS. The average 
diameter of Zn0.83Cd0.17S nanoparticle was found ∼100 nm which was assembled 
on the surface of CNTs. Moreover, the combined Zn0.83Cd0.17S/CNTs nanocom-
posites give better dispersion and interfacial area. The excited photoelectron will 
move from the conduction band (CB) of Zn0.83Cd0.17S to the surface of CNTs, 
resulting in the separation of photogenerated charge carriers at the interface between 
Zn0.83Cd0.17S and CNTs. Under wavelength illumination ranging from 300 to 800 nm, 
the photocatalytic H2 production rate of Zn0.83Cd0.17S/CNTs nanocomposite was 
6.03 mmol h−1 g−1, which was 1.5 times than that pure Zn0.83Cd0.17S [103]. 

The MWCNTs/Pd-TiO2 photocatalyst was tested for H2 production under UV 
light which shows the production of H2 as 25 mmol g−1 h−1; this can be achieved 
due to electronic junction supporting the charge transfer between the MWCNTs-
TiO2. Moreover, the CNTS acts as a co-catalyst and excellently transfers the elec-
tron between Pd and TiO2 [105]. Umer et al. investigated the montmorillonite (Mt) 
dispersed in single-wall carbon nanotubes (SWCNTs)/TiO2 composite to produce 
photocatalytic H2 evolution under visible light conditions. The SWCNTs-Mt (2– 
10 wt%)-doped TiO2 produces H2 volume of ca. 9780 ppm h−1 g−1. To enhance the
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separation efficiency of better absorption of visible light and photogenerated charge 
carriers are originated through synergic effect between Mt and SWCNTs. The co-
doping between Mt and TiO2 enhances the separation efficiency of electron/hole pairs 
[106]. As well as, CNT-Pt/TiO2 photocatalysts prepared via hydrothermal and one-
pot oxidation for production of photocatalytic hydrogen from glycerol and methanol 
from aqueous solutions. The H2 production is increased by varying CNTs wt% in 
the range of 1–10 wt% loading with TiO2 reported by Naffati et al. [107]. Moreover, 
this synergic effect enhances the separation of charge carriers and mobility in hybrid 
materials promoted by CNTs. The 1 wt% of CNTs with Pt/TiO2 shows the highest 
photocatalytic H2 production under UV-LED of (384 nm) irradiation. Although using 
methanol with this reaction produce H2 of 2327 and 2091 μmol g−1 was obtained 
using glycerol. In this aspect, Peng et al. [108] synthesized MWCNTs/CdS (cadmium 
sulfide) by hydrothermal method. The 10 wt% of MWCNT with CdS derived from 
at 160 °C shows high photocatalytic hydrogen production efficiency due to its fastest 
carrier separation. In MWCNTs, the presence of carboxyl leads to good chemical 
bonding between MWCNTs and CdS nanoparticles which result in the synergic 
effect of CNTs and CdS. The binary MWCNTs/CdS nanocomposite is efficient 
under visible light-driven photocatalysts which shows better durability due to their 
good chemical bonding between composites of MWCNTs/CdS, which enhanced the 
separation efficiency and charge separation and its potential for the developing of 
efficient photocatalysts for H2 production. Feng et al. [104] performed the photocat-
alysts hydrogen production on g-C3N4/CNTs/CdZnS which is shown in Fig. 7c. The 
CdZnS nanoparticles are compounded uniformly on the surface of g-C3N4/CNTs 
to form the heterojunctions which improve the photocatalytic H2 production. More-
over, the mass ratio of 1:8 (g-C3N4/CNTs to CdZnS) displayed better performance 
on photocatalytic H2 production of 28.74 mmol g−1 h−1. Z-scheme heterojunctions 
improves the system separation efficiency and photogenerated carrier lifetime on 
these ternary nanocomposites, which can make better and continue to produce H2 

efficiently and stably. 

3.2 2D Materials 

The material’s properties are impacted not only by its chemical bonding but also by 
its dimensions and shape at the mesoscopic scale. This is especially true in the case of 
carbon-based materials. Carbon possesses four valence electrons in its ground state, 
two in the 2s subshell and two in the 2p subshell. While establishing bonds between 
neighboring atoms of carbon, the transfers of one 2s electrons into the unoccupied 2p 
orbital take place and then create bonds with additional atoms through the orbit of sp 
hybridization. Depends on the number of p orbitals (one to three) mashing up with the 
s orbital the sp hybridization is categorized by three types which are sp, sp2, and sp3 

hybridization. The hybridized carbon atoms in the form of sp2 and sp3 establish bonds 
with three and four carbon atoms, respectively. These carbon-based building blocks 
are known as two-dimensional (2D) materials which include graphene, graphitic
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carbon nitride and graphdiyne. The arrangement of carbon atoms on a honeycomb 
lattice brought outstanding properties includes exceptional electronic, mechanical, 
and optical properties. Owing to its outstanding characteristics, two-dimensional 
(2D) materials have fascinated a lot of interdisciplinary research consideration in the 
field of energy and environmental applications. In that perspective, utilization of 2D 
materials for the generation of H2 from the process of photocatalytic water splitting 
is the most idealistic method for gaining carbon-free fuel [109]. 

3.2.1 Graphene 

The wonder material “graphene” was discovered in 2004 by Geim and Novoselov 
[110]. The discovery of graphene ushered in a new era of the materials world and 
is much recognized for its exceptional properties such as large surface area 
(2630 m2 g−1), outstanding electronic mobility (200,000 cm2 V−1 s−1), high thermal 
conductivity (3000 W m−1 K−1) and robust mechanical strength (1060 GPa). Various 
physical methods have been tried to isolate a single-layer defect-free graphene sheet. 
Chemical vapour deposition (CVD), thermal exfoliation, solvent assisted exfoliation 
and ultrasonication are a few examples [111]. However, commercial implementation 
is hampered by expensive and time-consuming methods as well as the inability to 
produce big quantities. So chemical oxidation method is adopted to oxidize graphite 
by involving strong oxidizing agents for the formation of graphite oxide, and from 
this procedure, graphene oxide (GO) can be obtained easily through the repulsive 
forces acting between negatively charged sheets [112, 113]. The GO sheets can be 
partially diminished via hydrothermal, chemical, or thermal exfoliation methods to 
obtain reduced graphene oxide (rGO) [114]. Despite the fact that these techniques 
generate graphene sheets with few defects, their properties are identical to graphene. 
When graphite is oxidized to graphene oxide (GO), it becomes a semiconductor. The 
addition of various oxygen-carrying functions to graphene via oxidation converts 
some of the sp2 carbons into sp3 carbons, owing to the breaking of the p-conjugated 
system [115]. The carbon skeleton of GO turns positive due to the higher elec-
tronegativity of oxygen, and GO behaves as a p-type material [116]. The presence 
of both sp2 (conducting) and sp3 (non-conducting) carbons results in the formation 
of bandgap which exclusively depends on the degree of oxidation. The bandgap of 
GO can be controlled by adjusting the oxidation level. At first, the splitting of water 
into hydrogen and oxygen using GO was reported by Yeh et al. [69]. Depending 
on the oxidation level, the bandgap of GO was found to be 2.4–4.3 eV, and this 
bandgap was capable of meeting the water splitting threshold that is 1.23 V. After 
6 h of visible light irradiation, the negative conduction band produced a hydrogen 
(H2) yield of 280 μmol and then the yield of hydrogen increased to 17,000 μmol 
when methanol was used as a sacrificial donor. Furthermore, to improve the hydrogen 
evaluation rate, graphene oxide (GO) can be composited with other inorganic semi-
conducting materials. Owing to the negatively charged surface of GO, the inorganic 
nanomaterials were immobilized by attractive force acts between them. Additionally,
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GO offers seamless nucleation sites for the growth of metal oxide semiconducting 
nanoparticles and also prevents them from agglomeration. 

Graphene-Based Composites 

TiO2 is widely utilized in photocatalytic hydrogen generation from water splitting 
because of its inexpensiveness, lack of toxicity and great stability [117]. Zhang 
et al. [118] explored photocatalytic H2 evolution of TiO2/graphene sheets (GS). 
The results indicate the increase in H2 production with increase in GS content 
(4.5 μmol h−1–5.4 μmol h−1), respectively. Shen et al. [119] demonstrated the 
superiority of TiO2/rGO synthesized via one-step hydrothermal method, and the 
composite displayed a H2 yield of 4.0 μmol h−1 under irradiation of UV–visible 
light. The increased activity of the composite may be due to interfacial transfer 
of electrons from TiO2 to graphene which is assisted by the energy-level variations. 
Xiang et al. [120] prepared graphene-modified TiO2 nanosheets through microwave-
hydrothermal method and exhibits a H2 yield of 736 μmol h−1 g−1 by an AQY of 
3.1%. The high H2 production may be ascribed to the composite material (TiO2 modi-
fied graphene sheets) which acts as an electron acceptor and efficiently restricts the 
recombination rate of electron–hole pair. Lv et al. [121] demonstrated the fabrication 
of photocatalysts containing CdS or TiO2 graphene composite by one-pot synthesis 
method, and hydrogen-generating ability of the photocatalysts was examined using 
sacrificial electron (SA) donors (Na2S and Na2SO3). Min et al. [122] investigated 
the MoS2 confined on RGO sheets attached with Eosin Y as SA in photocatalytic 
systems for H2 evolution, and it exhibits a AQY of 24% under visible light irradiation 
(≥420 nm). Tran et al. [123] studied Cu2O/rGO composite for hydrogen genera-
tion, and they tried to overcome the rapid deactivation of Cu2O via photocorrosion 
phenomenon, which causes due to the redox reaction of Cu2O to CuO and Cu. Khan 
et al. [124] investigated the significance of Al2O3/CdS/GO and ZnO/CdS/GO in H2 

evolution with SA (Na2SO3 and Na2S) which displays an AQY of 14% and 30%. 
Mou et al. [125] prepared RuO2/TiSi2/graphene as photocatalyst for H2 generation 
via water splitting. However, increasing the amount of RuO2 on the surface of TiSi2 
resulted in charge recombination centres. Furthermore, similar action was found with 
addition of RGO, where 1% loading amount of RGO works as an enhanced charge 
transport and further increasing the loading, resulting in a decrease in H2 evolution. 
Based on the discussion, graphene and graphene-based composites clearly act as an 
effective support for semiconducting photocatalysts, particularly for generating H2 

via water splitting. The importance of graphene and graphene-based composites in 
suppressing the recombination rate in single and dual semiconducting photocata-
lysts has received a lot of attention. Even though the performance of graphene-based 
photocatalysts in water splitting is critical, graphene’s high production cost delays 
the commercialization process.
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3.2.2 Graphitic Carbon Nitride 

As another type of layered 2D material is graphitic-phase carbon nitride (g-C3N4) 
which sparked lot of curiosity among scientists because of its unique structure and 
interesting characteristics. Since it discovered in 1834, carbon nitride (C3N4) has 
been considered as ace of the earliest organic conjugated polymers which has five 
phase classifications together with α, β, cubic, pseudocubic and graphitic phase. 
Specifically, g-C3N4 is made up of layers of 2D conjugated structures with s-
triazine or tri-s-triazine subunits linked by tertiary amines. Thermal polyconden-
sation (Fig. 8a) is used to make g-C3N4 from low-cost carbon-based precursors 
which contains nitrogen urea, cyanamide, thiourea, melamine and dicyanamide. 
Initially, Biureate is formed when it dimerizes and then it cyclizes to cynauric acid, 
which combines with the ammonia gas to produce ammelide and melamine during 
pyrolysis. The graphite-like planer architecture with p-conjugated systems allows 
charge carriers to be transported, whereas the bandgap of 2.7 eV allows it to work 
in the visible region of the solar spectrum at approximately 460 nm. The benefits 
of g-C3N4 consist of visible light responsive, better thermal stability in ambient 
conditions, good chemical resistivity and eco-friendly. Furthermore, the electronic 
band position of the negative conduction band (CB) is higher than H+/H2 and the 
positive valence band (VB) superior than H2O/O2 drives the g-C3N4 specifically in 
the H2 production from the solar-driven water splitting process [126, 127]. Hong 
et al. [128] prepared g-C3N4 nanosheets by directly thermal calcination method 
using an optimized hydrothermally treated melamine as precursor. The resulting 
nanosheets had outstanding visible light-driven photocatalytic water splitting capa-
bility of 503 mol h−1 g−1 hydrogen evolution (Fig. 8b). One of the initial efforts 
by Wang et al. [129] reveals the usage of g-C3N4 to yield H2 by water splitting 
process in the presence of triethanolamine which generated 0.1–4.0 μmoles/h under 
the irradiation source of visible light. Upon the addition of co-catalyst (3% Pt), the 
yield of H2 was increased by further 10–15%. However, its photocatalytic activity 
is limited by its lower electrical conductivity, higher recombination rate, and poor 
light absorption. Several approaches were indeed made to enhance the photocatalytic 
activity g-C3N4 which are doping, tailoring the nanoarchitecture, incorporation of 
noble metal, development of heterojunctions with other photoactive materials.

The g-C3N4 catalyst based on heterojunctions has received a lot of attention 
because of its synergistic behaviour. So, using the impregnation and chemical reduc-
tion method, the nanocomposites of g-C3N4 and graphene oxide (GO) were synthe-
sized by thermally treating melamine and GO at 550 °C in inert environment [130]. 
In this context, graphene served as conductive pathways, allowing the charge carriers 
to be effectively separated. So, the graphene/g-C3N4 nanocomposite displays a H2 

production of 451 μmol h−1, which the pure g-C3N4 possess 3.07 times lesser. Song 
et al. reported that their prepared rGO/g-C3N4 via a simple hydrothermal reduc-
tion method yields a H2 production rate of around 55.8 μmol h−1 g−1 [131]. To 
increase the photoactivity of g-C3N4, Zou et al. [132] created a nanocomposite of N-
GQDs/g-C3N4 using a simple method. Because of the various functions served by the 
N-GQDs, this nanocomposite demonstrated enhanced activity in photocatalytic H2
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Fig. 8 a The synthesis of g-C3N4 by thermal polymerization of various precursors is depicted 
schematically. “Reprinted with permission from Ong et al. [138]. Copyright 2016 American 
Chemical Society.” b Stability test of hydrogen production over the g-C3N4 nanosheets. g-C3N4. 
“Reprinted with permission from Hong et al. [128]. Copyright 2017 Elsevier.” c Mechanism for H2 
evolution by using N-GQDs/CN-U. “Reprinted with permission from Zou et al. [132]. Copyright 
2016 Elsevier.” d The synthesis of Cd0.5Zn0.5S@C3N4 and visible light-driven H2 production are 
depicted schematically. “Reprinted with permission from Yao et al. [135]. Copyright 2016 Elsevier”

evolution of around 43.6 mol h−1 that would have been 2.16 times larger compared 
to pure g-C3N4. Figure 8c illustrates the photocatalytic H2 evolution pathway in 
N-GQDs/g-C3N4. As per the suggested mechanism, g-C3N4 absorbs in the region 
(420–470 nm) and results in production of charge carriers. On the contrary, absorbed 
light at 600–800 nm by g-C3N4 generates electron and hole. As a result, electrons 
from the conduction band of g-C3N4 migrated to the edge of N-GQDs and those elec-
trons are having ample time to convert H2O to H2 because of its effective separation 
of charge carrier. Another approach has been reported by utilizing ZIF-8/g-C3N4 

prepared by simple thermal condensation method which exhibits a H2 evolution 
32.6 μmol h−1 that was 36.2 times higher compared to bare g-C3N4 [133]. Wang 
et al. [134] reported the integration of silicon carbide (SiC) with g-C3N4 for the 
first time. The composite had a high photoactivity and a rate of H2 generation of 
182 mol h−1 that was 3.4 times higher than the pure g-C3N4. The band edges of SiC 
and g-C3N4 matched appropriately to generate a heterojunction photocatalyst with 
better electron–hole separation. 

Yao et al. proposed a Type-II photocatalyst with excellent efficiency composed 
of 2D g-C3N4 micronanoribbons and Cd0.5Zn0.5S quantum dots Fig. 8d [135]. The 
authors integrated the virtues of nanostructure engineering based on the benefits
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of Type-II structures. The composite displays the maximum H2 generation rate of 
33.41 mmol h−1 g−1 and an AQY of 46.65% at visible light irradiation (450 nm). 
In g-C3N4-based Z-scheme systems, the narrow bandgap oxides have fascinating 
potentials throughout the evolution of O2 in water splitting process. She et al. [136] 
demonstrated that a 2D hybrid made up of g-C3N4 nanosheets and Fe2O3 nanosheets 
coupled with a tight interface may be used to build a direct Z-scheme all-solid-state 
system for photocatalytic water splitting process. The composite showed an excellent 
hydrogen evolution rate of 30 mmol g−1 h−1 and an AQY of 44.35% under the irra-
diation of visible light (420 nm). Similarly, in order to achieve optimal performance, 
the main factors that have a substantial impact on water splitting efficiency must be 
optimized are: type and concentration of redox mediator, the pH value of the reaction 
medium and the weight per cent between two photocatalysts. Tang et al. prepared 
the combination of BiVO4 and WO3 with g-C3N4 to form a Z-scheme system with 
taking the above factors into account. Under ideal condition, g-C3N4/WO3 (I/IO3 as 
a redox mediator) exhibits a H2 and O2 evolution of 36 and 18 mol g−1 h−1, while 
for g-C3N4/BiVO4 the corresponding evolutions are 21.2 and 11.0 μmol g−1 h−1 by 
using Fe2+/3+ as a redox mediator [137]. 

Moreover, the intriguing metal-free structure and high physicochemical stability 
of g-C3N4 materials offer both technical potential and mechanistic vision into the 
water splitting mechanism. By modifying the exterior construction of g-C3N4 built 
on strategies like Type-I and Z-scheme deliberately improves the efficiency and 
durability in mutual of hydrogen evolution half reaction and overall water splitting 
process. 

4 Conclusion 

The advantages of carbonaceous based (0D, 1D and 2D) nanostructures composites 
in photocatalytic water splitting were emphasized in this chapter. These carbona-
ceous nanostructure materials revealed to have strong carrier transport and elec-
tron accepting capabilities, which are the most important qualities for increasing 
hydrogen generation efficiency by increasing the visible light absorption. In addi-
tion, the carbonaceous nanostructured-based semiconductor photocatalytic materials 
enhance the hydrogen evolution efficiency and displayed outstanding stability, where 
the integration of semiconducting materials established the effective transfer of an 
electron between the heterostructures and efficient separation of charge carriers. 
Also, the photocatalytic semiconductors act as an efficient light adsorber and elec-
tron acceptor which enhance the overall efficiency of water splitting. In conclusion, 
carbon-based nanostructures have a great potential in water splitting application as 
photocatalytic hydrogen generation.
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Chapter 11 
Design of Porous Carbon-Based 
Electro-Catalyst for Hydrogen 
Generation 

Kamlesh, Satya Prakash, Deepika Tavar, Pankaj Raizda, Pradeep Singh, 
Manish Mudgal, A. K. Srivastava, and Archana Singh 

1 Introduction 

For the rapid growth of the nation, it is extremely required to develop sustainable and 
environment-friendly energy sources, which is more stable, renewable, and efficient. 
The electricity generated in an excess amount over the consumption, it should be 
important to store to be used later. Otherwise, that part will be wasted. This can be 
increasing the production cost per unit of electric energy. Furthermore, when electric 
energy is produced from primary sustainable energy sources such as the sun and 
wind, storage is very necessary because these renewable sources are seasonable and 
unstable, some time the sun doesn’t shine and the wind doesn’t blow. Electric energy 
is not easy to store on large scale. For this purpose, special devices, and methods 
are needed. Presently, a lot of researchers and technologists have been continuously 
working on the global capacity of energy storage methods and significant long-
lasting device fabrication (Word energy council, 2019). According to the international 
energy agency (IEA) report, in 2019, the energy storage capacity has risen by 100% 
in 2018 compared to 2017. Apart from electricity, the main necessity to store fixed 
energy is to meet portable forms necessary for so many widespread purposes in the 
present period. The first significant device was a battery such as a lithium-ion battery, 
which is still the most used storing device due to its greater than 90% of output.
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2 Global Energy Perspective 

The current population of the world is about 786 crore which increases annually by 
1.05%. The global annual population growth rate is projected to be 81 million people 
[1]. Currently, the energy consumption of the world is 624 × 1018 J and will continue 
to surge as the population rises, especially as the standard of living goes up. When 
analyzing energy use, the way of living becomes a crucial factor to consider. Energy 
demand increases at the same rate as population growth as delineated in Fig. 1 [2]. 

In the Twenty-first-century, fossil fuel and electricity produced via coal and oil 
fulfilled the world’s energy needs. The burning of fossils fuels singly contributes 
three quarters in greenhouse gases emission globally which lead to global warming. 
Fossil fuels are responsible for a significant amount of local air pollution, which 
causes at least 5 million premature deaths every year [3]. In 2018, global CO2 emis-
sion from fuel combustion hit 33.5 Gt owing to vigorous growth in population and 
economic activity. In a similar manner to the previous year, non-OECD (organization 
for economic co-operation and development) countries including India was mainly 
responsible for emission growth in 2018. Furthermore, the United States saw a rise 
of over 3%, reversing a downward trend that began in 2015, while European Union 
and Japan continued to fall. Emission decline was observed in advanced economies 
like the United States, Germany, and Japan but still increases in China and became 
steady in India, according to provisional data for 2019. Figure 2 depicts the CO2 

emission in selected economies from the year 2000 to 2019 [4]. To scale down the 
problems related to CO2 emission the world has to focus on clean and renewable 
sources of energy. Hydrogen is the most promising source in this regard. Here, the 
question arises in the mind of everyone why hydrogen and not any other element or 
renewable resources.

Fig. 1 World population 
versus total energy 
consumption 
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Fig. 2 CO2 emission in selected economies, 2000–2019 

3 Hydrogen Energy 

To avoid these problems, there are unstable energy sources that can be alternated into 
stable hydrogen energy. Hydrogen energy can be used as a storage medium to supply 
power during these times due to its great mass-energy density (120 MJ/kg) value, 
with a specific energy content 2.5 times higher than hydrocarbon and zero-emission 
of greenhouse gases. Hydrogen as a fuel may be generated from numerous sources 
of fossil fuels, in which every one of these introduces a distinct amount of pollution, 
technological barriers, and energy inputs. For hydrogen generation, water has been 
the most common naturally available and cheapest raw material. 

There are several reasons but the most significant is their abundance in the whole 
universe, accounting for approximately 75% of the universe’s elemental mass and 
providing clean fuel. Although it is the most abundant element but does not exist as 
a distinct type of matter rather present in a combined form with other elements. It 
necessitates a significant effort and high cost to collect hydrogen molecules from its 
associated compounds [5]. The use of hydrogen and hydrogen-containing compounds 
to produce electricity for all practical purposes with high energy competence, massive 
environmental and social welfare, and economic competitiveness is what hydrogen 
energy is all about [6]. 

Hydrogen is referred to as an energy carrier because it is a secondary source of 
energy. Hydrogen is preferred as potentially green fuel because of its clean-burning 
properties, a higher heating value equal to 142.18 MJ/kg, domestic output capacity, 
development of the fuel cell vehicles besides its 2–3 times higher performance
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prospects than gasoline. Because of its high energy density and low volumetric 
energy density as 1 kg of it produces the same amount of energy as 1 gallon of 
gasoline, NASA used it to propel spacecraft and rockets in the 1970s [7]. 

3.1 Fors and Against of Hydrogen Energy 

(A) Pros of Hydrogen Energy 

• Replenishable and ample in supply: Since hydrogen is a renewable energy 
source, it is a plentiful source of energy that surrounds us. 

• Clean source of energy: There are no toxic byproducts emitted into the 
atmosphere as hydrogen is burned. 

• Non-poisonous: Unlike nuclear energy or natural gas, hydrogen gas is harm-
less to human health. It also permits hydrogen to be used in locations where 
other fuels are prohibited. 

• Highly efficient: Hydrogen has a high energy density and can generate a lot 
of electricity. Since it is three times more efficient than most fossil fuels, 
it needs less hydrogen to perform the same tasks. This is why hydrogen is 
used to power spaceships, aircraft, warships, vehicles, and fuel cells. 

(B) Cons of hydrogen energy. 

• Volatile: The high flammability and explosive nature of hydrogen make it a 
dangerous fuel to deal with. 

• Expensive to produce: The two principal processes of hydrogen produc-
tion, steam methane reforming, and electrolysis are very costly. Extensive 
research is underway to find an inexpensive, long-term process to generate 
hydrogen with zero CO2 emissions to the atmosphere. 

• Difficult to store: Hydrogen is low dense in comparison to gasoline because 
of which it is difficult to store and transport, so to store it must be compressed 
to a liquid state and kept at a low temperature. 

4 Hydrogen Generation 

Although hydrogen is one of the highest available elements found in the universe, 
yet it does not find in its free form on the earth because of its low density and high 
reactivity with other elements. Hydrogen can be produced on this basis from other 
molecules. Hydrogen may be generated via different available sources including 
fossil fuels, biomass, water, or a combination of these. Currently, more than 95% 
of global hydrogen is produced from non-renewable sources, particularly steam 
reforming of methane from fossil fuels [8, 9]. However, using fossil fuels results
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Fig. 3 General strategy for converting unstable renewable energy sources into stable, long lasting 
and transportable hydrogen energy 

in lower hydrogen purity and the emission of higher quantities of harmful green-
house gases [8, 10]. Nowadays, there is a lot of emphasis on ecologically sustainable 
energy solutions that can help to minimize existing energy sources based on fossil 
fuels. This is possibly achieved when renewable sources like water and primary 
renewable energy sources should be used for energy sources to split the water into 
hydrogen [8]. Figure 3 demonstrates, how the unstable renewable energy sources can 
be converted into a stable, long durable, and easily transportable energy source in 
the form of hydrogen. In such a manner, renewable energy sources like the sun can 
be used directly used to split water via photolysis, another way is water electrolysis, 
where electricity is produced from renewable energy sources. Water electrolysis is a 
significant approach to produce ecologically safe and high-quality hydrogen with a 
purity of 99.99% and oxygen gas among several types of procedures. In this chapter, 
we are only focusing on water electrolysis. 

4.1 Hydrogen by Electrolysis 

Water splitting is a method where molecules of water are broken down into the sepa-
rated form of hydrogen and oxygen molecules. This process is a thermodynamically 
non-spontaneous reaction; ΔG > 0 [11, 12], so some type of energy is required for
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completion of it, which is equal to released energy during the creation of one mole 
of water molecules inside the fuel cell at the same condition from gaseous hydrogen 
and oxygen. Based on applied energy, the water-splitting process is called photolysis 
for photon energy, thermolysis for thermal energy, electrolysis for electric energy, 
and so on. Here, in this chapter, we are mainly concerned with electrolysis. 

The water electrolysis is a redox process; 

O + ne− = R 

The electrode potential (E) for such reaction can be calculated by the Nernst 
equation; 

E = Eo − 
RT 

nF

[
ln

(
CR 

Co

)]
(1) 

where Eo is the standard thermodynamic equilibrium potential, it is a minimum 
potential value that is compulsory for water degradation reaction, and it has been 
calculated from the following equation;

ΔGo = −nF  Eo (2) 

For the water electrolysis process, the standard change of Gibbs free energy (ΔGo) 
is 237 kJ/mol, n represented to the number of electrons associated with the reaction, 
and F (96,500 C/mol) is a constant known as Faraday’s constant. From Eq. (2), the 
standard theoretical thermodynamic required potential is 1.23 V for water electrolysis 
into hydrogen and oxygen. 

The complete water electrolysis reaction is a combined form of two half-reactions 
that occur almost simultaneously, one is hydrogen evolution reaction (HER; 4H2O 
+ 4e− → 2H2 + 4OH) at the cathode and the other is oxygen evolution reaction 
(OER; 4OH− → O2 + 2H2O + 4H+) at the anode. The electrolysis process is more 
feasible in acidic or alkaline media compared to neutral because of the available 
free H+ ions for HER in acidic solution and OH− ions for OER in alkaline solution. 
It was observed that change in pH from alkaline to acidic has a significant effect 
on the HER and OER kinetics, which attracted much attention in the fundamental 
studies based on computational modeling separately for the HER and OER half-cell. 
In such studies, queries arises on the importance of electrolyte used, electrolyte-
electrolyte interface, pH, reaction dynamics and reaction kinetics and are currently 
at the forefront of the electrochemistry. 

However, these reactions do not complete at thermodynamic equilibrium potential 
and required some extra amount of potential to overcome the energy barriers involved 
in the activated process correlated with specific reaction intermediates. This addi-
tional potential value is called overpotential or overvoltage and is represented by the 
symbol η. This overpotential can be calculated from Eq. (3) 

η = E − Eeq (3)
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It is a difference of applied potential (E) and the thermodynamic equilibrium 
potential (Eeq). The Eeq for HER and OER are 0 and 1.23 V versus NHE, respectively. 
The overpotential is a specified applied potential for reaching a current density of 
10 mA/cm2 in water electrolysis, and a smaller value of overpotential implies the 
higher activity of a particular electrocatalyst [13, 14]. 

5 Electrocatalyst 

As discussed above, water electrolysis is made up of two spontaneous half-cell reac-
tions called HER on the cathode and OER on the anode. The OER is often slower than 
the HER in terms of kinetics, indicating that the OER has a greater overpotential at the 
anode due to the multi-step, and multi-electron process. The total water electrolysis 
efficiency depends on both HER and OER. Using a proper electrocatalyst reduced 
the kinetics barrier of the reactions resulting in a decrease in the overpotential value 
which improves the overall efficiency of the reaction. 

The electrocatalysts based on expensive elements like Ir and Ru are till now 
reported as best for water electrolysis because of their fast kinetics, excellent stability 
across a broad pH range with low overpotential [13, 15]. Pt and Pd were also used 
despite their limited efficiency, the order of performance is Ru > Ir > Pt > Pd [16, 
17]. In addition, RuO2 and IrO2 are higher efficient and more stable electrocatalysts 
in alkaline solution than their pure form because pure Ru and Ir metal electrodes are 
oxidized and often leach in electrolyte solution during long-term testing [18]. Gener-
ally, porous materials with large specific surface areas provide numerous advantages 
in electrochemical reactions. Because of their exceptional physicochemical features, 
huge surface area, strong electron conductivity, high abundance, and inexpensive, 
carbon-based materials may be widely exploited to tackle energy and environmental 
concerns. In the last 10 years, carbon-based materials (Fig. 4) such as graphitic 
carbon nitrite (g–C3N4), carbon nanotubes (CNTs), and graphene, which is made up 
of earth-abundant non-metallic elements (C, H, N, O, and so on) have been devel-
oped as alternative water electrolysis catalyst [19–24]. Surprisingly, several of them 
have been discovered to have equivalent or even greater efficiency for HER and 
OER reaction than a pure metal-containing catalyst, in which a metal, a gaseous 
heteroatom, and a range of organic functional groups can be used to effectively 
adjust/alter the chemical properties of a carbon matrix [25]. In general, there are 
two types of methods for chemically doped carbon-based materials: (1) adoption-
based doped materials, which is made of by adsorbing metal, heteroatoms, or organic 
molecules onto the carbon-based materials; (2) substitutional doped materials, which 
is made by replacing carbon atoms with foreign atoms. Both methods can change the 
physiochemical properties of the materials, resulting in catalytically active materials 
toward HER and OER reaction [26].
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Fig. 4 Schematic 
demonstration of different 
carbon-based materials, 
which can be converted into 
porous electrocatalyst 

5.1 Porous Carbon-Based Materials as Water Electrocatalyst 

Being a heterogeneous process, water electrolysis occurs at the interface, porous 
materials have attracted a lot of attention as prospective catalysts. Porous materials are 
distinguished from bulk materials by their unique chemical and physical properties. 
Porous materials are useful in water electrolysis because they provide a large surface-
to-volume ratio in the form of a higher available catalytic active site and an easier path 
for mass diffusion. Especially carbon-based materials are stable in a large range of pH 
as an electrocatalyst. The surface area, pore volume, and pore size of the carbon-based 
materials depend on their synthesis methods and primary carbonization precursor. In 
such a manner, Ding et al. synthesized different porous carbon-based materials using 
the same parameters with silica as a template method to compare their physical and 
chemical properties for the electrocatalytic application. They found that the primary 
discharge capacity of catalysts of Li–O2 batteries depends on the surface area and 
pore size of the electrode [27]. For water electrolysis, available active sites are the 
dominating factor at a limited value after that pore size plays a major role in the 
activity. According to Ding et al., the porous carbon material’s pore size up to 60 nm 
exhibits no difference in OER current density after that increase in the pore size 
OER current density also increases [27]. This demonstrates that a bigger pore size 
and surface area are beneficial for an electrocatalytic process due to the diffusion of 
oxygen. The physiochemical properties of porous carbon materials also depend on 
the surface chemistry in the form of a variety of functional groups. The functional 
groups on the surface are mostly formed by different activation method such as 
thermal, microwave, and ozone treatment and post-chemical treatment of different
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precursors of heteroatoms [28]. Modifying the surface chemistry of particular porous 
carbon materials could be a practical and attractive path to use novel uses for such 
materials. The hydrogen, nitrogen, oxygen, halogens, sulfur, and other heteroatoms 
on the surface of porous carbon bond to the edge of carbon layers and control the 
surface chemistry of the materials. Among all the heteroatoms, oxygen-containing 
functional groups also known as surface oxides were most common for sensors, 
electrocatalytic, energy storage, adsorption, and other catalytic application [28–30]. 
Except from that, porous carbon material have received a lot of interest as a potential 
solution for hydrogen storage because of its large surface area, light weight, faster 
kinetics, and totally reversible [31]. 

According to the International Union of pure and applied chemistry (IUPAC) 
based on pore size, porous materials are classified into three types: (1) having a pore 
size greater than 50 nm; macroporous (2) with pore size between 50 and 2 nm; meso-
porous (3) with a pore size less than 2 nm microporous [32]. Furthermore, the pore 
size smaller than micropores known as sub-micropores can be further divided into 
super-microporous with pore diameter range from 2 to 0.7 nm and ultra-microporous 
of diameters below 0.7 nm [32]. Apart from this some of the literature used word 
nanopores materials which are used for the pore’s diameters 100 nm or lesser. The 
Brunauer–Emmett–Teller (BET) and Brarrett-Joyner-Hallender (BJH) and Dubinin-
Astakhov (DA) techniques have been used to calculate the specific surface area and 
average pore diameters of the porous carbon materials, respectively [33]. These tech-
niques are based on gas adsorption isotherm where inert gases like nitrogen or argon 
molecule are adsorbed over a wide range of pressure, recently scanning tunneling 
microscopy has been widely used. Typically, multilayer adsorption phenomena of 
nitrogen molecules have been used for calculating the mesoporous range of mate-
rials. Whereas, double layer or a single layer of nitrogen or helium molecules is used 
for the microporous material. 

5.2 Graphene-Based Material 

Graphene is a hexagonal honeycomb-shaped 2D monolayer material, where carbon 
atoms are sp2 hybridized. Graphene is the fundamental building block for a wide 
range of graphitic materials, such as 0D fullerene, 1D CNTs, 3D graphite, and even 
additional for 3D carbon structure. In general, pure/ideal graphene shows very bad 
catalytic behavior due to its narrow bandgap [34]. However, the bulk production of 
graphene using a chemical process has some oxygen-related defects in the form of 
hydroxyl (C–OH) and acidic (C–COOH) functional groups [35]. This oxygenated 
graphene acts as both Lewis acid and basic sites and is strong repulsive through 
electrostatic forces. The force creates voids between oxygenated graphene sheets, 
which can help to produce the large pores which allow for easy gas transport into 
the electrode. As a result, such properties of graphene-based material are a good 
option for developing a new substrate-free catalyst material for gas-involvement 
reactions [36]. The main issue with such types of graphene material is that they
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have a poor intrinsic activity, which can be normally improved by converting it into 
graphene hybrid using chemical doping of heteroatom (such as N, S, P, and B.) 
[26]. This might disturb the sp2 hybridized carbon network and sp3 defected carbons 
are generated in the graphene lattice. This type of chemical heteroatoms modified 
graphene are graphene oxides (GO) and reduced GO, which have lot of structural 
defects and variety of functional groups. Unlike graphene, GO possess larger band 
gap (2.4–4.3 eV) become a significant semiconductor material [26, 37]. GOs show a 
p-type semiconductor property due to the higher presence of electronegative oxygen 
atoms. This property is responsible for GOs potential application in a metal-free 
photocatalyst. 

Zhang et al. described the N and P doped graphene catalyst for HER in which 
graphene oxide was chemically exfoliated into N or/and P doped graphene at 950 °C, 
where C and O atoms are substituted by N or/and P atoms. Every single doped 
graphene was greatly boosting the HER catalytic efficiency in both basic and acidic 
solutions, where N doping strongly affects the catalytic activity. The combined effect 
of N, P-graphene was highest in all and show an overpotential value of 420 mV at the 
current density of 10 mA/cm2, which is comparable to some bulk metallic catalysts 
like Au, Mo, Mo/Ni alloy, etc. [38]. 

In the same way, Ito et al. described the N, S doped 3D nanoporous graphene using 
the CVD method at different temperatures for 5 min, abbreviated NS-500. [33]. At 
particular temperature, it provides a large BET surface area (1320 m2/g) and pore 
size distribution in the 90 nm range. The higher concentration of N and S increases 
the lattice defects in graphene, which shows the comparable HER activity as 2D 
MoS2 nanosheets. A significant activity of N, S-graphene toward HER catalyst in 
higher acidic media gives water reduction wave at 130 mV which is 160 mV lower 
compared previous reported N, P-doped graphene, and also from single heteroatom 
doped graphene (Table 1) [38]. This surprising activity was also confirmed from 
the Tafel slope value (= 81 mV/dec) which was also lower than another grapheme 
[33]. A comparative catalytic performance study of developed single N and S doped 
nanoporous graphene and pure nanoporous catalyst at different temperatures using 
the CVD method are listed in Table 1. According to Table 1, the majority of the metal-
free graphene-based electrodes are just utilized for HER and only in acidic media. 
For broadening the area of activity, metal-graphene composite electrocatalysts have 
been developed.

Transition metals (TMs) such as Fe, Mn, Co, Mo, Ni, or their oxides, sulfides, 
carbides, and phosphides composition with graphene-based materials have been 
recognized as a prospective abundant and cost-effective noble metal-free catalyst. 
Specially metal@garphene cell structure center is one of the effective nanostructures 
in HER [19]. 

Based on this strategy, Co nanoparticle-coated on N-doped graphene and reduced 
graphene oxide (Co@NG/NRGO) was fabricated as HER catalyst, which was 
found to be highly effective and stable in large pH ranges. In near-neutral media, 
Co@NG/NRGO catalyst shows a lower onset potential value of 107 mV with Tafel 
slope of 89 mV/dec, whereas in highly basic (1 M KOH) and acidic (0.5 M H2SO4) 
medium current density of 10 mA/cm2obtained at 71 and 129 mV overpotential,
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respectively [19]. Similarly, Ni@NG/NRGO and Mo2C@NG/NRGO catalyst were 
also prepared for comparative study listed in Table 1 [19, 43, 44]. Most of the noble 
metal-free first row TMs oxides (e.g., Mn, Fe, Co, and Ni) as a catalyst are required 
to achieve an onset overpotential higher than 300 mV for OER [45]. However, a 
good quantitative analyzed amount of more than one metal can further increase the 
catalytic activity. In such a manner, a bimetallic NiCoP/rGO catalyst was reported 
by Li et al. [39]. There was a bifunctional catalyst and stable in the 0–14 pH range. In 
HER, the use of rGO is necessary to decrease the overpotentials value from 59 mV 
for NiCoP to 42 mV for NiCoP/rGO to reach the current density of 10 mA/cm2. 
The NiCoP/rGO hybrid gives a Tafel slope value of 45.2 mV/dec, which is very 
near to Pt/C (30.4 mV/dec) in 0.5 M H2SO4 solution for HER. The NiCoP/rGO was 
stable in all pH but with the pH increase the HER activity and Tafel slope value 
decrease. Furthermore, NiCoP/rGO hybrid catalyst was also shown OER activity 
with a minimal overpotential of 270 mV to achieve a current density of 10 mA/cm2 

under 1 M KOH solution. 
Similar to NiCoP/rGO catalyst, a porous and 3D, N-doped graphene NiCo2O4 

Hybrid (PNG-NiCo) catalyst was fabricated by Chen et al. towards the OER appli-
cation [36]. The synthesis process for PNG-NiCo catalyst is described in Fig. 5a. 
Where graphene was initially oxidized to form a porous graphene sheet (PG) followed 
by doping with nitrogen atoms using NH3 to prepare the N-doped graphene (PNG). 
Finally, PNG-NiCo hybrid catalyst was developed via reaction between PNG and 
Ni (II), Co (II) containing solution. The PNG-NiCo was a flexible film Fig. 5b. The 
nitrogen adsorption isotherm and SEM images Fig. 5c–d confirm the macroporous 
nature out of the plane and mesoporous nature inside the plane with a surface area of 
155 m2/g (Fig. 5g). The BJH method was also used to confirm the presence of meso-
porous and macroporous nature with pore size distribution 10–100 nm (Fig. 5f). The 
PNG-NiCo showed excellent OER performance like the above reported NiCoP/rGO 
catalyst with a lower Tafel value 156 mV/dec with an onset potential 310 mV also 
smaller than NG-NiCo (340 mV) and PNG (352 mV) catalyst in slightly lower 
alkaline (0.1 M KOH) solution.

Bulk MoS2 nanoparticle-like 2D material does not show significant activity 
in HER. But, a choice of a perfect substrate and resulting various structure and 
morphologies highly boosted the activity of nanomaterials. In such a manner, Li 
et al. reported the MoS2over reduced graphene oxide (MoS2/rGO) through the 
one-pot, one-step solvothermal method. MoS2/rGO was showing an onset over-
potential at 100 mV, whereas the Tafel slope of 41 mV/dec compared to twice 
of bulk MoS2 nanoparticle (94 mV/dec) in the highly acidic medium [40]. In 
the same way, the ultrathin MoS2 nanosheet was perpendicularly fabricated on 
rGO (MoS2 rGO) using the hydrothermal method. MoS2 rGO catalyst with 15% 
weight ratio of MoS2 to MoS2 rGO shows the highest activity of at overpoten-
tial of 172 mV for current density 10 mA/cm2 and more active than MoS2/rGO, 
and MoS2/G and support free MoS2 catalyst (Table 1). The HER activity order 
was MoS2 rGO > MoS2/rGO > MoS2/G > support free MoS2. The surface area of 
MoS2 rGO catalyst was 54.7 m2/g, which is similar to MoS2 nanomaterial (50 m2/g),
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Fig. 5 a Synthesis of 3D hybrid catalyst in multi steps, b an optical photograph for representing 
the flexibility, c–d SEM image, e a TEM image of N-doped graphene, f pore size distribution for 
PNG-NiCo in cm2/g nm, g specific surface area (m2/g), h LSV graph for different catalyst with 
scan rate 50 mV/s using 0.1 M KOH solution, i–j Tafel plots. Reprinted with permission from Chen 
et al. [36]. Copyright 2013 American Chemical Society

conclude that there the HER activity not affected by the surface area of the catalyst 
only depends on the available active sites of catalysts [41]. 

Roy et al., proposed the Ir on vertical graphene (Ir@VG) as a bifunctional cata-
lyst in both acidic and alkaline mediums. They first developed vertical graphene 
(VG) nanohills that showed forest-like morphology on Glassy carbon (GC) substrate 
using the plasma-enhanced CVD method. Then crystalline Ir layers uniformly spread 
all over the VG using the electron beam evaporation method. The resulting hybrid 
structure of Ir@VG shows outstanding bifunctional catalytic performance in both 
media. In acidic solution, the catalyst shows HER overpotentia l47 mV to reach 
a current density of 10 mA/cm2 and Tafel slope 43 mV/dec, whereas in alkaline 
solution overpotential value only 17 mV for same current density and Tafel slope 
lower of 29 mV/dec was reported. Furthermore, the OER in acidic medium found 
an overpotential value of 300 mV and Tafel slope around 59 mV/dec, and in an 
alkaline medium, the overpotential value is higher than 300 mV while Tafel slop
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reduced to 52 mV/dec [42]. Due to the combination of Ir metal with highly conduc-
tive graphene facilitated the electrons transfer and accelerates the reaction mecha-
nism. The long-lasting stability of catalyst is due to forest-like morphology of VG 
that provides a super aerobic porous surface which reduced the size of the bubble 
during the desorption process and protects the Ir from corrosion. 

5.3 Graphitic-Carbon Nitride (g-C3N4) Based Porous 
Materials 

g-C3N4 is sp2 hybridized graphite-like polymeric material where tri-s-triazine is the 
main component connected with planar amino group through C–N bond and func-
tions as a p-type semiconductor material. It is one of the most well-known synthesized 
N-rich materials and is widely investigated in water electrolysis reactions. From the 
computational-based study (DFT), it was observed that the nitrogen-rich polarized 
carbon and nitrogen could be a favorable site for HER and OER, respectively. It was 
found that g-C3N4 has a high concentration of nitrogen responsible for its thermal 
and chemical stability [46]. 

The g-C3N4 based electrode materials may be simply synthesized via thermal 
condensation of a few N-rich compounds like melamine, urea, dicyandiamide, 
cyanamide, or a mixture of them [47]. Because of weak conductivity, whereas lower 
available surface area of g-C3N4 material is usually restricted to be used in pure 
form for electrocatalytic applications. g-C3N4 composite with highly conductive and 
large surface area material such as graphene surprisingly boosted the electrocatalytic 
property [48]. 

Tian et al. discussing the fabrication of metal-free g-C3N4 nanosheet compos-
ites with graphene (g-C3N4/G) for OER catalysis, followed by melamine pyrolysis 
coupled with ultrasonication. g-C3N4 nanosheet possessed a higher specific surface 
area 16.2 m2/g with compared to bulk g-C3N4 (7.97 m2/g), resulting in an available 
large active site for OER [47]. The resulting g-C3N4/G catalyst shows a smaller 
OER overpotential of 539 mV at reached a current density of 10 mA/cm2 than 
pure g-C3N4 nanosheet (749 mV). It also confirms the Tafel slope value listed in 
Table 2. Similarly, Zhang et al. developed a metal-free g-C3N4 composite with N-
doped graphene (g-C3N4@NG) as HER catalyst, where g-C3N4 was synthesized 
by N-rich dicyandiamide [49]. The g-C3N4 provides various surface active sites for 
proton adsorption whereas the N-doped graphene (NG) provide a lesser resistant 
surface which enhanced the electron transfer process for accelerating the kinetics of 
the HER mechanism [49]. The g-C3N4@NG catalyst shows a comparative activity 
concerning another developed metal-free material and shows an overpotential to 
reach the current density of 10 mA/cm2 around 240 mV with a Tafel slope value of 
51.5 mV/dec.
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In the same way, S-doped g-C3N4 incorporated into mesoporous carbon (denoted 
by SCN-MPC) was also shown significant HER activity with only 60 mV onset poten-
tial with Tafel slope value of 51 mV/dec and overpotential of 145 mV to achieve a 
current density 10 mA/cm2. The SCN-MPC is also a good oxygen reduction catalyst 
[50]. Another important process was reported by Zhao et al. to fabrication of 3D g-
C3N4 nanoribbon-graphene composite architecture comprising 1D g-C3N4 nanorib-
bons to combined 2D graphene using a one-pot, one-step hydrothermal approach 
[48]. The HER onset potential for the developed g-C3N4 nanoribbon-G was substan-
tially lower around 80 mV than other pure carbon-based catalysts and also from 
noble non-noble metals or oxides. 

Similar to single doped graphene, the electrocatalytic property can be further 
improved by coupling g-C3N4 with double heteroatom doped nonporous graphene-
like sulfur and selenium double doped hybrid g-C3N4@x-pGr catalyst (where x = 
S, Se, S–Se) synthesized by Shinde et al. [48]. In the g-C3N4@S-Se-pGr synthesis 
process, H2O2 oxidation is a surface area enhancement step. The pore size distribution 
confirmed the nonporous morphology of graphene with a specific surface area of 
283 m2/g. The g-C3N4@S-Se-pGr hybrid shows higher catalytic properties including 
a small onset potential 92 mV, Tafel slope 86 mV/dec in 0.5 M H2SO4 solution, 
also shows good activity and stability using 0.1 M KOH, whereas single heteroatom 
doped graphene catalyst follows the increasing activity order; doped free g-C3N4 < g-
C3N4@Se-pGr < g-C3N4@S-pGr < g-C3N4@S-Se-pGr. 

Alduhaish et al. have demonstrated a mesoporous α-iron oxide nanocomposite 
with g-C3N4 (α-Fe2O3@g-C3N4), fabricated at 400 °C using urea–formaldehyde 
resins [21]. They calculated the mesoporous nature and pore size distribution of 
materials using electron microscopy (Fig. 6a–d) and BJH and DA model (Fig. 6g– 
h). The BET surface area was observed to be approximately 26 and 115 m2/g 
(Fig. 8e–f). The electrocatalytic behavior of the electrocatalyst was observed in 
0.5 M KOH solution, demonstrating the better OER activity of α-Fe2O3@g-C3N4 

compared to pure α-Fe2O3 nanoparticle due to mesoporous nature and higher 
surface area. A small onset potential and a lower Tafel plot of α-Fe2O3@g-C3N4 

was 280 mV/dec than pure α-Fe2O3 catalyst (320 mV/dec). Another iron-based 
bifunctional bimetallic FexCo1-xSe2/g-C3N4 catalyst was developed by Zulqarnuin 
et al. [22], where FeCoSe2 particles have been properly deposited on g-C3N4. They  
suggested that with the increase in the percentage of iron in catalyst composite, the 
electrocatalytic performance was also increased. Fe0.2Co0.8Se2/g-C3N4 with unique 
structure and higher available active sites showed a surprisingly HER activity with 
a low overpotential of 83 mV for 20 mA/cm2 in 0.5 M H2SO4 whereas OER inves-
tigated in alkaline (1 M KOH) solution, gives a very small overpotential value of 
230 mV to achieve a current density of 10 mA/cm2 and a Tafel slope 44 mV/dec.
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Fig. 6 a–b TEM image, c FETEM images and inserted image shows the electron diffraction for 
of α-Fe2O3@g-C3N4, d TEM image of α-Fe2O3 nanocomposites, e–f BET specific surface area, 
g BJH pore size, and h DA pore size distribution. Reprinted with permission from Alduhaish et al. 
[21]. Copyright 2019 Nature 

5.4 Carbon Nanotubes Based Porous Material (CNTs) 

CNT simple cylinders in geometry with either as open or closed sides, consisting of 
more than one layer of graphene responsible for its higher surface area and carbon 
atom arrangement responsible for high conductivity in nature. All such type proper-
ties including its strong corrosion resistance, are widely used as supportive material in 
electrocatalyst studies. It was observed that CNTs have some advantages as compared 
to other carbon-based materials, in which they are more durable, less expensive, and 
simple to activate as compared to C60. Furthermore, CNTs show higher conductivity 
than g-C3N4 [55, 56]. 

Similar to graphene, heteroatom-doped CNTs also attracted a lot of attention 
as cost-effective metal-free catalysts with a lot of active sites, energy-efficient, and 
stable. The previous section described the oxygenated graphene, strongly interacted 
with CNTs can be prevented CNTs from leaching from the electrode in the solution. 

In such a manner, Chen et al. first time demonstrated a 3D N, O-doped graphene 
with CNTs (3D-NG-CNT) film as a substrate and binder-free electrocatalyst [36]. 
The 3D NG-CNT film was synthesized layer-over-layer through a simple filtra-
tion process of oxygenated graphene and CNTs followed by nitrogen-doped using 
ammonia. The nitrogen adsorption isotherm confirmed the mesoporous nature of 3D-
NG-CNT material with pore size between 13 and 40 nm. The surface area of NG-CNT 
calculated by methylene blue adsorption was 519 m2/g which is only 185 m2/g for 
deep frizzed dry NG-CNT. The catalyst porous nature and higher surface area signif-
icantly enhanced the catalytic properties of the materials compared to nonporous 
materials. The 3D structure of the NG-CNT catalyst with excellent corrosion resis-
tance and outstanding conductivity allows it directly utilized such as a binder-free 
substrate for OER catalysts. The 3D NG-CNT catalyst shows a lower onset potential 
at 315 mV compared to dry NG-CNT, G-CNT, NG, and 2D NG-CNT. The OER 
activity follows the same trend as the specific surface area of materials which is in 
decreasing order NG-CNT > NG > dry NG-CNT.
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Cui et al. developed the metal-free activated CNTs for HER catalyst in acidic 
solution [57]. For the activation process, they first anodically oxidized to pristine 
multi-walled CNTs for 4 h followed by cathodic pre-treatment. The resulting acti-
vated p-MWCNT-ao-cp gives an onset overpotential of 100 mV with a Tafel slope 
of 71.3 mV/dec. A similar type of activation process was also observed for single-
walled CNTs that gave HER wave at onset potential of 110 mV with a Tafel slope 
value of 81.5 mV/dec. 

Development of metal incorporated carbon based-materials also one of the effec-
tive strategies for HER. In such a way, a noble metal-based Ru@MWCNTs cata-
lyst with a higher surface area was reported by Kweon et al. [58], Ru (III) were 
uniformly coated on carboxylate functionalized MWCNTs followed by thermal treat-
ment to synthesis Ru@MWCNTs (Fig. 7a). The specific surface area of developed 
Ru@MWCNTs is 231.82 m2/g where the size of Ru nanoparticles varied in between 
2 to 5 nm  (Fig.  7b–d). The Ru@MWCNTs catalyst shows excellent H2 production 
and stability into both acidic and basic solutions as compared to commercial Pt/C 
catalysts. To reach a current density of 10 mA/cm2 required overpotential was only 
13 and 17 mV in N2 saturated 0.1 M H2SO4 and 1 M KOH electrolyte, respectively, 
which is much lower than commercial Pt/C catalyst (16 and 33 mV). The superior 
activity was also confirmed from the Tafel curve in Fig. 7f. The Ru@MWCNTs 
catalyst generates 15.4% more hydrogen per unit of electricity used than the Pt/C 
electrode and shows faradaic efficiency of 92.28% more than Pt/C (85.97%). Some 
of the TMs-based catalysts are not stable in aqueous acidic/alkaline media, such 
problems have been solved by unstable materials doped with CNTs (i.e., HER-
inactive), which provided a significant acidity and long-term stability. In addition, 
noble metal-free TMs (Ni, Fe, Mn, Co, etc.) and their oxides including MnOx, CoOx, 
NiOx, and mixed oxides such as NiFeOx supported on CNTs as a substrate have been 
extensively studied for HER and OER catalyst [24, 43, 59–62], especially, Fe, Co, 
and Ni-doped N-rich CNTs catalyst that follows the decreasing HER activity order: 
Co-NRCNT > Ni-NRCNT > Fe-NRCNT [62], where highest efficient Co-NRCNT 
catalyst can operate into pH values form 0 to 14.

Yan et al. report the Ni@N–C NT/NRs catalyst which shows good HER activity 
due to their mesoporous nature with a higher BET surface area of 126 m2/g that 
provides easy electrode–electrolyte interaction [63]. An iron-based electrocatalyst, 
such as the various phase of FeOOH used for water oxidation limited from large-
scale application due to lower conductivity [64–67]. However, such types of catalyst 
on the carbon-based substrate provides conductive surface. Zhang et al. reported 
the CNTs ultrathin FeOOH nanoflake on CC for OER catalyst. Where FeOOH is 
uniformly fabricated on the CNTs. Here, first CNTs were fabricated using the CVD 
technique with a radius of approximately 10 nm provides a higher surface area, which 
is extremely light and provides flexibility to the catalyst as compared to TMs and 
transition metal oxides substrate [24] (Table 3).
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Fig. 7 a Schematic illustration of forming Ru@MWCNTs, b N2 adsorption/desorption isotherm 
at 77 K, the inserted curve in (b) represent the pore size and surface area measured to used BET 
technique. c–d TEM images, the inserted in (c) representing the particles size distribution of Ru 
nanoparticles; scale bar (c) 50 nm,  d 10 nm. e The HER polarization curve and f corresponding 
Tafel curve for Ru@MWCNT and Pt/C catalyst in N2-saturated acidic and basic solution at scan 
rate 5 mV/s. c Overpotentials to achieved current density 10 mA/cm2. Reprinted with permission 
form Kweon et al. [58]. Copyright 2020 Nature
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5.5 Other Carbon-Based Porous Material 

Firstly, N-doped in carbon-based material is an effective technique to change the 
molecular structure, which improves the HER and OER performance. Recently, 
some N-doped carbon (N/C) based HER and OER electrocatalysts have been devel-
oped. In such a manner, Zhao et al. fabricated the metal-free N/C nanomaterial for 
OER catalyst, which shows a current density of 10 mA/cm2 at the overpotential of 
380 mV, comparatively larger than N/C-NiOx, IrO2/C, and Pt/C catalyst in alkaline 
media. Although, the N/C-NiOx needed an overpotential of 420 mV to reach equal 
current density. The BET specific surface area was larger (560 m2/g) at 700 °C, which 
provided the highest catalytic activity. The N/C catalyst has nitrogen atom adjacent to 
carbon atom become negatively charged due to higher electron-withdrawing nature 
in N/C pi bond whereas carbon becomes positive, which easily adsorb OH− ions in 
alkaline water oxidation. However, the available nitrogen atom in the N/C system is 
responsible for the active site in the catalyst, which generated a higher OER current 
in the catalyst [79]. Many attempts have been tried to increase N/C functionality, 
including the development of a new fabrication method and the design porous struc-
ture. Nitrogen is a high-activity booster for carbon-based material in electrocatalyst 
application. The performance of heterogeneous catalysts depends on the available 
active site on the surface matrix, which increases with the concentration of doped 
nitrogen. 

Among different TMs compounds, Mo2C attracted more attention toward HER 
as an efficient electrocatalyst because of its d-band electronic structure same as Pt 
metal. The synthesis of pure Mo2C hybrid structure requires a predominantly high 
temperature that causes the agglomeration of Mo2C molecules and lowers the active 
surface area of the materials. To reduce the agglomeration of Mo2C molecules, the 
conductive carbon materials can be frequently used to improve the active sites and 
conductivity. In such a manner, Ying lei et al. reported a nanosheet of N-doped porous 
carbon material coupled with molybdenum carbide (Mo2C/NPC) using MoS2 as a 
molybdenum source [80]. The schematic synthesis steps of the Mo2C/NPC hybrid 
are represented in Fig. 8a, where KOH is critical in the etching of MoS2 molecules 
to create Mo precursor, along with corroding carbon to form the high porosity and 
release reduced gases like CO and H2. The  N2-adsorption/desorption isotherm is 
represented in Fig. 8b, at 77 K confirmed the BET surface area of 1380 m2/g with BJH 
desorption pore size around 3.23 nm. The electron microscopy images in Fig. 8c–e, 
seen the porous morphology of the materials. The higher surface of the Mo2C/NPC 
hybrid shows superior HER performance in acidic electrolytes with a low onset 
potential of 93 mV and an overpotential 166 mV to achieve a current density of 
10 mA/cm2, the Tafel slope 68 mV/dec. 

Ling et al., developed an efficient carbon based porous catalyst, fabricated with 
cobalt and nitrogen (CoNx/C) for the HER, under the stablity of wide range of 
pH [81]. The schematic fabrication process of the CoNx/C catalyst is described in 
Fig. 9a, where Co (II)/o-phenylenediamine (Co-oPD) or porphyrin ring presented 
Co complexes (such as vitamin B12 etc.) are pyrolysed at a particular temperature
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Fig. 8 a Schematic of the synthesis of Mo2C/NPC hybride, b N2-adsorption/desorption isotherm. 
Electron microscopic images of Mo2C/NPC hybride, c SEM image, d–e TEM image in different 
magnifications. Reprinted with permission form Lei et al. [80]. Copyright 2019 Nature

using colloidal solution of silica as a template for creating the porous morphology 
in the catalyst. The NaOH and H2SO4 were used in the etching step to remove the 
silica template and co-containing nanoparticles, respectively. As a consequence, a 
mesoporous structure of CoNx/C catalyst was formed with a large specific surface 
area (= 1074 m2/g) and a higher number of CoNx active sites. The CoNx/C catalyst 
fabricated from Co-oPD precursor gives the best performance. The HER activity 
(Fig. 9g–k) was tested in 0.5 M H2SO4 and 1 M KOH solution gives overpoten-
tial of 133 mV for 10 mA/cm2 current density having Tafel slope 57 mV/dec and 
overpotential 170 mV for same current density with 75 mV/dec Tafel slope value 
in highly acidic and alkaline solution, respectively. The CoNx/C catalyst also gives 
good activity in near-neutral solutions [81]. Furthermore, the CoNx/C nonporous 
catalyst has a substantially lower overpotential and Tafel slope value than N/C, 
Co/C HER catalyst in both acidic and alkaline solution (Fig. 9h, k). However, 
compared to benchmark Pt/C catalyst the overpotential (32 mV at 10 mA/cm2) to  
get a similar current density of approximately 100 mV of higher overpotential is 
reported in acidic media. For comparative study, different 1st-row TMs-based center 
MNx/C catalysts were fabricated and tested in 0.5 M H2SO4 solution. The HER 
activity through LSV polarization curves is described in Fig. 9(l), which follows 
order CoNx/C > NiNx/C >> MnNx/C > FeNx/C >> metal free.

Same way, cobalt nanoparticles incorporated in porous N/C nanofibers (Co-
PNCNFs) were developed by Zhao et al., using the electrospinning method followed 
by heat treatment [82]. The use of nitrogen-rich polyacrylonitrile (PAN) was demon-
strated to be an effective strategy to form porous N/C material, which improves the 
catalytic performance of carbon-based material. Finally, acidic treatment is used to 
remove the cobalt nanoparticle from the surface of porous N/C nanofibers, which 
helps to improve the porosity. The Co-PNCNFs catalysts show a well-organized
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Fig. 9 a Schematic synthesis of CoNx/C catalyst. TEM images of b CoNPs/CoNx/C; scale bar 
100 nm, c CoNx/C; scale bar; 20 nm. c HRTEM image of CoNx/C: scale bar 5 nm. d N2 adsorption– 
desorption isotherm, and e pore size using DFT method. Electrocatalytic performance study; g HER 
polarization curve and corresponding h Tafel plot in 0.5 M H2SO4 solution, i Catalytic long-term 
study using CV for CoNx/C (5000 cycles) and Co/N (100 cycles) catalyst. j HER polarization curve 
and k corresponding Tafel plot in 1 M KOH solution. l HER polarization curve for comparative 
HER activity of MNx/C type catalyst, where M = Co, Ni,  Mn  and Fe in 0.5  M H2SO4. Reprinted 
with permission form Liang et al. [81]. Copyright 2015 Nature

1D structure and porous design with a large surface area that gives a wide elec-
trode/electrolyte interface during OER. For comparative study, iron and nickel-based 
nanofibers catalysts (Fe-PNCNFs Ni-PNCNFs) were also synthesized in the same 
way, but they were less active compared to the above reported for TMs-based MNx/C 
catalyst [81]. The electrocatalytic function of the Co-PNCNFs catalyst for OER 
and HER studied in 1 M KOH solution showed that Co-PNCNFs possess highest 
HER activity except for Pt/C, with overpotential 249 mV for a current density of 
10 mA/cm2 and Tafel slope only 92 mV/dec comparatively better than previously 
reported nonporous Co-NRCNTs catalyst (overpotential 370 mV to get 10 mA/cm2 

current density) under same experimental condition [62].
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Another, precious metal-free Co–Fe containing OER catalyst was fabricated 
by Lin et al. [83], where Co-Fe nanoparticles coupled with N/C porous carbon 
nanosheet CoyFe10-yOx/NPC catalyst was developed by reduction to Schiff base 
network (SNW) with metals ions, followed by pyrolysis. High nitrogen-containing 
SNW was prepared by a one-pot solvothermal method from terephthaladehyde and 
melamine. The synthesized material shows a specific surface area of 204.82 m2/g 
calculated from BET adsorption isotherm. It has been observed that the activity of the 
CoyFe10-yOx/NPC catalyst towards the OER depends on the pyrolysis temperature 
and the concentration of Fe and Co ion. Also, Tafel slope and overpotential values 
depending on the ratio of Co and Fe, where 30% cobalt-containing catalyst (or CoFe 
ratio 3/7) Co3Fe7Ox/NPC was prepared at 450 °C gave the highest anodic current 
density at a lower applied potential. The OER polarization of Co3Fe7Ox/NPC cata-
lyst gave a current density of 10 mA/cm2 at only 328 mV overpotential withTafel 
slope value 31.4 mV in 1 M KOH, which is slightly lower than the previous reported 
Co-PNCNFs catalyst due to relatively lower surface area of a material. 

Nitrogen free another, carbon-coated CoP hollow microporous nano-cages (C-
CoP-1/12) as a bifunctional catalyst was reported by Wanping Li et al., where calci-
nation of Prussian blue was used as primary material followed by phosphorylation to 
form hollow porous CoP coated with carbon, where cobalt to phosphorus ratio was 
1/12, the highest activity was reported. The nitrogen adsorption isotherm confirmed 
the pore size of the Co-CoP-1/12 catalyst that was lower than 2 nm, whereas the 
surface area was 16.91 m2/g. Impressively, the C-CoP-1/12 showed an overpotential 
value of 174 and 33 mV for HER and OER, respectively, to get the current density 
of 10 mA/cm2, whereas for overall water electrolysis applied potential was 1.65 V 
with 24 h long-term stability at the same current density [84]. 

Similarly, other than cobalt, Lei and co-workers synthesized N-doped porous 
carbon nanosheets which when coupled with Mo2C nanoparticles (Mo2C/NPC) 
provide a comparatively high surface area of 1380 m2/g. The Mo2C/NPC hybrid 
shows superior HER performance with the onset potential of 93 mV, overpoten-
tial value of 166 mV at a current density of 10 mV/cm2, and Tafel slope value of 
68 mV/dec [85]. The choice of suitable materials and their particular composition 
help to synthesis a lot of catalysts for benchmark catalyst application, among them 
nickel and iron for OER and molybdenum with heteroatom composition for HER, 
demonstrate surprisingly better performance compared to noble metal-free catalyst. 
Additionally, the fabrication of TMs-based materials on heteroatoms doped porous 
carbon is another way of enhancing the performance of TMs-based electrocatalyst 
[23]. 

Zhang and co-workers developed flexible and binder-free, TMs modified N/C 
porous hybrids catalyst coated on carbon fiber substrate, where particularly NiFe 
doped on porous N/C (NiFe-PVP) and Ni/MoC2 doped on porous N/C (NiMo-PVP) 
used for OER and HER respectively [23]. For comparative study, the same approach 
was used for the fabrication of Ni-PVP, Fe-PVP, and Mo-PVP catalysts. For HER, the 
NiMo-PVP required approximately 130 mV overpotential to achieve a 10 mA/cm2
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current density, which is substantially lower than Mo-PVP and Ni-PVP catalyst, 
whereas, for OER, the NiFe-PVP required only 297 mV overpotential to achieve a 
10 mA/cm2 current density, which is also lower than Ni-PVP and Fe-PVP catalyst 
described in Table 4.

6 Metal–Organic Frameworks (MOFs) Derived Materials 
as Electrocatalyst 

Metal–organic frameworks (MOFs), also called porous coordination polymers, are 
crystalline porous materials made up of metal ions or metal clusters and organic 
ligands having a periodic arrangement [88–91]. Recent research has focused on 
developing MOF-based electrocatalysts, which is a departure from the traditional 
functions of MOFs, such as gas storage and purification, drug carriers, etc. The 
easiest customizable pore shapes and accessible metal bodes are the major benefits 
of employing MOFs as electrocatalysts [92, 93]. Despite these advantageous char-
acteristics, MOFs have some drawbacks as restricted diffusion capacities because of 
MOFs porosity, metal canters have low reactivity owing to saturation with coordina-
tion linkers and the biggest one is poor conductivity [94, 95]. Researchers discovered 
that the pyrolysis of MOFs could overcome these limitations [96]. Figure 10 depicts 
the current developments of diverse MOFs derived carbon-based nanomaterials used 
in catalytic activities of HER and OER. Carbon-confined metal species produced 
from MOFs have lately gotten a lot of interest and have demonstrated excellent 
electrocatalytic efficiency [97–99]. On pyrolysis/annealing of MOFs metal ions or 
cluster get converted to nanoparticles, act as catalytic active sites and the organic 
linkers may be transformed in graphitized-amorphous carbon clusters, which acts as 
an electron highway and restricts metal-derivative crystal growth. In recent years, 
TMs-based binary and ternary compounds have been synthesized to use MOFs as 
a precursor/template. In such a manner, a binary molybdenum phosphide (MoP)-
containing compound MoP@NPC/rGO compound was reported by Ji-Sen Li et al., 
which exhibits outstanding HER activity because of the synergistic contribution of 
rGO, NPC, and MoP, where MoP does exist noble metal Pt-like electronic structure 
but it suffers from a leaching problem, which can be solved to use graphene as a 
composite. The MoP@NPC/rGO catalyst showed an overpotential 218 mV to reach 
the current density of 10 mA/cm2 with a Tafel slope value of 57 mV/dec. Factors 
that are responsible for high HER activity are a crystalline phase of MoP, intro-
duction of rGO which enhance the electrical conductivity, increase active surface 
region, forming interconnecting network structure, which is advantageous for elec-
tronic transport and co-doping of heteroatoms like N, P, etc., that can also contribute 
in increasing the active sites [100].

As mentioned above, the catalytic activity highly depends on the porosity and 
surface area of the materials. Qamar et al. reported a highly efficient porous carbon-
supported molybdenum carbide (Mo2C/C) catalyst with 58–168 m2/g surface area
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Fig. 10 Several 
carbon-based nanomaterials 
produced by the pyrolysis of 
MOFs and their uses in 
various essential reactions

which is highly dependent on temperature. The Mo2C/C gives an overpotential 
of 165 mV at a current density of 10 mA/cm2, lower than the upper reported 
MoP@NPC/rGO catalyst. 

Among different methods, direct pyrolysis of MOFs may be an efficient way for 
manufacturing TMs-based composite [101]. In addition, bimetallic MOFs possess 
unique electronic structural properties which make them an efficient electrocatalysts. 
Among the numerous MOF materials, MOF-74-M (where M = Mg, Ni, Co, Zn, 
etc.) show the apparent benefit of being able to combine with multiple metal centers 
without affecting the MOF crystal structure (Table 5).

Using MOF-74, Feng et al. reported the porous rod-like bimetallic nitrides 
(CoxNiyN) electrocatalyst as an efficient HER, which is stable in a large range of pH. 
The catalytic activity of CoxNiyN varies with Co/ Ni ratio, Co2Ni1N required the 
lowest overpotential 102.6 mV to get a current density of 10 mA/cm2 with a Tafel 
slope of 60.17 mV/dec [113]. Manman wang et al. also reported a binary Ni2P@C/G 
catalyst for OER [97]. Where first Ni–MOF supported on rGO (Ni-MOF/rGO) was 
fabricated using one-pot hydrothermal method followed by calcination and phos-
phorization formed Ni2P@C/G catalytic structure. The N2-adsorption/desorption 
isotherm for as prepared Ni2P@C/G confirmed a valuable surface area of 86 m2/g, 
much larger than without graphene Ni2P@C material (19 m2/g). The Ni2P@C/G 
catalyst shows a small overpotential 285 mV to achieve 10 mA/cm2 current density 
and Tafel slope value 44 mV/dec, compared to other phosphorus-based polyhedral 
CoP@GC. The enhanced OER efficiency is attributed to phosphorization and the 
addition of graphene, that rise the active catalyst surface, exposes higher active sites, 
and improves charge transport [104].
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Table 5 Important catalytic parameters for metal–organic frameworks (MOFs) catalyst in water 
electrolysis study 

Catalyst Structure Electrolyte Application Overpotential 
(mV) at 
current 
density 
10 mA/cm2 

Tafel 
slope 
(mV/dec) 

References 

MoP@NPC/rGO Mesoporous 0.5 M 
H2SO4 

HER 218 57 [100] 

Mo2C/C Mesoporous 1 M KOH HER 165 66.41 [102] 

Ni2P@C/G Sheet-like 1 M KOH OER 285 44 [97] 

NiCo2O4/NiO-rGO Rod-like 1 M KOH OER 340 66 [103] 

CoP@GC Polyhedral 1 M KOH OER 345 56 [104] 

Co–N carbon Layered 1 M KOH HER 103 – [66] 

Co@N-CNTs@rGO Nanotube 0.5 M 
H2SO4 

HER 87 52 [105] 

Zn – doped CoSe2 Nanosheets 1 M KOH OER 356 88 [106] 

CeOx/CoS – 1 M KOH OER 269 50 [107] 

CeOx/CoS/CC – 1 M KOH 232 – 

Co-Fe–P-1.7 Spindle-like 1 M KOH OER 260 58 [108] 

CNT-NC-CoP Nanotube 1 M KOH OER 251 82.1 [109] 

CoP/Mo2C-NC Nanorods 0.5 M 
H2SO4 

HER 55.7 49 [110] 

1 M KOH 67.2 66 

CoPS/N–C Polyhedral 0.5 M 
H2SO4 

HER 80 68 [111] 

1 M KOH 148 78 

Co3O4@CoNCNT Nanotube 0.5 M 
H2SO4 

HER 171 121 [112]

Because of the unusual physical and chemical properties of porous carbon mate-
rials that distinguish them from bulk materials. It’s widely used in electrocatalysis, 
where the heterogeneous phenomenon mainly occurs at the interface. The porous 
carbon materials are responsible for the additional surface area of the materials 
which facilitates the mass dispersion throughout the electrocatalysis. However, pure 
carbon-based materials did not show efficient water oxidation properties, but their 
composite with heteroatoms and metals provided effective surface-active sites for 
water oxidation. Table 6 represents the different heteroatom and metal-doped porous 
carbon composite materials with their specific surface areas and electrocatalytic 
performance in terms of overpotential at the current density of 10 mA/cm2. For  
catalytic activity, available active metal atoms are a dominating factor compared to 
the porosity of the materials. In such a manner, Zhang et al. reported bifunctional 
metal-free N, P co-doped, NPMC catalyst with the specific surface area 1663 m2/g, 
which is substantially greater than the porous carbon materials synthesized by the
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hard templates method [114]. Similarly, Li et al. fabricated Co-CoP-1/12 bifunctional 
catalyst with the lower BET surface area 16.91 m2/g which shows higher activity 
with an overpotential of 333 mV at a current density of 10 mA/cm2 compared to 
metal-free catalyst [84].

7 Conclusion 

Significant effort has been achieved to the development of cheapermaterial-based 
electrocatalysts as prospective replacements to noble metal catalysts over the last few 
decades. The major problems related to the metal oxides like low electrical conduc-
tivity, stability, and less surface area are overcome by incorporating the carbon-based 
materials and using MOF as a precursor/template to synthesize the MOF-derived 
metal oxides, phosphides, nitrides, etc. Doping of the heteroatoms such as N, P, etc., 
in the carbonaceous and MOF-derived materials have a great impact on their electro-
chemical properties. Simply developing novel materials will not suffice to meet the 
world’s energy needs; genuine attempts to facilitate their performance and stability 
in sustainable energy technologies is equality important. 

Acknowledgements Kamlesh and Satya Prakash thanks to University Grant Commission and 
Council of Science and Research of India for the JRF fellowship. Dr. Archana Singh thanks to 
Department of Science and Technology for funding. 

References 

1. Current World Population (2021) Available from: https://www.worldometers.info/world-pop 
ulation/ 
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Chapter 12 
Core–Shell Nanostructures-Based Porous 
Carbon Nanomaterials for Oxygen 
Reduction Reaction 

Saravanan Nagappan, Malarkodi Duraivel, Shamim Ahmed Hira, 
Mohammad Yusuf, Sanjay S. Latthe, Kandasamy Prabakar, 
and Kang Hyun Park 

1 Introduction 

Core–shell nanostructures (CSNs) have attracted considerable attentions in various 
applications such as catalysis, electrocatalysis, energy conversion and storage (ECS), 
optical devices, drug delivery, biomedical, sensors, actuators, environmental reme-
diation, heavy metal adsorption due to the presence of unique structural properties 
[1–5]. Zhang et al. discussed the various parameters that are needed to be addressed 
before synthesizing the CSNs for a particular application [1]. Here, some of the points 
have to be considered mainly for the synthesis of various CSNs. (1) Selecting the 
required CSN based on the choice of mono-, di-, multi-, or porous CSNs. (2) Fix the 
proper shape and size requirements for constructing the CSNs with various shapes 
such as core–shell, yolk–shell, and hollow–shell nanostructures with controlled parti-
cles size. (3) Constructing the CSNs with proper core and shell based on the appli-
cation requirement. (4) Also selecting the core centre material with one or more 
materials to tune the surface and morphological properties [1]. On the other hand, 
Gawande et al. classified the CSNs based on the presence of inorganic/inorganic,
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inorganic/organic, organic/organic, organic/inorganic materials present in the struc-
ture [2]. The core and shell chemical compositions are also tuned based on the end-use 
of application. Generally, the more active materials can accumulate on the shell, and 
core material acts as support, so that the active material can easily react with the 
foreign matter and exhibit better reactivity in various applications. 

Recently, CSNs were used widely in electrocatalysis applications especially in 
oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolu-
tion reaction (HER), etc., owing to the higher catalytic performance and the mainte-
nance of excellent stability of the CSNs by the presence of active surfaces, defects, 
and higher pore volume and surface area, respectively for the electrocatalysis appli-
cations [6, 7]. Furthermore, CSNs also expressed considerable attentions in wide 
variety of fuel cells and battery applications [8–12]. One of the structural advantages 
of CSNs over other nanomaterials is the combinations of two or more materials in a 
single material with controlled size, shape, and morphology with abundant surface 
area and easy adjustable surface structure. 

Recently, carbon-based nanomaterials were used widely for electrochemical reac-
tions due to the ease of availability, possessing excellent stability under harsh envi-
ronments and the presence of high surface area and low cost as compared with the 
platinum or other metal-based electrocatalysts [13–16]. Similarly, porous carbon 
(PC) also showed huge interest in various applications. Porous carbon materials can 
exhibit high pore volume and surface area, excellent porosity, better durability, and 
improved electrical conductivity. Various carbon-based materials like carbon mate-
rials derived from different biomasses, activated carbon (AC), carbon nanotubes 
(CNTs), graphene, or graphene oxide (GO) were used to design the CSNs with 
exceptional properties [17–21]. The synthesis of porous carbon-containing CSNs 
also gains significant attentions in the recent days [8, 10, 17]. 

In this chapter, we briefly describe the importance of porous carbon-based CSNs 
for electrocatalytic ORR activity. We also cover how the porous and non-porous 
carbon nanostructures on the CSNs playing a vital role on enhancing the ORR activity 
as well as stability. In addition, the effect of transition metals and metal oxide on the 
porous carbon-based CSNs was also analysed deeply for ORR. Finally, we summa-
rize the various aspects of porous carbon-based CSNs and their future perspective for 
improving the catalytic activity, stability, and robustness from the recent literatures. 
Figure 1 clearly shows the possible directions of the CSNs-based porous carbons 
obtained at various methods with superior properties that can be used for ORR.

2 Oxygen Reduction Reaction (ORR) 

ORR is highly important in various fuel cells and battery applications because the 
reaction is controlled kinetically based on the four or two-electron transfer mech-
anisms. In most cases, platinum (Pt)-based electrode was used in fuel cell as well 
as ORR activity due to the superior electrocatalytic activity of Pt-based electrode
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Fig. 1 Schematic illustration of various porous carbon nanomaterials with core–shell nanostruc-
tures for oxygen reduction reaction

[22, 23]. At the same time, this can show severe drawbacks such as low toler-
ance, expensive, and low durability. These parameters are widely lacking to use 
the Pt-based electrodes for such applications. Much efforts were devoted to over-
come these drawbacks by reducing the Pt content, introducing heteroatoms as well 
as porous carbon-based materials, and use of highly abundant low-cost transition 
metals [24]. Recently, the CSNs with heteroatoms, Pt group free transition metals, 
and CSNs with PC nanostructures were expressed tremendous attentions in electro-
catalytic ORR activity as well as for other applications [13, 25–29]. Porous carbon 
nanotubes (CNTs) and graphene-based carbon materials with CSNs can display 
improved electrical conductivity, alcohol tolerance, and electrocatalytic activity. 

Dahal et al. obtained a PC nanofiber with core–shell nanostructures (CSNs) by 
first fabricating a zinc oxide-loaded polyacrylonitrile (PAN)-based nanofiber by in-
situ mixing of PAN and zinc acetate in dimethyl formamide (DMF) and electro-
spun followed by annealing at 350 °C for 2 h to obtain a ZnO-PAN nanofiber
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(Fig. 2a) [13]. The nanofiber is further modified with metal organic framework 
(MOF) using 2-methylimidazolate to form a zeolitic imadazolate framework (ZIF) 
structure on the Zno-PAN nanofiber which was further modified with boron (B) 
and nitrogen (N) heteroatoms using 0.1 M aqueous ammonium hydrogen borate 
trihydrate (NH4HB4)7.3H2O and 0.1 M aqueous sodium borohydride (NaBH4). The 
modified material pyrolyzed and washed with sulphuric acid (H2SO4), ethanol, and 
deionized water to give ZIF-8-based boron (B) and nitrogen (N)-doped PC nanofiber. 
The prepared nanofiber delivered an outstanding electrochemical ORR activity due 
to enhanced electrical conductivity as well as the presence of more active sites based 
on the presence of B and N heteroatoms.

Gebremariam et al. also disclosed the preparation of manganese (Mn) and cobalt 
(Co) loading on the carbon nanofibers followed by the surface modification with N-
doped carbon obtained from by the surface treatment of the metal-loaded nanofibers 
with dopamine and subsequent pyrolysis (Fig. 2b) [25]. The prepared electrocatalyst 
can perform excellent. 

ORR behaviour and also used as a cathode electrode in Zn-air battery as well as 
supercapacitor applications. 

The oxygen evolution reaction requires higher overpotential and demonstrated a 
significant interest in metal-air battery and water electrolyser applications [30]. The 
combinations of ORR and OER electrodes were used as cathode and anode electrodes 
for battery application, whereas the combination of OER and HER was used in 
water-splitting application. OER took place by evolving a molecular oxygen via a 
chemical reaction with the support of four electrons and protons. Iridium (Ir)-based 
catalyst has displayed benchmark OER activity and stability especially under acidic 
condition than various transition metals or other nanomaterials [30]. Under acidic 
media, most of the transition metals have exhibited lower OER activity, whereas 
the transition metal oxides have significant OER effect only at basic condition. To 
overcome these drawbacks, much efforts were drawn to develop a high-performance 
OER electrocatalyst having significant stability at both acidic and basic conditions 
with almost comparable or improved activity than the Ir-based catalyst [30]. 

On the other hand, Pt-based electrocatalyst has displayed outstanding electrocat-
alytic activity for ORR as compared with various other existing materials. Both Ir and 
Pt are very expensive in the commercial aspects of mass production of the electrodes 
for practical applications. Much attentions were paid on a new these aspects and also 
improve the performances significantly than the commercial electrodes by creating 
nanomaterial that can have the ability to solve the drawbacks. The OER activity 
mainly studied the overpotential value of an electrode from their specific current 
density. A catalyst having lower overpotential can display superior OER activity 
[30]. The catalysts made for ORR as well as OER both have identical features based 
on the end-use of applications. Recently, significant attentions were paid for the high-
performance bifunctional electrocatalyst containing both OER and ORR as well as 
OER and HER electrocatalytic activities. 

The mechanisms for OER and ORR occur in acidic and alkaline environments 
based on the following ways [31, 32].
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Fig. 2 a Schematic illustration of the synthetic process of ZIF-8-assimilated B and N co-doped 
core–shell 3D CNFs. Reprinted with permission from Dahal et al. [13]. Copyright 2020 Elsevier 
B.V. b Schematic illustration of synthetic route of MCO/CNFs@NC catalysts. MCO is MnCo2O4, 
CNFs is carbon nanofibers, and NC is nitrogen-doped carbon. Reprinted with permission from 
Gebremariam et al. [25]. Copyright 2018 American Chemical Society

OER Acidic condition 
Alkaline condition 
Aprotic electrolyte 

2H2O → O2↑ +  4H+ + 4e− 

4OH− → O2↑ +  2H2O + 4e− 

O2 
2− → O2↑ +  2e− 

ORR Acidic condition O2 + 4e− + 4H+ → 2H2O(4e−) 
O2 + 2H+ + 2H2O → H2O2 (2 + 2e−) 
H2O2 + 2e− + 2H+ → 2H2O

(continued)
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(continued)

Alkaline condition O2 + 4e− + 2H2O → 4OH− (4e−) 
O2 + 2e− + H2O → HO2

−(2 + 2e−) 
HO2

− + 2e− + H2O → 3OH− 

Aprotic electrolyte O2 + e− → O2
− 

O2
− + e− → O2 

2− 

OER is mostly dependent on pH, because under acidic or neutral conditions, two 
water molecules were oxidized and generate an oxygen molecule and four electrons, 
whereas hydroxyl groups were oxidized to oxygen and water under basic conditions 
[32]. On the other hand, ORR can occur at two possible routes such as two and four-
electron pathways with partial or complete reduction. Both OER and ORR have some 
drawbacks such as slow kinetics, poor reversibility of oxygen, and high overpotential 
when using in metal-air battery [32]. 

3 Carbon-Based Nanomaterials (CBNs) 

Carbon materials are mainly composed of three types of forms such as amorphous 
carbon, graphic, and diamond like carbon which are varied based on the arrangement 
of carbon atoms [33]. In early 1985, the fullerenes-based CBNs such as C60, C70, C84 

were discovered and used in variety of applications due to the unique structural feature 
of the fullerenes [34]. Later on, CNTs with one-atom-thick tubular-shaped graphitic 
sheet, GO, graphene, and single-layered graphene-based CBNs were discovered via 
various physicochemical methods which dominate the overall research fields for 
the past few decades and also applied in various industrial products [34]. This is 
owing to the possesses of larger surface area, porosity, and superior chemical, elec-
trical, physical, and optical properties, respectively, as compared with various other 
nanomaterials due to the abundant availability, flexibility, low cost, environmental-
friendly, good chemical and thermal stability. CNTs have several advantages because 
of superior architecture obtained by the chemical vapour deposition with single or 
multi-layered tubular structure with uniform length and diameter, and the presence 
of extended SP2 carbon would responsible for enhancing the electrical and optical 
properties [35]. In addition, due to an exceptional mechanical stability, flexibility, 
and rigidity of CNTs, which can be widely used as a filler for the development of 
various composites for high-yield applications. 

In the recent days, noble metal-free materials such as platinum group metal 
(PGM) free transition metals, metal oxides, carbon-based nanomaterials (CBNs) 
were demonstrated with the wider applicability in various applications [36]. Among 
the transition metal-based material, CBNs were displayed with huge interest in catal-
ysis, ECS, biological, and environmental applications [16, 32, 37–41]. The structural 
incorporation by doping of heteroatoms such as nitrogen, sulphur, phosphorous, 
boron, respectively, on the CBNs may also enhance the physicochemical properties 
[37], owing to the creation of surface defects and edges as well as the presence
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of more active materials in the CBNs. Among the various CBNs, graphene, GO, 
CNTs, ACs illustrated a widespread usability in different application on account 
of unique physicochemical behaviours. So that these materials were used largely 
in several applications especially in electrocatalysis, ECS, biological, and environ-
mental remediation. Baby et al. briefly reviewed the important aspects of CBNs for 
the treatment of heavy metals from the polluted water as well as other environmental 
applications [41]. The author discussed the role of various dimensional CBNs for their 
effective metal adsorption and remediation. Based on the structural and dimensional 
parameters, CBNs can show different behaviours in numerous applications. 

The formation of CSNs on the graphite carbon surface by embedding with iron 
source has been achieved by two steps of processes such as first, mixing the graphene 
oxide (GO) with ellagic acid (EA) and iron (Fe3+) source to form a coordination 
complexes between these materials which further produces a well-ordered graphitic 
carbon which is wrapped with iron and forms CSNs on the surface under pyrolysis 
in the presence of urea (Fig. 3) [42]. The prepared electrocatalyst demonstrated an 
outstanding electrocatalytic ORR activity because of the presence of more active sites 
by the metal source as well as N heteroatom comes from the carbonization of urea 
[42]. The surface functionalization on carbon material can show a remarkable effect 
in the electrocatalytic ORR activity. Various methods were used to functionalize the 
carbon support such as strong acidic or alkali treatments, modifying the surface func-
tionality with heteroatoms, high-temperature pyrolysis treatment, electrochemical 
etching, and various other methods. 

Kim et al. briefly studied the important aspects of oxygen functionalization on 
the carbon containing Pt catalyst (Pt/C). The oxygen surface functionalization was 
carried out on the carbon black (CB-O) using strong acidic solutions followed by Pt 
loading by incipient-wetness impregnation method and subsequent hydrogen reduc-
tion [43]. The Pt/CB-O has displayed excellent ORR activity with excellent electro-
chemical active surface area (EASA) than the pristine Pt/CB. These results convey

Fig. 3 Schematic illustration of the synthetic procedure for GEFs. Reprinted with permission from 
Zhao et al. [42]. Copyright 2018 American Chemical Society 
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that the oxygen functionalization on carbon could effectively improve the electro-
chemical ORR activity as well as stability. The main reason behind that is the partial 
oxidation of Pt nanoparticles in the Pt/CB-O catalyst [43]. On the other hand, doping 
of one or more heteroatoms such as N, B, sulphur (S), and phosphorus (P), respec-
tively, to the carbon support can also increase the electrical conductivity and elec-
trochemical activity for ORR due to formation of more number of active sites and 
defects [44–46]. 

4 Porous Carbon-Based Materials (PCBMs) 

PCBMs also attracted huge interest for numerous applications than CBMs because 
of the controlled porosity and architecture. Porous carbon materials can be obtained 
by direct pyrolysis, chemical vapour deposition (CVD), templating method using 
hard (inorganic) or soft (organic) materials followed by calcination or pyrolysis, 
and electrospinning [47, 48]. Ma et al. briefly reviewed the synthesis of well-ordered 
mesoporous carbon nanostructures with higher surface areas and pore volumes using 
various kinds of hard and soft templates [49]. In particular, the authors suggested 
that the synthesis of mesoporous carbon is mainly based on the use of hard template 
by the following ways such as synthesis of mesoporous matrix followed by addi-
tion of necessary carbon precursor in order to modify the mesoporous structure 
by various approaches such as chemical vapour deposition, pyrolysis, calcination, 
hydro/solvothermal, and microwave-assisted methods, respectively. Further, poly-
merization of the organic precursor to develop an organic–inorganic hybrid material 
followed by carbonization and template removal using acidic or alcoholic wash to 
generate a highly PC [49]. The three-dimensional (3D) porous carbons and hollow 
carbon spheres derived from various sources have demonstrated the better hosting 
nature to S or various heteroatoms which can be used for battery, fuel cell, and other 
electrochemical applications [50, 51]. For example, S hosting on the PC can deliver 
outstanding electrochemical performance in lithium (Li)-S batteries on account of 
excellent loading of S atom on the PC [52]. Moreover, the presence copious amount 
pore structure and surface area in the PC can have better loading of S atom which 
boost the electron transport and Li-ion as well as stability. 

The porous carbon synthesized by the use of metal organic frameworks (MOFs) 
also has huge impact in various electrochemical reactions owing to the presence of 
heteroatoms with significant amounts of pore structures which improve the electro-
catalytic activity [53–55]. The ZIFs-based PC nanomaterial is also derived by the use 
of cobalt precursor with 2-methylimadazole (MeIM) which has abundant nitrogen 
atom in the PC and delivers an excellent electrochemical activity of ORR [56]. Luo 
et al. briefly discussed the important role of PC for supercapacitor applications with 
their effect of pore structure, surface area, surface heteroatoms and defects, and elec-
trode design [57]. The materials with reasonable porosity, higher surface area, and 
superior physicochemical stability can deliver an excellent electrical conductivity.
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Similarly, several research groups also discussed the use of various porous carbon-
like materials for supercapacitor and other electrochemical ECS applications [58, 59]. 
Although various heteroatoms doping on the carbon-based materials are studied so 
far for ORR or other electrochemical reactions, the use of oxygen-rich carbon instead 
of heteroatoms is also playing a significant role in the recent days for ORR, because 
oxygen-rich carbon materials are directly responsible for the four-electron transfer 
reaction [60]. At the same time, this can show some drawbacks of reducing the 
electron-transport behaviour, possibility of de-bonding the conjugated structure, and 
difficult to incorporate larger quantity of oxygen atoms on the carbon network [60]. 
As like as the PCBNs obtained from activated carbon, CNTs, graphene, the meso-
porous carbon nanospheres, nanoparticles, or hollow carbon nanomaterials obtained 
by the use of hard or soft template followed by pyrolysis also draw tremendous 
consideration in electrochemical ECS applications [47, 61]. 

Sun et al. synthesized a highly hierarchical PC by in-situ doping of N and S 
heteroatoms on the graphene like microstructures [47]. The porosity of the material 
was derived by the use of organic precursor by CVD followed by the impregna-
tion with poly(vinylpyrrolidone) (PVP) and ammonium persulfate (NH4)2S2O8 in 
aqueous solution and pyrolysed at 800 °C in an argon/hydrogen (Ar/H2) atmosphere 
followed by acid etching. The as-synthesized PC can express higher surface area 
and degree of graphitization, uniform porosity with well-controlled N and S doping 
as lead to superior electrochemical activity in Li-ion battery application due to the 
enhanced physicochemical properties [47]. A well-ordered mesoporous structure 
was fabricated by the mixing of polyaniline (PANI), dicyandiamide, and iron (III) 
nitrate nonahydrate (Fe3(NO)3.9H2O in dimethyl formamide (DMF), followed by 
loading of silica bead (30% ethylene glycol) and continued stirring of suspension and 
subsequent ultrasonication to develop a well-dispersed suspension and transferred to 
glass petri dishes and dried at 80 °C in an oven for overnight. The sample is further 
pyrolysed at 900 °C under nitrogen atmosphere to yield the N-doped mesoporous 
carbon (Fig. 4) [62]. The as-developed materials have excellent physicochemical 
properties, and also the fabricated cathode electrode demonstrated an excellent ORR 
activity because of the presence of well-controlled PC structure with high surface 
area, graphitic, and pyridinic N [62].

Roberts et al. used ice as a hard template to synthesis hierarchical porous N-rich 
carbon monoliths [63]. They synthesized a hierarchical PC by various approaches 
using melamine, graphene, or the combination of melamine and graphene as an 
additive to synthesize the carbon monoliths. The porous N-rich carbon monoliths 
was prepared by dissolving polyacrylonitrile (PAN) in dimethyl sulfoxide (DMSO) 
and freeze-dried under liquid nitrogen which is used as an ice template followed by 
lyophilization in freeze drier for 48 h to remove an excess DMSO. The obtained 
PAN monolith immersed further in deionized water to remove the DMSO by solvent 
exchange method and dried at 60 °C for 3 h. The monoliths was treated under air 
atmosphere at 280 °C for 1 h with the heating rate of 1 °C min−1. The pyrolysis of 
PAN monoliths at 800 °C for 2.5 h with the heating rate of 5 °C min−1 in a steel 
pyrolysis chamber to stable and cross-linked polymer network in order to produce a 
hierarchical N-rich PC. An anode electrode fabricated by the use of the N-rich PC
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Fig. 4 Schematic illustration of the procedure of the synthesis of porous doped carbon nanostruc-
tures. Reprinted with permission from Kwon et al. [62]. Copyright 2019 The Korean Society of 
Industrial and Engineering Chemistry. Published by Elsevier B.V

delivered an excellent performance in Li-ion battery due to availability of sufficient 
porosity and hierarchical morphology. Moreover, the presence of more nitrogen atom 
in the PC is also responsible to enhance the Li-ion battery performance. Furthermore, 
the introduction of melamine, graphene during the preparation PC also increases the 
N-content as well as improves the electrical conductivity due to incorporation of 
conductive graphene in the PC with the reversible capacity of 300 mA h g−1 at 
10 A g−1 [63]. 

5 Biomass-Derived Porous and Non-Porous Carbon-Based 
Materials 

Recently, much attentions were paid on the design and development of various porous 
and non-porous CBMs derived from various bio-sources because of the abundant 
availability of the bio-sources in the earth crust [64, 65]. Biomass are mainly differ-
entiated based on the presence of agricultural and herbaceous sources, bacteria, 
fungus, plants and marine algae, animal, human, and industrial waste-based biomass 
which accounts for the maximum ways of developing different sources of biomass 
[64]. Kaur et al. briefly described the important role of biomass derived-PCBNs for 
electrochemical ORR activity with various ways of preparation and modification of 
carbon networks in the porous carbons [64]. He et al. also synthesized the bifunctional 
PCBNs with N and S heteroatoms for ORR and supercapacitor applications [66]. The 
synthesized bifunctional nanomaterials showed an excellent electrical conductivity 
with outstanding electrochemical performance for multiple applications.
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The CBNs were derived by the direct pyrolysis of bio-sources followed by 
some chemical treatments, also by hydrothermal or solvothermal methods, chem-
ical vapour deposition, and some other roots [64]. These CBNs are much useful 
in various applications especially in electrochemical ECS applications due to an 
improved electrical conductivity, abundant availability of the basic resources, devel-
opment of high pore diameter, surface area, and pore volume, respectively [64–70]. 
Sudhan et al. used a rice straw-based biomaterial to synthesize activated PC by 
washing chopped, dried rice straw in water followed by drying at 80 °C for 24 h in 
an oven and pyrolysed at 600 °C for 4 h in argon atmosphere at the heating rate of 
5 °C min−1 (Fig. 5) [69]. The carbon material was activated further using KOH to 
yield activated PC which exhibits a superior activity for supercapacitor and showed 
also the improved electrocatalytic activity in fuel cell application [69], whereas the 
shell of pumpkin seeds was also used to get the PC by first activating the cleaned shell 
using potassium hydroxide (KOH) followed by heat treatment for certain tempera-
ture and further pyrolysis to yield highly PCBNs [71]. The carbon material played a 
vital role in the absorption of microwave. 

Fig. 5 a CV profile of the AA-RSC symmetric two-electrode cell in [EMIM] [BF4], b CD profile 
of the AA-RSC symmetric cell at different current densities, c specific capacitance of the AA-RSC 
symmetric cell as a function of the cycle number at 0.5 A g−1 current density and the AA-RSC 
symmetric cell-powered LED (inset), and d ragone plot for the AA-RSC symmetric cell in an ionic 
liquid electrolyte. Reprinted with permission from Sudhan et al. [69]. Copyright 2016 American 
Chemical Society
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Yang et al. briefly reviewed the important aspects of bio-derived carbon for the 
microbial fuel cell application [72]. Liu et al. studied the N heteroatom-doped PC 
for ORR activity by preparing the PC from the water hyacinth biomaterial [73]. The 
water hyacinth washed with deionized water and cut it in to small pieces and dried at 
80 °C for 12 h followed by mixing with zinc chloride (ZnCl2) at the ratios of 1:6 and 
pyrolysed at 600 °C as well as 800 °C for 2 h in N2 atmosphere. The prepared carbon 
material was washed with 0.5 M nitric acid (HNO3) and 1 M hydrochloric acid (HCl) 
and deionized water followed by dried at 80 °C [73]. Similarly, lotus root, spinach 
leaves, soybean straw, and raw woods were also used to prepare the high PCBMs by 
activating with suitable activating agents and protocols and reported the better perfor-
mance in electrochemical ORR activity [74–77]. Various other biomaterials-based 
PC materials were also prepared in different approaches and used an electrocatalyst 
with superior stability and performance for ORR activity [78–80]. More recently, 
Sumboja et al. prepared the iron and cobalt (FeCo) loaded with N heteroatom-
doped PC using the combinations of pistachio and peanut shells which displayed 
an excellent performed in aluminium (Al)-air battery [81]. This finding clearly tells 
the important role of various biomass for the preparation of PCBMs and their wider 
applicability in various electrochemical energy storage and conversion as well as for 
other applications. 

6 Importance of CSNs-Based Porous Carbon 
Nanomaterials for ORR 

CSNs are highly important in various applications because the structure is controlled 
preciously based on the requirements with one or more atoms either in the core or 
shell [82]. In most cases, core is worked as a support to the shell, so that the deposition 
of a thin layer of Pt could have a huge impact in the electrocatalytic application. The 
Pt loading is also kinetically controlled by alloying with other earth-abundant Pt free 
transition metals or doping with heteroatoms to make more active sites or by creating 
defects at the edges as well as corners in shell which could make the material much 
suitable for superior electrocatalytic applications [83]. Likewise, the intrinsic activity 
of Pt-based catalyst is also controlled by the introduction of secondary transition 
metals by alloying with Pt such as the formation of the chemical compositions of 
PtCo, PtNi, PtFe, PtCu, and PtCr which also illustrated the creation of higher mass 
and specific activities than commercial Pt or Pt/C catalyst [84]. 

CSNs have reduced the impact of higher loading Pt by the introduction of low-
cost transition metal in the core which facilitates the easier display of catalytically 
active sites to molecular hydrogen as well as reduces the final cost of the electrocat-
alyst. At the same time, the introduction of only metal sources sometimes expressed 
poor stability against acidic and basic conditions due to decompose or precipitation 
behaviour at these condition. Further, the chemical, thermal, and mechanical stability 
and electrical conductivity of carbon or PC materials were improved using CSNs.
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In addition, the introduction of heteroatoms in the PC network structure of CSNs 
also eases the enhancement of electrical conductivity, specific and mass activities 
as well as various other properties necessary to improve the performance of the 
electrocatalyst for ORR and other electrochemical applications [13, 25, 84]. 

Wang et al. developed a N-doped ZIF-67-based PC by first synthesizing ZIF-67 
and pyrolysed at 600 °C for 2 h in Ar atmosphere followed by Pt loading on the 
shell structure by galvanic replacement mechanism (Fig. 6) [84]. The synthesized 
nanostructure exhibits sufficient active sites and high specific surface area as well 
as better tolerance with robust property and durability in the CSNs which are prac-
tically much important to the improve ORR performance. Various MOF-based PC 
nanostructures also demonstrated efficient electrocatalytic applications due to the 
constrained architecture of MOF with interesting properties based on the presence 
of organic–inorganic materials used to develop the materials [54, 85]. Porous mate-
rial can easily control the reaction between the electrolyte and electrode due to the 
easier transport of electrons and protons between the pore channels which facilitate 
an enhanced electrocatalytic activity as compared to the non-porous carbon-based 
materials. In some cases, the oxygen and N-rich porous metal-free carbons also 
delivered outstanding ORR activity and also used for fuel cell applications due to 
the presence of low overpotential, large specific capacitance, long-term stability, 
higher surface area and controlled porosity, uniform distribution of heteroatoms on 
the pore channel or carbon networks, and excellent electrical conductivity [86, 87]. 
Similarly, the presence transition metal with heteroatom-doped porous carbons also 
demonstrated a significant advancement in order to improve the electrocatalytic ORR 
activity [88, 89]. The structural defects are also playing a vital role in upgrading the 
electrocatalytic activity for ORR. Jia et al. discussed in detail the various parameters 
such as etching, doping, ball-milling, annealing, plasma treatment, electrochemical 
method, photoreduction, and hydrogenation methods, respectively, which were used 
to create the defects in the electrocatalyst [90]. Controlling the defects and vacancies 
in the CSNs containing PC frameworks would improve the catalytic activity.

7 Transition Metals and Metal Oxides-Embedded Porous 
Carbon Nanomaterials for ORR 

Earth-abundant transition metals and metal oxides are playing a pivotal role in elec-
trochemical ECS applications due to abundant availability of the transition metals as 
well as their low cost as compared with the noble metals such as Pt, Ru, Ir, Au, and 
Ag, respectively [51, 91]. The modification of these transition metals to achieve a 
highly porous carbon-based transition metals also considers an effective approach in 
electrochemical ECS because of the generation of an excellent porosity, surface area, 
pore volume. Moreover, the PC would facilitate an enhanced electrical conductivity 
and stability. Ahn et al. modified the surface of a one-dimensional nanotubes such as 
porous tellurium nanotubes (Te NTs) with ZIF-8 structure and embedded further by
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Fig. 6 Schematic of the preparation of Co@Pt-NC nanocomposites. Reprinted with permission 
from Wang et al. [84]. Copyright 2017 Elsevier B.V.

using dopamine hydrochloride as well as with ferric chloride and subsequent pyrol-
ysis at 950 °C for 2 h with heating rate of 5 °C min−1 to yield a highly PC [92]. The 
electrode fabricated by using these materials delivered an outstanding ORR activity 
under both acidic and basic media. The well-ordered FeNx active site present on the 
PC with large graphitic layers at the surface would be responsible for the efficient 
catalytic activity. In addition, the fabricated electrode also showed an outstanding 
result in zinc-air battery application [92]. 

Song et al. briefly reviewed the important role of non-precious transition metal-
based carbon materials with N heteroatom for the ORR as well as their future use 
in proton exchange membrane in fuel cell application [93]. These types of hybrid 
electrocatalyst with M-NxC (where M = metal source, x = 2 or 4 based on metal 
and nitrogen bonding such as MN2 or MN4) structures have acquired much obser-
vation in the recent days because of the low cost, earth abundant, excellent elec-
trical conductivity, easier reproducibility, and existence of more active sites, respec-
tively. The improvement in the electrocatalytic activity of ORR observed for the 
M-NxC-based electrode would depend up on the carbon support on the transition 
metals because an excellent dispersibility was encountered based on the presence 
of carbon atom which eases better dispersibility and enhances the electrocatalytic 
activity for ORR [93]. In addition, the heteroatom doping on the carbon-supported 
transition metals also displayed better catalytic activity as compared with the absence 
of heteroatom [93, 94]. This is due to the creation of more numbers of active sites 
on the carbon-supported transition metals by the heteroatom. 

The porous carbon polyhedral (PCP) synthesized with the decoration of cobalt 
and diselenide by simple selenization of the as-synthesized ZIF-67 with selenium by 
pyrolysis technique can deliver the uniform embedding of metal sources within the 
PCPs and also displayed an excellent properties and also manifested an outstanding
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performance in the electrocatalysis of ORR (Fig. 7a) [95]. The organic ligand in 
the ZIF-67 structure was converted to graphitic carbon polyhedral (GCP) during the 
carbonization process, and at the same time, the then diselenide also loaded uniformly 
throughout the cobalt (Co)/GCP [95]. These can yield a stable and strong connection 
between the carbon surface and metal sources which ease the formation of more active 
sites. Moreover, the synthesized material displayed an excellent dispersibility, elec-
trical conductivity, and also a high surface area which are responsible to show superior 
durability and catalytic activity in alkaline media [95]. Similarly, a recent study of 
synthesizing the iron-loaded ZIF-67 structure followed by pyrolysis also yields the 
transition metal-embedded PC which also conveys an outstanding electrocatalytic 
activity to ORR (Fig. 7b) [96].

8 Heteroatom-Doped CSNs with Porous Carbon 
Nanomaterials for ORR 

Heteroatoms such as N, P, B, S, and the combination of two or more heteroatoms 
present in the CSNs-based PC have displayed an excellent electrocatalytic activity. 
These heteroatoms-doped porous carbons can be applied in various ECS applica-
tions owing to the availability of abundant active sites, surface defects as well as the 
presence of lone pair of electrons which boost up the electron transfer and enhance 
the electrical conductivity for electrocatalysis applications [97–102]. The ZIF-67-
based material itself having N heteroatom from the ligand and subsequent pyrolysis 
may indicate the appearance of more active sites and the formation graphene like 
carbon in their structure which is responsible for the effective ORR electrocatalytic 
activity as like as the commercial platinum/carbon (Pt/C) electrode [95, 96]. The 
synthesis of phosphorous and iron-doped PC can be easily obtained by mixing the 
triphenylphosphine precursor with zinc and ferric chlorides followed by carboniza-
tion at different temperatures such as 800 °C, 900 °C, and 1000 °C, respectively, and 
further acid washing using hydrochloric acid followed by deionized water to get the 
PC (Fig. 8) [103]. Various other kinds of low-cost Pt group free transition metals and 
metal oxide with PC were also well executed for an effectively electrocatalytic ORR 
reaction, because of abundant availability, low cost, compared performance as like as 
commercial Pt/c electrode, possessing [29, 104–107]. More studies also performed 
the synthesis of much effective heteroatom-doped CSNs-based porous carbons in 
the recent years for ORR activities because the heteroatom doping in the CSNs as 
well as in porous carbons not only enhances the electrochemical activities, it also 
enhances various physicochemical properties which are much important in various 
applications.
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Fig. 7 a Schematic illustration of fabrication of ZIFs-derived CoSe2/GCP hybrid composites. 
Reprinted with permission from Wu et al. [95]. Copyright 2016 Elsevier B.V. b Schematic illustration 
for the fabrication of FC@NCs. Reprinted with permission from Luo et al. [96]. Copyright 2021 
Elsevier Inc.

9 CSNs with Carbon Nanomaterials for ORR or OER 
with Supercapacitor Behaviour 

Supercapacitors are playing an important role for the current demand of energy 
storage [108]. The materials with good cyclic performance, high specific power, 
flexibility, fast charge–discharge rate, high surface area, and cyclic stability can be 
used widely for supercapacitor application [109]. A binder-free electrode fabrica-
tion method is the most desirable approach for designing an electrocatalyst for ECS
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Fig. 8 Schematic illustration of the preparation of iron phosphide-doped PC for ORR. Reprinted 
with permission from Norouzi et al. [103]. Copyright 2020 American Chemical Society

application due to the presence of binder would increase the contact resistance of the 
electrode. The electrode having an electrocatalytic ORR activity with supercapac-
itor behaviours attracted huge interest in fuel cell and supercapacitor applications 
[108, 109]. Recently, numerous works were focused on ORR as well as superca-
pacitive behaviours using various nanomaterials [68, 108, 109]. Gao et al. prepared 
the nitrogen and oxygen dual-doped carbon (NODC-800); electrocatalyst obtained 
from catkins was used as superior ORR catalyst in alkaline fuel cell with superior 
capacity of 109 F g−1 at 0.5 A g−1 and maintained the stability over 1000 cycles 
[108]. The author also prepared N-doped PC spheres at large scale using fermented 
rice-based biomass as an active material. The prepared material has high porosity 
(1.14 cm3 g−1) with maximum surface area (2105.9 m2g−1), and outstanding elec-
trocatalytic four-electron ORR activity [110]. In addition, the electrocatalyst also 
exhibits good cyclic stability and specific capacitance of 219 F g−1 at the discharge 
current density of 15 A g−1. Kim et al. synthesized a nickel-mediated metal organic 
frameworks (MOFs)-based macroporous carbon (Ni-MOF@mC) which can deliver 
an outstanding electrocatalytic ORR activity and superior supercapacitive behaviour 
because of well-defined pore size, presence of high surface area, chemical tenability, 
and conductivity of the material [111]. The Ni-MOF@mC can show the specific 
surface area with normalized capacitance of 26.5 mF cm−2 as well as high capacitance 
performance of 109 F g−1. 

Likewise, a material possessing both OER and supercapacitor characteristics also 
displays significant interest in ECS applications [112–116]. OER took place by the 
oxidation of two water molecules with four electrons followed by the removal of four 
protons to produce a weak O–O bond [117]. The important drawbacks of OER are 
the need of high overpotential to reach a desirable current density as well as the use 
of expensive iridium- or ruthenium-based catalysts [118]. Khalid et al. have prepared 
highly active and low-cost electrode using natural sugar powder as a biosource by



340 S. Nagappan et al.

reacting with red phosphorous to form a carbon particle [119]. The carbon-based 
electrode prepared from the sugar source displays the overpotential of 1.69 V versus 
Reversible hydrogen electrode (RHE) at 10 mA cm−2 current for the OER also 
showcases the specific capacitance of 105.8 F g−1with 100% of the initial capacitance 
retention even after 3000 voltammogram cycles. More recently, Kale et al. fabricated 
a binder-free nanocrystalline cobalt sulphide (CoS) on stainless steel (SS) substrate 
by chemical bath deposition (CBD) that has showed a remarkable supercapacitive and 
OER activity [120]. The prepared electrocatalyst showcases the specific capacitance 
of 252.39 F g−1@ 5 mV s−1 and maintained the initial capacitance over 1000 cycles 
of CV. In addition, the electrode can also present the overpotential of 300 mV@ 
10 mA cm−2 and Tafel slope of 57 mV decade−1. The excellent properties of the 
prepared electrode were due to the origination of uniform thin films of nanocrys-
talline hexagonal CoS on the SS substrate [120]. The surface corrosion/oxidation 
effects worsen the performance of most of the fabricated electrodes in both ECS 
[121]. This drawback can be encountered by synthesizing CSNs with conductive core 
and nanostructured outer shell. The core–shell FeO@CuCo2S4 was fabricated on a 
nickel foam (NF) substrate by two-step synthesis approaches such as hydrothermal 
growth of CuCo2S4 on NF substrate followed by FeO deposition on the substrate via 
magnetic sputtering technique. The fabricated electrode offers an excellent specific 
capacitance of 3213 F g−1 at 1 A g−1 and withholds over 99% of efficiency after 
10,000 charge/discharge cycles. On the other hand, the electrode also displays low 
overpotential of ~240 mV at 10 mA cm−2 and Tafel slope of 51 mV dec−1. Moreover, 
the electrode can be usable up to the current density of 100 mA cm−2 for over 25 h 
[121]. Chu et al. fabricated phosphorous-doped NiCo2O4 (P-NCO) nanowires on NF 
substrate by two steps such as growth of NiCo2O4 on NF substrate by hydrothermal 
method followed by phosphatization via pyrolysis step [122]. The P-NCO electrode 
can have the superior specific capacitance of 2747.8 F g−1 at 1 A g−1as well as low 
overpotential of 300 mV at 10 mA cm−2 (1 M KOH) activity during OER. 

10 Factors that Affect the Performance of Carbon 
Materials in ORR 

There are several factors that affect the production of carbon-based materials in 
ORR such as surface defects and active sites, porosity, electronic configuration, types 
dopants, presence of inorganic impurities, acidic and basic solutions concentration, 
band gap. Tian et al. discussed the important role of N-content in the transition metal 
carbides (TMCs) as well as kind of graphitic shells that can largely affect the perfor-
mance of the carbon-based electrode during ORR [123]. Carbon-based materials like 
carbon nanotubes, graphene, activated carbon, carbon black, mesoporous carbon, and 
carbon nanofibers are considered to be inactive electrocatalyst due to unavailability 
of catalytic active sites for the ORR [124]. At the same time, the electrocatalytic
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ORR activity was increased by the introduction of heteroatoms to the carbon mate-
rial via in-situ doping during the synthesis or post-treatment of the carbon material 
with dopants [123, 124]. In both ways, the fabricated electrocatalyst can deliver a 
remarkable catalytic activity for the ORR. Likewise, the introduction of some kinds 
of defects to the carbon material also showed much-improved ORR activity [125]. 

Some studies were demonstrated that the existence of less content of N in the 
carbon-based material after high-temperature treatment can deliver outstanding posi-
tive onset potential and also provide almost four-electron transfer number than the 
presence of larger contents of N in the carbon-based material [125]. Because the 
introduction of N atom to the C can activate the electronic structure of the neigh-
bouring carbon atom that facilitates the active role for ORR. So, the synthesis of 
defective carbon with adjustable electronic configuration can play a vital role in 
ORR [125]. The ORR activity of the pristine carbon can also be activated by phys-
ical intermolecular charge transfer, introducing of non-metal heteroelements to the 
carbon matrix, and developing structural defects [126]. The introduction of boron 
and nitrogen dopant to the carbon would slightly alter the energy gap, whereas 
increasing more dopants to the carbon would significantly increase the energy gap 
and reduce the conductivity [127]. So, the use of average quantity of B and N on 
the carbon can show outstanding ORR activity. The porosity of the carbon material 
with various length scales as well as the presence of dopants also showed an adverse 
effect in the mass transfer during ORR [126]. The availability of microporosity in 
the carbon material can present superior ORR activity than the mesoporosity. At the 
same time, some studies were suggested that the mesoporosity with larger pore size 
and specific surface area would facilitate the easier contact of the reactant through 
the pore channels [128]. On the other hand, the combination of micro and meso-
porosity with wider porosity as well as hydrophilic behaviour can further enhance 
the electrocatalytic ORR activity [129–131]. The band gap of carbon material also 
plays an important role to decide the ORR activity. When the dopants are attached to 
the same sublattice, parts of the carbon material can deliver the maximum band gap 
and closed, while the dopants are placed adjust to carbon sublattice [132]. The band 
gap of carbon material increases with increasing doping concentrations. In general, 
band gap is inversely proportional to the conductivity. The outstanding ORR activity 
was achieved with the reduced band gap of the carbon material [133]. The B and 
N-doped carbon material can show smaller energy gap as compared to the pristine 
graphene, whereas overdoping to the carbon material can lead to increase of energy 
gap. The lowest energy gap of the B and N-doped carbon can demonstrate the highest 
chemical reactivity and catalytic performance [132, 134]. We also compared various 
CSNs obtained with PC nanomaterials for ORR in 0.1 M KOH (Table 1).

11 Future Perspectives and Outlooks 

The CSNs-based PC has attracted considerable attentions in the recent days due to 
the maintenance of excellent properties such as high surface area, pore diameter, pore
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Table 1 Comparisons of CSNs-based porous carbon nanomaterials for ORR performance in 0.1 M 
KOH 

Catalyst Loading 
(mg cm−2) 

Electrolyte Eonsetvs RHE E1/2vs RHE References 

ZIF-67–900 0.7 0.1 M KOH 0.91 0.85 [135] 

NC-900 (ZIF-8) 0.11 0.1 M KOH 0.83 0.68 [136] 

GNPCSs-800 0.2 0.1 M KOH 0.957 0.82 [137] 

NPCS-800 – 0.1 M KOH 0.95 0.83 [138] 

N-doped Fe/Fe3C@C 0.7 0.1 M KOH 0.91 0.83 [139] 

CNS-800 0.28 0.1 M KOH 0.914 – [140] 

NDCN-22 0.6 0.1 M KOH 0.954 – [141] 

CoP-CMP800 0.6 0.1 M KOH 0.88 0.82 [142] 

NHPC1:3–900 0.42 0.1 M KOH – 0.87 [143] 

CNM@C – 0.1 M KOH 0.72 0.62 [144] 

B1.0CNM@C1.0 – 0.1 M KOH 0.78 0.68 [144] 

Co@Pt-NC – 0.1 M KOH 0.99 0.87 [84] 

CoOx/Co@GC-NC 0.464 0.1 M KOH 0.957 0.858 [145] 

Co@Co3O4@C-CM 0.1 0.1 M KOH 0.93 0.81 [146] 

PCN-FeCo/C 0.2 0.1 M KOH 1.0 0.85 [147] 

CoS NWs@NSC-2 – 0.1 M KOH 0.93 0.84 [148] 

Co–C@NWCs 0.1 0.1 M KOH 0.94 0.83 [149]

volume, good electrical and thermal conductivity. Furthermore, the introduction of 
heteroatoms as well as non-precious transition metals to the CSNs-based PC also 
facilitates the much-improved physicochemical properties and excellent usability in 
electrocatalytic applications. These materials would help to replace the usability of 
precious metal consumption by doping of small quantity of heteroatoms as well as 
non-precious transition metals. This obviously reduces the product cost and delivers 
almost identical or better electrocatalytic behaviour and also improves the stability 
under acidic, basic as well as alcoholic solutions as compared with the commercial 
high-yield products made by the use of noble metal catalysts. So, the recent studies 
are largely focused under this area in order to reduce the product cost and enhancing 
the performance of the electrocatalyst. Especially, the nitrogen heteroatom-doped 
porous carbons are synthesized widely using various kinds of nitrogen-containing 
organic compounds because the carbonization of these materials would successfully 
form a negatively charged pyridinic N as well as graphitic N in their structure due to 
the availability of lone pair of electron by the N atom. Moreover, the presence of N 
heteroatom in the PC would facilitate the emergence of more active sites as well as 
defects in the carbon nanostructures. In the addition, the presence of carbon nearer to 
N atom would act like Lewis basicity which helps to absorb more oxygen molecules 
on the carbon sites. A noticeable change in the pyridinic N was due to conversion of 
pyridinic N to pyridonic N which can confirm the successful ORR activity occurred
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on the N-doped PC electrocatalyst. In contrast, the presence of graphitic N also 
exhibits some defects and active sites in the PC which are also helpful in enhancing 
the electrochemical oxygen adsorption and reduction activity. Based on these reasons, 
the N-doped porous carbons were demonstrated as an excellent electrocatalyst for 
ORR activity and also illustrated an outstanding stability against alcoholic solution 
as well as acidic and basic conditions which are much-important properties for fuel 
cell and battery applications. In the addition, the hierarchical porous architecture 
in the PC would help the easier diffusivity oxygen molecules and electrolyte in the 
porous networks and improve the performance of the electrocatalyst of ORR. The 
heteroatom doping as well as non-precious transition metal ions or oxide doping on 
the porous carbons also has some drawbacks due to some sensitivity against moisture 
or other physicochemical changes by prolonged exposure which obviously reduces 
the performance of the developed products. More focused studies need to be carried 
out in order to enhance the electrocatalytic activity and improve the stability against 
various stimuli. 
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Chapter 13 
Waste-Derived Activated Carbon 
as a Sustainable and Economical Catalyst 
Support 

Sakshi Kabra Malpani, Renu Hada, Ajay Kumar, and Deepti Goyal 

1 Introduction 

Porous carbon materials have reformed both materials and chemical sciences in the 
past decade by creating new avenues in diversified applications like adsorption, catal-
ysis, electrical conduction, lubrication, energy storage, environmental remediation, 
etc. [1–4] presented in Fig. 1. Carbon, the basic element of these materials, is excep-
tionally versatile, abundant, allotropic, considered as ‘king of elements’ and can 
form numerous porous materials, viz., graphite, diamond, fullerenes, C–C compos-
ites, carbon fibers, vitreous carbon, activated carbon, etc. In recent years, activated 
carbon or activated charcoal (AC) has emerged as worthful porous carbon material. 
It has numerous interesting morphological features like higher internal surface area, 
amorphous structure, high degree of porosity, excellent compressive strength, good 
thermal, chemical, and mechanical stability, low ash content, easy activation, varied 
pore size distribution ranging from micro to macropores, high adsorption capacity, 
etc.
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Fig. 1 Overview of various applications of AC 

Since ancient times, AC has been consumed in the drinking water distilla-
tion, decolorization of raw sugar syrup, air filtration, etc., but its worldwide bulk-
scale production was started during the middle of twentieth century. In the present 
scenario, AC has found wide applications in various sectors like adsorption, catalysis, 
gas storage and separation, electrochemistry, wastewater treatment, energy storage, 
refining, cosmetics and personal care, pharmaceutical and petrochemical industries, 
etc. [5–9]. AC is produced from a variety of carbon-rich materials which could be of 
mineral, plant, or animal origin. By 2027, the global market size of AC is estimated to 
be 14.07 billion US dollars, growing at a 9.6% compound annual growth rate. Among 
various conventional procedures of AC synthesis, physical and chemical activation 
techniques are more common. Based on the size, synthetic methodologies, nature 
of applications, AC can be broadly classified into—powdered, granular, extruded, 
bead, and impregnated AC. Commercially, AC is produced from traditional fossil fuel 
resources like wood, petroleum residue, coal, and its different types—peat, anthracite, 
lignite, etc.—which are high priced, non-renewable, and still imported from outside, 
in India. This dependency on natural, exhaustible resources can be alleviated by using 
appropriate, inexpensive, carbon-enriched, abundant, dense, slow degradable, easily 
activated waste precursor which has high potential to give maximum yield % of
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AC. Heterogeneous catalysts act in a distinct phase from the reaction mixture. Laws 
of green chemistry and intensifying trepidations regarding environmental concerns 
have fueled the research for recyclable, heterogeneous catalysts to switch traditional, 
toxic, homogeneous catalysts. The catalyst support is important as it helps in better 
dispersion of active species and prevents their aggregation which enhances overall 
catalyst performance, and thus, the highest conversion and yield % of desired products 
are attained. As a worthwhile alternative to these expensive classical supports, acti-
vated carbon generated from different wastes has been reported to synthesize many 
effective heterogeneous catalysts. This review will portray the recent developments 
in mass production of AC from different waste raw materials (agricultural, indus-
trial, biomass, plastic) in the past decade (2010–2020) via conventional and novel 
methodologies. In the sections which follow, it will also focus on the prospect of such 
waste-derived AC as a sustainable, economical catalyst support material. Recently, 
AC as catalyst support has drawn attention in the catalysis industry, due to its amicable 
features like inert surface, varied pore size distribution, higher surface area, but its 
commercial use has been hampered by its higher cost and limited availability of raw 
materials. Given this consideration, the proper harnessing of waste materials, which 
could be utilized as precursors in AC synthesis, would impart an effective resolution 
to few inherent glitches like the expensive nature of commercial AC, waste disposal 
in an appropriate manner, conservation of fossil fuel resources, issues of environ-
mental pollution, overall higher expenses of catalytic industries, etc. Utilization of 
waste-derived AC as solid acid, solid base, and metal/metal oxide doped catalyst has 
been reported in catalyzing different classes of reactions like esterification, dehydra-
tion, hydrolysis, transesterification, deoxygenation, hydrogenation, oxidation, etc. It 
will assess the latent advantages of waste-derived AC over prevailing resources and 
methodologies and their role in the world’s sustainable and economic development. 
In the last section, the review will briefly discuss challenges and obstructions in this 
path and try to find out the possible solutions to them. 

2 Waste Precursors for the Synthesis of Activated Carbon 

The properties of AC depend on the type of precursor, method of synthesis, and 
modifications. Due to its strong porous parameters, higher surface area, extreme 
stability under extreme conditions, ease of functionalization, the use of AC as either 
catalyst or catalyst support material has been extremely investigated in recent years. 
In the last decade, there has been a stimulating interest in the synthesis of low-
cost, heterogeneous AC catalysts using various types of waste materials like agri-
cultural wastes, biomass wastes, industrial and plastic wastes, etc. as precursors. In 
this section, different waste precursors for the synthesis of AC are outlined (Fig. 2.) 
and discussed. Low cost and high volatile matter content of these waste feedstocks 
are expedient in the production of porous AC. Different starting materials yield AC 
with varied ash, carbon content, surface area, porosity, etc.



354 S. K. Malpani et al.

Fig. 2 Synthesis of AC from 
different waste materials 
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2.1 AC from Agricultural Wastes 

The agricultural sector plays a vital role in the social as well as economic develop-
ment of a country, but a large number of wastes generated here should be managed 
appropriately. Agricultural wastes like rice husk, empty seed shells, straws, stalks, 
etc., have relatively higher carbon content and have been extensively used in the 
production of AC. A bunch of researchers [10] has prepared AC from rice husk 
ash, an abundant agricultural by-product. In this work, impregnation of hydrolysis 
residues of rice husk was done with different concentrations and ratios of H3PO4 and 
then calcined at 300–600 °C for 0.5–2 h. In another study, palm kernel shells were 
physically and chemically activated to produce biochar which was then pyrolyzed by 
microwave vacuum method to produce AC-supported nickel catalyst. While testing 
in methane dry reforming reaction, it was concluded that chemically AC was better 
catalyst support as compared with physically AC [11]. Rajendran et al. showed that 
chemical activation of Leucaena leucocephala seed shells with 10% phosphoric acid 
followed by carbonization at 120–130 °C produces AC whose structural properties 
were studied by SEM, FT-IR, and XRD analysis [12]. Oil palm empty fruit bunch, 
coconut shells, and bamboo stem were pyrolyzed at 800 °C and then treated with 
KOH under inert atmosphere to produce AC with a higher specific surface area (1212 
m2g−1) and microporosity percentage equivalent to the commercial ACs. In the same 
work, the impact of temperature and agriculture waste type on specific surface area 
and morphological studies were also investigated [13]. 

Another facile way to generate AC has been reported by using date pits. As a result 
of in situ carbonization of date pits under inert atmosphere and followed by sulfona-
tion with 0.05 M H2SO4 solution, a green, mesoporous, highly acidic, thermally
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stable carbon catalyst was synthesized which was later utilized for the solvent-less 
tertiary butylation of phenol [14]. Koubaissy et al. derived AC from pinecone wastes 
by pyrolysis at 450 °C, chemically activated by using various activating agents like 
ZnCl2, H2SO4, and NaOH, and pyrolyzed at 600 °C. Functionalities of surface of 
as-obtained AC were studied in detail by FT-IR, XRD, zeta potential, BET surface 
area analysis [15]. Other agricultural wastes like corncob, rice husk, and wheat straw 
can also be employed as precursors for the formation of AC via chemical activa-
tion with NaCl in a simple, cost-effective manner [16]. Purple corn or Zea mays L. 
cob was used by Kaur et al. to make AC by using NaOH as an activating agent. 
SEM and TEM images revealed the highly porous, smooth surface, and rib shape 
of AC. More knowledge about the structural features of AC was gathered by using 
different characterization techniques like TGA-DTA, FT-IR, XRD, XPS, TPD, N2 

adsorption–desorption isotherms, etc. [17]. In one more study done by Kaur et al., a 
two-step activation method was used to prepare AC from corn cob. Because of the 
conjugated boat structure of AC, it possesses a higher surface area (~780 m2g−1) 
and high pore volume (0.428 cc/g) [18]. Gonçalves et al. demonstrated the prepa-
ration of AC by controlled pyrolysis of coconut husk, coffee grounds in a tubular 
furnace under nitrogen gas flow at 400 °C for 4 h [19]. Agricultural waste shells like 
dried brown walnut and almond shells can also form microporous AC in presence 
of different catalytic amounts of zinc chloride [20]. In this experiment, zinc chloride 
catalyst was impregnated on the powder of shells and activated by both conventional 
and microwave-assisted heat treatments followed by pyrolysis in an ambient and 
inert environment in closed and open ceramic vessels, respectively. Results showed 
that the microwave-assisted catalytic process is more prominent than the conven-
tional method. Execution of optimized synthesis parameters like MW power output 
of 600 W, carbonization at 500 °C formed microporous AC with an average pore size 
of 2.4 nm. An overview of AC production is shown in Fig. 3 by taking an example 
of rice husk.

A range of other agro-wastes like strawberry seeds, pistachio shells, etc. were 
also utilized to develop AC by two activation processes—chemical activation by 
impregnation of CH3COOH and physical activation under CO2 and water vapor 
atmosphere. Various factors like the type of precursors, temperature conditions, acti-
vating agents, activation time, additional activation by microwave radiations, etc. 
were studied by using different analytical techniques like SAXS, nitrogen adsorp-
tion–desorption, SEM, TEM, XPS, potentiometric titrations, TG-DSC, FT-IR, etc. 
[22]. Abdessemed et al. showed that Algerian olive-waste cakes can also produce 
porous AC by carbonization at 800 °C for 1 h and chemical activation by potas-
sium hydroxide in a mass ratio of 4:1 (potassium hydroxide: pretreated carbon) [23]. 
A study in the mid-Anatolia region showed that chickpea husks can also produce 
AC by chemical activation with varying ratios of KOH and K2CO3. Characterization 
studies revealed that AC formed by activation of 50% KOH has a greater surface area 
(2082 m2g−1) and pore volume (1.07 cm3/g) [5]. Apart from these wastes, tea waste 
or the woody part of tea obtained after harvesting tea leaves also produces highly 
porous AC by using chemical activation with H3PO4 and carbonization. Temperature 
and time of carbonization were adjusted to obtain uniform, highly porous AC [24].
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Fig. 3 AC production from rice husk. Reprinted with permission from Alam et al. [21]. Open 
access, MDPI

2.2 AC from Biomass Wastes 

Biomass wastes are lignocellulose materials often derived from agricultural products, 
contain higher volatile organic content, and have proven to be a useful, inexpensive 
resource to form AC. Mateo et al. synthesized AC-based acid catalysts by microwave-
assisted carbonization of corncob chemically activated with H3PO4 followed by 
sulfonation with conc. H2SO4. The use of microwave irradiations has reduced the 
time of carbonization from several hours to 30 min [25]. In another piece of work, a 
group of researchers has critically reviewed various synthesis procedures of solid 
carbon catalysts from different biomass wastes including isolated carbohydrates 
and plant materials like furfural, starch, oak wood, cellulose, sucrose, etc. and their 
catalytic applications in a variety of reactions like hydrolysis, esterification, trans-
esterification, etc. Studies show that such biomass-derived AC catalysts, because 
of their tunable physical and surficial features, are comparable with other reported 
catalysts in respect of catalytic efficiency and product yield %. [26]. Tang et al. 
prepared AC-based sulfonated catalysts from different biomass waste precursors— 
empty fruit bunch, papaya seeds, corncob—and tested them in formation of biodiesel 
from esterification of methanol and palm fatty acid distillate. AC prepared in this 
work possesses higher porosity and surface area in the range between 639.68 and
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Fig. 4 AC production from different biomass wastes. Reprinted with permission from Bernardo 
et al. [29]. Open access, Boletín del Grup Español del Carbón 

972.66 m2/g. AC derived from papaya seeds contained the highest carbon content, 
but the highest catalytic activity and reusability was shown by sulfonated AC catalyst 
prepared from corncob [27]. Zhou and Wang have shown contemporary growth in the 
transformation of biomass wastes into AC and their applications in various sectors. 
They have reported that AC could be derived from peanut shells, cornstalk, animal 
wastes through their carbonization at a temperature above 650 °C and applying chem-
ical and physical activation methods. AC procured from these biomass wastes can 
be then utilized in double-layered capacitors, electrochemistry, catalysis, adsorption, 
etc. [28]. Figure 4 shows that a variety of biomass wastes could be used to generate 
AC by using different activation methods and has diversified applications in many 
fields. 

Palm shells can also be used to produce AC which was then impregnated with 
calcium nitrate solution to form a heterogeneous base catalyst, utilized in the transes-
terification reaction [30]. In a similar type of study, another waste biomass, mollusk 
shells (T. striatula) was used as a raw material for preparing AC by chemical activa-
tion with KOH, then grounded with waste shells again to form a solid base catalyst 
which was used in transesterification of vegetable cooking oil [31]. Dried furfural 
residue was utilized to prepare two types of AC-based catalysts, namely KOH and 
ZnCl2 AC-based catalysts. This work showed that distribution of surface functional 
groups, surface area, porosity, and pore structure of thus-formed AC-based cata-
lysts are greatly affected by the type of activation technique [32]. Another work 
on the preparation of AC from corncob revealed that current chemical activators 
used in pyrolysis of biomass wastes are non-sustainable, so here, they are replaced 
by bio-oil and wood vinegar along with H3PO4. Experimental test and analytical 
results reveal that the adsorption potential and specific surface area of AC synthe-
sized from wood vinegar are considerably higher and can be utilized as an activator 
for the sustainable conversion of biomass wastes to AC [33]. A study shows that
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even low particle size rapeseed wastes can also be utilized as a biomass precursor 
to generate AC. Results demonstrated that chemical impregnation of rapeseed waste 
with K2CO3 and activation at 700 °C are optimized experimental conditions to obtain 
AC with superior surface area (up to 1000 m2/g) and constricted micropores advanta-
geous in caffeine adsorption [34]. Palm empty fruit bunch, coconut coir husk wastes, 
coconut meal residues, etc. can be converted into AC-based sulfonated solid acid 
catalysts by carbonization at 400 °C for 5 h. Characterization study of prepared 
samples was done by using CHNS, EDS, N2 adsorption–desorption isotherm, SEM, 
FT-IR, XPS, TGA–DSC techniques [35]. Different biomass precursors like coconut 
shells, mango leaves, bamboo fungus, spores, fruit stones and peels, coffee husks and 
grounds, nutshells, corn hulls, wood, and sawdust, straw, and grasses can be utilized 
to produce AC. Test studies showed that catalytic hydrothermal carbonization is a 
better way to produce AC with desired porosity, surface area, conductivity, stability 
[36]. 

AC can be derived from castor de-oiled cake by using both physical and chemical 
activation methods, using a mixture of H2O/CO2 as physical activating agent and 
K2CO3 as chemical activating agent [37]. Beetroot juice can also act as a carbon 
source for making AC. Veerakumar et al. concentrated beetroot juice, then chem-
ically activated with ZnCl2, dried, and ground to form a dispersed mixture, then 
underwent graphitization treatment at 600–900 °C for 2 h. BET studies showed 
that pore volume, size, and surface area of AC samples increase with an increase 
in carbonization temperature, and porosity was created due to chemical activation 
with ZnCl2 [38]. Coconut shells are another biomass source that can produce AC 
using MgCl2 as a chemical activating agent [39]. Khan et al. have reported many 
lignocellulosic, carbon-abundant biomass waste precursors like corn stalk, rice husk, 
rubberwood fiber, hazel nutshell, pine, and white firs, kenaf fiber, etc. in the generation 
of AC-based products via hydrothermal carbonization method. Various parameters 
of this method were varied to get optimized yield %. These AC-based products have 
numerous applications in biofuels, catalysis, energy storage, environmental additives 
[40]. In another piece of work, Lu and co-workers used poplar wood, pinewood, and 
corn stalk as biomass wastes to produce AC with phenol as a co-product. In this 
process, biomass wastes were pretreated and impregnated with potassium phosphate 
under ultrasonic stirring for 12 h. In the course of this work, pyrolytic solid residues 
that remained after catalytic experiments can also be activated to generate AC with 
an excellent specific surface area (1605 m2/g) [41]. 

2.3 AC from Plastic Wastes 

Plastics undoubtedly not only bring expediency, comfort, and color to our life but 
also cause interminable distresses to our environment. Plastic waste accumulation is 
one of the major environmental issues all over the world. Plastic bags, food wrappers 
and containers, bottles and container caps, COVID-19 medical equipment, and kits 
are the main sources of plastic waste that cause pollution in land, rivers, and oceans.
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Fig. 5 Plastic and industrial waste resources for AC production 

Plastic takes many years (20–1000) to degrade, so, its disposal is a major challenge 
all over the globe. Many researchers are engaged to carry out more research on 
this threatened problem to get an effective solution. [42–44]. Reuse and recycling 
of plastic wastes should be promoted to reduce their accumulation. Preparation of 
AC from plastic waste is a smart way to utilize this non-degradable waste. So many 
researchers are converting plastic waste into value-added AC which can be used as 
an efficient catalytic support material. Figure 5 shows different plastic and industrial 
waste resources utilized for the formation of AC. 

Recently, a group of researchers prepared AC with a surface area of 1381.40 m2/g 
by chemical activation of spent char obtained by slow pyrolysis of plastic waste 
at 700 °C in the N2 atmosphere [44]. Plastic pollution is mainly generated by the 
products made up of polyethylene terephthalate (PET); therefore, much concern 
has been taken for the degradation or utilization of PET. Many researchers have 
generated AC by utilizing a carbon source, PET. Oxygen-rich AC with high surface 
area and increased pore volume was derived from PET waste by direct carbonization 
at different temperature ranges from 500 to 800 °C followed by chemical activation 
using KOH [45]. Carbonization of waste PET in N2 stream at 825 °C and then physical 
activation in CO2 stream under high temperature yielded AC which showed similar 
microporosity to that of commercial AC. As-prepared AC has potential applications 
as an adsorbent for wastewater treatment, electrode materials in superconductors or 
fuel cells, H2 storage, etc. [46].
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Regenerable and recyclable AC derived by thermochemical processes for CF4 
and CO2 capture wherein waste PET bottles were used as raw material. Effect of 
carbonization, activation temperature, and base (KOH and NaOH) were studied in 
detail. These results show the significant effect of such parameters on textural proper-
ties of PET waste-derived AC [47, 48]. The autogenic pressure pyrolysis technique 
has been used as a modern technique to derive pyrolytic carbon. After pyrolysis, 
carbon was further chemically treated with KOH and ZnCl2. AC formed after acti-
vation with KOH consists of highly ordered porous structure, high surface area, and 
increased surface active sites [49]. N-doped microporous carbon has been formed 
in one-pot and two-pot synthesis using PET waste as carbon precursor and KOH, 
urea as activating agents. AC obtained from one-pot synthesis at 700 °C possesses 
better oxygen content and exhibited a higher CO2 uptake as compared to AC formed 
by two-pot procedure where base and urea treatment were carried out independently 
[50]. Polyurethane plastic waste has been valorized into AC using carbonization 
and physical activation techniques and later utilized in malachite green removal 
from wastewater. The comparative study was carried out between two-step simple, 
hydrothermal, vacuum carbonization, and one-step carbonization/activation tech-
niques. Thus-obtained AC obtained via carbonization at high temperature in inert 
atmosphere has been proved an outstanding material having high surface activity [51]. 
Poly(vinyl chloride) (PVC) was carbonized hydrothermally in subcritical water at 
180–260 °C to generate AC in an eco-friendly manner [52]. Low-density polyethy-
lene (LDPE) as raw material provides the opportunity to obtain AC. The process 
involves carbonization of transparent and black plastic at 415 °C for 135 min and 
425 °C for 120 min, respectively. Then, it was chemically activated using KOH and 
acetone. The chemical activation done by using 1 M acetone produced AC possessing 
352.55 m2/g surface area with 96.62% carbon composition [53]. AC with a supe-
rior surface area of 1591.72 m2/g was prepared using PET waste at lower pressure of 
about 34.5 bar. The carbonization was done at 400 °C followed by physical activation 
using CO2 at 975 °C [54]. N-rich AC has been synthesized by the urea–formaldehyde 
resin via carbonization at 700 °C in N2 atmosphere for 2 h, and then by chemical acti-
vation using KOH as an alkali activator. As-derived AC possessed excellent surface 
area of 4547 m2/g, and a total pore volume of 4.50 cm3/g makes it a potential carbon 
material for sequestration of CO2 from flue gases of power plants [55]. 

2.4 AC from Industrial Wastes 

Industrial waste generation is increasing enormously around the world, and there are 
no chances that it would slow down in the next few years. By 2050, it is expected 
that municipal solid waste generation would be approximately increased by 70% 
across the world and estimated to be 3.4 billion metric tons. To reduce it, a solid 
waste management system should be developed following 3R technologies (reduce, 
reuse, and recycle) by employing a variety of techniques for resource recovery, waste 
minimization, and proper disposal of solid waste. Many research groups all around
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the world are engaging in the reuse and recycling of industrial wastes [56, 57]. 
Carbon-containing waste can be a good precursor for the generation of AC in this 
regard. 

Various industrial wastes used as the precursor for the preparation of AC are 
summarized in Table 1.

3 Process of Synthesis of AC 

AC can be prepared by using different methods like pretreatment, de-
ashing/demineralization, salt templating and ultrasonic spray pyrolysis, physical and 
chemical activation, etc. Among them, activation techniques (physical and chemical) 
are the most frequently used methods. Usually, acids (H2SO4, H3PO4), bases (KOH, 
NaOH, CaCl2, K2CO3), and metal salts (ZnCl2, FeCl3), etc. are used in chemical 
activation method. A summary of synthesis methods of AC is abridged in Table 2.

4 AC as Catalyst Support 

AC with excellent porous parameters and greater surface area can be a suitable 
candidate for its use as a catalyst support material. Owing to its chemically inert 
nature, it does not react with the reactant which makes it an efficient catalyst support 
for catalyzing industrially important organic transformations [11]. In addition, the 
use of AC as the catalyst support material makes the process cost-effective. Some 
advantages of AC as compared to other commercial support materials are mentioned 
below: 

• The inert surface of AC averts the possibility of interaction between support and 
the active phase. 

• High surface area (200–1500 m2/g). 
• The easily adjustable pore structure. 
• The tunable hydrophobicity. 
• Easily regenerable active sites. 
• Can be synthesized from renewable feedstocks. 
• Stability in both acidic and basic medium. 
• Cost-effective. 

AC does not act just as a support but also sometimes takes participation in 
the chemical reactions and increases the catalytic efficiency of the other catalysts 
involved. The presence of various acidic and basic oxygen groups on the surface of 
AC is responsible for its efficient catalytic behavior. The most important criteria for 
the catalytic activity of AC as support are the presence and distribution of active sites. 
The interaction between these active sites and molecules of the reactants increases the 
overall efficiency of the catalyst support material used. Moreover, the action of active
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Table 1 Preparation of AC using different industrial wastes 

Carbon 
precursors 

Carbonization 
temperature 
(°C), time 

Activator BET (m2/g) Applications References 

Industrial 
food waste 

400–800 Iron salt 822 Removal of 
magnetic 
pollutants 

[58] 

Waste tires 
and tea leaves 

800 KOH and ZnCl2 527.24 – [59] 

Waste paper 950 for 1 h Orthophosphoric 
acid 

848.5 Fluoride uptake [60] 

Wine industry 
waste 

450 for 
60 min in N2 

KOH 2015 Removal of 
cationic dye 

[61] 

Distilled 
liquor waste 

600–700 for 
1 h  

KOH 2434 Electrode active 
material used in 
electric 
double-layer 
capacitors 

[62] 

Empty fruit 
bunch, papaya 
seeds, corncob 

600–1000 for 
2 h  

Acid 639.68–972.66 Catalyst support 
for biodiesel 
production 

[27] 

Date and olive 
seeds, 
wastepaper, 
and cotton 
fabrics 

750–850 for 
1 h  

ZnCl2 and 
CaCl2 

1293.02–1496.97 Wastewater 
treatment 

[63] 

Poultry 
feather waste 

650 for 3 h in 
N2 

KOH 12.4–16.1 Bioanode [64] 

Carob waste 900 for 1 h in 
steam 

– 408–762 Adsorption of 
pharmaceutical 
drugs 

[65] 

Papermill 
sludge 

800 for 
60 min 

KOH 1389–1627 Removal of 
pharmaceuticals 
from water 

[66] 

Packaging 
waste 

500 for 1 h KOH 760–1383 CO2 adsorption [67] 

Tobacco waste 800 for 5 h in 
N2 

KOH 1297.6 Supercapacitor 
electrode 
material 

[68] 

Waste tire 600 for 1 h in 
N2 

Physical 
activation at 
900 °C for 3 h in 
N2 

99–133 Low-temperature 
NOx control 

[69] 

Grape 
industrial 
waste 

600 for 1 h in 
N2 

ZnCl2 1455 Anionic and 
cationic dye 
removal 

[70] 

Waste 
eggshell 

700 for 4 h – 58–113 Phenol 
adsorption 

[71]

(continued)
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Table 1 (continued)

Carbon
precursors

Carbonization
temperature
(°C), time

Activator BET (m2/g) Applications References

Oil palm 
fiber/biodiesel 
manufacturing 
plant 

Microware 
power: 
90–800 W 
Radiation 
time: 2–8 min 

Microwave 
heating 

707.79 Methylene blue 
adsorption 

[72] 

Waste coconut 
buttons 

400 for 1 h in 
steam 

– 479 Heavy metal ion 
removal 

[73] 

Waste tire 500 for 2 h in 
N2 

Physical 
activation at 
950 °C under N2 
or CO2 

1000 Adsorption of 
the large-sized 
dye molecule 

[74]

sites is also influenced by the presence of heteroatoms and acidic/basic functional 
groups (Fig. 7) [83–86].

Due to the constricted resources of conventional carbon precursors and their high 
prices, the search for renewable materials is of great interest. In this direction, several 
researchers have put tremendous efforts into the synthesis of AC from various waste 
precursors that are either very economical or cost-free [87–91]. 

4.1 Solid Acid Catalysts 

Homogeneous acid catalysts like HNO3, H2SO4, H3PO4, HF, HCl, etc. have been 
widely used in several chemical reactions like esterification, condensation, transes-
terification, etc. These catalysts when used in diluted form require high temperature 
and time to complete the reaction, while with concentrated acids, the reaction is 
completed in a lesser time. Although the filtration of concentrated acid from the 
reaction mixture enhances, the cost of production as well as creates a huge amount 
of waste salts. To overcome these problems, homogeneous acids are replaced by 
some solid acid catalysts like zeolite, niobic acid, Amberlyst ionic resins, etc., but 
these catalysts are costly and less stable in the reaction medium [92, 93]. Recently, 
acid-functionalized AC has attracted the attention of several researchers [94–97]. The 
acid activation of AC can be done by using activating agents like H2SO4, HCl, and  
H3PO4 [98–100]. Acid activation increases porosity and activity, utilization capacity, 
and reusability of the synthesized catalysts [101]. The acidity of AC can be generated 
via sulfonation using concentrated sulfuric acid in a two-step procedure that involves 
hydrothermal or pyrolytic carbonization followed by sulfonation at different temper-
atures. In addition, the use of phosphoric acid before sulfonation is also reported. 
This could enhance the surface area of AC and could further raise the rate of sulfona-
tion [102]. The sulfonation process also gets affected by temperature. On increasing
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Table 2 Conventional synthesis methods for production of AC 

Pre-treatment This method includes washing of carbon precursor, drying at 
100 °C for a definite time [75] followed by crushing and 
sieving of dried powder [76]. This method removes 
impurities and moisture from the carbon material 

Deashing/demineralization This method includes leaching of carbon precursors on 
treatment with acidic (conc. HCl, HF, and HNO3) or basic  
solutions. This results in the oxidation of the carbon 
precursor and the creation of some functional groups 
comprising of oxygen on AC surface [77] 

Physical activation This method implicates two steps: 
(i) The first step includes pyrolysis of carbon precursor at 
approximately 800 °C in an inert environment. This results in 
the removal of volatile impurities and thus increased carbon 
content 
(ii) The second step includes gasification of carbonized 
material using steam, CO2, or air. Gasification with steam 
and CO2 occurs at high temperatures (700–900 °C), while 
with O2 or air, it occurs at 400 °C. The low-temperature 
requirement for O2 or air is because of superior reactivity of 
O2 than CO2 and steam. This step removes the most reactive 
carbon atoms, which are responsible for generating porosity 
in the ACs (Fig. 6). Below are the reactions that occurred 
during the gasification process [75, 78] 
C + CO2 → 2CO 
C + O2 → CO2 
C + H2O → CO + H2 

Chemical activation This method involves three basic steps: 
(i) first step involves the impregnation of the carbon precursor 
with the activating agent such as H3PO4, NaOH, or KOH 
(ii) Second step involves the thermal activation of chemically 
treated precursor in an inert environment at different 
temperatures, which increases the yield of carbon in the 
sample 
(iii) Third step involves the washing of the resulting material 
to eradicate the adhered chemical species and by-products 
which can block the pores present on the surface of the 
carbon (Fig. 6) [78, 79] 

Salt templating This method involves the mixing of carbon precursor with 
inorganic non-carbonizable salts at high temperatures, which 
helps to retain the solubility of carbon precursor and molten 
salt. Finally, thus-obtained material is washed to eliminate 
the salt impurities from the carbon material and to increase 
specific surface areas [80]

(continued)
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Table 2 (continued)

Ultrasonic spray pyrolysis (USP) This method involves ultrasonic nebulization of a mixture of 
a carbon precursor and inorganic salts. Nebulization converts 
this mixture to steam of micro-sized droplets. This steam 
then passed through a furnace in an inert atmosphere, where 
it decomposes the carbon precursor. Thus, the obtained 
product is then stored in a water bubbler, where salt and 
by-products get dissolved and the final carbon material is 
obtained in the pure form [81, 82] 

Fig. 6 Synthesis of AC via physical and chemical activation. Reprinted with permission from Bedia 
et al. [78]. Open access, C (Journal of Carbon Research)

O 

O 

O 

OH 

COOH 

SO3H 
Pyrones 

Ketones 

Phenol 

Carboxyl 

Sulfonic 

Acidic groupsBasic Groups 

Activated Carbon 

Fig. 7 Acidic and basic sites on AC produced by physical/chemical activations
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Fig. 8 Schematic structure 
of sulfonated AC below 
723 K. Reprinted with 
permission from Nakajima 
et al. [103]. Copyright 2012 
American Chemical Society 

temperature, the generation of sulfonic groups decreases. Thus-prepared sulfonated 
carbon catalyst comprising mainly three acidic groups, namely –SO3H, –COOH, and 
phenolic –OH. These acidic functional groups are liable for the enhanced catalytic 
potential of acidic AC catalysts. Sulfonic and carboxylic acid groups create Bron-
sted acidity while phenolic hydroxyl and carboxylic groups increase the hydrophilic 
adsorption capacity of water and reactants during hydrolysis reaction [103]. After 
treating with acid, oxygen-containing functional groups increased on surface of AC 
as shown in Fig. 8, which are liable for their acidic properties. Furthermore, the basic 
groups depicted on the surface of AC becomes acidic after treatment with sulfuric 
acid, because of the production of new sulfonic groups over its surface. 

Initially, wood-derived AC was used for acid functionalization, but its use as 
a catalyst is not much reported. In this sequence, researchers started the use of 
biomass-derived AC catalysts synthesized via sulfonation of starch, cellulose, and 
glucose. Thus, synthesized acid-functionalized (–SO3H and –COOH) AC catalysts 
were successfully applied in different esterification [103] and transesterification reac-
tions [97]. Another study compared the catalytic activity of sulfonated AC and 
wood-derived AC catalysts in the esterification reaction. The study revealed that 
the sulfonated AC had higher activity and reuse capability due to greater surface area 
(1137 m2/g) and acidic sites (0.81 mmol/g). A similar investigation has been done 
on the efficiency of a new high sulfonated AC catalyst synthesized by nitration with 
HNO3 in the first step and then sulfonation with H2SO4 in the subsequent step. The 
thus-prepared catalyst contained whole acid density (4.43 mmol/g) and sulfonated 
acid density (0.93 mmol/g), owing to the high catalytic activity concerning esterifi-
cation of oleic and lauric acids in methanol [104]. In another study, the efficiency of 
sulfonated AC catalysts was assessed in the hydrolysis of cellobiose. This research 
revealed that the porosity of AC catalyst is an equally significant parameter for 
the reaction as the type and strength of active acidic sites [105]. Furthermore, the 
use of functionalized carbon (sulfonated groups) is generated from rice husk and 
was studied to catalyze glycerol esterification reaction using acetic acid and glyc-
erol etherification with tertiary butyl alcohol. The total acidity of the catalyst was 
found 5.8 mmol g−1. As-prepared sulfonated carbon catalyst with sufficient Bronsted
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acid sites and hydrophilicity resulted in increased conversion% of glycerol. These 
Bronsted acid sites increased the forward reaction rate, whereas the hydrophilicity 
prevented deactivating the catalyst [106]. Besides, amorphous acid AC-based cata-
lysts have been synthesized via carbonization and sulfonation of palm kernel shells. 
All prepared catalysts showed high conversion of glucose with excellent selectivity 
to products, due to increased acid sites and good thermal stability [107]. A sulfonated 
AC catalyst with 6.28 mmol/g of acidity efficiently catalyzed hydrolysis of cellulose 
to α, β-methylglucoside under regulated reaction conditions. The activity of the cata-
lyst was reported because of the presence of intense acidic sites of SO3H functional 
groups and the hydrophobic planes on the AC surface [108]. Additionally, the activity 
of sulfonated carbon catalyst on dehydration of fructose to 5-hydroxymethylfurfural 
(HMF) is evaluated by a group of researchers. The catalyst was prepared by two 
methods: (i) hydrothermal carbonization of cellulose and subsequent sulfonation (ii) 
KOH-treated carbonized cellulose followed by sulfonation. The catalyst prepared by 
method (ii) was having higher acidity and lower surface area. Both materials were 
found equally efficient, but the catalyst prepared by method (ii) gave a superior yield 
of 83% in comparison to the catalyst prepared by method (i). This demonstrates a 
bigger impact of acidity of catalysts on the hydrolysis of fructose as compared with 
the surface area [109]. A murumuru kernel shell-derived sulfonated AC catalyst has 
been synthesized and utilized in the esterification reaction of different fatty acids 
and acid distillate. The experimental details concluded that the presence of adequate 
acidic sites on the catalyst surface gave high conversion (97.2%) under optimum 
reaction conditions. The catalyst was reused up to 4 reaction cycles and was found 
efficient giving 66.3% conversion [110]. An overview of the formation of acidic sites 
on the AC surface via physical and chemical activation by sulfonic acid is shown in 
Fig. 9.

4.2 Solid Base Catalysts 

Solid base catalysts are more beneficial than traditional, liquid base catalysts as they 
are environmentally friendly, cost-effective, quite stable in the reaction medium, 
and can be synthesized by simple methods [111]. In addition, a comparatively less 
amount of a solid base catalyst is sufficient to catalyze the whole reaction [112]. 
A recent study demonstrated the use of CaO-loaded waste AC, derived from waste 
T. striatula shells. Thus, the prepared catalyst was utilized in the transesterification 
of waste cooking oil giving higher conversion % (96%) of methyl ester under opti-
mized reaction variables. Besides, the catalyst displayed efficient potential till five 
reaction cycles [31]. In another research work, the carbonization of waste plastics into 
greener jet fuel and H2 is reported to be performed over AC (derived from biomass)-
supported MgO catalysts. The study revealed that AC-supported MgO catalysts had 
an excellent catalytic efficiency toward the reaction [113]. Another solid base cata-
lyst was synthesized by loading CaO on AC. The acidity of the catalyst was tested 
on the production of biodiesel from waste cooking palm oil. The CaO-loaded AC
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Fig. 9 Sulfonated AC as a solid acid catalyst

catalyst was found significant giving the highest conversion of 94% and found stable 
even after 4 reaction cycles [30]. A similar investigation was performed by Dhawane 
et al. [114] using  Jatropha curcas seed kernel shells. The results indicated that the 
catalyst was quite competent giving a higher yield of biodiesel (89.81%) [114]. Simi-
larly, transesterification of dimethyl carbonate with n-propanol by using K2CO3/AC 
showed excellent catalytic performance during 5 h of reaction duration [115]. In a 
similar investigation, KOH/AC catalyst was used in the production of biodiesel from 
palm oil. The highest conversion of palm oil was obtained at 343 K temperature 
using 157.04 g of the catalyst. Regeneration study demonstrated that the catalyst 
was effective till third reaction cycle, which was reduced on further use. The reduc-
tion in the catalytic efficiency of the used catalyst after third reaction cycle may be 
due to the stripping of the active phase in the reaction mixture [116]. Meanwhile, the 
deoxygenation reaction over CaO-La2O3/AC catalyst has been performed to produce 
green biodiesel. Results concluded that the prepared CaO–La2O3/AC catalyst was 
very efficient and gave 72% yield of straight-chain hydrocarbons (C8-C20). The 
catalyst was also successfully regenerated and reused up to 6 reaction cycles giving 
the approximately equal yield and high selectivity of hydrocarbons [117].
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4.3 Metal/metal Oxides-Doped Catalysts 

AC-supported metal/metal oxide catalysts have been employed in various organic 
transformations. These catalysts can be synthesized in three different ways: 

• by adding metal salt to the carbon precursor, 
• by exchange of ions, 
• by impregnation of metal salts to carbon precursor. 

The recovery of unsupported metal nanoparticles from the solution is a tedious 
process, while nanoparticles supported on carbon surface can easily be recovered 
and reused. AC support can easily be functionalized with oxygen-containing groups 
to enhance the interaction between metal and the support surface [118]. A study 
revealed the synthesis and catalytic application of AC-supported Fe catalyst. The 
catalytic efficiency of Fe/AC catalyst was evaluated in reforming of volatile material 
from palm kernel shell. The results show that the selectivity of the product is increased 
with the presence of Fe. The catalyst also improved the production of phenol (75.09 
area%) and H2 (75.12 vol.%) [119]. In another study, the catalytic activity of AC-
supported metal–ligand complexes in the hydrogenation of anthracene by BaSO3 

was studied. The reaction was performed at different temperatures and periods. The 
results showed that among various metal–ligand/AC catalysts, Ni–L/AC catalysts 
gave maximum conversion and selectivity of the products, while BaSO3/AC gave 
poor results [120]. Similarly, the catalytic performance of Ru, Pd, and Ni-loaded 
AC catalysts in hydrogenation of 1-heptyne to 1-heptene was evaluated under mild 
conditions. The catalysts were prepared by mixing acidic solutions (HCl and HNO3) 
of Ru, Pd, and Ni and AC via the wet impregnation method. All prepared catalysts 
were found quite efficient and selective toward 1-heptene. The impact of the types 
of metals and the precursor salts on the efficiency and selectivity of 1-heptene is 
also evaluated. Results showed that among all metals, nickel catalyst was the most 
active and selective, while among precursor salts, AC-supported Pd (treated with 
HNO3) was more active and selective than AC-supported Pd (treated with HCl) [121]. 
Recently, a group of researchers has been synthesized mesoporous and high surface 
area AC from different wood species. Thus-produced AC was employed as support 
for loading AuPt nanoparticles. The catalytic efficiency of the synthesized catalyst 
was assessed on liquid-phase oxidation of glycerol and hydrogenation of levulinic 
acid (LA). The catalytic results determined that the reaction progress was affected by 
the structure of carbon material. The catalyst with a lesser –COOH group was found 
active for glycerol oxidation; on the other hand, a catalyst containing a larger aliphatic 
group was found active for hydrogenation of LA [122]. In addition, AC-supported 
bimetallic (Pd-Au/C) catalysts were found more efficient for hydrogenation of HMF 
to 2,5-dimethylfuran (DMF) than Pd/C and Au/C catalysts [123]. 

The catalytic activity of AC-supported Au catalyst has been reported on 
HMF oxidation to form 5-hydroxymethyl-2-furancarboxylic acid (HFCA) and 2,5-
furandicarboxylic acid (FDCA). The nanosize of Au was responsible for the high 
yield of FDCA. On adding Pd to the Au, the catalyst reusability increased greatly. In
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Fig. 10 Proposed deoxygenation mechanism over Co/AC catalyst. Reprinted with the permission 
from Gamal et al. [125]. Copyright 2019 Elsevier 

this study, AC was successfully utilized as a support material because of its sustain-
ability in both acidic and basic reaction media [124]. In a recent study, palm fatty acid 
distillate (PFAD) was successfully converted into diesel over waste-derived Co/AC 
and Mn/AC catalysts. The results indicated that Co/AC catalyst was much more 
efficient than Mn/AC catalyst, which may be due to higher catalytic active sites on 
Co/AC catalyst. In addition, higher wt% loading of Co on AC is also responsible 
for increased selectivity and yield of products [125]. The proposed mechanism of 
deoxygenation over Co/AC catalyst is given in Fig. 10. 

5 Conclusions and Future Perspectives 

In conclusion, the use of wastes as renewable precursors in the production of AC 
which could be utilized as catalyst support, not only matches the criteria of circular 
economy, green chemistry principles but also satisfy the requirements for attaining 
UNO’s Sustainable Development Goals (SDGs). In this literature review, different 
types of wastes that are commonly consumed for AC preparation were figured out. 
Some regular and emerging techniques used for AC production from such waste 
feedstocks prevailing in the past decade were also described. Applications of AC as 
catalyst support in fabricating solid acid, solid base, and metal/metal oxide dispersed 
catalysts have also been presented in this work. This chapter revealed that AC owing 
to its promising key features like high porosity, surface area, chemical, and thermal 
stability has proven to be a high potential aspirant for its use as catalyst support in
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various catalytic applications. It also pointed out that research studies in this field 
are still lacking and there are abundant carbon-rich wastes like vegetable and fruit 
peels, food wastes, coal-based wastes, etc. which have not been utilized in AC gener-
ation. Moreover, the utilization of AC as catalyst support in the various industrially 
beneficial applications is also underdeveloped, and advanced efforts are required 
in this area to synthesize low-cost, cleaner, value-added products by upcycling of 
wastes. In the future, such catalysts could also play role in several other sectors like 
electrochemical processes involved in hydrogen and oxygen evolution reactions, 
wastewater treatment, air purification, antimicrobial activity, sediment remediation, 
etc. The work discussed in this chapter is advantageous as it paves an alternate, more 
economical, and environmentally safe pathway to produce AC with tunable proper-
ties comparable with commercial one by the utilization of wastes, thus solving the 
acute problem of waste disposal and reduce the dependence on expensive, depleted 
fossil fuel resources for AC production. Taking into consideration the bright future 
of this approach, novel waste raw materials, methods to produce AC, and its new 
catalytic applications will continue to be seen in industrial and academic disciplines. 
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Part IV 
Sensor and Sensing Technology



Chapter 14 
Porous Carbon-Based Sensors and Their 
Applications 

Karunanthi Govardhan, Prabhu Ramanathan, and Mahesh Ganesapillai 

1 Introduction 

Carbon has been the buzzword for most chemical and material scientists towards 
the turn of the twenty-first century. Various allotropic nanostructures are derived 
from carbon. C-60 structures (O–D), famously termed Buckminster Fullerenes, were 
discovered by Kroto et al. in 1985 [1] paved the way in kindling interest in carbon-
based materials. The discovery of 1D Carbon nanotubes by Iijima in 1991 [2] quickly 
followed fullerenes, field of sensors, 2D structures of carbon, the Graphene by Geim 
et al. lured the interest of carbon allotropes to many scientific domains. The research 
and developments in these materials justify two Noble Prizes awarded among these 
three materials. Activated carbons represent the allotropes of carbon which are either 
functionalized through chemical, physical, or other means to make them highly selec-
tive or reactive towards a target molecule or perform a chemical or physical function. 
These materials’ inert or dielectric nature differs from making them selectively active 
or reactive with a modified parametrical response. High surface area and porosity 
are critical factors in this. The international union of pure and applied chemistry has 
categorized materials’ porosity according to their pore size distribution. Macropores
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are defined as those with a diameter higher than 50 nm, mesopores are defined as 
those with a diameter between 2 and 50 nm, and micropores are defined as those 
with a diameter less than 2 nm [3]. 

Highly porous and, in particular, tuneable porous structures were the need of 
the hour to enhance the performance of various catalytic and sensing reactions. 
Mesoporous structures synthesized since 1990 came as a boon for these domains. 
Mesoporous carbon, with its benefactor characteristics such as enhanced stability 
(chemical, mechanical, and thermal), high surface area, tuneable pore size, can be 
functionalized with various active elements exploited in energy storage and electro-
chemical sensing applications. Moreover, they exhibit variable electrical properties 
based on the orientation and carbon matrix ordering [4], which help better conduction 
of signals from the active host or sensing elements either confined or adsorbed onto 
the 3D mesoporous structure. Integrated formation of micropores embedded into the 
complex macropores enhances the selectivity towards a specific species in catalysis 
and sensing requirements. 

Though being a newcomer to the family, porous carbon is recently gathering much 
momentum in various fields. Highly excellent properties exhibited by these mate-
rials such as tuneable and high porosity, synthesized with different morphological 
shapes and sizes, proven physical and chemical stability, functionalize with various 
elements to suit applications demanding highly selective and sensitive responses, the 
higher surface-to-volume ratio, lightweight, tuneable electrical conductivity, high 
mechanical strength. Prime research emphasis on porous carbon spans highly diverse 
domains ranging from energy storage to sensing applications (Fig. 1). Lithiated 
porous carbons are being viewed as an option for high-energy storage mediums. 
Porous carbon-mediated supercapacitors are becoming a norm, and there are products 
commercialized based on them. Doped or functionalized PC-based nanostructures 
are being used as a catalytic medium in various domains.

Along with activated carbon, PCs are also being used as effective filtration media 
in liquid and gas-based systems. A highly porous nature with tuneable defect sites 
has proven that PCs are an excellent choice for gas adsorption, which can be utilized 
in gas sensors or gas capturing systems. Interestingly, these materials can also be 
easily derived from biomass waste, thereby proving to be environmentally friendly 
and facilitating effective use in terms of recycling. 

1.1 Carbon Nano-Structured Sensors 

CNTs and graphene have become the most preferred go-to or starting material for 
enhancing the sensing performance of nanomaterials. This is mainly owing to their 
chemical, physical, electrical, mechanical properties. CNTs and graphene have been 
highly researched and used in various sensing applications, including gas sensors, 
biosensors, electrochemical, optical, pressure, and strain sensors. However, porous 
carbon-based systems rival them with the most significant advantage of highly 
tuneable porosity and simple template-based growth mechanisms. Publication data
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Fig. 1 Potential applications of porous carbon-based sensors

derived from scopus.com highlights the research trend in the field of porous carbon-
based sensors. These materials have garnered greater interest in the past decade with 
a highly exponential increase in publications until 2020, only to be disturbed by the 
current global pandemic. 

Both year-wise and domain-wise publication data analysis derived from 
scopus.com on porous carbon sensor derived on 4th June 2021 is depicted in Figs. 2 
and 3. The publications have resulted across a wide range of domains, dominated by 
chemistry and materials science. PC-based materials have also created a great interest 
in the biomedical field with various researches reported in medicine, pharmacology, 
toxicology, and pharmaceutics. The impact of PC materials has also been observed 
across mathematics, economics, businesses, social sciences, etc. Newer interests are 
being vested in neuroscience, veterinary, dentistry, etc.

Most of the applications reported on the sensing and electrochemical activity front 
focus on gas sensing, adsorption and storage, and energy storage and supercapaci-
tors. All these applications involve physio-chemical or electrochemical reactions of 
the heteroatoms doped in the PC matrix. Various monomers, polymers, and other 
carbohydrates are used extensively to synthesize the 3D porous carbon structures. 
The PC matrix provides high specific surface area, hierarchical porous structure, 
greater pore accessibility, lower density, sub-micrometre edges that facilitate faster 
electron or molecular diffusion/transfer, availability of a large number of active sites
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Fig. 2 Year-wise publication data analysis derived from scopus.com on porous carbon sensor (data 
derived on 4th June 2021) 

Fig. 3 Domain-wise publication data analysis derived from scopus.com on porous carbon sensor 
(data derived on 4th June 2021)

to embed reactive agents, and more controllable inner pore volume enhancing the 
sensing and electrochemical activity which these fields demand the most [5].
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1.1.1 Material Properties 

A material chosen for sensing applications should respond to a stimulus initiated by 
a chemical or physical phenomenon. Suppose the response of the sensing material 
(stimuli) is obtained as an electrical signal. In that case, it makes the job of the 
instrumentation engineer to design efficient signal conditioning circuits to derive a 
meaningful indication of the physical or chemical changes that occurred in the process 
of the measurement interest. Commercial successful implementation of those sensing 
materials depends on the speed of the response, hysteresis, drift due to ambient 
condition, high sensitivity, and linear. Environment friendliness and the material’s 
cost-effectiveness are needed for a material to be used as a sensor. PCs shall be 
regarded as a golden material to be used as a sensor due to its diversified forms of 
configurations with different characteristics properties, viz., electrical, mechanical, 
optical, and thermal. The high reactivity of different carbon structures allows tailor-
made solutions for different applications. The use of PCs for large-scale energy 
storage applications, due to the stable, high yield, easy synthesis of super capacitance, 
is a more successful application. PCs have a large surface area, are inexpensive to 
manufacture, are simple to process, and have a high conductivity. This section is 
intended to brief the readers about the properties of the PC material, which makes 
them viable for sensing applications. 

1.1.2 Mechanical Properties 

Different materials have been reported for pressure measuring. If the material’s 
mechanical properties facilitate the production of numerous sensing parameters due 
to the transduction mode, the same material should be utilized to measure depen-
dent variables. For instance, simultaneous pressure and temperature measurements 
might be advantageous for specific industrial and medical apparatus. The material 
should convert applied force to electrical signals in order to monitor pressure. The 
force range must be sufficiently broad, ranging from a few pascals to several pascals. 
Additionally, the electrical signal transduction must occur within a quantifiable range, 
alternatively, in ohms, volts, or amps. 

Additionally, the materials should have the following characteristics: sensitivity, 
low drift, low offset, low hysteresis, repetitive, and reproducible. Several successful 
researchers have reported the use of the following materials for pressure measure-
ment; (i) active carbon [6], (ii) conductive polymers [7], (iii) graphene [8], (iv) metal 
nanoparticles [9], and (v) metal nanowires [10]. Following the need for multifunc-
tional parameter measurement with the same transduction material, the following 
applications were reported: 

(a) Temperature and pulse pressure in artery vessels [11]; 
(b) temperature and surface hardness in artificial finger development [12, 13]; and 
(c) temperature, pressure, and vibration detection in e-skin development [14].
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Zhao et al. [15] successfully reported the fabrication of bi-modal sensing based on 
the metal–organic frameworks derived from porous carbon and polydimethylsiloxane 
(PDMS) composite. The article has reported simultaneous measurements of pressure 
and temperature. The sensitivity of the pressure measurement is about 15.63 kPa−1, 
with a 65 ms response time. For temperature, it is about > 0.11 °C−1 with 100 ms 
response time. 

The mechanical property of the PC/PDMS material varies the contact area inside 
and also between the composite films and the electrodes. When no pressure is applied 
to the porous structure, the resistance between the PC and the electrodes is exception-
ally high. This is because the contact area between the PC and the electrodes is rela-
tively small. External pressure compresses the PC/PDMS composite pores, lowering 
the resistance. Furthermore, the resistance is decreased due to the increased contact 
area between the substrate and the film. Similarly, removing the pressure restores 
the initial resistance. In the experiment, the material is exposed to different pressure 
loads from 60 to 2000 Pa with a constant voltage source of 3 V. The current response 
was recorded for varying pressure exposure. The sample has yielded a stable and 
linear response in the span of the varying pressure from 60 to 2000 Pa with a sensi-
tivity of 15.63 kPa−1. The pressure sensitivity is defined as S = (∆I/Io)/∆P, where 
S is the sensitivity, ∆P is the change in applied pressure, Io is the initial current 
without applied pressure, ∆I is the change in current (Ip − Io). 

The thermal expansion characteristics of the material were experimented with 
from 23 to 120 °C. The material has shown a positive temperature coefficient, owing 
to the expansion of the polymer and eventually the breakdown of the thermal conduc-
tivity path between the fillers. The well-established relation α calculated the temper-
ature coefficient of resistance = (∆R/Ro)/∆T, where Ro is the resistance at room 
temperature, ∆R is the increase or decrease of resistance (R − Ro), and ∆T is the 
change in temperature (T − To). The material has exhibited a linear relationship 
between 23 and 50 °C. After 60 °C, the experiment has yielded an exponential 
increase of the response, and the sensing material responds to both pressure and 
temperature stimuli. 

1.1.3 Optical Properties 

Carbonaceous materials have been a well-established field of research for over a 
decade, owing to their ubiquitous nature and simplicity of preparation. Carbona-
ceous materials include porous carbon, activated carbon, carbon nanospheres, carbon 
aerogel, and porous graphene. These materials were also electrically conductive and 
structurally stable [16]. Additionally, these materials have high porosity (microp-
ores (less than 2 nm), mesopores (2–50 nm), macropores (greater than 50 nm), or 
a combination thereof), which results in a more extensive specific surface area and 
pore volume, as well as customizable pore sizes and distributions [17]. 

Carbon dots (CD) are fluorescent carbon nanoparticles first observed in a study 
conducted by Xu et al. [18]. In a subsequent study [19], it was observed that the 
luminescence of CDs could be enhanced by surface passivation. Since then, research



14 Porous Carbon-Based Sensors and Their Applications 387

has skewed towards CDs due to their unique properties like high water solubility, 
photostability, more accessible synthesis methods, and lower production costs. These 
nanoparticles are well-dispersed structures and could be actively stabilized in mate-
rials with nanoscale porosity—such stabilized materials exhibit desirable proper-
ties such as effective optical absorption, photo-induced electron transfer, upcon-
verted photoluminescence, and tuneable photoluminescence. CDs are widely used 
in a variety of applications, including bio-imaging [20], sensing [21], catalysis [22], 
energy devices [23], optoelectronics [24], etc. 

Porous carbonaceous materials are hence preferred as stabilizing structures 
because of their abundance, physical properties, and adjustable pore sizes. Further-
more, carbonaceous porous materials have been credited for generating synergistic 
effects with CDs. There are four prominent types of CDs—graphene quantum dots, 
carbon nanodots, carbon quantum dots (CQDs), and carbonized polymer dots [25]. A 
typical disadvantage of CDs is that they frequently exhibit the solid-state aggregation-
induced luminescence quenching effect. This leads to a phenomenon of luminescence 
quenching and poses issues in applications based on the nanostructure’s optical prop-
erties (like in optoelectronic devices). Similarly, it faces drawbacks in photocatalysis 
applications due to lower luminous efficiency and low photosensitization efficiency. 
Luminescence quenching can be actively avoided by incorporating CDs with a porous 
material—simultaneously, the synergistic effect of the combined structure proved to 
enhance the performance of the nanostructure itself [17]. 

The 3D porous graphene structures such as porous graphene skeleton [26, 27], 
graphene hydrogel [28], or aerogel have unique porous structures, higher specific 
surface areas, and more excellent electrical conductivity. Incorporating CDs into 
these porous graphene structures to construct composites can effectively enhance 
the performance of the resulting composite structure. Composites of CDs and porous 
materials combine the features of CDs with unique porous architectures, generating 
widespread interest in various sectors, including optics and healthcare [29], sensing, 
and electrochemistry [30]. CDs integrated with porous materials form viable compos-
ites with unique properties which can be used as chemical sensors. Porous materials 
serve as carriers of CDs and significantly improve the sensor’s sensitivity owing 
to their porous structure. Wang et al. [31], conducted a study demonstrating the 
enhanced sensitivity of (a mesoporous material) MCM-41/CQD composite to acetic 
acid gas rather than the acetic acid solution. This was mainly credited to meso-
porous MCM-41 for enriching the gas around the CDs for effective sensing. Other 
applications of CDs include drug delivery, imaging, and photocatalysis [32, 33]. 

1.1.4 Pore Structure and Surface Chemistry 

New sensors with improved sensitivity and dependability are necessary to manufac-
ture modern sensor devices. These sensors must also be cheap, small in size, and 
easy to operate [34]. Nanotechnology has enabled considerable breakthroughs in 
material characteristics, allowing significant advancements to transcend the bound-
aries of conventional materials. Compounds derived from carbon are among the
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most extensively explored and widely used materials in nanotechnology world-
wide. Carbonaceous structures have several advantages over other materials widely 
employed, including superior physical and chemical qualities [35]. Carbon-based 
materials could also replace currently expensive electrical chemicals because of their 
increased efficiency and environmental friendliness. As a result of its outstanding 
physical and chemical properties, carbon nanostructures have been studied for use as 
sensitive sensor devices. Structure defects and unsaturated chemical bonds formed 
by carbon atoms are responsible for the elevated surface activity of these substances 
[36]. Initially, sensors have relied on fullerenes, carbon nanotubes, and graphene, 
which have gained significant scientific attention due to their increased electron 
transfer rates, high specific surface area ratio, and bio-compatibility. 

Tans et al. [37] identified that the carbon nanotube field-effect transistor is now 
considered a feasible substitute for virtually all metal oxide semiconductor field-
effect transistor applications. Graphene and its variants were employed as materials 
for sensors in a range due to its exceptional thermal and electrical conductivity, high 
specific surface area, and outstanding mechanical strength. Carbon nanostructures 
are used as gas sensors because their porous structure allows gas adsorption and 
desorption, allowing gas detection and quantification. The capacity to functionalize 
the gas further improves selectivity. For gas sensors, carbon nanostructures can be 
utilized in sorption, ionization, capacitance, or resonance frequency shift sensor 
systems, as long as they have high specificity, rapid reaction and recovery rate, and 
durability [38]. 

Additionally, carbon-based sensors can be used when contamination is being erad-
icated or phased out by monitoring dangerous compounds in the surrounding environ-
ment with a response similar to gas sensors [39]. Leng et al. [40] produced a humidity 
sensor by mixing diamine-modified graphene oxide and Nafion polymer to create 
a hybrid film and carbon nanostructures as mechanical sensors for strain measure-
ments. As a result, carbon nanostructure-based sensors are innovative systems with 
a wide range of applications. With comparable findings, several carbon allotropic 
forms can be employed in sensing applications, and thus, a variety of materials have 
been employed due to their superior electrical, thermal, mechanical, and chemical 
qualities [41]. 

2 Fabrication of Porous Carbon-Based Sensors 

Porous carbon materials can be divided into three categories based on pore size: 
microporous 2 nm, mesoporous 50 nm, and macroporous > 50 nm, according to the 
International Union of Pure and Applied Chemistry. Various ways have been used 
to create porous carbon. Here are some traditional approaches.

• Chemical activation, physical activation, or a combination of factors [42–44];
• Utilization of metal salts or organometallic compounds to catalyse the activation 

of carbon precursors [45–47];
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• Carbonization of polymer blends that contain both carbonizable and hydrolysable 
polymers [48–50]; and

• Carbonization of a polymer aerogel produced via supercritical drying [51–53]. 

Recent synthesis techniques have quickly and vastly improved over the traditional 
techniques. Pyrolysis, carbonization, and polymerization have become the standard 
processes, enhanced with the various additional processes including templating, 
hetero doping, co-polymerization, and treatment with certain dopants or function-
alized molecules to increase selectivity and sensitivity of the PC-based materials 
towards target species. 

2.1 Pyrolysis 

Pyrolysis has been the most preferred and most straightforward technique to synthe-
size porous carbon structures. Organic precursors are pyrolysed at inert atmospheres. 
The inherent property of the organic precursor plays a dominant role in defining the 
characteristics of the PC nanostructures. Hence, the choice of the same is critical to 
tailor the PC’s porosity, morphology, crystallinity, mechanical, electrical, and chem-
ical properties. Most often, polymers have been used as precursors. Recently biomass 
[26, 54] and ionic liquids [55–57] are being substituted using polymers (Fig. 4). 

Fig. 4 Porous carbon structures with linkages and linkers
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Porous carbon structures with heteroatom doping are preferred towards the 
focused application domains of sensing, catalysis, and energy storage. Porous carbon 
structures consist of linkages and linkers. Linkers connect different blocks of the 
structures. When a porous carbon structure has been doped with N, S, B, and metals, 
it is termed as metal-organics, and when monomer-based heteroatom has been doped, 
it is termed as covalent organic frameworks (COFs) [58]. Metal–organic frameworks 
are realized through the interconnection of organic linkers decorated by metal ions, 
where COFs consist of organic monomers replacing metal ions. 

2.2 Solvothermal Carbonization 

Solvothermal carbonization is the most straightforward and commonly used tech-
nique to synthesize porous carbon nanostructures. Conventional pyrolysis techniques 
with carbohydrate-based precursors result in hydrochar but result in reduced porosity. 
In order to enhance the porosity of the porous carbon nanostructures, the precursor 
is thermochemically converted to wet precursors by treatment with subcritical water 
[59]. Porous carbon materials can be synthesized at relatively lower temperatures 
(180–200 °C) for water treatment and dye removal [60]. To reduce the overall cost 
in synthesizing the porous carbon, biomass or biowaste materials have been used as 
the precursors [61, 62]. 

2.3 Template-Assisted Polymerization 

Synthesis of PC-based nanostructures with well-defined mesoporous structures can 
be conveniently done using templates. This technique aims to create a mirror structure 
of the required PC structure using polymers and then either pyrolyse the polymers 
or coat conjugated polymers on the surface of the existing polymers. Highly ordered 
meso or nanoporous carbon structures can easily be formed through ordered silica 
templates. To successfully replicate the template pattern, it is critical to ensure poly-
merization only inside the template and not on its outer surfaces, making the template 
removal process more complex. In order to facilitate the internal polymerization, 
oxidizing agents are immobilized onto the inner surface of the templates. These 
agents can also be modified or embedded to act as dopants or functionalized active 
sites after post-synthesis treatment [63]. Santa Barbara Amorphous-15 and 16 (SBA-
15, SBA-16) [63–66], Korea Advanced Institute of Science and Technology-6 (KIT-
6) [67–69], Mobil Composition of Matter-41 (MCM-41) [70, 71], MCM-48 [72], and 
silica xerogel [73, 74]) are used as templates and polypyrrole [63, 74], polyaniline 
[69], and thiophene [75] are used as common precursors. PPY and PANI result in 
nitrogen-doped PC [74, 76], and thiophene [75] results in sulphur-doped PC. Super-
paramagnetic nanoparticles-embedded mesoporous magnetically separable ordered 
carbon structures have been developed, with FeCl3 acting as an oxidizing agent. The
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Fe ions left behind after polymerization stay embedded in the carbon matrix. The 
size of these particles is limited by the silica template and the diameter of the CNTs 
formed from these metal particles [77]. 

Exploiting the sensing and catalytic activities of the porous carbon materials 
requires them to be synthesized with active sites embedded with functionalized 
elements or molecules. The sensing nature of the material can be tailored during 
the synthesis process itself, making the process simpler and highly configurable 
as per the requirement. Newer techniques like metal–organic and covalent organic 
frameworks have evolved over simple carbonization techniques to meet these require-
ments. Both result in heteroatom-doped porous carbon structures with high disper-
sion. The tailored doping with interconnected meso–micropores enhances the sensing 
and catalytic activities owing to increased reactive surface area and greater adsorption 
volume of the 3D porous carbon-based materials. 

2.4 Metal–Organic Frameworks 

Metal–organic frameworks are a type of crystalline porous carbon-based coordina-
tion polymers with metal elements distributed among the carbon matrix. Metal– 
organic frameworks are characterized by permanent porosity with higher pore 
volumes, larger active surface area, low-density materials with uniform distribution 
of metal ions. They can be decorated with different metal atoms or ions to achieve a 
wide range of sensing or catalytic activities. They have already found their footprint 
well established in the field of gas sensing, adsorption and separation [78], organic 
pollutant degradation [79], catalysis [80], sensing of chemical [81], energy storage 
[82], drug delivery [83], and others. 

2.5 Covalent Organic Frameworks 

Covalent organic frameworks (COFs) consist only of organic molecules linked by 
covalent bonding with no inorganic elements or molecules in the matrix. They are 
characterized by higher pore volumes with controlled pore sizes and shapes through 
the synthesis process. COFs have been utilized towards catalysis, gas storage [24, 84– 
89] and separation, energy storage [90], etc. COFs are constructed through two main 
components, linkages, and linkers. Due to the usage of only organic monomers and 
polymers in the synthesis process, COFs are comparatively more ordered than metal– 
organic frameworks, can handle harsher environments better, and result in a variety of 
morphologies based on the chosen precursors [58]. Similar to metal–organic frame-
works, COFs can also be doped with S, N used for oxygen reduction reaction for 
electrochemical sensing, co-doping of N and S for electrochemical activity [91–93]. 
Lanthanide-doped COF [94] have also been developed to fabricate an ultrasensitive 
sensor to detect perfluorooctanesulphonate in tap water. The results of this sensor
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were very close to the results obtained from much costlier and complex sensing based 
on the liquid chromatography technique. 

2.6 Dual Templating 

Superhydrophilic fabric synthesized from hierarchical porous carbon structures 
with enhanced conductivity has been developed to detect methanol and hydrogen 
peroxide. Dual templating technique with Pluronic F127 (soft template) and non-
woven fabric (complex template) was employed to create mesoporous structures 
in macro or micropores resulting in enhanced hydrophilicity and wettability. The 
contact angle of hierarchical porous carbon-polyethene terephthalate (HC-PET) was 
close to zero degrees with water, hydrogen peroxide, and methanol. Reduction in 
the carbonization temperature favoured the rise in resistivity of the HC-PET up to 
5.4 × 103 fm. HC-PET with lower carbonization temperature offered varying sensi-
tivity depending on methanol concentrations and offered enhanced sensitivity when 
compared with water or hydrogen peroxide. 

2.7 Hard Templating with Carbonization Temperature 
Optimization 

Sensing toxic food colourants is a complex process in conventional sensing tech-
niques, including spectrophotometry or liquid chromatography. PC-based electro-
chemical sensing is a more convenient method to sense these toxic materials. PC is 
derived from starch carbonized at 800 °C using CaCO3 complex templates [95]. A 
simple differential pulse voltammetry with the 0.1 M phosphate buffer loaded with 
synthetic colourants such as sunset yellow, Tartrazine, Ponceau 4R, and Allura red 
showcased enhanced sensitivity towards them. The sensor response was linear from 
low concentrations of 2.5–1000 µg/L. The PC synthesized from different ratios of 
starch/CaCO3 was coated on glass carbon electrodes. The sensor showed a higher 
electrochemical reactivity supported by more excellent signal enhancement effects 
due to the oxidation of the food colourants. Sunset yellow with 89.4 fold, Tartrazine 
with 79.3 fold, Allura red with 50.7 fold, and Ponceau 4R with 47.3 were observed 
with 0.7 pH 0.1 M phosphate buffer electrolyte solution. 

CO2 sensor based on hierarchically porous carbon derived from raw sugar has been 
reported to enhance the sensitivity due to the adsorption of CO2 in the interconnected 
meso and microporous structures. Interconnected meso and microporous structures 
were tuned by varying the carbonization temperature of raw sugar and nano-CaCO3 

mixture. The HPC carbonized at 900 °C showcased the highest adsorption capacity 
of 2.25 mmol/g at ambient temperature and pressure. It also possessed a higher 
micropore volume up to 0.215 cm3/g, which occupied nearly 56% of the entire pore
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Fig. 5 Porous carbon structures derived from polymers through pyrolysis 

volume in the material. This higher micropore volume facilitated the increased CO2 

adsorption. 

2.8 Carbon-MEMS 

Cost-effective and batch fabricated sensors can be derived from porous carbon mate-
rials based on Carbon-Micro Electro-Mechanical Systems (C-MEMS) technology. 
Highly porous structures with well-defined micropores with nanoporous edges have 
been utilized to develop sensitive heavy metal sensors based on electrochemical 
sensing techniques [96]. Polymer-based photoresists patterned with UV lithography 
were etched with O2 plasma etching to form micropores. These were then pyrol-
ysed to convert polymer to porous carbon structures with nanoporous edges (Fig. 5). 
Hierarchical PC structures were synthesized by increasing the O2 plasma etching 
time. Regular tap water with elevated Cd and Pb ions concentrations was diluted 
with a buffer solution of 0.1 M NaAc solution which was used as the electrolyte. The 
electrolyte was subjected to square wave anodic stripping voltammetry. 

3 Porous Carbon-Based Sensor Applications 

3.1 Chemical Sensors 

With uncontrollable emission rates of greenhouse gases, there is a dire requirement 
to control and monitor the concentration of such gases in urban and industrial areas. 
Studies showed that the most prominent greenhouse gas is CO2. According to occu-
pational safety and health administration standards, the acceptable exposure limit for 
CO2 in the air for an 8-h workday on a time-weighted average is 0.5%. Failure to meet
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these thresholds may result in workers experiencing side effects like headaches, sore 
throat, nasal irritation, and severe respiratory problems [97]. Hence, a considerable 
amount of research was carried out in the field of CO2 sensing. Initially, ceramic 
materials like ZnO, TiO2, CuO, NiO, Mn2O2, etc., were used to make CO2 sensors. 
However, these sensors were only effective in specific temperature ranges and oper-
ated on high voltages. This was not a desirable trait as it hindered the functionality 
of the sensors and resulted in a shorter lifetime for the sensors [98]. They were 
also bulky and were not portable enough to be considered for compact, lightweight 
uses. Several investigations have reported on the fabrication of CO2 sensors using 
graphene, carbon nanotubes, aluminium oxide, and Polyethyleneimine (PEI). 

These sensor materials had enhanced flexibility, detection ranges, and comfort-
able operating ranges [99]. The sensor’s outputs are mapped on a conductivity vs 
CO2 concentration plot, and this data is also dependent on relative humidity. The 
sensors have increased detection ranges under lower relative humidity as the range 
for conductivity is affected by the relative humidity. Some desirable traits for CO2 

sensors are good repeatability and reproducibility of collected data, portability of 
sensors, fast response and recovery times, high selectivity and sensitivity, low oper-
ating temperatures, and lower detection limit. Most of these traits apply to any sensing 
system [100]. Han et al. [101] showed the effect of functionalized CNTs with poly-
mers such as Polyethyleneimine on the sensitivity of gas sensors and their affinity to 
detect CO2. It was also noted that PEI-laminated devices exhibited a high increase 
in conductance on NO2 exposure. Simultaneously, there was no discernible change 
due upon exposure of other common gases in the air like N2, O2, etc., proving its 
selective nature. Nanomaterials like CNTs and PEI are much more adaptive as sensor 
material due to their highly selective and customizable nature. Hence, the research 
trend skews towards combining nanomaterials and porous carbon mediums to attain 
the best possible results. 

3.2 Physical Sensors 

The response of a semiconductor photocatalyst to catalyse redox reactions with light 
as the source is known as photocatalysis. The entire photocatalyst process can be 
broken down into three parts: light absorption, charge separation and transfer, and 
the final step being surface reactions that take place on the photocatalyst selected 
[102]. Even if progress is being made in this area, the main difficulty that can be 
noted is that in order for plans to be successful using fossil fuel technologies, solar 
to hydrogen transformation must reach nearly 10%, but this degree of conversion is 
currently poor [103]. Metal oxide reactors have been widely used, but there has not 
been a single material that meets all of the characteristics of a photocatalyst. They 
are non-toxic, highly efficient, have excellent stability, cost-effective, and durable 
performance. 

The material which has been able to replicate these properties at a certain level is 
TiO2, upon which various researches have been conducted, but the one place where
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it falls short is the spectrum upon which it operates. It can only utilize UV radiation 
from the sun, which makes up only 4% of the solar spectrum [104]. Aside from 
that, research has been done on precious metals like palladium and platinum, but 
their uses are limited due to the high price and scarcity; g-C3N4 was discovered for 
the first time in 2009 [105]. The photocatalyst g-C3N4 is a two-dimensional metal-
free photocatalyst [106]. A medium bandgap of around 2.7 eV is chosen due to its 
appealing electrical band structure. They have good chemical and thermal stability, 
and this special conjugated polymer offers a fantastic possibility in energy and the 
environment [107]. The photocatalyst itself is made up of carbon and nitrogen as the 
raw materials; however, several groups have been modified their composition to get 
better results. Zhang et al. [108] created a sheet-on-sheet structure with an acces-
sible porous network that increased the surface area and increased the effectiveness of 
light-harvesting and visible light absorption while speeding up the transfer of reactant 
molecules to active molecules locations. Further researchers have also experimented 
with improving photocatalytic efficiency by reducing defects and inducing doping 
in the photocatalyst. This particular carbon-based photocatalyst has got vast appli-
cations, but along with it, it also fits all the essential criteria; with research still being 
undertaken, it could prove to be a viable photocatalyst that could help reduce the 
consumption of fossil fuels. 

3.3 Biosensors 

Glucose is a precursor of polysaccharides, one of the four major types of macro-
molecules (nucleic acids, proteins, carbohydrates, and lipids). It is a crucial metabolic 
intermediary and the primary source of energy in organisms. However, an over intake 
of glucose can lead to serious health consequences, as a result of which it becomes 
imperative to monitor the amount of glucose that is present not only inside the body 
of a human being but also within the various food articles which are being consumed 
daily. For this purpose of detection, biosensors have a considerable role to play, but 
there are various types of biosensors available, one of which use enzymes and some 
are enzyme-free. 

As indicated above, glucose can be detected by several methods: a colorimetric 
approach. In this method, glucose is oxidized by glucose oxidase (GOx) to form 
gluconolactone and H2O with the help of H2O2. To determine the glucose concen-
tration, peroxidase is used to catalyse the formation of a coloured product of the 
peroxidase substrate. The resulting coloured product is then measured to calculate 
the concentration of glucose. The use of natural enzymes has some drawbacks, such 
as high cost and environmental factors. Yang et al. [109] developed a CFP/GWs/Cu2O 
enzyme-free glucose sensor that can measure glucose concentrations at a much higher 
sensitivity on the surface of CFP. CuO nanoparticles create homogenous, uniformly 
sized spheres on the 3D framework of CFP/GWs, which have good conductivity. In 
contrast to previous models, which assumed that only one glucose (or 1C) could be 
converted into two molecules of product, the 3D framework of CFP/GWs enables a far
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more significant number of catalytic sites for the glucose reaction, enabling the effi-
cient transport of electrons. Parashuram et al. [110] prepared a non-enzymatic sensor 
to detect glucose in oranges; a ZrO2–Cu(I)-modified carbon paste non-enzymatic 
glucose sensor was developed. 

Low glucose concentrations may prevent the sensor from working. Because of 
the significant number of active catalytic sites and the ease with which copper can 
be converted into different oxidation states, the developed sensor proved to help 
speed up the electrocatalytic oxidation of glucose. Tam et al. [111] developed a non-
enzymatic sensor based on graphene quantum dots via microwave-assisted pyrolysis. 
The presence of graphene quantum dots provides a porous structure that enables 
glucose detection at a faster rate due to the formation of an efficient diffusion pathway. 
The sensor as a whole show’s high sensitivity and excellent selectivity against various 
interfering species. It is observed that both enzymatic and non-enzymatic biosensors 
are available; the selection of the sensor depends upon the application where it is 
to be employed. Along with the application, the development cost and various other 
factors should also be looked into while selecting a particular biosensor for glucose 
detection. 

3.4 Energy Storage and Sensing 

Supercapacitors are high-efficiency energy-storage devices with minimal internal 
resistance. Supercapacitors of today’s generation are made up of two electrodes, 
an electrolyte and a separator, and they offer several benefits such as long cycle 
life and excellent adaptability. These capacitors are typically utilized in applications 
that require high reliability and short load cycles. Electrical double-layer capacitors, 
pseudo-capacitors, and hybrid capacitors (a combination of the two types) are the 
three main types of capacitors. One of the main issues with supercapacitors is the 
prevalence of low specific energy—this was addressed by altering the electrode mate-
rial used. Porous carbonaceous materials are an attractive solution due to their high 
surface areas and pore volumes and high physical stability and enhanced conduc-
tivity [112]. They also fabricated a nitrogen-doped porous carbon ball with hyper-
cross Anthracene polymer. The device formed showed a high specific capacitance 
and excellent rate capabilities. Furthermore, this device was capable of 96.5% capac-
itance retention after 5000 cycles, accounting for only a 3.5% loss of its retentive 
property. 

Sharma et al. [113] created a material with a vast surface area and nanoporous 
hyper-cross-linked polyaniline. The material possessed desirable characteristics like 
high surface area (1059 m2 g−1) and narrow pore size distribution. This resulted 
in it being used as a suitable electrode material for supercapacitors and a medium 
for gas adsorption. A study conducted by Xu et al. elaborated the synthesis of N-
doped porous carbon derived from conjugated microporous polymer [58]. Their study 
concluded that carbonization and incorporating nitrogen in the material enhance the
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material’s super capacitive energy storage properties. Vinodh et al. [112] recognized 
this as a viable design principle for fabricating commercial-grade porous materials. 

3.5 Bandgap Variations in Gas Sensing Material Due 
to Carbon Materials 

Most gas sensing materials are metal oxides involving transition elements such as 
TiO2, NiO, Fe2O3 and post-transition metal oxides such as SnO2, ZnO owes their 
gas sensing property to the bandgaps [114]. The chemisorbed oxygen plays a vital 
role in altering the resistance or the conductance of the sensing material enabling the 
gas sensing property of metal oxides. Alteration of bandgaps through doping results 
in enhancement of the bandgap to achieve better sensing and selectivity of the gas 
sensors. Cations donated by doped elements and oxygen stoichiometry are the two 
prime factors determining the conductivity of the metal oxide-based gas sensors. The 
charge carriers formed due to these factors determine the semiconductivity exhibited 
by the metal oxide gas sensors [115]. 

Metal oxide-based gas sensors exhibit a lower detection limit [LOD] owing to 
their broader bandgap energies [116]. This wider band gap needs to be optimized to 
enhance the sensing characteristics of these sensors. In some cases, metal oxide or 
polymer-based 2D materials have replaced voluminous gas sensors as gas sensing 
is often a surface phenomenon. This technique tries to address the LOD, but the 
lower gas adsorption energy plays a spoilsport in many cases in enhancing the gas 
sensing properties [107]. To overcome these shortcomings, researchers have turned 
towards a well-known 2D material, graphene. Graphene provides an ideal substrate 
to adsorb the gases. Its excellent conductive property enhances the sensitivity of 
the gas sensors [117]. Effective charge carrier transfer across the bandgap due to 
adsorption of a gas on the surface of the gas sensor is a critical measure of sensitivity. 
Graphene oxide facilitates the charge carrier transfer by reducing or narrowing the 
bandgap in graphene oxide-based gas sensing nanocomposites. Park et al. [118] have  
synthesized graphene oxide-based narrow bandgap gas sensor to detect NO2. The  
gas sensing properties have been observed to increase due to the modification of 
using functionalized groups. 

3.6 Dielectrophoresis-Based Gas Sensors 

The dielectrophoresis technique utilizes sensing based on the motion of bioparti-
cles and or polarization when subjected to electrical fields. When an alternating 
field is applied to uncharged particles dispersed or suspended in a solution, they 
get mobilized or polarized. This mobility can be extended to the mobility of charge 
carriers in the gas sensing medium to sense the target gas. When DEP is coupled
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with 2D structures like graphene or graphene oxide, they bring about a more signif-
icant enhancement in the sensing mechanism. DEP provides a versatile mechanism 
to perform non-destructive manipulation of materials at a nanometer scale. 

Room temperature operating hydrogen sensor has been fabricated based on 
graphene oxide synthesized through ac dielectrophoresis. The dielectrophoresis 
process parameters such as voltage applied, frequency of excitation, and time dura-
tion were optimized to assemble nano-sized GO structures on the microgap electrode 
surface on the Si/SiO2 substrate. The process was simulated with an electrical field 
increasing spatially from top to bottom, resulting in the dielectrophoresis acting from 
top to bottom on the substrate. The optimized parameters resulted in a 5% faster-
sensing response and quicker response and recovery times while sensing hydrogen 
gas at a concentration of 100 ppm, operated at room temperature. Ammonia sensors 
operating at room temperature have been developed by formulating an rGo–CuFe2O4 

nanocomposite [119]. IT has been observed that this sensor can sense ammonia up 
to 5 ppm levels even at room temperature. The hybrid rGO–CuFe2O4 composite at 
a ratio of 10:5 was observed to provide a maximum sensitivity of 9.9% due to the 
enhanced electrical conductivity and increased surface area offered by rGO. 

4 Conclusions 

Carbon materials in zero, one, and two dimensions have established themselves 
due to their highly tuneable characteristics. The 3D carbon materials, and primarily 
porous carbon-based nanostructures, are in no way lesser than their low-dimensional 
counterparts. Porous carbon nanostructures are highly suitable and idle materials in 
many applications. Applications based on sensing and catalysis for a long have been 
dependent on surface-based reactions. Bringing in the porous carbon has changed 
their efficiency due to their higher surface-to-volume ratio, increased porosity with 
tuneable pore size, interconnect between different sized pores, and enhanced chem-
ical and physical adsorbability tuneable defect sites, and adequate lodging of func-
tionalized dopants or heteroatoms. Moreover, their simple synthesis processes with 
a wide range of precursors that can be chosen to tune the physicochemical properties 
of the synthesized porous carbon have made porous carbon-based materials the best 
choice for recent research on the sensing domain. The research trend on this material 
is exponentially rising, and soon they will be exploited for these applications. 
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Chapter 15 
Carbon Composites with Polymer 
Materials for Gas Sensing Application 

K. Mahendraprabhu, T. Elango Balaji, Payaswini Das, 
and Himadri Tanaya Das 

1 Introduction 

Gas sensors aimed to receive notable alerts to monitor the system for various appli-
cations. The change in physical and chemical properties is the basic driving force for 
getting sensor signals in sensors such as potential, current, impedance, resistance. 
Active and smart materials were needed to design more efficient gas sensor devices. 
Among various materials, peculiar properties of carbon-based materials attracted 
researchers because of their high surface area, different morphologies, different 
shapes/sizes, and porous structure, etc. [1]. Recent sustainable progress in carbon-
based nanotechnology has further widened the objectives of application of carbon 
materials for numerous applications. Carbon-based nanocomposites attracted a great 
deal of interest among the research groups which can be utilized as the alternative 
energy sources to reduce the utilization of fossil fuels for environmental remediation. 
Carbon-based nanocomposites have exhibited great versatility due to the fact that they
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can be combined easily with other suitable smart materials and also with several suit-
able elements to create strong covalent bonds [2]. As a result, these composites show 
attractive characteristics like high density, strength, and hardness. Thus, carbon-based 
nanocomposite materials are promised to deliver highly efficient for several appli-
cations, such as the production of clean energy using the oxygen reduction reaction, 
the photocatalytic degradation of organic pollutants, reduction of CO2, generation 
of H2, and gas sensors, etc. [3]. This chapter mainly focuses on recently emerging 
trends in carbon-based nanocomposites for creating the new generation of gas sensors 
because of their unique properties such as mechanical, optical, and electrical prop-
erties. Smart gas sensor devices need to have adequate gas sensing characteristics 
such as high selectivity, sensitivity, and long-term stability with fast response and 
recovery rates. Operating temperature is also very essential for the practical applica-
tions of gas sensors [4]. In general, the selection of appropriate gas sensing material 
is the vital parameter to fabrication of gas sensor devices. Among several materials, 
nanostructured carbon-based polymer composite materials have been explored due to 
their better gas sensing performances. High-performance gas sensors attached with 
carbon nanostructures, especially nanocomposite materials consist of carbon and 
polymers, have become more convenient to monitor industrial furnaces, automobile 
exhausts, traffic signals, etc., to detect and quantify the range of gaseous species 
from small molecules such as CO, CH4, and also giant volatile organic compounds 
(VOCs) [5]. Suitable polymers can be combined with carbon materials resulting in 
a composite to enhance the properties and performance due to large surface area 
for sensing [6]. Characteristics of conducting polymers such as high environmental 
resistance, docility, and lower cost are few unique properties to enhance the gas 
sensing performances. The carbon-polymer nanocomposite materials help in over-
coming the difficulties in achieving the high performance of composites that can be 
used in gas sensor devices. Utilization of carbon-based nanocomposites is considered 
to be the robust in the gas sensor devices because of unique properties of nanocom-
posites which facilitate the remarkable and effective gas sensing applications. The 
synthesis of various nanocomposites to obtain different morphologies can determine 
the gas sensing ability. Thus, researchers have explored different synthesis process 
to develop nanocomposite and test its sensing, as given in Fig. 1.

In general, composite materials show the improved gas sensing properties of 
sensor devices with favorable results. Research directions are toward the develop-
ment of carbon nanocomposite materials with a wide variety of structures for inno-
vative results which are being made several smart materials for the development of 
gas sensor devices. This book chapter presents the fundamental and advanced devel-
opments for gas sensor devices based on nanostructured carbon-based composites 
with polymer materials for gas sensors with possible the commercialization of prod-
ucts and also discussed some recent breakthroughs in the recent years. This chapter 
deals with the elaborate reports and discussions on different types of gas sensors 
using carbon-based composites (CO, hydrocarbon, NOx, VOCs, and NH3 sensors). 
At the end, an outlook and overview cover the challenges posed by various concerns 
and opportunities with future research perspectives and insights are discussed.
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Fig. 1 a Schematic view of sensing test for chemiresistive sensor of hierarchical PANI/CNT fibers, 
b TEM image of n-PANI/CNT fibers, c schematic illustration of preparing RGO/porous PEDOT 
nanocomposite, d SEM image of porous PEDOT layer deposited on RGO LB films, e synthesis of 
PANI, Ag2O nanoparticles, PANI/Ag2O nanoparticles and PANI/Ag2O/GO composite, f typical 
SEM images of PANI/Ag2O. Reproduced from Ref. [7–9]. Copyrights (MDPI, 2019) (Elsevier, 
2021) (ACS, 2014)

2 Nitrogen Oxides Sensors 

Nitrogen oxides are toxic pungent smelling gases which exhaust from industries, 
burning fossils, or vehicles emission. The gases are not only harmful for humans 
but also affect the plants and animals. Both nitrogen mono-oxides and dioxides are 
harmful for environment as causes the acid rain. Even low concentration of NO2 

causes discomfort in breathing and other health issues. Thus, NOx gas sensors are 
needed to be developed with high sensing nanomaterials such as carbon and its 
composites [10, 11]. The carbon-based materials have advantages in detecting the 
NOx gases due to the features like ecofriendly precursor, chemical/physical stability 
toward the pollutants, endurance of high pressure, temperature, and pH. The NO2 

molecules act as electron-acceptor center, where the p-type carbon derivatives usually 
adsorb the oxygen species of the gases and actively participate in gas sensing. So,
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it is well adsorbed by carbon materials. The nanosized-CNTs based sensors are 
well known for room temperature sensitivity and electrical conductivity [12]. On 
other hand, conductive polymers are known to overcome the limitations of metal 
oxides, i.e., reducing the electrical resistance for more conduction [13]. However, 
the polymer performance gets effected by humidity, radiation or pH which limits 
their applications. The polymers are composite with carbon materials to obtain 
high sensitivity and reproducibility of the gas sensors. In this context, the CNT 
composite with polypyrrole (Ppy) was prepared by Lee group for NO2 gas sensors 
[12]. Additionally, the polymers increase the surface area of the nanocomposites. 
Similarly, Ghada has studied nanocomposite thin film of Ppy and functionalized 
single-walled CNT for NO2 sensors. The p-type nanocomposite Ppy/SWCNT with 
majority charge carriers (holes) decreases the resistance with increase of temper-
ature and concentration of CNT. The kinetics of adsorption of oxidizing NO2 gas 
(electron–acceptor) increases on surface of p-type Ppy/SWCNT film. The p-type 
polypyrrole captures electrons from the polymer matrix which resulted the decrease 
in resistance and holes enhanced owing to the electron accepting nature of NO2 gas 
[14]. Quite recently, flexible NO2 gas sensor was developed by nanocomposite of 
Ppy with nitrogen-doped multiwalled CNT (Ppy/N-MWCNT) which was synthe-
sized by annealing method. It can be noted that the high response of 24.82% under 
5 ppm of NO2 gas with remarkable selectivity, greater repeatability, long-term 
stability, and possible flexibility [15]. Like Ppy polymer, other polymers like poly-
tetrafluoroethylene (PTFE), polyaniline (PANI), poly(3,4-ethylenedioxythiophene) 
polystyrene sulfonate (PEDOT:PSS), etc., has been extensively studied [16–18]. 
The polymers enrich the carbon composites with enriched adsorption sits on the 
surface of composites. Chen et al. reported the vapors sensing by synthesizing the 
poly(ethylene-block-ethylene oxide) (PE-b-PEO) block into carbon black surface by 
using the chemical compound, N,N9-dicyclohexylcarbodiimide which is acted as a 
condensing agent. The electric resistance and solvent concentration were studied for 
the composite [19]. Along with CNT, the graphene is also highly explored for the gas 
sensors; its nanocomposite with different polymer provides a wide platform for gas 
sensing applications [20–22]. The PEDOT composite with graphene film synthesized 
by electropolymerisation of EDOT and reduction of graphene oxide for NO2 sensor 
was reported by Dunst et al. [23]. The response characteristics of PEDOT/RGO 
are shown in Fig. 2. The material was tested for repeatability at different annealing 
temperatures, and also, the sensor response at 100 °C on heater and tubular furnace 
was compared.

The variation of sensing with temperature, humidity, concentration, and flow rate 
was studied. It is also found out that the reduced graphene oxide reacts actively with 
NO2 gas and prevents over oxidation of polymer PEDOT [24]. Similarly, the rGO 
nanosheets were assembled with electrospun polymer nanofibers for room temper-
ature NO2 sensor which showed the high sensitivity of 1.03 ppm−1 with greater 
selectivity, reversibility and also very good limit of detection as low as 150 ppb 
[20]. Interestingly, Hang et al. explored g-C3N4, similar 2D materials like graphene 
which is well known for its conductivity, porosity, and high surface area [22]. The 
g-C3N4 nanosheets were exfoliated to few layers, and a heterostructure of graphene
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Fig. 2 a Repeatability of PEDOT/RGO-based sensor (100 ppm of NO2 gas depending on the 
annealing temperature), b sensor response (with annealing the sample 20 min at 170 °C) to 100 ppm 
at 80 °C and 100 °C operating temperature, c the comparison of the sensor response in a tube furnace 
at 100 °C using a heater for 100 ppm of NO2/air cycles, d responses of the gas sensor to various 
concentrations of NO2 at 80 °C and 100 °C. Reproduced from the Ref. [23]. Copyrights (Elsevier, 
2016)

and g-C3N4 was designed as NO2 sensor. Such nanostructure overcomes poor elec-
trical conductivity and instability, also performs better sensing, sensitivity, recovery 
as well as response time due to increase in adsorption sites. Thus, the synergistic 
effect confirms it as promising candidate for NO2 sensor and also can be composite 
with different polymers to get effective performing sensor. 

3 Volatile Organic Compound (VOCs) Sensors 

Low molecular weight VOCs can evaporate even at room temperature making it most 
hazardous organic chemical vapors. The VOCs depend on its sources of its genera-
tion, concentration, or type of compounds. It can be hazardous for ecosystem leading 
to air pollution and can arise various life risk diseases in human [25]. Therefore, a 
low concentration selectively detector is vital for sensing of VOCs. Among several 
VOCs, acetone, acetylene, formaldehyde, ethanol, methanol, 2-propanol benzene,
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cyclohexene, toluene, and nitrogen derivatives are commonly known VOCs [26]. 
The advance technologies such as mass spectroscopy and chromatographic are used 
to detect the VOCs, but these analyses are time consuming and high cost [27]. Alter-
natively, the chemical gas sensors are developed by utilizing different nanomaterials. 
In gas sensors, high sensitivity with selectivity can be obtained in low cost. The hybrid 
nanomaterials include conducting polymers, or carbonaceous materials are highly 
explored for VOCs sensors [28]. But, these materials face limitations like sensitivity, 
selectivity or poor thermal/chemical stability for long term. Both the electrochem-
ical and electrical gas sensor depend on the volatile organic molecules diffused into 
working nanomaterials surface. The molecules get oxidized or reduced as per the 
nanomaterials used in the gas sensor [29]. The nanomaterials like conducting poly-
mers and carbon matrix improve the electrical conductivity resulting in high current 
on sensing the gas. The nanomaterials are synthesized by various techniques like 
sol–gel, hydrothermal, electrochemical deposition, etc., to obtain different types of 
nanomaterials [29]. The performance of nanomaterials depends on the crystallinity, 
morphologies, surface area, active absorption sites, and thickness of nanomate-
rials [30]. Different concentrations of precursor and oxidizing agents were tested 
to synthesized Ppy polymer fibers for VOCs applications [31]. The electrospun 
polymer composite fibers blended with carbon have been reported for VOCs sensing 
[32]. Even personal digital portable electronics nose system for VOCs sensors were 
developed by Kim research group [33]. Thus, advantages of using conductive poly-
mers, conductive carbon matrix, or nanocomposites of carbon-polymer are high 
sensitivity, stability, selectivity, and detection at room temperature [34]. Depending 
on surface free energy and chemical/physical interactions, the degree of VOCs sensi-
tivity on nanomaterial interfaces. On the other hand, the carbon matrix like CNTs, 
graphene, CNFs, etc., displays a high sensing ability due to high charge mobility, 
porosity, and high surface area [33]. The charge transfer reactions between VOCs 
and carbon matrix determine the oxidation/reduction reaction during sensing [32]. 
When gaseous molecules act as the strong oxidizing agent (electrons receptor), they 
can eliminate electrons from the carbon materials which decreases its conductance, 
while if the gaseous molecules act as the strong reducing agent (electrons donator) 
they give electrons into the material which decreases the resistance. Thus, sensing 
depends on the nanomaterials designed and sensing activity of toward the gas. The 
carbon nanotubes can be combined with conducting polymers (CPs) which become 
a unique group of materials because some of CPs behave like semiconductors which 
resulted, alteration in electrical conductivity of CNT/CP composites. The charge 
transfer between gas molecules and CNTs which is facilitated by polymers which is 
believed to make the composites to be more selective and sensitive for VOC which 
could be the vital part of the gas sensors in the gas sensing mechanism. Compared to 
bare CNT, CP composited CNTs show better selectivity and sensing ability as shown 
in Fig. 3.

Pirsa et al. designed a polypyrrole-based sensor which is for determination of 
VOCs, the as-synthesized material showed a faster response of < 1 s. The sensi-
tivity of gas sensing material follow the order for the various molecules, pyridines > 
acetonitrile > DMSO > ROHs > aldehydes > ketone > benzene derivatives≫ alkanes
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Fig. 3 a Resistive response of VA-CNT coated with 8 nm PEDOT to n-pentane, b Response of VA-
CNT and polymer-coated CNTs to methanol, c Response of VA-CNT and polymer-coated CNTs 
to n-pentane, projected detection limit for the red line is ∼ 50 ppm with S/N = 3, d PC 2 plotted 
against PC 1 for an array of 10 different SWCNT-based chemiresistors to 15 VOCs (3−4 trials  
each). e PC 2 plotted against PC 1 with amines excluded from the plot. f PC 3 plotted against PC 
2 with amines excluded from the plot. Reproduced from Ref. [30, 35]. Copyrights (ACS, 2015) 
(ACS, 2016)

[31]. Fan et al. developed a sensor for the vapor sensing characteristics of thermo-
plastic polyurethane material which is covered with carbon nanotube networks. It 
is observed that 0.5% of the vapor concentration was detectable with a maximum 
relative change (900%) for 0.8% CNT loading while sensing 7.0% chloroform [36]. 
Daneshkhah et al. fabricated a PVDF-based gas sensor for the detection of VOCs. 
The sensor designed by PVDF-HFP/C65 showed the elevation in resistance (52.6%) 
in response to the acetone. Another sensor having two layers of PVDF-HFP and 
PVDF-HFP/C65 which were fabricated by spin coating method shows a very good 
response when compared to the gas sensor attached with PVDF-HFP/C65 decreased 
by 52% for acetone. The third sensor composited CNT with PVDF-HFP/C65 causes 
a decrease in resistance in response to water molecule [37]. 

4 Carbon Monoxide (CO) Sensors 

It is well know that carbon monoxide is colorless, odorless, and it is also a toxic gas 
formed during the incomplete combustion of fossil fuels mostly in industries and 
automobiles. CO is one among the major air pollutants, especially in the regions of 
developing and developed nations across the globe [38]. It is a well-known fact that
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our blood has more affinity for CO than oxygen. So, the vital role of blood (oxygen-
carrying capacity) is retarded abruptly by breathing the polluted air (mixed with CO) 
for a long time. As per the reports of WHO, 10 ppm of CO is the acceptable limit for 
the inhalation for about 8 h without any harmful effect [39]. So, it is very important 
to monitor CO in the atmosphere. 

One could find several research reports on the development of CO sensors with 
the use of different materials. Mahajan et al. overviewed the CO sensors using 
different metal oxides for CO sensing applications. It analyzed various synthetic 
approaches for obtaining different nanostructured materials to enhance the sensing 
performances such as selectivity, sensitivity, stability, and response and recovery 
time. It is concluded that the composite materials (metal oxide and carbon materials 
such as CNT, graphene) can be taken to enhance the CO sensing performances [40]. 
Carbon-based materials received great attention which can be used in CO sensors 
to improve the sensing performances. For example, Basharnavaz et al. utilized the 
graphitic carbon nitrides (g-C3N4) as a smart adsorbing material for CO sensing appli-
cations because of the unique characteristics like electronic, structural, and textural. 
This study deals with the adsorption tendencies of g-C3N4-based materials in CO 
sensors and also studied the impact of embedding, doping, and decorating by g-C3N4 

added with some suitable materials on CO sensing properties of the g-C3N4-based 
gas sensors were explained. It is concluded with an emphasis on the shift from the 
laboratory research to industry scale to use the g-C3N4-based composite materials 
in CO sensors [41]. Roy et al. reported PANI-MWCNT composite for room temper-
ature CO sensor, the material exhibits sensitivity of 6.8%–25.7% with a very good 
response and recovery time at room temperature (76 and 210 s) as seen in Fig. 4.

Metal–organic frameworks are the yet another important carbon-based composite 
materials that can be used along with metal oxides and other suitable additives in CO 
sensors to improve sensing performances. Metal–organic frameworks have different 
applications such as absorption of CO2 gases to tackle greenhouse effect. In addition 
to numerous applications, Metal–organic frameworks can be utilized for CO sensors. 
Yang et al. used the metal–organic frameworks based nanocomposite material which 
consist of tin dioxide nanoparticles/molybdenum diselenide nanoflowers obtained 
by hydrothermal process for CO sensing applications. It is observed that the sensor 
was more selective to CO molecule among the various interfering gases (H2, CO2, 

CH4, SO2, and H2S). Development of selective CO sensors is vital for the practical 
applications. CO sensing characteristics especially selectivity is attributed to the fact 
that the availability of n–n heterojunction at the interface between SnO2 nanoparticles 
and MoSe2 nanoflowers [43]. 

Conducting polymers combine with metal oxides metals, and other suitable addi-
tives can be an attractive for CO sensors. For example, Nasresfahani et al., attempted 
for the improvement of gas sensing performances of the sensor using polyaniline in 
which the effect of gold (Au) nanoparticles for CO sensing properties of polyaniline is 
examined. It is observed that the sensor using Au/PANI (2.5%) exhibited good selec-
tivity to CO with good response, response time (180 s), low detection limit (33 ppm), 
broad dynamic range (200–6000 ppm) due to the catalytic properties of Au nanopar-
ticles [44]. Green synthesis is very important to obtain CO sensing materials. For
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Fig. 4 a Sensitivity of PANI-MWCNT with various CO concentrations, b sensing response of PANI 
at various CO concentrations, c sensitivity of PANI with various CO concentrations, d response and 
recovery time of PANI-MWCNT composite material as a function of CO concentration. Reproduced 
from the Ref. [42]. Copyrights (Elsevier, 2017)

example, Narayana et al. studied the transistor-based CO sensing performances of 
zinc oxide nanoparticles (spherical shape) prepared by the green synthesis route with 
a size 3–4 nm and low cost. The sensor detected CO gas at the ambient temperature. It 
can be noted that the sensitivity and selectivity of the sensor device showed better gas 
sensing performances than the other reducing gases such as and ammonia, methanol 
vapors, and hydrogen sulfide [45]. 

5 Hydrocarbon Sensors 

Hydrocarbons are made up of carbon and hydrogen atoms. Naturally, decomposed 
organic matters provide an abundance of hydrocarbons occur on earth in crude oil. 
Liquid form and gas form of hydrocarbons are called petroleum and natural gas, 
respectively. Some hydrocarbons exist as gases such as methane, propane. Hydro-
carbon molecules like benzene and xylene affect the human health and environment. 
The techniques for the detection of hydrocarbon molecules need to fulfill all require-
ments of affordable and reliable hydrocarbons monitoring. Thus, smart hydrocarbon 
sensors are highly required with simple design and low cost. Methane is the major 
component of natural gas and also essential resource around the globe for various
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purposes such as production of electricity, heating etc. It is well known fact that 
methane gives environmental impact and a significant contributor for the global 
warming and climate change. So, it is essential to minimize the leakages in pipelines 
and also natural gas is considered as a cleaner alternative to fossil fuels. The detec-
tion of methane and other hydrocarbon gases in the atmosphere has become more 
important to minimize the greenhouse effect. Leak detection in natural gas pipeline, 
and automobiles requires efficient devices with low cost and also high performances 
for the gas sensing characteristics such as selectivity, sensitivity, and stability with 
quick response and recovery rates. The primary objective of hydrocarbon sensors 
is to detect the gases efficiently for the effective monitoring of atmosphere making 
pollution free. In general, hydrocarbon sensor required to monitor the hydrocarbon 
molecules making photochemical smog in the environment which causes respiratory 
problems. Sensing material plays a major role to achieve better gas sensing proper-
ties. As per the literature reports, various suitable and appropriate sensing materials 
such as single metal oxides, composites with carbon materials and conducting poly-
mers utilized to study the gas sensing performances and also aimed to increase the 
gas sensing properties. Barriault et al. reported the use of single metal oxide semicon-
ductors to detect the hydrocarbons such as methane and ethane in a mixture and also 
studied the gas sensing performances of the sensor. It is observed that sensor could 
able to detect methane, ethane, and binary mixtures of methane and ethane [46]. It 
is important that a gas sensor must detect a particular gas selectively for industries 
where the gas is used for various industrial processes. Seshadri et al. reported that 
the utilization of polymer composites to detect the hydrocarbon pollutants. Organic 
polymer composites based materials composed of styrene ethylene butylene styrene, 
ethylene vinyl acetate and isobutylene isoprene used for the fabrication of sensor 
device. The sensors are developed for detecting the hydrocarbon gas leak with high 
sensitivity and selectivity. These hydrocarbon-dissolvable polymers tested chemire-
sistively with the attractive gas sensing responses (+ 180% in 1 h and + 27,555% 
in 6 h). The development of these sensors aimed to detect hydrocarbons, especially 
for leakages in crude oil pipelines so it is essential to test the gas performances in 
presence of oil. The sensing mechanism of sensor is the measurement of resistance 
upon changes due to any chemical reactions [47]. Graphene-based materials can 
be another choice of organic materials for the detection of hydrocarbon molecules 
for pipeline leakage checking in industries. Toard et al. investigated the use of 3D 
porous graphitic carbon networks as a sensing material to sense the volatile aromatic 
hydrocarbon molecules. It is observed that the sensing materials with nanoporosity 
drastically increased sensitivity and selectivity to vaporized toxic aromatic vapors 
(toluene and benzene). The salient features associated with the sensing materials 
discussed in details. It is noted that the graphitic carbon framework as porous elec-
trode materials for the selective detection of hazardous aromatic hydrocarbon vapors 
because of the high surface area and large hierarchical pore volume. As reported, 
carbon materials are associated with the porous nature and larger surface area as 
a matter of unique features which made the sensors for the enhanced gas sensing 
performances [48].



15 Carbon Composites with Polymer Materials for Gas Sensing … 415

6 Ammonia Sensors 

Ammonia is a colorless, strong irritant, and flammable gas which is formed during 
various processes such as caves, mines, chemical manufacturing and nitrogenous 
fertilizers. As ammonia is a toxic gas, it is required to detect in many situations 
such as leak-detection in air-conditioning systems, animal housing, environmental 
monitoring of ammonia in air, breath analysis for medical diagnosis, etc. NH3 gas is 
also quite corrosive in nature. Development of high-performance ammonia sensors 
required to monitor the systems where either ammonia gas is used or produced during 
the industrial processes. High sensitivity, high selectivity, quick response, and also 
a great tolerance to higher operating temperatures are required for the application of 
ammonia sensors in automobiles. Urea-SCR (selective catalytic reduction) system 
is used to remove the NOx emissions in the diesel engines based automobiles. Urea 
solution is injected into a catalytic convertor where NH3 gas would be formed due to 
hydrolysis reaction and the excess ammonia is possible in SCR system so it is needed 
to be monitoring regularly. For example, Shimizu et al. developed the resistive-type 
electrochemical ammonia gas sensors using vanadium oxides and also studied the 
impact of dopants for the sensing characteristics of the vanadium oxides doped with 
aluminum and cerium. In general, a gas sensor must be selective to ammonia to be 
useful for the practical applications. It is found that the doped vanadium oxide selec-
tively detected the NH3 gas in the presence of coexisting gases at high temperatures 
and so it is more suitable especially for monitoring the concentration of ammonia in 
urea-SCR system of automobiles. The selectivity of the gas sensor may be attributed 
due the effect of doping on vanadium oxides with aluminum and cerium [49]. Among 
the various materials, use of carbon-based sensing materials is believed to be more 
efficient to detect ammonia molecule because of the enlarged specific surface area 
and very sensitive to ammonia molecules adsorbed on the surface. Several materials 
have been utilized to develop gas sensors to detect ammonia, carbon nanomaterials 
like graphene and reduced graphene oxide (RGO). For example, Zhu et al. designed 
the ammonia gas sensor using graphene-based materials fabricated by aerosol-jet 
printing technology [50]. Sensors can be fabricated on a silicon substrate which 
exhibited its excellent sensing properties. Functionalized graphene could also be 
used as the carbon-based sensing materials to examine the ammonia sensing charac-
teristics of sensor devices. Gautam et al. reported the use of functionalized graphene 
material with gold nanoparticles which could reach the maximum ammonia sensi-
tivity [51]. Similarly, carbon-based hybrid sensing materials or composites could be 
utilized for investigating the gas sensing properties of ammonia sensors. The main 
objective is to study the influence of additives in gas sensing properties of hybrid 
materials. Huang et al. reported that the use of RGO-PANI which showed much better 
response. The combination of PANI and RGO sheets which made the enhancement 
of gas sensing characteristics of sensors. It is noteworthy that the enhancement of 
ammonia sensitivity in a remarkable manner by using hybrid sensing materials with 
polyaniline which showed the better gas sensing performances [52]. SWCNTs have 
attractive properties such as high surface-to-volume and ratio of length to diameter,
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which enhances gas sensing abilities and SWCNT detect low concentration range of 
analyte molecules. Also, the conductivity and structural stability of SWCNT is high. 
Luis et al. reported SWCNT for NH3 gas sensor which showed very good sensing 
abilities as shown in Fig. 5 highest response of 3.2% at 1.5 ppm was achieved [53]. 

Polymer-carbon–metal oxide could be another hybrid structure to analyze the 
gas sensing performances of ammonia sensors. Xu et al. used the carbon-based 
composite material consist of graphene nanoribbon (GNR), polyaniline and indium 
oxide composite to detect ammonia at room temperature. Indium trioxide (In2O3) 
nanoparticles prepared by solvothermal method were coated on GNR to act as a core 
component for fabricating ternary nanocomposite (PANI)/In2O3/GNR) prepared by 
in situ chemical oxidative polymerization method. This sensor is highly sensitive to 
ammonia at room temperature with higher selectivity and repeatability and also useful 
for diagnosing the hepatic or kidney disease [54]. Conducting polymers explored for 
the fabrication of ammonia sensors due to their flexible chemical structures and attrac-
tive morphologies. Pang et al. examined the use of polyaniline-coated nanofibers for

Fig. 5 Sensing response ΔR/R0 under exposure to different ammonia concentrations of 1.5, 2.5, 
5, 10, and 20 ppm: a device based on pristine SWCNTs, b devices based on N-SWCNTs (purple) 
and B-SWCNTs (green). An incomplete recovery under pure N2 flow was present in all devices. 
Dotted lines delimit exposure times with the corresponding concentrations, c sensing response
ΔR/R0 of two devices based on semiconducting SWCNTs under exposure to different ammonia 
concentrations of 1.5, 2.5, 5, 10, and 20 ppm. The devices had initial resistance of 268 Ω (red) and 
15 kΩ (high-resistance device, blue line), d Sensing response ΔR/R0 of five devices based on sc-
SWCNTs under exposure to different ammonia concentrations of 100, 400, 700, and 1000 ppb. The 
initial resistance values R0 for the devices are shown in legends. Colored dashed lines connecting 
data point are drawn to guide an eye; error bars depict signal noise at the data point. Horizontal 
dashed line is drawn at three times the noise averaged over all data points. Reproduced from [53]. 
Copyrights (ACS, 2018) 
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the detection of ammonia molecules. This ammonia sensor is designed by the elec-
trospinning, and in situ polymerization process exhibited ideal gas sensing properties 
(50–250 ppm of ammonia at ambient temperature with good selectivity, quick sensing 
responses, and also very good repeatability). It can be noted that the increase in resis-
tance and decrease in conductivity. De-doping of polyaniline molecular chains by 
ammonia molecules are the ammonia sensing mechanism [55]. 

7 Future Perspectives 

In future, research direction would be the selection of smart materials as sensing 
materials to develop smart gas sensors. High-performance gas sensors are devel-
oped with the aim of monitoring the air pollutants to address the environmental 
issues. Researchers would prefer new or novel materials as an alternative ways for 
the existing various other materials with attractive properties which are helpful to 
increase the gas sensing characteristics to fabricate smart gas sensors. To achieve 
this, the utilization of carbon-based composite materials to fabricate the gas sensors 
has been widened among the several other sensing materials. In the book chapter, we 
analyzed various unique properties of carbon-based nanocomposite materials which 
play a vital role for the gas sensing applications. In near future, researchers may 
choose sensing materials with improved salient features to enhance the performances. 
For example, 3D nanoarchitectured carbon networks would be exploited to its full 
potential to develop gas sensors to monitor hazardous gases such as CO, ammonia, 
NOx, aromatic hydrocarbons. The surface area activation, catalytic activities, pores, 
morphology, interaction strategy, etc., play vital roles to enhance gas sensing prop-
erties of materials used in sensor devices. We have much more scopes to develop gas 
sensors using ternary nanocomposites as sensing materials in the future. It is expected 
that ternary nanocomposite consisting of metal oxide, polymer, and carbon could be 
explored furthermore with different combinations to meet the demands for enhancing 
the gas sensing performances. It is believed that various research works on the use of 
different materials with low cost for gas sensors presented in the book chapter which 
could be utilized to focus the design or fabrication of smart and next-generation gas 
sensors. The key role of reliable materials with low cost for designing gas sensors is 
inevitable to improve the monitoring system for various applications. Sensing mecha-
nism of gas sensors must be studied thoroughly. Some parameters must be addressed 
the issues in the gas sensors such as use of sensing materials, selectivity, sensi-
tivity, response and recovery rates, operating temperatures. Gas sensors in the near 
future would be smarter than existing candidates in terms of sensing characteristics, 
economic, etc. We hope that carbon composites would promote sensor development 
for benefits of human health.
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Chapter 16 
Recent Advances in Porous 
Carbon-Based Inorganic Flexible Sensor 
Journey from Material Synthesis 
to Sensor Prototyping 

Saleem Khan, Vishal Singh, and Ajay Singh 

1 Introduction 

Journey of flexible electronics started in 1900’s with development of flexible elec-
trical conductor [1] and space exploration programs paved the way for flexible 
electronics to meet the high quality and light weight payload demand [2]. This 
property of flexible electronics led to the fabrication of first thin film transistor on 
flexible substrate which performed efficiently under deformed conditions[3]. With 
advancements in flexible device fabrication technologies, researcher started inte-
grating devices on large flexible substrate to create light weight and shape controlled 
thin system with apt functioning, which is future trend in electronic devices. Studies 
has been carried to understand the electrical properties of flexible electronic devices 
under external mechanical force causing bending of the substrate. The timeline 
development in flexible electronic devices is shown in Fig. 1 [2–25]. Future flex-
ible electronic devices needed to have high bending and stretchable property while 
maintaining device functionality to meet the diversified domestic market applica-
tions. Material aspect of flexible substrate is the main challenge when developing 
flexible electronic devices, since the substrate should have excellent bonding with 
device functional material layer. The various substrate along with their properties 
are described in the following subsection.

S. Khan · V. Singh (B) 
Department of Nanosciences and Materials, Central University 
Jammu, Jammu, UT-J&K 181143, India 
e-mail: vishal.nsm@cujammu.ac.in 

A. Singh 
Department of Physics, GGM Science College, Constituent College of Cluster University of 
Jammu, Canal Road, Jammu, UT-J&K 180002, India 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. N. Grace et al. (eds.), Handbook of Porous Carbon Materials, 
Materials Horizons: From Nature to Nanomaterials, 
https://doi.org/10.1007/978-981-19-7188-4_16 

423

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7188-4_16&domain=pdf
mailto:vishal.nsm@cujammu.ac.in
https://doi.org/10.1007/978-981-19-7188-4_16


424 S. Khan et al.

2020 

1900 

Sp
ac

e 
O

dy
ss

ey
 

Flexible electrical conductor 
L V Gilder, 1902 

Flexible Inorganic Insulator 
Walters, 1948 

Flexible solar cell 
Ray 1967 

Si solar cell for large flexible array 
Crabb and Treble 1967 

Thin film flexible transistor 
Peter Brody 1984 

Flexible inorganic transistor 
Konagai et al. 1978 

Fl
ex

ib
le

 N
an

oe
le

ct
ro

ni
c D

ev
ic

es
 

Ne
xt

-G
en

 F
le

xi
bl

e 
De

vi
ce

s 

Molecules based transistor 
White et al 1984 

Organic electroluminescent diode 
Tang and Vanslyke 1987 

Flexible LED 
Gustafsson et al. 1992 

Hybrid flexible LED/TFT 
Wu et al. 1997 

Paper like electronic display 
Rogers et al. 2001 

Flexible pressure sensor 
Someya et al. 2004 

TFT on plastic substrate 
Menard et al. 2004 

CNT integration with flexible substrate 
Cao et al. 2008 

Nanowires based flexible device  
Takei et al. 2010 

E-skin 
Mannsfeld et al. 2010 

Electronic whiskers 
Harada et al. 2014 

Self heal supercapacitor   
Huang et al. 2015 

Stretchable LIB  
Song et al. 2015 

Self healing TENG   
Parida et al. 2017 

Flexible FSKNG 
Ghosh and Mandal 2017 

Carbon based fexible sensor 
Jian et al. 2017 

Stretchable sensor for soft robot 
Li, Zhao, and Shepherd 2017 

Graphene based flexible smart panel   
Xu et al. 2018 

Flexible sensor for IoT infrastructure 
H. Xu et al. 2020 

Fig. 1 Timeline development of flexible electronic devices 

1.1 Plastic Flexible Substrate 

Plastic substartes are the most commonly used for the electronic components manu-
facturing because of their suitablity in nonvacuum semiconducting process and have 
cost-effective roll to roll manufacturing process [26]. Most frequently used platic 
substartes are polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), 
parylene, polyethylene naphthalate (PEN), nylon, polyvinylidene fluoride (PVDF), 
polyimide (PI), and polystyrene [27–29]. The physical parameters of highly used 
plastic substrate in electronic device fabrication are given in Table 1. The unique 
physical properties of platic substrate makes them excellent candidate in sening 
application [30–34].



16 Recent Advances in Porous Carbon-Based Inorganic Flexible Sensor… 425

Table 1 Physical parameters of plastic substrates 

Parameter PET Polyimide 
(PI) 

PEN 

Friction coefficient 0.2–0.4 0.42 0.27 

Tensile modulus (GPa) 2–4 2–3 5–5.5 

Tensile strength 80 70–150 200 

Thermal expansion coefficient (10−6 · K−1) 20–80 30–60 20–21 

Thermal conductivity at 23 °C (W · m−1 · K−1) 0.15–0.4 0.1–0.35 0.15 

Maximum operating temperature (°C) 115–170 400 155 

Young’s modulus [GPa] 2.8 2.6 3.0 

Transparency [%] 91 30 87 

Coefficient of expansion [ppm °C−1] 15 50 13 

Dielectric constant 3 3.4 3.2 

Surface resistivity (Ω/Sq.) 1013 1016 1014 

Volume resistivity (Ω/cm) 1014 1018 1015 

1.2 Paper Substrate 

Paper is being actively used in fabrication of low cost flexible electronic devices 
because it is eco-friendly, low cost, easily accessible, and recyclable. The low thermal 
expansion is the main advantage of paper substrate over plastic substrate [35, 36]. 
Paper substrate are abundantly used in sensing and plasmonic applications [37– 
39]. Inorder to use paper as substrate in flexible electronic device its is coated with 
semiconducting and polymer material [40, 41] which also provide smoothness to 
substrate. A unique plasmonic paper substrates are obtained when the pores of the 
paper are filled with nanoparticles which have wide range of applications [42–44]. 

1.3 Textile Substrate 

New generation of wearable technology requires innovative fabric which can support 
fabrication of electronic devices on it. Textile substrates are essential for wearable 
technology [29, 45–47]. A gas senstive textitle can act both as substrate and sensing 
layer or sensing material can be integrated with textitle substrate [48–50]. 

2 Gas Sensor 

Gas sensors are critical component for envirnoment safety and life support system. 
The ability to detect harmful gases and volatile organic chemicals (VOCs) is the key
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Fig. 2 Gas sensor 
application domains 
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feature of these devices. Domain area where gas sensors are widely used is given 
in Fig. 2. Envirnometal gas sensor detects H2S, VOC, SO2, CO2, NO2, etc., toxic 
gas levels, human safety gas sensorare used to detect molecules of C2H5OH and 
CH3COCH3 in breathe to avoid drunk driving and medical diagnostics respectively, 
gas sensors in automibles detects the exhaust toxic gases, and explosive sensors are 
exclusively used to detect C4H4, H2, nitro and peroxide compounds, gasoline, etc., 
which threaten human life and can cause large-scale destruction [51–55]. Gas sensing 
mechanism are critical for selecting the sensing material for the gas sensor. 

2.1 Theoritical Aspect of Gas Sesing Mechanism 

Gas sensor analyte sensing process is established on detection of variation in elec-
trical signal response triggered by the adsorbed gas molecules. Detection mech-
anism gives the insight why the analyte molecules alters the electrical character-
istics of the gas sensor. Sensing mechanism can be classified into three models: 
adsorption/desorption, gas diffusion control, and bulk resistance control. 

2.1.1 Adsorption/Desorption Sensing Mechanism Model 

This is the most conventional and currently used gas sensing mechanism. This 
model can further subdivided into three models: oxygen adsorption model, chemical, 
and physical adsortion/desorption model. Oxygen adsorption model is mainstream 
mechanism suitable for metal oxide semiconductor (MOS) sensing material. When 
MOS chemical sensing device is exposed to oxygen molecules, these molecules are 
adsorbed on the active site surface of sensing material layer. MOS surface hypothet-
ically exist in inert form, which are highly doped with oxygen vacancies in reducing 
envirnoment at high temperature.
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O2(adsorbed) + e− → O− 
2 (adsorbed) (1) 

O− 
2 (adsorbed) + e− → 2O−(adsorbed) (2) 

O−(adsorbed) + e− → O2−(adsorbed) (3) 

These adsorbed negative oxygen ions interacts with various gas molecules causing 
alteration in the resistivity of the sensing material. The exposure to reducing gas 
molecules causes the oxidation reaction which releases the negative charge, thus 
increasing the conductivity and reduction in conductivity occurs if electron accepting 
gas molecules interacts [55–58]. 

In chemical adsorption/desorption sensing mechanism model, gas molecules 
directly interacts with crystal grain of sensing material which causes chemical reac-
tion and effects the electrical signal [59]. In physical adsorption/desorption sesnsing 
model, the gas molecules interacts with with sensing material crystal by Coulomb 
forces, dipole–dipole attraction, and other intermolecular forces without causing 
any chemical change. Humidity sensors are most common devices with physical 
adsorption/desorption sensing mechanism [60, 61]. 

2.1.2 Bulk Resistance Control Sensing Mechanism Model 

The fundamental idea of this mechanism model is the variation in the conductance 
of the sensor due the phase transformation of the sensing material. This sensing 
mechanism has low scope compared to other, but its applicable to ferroic-MOS and 
perovskite-MOS composite gas sensing analysis [62, 63]. 

2.1.3 Gas Diffusion Control Sensing Mechanism Model 

In early 1990s, reseracher propsed this sensing model in which gas molecules diffuses 
in sensing material [64]. Morphology of the sensing material is important parameter 
affecting the diffusion process. Porous materials are highly considered for this type of 
sensing mechanism. At low temperature gas analytes are adsorbed at the outersurface 
of the material as the temperature is increased, gas diffusion probability becomes 
higher [65, 66]. 

2.2 Characteristics of Sensor 

The static and dynamic characteristics of gas sensor are cruical to determine 
its working. The important characteristic parameters of gas sensor to evalute its 
performance comprises of following aspects [67, 68].
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2.2.1 Sensitivity 

It represents the degree of change in response of the sensor. Sensitivity is the ratio 
resistance of the gas sensor in test envirnoment to the resistance in normal air. 

S = 
Rg 

Ra 
(4) 

where Rg is the resistance of the target gas test envirnoment, and Ra is the at ambient 
airresistance. 

2.2.2 Selectivity 

The capability of gas or chemical senor to detectexplicit gas molecules in ambient 
atmosphere containing various other molecules. Selectivity characteristic of a gas 
sensor is of paramount importance inorder to design target specific devices. 

2.2.3 Repeatability/Reproducibility 

This parameter indicates repititive number of time a sensor can be used in test 
envirnoment. An error occurs when the sensor is unable to produce same value 
under identical conditions. The error is maximum difference between output value 
of two different calibration cycle. 

2.2.4 Reliability 

It is the ability of gas sensor to accurately perform under required condition for life 
cycle of the sensor. Reliability is the probability of the sensor to function without 
faliure for specified number of times. 

2.2.5 Receiver Operator Characteristic (ROC) Curves 

The operational detection limit of a field chemical sensor is determined using a ROC-
curve technique. A detection limit that is valid under realistic operating conditions 
is referred to as the operational detection limit. ROC-curve is robust because the 
detection limit is analyzed for standard that are above or below the expected detection 
limit [69].
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2.3 Sensing Material 

In flexible and stretchable sensor, metals are abundantly used material because of their 
high low resistivity and high stability. Gold (Au) thin film contacts are widely used in 
flexible electronics because its resistance toward oxidation. In order to increase the 
adhesion of Au contact to substrate, a thin layer of titanium (Ti) or chromium (Cr) is 
deposited underneath Au. Apart from contact pads, metals with various geometries 
such as nanowires, nanoparticles, and liquid conductor are used in transparent and 
flexible electronic [70–76]. 

Metal oxide semiconductor are highly used in flexible sensors because they are 
highly porosity and permeable shell layer which increases the effective gas diffusion 
phenomena, thus increases sensing performance. MOS materials also have low gas 
molecules detection limit and short recovery time. MOS can be synthesized in shapes 
like nanowires, nanotubes, nanosheets, nanoparticles, etc., to be used for sensing 
applications at room temperature. Table 2 summarizes MOS-based gas sensor. 

Single or few-layer TMDs are used in the fabrication of bendable gas or chemical 
sensing devices as these materials have unique mechanical and electrical properties 
at nanoscale thickness. TMDs shows graphene-like properties at low dimensions. 
Two-dimensional structures of TMDs have superior molecular sensing capability 
with high surface area, sizeable bandgap, and reactive sites for redox reactions [87]. 
High sensing performance using TMDs is achieved with thermal and UV assistance. 
TMDs for gas or chemical detection at room temperature and their structures are 
given in Table 3.

Carbon nanomaterials inherited with nanoscale features are impeccable compo-
nents for self-driven flexible sensors. Because most of the atoms in low-dimensional 
carbon structures are exposed to the environment, they have a large surface area, 
which is necessary to attain high sensitivity. Carbon-based nanomaterials like 
quantum dots, carbon nanotubes (CNTs), and graphene have characteristics such

Table 2 MOS nanostructure 
and their gas sensing 
properties 

Metal oxide 
material 

Synthesized 
material structure 

Gas detection References 

SnO2 Nanocrystalline 
tube 

NOx [77] 

SnO2 Nanowires CO [78] 

SnO2 Thin film NH3 [79] 

NiO Nanowire NH3 [80] 

CuO Nanosheets H2S [81] 

CuO: MnO2 Nanocomposites NH3 [82] 

WO3 Nanocolumns Isopropanol [83] 

Na: ZnO Nanocrystals Acetone [84] 

In2O3 Nanocrystals NOx [85] 

CuO/SnO2 Nanorods Nanorods [86] 
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Table 3 Synthesized TMDs material and gas detection properties 

TMDs material Synthesized material structure Gas detection References 

WS2 Nanosheet NO2 [87] 

WS2: Pd Thinfilm H2 [88] 

WS2: TiO2 Nanohybrids NH3 [89] 

MoS2 Thin film NH3 [90] 

MoS2/ZnO Nanocomposites NH3 [91] 

MoS2/SnO2 Nanosheet NO2 [92] 

MoS2/rGO Hybrid Formaldehyde [93] 

MoSe2 Thinfilm NO2 [94] 

SnS2 Flower shaped NH3 [95] 

Ni/MoS2 Nanoflower SO2 [96]

as better crystal lattice quality, high mobility, and low noise which are important 
for transduction and surface chemistry [97]. Carbon quantum dots (CQDs) are 
chemically stable and conductive zero dimensional fluorescent carbon nanomate-
rial having size less than 10 nm. CQDs have dominance over other quantum dot 
materials due to dominance of edge effect and quantum confinement [98]. Synthesis 
of CQDs can be achieved by using bottom-up synthesis method such as electro-
chemical, microwave irradiation, hydrothermal/solvothermal, thermal decomposi-
tion or top-down synthesis method like electrochemical oxidation, laser ablation, 
chemical oxidation, arc discharge, and ultrasonication. CQDs resulting from any 
of the synthesis method is a combination of hydrogen, oxygen and carbon. The 
oxidation process enhances surface of CQDs with wide spectrum of oxygen groups 
like carbonyl, hydroxyl, carboxylic acid, and epoxy/ether. The heteroatom doping of 
CQDs with organic and inorganic materials influences their properties by altering the 
surface functionality. These hybrid functionalized CQDs can be explored to design 
novel chemical or gas sensors [99]. 

CNTs are member of fullerene structure group in which carbon atoms are held 
together in three formations, namely, spherical, tubular, or ellipsoidal. These are long 
hollow tubes bind together by van der Walls forces, and their ends may be caped. 
CNTs are composed of sp2 chemical boning which provides them unique strength and 
such strong bonds attributes toward low chemical reactivity. Thus, functionalization 
of CNTs are necessary for selective and sensitivity improvement [100]. Graphene is 
most promising material for flexible gas sensing device because of transparent and 
unique functionalities due to high electron transport property and high specific area. 
It also has low electrical noise which contributes toward high gas adsorption and give 
ultrasensitive characteristics to the material. The sensitivity and electrical properties 
of intrinsic graphene increases many folds with introduction of defects and doping 
impurities. Graphene doped with Ca, C, and Fe showed higher gas sensitivity as 
compared to intrinsic grapheme [101]. Metal and metal oxide decorated graphene 
and its derivatives like graphene oxide (GO) and reduced graphene oxide (rGO)
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Table 4 Synthesized graphene nanostructures and their gas sensing properties 

Material Synthesized material 
structure 

Gas detection Lmimit of detection References 

MWCNTs Tube CO2 127 ppb [104] 

SnO2 decorated 
MWCNTs 

– CH4 490 ppb [105] 

ZnO–rGO 3D CO2 < 9 ppm [106] 

rGO–Mn3O4 CO2 4 ppm [107] 

TiO2 nanotubes 
decorated rGO 

Nanotube CH4 10 ppm [108] 

PANI-CNT Nanotube NH3 < 200 ppb [109] 

CQDs Quantum dots NO2 2 ppm [110] 

Graphene Sheet CO2 10 ppm [111] 

rGO Flakes NH3 200 ppm [112] 

rGO Nanosheet SO2 5 ppm [113] 

Ag/sulfonated 
graphene 

Film NO2 0.5 ppm [114] 

Graphene/SnO2 Film Acetone 10 ppm [115] 

rGO/TiO2 Hybrid Methanol 800 ppm [108] 

rGO/CuO Nanosheet Formaldehyde 100 ppm [116] 

rGO/ZnO Mesoporos NO2 1 ppm [117] 

rGO/WO3 Nanosheet NO2 1 ppm [118] 

NiO/rGO Nanosheet NO2 7 ppm [119] 

In2O3/rGO Nanosheet NO2 5 ppm [120] 

have high sensitivity as compared to intrinsic graphene and prove to be effective 
for attaining high selectivity and sensitivity [102, 103]. Table 4 shows the CQDs, 
CNTs, graphene, graphene derivatives, and metal oxide decorated graphene material 
for room temperature sensing applications. 

2.4 Clasification of Gas Sensor Devices 

2.4.1 Flexible Chemiresistors Sensor 

Chemiresistor gas sensor operating process is based on adsorption of gas molecules 
over sensing material causing alteration in conductance of the sensor. The sensitivity 
of the device is determined by measuring the variation in resistance. Flexible chemire-
sistors are being investigated by many researchers because of its simple fabrication 
process, reusability and low power consumption. Li et al. developed high sensitive 
room temperature operating flexible NO2 gas sensor based on silver nanoparticles
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Fig. 3 a Fabricated flexible chemiresistor, b sensing responses at 1 ppm NO2 under different 
humidity. “Reprinted with permission from Li et al. [121]. Copyright 2019 American Chemical 
Society” 

(AgNPs) decorated reduced graphene oxide (rGO) with ultralow detection limit of 
0.6 ppb shown in Fig. 3 [121]. 

2.4.2 Flexible Field-Effect Transistors (FETs) Sensor 

FET-based sensors detects the presence of gas molecules by measuring the variation 
in drain current before and after exposing the sensing channel material by target gas. 
The conductivity of the sensing channel material is altered when gas molecules are 
adsorbed on its surface. Park et al. [122] fabricated flexible FET with double layer 
graphene conjugated with olfactory receptor and demostrated it as bioelectronic nose. 
The detection limit is as low as 0.04 fM and has long-term stability and outstanding 
mechanical flexibility shown in Fig. 4. 

Fig. 4 a Double layer graphene-based flexible FET, b ionic liquid as gate contact to device, c detec-
tion response of olfactory receptors. “Reprinted with permission from Park et al. [122]. Copyright 
2012 American Chemical Society”
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Fig. 5 a Designed graphene BSA sensor, and b sensitivity of the fabricated device with concentra-
tion. Reprinted with permission from Noroozi and Abdi [123]. Copyright 2019 Published by The 
Royal Society of Chemistry 

2.4.3 Shotkky Diode 

Schottky sensors are fabricated using multi-layered semiconductor heterojunction, 
grapene, and 2D material can be used as sensing layer. Adsorbed analyte on the 
surface of the gas sensing material alter the Fermi level of heterojunctions and 
bandgap. The reverse current varies with change in barrier height and its ease fabri-
cation process makes Schottky diode excelleny candidate for gas sensor. Noroozi 
and Abdi demonstrated the potential of graphene-based Schottky diode for sensing 
application. Figure 5 shows the fabricated device with sensitivity curve of the sensor 
[123]. 

2.4.4 Surface Acoustic Wave (SAW) Sensors 

SAW is a promising gas senor because of its miniaturized size, highly sensistive, 
ruggedness, and cost effective manufacting process. Theschematcs of the device 
and as fabricated device is shown in Fig. 6. The physical and chemical changes in 
sensing material deposited in delay line area in SAW device caused by gas molecules 
interaction, alters the velocity of acoustic wave. The mass loading effect of acoustic 
wave is the sensing mechanism of the device. Okudaet al. demonstrated graphene 
based SAW device integrated with FET capable of detection of mass and charge 
changes as a multifuctional sensing device.

3 Synthesis and Characterization of Porous Graphene 
and Its Derivatives 

Porous graphene can be synthesized using template-assisted and template-free 
approach. Based on these approaches 2D (graphene nanomesh) and 3D porous
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Fig. 6 a Schematic SAW sensor, b fabricated graphene SAW sensor integrated with FET. Reprinted 
with permission from Okuda et al. [124]. Copyright 2018 Published by Springer Nature

(self-assembled graphene nanosheet) can be fabricated. Template-free method for 
synthesis of porous graphene requires chemical etching process. Graphene etching 
can be effectively done using hydrogen peroxide, nitric acid, potassium hydroxide, 
metal nanoparticles, metal oxide, and also thermal treatment can be adopted for 
2D porous graphene fabrication [125–131]. Three-dimensional porous graphene can 
be fabricated using hydrothermal/solvothermal which is cost-effective process and 
have high throughput for large-scale production [132, 133]. The template-assisted 
give more control over the size and distribution of pores. Chemical vapor deposi-
tion (CVD), hard and soft template-assisted self-assembly are essential. Pang et al. 
fabricated a flexible porous graphene network structure using nickel (Ni) foam as 
starting material. Graphene is deposited over the using CVD. Ni deposited graphene 
was immersed in prepolymer of PDM. Ni was etched out resulting in the formation 
of graphene porous network shown in Fig. 7 with material and morphological char-
acterization [134]. The morphology of the network have random porous structure. 
Table 5 shows the other methods of preparation of graphene and its derivatives.

4 Functionalization of Graphene 

Graphene has honeycomb network of sp2-hybridized carbon atom, which makes 
its excellent material for new generation gas sensor. Selectivity characteristics 
of graphene gas sensor can be improved by active site surface functionalization. 
Graphene functionalization can be done covalently (nucleophilic, cycloaddition, 
condensation, and electrophilic reactions) and non-covalently (electrostatic inter-
actions) [141, 142]. Various metal NPs, metal oxide, TMDs, organic polymer, and 
conducting polymer decorated graphene functionalization for sensing application is 
presented in Table 6.

The compatibility of graphene with organic molecules is one of its features. 
Organic compounds, such as dye molecules, can be linked or layered with graphene. 
Midya et al. reported graphene with Rose Bengal organic dye molecules as functional
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Fig. 7 a Fabrication process flow of pressure and strain sensors with the GPN structure, b XRD 
and c Raman spectrum, d bent GPN-PDMS composite, e SEM image of the nickel foam coated with 
graphene and f magnified SEM image, g SEM image of the GPN-PDMS composite and h magnified 
SEM image of a typical connected network with three branches. Reprinted with permission from 
Pang et al. [134]. Copyright 2016 American Chemical Society 

Table 5 Fabrication methods of graphene over flexible substrate 

Material Substrate Fabrication technique References 

2D porous graphene PET Electrochemical exfoliation [135] 

2D porous graphene – Partial combustion [136] 

rGO PET Inkjet printing [137] 

rGO PET Covalent anchoring [138] 

rGO Filter paper Vacuum filtration [139] 

Graphene Plastic substrate Inkjet printing [140] 

rGO Curtain-coated recyclable 
paper 

Spray-coating [39]

group for binding NH3 molecules. The low detection range of 0.9 ppm is reported 
using Rose Bengal/rGO sensor [143]. 

Polymer-based functionalization of graphene: Porphyrins material added with 
various metals has been utilized to functionalize graphene layer as aromatic struc-
ture promotes non-covalent bonding. Mackin et al. fabricated extremely sensitive 
ammonia gas sensor using graphene functionalized with cobalt (Co) porphyrin func-
tionalized, the response of sensor to ammonia increased four folds [144]. Pyo
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Table 6 Graphene and functionalized group with concentration response 

Material Functionalization group Analyte 
sensing 

Concentration 
response 

References 

rGO Ag NPs NH3 17.4% [147] 

rGO Au, Ag, Pt NPs NH3 6.52%/ppm [148] 

Graphene SnO2 NH3 21% for 
50 ppm 

[149] 

Graphene V2O5 NH3 31% for 
100 ppm 

[150] 

Graphene 
fiber 

MoS2 NO2 and 
NH3 

50oppm [151] 

rGO MoS2 NO2 59.8% toward 
2 ppm 

[152] 

Graphene 
aerogel 

WS2 NO2 10–15 ppb [153] 

rGO 1,8,15,22-tetra-iso-pentyloxyphthalocyanine 
copper 

NH3 3200 ppm [154] 

rGO tetra-β-carboxylphenoxylphthalocyanine 
cobalt 

NH3 100 ppm [155] 

rGO 4-aminoquinolin NO2 10 ppm [156] 

rGO tetra-α-aminophthalocyanine cobalt NH3 100 ppm [155]

et al. designed and fabricated flexible graphene-based sensor for VOCs detec-
tion. Graphene layer was functionalized using Co porphyrin–5,10,15,20-tetraphenyl-
21H, 23H-porphyrin cobalt(II). Co porphyrin was integrated with graphene using 
thermal evaporation process [145]. Polymer-based functionalization of graphene is 
commonly used to improve gas diffusion. Polymer forms strong hydrogen bond or 
π –π stacking with gas molecules, thus increasing the selectivity of the device. Yoon 
et al. reported transparent flexible ultrasensitive polypyrrole (PPy) functionalized 
graphene senor. The test results showed paramount detection limit of 0.03 ppb for 
NO2 and 0.04 ppb for NH3. This high sensitivity is achieved due to ordered structure 
of PPy/graphene [146]. 

5 Factors Effecting Sensing Process 

Porous carbon nanomaterials possess unique properties which can be explored to 
design highly selective and sensitive next generation sensors. The morphological, 
physical, and chemical parameters of sensing material are critical to design highly 
sensitive gas sensor. 

The morphology of the sensing material significantly impacts the sensors effi-
ciency. Sensing material can have morphology of quantum dots (zero dimensional:
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0D), nanowires or nanotubes (one dimensional: 1D), nanosheets or belts (2D), and 
three-dimensional (3D) structures. Large surface active site, improved gas diffu-
sion, and better sensing rates are the key attributes provided by the different sensing 
material morphologies. Three-dimensional nanostructured materials have all these 
properties, but their synthesis process is very complex. Hence, 1D and 2D nanos-
tructured materials are preferred for gas sensor development as they possess large 
surface for target gas adsorption. The surface area of these materials depends upon 
the synthesis process, post treatment and functionalized groups attached with them 
[157, 158]. The adsorption of analyte molecules on the surface also depends upon 
the gas molecules binding energy. Also, if the diameter of the active site is less than 
gas molecules, the adsorption of molecules may not occur. Conductivity of graphene 
is very high because of its zero bandgap, making it easier to respond toward gases. 
Functional groups presence on material surface enhances the adsorption process 
since the intrinsic material lacks in active surface sties. They also the selectivity of 
the sensor improves by integrating functional group with sensing material [159, 160]. 

6 Conclusion 

Flexible and stretchable sensors are the emerging and essential component of wear-
able electronics. Continuous advancements in flexible sensors are being carried out 
to compete and replace traditional rigid platform based sensor. Flexible sensors can 
work at room temperature and consumes less power which is essential parameter 
for designing wearable electronics. Novel nanostructured materials can boost the 
progress of flexible sensor. Materials such as graphene and TMDs have exceptional 
morphology, electron transport properties, and tunable bandgap are leading in the 
area of gas sensing technology with high sensitivity and selectivity. Graphene detec-
tion limit as reached the point of parts-per-billion and even approach are being started 
to reach parts-per-trillion limit. Chemical modification of graphene to increase the 
molecule adsorption sites can help in achieving ultralow detection limit. Graphene 
functionalized with metal NPs, metal oxide, TMDs, and polymers based sensor array 
will extend the detection limit and multiple selectivity of different molecules at the 
same time. Next-generation flexible functionalized graphene sensor expected to play 
a vital role field of bio absorbable sensors and wearable electronics. 
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Chapter 17 
Biomedical Application of Porous 
Carbon and Its Future in Precision 
Medical Devices 

Sabyasachi Choudhuri and Jyotirmoy Panda 

1 Introduction 

Carbon is one of the fascinating elements that have revolutionised science for many 
years. It can be found in most organic and inorganic compounds all over the planet. It 
is an important component in many rock formations, such as calcareous and marble. 
It can be found all over the world in its allotropic types of diamond, graphite, and 
amorphous carbon. Carbon is also present in numerous substances in the earth’s 
atmosphere, including carbon dioxide and in oceans and in other large water bodies. 
Carbon-containing hydrocarbons make up multiple fuels, such as coal, gas, and oil. 
Carbon is present in forms of life. It accounts for much of the mass of the human 
body. 

Carbon materials have superior properties and can be used in a wide range 
of manufacturing applications. It is used to produce the carbon fibres which are 
strongest among others, the best electric conduction materials, i.e., graphite elec-
trodes, solid lubricants, i.e., graphite, an impermeable non-crystalline material, i.e., 
vitreous carbon, best porous absorbers, i.e., activated carbon, the hardest material 
present on earth, which is diamond and the most impressive material, the fullerenes 
[1]. Each of these types is produced by selecting raw materials and processing them 
using modern manufacturing techniques. 

Porous carbon (PC) is a processed carbon type that contains tiny pores of low 
volume which increase the available surface area for chemical reactions or adsorp-
tion. Porous carbon materials (PCMs) are mostly classified into microporous where 
pores are less than 2 nm, mesoporous where pores are between 2 and 50 nm and 
macroporous where pores are greater than 50 nm. Porous materials are called uniform
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because they are narrow in size compared with a broad pore-size distribution. The 
pores may be of cylindrical, conical, or slit form. In contrast to the random network 
of tortuous pores, they can be well-organised with vertical orientation. PCM may be 
made up of either one kind of porous system, a mixture of two kinds, or all three 
types of pores. A combination of porous materials made up of a variety of porous 
systems that work together to form an integrated porous system is called hierarchi-
cally porous materials [2]. Furthermore, the form, scale and position of the current 
single porous system or a mixture of porous systems could be ordered or disordered. 
PCM can be made in one of two ways: nanocasting, which uses a hard template to 
make up the carbon structure, or direct synthesis, which uses a soft template. Zeolite 
and silica are the most common hard templates used in the nanocasting process. 
The carbon precursor contains such hard template materials. The porous structure 
is created by carbonisation followed by the elimination of the template. The zeolite 
template creates microporous carbon, while the silica template creates mesoporous 
or macroporous carbon. The resulting PCM may have all three porous systems [3]. 
Direct synthesis entails synthesis of the PCM with sol–gel synthesis where a soft 
template with a carbon precursor and a polymeriser generates a porous matrix, essen-
tially a polymer/surfactant. PCMs are produced from naturally accessible materials, 
such as coconut husks, husks of paddy, tea wastage, etc., are also available as cheap 
materials in addition to these PCMs synthesised by the above-listed processes. Due 
to their high efficiency in a broad range of applications, PCMs are promising candi-
dates in the field of material science. Their unique physicochemical and biological 
properties include large surfaces and large pore volumes with adjustable pores, the 
presence of favourable functional groups, including an easily modifiable surface and 
π–π stacking, high thermal conversion capability, unique visual properties, very 
high biocompatibility and high mechanical stability and chemical inertness have 
given them a great deal of attention [4, 5]. PCM is used in many applications, not 
only for supercapacitors and electrical applications, catalytic supports and pollutant 
adsorbents but also in the biomedical field. 

Among the inorganic nanoparticles, carbon-based nanomaterials such as fullerene, 
graphene, CDs and CNT have gained widespread interest for their excellent poten-
tial in biomedical fields such as the delivery of drugs, chemo-photothermal synergic 
treatment, gene transfection and in vivo real-time imaging [6, 7] due to their distinct 
physicochemical properties. For example, within the near-infrared (NIR) region, 
carbon nanotubes [8] and graphene [9] have ideal photothermal conversion potential 
and could be researched as photothermal candidates for synergistic operation. Fortu-
nately, preclinical biodistribution, biocompatibility and hemocompatibility trials 
have shown that these carbon nanomaterials are non-toxic and biocompatible at 
appropriate doses [10]. 

CNT biosensors are used because they can resolve some of the drawbacks of 
traditional electrochemical biosensors, such as low sensitivity and durability, long 
reaction times and low reproducibility [11]. 

The high surface area of activated carbon (AC) is used in the fabrication of elec-
trodes used in biosensors, allowing immobilisation of enzymes necessary for sensing
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the compound of interest and facilitating electron transfer between the electrode and 
the substrate [12]. 

Foley et al. used fluorescence microscopy and radioactive labelling to show that 
a water-soluble fullerene derivative, C61(COOH)2, can cross the cell membrane and 
bind to mitochondria preferentially [13]. This is similar to the structural comparison 
between the fullerene cage and clathrin-coated vesicles, which can be used to transfer 
drugs to organelles. 

The widespread use of biomaterials in biomedical applications is regarded as an 
important revolution that came in recent decades. Due to their well-known inherent 
characteristics such as biocompatibility, non-toxicity and biodegradability, oil-based 
polymer materials were eventually replaced by natural or synthetic biopolymers. 
The addition of porosity to a biomaterial expands the range of possible applications. 
Furthermore, increased porosity can be advantageous for applications that depend on 
their exceptional ability to load, maintain and release fluids. The biopolymer matrix 
must have a specific set of pore characteristics for each use. 

The biomedical applications of such PCM are summarised in this chapter. The 
nanoporous carbon metal–organic structure and carbon quantum dots are potential 
contenders for biomedical applications to be improved and established in future. 

2 Various Biomedical Applications of Porous Carbon 
Materials 

Nanotechnology’s recent advancements have provided highly efficient and versatile 
treatment options for many disorders in the body, resulting in improved therapeutic 
efficacy and fewer side effects. The development of nanomaterial-based drug delivery 
systems (DDSs) holds a lot of promise for bringing nanotechnology to the clinic and 
benefiting numerous patients. 

Among the category of porous carbon nanomaterial, mesoporous carbon nano-
material (MCN) has shown most evidently superior quality as it contains both meso-
pore formation and carbonaceous components, due to these characteristics features 
MCNs and other carbon-derived materials such as carbon nanotubes, AC, graphene, 
carbon dots and fullerene having advantageous position over any other inorganic 
nanomaterial [4]. 

2.1 Mesoporous Carbon Materials 

Due to the biocompatible and non-toxic nature, MCNs have attracted a large point 
of interest in the field of nanotechnology-based DDSs. As it is already known meso-
porous nanocarbon materials have enlarged pores (2–50 nm) and surface area which 
makes them favourable for targeted drug delivery. Sustained release formulation can
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also be achieved using MCNs as it has an adjustable porous structure on their surface 
which can control the release of drugs. In the cytotoxic treatment or in the treat-
ment regimes in which highly toxic or highly potent drugs are used which can cause 
immense side effects if not delivered specifically in the targeted organ, this targeted 
drug delivery can be achieved using MCNs which make it possible by using different 
tools like stimuli-trigger response DDS [14], antibodies or ligand-mediated DDS [15] 
and endogenous enzyme-triggered DDS [16] and exert efficacious therapeutic action. 

Among all the DDSs, it is widely accepted that oral DDS is the most feasible and 
convenient route of administration. But due to the poor bioavailability in the GI tract, 
the use of oral hydrophilic drugs is very limited. Recently, several works have been 
done by the pharmaceutical formulator to use MCN in the loading and delivery of 
poorly soluble hydrophobic drugs. In this context, not only MCN and mesoporous 
silica nanomaterial (MSN) [17] but also spherical-shaped mesoporous metal oxide 
[18] and hydroxyapatite mesopores [19] are significant. The work of Wang et al. [20] 
established the MCNs drug loading capacity and its role in targeted drug delivery 
of poorly soluble hydrophobic drug molecules, in the studies, they used celecoxib 
which is practically insoluble as a loading drug in the carrier molecule of uniform 
mesoporous carbon spheres to overcome the poor bioavailability of celecoxib and 
the studies showed that the bioavailability of celecoxib was remarkably increased in 
uniform mesoporous carbon spheres carrier when it compares with the conventional 
oral dosing. 

In the field of targeted DDS, intracellular targeted drug release is one of the 
challenging tasks and hurdles increase tenfold when the drug is impermeable to the 
plasma membrane. To overcome the obstacle, MCNs are now showing a promising 
way for intracellular targeted formulation. Kim et al. [21] demonstrated the trans-
membrane drug delivery capacity of structurally ordered MCNs in HeLa cells. As 
per their work, it is established that MCNs are biocompatible, and they are easily 
taken inside the HeLa cells by the endocytosis process where they can release their 
cargo and make the transmembrane drug delivery possible [21]. They used Fura-2, 
a fluorescent dye which is plasma membrane impermeable, as their cargo package 
to load inside the nanocarrier of MCNs and poured the drug/guest molecule loaded 
MCNs into the live HeLa cells containing D-10 medium to let them cross the plasma 
membrane of HeLa cells and release the drug/guest molecule intracellularly [21]. 
This targeted drug design can be used in the delivery of cytotoxic drugs inside the 
cancer cells in a targeted and controlled fashion. Several other studies show that not 
only MCNs, but MSNs can also be used effectively as carriers for membrane drug 
delivery but still MCNs are considered promising and effective carriers in this regard 
due to their large pore volume and surface area in comparison with MSNs which give 
an added advantage for the drug loading. Not only that but there are several different 
studies also showing that the cytotoxicity of MCN is much lesser than MSNs [22–24] 
(Fig. 1).

Recent studies show that the MCNs not only serve as the conventional targeted 
DDS but also establish their importance in the field of precision medicine. In this 
context, mentioning the work done by Li et al. [25] is important to understand the role
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Fig. 1 Diagrammatic illustration of intracellular migration of MCN through endocytosis and intra-
cellular drug/guest molecule (Fura-2) release. Reprinted with permission from Kim et al. [21]. 
Copyright 2008 American Chemical Society

of MCNs in precision medicine. They demonstrated the dual-purpose serving appli-
cation of MCNs using a single-stranded DNA, i.e., P0 aptamers as a gated cap on the 
surface of the drug-loaded oxide variant of MCNs. As P0 aptamer is highly specific 
to cellular mucin, i.e., MUC1, so the precision in the drug delivery can be highly 
achieved [25]. Oxidised MCN or OMCN is highly preferable as a vehicle over MSN 
as it possesses photothermal therapeutics and photoacoustic imaging capabilities 
[26]. Not only that, but they are also the best candidate for pH-sensitive drug release 
[27]. In their research work, they prepared P0 aptamer capped DOX/OMCN for 
the fluorescence-mediated imaging of tumour cells of the transgenic nude mice and 
releasing chemotherapeutic agent, i.e., DOX inside the cellular mucin for on-demand 
pH-sensitive drug release [25]. 

2.2 Carbon Dots 

CDs are zero-dimensional carbon materials that can be doped with nitrogen sulphur 
phosphorus and boron heteroatoms and have a size range of less than 10 nm nanome-
tres [28]. Chemically, they may be enhanced and made with additional biomedical 
functional properties. CDs have a lot of potential in the bioimaging field, biosensing 
field and biotherapy field because it is less toxic to cells, highly soluble in water, 
biocompatible and has good photostable properties. Their main applications are in 
bioimaging [29] of cells (normal, tumour and cancer cells), in vivo imaging [30] and 
biosensing [31] (Fig. 2).

Scrivens et al. [33] first isolated carbon fluorescent nanoparticles in the year 2004 
by purifying the mono-walled CNT. Since then, numerous synthetic processes have 
been devised for the manufacture of CDs with varying dimensions and using various 
functional molecules on its surface. The biocompatibility of CDs includes in vitro
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Fig. 2 CDs in various biomedical applications. Reprinted with permission from Su et al. [32]. 
Copyright 2020 Royal Society of Chemistry

and in vivo tests, the in vitro known for its cellular toxicity and the in vitro toxicity 
where the researchers used the whole organisms. The biosafety studies of HBCDs 
given through parenteral DDS in mice showed that in vivo imaging of major organs at 
different times after, i.e., injection of HBCDs [34]. Their results showed that HBCDs 
in vivo have significant biocompatibility and minimal side effects. This technique has 
an important role in both clinical and research fields because they allow a thorough 
investigation of biological systems [35, 36], which makes the morphological and 
physiological study of cells much easier. 

Cancer cells CD-based in vitro imaging was first reported in the year 2011 [37]. 
Since then, there have been many attempts for imaging cancer cells with various 
CDs such as T47D cells [38], HeLa cells [39, 40] and MCF-7 cells [41, 42]. CDs 
with harmless emission are required for imaging cancer cells as that would avoid 
harmful UV or blue radiation and would reduce the photodamage of the biological 
tissues. Other than in vitro human body cell imaging, CDs are also used for in vivo 
imaging. The efficacy of using CDs as a fluorescent contrast agent in mice was first 
investigated in 2009 [43]. Later, a lot of CDs have been extracted and used for this 
in vivo imaging [44–46]. However, these most previous experiments on CDs emit 
only fluorescence of range from blue to green. In vivo imaging for CDs that emit in 
the red or NIR region of the spectrum is still very difficult to come by. While there
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has been significant advancement in CD fluorescence imaging techniques in recent 
years, the spatial resolution in in vivo imaging is still far from showing satisfactory 
results. Various other imaging modalities, for example, photoacoustic imaging and 
magnetic resonance imaging, must be incorporated into multi-modal imaging probes 
[47]. 

The enhanced nucleus-targeted DDS depends on the successful incorporation of 
CDs with the parent drug. For example, Doxorubicin (DOX), a drug widely used in 
cancer treatment, transports through the membrane of a cell to the nucleus during 
cancer treatment. However, DOX does not quickly reach the nucleus of a cell and 
causes significant in vivo cardiotoxicity, limiting its use as a cancer treatment [48, 49]. 
Yang et al. coupled CDs to the drug DOX which enhanced the anticancer treatment, 
which directly implies that CDs have a significant role in nucleus-targeted drug 
delivery [48]. 

A modern in vivo real-time imaging technique combining MCNs and CDs has 
emerged. Laser excitation causes multicolour and wavelength-dependent fluores-
cence on CDs. Because of their nonporous nature and low drug loading capability, 
CDs use as a drug carrier is still constrained. Therefore, the combination of MCNs 
and CDs is preferred. 

2.3 Carbon Nanotubes 

Carbon nanotubes are an allotropic type of carbon discovered by Iijima in 1991 [50] 
and have since been widely researched and used for a variety of applications including 
materials reinforcement, electrode materials and/or components for nanoelectronics 
for biosensors, and even drug carriers in biomedicine as remote-control DDS in 
some cases. They can be synthesised using a variety of techniques, which includes 
the conventional electric-arc discharge, laser ablation and catalytic chemical vapour 
deposition method [51]. They are described as graphene layers with either side closed 
by fullerene caps. CNT is composed of one or more concentric walls which is an 
important factor that determines many properties of CNT. Single-walled CNT has 
a diameter of 1–2 nm, whereas multi-walled CNTs diameter is less than 100 nm. 
Double-walled CNTs are links between single-walled and multi-walled CNTs. 

In the field of biosensors, CNTs have been suggested as a sensing element for 
detecting and monitoring a variety of diseases, including diabetes and many bacterial 
infections. For example, Punbusayakul et al., used electrochemical testing of immune 
complexes to diagnose salmonella, minimising detection time and simplifying 
sample preparation relative to other existing approaches [52]. 

In the imaging biomedical field, there are a variety of CNT-based technologies. 
For example, in photoluminescent imaging, the single-walled CNT gets excited to 
emit fluorescence in the NIR-I of wavelength range 700–900 nm and NIR-II of 
wavelength range 1100–1400 nm, which are nearly invisible to tissues and water, 
allowing for greater penetration depths [53].
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In the healthcare industry, effective drug administration is a major concern. After 
all, poor selectivity and a short half-life cycle can lead to several administrations, 
which can result in undesirable side effects and even death. CNTs, due to their 
expected biocompatibility and basic structure, are being investigated as nanocarriers 
for drug delivery and gene delivery, as well as treatment of cancer. 

CNT-based nanocomposites, on the other hand, have been extensively researched 
for the diagnosis and treatment of cancer due to the success of vesicle-based trans-
porters such as lipid nanoparticles in reducing ailments other than cancer. A study 
performed by Fadel et al. [54] on f-bundled CNTs on an in vivo mouse having B16 
melanoma, the MHC-I polymer caused expansion of T-cells which was boosted using 
a composite that served as an artificial APC. 

The CNT has influenced many living cells, and nowadays, more attraction of using 
CNT in biomedical application is increasing day by day. CNT can change its form 
for 3D architecture for cellular replication improvement and bioengineering [55]. 
CNT also exhibits excellent capabilities for cell transfection. As a study done by Liu 
et al. DOX is easily quickly released in the acidic atmosphere of tumour tissues but 
remains bound to CNT at neutral and alkaline pH, thereby reducing toxicity in healthy 
body sections [56, 57]. Most of these works by various scientists mentioned above 
showed the toxicity of the CNT inside the cell during their usage. This may be the 
major drawback of CNT in biomedical application. However, this can be rectified 
using CNT-based hydrogel which makes water absorption possible because of its 
hydrophilic nature. CNT wires are also used for making precision devices which we 
will discuss later in this chapter. 

2.4 Activated Carbon 

AC is a kind of carbon, i.e., known by mankind from its ancient days. The tradi-
tional medical use of AC is mostly for the cleansing purpose due to its high surface 
adsorbing property. In the era of the First World War [58], AC peaked high interest 
in war for the adsorption of poisonous gas trapped by the enemy. It is not well 
known for its gas cleansing property but also well known for water purification in 
the region of the world where proper means of water purification are not available 
[59]. In the medical industry, AC has a variety of applications. The ability to develop 
extraordinary purity in a naturally occurring substance, along with its adsorptive 
properties, has contributed to its introduction into medicines. These ACs are placed 
inside the GI tract by using nasogastric tube or oral administration. ACs are given as 
a water powder slurry which is administered to the victims of drug overdose toxicity. 
ACs have high binding affinity to many drugs, so the drug gets adsorbed and passes 
through the intestine without entering the blood [60]. 

ACs are not only used for treating endogenous poisons but also used as medication 
for exogenous poisons; i.e., poisons intake by mouth. But this to be effective enough 
it should be incorporated within a short period of time. AC antidotes cannot work 
with poisoning caused by lithium, malathion or cyanides [61].
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Activated charcoal, one of a kind of AC obtained from heating pulverised carbona-
ceous compounds of various natural sources of carbon like coconut shells [62]. The 
activation procedure of activated charcoal using hot air corrodes the carbon structure 
internally which results in increased adsorption capacity of the outer surface area 
[63]. This activated charcoal is known for decades as ‘Universal antidote’, and the 
reason is self-explanatory as it terms [64]. But later the formulation of scientifically 
approved ‘Universal antidote’ changed which consisted of one part of tannic acid, 
two parts of activated charcoal and one part of Magnesium oxide though the study 
demonstrated by Daly et al. [65] suggested that the effectiveness of using activated 
charcoal alone is much higher than the formulation, as in the formulation, some of the 
tannic acid adsorbed by the charcoal which leads to the reduced adsorption capacity 
of the activated charcoal. 

Many recent studies, indicated in the research trends of activated carbon and its 
novel role in the DDS. In this context, a research work done by Miriyala et al. [66] 
is worth mentioning as it explores the possibilities of AC as a carrier molecule in 
amorphous DDS. Amorphous DDS is an advanced tool in the field of biopharma-
ceuticals to enhance solubility and bioavailability of any drug [67]. To serve as a 
carrier molecule in the amorphous drug delivery, several porous materials have been 
considered and well-researched among them porous silica materials have gathered 
promising interest as drug carriers, but due to its toxicity and high production cost 
it is not well accepted [68]. Studies showed that AC fulfilled the criteria of porous 
carrier in the amorphous drug delivery and as it is safe and economical, so it is a new 
point of interest in the search of drug carrier molecules in the amorphous DDS [66]. 

The role of activated carbon in magnetically guided DDS has been explored in 
some recent studies, in which activated carbon coating is done in the drug-loaded 
magnetic particles for the magnetic field-guided targeted drug delivery [69]. This 
kind of DDS is mainly used for the chemotherapeutic drug which demands high 
specificity in the drug release in the target due to its cytotoxic property [70]. Despite 
above all the use, some other clinical use of AC has surfaced due to several recent 
studies which are mentioned in Fig. 3.

2.5 Fullerene 

This is also an allotrope of carbon with fused rings of five to seven carbon atoms joined 
together by single or double bonds. Fullerenes are often written as their empirical 
formula Cn or Cn where n is the number of carbon atoms present. One of the famous 
family members of fullerene is C60 also known as buckminsterfullerene discovered in 
1985 as the shape resembles buckyballs [71]. Cylindrical fullerenes are also known 
as CNT or buckytubes which is previously discussed. We will discuss more about 
CNT and other medical devices later in this chapter. There are countless applications 
of fullerene in many biomedical fields such as inhibition of enzymes, DNA cleaving, 
and bioimaging [72]. While using these kinds of carbonaceous compounds, one of
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Fig. 3 Activated charcoal’s potential therapeutic uses

the obstacles we need to think about is economically improving human health and 
lowering drug-induced toxicity. 

From a theoretical-based calculation, in 1993 it was predicted that the fullerene 
C60 protease hydrophobic cavity of HIV-1 virus gets fitted inside it, thereby causing 
inhibition of the enzyme [73]. There are many experiments done with C60 derivatives 
against HIV-1 protease [74, 75]. C60 derivatives are a much better choice of drug than 
any current anti-AIDS drug because in vitro conditions these current drugs show 
cytotoxicity which is not the case for these C60 derivatives [76]. 

Due to the hollow structure of fullerenes, they can envelop atoms, specifi-
cally metal atoms such as alkali metal; alkaline earth metal; transitional metal; or 
lanthanide metals to become endohedral fullerenes. These endohedral forms of metal 
give rise to a new class of compounds that in activated form used for radiotherapy 
and in non-activated form used for imaging [77]. The major drawback of these fields 
of endohedral is their production yields. They are very hard to prepare; i.e., their 
production is almost 100 times less than normal fullerenes. Endohedrals are made 
up of 60–200 carbon metal atoms which are almost insoluble in water [77]. However, 
they possess equal chemical reactivity as normal fullerenes. Later in some studies, it 
was shown that C60 has a unique nanocarrier-induced targeted drug delivery property 
that can target cancer cells for radiotherapy [72]. 

The C60 fullerene has 30 double-bond carbons and that makes it the most efficient 
free radical scavenger among all known compounds present on earth [78]. This makes 
it a very powerful oxidising agent. This shows an action mechanism of oxidative 
stress. This inhibits the growth of tumour cells [79]. This also can prevent some 
inflammatory conditions and can recover damaged tissue [80, 81]. Recently, in a 
study it showed that it has an excellent anti-ageing effect. C60 when taken orally with 
olive oil by rats has slowed down the senescence and increased the lifespan [82].
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There are many more applications other than those mentioned above. Some of the 
unexpected properties include the preparation of anticoagulants based on nanoparti-
cles [83], accelerating blood clot lysis [84], gene therapy using DNA vectorisation 
[85]. C60-based particles are also used for making minimised friction coating of 
various medical and dental devices [86]. 

2.6 Graphene 

Graphene is a monolayer carbon allotrope tightly bound to a 2D hexagonal honey-
comb lattice with carbon–carbon single bond [87]. Graphene is the thinnest, lightest 
and strongest compound known to man on earth having size ranging 100 nm in every 
dimension [88]. Graphene is also the best conductor of electricity and heat at room 
temperature. It has many more surprising characteristics and is also used in a limitless 
number of applications [89]. Thus, it is known as ‘Wonder Material’ [90] (Fig. 4).

Its biomedical applications range from targeted DDS [92], cancer therapy [93], 
bioimaging [94], biosensing [95] to tissue engineering [96]. Initially, the application 
of graphene was limited to various electronic devices and sensors, but later its role 
in biomedical applications has emerged rapidly. 

In the field of controlled and targeted drug delivery, nanoscale graphene oxides 
are proving itself as a promising nanocarrier for drug loading and targeted release. In 
2008, Dai et al. first demonstrated the drug nanocarrier activity of nanoscale graphene 
oxide by loading various anticancer drugs with the help of polyethylene glycol and 
observed its uptake in the cellular level [94]. As the graphene oxide is devoided 
from toxicology and biocompatibility issues, it becomes a material of interest for 
the scientific community to explore not only its role in drug delivery but also its role 
in other biomedical fields such as gene delivery, intracellular and intranuclear drug 
delivery in cancer therapy, photothermal anticancer therapy in xenografted tumour 
mouse model, bioimaging and biosensor [97, 98]. 

In the field of bioimaging as per some recent studies, graphene oxides can 
contribute greatly. The bioimaging properties of graphene oxides were first discov-
ered by Dai et al. [94], during their experiment on nanographene oxide mediated 
nanocarrier-loaded targeted drug delivery. As graphene oxide shows intrinsic fluo-
rescence property in the NIR region so the GQDs can be assessed in atomic force 
microscopy and other spectral imaging techniques. Recent studies by Zhu et al. [37, 
99] also explored the area of possibilities to use GQDs in cellular imaging as GQD 
possess high degree of biocompatibility and low degree of cytotoxicity so it can be 
a promising excellent candidate for the intracellular bioimaging in future clinical 
purpose. Nitrogen-doped GQDs have an oxygen-rich functional group in compar-
ison with rGO. This GQD is produced by hydrothermal method [100] and has high 
electrocatalytic activity and is biocompatible with blue colour luminescence [101].
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Fig. 4 Biomedical application of graphene. Reprinted with permission from Li et al. [91]. Copyright 
2017 Royal Society of Chemistry

Graphene and its derivatives have now become a point of interest for biomolecule 
sensing or biosensing research. Studies are going on to prepare graphene oxide-
based biosensing devices to assess, detect and analyse biological molecules. We will 
discuss graphene-based biosensors later in detail. 

The field of tissue engineering is emerging greatly in the twenty-first century as 
the need for artificial engineered tissues cannot be fulfilled otherwise. The biocom-
patibility and other unique characteristics of graphene oxides always indicated its 
undiscovered role in organ transplantation and artificial tissue regeneration [102]. 
In 2010, Ryoo et al. [103] performed a behavioural study on the NIH-3T3 Fibrob-
last model in which they generate mammalian tissue cells on supporting graphene 
oxide film which opens the gateway of unexplored regions of graphene-based tissue 
engineering. Several studies concluded that, in tissue engineering graphene or its 
derivative does not exert any detrimental effects, rather they induce the process of 
tissue regeneration [104]. Fan et al. [102] demonstrated the scaffolding properties 
of graphene–chitosan film. Their work indicated that the graphene could accelerate
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human mesenchymal stem cell proliferation to a great extent. Recent studies show 
that graphene can not only contribute to the proliferation of human mesenchymal 
stem cells but also in the neuronal cells, skeletal muscle cells, bone and cartilage, 
and cardiac tissue regeneration [105]. 

Studies done by Fan et al. [102] using graphene oxide and chemically reduced 
graphene oxide to prove their antibacterial efficacy opens a new window of research 
in the search of biomedical application of graphene. Recent studies show that chemi-
cally reduced graphene oxide possesses more antibacterial properties in comparison 
with graphene oxides [106]. There are several studies going on to determine and stan-
dardise the antibacterial effects of graphene and its derivative against gram-positive 
and gram-negative bacteria. 

Therapeutic efficacy is related to whether a treatment provides health advantages 
as compared to a placebo or other intervention in an ideal environment, such as a 
strictly managed clinical study. The safest medicine has the higher therapeutic index 
(TI). If the TI is modest, the medicine must be dosed cautiously, and the patient should 
be constantly watched for symptoms of drug toxicity [107]. The various therapeutic 
efficacies of the porous carbon nanomaterials are shown in Table 1 and inferring 
that we can say different materials have their respective therapeutic efficacy along 
with their drawbacks making them unique from one another. Due to these properties, 
these materials have various applications in the biomedical field.

3 Graphene-Based Sensors for Human Health Evaluation 

Human health monitoring and human–machine interaction have increased rapidly 
in the last few decades and the key players behind these real-time health vitals 
monitoring are various kinds of biosensors. An analytical device that can sense any 
change, react and respond to any kind of input from the physical environment is 
called sensor and the first of these kinds of biosensor for glucose detection in blood 
was invented by Leland C. Clark who is also known as ‘Father of Biosensors’ [114]. 
In the twenty-first century, our population is growing rapidly and expectation of 
life in humans has increased, our healthcare system is currently facing inflation, 
and this requires the government to find a permanent solution to give interested 
medical care keeping in mind economical healthcare costs which force us to shift 
our focus from disease-oriented medicine to prevention and personalisation of the 
medicine, and thus, we can track health status and get an alarming ring to diagnose 
any abnormality in individual at its earliest stage. As the need for high precision 
biosensors are growing day by day which leads to the exploration of various new 
nanomaterials for the biosensors and graphene is one of the finest explorations in this 
search till date. This 2D single-layered carbon graphene has been a boon in the field 
of implantable devices and wearable sensors in recent years. The advantages of using 
graphene-based sensors are: It has some excellent physicochemical properties. These 
properties include high electron mobility, tenable optical properties, good mobility 
of electrons, high surface volume ratio and good mechanical strength [115]. All these
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Table 1 Comparative study of the therapeutic efficacy of various porous carbon materials 

Porous carbon 
material 

Therapeutic efficacy Drawbacks References 

Mesoporous carbon 
materials 

Drug delivery in DOX, 
Celecoxib; Adsorbents 

Minimal toxicity found so 
there are no drawbacks 

[108] 

Carbon dots Cancer cell inhibiting 
ability enhanced 

Shows general 
cytotoxicity in higher dose 
administration 

[48] 

Carbon nanotubes When tested on mice model 
with breast cancer showed 
dependency on time and 
dose administered 

Causes toxicity in cells, 
neurons, heart and lungs 
based on dosage and 
targeted area 

[109] 

Activated carbon Used as absorbents, 
administered depending 
upon the intoxicants 
involved 

No such drawbacks [110] 

Fullerene Photosensitisers that can be 
used in photodynamic 
therapies defend the liver 
from free radical damage 

No toxicity [111] 

Graphene quantum 
dots 

Magnetic hyperthermia, 
photothermal therapy, 
enhances anti-tumour 
efficiency 

Structure and size cannot 
be controlled 

[112] 

Graphene Gene and delivery of small 
drug molecules, anticancer 
therapy, protein 
biofunctionalisation 

Exogenous cytotoxicity [113]

properties make graphene an ideal nanomaterial for effective biosensor development. 
In this recent time, many numbers of graphene-based sensors are reported for human 
health monitoring system, and this includes implantable devices and real-time body 
vital measurements such as heart rate, rate of respiration, oxygen saturation, BP, blood 
sugar level, temperature, and EMG, ECG and EEG signal [116]. Graphene and its 
conjugated derivative are abundantly used in this biosensor, not only graphene oxide 
but also GQD and reduced graphene oxide (rGO) are used in the development [115]. 
These materials are used for their high sensitivity, i.e., detects minute quantities of 
target analyte, high accuracy; i.e., there is no cross-reactivity while detecting the 
analyte target, fast performance, low cost, prolonged storage shelf life and increased 
robustness and is very user-friendly. Besides all that, graphene and its derivative-
based sensors are preferred due to its ultrathin thickness, mechanical flexibility and 
its comfortless in intimate body contact [117]. 

In the earliest era, silicon sensors were widely used as the options for biosensors 
were very limited, but its rigid pattern made it disadvantageous as the mechanical 
flexibility is highly demanded for both non-invasive and invasive biosensors [118]. A 
choice of ideal biosensors depends on various factors like it should be biocompatible,
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comfortable, stable and convenient [119]. But not only that, as we are heading towards 
the miniaturisation of gadgets, thus miniaturisation and its suitable bio-fuelling need 
to be considered to provide an affordable healthcare management to the population 
[119]. In today’s world information is a new tool to solve critical problems and as the 
biosensor-based gadgets demand to be upgraded with time so integration of artificial 
intelligence, machine learning, IoT, cloud computing, and big data management 
technologies are challenges for the developers [120]. In this context, privacy, security 
and safety of the date of an individual need to be considered very seriously. 

Recent trends reveal that the porous carbon-based biosensors can be used effec-
tively to detect various kinds of biomolecules of a physiological system such as 
dopamine, epinephrine, serotonin, and norepinephrine. The studies show that using 
the fast-scan cyclic voltammetry method, CONH2/COOH-carbon nanotube/CFME-
based sensor is effectively used for detection of dopamine and serotonin; simi-
larly using Amperometry method, reduced GO/GCE-based sensors showed effective 
detection of serotonin and using Differential pulse voltammetry method multi-walled 
CNTs-Ni(OH)2 NPs/GCE-based sensors are able to detect epinephrine [121]. 

The growing interest in graphene-based biosensors demanded a robust toxicolog-
ical and biocompatibility study of graphene and its derivatives. Though cumulative 
study indicates the negligible toxicity of the graphene-based nanomaterials in both 
invasively and non-invasively but due to the scarcity of sufficient data and lack of 
studies it will be very premature to conclude any concrete statement in this regard 
[122, 123]. 

3.1 Non-Invasive Sensors 

Non-invasive sensors for the purpose of monitoring the individual’s health are 
referred to those sensor-based equipment which do not invade or break into the skin 
or body’s internal structure for the detection of its designated signals or biomarkers 
[116]. Usually, these sensors refer to artificial skin, patches, wearables or they can 
be a programmed thin layer of biosensing material. Usually, non-invasive sensors 
are used for real-time health monitoring to avoid alarming conditions. 

In today’s world, the most popular type of non-invasive graphene-based sensors is 
wearable sensors which can detect various biosignals and generate data for real-time 
monitoring [124]. Biosignals can be divided into two subtypes: one is biophysical 
signals and other is biochemical signals [125]. Biophysical signals are the signals 
which are related to physical attributes of health such as electrophysiological signals, 
kinematic signals and temperature signals [116]. All the live cells and the tissues of 
the body generate electrophysiological signals irrespective of its state. These bio-
electrical currents are crucial for the development of real-time monitoring sensors as 
they can dictate the conditions of the cells or tissues. In cell electrophysiology, these 
biological currents are often referred to as resting membrane potential and action 
potential, and these potentials are maintained by the electrolyte ions of intracellular
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fluids and extracellular fluids. In diseased conditions or in the altered body’s phys-
iological conditions, the normal distribution of the electrolyte ions of intracellular 
fluids and extracellular fluids are being changed which subsequently results in the 
significant alterations of the potential differences. Conventionally, these potentials 
are gathered using electrodes and processed the data for the clinical interpretation 
and these basic principles are followed in ECG, EEG and EMG techniques [126]. But 
due to their various limitations like high cost, large size, unreliable signal processing 
and discomfort with the skin make it disadvantageous for the real-time monitoring 
which paves the pathway for the search of suitable material which can overcome 
this limitation with the properties of mechanical flexibility and miniaturisation to 
produce real-time health monitoring data. As graphene-based bio-electrical elec-
trodes provide all these ideal qualities, and thus, it is widely used for the real-time 
sensors [127]. As per Yun et al. [128] chemically reduced graphene oxides and porous 
dimethyl siloxane are ideal bioelectrodes due to its high performance. This graphene-
based bioelectrodes are extremely stretchable and have a maximum stress of 150%, 
excellent compression life up to 5000 cycles, and a low sheet strength of approxi-
mately 1.5 kΩ/square, which demonstrate the potential for low-cost manufacturing 
and wide implementation for the future wearable devices [128]. 

The development of suitable sensors for the detection of the body movements 
and monitoring physical actions is crucial for any real-time non-invasive monitoring 
devices, as it can be able to detect individuals’ movement pattern and detecting 
various motion-based biosignals which can help to diagnose disorders of body move-
ment, disorder in respiration and breathing pattern and tracking muscle performance. 
The detection and processing of motion-based bio signals require sensitive pressure-
based tactile sensors. They follow a wide diversity of mechanisms to detect signals, 
i.e., by changing electrical resistivity followed by charging and accumulating the 
charge in the nanomaterial and causing triboelectric effect on the skin-based wear-
ables. Graphene-based materials gained popularity in the development of tactile and 
strain sensors due to its mechanical flexibility and piezoresistive properties. In some 
recent studies, it is also seen that the sensing properties of graphene-based sensors 
are increased greatly when used in composition with other materials. Due to the 
diverse way of conduction mechanism, these materials are well-suited for the pulse, 
breath, heartbeat and other vitals monitoring along with the detection and processing 
of walking pattern, body’s locomotion and expression of the face. The tactile sensors 
are working on the pressure sensing in which mechanical pressures are converted 
into its complementary electrical signal which can be processed as a monitoring data 
for the readout. 

Kou et al. [129] suggested a lightweight capacitive pressure sensor made up of a 
graphene/polydimethylsiloxane dielectric plate, a polydimethylsiloxane substrate, a 
wrinkled Au (gold) electrode, and an antenna with a sensitivity of 0.24 kPa in the 
low-pressure regime (0–10 kPa) and 0.0078 kPa in the high-pressure regime (10– 
100 kPa). This sensor also had a low sensitivity limit of 5 Pa and a reaction time of 
67 ms, making it suitable for detecting subtle pressures such as facial gestures, hand 
bending and body movements.
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The strain sensors are working on the principle of kinematic detection, and it is 
used to measure the deformation in the object [130]. Graphene-based strain sensors 
are used due to its excellent piezoresistive strain sensitivity. Recent studies show that 
modification of the graphene-based strain sensor structure using graphene textile 
glycerol–potassium chloride increased the strain sensation of the sensor effectively 
[131]. Despite having different composition and development, all carbon graphene-
based nanoarchitecture strain sensors are popularly accepted. 

The combination of 3D graphene foam and carbon nanotubes had a gauge factor of 
35, high stretchability (up to 85%) and outstanding sound-to-noise ratio and could be 
easily placed on human skin for real-time motion control and even acoustic vibration 
detection [132]. 

The need of continuous monitoring of the body temperature is also a part of health 
vital monitoring. So, the need for a highly sensitive temperature sensor in real-time 
sensor devices was well-demanded. Graphene and its derivatives are preferred for this 
purpose due to their promising thermal conduction capacity [133]. Their remarkable 
electronic properties and mechanical flexibility make graphene-based temperature 
sensors widely popular in recent times. 

Though several studies reported various graphene and its composite as favourable 
sensors for thermal conductance, cellular graphene and polydimethylsiloxane 
composite are mostly popular [134]. 

Biophysical signal-based non-invasive biosensors serve greatly in the real-time 
healthcare monitoring, but it has lots of disadvantages which limits its use in the 
critical vital monitoring for a clinical diagnosis, that’s why assessing biochem-
ical signals of the human health monitoring and evaluation is very much essen-
tial [135]. Conventionally, a body’s biochemical parameters are measured and anal-
ysed using various sophisticated high-cost analytical instruments with the super-
vision of trained professionals [136]. This kind of analysis requires sampling of 
body biofluids. Though this conventional way provides accurate results, due to their 
high cost, time-consuming procedure and other complications it is not feasible to 
generate continuous real-time monitoring data. Biochemical sensors can overcome 
the conventional limitations by providing an economical solution for continuous real-
time non-invasive monitoring data in miniaturised wearable devices which can sense 
biochemical signals and provide the results spontaneously for the health monitoring. 
The mechanism of biochemical sensors consists of signal and sensory part where 
sensors are specific recognition molecule, i.e., receptors, antibodies, antigens, genetic 
material, enzymes, etc., and biosignal refers to the physicochemical biomarkers of 
non-invasive biofluids, i.e., sweat, tears, saliva, etc. [137]. 

The unique characteristic of graphene in biochemical sensing makes it a material 
of choice in the development of biochemical sensor-based monitoring devices [138]. 
In comparison with other biochemical signal sensors, graphene shows high accu-
racy, specificity, sensitivity and quicker response time, and thus, it is used widely in 
the detection of various biochemical markers like electrolytes, metabolites, gaseous 
organic compounds and other biomarkers [139].
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Biofluids are enriched with critical biochemical information which can forecast 
the clinical abnormalities by assessing the value of detected parameters in compar-
ison with its normal range. Though the biochemical sensors can sense a wide range 
of analyte like electrolytes, blood glucose, hormones, enzymes, organic and inor-
ganic compounds, currently most of the studies are focused into the real-time moni-
toring of lactate and glucose as these two contributes greatly to various clinical 
conditions [140]. As per the research performed by Kim et al. [141] and Park et al. 
[142], the presence of glucose in the tears can be a source of potential biochemical 
signalling to assess the glucose level in the body and they also proposed graphene 
and glucose oxidase-based sensing material in the contact lens platform to sense 
the sugar molecule. The body glucose level can also be sensed using laser-induced 
graphene and chitosan composite with or without platinum and gold nanoparticles 
from sweat, and these biosensors are gaining rocket popularity day by day [143]. 
Cortisol is a stress-induced hormone, the production of which shoots during fight-
or-flight situations [144]. It is also a biomarker that acts as an alarming system of 
the body the level of which alters during stress, hypertension, and stroke [116]. The 
real-time monitoring of cortisol can be beneficial for the early diagnosis of disease. 
As per the studies by Tuteja et al. [145], cortisol antibody-loaded electro-reduced 
graphene oxide patch can act as excellent biosensors to sense cortisol in sweat and/or 
saliva. 

Serum lactate level in the blood is a crucial parameter to understand the severity 
of tissue hypoperfusion, hypoxia and injury-mediated tissue damage [146]. This 
serum lactate level can be assessed continuously using biochemical signal-based 
real-time monitoring biosensors. Wang et al. [147] proposed Cu3(btc)2 nanocubes 
loaded amino functionalised graphene paper patch can be used effectively to sense 
the lactate in sweat. A new novel non-invasive biosensing technique has been 
evolved in last few years which helps in diagnosis of diseases in human breath 
analysis, studies show that human exhaled air contains unique biomarkers, the anal-
ysis of which can help in the diagnosis of various clinical important diseases like 
diabetes, thyroidism and lungs cancer. Some scientists suggested that in normal 
breath methanols, isoprenes and acetones are present, and during various disorders, 
the concentration of these compounds in exhaled air is altered significantly [148, 
149]. Another scientist suggested a top-notch graphene-based gas sensor which is 
composed of metal nanoparticles and chemically reduced graphene oxide for the 
detection of various metal ions and gas based on their electrical and ionic conductivity 
[150] (Fig. 5).

3.2 Invasive Sensors 

As we have seen previously the non-invasive wearable sensors prove successful in 
human health tracking, they lack the capacity to collect data on the total complex-
ities of organ processes and to consistently track real-time biological. And that’s 
where the work of invasive sensors comes into existence. Invasive sensors are those
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Fig. 5 Summary of graphene-based sensor for human health monitoring. Reprinted with permission 
from Huang et al. [116]. Copyright 2019 frontiers in Chemistry

which are inserted inside our body as implants, they are placed near the tissues or 
organs and have more sensing capacity and restorative effect than the non-invasive 
sensors. As a result, it is creating a lot of interest in disease monitoring, diagnosis of 
diseases, care and disease management, highlighting its biomedical potential [151]. 
Even though there has been a lot of work done on these sensors for monitoring human 
health, graphene-based sensors have only been introduced very recently on a limited 
basis. These are neuronal monitoring and stimulation, monitoring of heart rate, blood 
sugar monitoring and EMG signals detection, which have mainly focused on neural 
implants till date. These implants are feasible in vivo in various systems in our body 
such as cardiovascular system, nervous system and GI system. 

Neural implants are those which can record the electrical activity of the nervous 
system or can stimulate them. They may demonstrate the benefits for therapeutic ther-
apies and medications for a variety of illnesses, including Parkinsonism, seizures, 
pigmentary retinopathy, distress and psychological disorders [152, 153]. Recently, 
a super advanced brain–machine interface has been demonstrated which contains 
neural implants that directly link the brain to the machines [154]. These graphene-
based implants not only need to be inactive to the immune system but also must be 
highly conductive to record signals efficiently. With all these extraordinary features, 
these graphene-based sensors are perfect for addressing the latest challenges of 
neural designs than the other conductive polymers present now. To prove this, many
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studies [123, 155–157] were performed in vivo with these graphene-based biosen-
sors showing they have best in class biocompatibility and optimum optical trans-
parency for studying the neurons and finally graphene transparent electrodes for 
brain simulation and neural tissue optical monitoring were developed [157–159]. 

The heart pumps oxygenated blood across the body through a network of blood 
vessels in the cardiovascular system. Damage to the heart or any difference of blood 
flow may lead to various cardiac diseases or may lead to death. As a result, tracking the 
biomarkers present in blood and heart is important. In the case of diabetic patients, 
monitoring blood sugar level is very important. As we have discussed previously 
about non-invasive biofluid-based wearable glucose sensors, who are able to provide 
continuous real-time data but still have low precision than direct invasive glucose 
monitoring. To overcome this, Lee et al. [160] developed an implantable device 
which can measure continuously the blood sugar level and can work as a microdial-
ysis instrument. All these glucose biosensors have some limitations such as short 
lifespan, biological fouling and low biocompatibility. Cardiovascular disease is a 
serious public health problem, with a death rate that is greater than most cancers. Heart 
movements can be monitored in vitro and in vivo for the early detection and treatment 
of cardiac problems. Until now, cardiac implanted instruments, such as pacemakers 
and defibrillators, have been capable of long-term monitoring and pacing, pulse 
detection and treatment, and resynchronisation, all of which are challenging to do 
outside of the body with the same precision [161]. 

The digestive system is responsible for supplying nutrients to the whole body, 
complications with it can result in a variety of diseases. The primary component in 
the digestive system is the GI tract, and gastrointestinal disorders have become highly 
prevalent in the increasing community [162]. Invasive endoscopes were widely used 
for imaging and cure for treatment and diagnostics of many GI disorders. They lack 
spatial resolution though when it comes to identifying and treating small tumours 
or other anomalies. So, incorporating the miniature device on the surface of the 
camera which has very limited space needs to be transparent so that it does not block 
the visuals. Lee et al. [163] demonstrated a multifunctional hybrid graphene-based 
transparent endoscopy system that can detect colon cancer cells, pH and tempera-
ture. This hybrid multifunction device has radio frequency extirpation and localised 
chemotherapy or phototherapy with inbuilt high-resolution camera, thereby making 
this device remarkably compatible for in vivo colon cancer treatment with accu-
racy and rapid targeted treatment. Graphene-based sensors doped with acetate have 
remarkable sensing capacity to detect E. coli to a concentration of 106 cfu/ml [164]. 

The musculoskeletal system is solely responsible for the human body’s movement 
capabilities. In the diagnosis of neuromuscular diseases such as Duchenne muscular 
dystrophy and spinal muscular atrophy, accurate and consistent tracking of EMG 
signals with instant feedback evaluation is crucial. Kim et al. [163, 165] proposed a 
hybrid shell sheet aurum doped graphene-based transparent implantable device that 
can record muscle signals and can simultaneously stimulate nerves and muscles. 
These hybrid sheets are very good conductors of electrical signals as they are doped 
with Au and are made extremely transparent for stimulating the tissue optically
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without triggering the immune system. This multifunctional interface showed great 
promise in the field of soft bioelectronics. 

However, while using graphene oxide as invasive sensors in in vivo animal or 
human body, biorecognition by the physiological system of recipient must be consid-
ered as experimental studies by Wang et al. [166] showed dose-dependent toxicity 
on human fibroblast cell when dose of more 50 µg/mL was administered. Biocom-
patibility must be kept in mind whenever graphene oxides are used in vivo in the 
human or animal body. 

4 Porous Carbon Microparticle as a Vehicle in Drug 
Delivery 

From the last few decades as the overview of the treatment changed drastically so 
the need for new kinds of drug delivery has emerged greatly. Due to the various limi-
tations of conventional drug delivery and dosage forms, their place is now replaced 
with a novel drug delivery system. The biocompatible nature of porous carbon forced 
the researchers to explore its role in DDS and various studies found the said role 
in most of the porous carbon materials. In DDS, a vehicle is an important part 
of the formulation which safeguards and carries the drug cargo and delivers the 
same into its destination. Among all the porous carbon material, CNT, carbon dot, 
graphene and AC show the most promising vehicle for targeted and controlled drug 
delivery. CNTs are preferred as drug delivery as it can be easily linked to different 
biomolecules like drug molecules, proteins and peptides, hormones and enzymes 
and nucleic acids [167]. But due to its solubility problem, they are used in drug 
delivery demands functionalisation of CNT molecules. The functional groups of the 
drug molecules are attached with the carbon nanotube surface either in covalent 
or non-covalent fashion which improves their bioavailability and target selectivity 
[168]. In the first-generation single-walled CNT-based drug delivery, toxicity can 
be a major obstacle for its role in drug delivery systems which can be countered 
using synthetic and natural polymer-based single-walled CNT [169]. Recent studies 
have shown that functional CNTs are able to invade cells through endocytosis and 
exocytosis, leading to the accumulation and deposition of CNTs in the target cell 
lysosome and endosome [170]. Endocytosis is identified as the most efficient route 
for cell entry of nanomaterials and relies on the molecular arrangement of the diam-
eter and external surface. Specifically small walled CNTs enter inside the cells using 
clathrin coating as vehicle but multi-walled CNTs make their way inside the cell by 
endocytosis process or by direct penetration [171]. Single-walled CNTs need func-
tionalisation by polyethylene glycol or DNA for intracellular drug delivery and their 
accumulation has been found in cell organelles like lysosomal bodies, mitochondria 
and endosomes [172]. Mu et al. [173] demonstrated the intranuclear drug delivery 
using CNTs, in that experiment he showed that multi-walled CNTs have the potential 
to travel through many cell organelles and make their entry inside the nucleus. To
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increase the drug targeting and specificity of CNTs surface modifications is crucial, 
various studies show that linkage of carbohydrate binding ligands and some specific 
antibodies on the surface of CNTs enhance the targeting capacity of nanoparticles 
[174, 175]. As CNTs can induce immune responses in the body they are used as 
adjuvants in vaccine formulation. From some recent studies, it has been found that 
anticancer drugs like cisplatin, paclitaxel, DOX and cytotoxic platinum compounds 
can be successfully delivered intracellularly using CNTs [176, 177]. 

For the last few years, various studies demonstrated drug delivery capability of 
carbon dots synthesised from various biological molecules. Ding et al. [178] demon-
strated a real-time imaging-based drug delivery using DNA synthesised carbon dots 
as vehicles where Rhodamine 6G was used for the real-time cellular imaging due to 
its fluorescent property and DOX was used as a key drug. Carbon dots are compar-
atively high biocompatible among other carbon-based nanomaterials, due to this 
property it is now widely experimented for various drug delivery studies. Studies 
show that carbon dots are pH sensitive thus the drug-loaded carbon dots remain 
intact at a neutral pH and the drug release triggers in lower pH [178]. Carbon dots 
are hollow in nature, they possess a hollow 2 nm pore size structure within which 
presents itself as an ideal drug-loading nanocarrier molecule [179]. Das et al. [180] 
demonstrated the drug loading capability of heteroatom-based carbon dots, where 
they used Capecitabine anticancer drug for the targeted tumour cell drug delivery. 

Due to the π–π stacking and high surface area, graphene is also considered as a 
promising nanocarrier molecule in DDS [181]. Their use and drug-releasing mech-
anism were discussed earlier. Graphene and its derivatives can successfully load– 
target–deliver drugs with poor solubility and various cytotoxic drugs like DOX and 
5-fluorouracil effectively [182]. Currently, robust studies are going on to standardise 
graphene-based drug delivery and to profile its toxicity. 

The role of activated carbon in drug delivery is still under research but as per 
various studies, it is found that ACs can be used to increase the bioavailability of 
crystalline drugs. Due to the amorphous nature of activated carbon, it can effectively 
carry the drug molecule and increase its solubility and dissolution [66]. 

Doping is an important strategy used in drug delivery to increase the efficiency of 
a given carbon nanomaterial. This makes the drug delivery process more efficient. 
Various studies on metals or heteroatoms doped/co-doped with these porous carbon 
materials are going on to prove the increase in targeted drug delivery as shown in 
Table 2.

The structure and morphology of various porous carbon nanomaterials influ-
ence the performances. The spatial configuration and various hybridisation of the 
carbon compounds build their ability to bind with almost all materials, thereby 
having application in drug delivery. The carbon nanomaterials have an excellent 
π –π supramolecular stacking which makes it suitable for cancer therapy. 

As we know that the drug release pattern is directly linked with the AUC in a 
biodistribution curve. The study performed by Liu et al. [57], where DOX-induced 
CNT was introduced to the tail vein of the mice. The results were inferred, and it 
showed in the biodistribution curve that the release was increased showing a direct
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Table 2 Effect of doping in carbon nanomaterial in drug delivery system 

Carbon nanomaterial Doped/co-doped metal or 
heteroatom 

Benefits/Application References 

Carbon quantum dots Duplex metal (Ag and Cu) They have a 
photoluminescence property 
to be used as a vehicle for 
targeted drug delivery 
These duplex metal 
co-doping helps in increasing 
the size intelligible, thereby 
increasing drug loading 
capacity 

[183] 

Carbon dots Nitrogen and sulphur This doping is done by a 
method known as Herein for 
targeting cancer cells. These 
fabricated carbon dots have 
better photostability, water 
solubility and 
biocompatibility 

[180] 

Carbon nanodots Nitrogen These nitrogen-doped carbon 
nanodots are coupled to an 
anticancer drug thereby 
inducing apoptosis in cancer 
cells with better efficacy as 
compared to the normal drug 

[184] 

Graphene oxide Zinc Oxide (ZnO) Studies showed that graphene 
oxide doped ZnO has 89% 
higher efficiency of drug 
loading as compared to 
normal ZnO. This enhanced 
efficiency of drug loading 
paved a new trend in modern 
drug delivery systems 

[185] 

Activated carbon Aluminium (Al) The efficiency of adsorption 
energy increased effectively 
by doping Al with AC for 
adsorption of 5-fluorouracil 
molecules. The study 
suggests Al dopant improves 
the adsorption capacity of 
Activated carbon 

[186]

proportional relationship with therapeutic efficacy. This study clearly indicated that 
CNT has a reasonable amount of bioavailability. 

Similarly, many other studies were also performed to find the biotherapeutic effi-
cacy parameter on various porous carbon nanomaterials such as GO [187], carbon 
quantum dots [188] and activated carbon nanoparticles [189]. These porous carbon 
materials have some extent of bioavailability, but they cannot be indicated by a single 
formula as they have their different pros and cons.
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The role of porous carbon-based nanomaterial in drug delivery is still under 
research, but from the various studies it is quite clear that these nanomaterials possess 
immense potential to be used as vehicles which can increase the bioavailability and 
effectiveness of drugs greatly. 

5 Application of Spherical Nanocarbon Materials 

Spherical nanocarbon materials have gotten a lot of recognition because of their 
unusual shape and properties, which make them promising biomedical materials. 
Spherical nanocarbon material consists of fullerene, carbon NHs, nanodiamonds 
and porous nanosphere carbon (Fig. 6d). In this part, we are going to discuss their 
therapeutic applications and their toxicological effect with special emphasis on the 
anticancer effects of these versatile nanoparticles. 

There has been considerable progress in this field in recent years, especially 
in the use of engineered nanomaterials in biomedical applications such as biola-
belling, nanomedicine and as DDS [193–195]. These novel materials having special 
structures and properties have been used as diagnostic probes, nanocarriers, and

Fig. 6 Structures of spherical nanocarbon materials—a Fullerene, b carbon NHs, c nanodiamonds, 
d porous nanosphere carbon. (a) Reprinted with permission from Rajesh et al. [190]. Copyright 
2019 Woodhead Publishing. (b) Reprinted with permission from Fresco-Cala et al. [191]. Copyright 
2018 MDPI. (c) and  (d) Reprinted by permission from Wang et al. [192]. Copyright 2014 NPG 
Asia Mater 
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as biomarkers [196–198]. Nanomaterials, due to their small scale, can be used to 
probe, modify and monitor biological processes at the cellular and subcellular levels. 
For example, CNTs and carbon NHs are demonstrated to have high loading dose 
capacity and extended BCT, making them a potential candidate for controlled release 
DDS [199, 200]. Nanodiamonds emerged recently as a novel DDS, bioimaging and 
biosensing, thereby demonstrating improved therapeutic efficiency, photostability 
and increased biocompatibility [201–203]. 

Fullerene C60 was suggested to inhibit the action of HIV protease shortly after its 
discovery because it has the right size to fit into the enzyme’s hydrophobic cavity 
[73, 204]. Since then, fullerene has been reported to have various other biomedical 
applications such as MRI [205] and photodynamic therapy among them the most 
widely studied are these working as ‘radical sponges’ [206]. 

Fullerene and its derivatives are a scavenger of ROS making it a promising novel 
antioxidant and having various biomedical applications. Studies showed that when 
compared to untreated mice, fullerene-treated mice have a higher survival rate and 
improved memory and learning abilities [207]. There were various other studies 
which showed these scavenging properties of fullerene and its derivative compounds 
such as polyhydrates and polycarboxylate having cellular protectivity, can cross 
blood–brain barrier and neural cell damage prevention [208, 209]. The major cause 
of many acute and chronic disorders is oxidative stress, and study has shown that 
cancer cells have increased oxidative stress with higher ROS, thereby stimulating 
proliferation of cells, genetic instability and cellular mutation. As a result, fullerene, 
which has a scavenging property inhibiting ROS, may be highly useful as biomedicine 
for treatment of cancer as well as maintaining health and quality of life [192]. 

Many previous studies have shown that metallofullerenes were often used as 
radiopharmaceuticals or as contrasting agents [210–214]. It has been found out that 
these agents have both higher efficiency and lower toxicity. So, this becomes a novel 
mechanism to use these nanoparticles against the treatment of cancer. Basically, 
Gd@C82(OH)22 metallofullerene particles have antioxidant properties with enhanced 
immunity, can reduce resistance caused by drugs and can efficiently suppress the 
spread of cancer cells [192, 214]. The most practical limitation is its yield is very 
low, and it is also very expensive and time-consuming making it difficult to be used 
practically as a novel nanomedicine. 

Single-walled NHs are a potential nanomedicine having a horn-shaped tubular 
structure with diameter of 3 and 5 nm with length of 40–50 nm as shown in Fig. 6b 
[192]. They are ideal platforms for loading of drugs because of their large surface 
area and availability of interstitial spaces. It was shown that a very tiny water-soluble 
drug molecule, cisplatin, was able to deposit inside this single-walled NH molecule, 
and it was further shown that it released remarkably, thereby reducing cancer cells 
viability making it an efficient nanomedicine for controlled DDS [215]. According 
to a new toxicological review of single-walled NHs on mice tissues, it did not induce 
any apparent toxicity response after 26 weeks of administration [216]. This makes 
them a potential candidate for using it in a DDS due to their high drug loading 
capacity and minimal toxicity in treatment of cancer [199, 217].
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Activated nanodiamond surfaces have been used to inject a variety of therapeutic 
agents into cells. Among them, cisplatin is attached and then released with pH making 
it a controlled release DDS for cancer treatment [218]. Several water-insoluble anti-
cancer drugs were also mounted on the surface of nanodiamonds, allowing the conju-
gates to be used in drug delivery and illustrating improved therapeutic efficacy against 
cancer treatment [219]. 

Carbon nanoparticles which include PC nanospheres have high fluorescent prop-
erties which are used in various biomedical applications such as biological imaging, 
as biosensors and biolabelling [220, 221]. In the latest report, it showed that these 
hollow PC nanospheres are used for insulin delivery through the mouth using the 
biodegradable polymer coating that delays its release in a low pH as in stomach but 
acts as sustained release in a neutral pH [222]. In another research study, DOX is 
administered to the HeLa cells using a PC nanosphere of 90 nm size by pH-responsive 
method [223]. The drug remains inside the nanosphere at the body’s normal pH and 
is released at a lower pH environment of tumours. 

Spherical nanocarbon materials have the most promising characteristics to be 
used as novel nanomedicine and antitumour agents in the coming decades but still 
toxicological assessment and more rigidity study need to be done thoroughly before 
they are reinforced as nanotherapeutics. 

6 Effect on Bacteria and Fungi by Porous Carbon Cuboid 
Nanoparticles 

Throughout the world, deaths due to infectious diseases are increasing day by day. 
As per a World Health Organization study, infectious diseases share 24% in global 
deaths [224]. Though we can fight better and reduce the mortality rate in the post-
penicillin era, still there is a large scarcity of antimicrobial agents to keep the human 
race as the winner in the battle against pathogenic microbes. As the advancement of 
nanotechnology, expanding its wings in the field of biotechnology and drug discovery, 
researchers are now studying extensively about the integration of nanomaterials in 
drug discovery to feel the void in the search for effective antimicrobial formulation. 

In this lane of research, carbon-based nanoparticles have been attracting the scien-
tific community for the last few years, nanostructures like CNT, carbon cuboid 
nanoparticles, graphene, fullerenes, nanodiamonds, carbon nanoscroll are mainly 
getting the attention [225]. Various studies found that these carbon-based nanoma-
terials can be used as effective antibacterial, antifungal and algaecidal when they 
integrate with various MNP. MNP like, Ag, Cu, Au, Ti and Zn are well known for 
their antimicrobial properties but using them in crude forms for the treatment of 
infectious disease is not feasible as they show concerned toxicity and aggregation 
[226–228]. These problems can be solved using the immobilisation of the compound 
on various carbon-based nanomaterials [229].
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The antibacterial efficacy of carbon nanomaterials depends on two things, func-
tionalisation of nanomaterials with multiple oxygen and encapsulation of MNPs 
on the surface [227]. As per a comparative study performed by Karageorgou et al. 
[228] the lethal efficacy of oxygen functionalised porous carbon cuboid nanopar-
ticles is much higher against E. coli. cell culture in comparison with non-oxidised 
porous carbon cuboid nanoparticles. The reason behind the high lethal effect of 
oxidised form is the oxygen functional groups may produce superoxide and ROS 
which subsequently causes oxidative stress in the target microorganism cell [230]. 
Same antimicrobial efficacy is also seen in graphene-based nanocomposites and 
CNTs [231]. Among them multi-walled CNTs and carbon nanoscrolls encapsulated 
with silver nanoparticles show higher efficacy as antibacterial and antifungal [231]. 
Silver encapsulated carbon nanoscrolls are highly effective against Candida albicans 
and Candida tropical in comparison with silver encapsulated graphene oxide [231]. 
In the antifungal treatment of grey mould disease on rose petals and strawberry, CuO 
encapsulated fullerene shows the strongest activity in comparison with multi-walled 
CNT and rGO [232]. 

Various studies show that among the MNP, silver is the most preferred one in 
terms of antibacterial and antifungal as they possess comparatively higher efficacy 
in in vitro studies [233]. The germicidal mechanism of silver is yet not clear, but 
studies found that they enter the cell plasma membrane via endocytosis pathway and 
affect the fundamental metabolic process of the bacteria where the burst release of 
silver ion takes place [234]. Controlling the burst release and achieving a continuous 
flux of silver ions is the main challenge in the process of integration of carbon-based 
nanoparticles. There are some ideal properties which need to be checked before 
selecting any carbon-based nanoparticles for the integration such as high porosity, 
great stability, lightweight, surface heterogeneity, biocompatibility and minimum 
toxicity [235]. 

Carbon-based nanoparticles doped with metallic ions show antifungal activities 
against various organisms which can be effectively used in the formulation of fungi-
cide for the eradication of fungal infestation of plants like Fusarium oxysporum 
and Fusarium poae [236, 237]. Their antibacterial efficacy is found against gram-
positive Corynebacterium glutamicum, Staphylococcus aureus and gram-negative E. 
coli [228, 238]. 

Though the efficacy of metal ion doped carbon-based nanoparticles is well-
established, still it is not well-accepted for the in vivo use due to insufficient toxicity 
data. Thus, it can be inferred that if the toxicological profiling can be established 
well, it will contribute highly to the fight against infectious diseases. 

7 Carbon Nanotube Wire for Precision Medical Devices 

Precision medical devices are a cutting-edge integrative research field that aims to 
achieve Richard Feynman’s vision of developing tiny robots with exquisite finesse 
and the ability to go beyond the human body and said that one of his friends gave
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an interesting idea where the surgeons are swallowed [239]. These devices will be 
the game changer soon where nanotechnology and electronics come together hand in 
hand to merge nanorobots to humans to boost intelligence and health [240]. Precision 
medicine entails the development of implantable miniature medical devices built on 
smart materials, compact sensors and actuators, as well as microscale, nanoscale 
and nanostructured materials. By functioning inside the body, implantable miniature 
medical devices can have novel medical benefits. These machines may be able to 
detect and track their surroundings in real time, as well as perform basic tasks like 
administering drugs, fluid sampling, in vivo treatment of HIV and killing cancer cells 
[240, 241]. Here we will be focusing only on biomedical devices made using CNT 
and nanowires. 

A few obstacles must be overcome before CNT can be used in medical devices. 
The first is concerned with protection, and it entails the use of CNT of extremely high 
purity in order to limit the release of harmful ions during activity in any biological 
environment. This is a significant problem since medical-grade CNT samples are 
only prepared on a small scale, and a trade-off had to be made between quality 
and quantity [216, 242]. Recently, CNT yarns are being studied to promote the 
development of wounded nerves, for precision delivery of drugs, and to give power 
in vivo to implantable devices and biosensors. Owing to the restricted supply of 
CNT yarn and the fear that using CNT in the body could be dangerous, as we have 
been told previously, they can be toxic, research attempts are limited. 

The production of implantable electronic devices and sensors has accelerated due 
to recent developments in electronics and biomedicine. Annually, over 1 million 
people around the world receive a pacemaker or an ICD [243]. The wires used 
here previously were made of titanium and cobalt alloy. These wires also known 
as leads have specific tips and are made up of a metal wire structure covered by a 
polymer sheath. Dislodgment, vein thrombosis, migration and acute perforation are 
all common complications associated with these leads, some of which are caused by 
the leads’ bulkiness and stiffness (in comparison with tissues). Lead displacement and 
dislodgment are among the complications caused by the leads, occurring in 5–10% 
of patients, and the published rate of lead perforation ranges from 0.4 to 5.2% [244]. 
There is also a popular wireless ICD, Zigbee but it has electronic parts and a battery 
outside the sensors for optimised data transmission [245, 246]. The consumption 
of power is very high, and difficulties are faced while controlling it below 100 µW 
[247]. All the devices later can be modified by using CNT fibres as it is ultrathin, 
biocompatible, electroconductive and inert so it won’t corrode unlike other metals. 
The main reason for incorporating CNT fibres is to overcome these problems and to 
give it more power and optimise data transmission. There may be one limitation of 
CNT wire is that it is less conductive than copper, so copper-coated large diameter 
CNT wire can be incorporated for the use [248]. So, from all these we can say that 
CNT tubes can be used as cardiac implantable but still the best design for building 
this CNT wire for its use in vivo needs to be investigated and researched upon. 

Both coated and uncoated CNT fibres were tested in vivo on a mouse and found 
out that there was no evidence of toxicity after two weeks [241]. Another test was 
also performed with copper wire. With all the three tests, the mice survived all which
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proved that wire through the skin is biocompatible for a short duration, but the copper 
wire caused some irritation in the skin. Later, the copper wire was replaced with CNT 
nanowires. 

Based on the recent studies by Jayasinghe et al. showed that the previous discov-
ered CNT yarns were perfect enough for biosensors, i.e., having strength of 1-2GPa, 
resistivity of 10–4–10–5 Ω cm, density of 1 gm/cc and electric density of 105 Acm−2 

[249, 250]. The CNT wires having tiny diameter, inert, non-toxic, high flexibility, 
high conductivity, will become a breakthrough technology for nanomachines and 
biomedical devices in recent times. 

8 Recent Advancements 

After all the discussion, we can now say that porous carbon is indeed a versatile 
material that can be used in many significant industries and nowadays in biomedical 
sciences innovations. Carbon materials and its derivatives are undergoing research 
by a wide range of researchers, and various changes in the structure are opening a 
new field of porous carbon material in biomedical applications. 

Mesoporous carbons are still in a developing phase with some of its application as 
controlled release of drugs. These materials when compared to graphene and other 
carbon derivatives are rarely used in this field, although studies show that they will 
give good results due to their unique structure. Because of its potential combinatorial 
qualities, such as carbonaceous content, peculiar structure and excellent biocompat-
ibility, mesoporous carbon is considered the next generation inorganic material for 
various applications, including biomedical research [251]. 

Carbon dots have undergone enormous development and consist of a fascinating 
class of nanomaterials that have various biomedical advances due to their eco-friendly 
and cheap methods and have high image sensing capacity. There have recently been 
many modifications done to the CDs [252] but these developments have tremendously 
improved the in vivo cell targeting capacity and shown outstanding bioimaging 
capacity that includes elevated efficiency and sensitivity. CDs showing strong fluo-
rescent emissions have strong penetration ability; i.e., it can penetrate the blood–brain 
barrier. This opens a multifunctional designed platform for targeted cancer cell diag-
nosis and treatment and applications in various neuronal disorders. But CDs show 
some toxicity effects which need to be urgently diagnosed clinically. Meanwhile, 
CDs nanoprobes for cancer treatment using bioimaging need more exploration to 
improve the efficacy of treatment. 

Similarly, CNTs which are classified into two groups, single-walled CNTs 
and multi-walled CNTs, show excellent biocompatibility, mechanical strength and 
conductivity (thermal and electrical). They are used as DDS to target drugs to specific 
cells for treating cancer and for targeted DNA delivery, immunotherapy and regen-
erative medicine. Despite all this progress, the toxicity study of CNTs, biological 
degradation and biosafety is a major concern and still remains a controversial topic 
for human clinical practice.
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Fullerenes are wonders of the latest discoveries from the last century, and various 
new aspects have been recognised to be used in the biomedical field. Fullerenes are 
shown to be the lowest toxicity among all the other derivatives of carbon and that 
stimulates the researchers to work on this fascinating nanomaterial for finding its 
biomedical uses. They are used as anticancer DDS, drugs for HIV, photodynamic 
therapy and sometimes used in cosmetics as an anti-aging effect. The major limita-
tion faced by fullerene was its production cost which makes it very expensive, but 
scientists are working on it to reduce the production cost [111]. 

Graphene along with its derivative has successfully paved its path since the start 
of its journey in 2004, to be used in biosensing, as specific targeted gene delivery, as 
targeted drug carrier and bioimaging and detection [253]. However, these all are still 
on the verge of development and face many challenges, mainly the chronic toxicity 
effect. 

Carbon nanofiber has long been debated for having an antibacterial effect as a 
better choice of material for wound dressing. They are also studied to be used in 
bone tissue regeneration, as biosensors and as modified electrospun nanofibers [254] 
for targeted DDS and specific drug delivery. 

Carbon NHs and nanodiamonds mostly work together as they represent the 
same parental structure. These two derivatives have gained tremendous attention 
recently for their biocompatible properties and optical properties. These features 
make them eligible for a platform of use as regenerative medicine with a broad range 
of applications such as DDS for insoluble drugs. 

So, from all the recent approaches of using porous carbon materials and their 
derivatives in biomedical application, much more further studies are required for 
thorough investigation of the toxic impact of all these porous carbons and its deriva-
tives on humans which will include teratogenic and genotoxic effects. Soon we can 
then use these compounds with better safety, biocompatibility and efficacy and they 
would change the way of using nanotechnology towards medical science. 

9 Conclusion 

Porous carbon nanomaterial is indeed a versatile material which can improve various 
multidisciplinary approaches of the use of nanotechnology in medical sciences. These 
materials and their derivatives have some super properties that can change the way 
we look at the future of medical sciences. They can be used for treating many fatal 
diseases like cancer with ease as they can be used to target drugs to the specific part 
inside the cell and can be made to target DNA and that can be recovered. Extensive 
studies are going on to explore the intracellular drug delivery of various cytotoxic 
and hydrophobic drugs using porous carbon as encapsulating material. Studies also 
found that porous carbon and its derivatives can play an important role in solving 
the scarcity of antibiotics. In this chapter, we discussed how the germicidal activity 
of various metallic nanoparticles can meet the demand for new antibiotics with the 
help of porous carbon-based nanomaterials.
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One of the major limitations that is creating problems is about the biocompatibility 
of the materials and the toxic effect on the bodies. However, recent studies show 
some of its derivatives have low toxicity inside the body if used for a short range of 
time. These derivatives also showed great biocompatibility when they were doped 
with some non-reactive metals. So, it can be summarised that porous carbon and 
its derivative is a potential candidate for future DDS which have capability to solve 
various conventional drug delivery formulation problems. If the future studies can 
standardise and establish the porous carbon and its derivatives in terms of its role in 
DDS, it will become a game changer in the field of biomedical sciences. 

In modern medicine, bioimaging-based diagnosis is the key for the determination 
of not only some diseases but also it helps in the researcher to understand the real-time 
distribution and accumulation of drugs and other molecules. For the last few years, 
GQD, CD and graphene oxide are changing the field of bioimaging drastically, they 
are now used to understand transfection-based gene delivery, cytotoxic anticancer 
drug delivery, intracellular imaging of xenografted tumour mouse models, etc. 

As today’s world relies greatly on the real-time healthcare monitoring which 
demands accurate, sensitive and biocompatible sensors to use invasively and non-
invasively in our body. Graphene and its derivatives provide all the ideal character-
istics of real-time monitoring sensors, so they are now used extensively to shape the 
real-time health monitoring technology. 

Nanobots are also made using porous carbon derivatives that can get inside the 
body to treat many diseases like HIV and cancer. They have futuristic designs that 
can change the way of microsurgeries in future of medical sciences. 

So, from the above discussion, it can be concluded that porous carbon and its 
derivatives are no doubt an emerging trend which will supersede the conventional 
technologies of biomedical sciences in near future. Though it has some limitations 
and issues which need to be addressed extensively, it still seems like the scientific 
community is confident enough about the potentiality of porous carbon-based nano-
materials in the medical field and as the studies are still going on and in the coming 
decades we won’t be surprised if these nanomaterials up a great role in treating the 
untreatable diseases of human race. 
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Chapter 18 
Role of Graphene-Based Materials 
in Gas Sensing Applications: From 
Synthesis to Device Fabrication 

R. Deji, Rahul, B. C. Choudhary, and Ramesh K. Sharma 

1 Introduction 

One of the most serious threats to human health is ambient air pollution. The World 
Health Organization (WHO) reported in 2012 that atmospheric pollution is respon-
sible for approximately 3 million deaths worldwide. To combat all of these issues, 
the quality of indoor/outdoor air is regulated via a variety of laws and air quality stan-
dards. The “Clean Air Act” federal law governs the quality of air in the United States, 
intending to meet National Ambient Air Quality Standards (NAAQS) set by the EPA 
(the United States Environmental Protection Agency). The European Commission 
established a series of directives on a European scale to administer the assessment 
of ambient air quality. Acquiescence with these rules and regulations necessitates 
incessant monitoring of indoor/outdoor air quality, which can only be accomplished 
with the use of gas sensing systems. Because of their toxicity and associated risk, 
detection of various chemical contaminants present in the atmosphere caused by

R. Deji 
Department of Physics, Panjab University, Chandigarh 160014, India 

Rahul 
Centre for Nanoscience and Nanotechnology, Panjab University, Block-II, Sector-25, 
Chandigarh 160014, India 

B. C. Choudhary 
National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh 160019, 
India 
e-mail: bcc1962@nitttrchd.ac.in 

R. K. Sharma (B) 
CIL/SAIF/UCIM, Panjab University, Chandigarh 160014, India 
e-mail: ramesh@pu.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. N. Grace et al. (eds.), Handbook of Porous Carbon Materials, 
Materials Horizons: From Nature to Nanomaterials, 
https://doi.org/10.1007/978-981-19-7188-4_18 

493

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7188-4_18&domain=pdf
mailto:bcc1962@nitttrchd.ac.in
mailto:ramesh@pu.ac.in
https://doi.org/10.1007/978-981-19-7188-4_18


494 R. Deji et al.

industrial wastes is required in a variety of human activities, particularly environ-
mental monitoring [1]. Organic compounds, both volatile and semi-volatile; inor-
ganic gases such as sulfur dioxide, nitric oxides, carbon monoxide, carbon dioxide, 
and others; and heavy metals are examples of contaminants. As a result, there is an 
urgent requirement to fabricate high-performance, low-cost gas sensors for testing 
air quality. The majority of commercial gas sensing technologies on the market are 
based on variations in the electrical, optical, calorimetric, gas chromatographic, and 
acoustic properties of materials such as metal oxide semiconductors and polymers [2]. 
Several indicators were used to calculate the performance of the mechanism of gas 
sensing such as selectivity, sensitivity, response time, reversibility, energy consump-
tion, adsorptive capacity, and cost of fabrication. Gas sensors were primarily used to 
monitor air quality and detect toxic gases in the air [3, 4]. In 1923, platinum-based gas 
sensors become the first commercially available sensor. Naoyoshi Taguchi invented 
the first metal oxide gas sensor, which went on to become the most widely used gas 
sensor. A propane gas explosion at Lake Yamanaka prompted his investigation, and 
the first Taguchi gas sensor (TGS) was created using tin oxide (SnO2) film. Various 
other materials based on inorganic semiconductor, conducting polymers, solid elec-
trolyte, metal oxide, etc., have been studied [5–8] in order to fabricate sensors with 
high sensitivity, long reliability, small sizes, low power consumption, etc. 

Metal-oxide-based gas sensors are being investigated primarily due to their broad 
semiconductor tunability and type of morphology, which have properties such as high 
thermal stability, short response time, high sensitivity, and low operating tempera-
ture, all of which are advantageous for high-quality gas sensors [3, 9]. A variety of 
semiconductor metal oxide nanomaterials like tungsten oxide (WO3), titanium oxide 
(TiO2), zinc oxide (ZnO), and iron oxide (Fe2O3) having hierarchical structures have 
been lucratively synthesized via solution-based chemical routes, that are useful for 
production at large scale also. Metal oxide nanoparticles, carbon nanotubes (CNTs), 
and graphene-based nanomaterials are among them that are widely used due to their 
excellent responsive characteristics, mature preparation methods, and low-cost and 
scalable production. However, semiconducting metal oxide sensors based on silicon 
have attained their limits [10]. 

Sensing materials play critical roles in the detection and differentiation of contam-
inants at the molecular level in environmental processes [11]. Carbon-based nano-
materials have become the most widely studied materials for designing gas sensors 
in the last ten years due to their distinctive chemical and physical properties such 
as size, conductivity composition, magnetism, light-absorbing and emitting prop-
erties, and mechanical strength [12, 13]. The operational principle of the first gas 
sensor based on graphene exploits variations in its electrical conductivity owing to 
the adsorption of gas molecules to be sensed on the surface that acts as donors (e.g., 
CO, NH3, ethanol) or acceptors (e.g., H2O, NO2, iodine). 

Further, the properties of graphene allow it to increase its sensitivity beyond its 
limit. Graphene is a widely known two-dimensional (2D) material, where the entire 
volume is perceived by the surface adsorbates which maximizes the sensing response. 
It is conducting in nature, with high metallic conductivity and low Johnson noise. It
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is also more advantageous owing to its easy fabrication and low power consumption 
in comparison to some traditional inorganic semiconducting metal oxides. 

Because of its two-dimensional crystalline lattice, graphene has its low elec-
trical noise, allowing it to screen more charge fluctuation in comparison to its one-
dimensional counterpart. Thus, a very small variation in the number of electrons 
can bring noticeable changes in graphene conductance. Due to minute variation in 
resistance graphene sheet, it is possible to detect the gas adsorption even at molecular 
level. 

Further, these sheets can be utilized to design four-point devices which are 
further used to eliminate contact resistances [14–18]. These RGO sheets can be 
further processed into ultrathin layers by using various wet techniques involving 
inkjet printing, layer-by-layer deposition, casting, and Langmuir–Blodgett tech-
nique; this simplifies the process of fabricating gas sensors [19, 20]. It is further 
possible to tune the structure of electronic level by mixing it with some sensing 
agent or functional groups to enhance the adsorption of gas [21]. Graphene-based 
materials are currently employed for sensing various toxic and volatile gases [22]. 
In current chapter, graphene-based sensors have been thoroughly discussed from 
various perspectives, including sensing mechanism, gas sensor fabrication, sensing 
performance, and future prospects (Fig. 1). 

Fig. 1 Graphene-based materials for gas sensing application
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2 Gas Sensing Mechanism 

A sensor is a device that operates on the principle of detecting or sensing some 
features of its surroundings. Gas adsorption capacity is calculated by adsorption 
energy. Adsorption energy (∆Eads) defines the chemical reactivity of foreign species 
on the surface. It is used to label the stability of structure of molecule’s adsorption 
on target material. It is given by equation as under: 

∆Eads = Etarget+gas − Etarget − Egas 

where Etarget+gas represents total energy of gas molecule adsorbed on target, Etarget is 
total energy of target, and Egas denotes total energy of gas molecules. For stronger 
molecule adsorption on target, value of ∆Eads should be more negative. Adsorption 
phenomenon is of two types: physisorption (physical adsorption) and chemisorption 
(chemical adsorption). Physical adsorption is a type of adsorption which involves the 
van der Waals forces of attraction between gas molecule and given substrate. Chem-
ical adsorption is a type of adsorption which involves chemical or covalent bonding 
between gas molecule and substrate. Less negative or positive value of adsorption 
energy which corresponds to physisorption indicates less charge transfer from gas 
molecule to particular substrate. More negative value of adsorption energy which 
corresponds to chemisorption indicates more charge transfer from gas molecule 
to given substrate. Small value of adsorption energy and large binding distance 
between gas molecule and substrate indicate weak interaction as binding energy 
also decreases. This corresponds to a weak physisorption phenomenon [23, 24]. Gas 
sensors primarily identify events and record an output by identifying some phys-
ical quantities which are usually electrical or optical signals. These are classified 
into field-effect transistor (FET) based on silicon, surface acoustic wave (SAW) 
sensor, surface work function (SWF) sensor, capacitance sensor (CS), optical fiber 
sensor (OFS), and chemiresistor [25] based on the type of reaction with the external 
atmosphere. Among the above-mentioned types, chemiresistor is widely utilized as 
a gas/vapor sensor, as well as one of the most well-known products for a variety 
of practical applications, due to properties such as long-history research, simple 
structure, ease of implementation, operation at room temperature, and low cost [26, 
27]. Currently, gas sensing plays a vital role in our society because of its ability 
to quickly identify toxic gases and organic vapors, which is important for human 
and environmental security, emission control, the industrial sector, and medical 
diagnosis. Graphene materials are used to detect gases using a principle based 
on changes in conductance caused by sensing species adsorption. Gaseous adsor-
bates having various structures and compositions behave differently with graphene. 
When they are exposed to different target gases, their electronic, optical, and elec-
trical properties change. When the p- or n-type sensing layer of the sensor is 
unveiled to reducing/oxidizing gases such as CO, hydrogen, and ethanol, the device’s 
conductivity increases.
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Table 1 Few sensor parameters and their definition 

Symbols Definition Formula 

Ra Device resistance (in air) S (%) = [(Rgas − Rair)/Rair] × 100% 

Rg Device resistance (in gas to be sensed) 

S Ratio (change in resistance (Ra − Rg)/initial 
(Ra)) (sensor response) 

LOD It is the least concentration of a target gas 
which can be sensed by a sensor 

T res Response time is time needed for the sensor 
signal to change from its pre-gas injection 
value to 90% of its final value during gas 
injection 

T rec Recovery time is the time taken by the 
sensor signal to recover 90% to its value 
prior to the injection of gas 

D Ratio of response of target gas (Sc) to  
response of disturbed gas (Si) 

D = Si/Sc 

When these sorts of sensing materials are exposed to different gases, two methods 
can modify their conductivity. At temperatures above 100 °C, O2 and O oxygen ions 
adsorb on the sensitive layer, and the target gas begins to react with these oxygen 
ions. For example, when CO interacts with the oxygen ions, it leads to the formation 
of CO2 upon oxidation, and one electron is released which increases (decreases) 
the conductivity of n-type (p-type) materials. For an acceptor gas, such as NO2, the  
charge is accepted by the gas molecules, resulting in a drop in n-type conductivity and 
an increase in p-type conductivity. The adsorption of oxygen ions is unaffected by 
any other mechanism, and the target gas molecules are also adsorbed on the sensitive 
layer’s surface, resulting in the direction-dependent charge transfer reaction. 

There are a few critical parameters to consider when evaluating the performance of 
a gas or vapor sensor, such as component, measure resistance, selectivity, recovery 
and response time, the limit of detection, and sensitivity. Table 1 summarizes the 
definitions and formulas for these parameters. 

3 Sensing Performance Parameters 

Sensor performance can be demonstrated using various parameters, including sensor 
response, detection limit, response and recovery times, operating temperature, 
selectivity to a specific gas, and stability.
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3.1 Sensor Response 

When the target gas is released in the test chamber, the relevant changes in the 
signal obtained by sensor define the sensor response. As previously described for 
the resistive devices, relative change in electrical resistance is defined as its sensor 
response. It is directly related to the sensors’ detection limit. 

3.2 Limit of Detection 

The least concentration of a target gas which can be sensed by a sensor is called the 
limit of detection. According to the United States Environmental Protection Agency 
(EPA), exposition limit for NO2 is 100 ppb per hour. Thus, the detection limit of 
NO2 sensor should be lower than 100 ppb per hour. 

3.3 Operating Temperature 

Another important factor in the commercialization and use of gas sensors is the 
operating temperature. The majority of the time, sensors based on metal oxides 
operate in high-temperature regions (above 100 °C). At this temperature, oxygen 
molecules begin to adsorb (100 °C) or chemisorbed (above 200 °C) and react with 
the molecules of target gas, resulting in high sensor responses. Further, the high 
temperatures enable quick response and recovery times. However, it enhances the 
power consumption and, in some particular cases, it can cause a significant change 
in the sensing behavior as well. As a result, in the recent years, gas sensing research 
has been entirely devoted toward the development of sensors operational at room 
temperature, in order to reduce power consumption and eliminating the need for the 
sensors to be heated. 

3.4 Response Time and Recovery Time 

Response time is time needed for the sensor signal to change from its pre-gas injection 
value to 90% of its final value during gas injection. Recovery time is the time taken 
by the sensor signal to recover 90% to its value prior to the injection of gas [28]. 
This can vary from one second to tens of minutes. In everyday life, it is regarded as 
a barrier to the use of sensors with fast response and recovery times.
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3.5 Selectivity and Stability 

Selectivity is defined as a sensor’s ability to detect a specific gas in the existence of 
other gases. Under normal circumstances, the sensors are exposed to a mixture of 
different gases; thus, the selectivity of a sensor can be calculated by revealing it to 
various target gases and then recording their individual responses. Another critical 
parameter of gas sensors is response stability. The device’s response should remain 
same over the months or years. These types of issues are not always addressed in 
scientific papers; however, this is one of the critical factors that should be tested for 
the engineering of these devices. The response’s stability can also be influenced by 
changes in the chemical composition of the sensing layer, such as oxidation when 
exposed to air. All of these factors must be considered before deciding on the appro-
priate gas sensor for a particular situation or environment. After analyzing the above 
criteria, it is simple to differentiate between a “good” or a “bad” sensor. In the case 
of graphene, doped atoms and defects play a vital role in gas sensing applications 
because dopants and defects enhance molecule adsorption. Many experimental and 
theoretical investigations report that in the case of graphene the occurrence of struc-
tural defects such as pentagonal–octagon pairs, Stone–Wales defects, and vacancies 
increases its chemical reactivity [29]. Because graphene nanoflakes have defect sites, 
they are highly reactive, and their edges adsorb gas molecules and experience chem-
ical functionalization at a quick rate. Reduced graphene oxide (RGO) is also a promi-
nent material used for the development of gas sensors. It is much simpler to process 
GO in comparison to graphene, and it also provides different options for tailoring the 
quantity of functional groups simply by managing the degree of reduction. Reduced 
graphene oxide has a functionalized surface having active oxygen defects, allowing 
for solution chemistry decoration with metal nanoparticles. 

4 Classes of Gas Sensors 

4.1 Chemiresistive Gas Sensors 

Gas sensors come in a variety of shapes and sizes, and they can serve a variety of 
purposes. The most common configurations of gas sensors are the chemiresistor. 
Majority of these sensors rely on measuring the variation in the resistance of sensor 
upon exposing to the test gas. These sensors are easy to fabricate and have a direct 
measurement capability. Graphene-based sensors, in general, adhere to this device 
configuration. The resistance is directly measured in this type of sensor by taking the 
current/voltage characteristics among the two contacts from the top of the sensing 
film. The sensor response (S%) is calculated as follows: 

S(%) = [( Rgas − Rair 
) 
/Rair 

] × 100%
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here, Rgas (Rair) are the electrical resistances of the sensor in the tested (air) gas. There 
are various sensing parameters of chemiresistive gas sensors such as sensitivity, selec-
tivity, response time, and reversibility that rely upon the temperature and structure of 
the sensing element and molecular adsorption. The presence of low binding energy 
attraction with van der Waals forces causes physical adsorption. Due to the lack of 
chemical bonds, the electronic and chemical structure is preserved, resulting in easy 
and comprehensive desorption of the molecules of gas and, as a result, full and rapid 
sensor recovery. Physisorption, on the other hand, reduces the sensitivity and selec-
tivity of the sensors. Chemical bonds formed between sensing and gaseous molecular 
elements are used to characterize chemical adsorption, allowing for the fabrication 
of highly selective gas sensors. Furthermore, molecular desorption for chemisorbed 
molecules is quite low, resulting in slow recovery. 

4.2 Field-Effect Transistor-Based Gas Sensors 

Physical adsorption is caused due to the presence of low binding energy attraction 
with van der Waals forces. The electronic and chemical structure of gas molecules is 
preserved due to the lack of chemical bonds, resulting in easy and complete desorption 
of gas molecules and, as a result, full and rapid sensor recovery. Physisorption, on 
the other hand, reduces the sensitivity and selectivity of the sensors. Chemical bonds 
formed between sensing and gaseous molecular elements are used to characterize 
chemical adsorption. Field-effect transistors (FETs) have also been used to detect 
gases [30]. In that case, the dependence of FET drain current on gate bias can be 
varied by exposing it to the molecules of target gas. The performance of sensor 
is primarily determined by the device’s on/off current ratio. A higher on/off ratio 
usually contributes to greater sensitivity [31, 32]. The charge density in graphene 
sheets can be incessantly tuned by applying an electrical field due to their eccentric 
atomically thick 2D structure and bipolar charge carriers. These are the properties 
that will make graphene suitable candidate for fabricating FETs [33–36]. Gautam and 
Jayatissa used CVD (chemical vapor deposition) grown graphene to create a back-
gated field-effect transistor for studying ammonia sensing at ppm levels [34]. The 
adsorption and desorption behavior of ammonia (NH3) on graphene in the presence 
of dry air was studied using a progressive shift of the Dirac peak at smaller/larger 
gate voltages based on different time exposures to different concentrations of NH3. 
The device response dependence on concentration indicates that the graphene-based 
sensors exhibit two type of adsorption modes near room temperature. However, at 
high temperature (100 °C), it exhibits only one mode.
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4.3 Surface Acoustic Wave Sensors 

Surface acoustic wave (SAW) detection is another technology being researched for 
gas detection. SAW sensors are mass-sensitive devices that can detect changes in a 
sensing layer’s mass down to the nanogram level. Exposure to gas molecules causes 
changes in the mass and/or conductance of their sensing layers, resulting in frequency 
change. This sensor responds to changes in mass as well as surface conductivity. In 
the SAW sensor construction, a delay line is coated with a thin film of sensing material 
that can absorb the testing gas molecules along its propagation path. 

The time delay is caused by gas/vapor molecule absorption and thus the frequency 
of operation. The amplitude of an acoustic wave decreases exponentially as it passes 
through substrates as it travels along the surface of an elastic material. To generate 
and detect the transmission of this sonic wave, interdigital transducers are used 
(IDTs). Between the delay line SAW device and the IDTs, two IDTs are placed at 
a predetermined distance apart. The delay line connects the two IDTs and is mostly 
coated with chemically sensitive recognition material. The acoustic wave is damped 
in SAW resonators by reflection gratings spaced at intervals. As a result, the acoustic 
wave reflected from these gratings was detected by the IDT. Kaner reported a SAW-
based sensor for the detection of CO and H2. The sensing response of 1.7 or 7.0 Hz 
in the presence of 1% H2 or 1000 ppm CO was measured. Despite the fact that 
both the gases are reducing, different directions of frequency shifts were observed. 
Because CO has a molecular weight 14 times greater than H2. Thus, the change in 
mass was the most important parameter in the CO response, whereas the variation 
in the conductance of graphene was the most important factor in the H2 response. 

4.4 Optical Surface Plasmon Resonance (SPR)-Based Gas 
Sensor 

The detection process of this sensor is also based on the idea that the SPR signal 
varies as the refractive indices of the analytes change. An optical SPR gas sensor 
fabricated by authors [37] with use of graphene oxide flakes on top of a monolayer 
of gold nanoparticles chemically bonded to a functionalized fused silica substrate. 
When flakes and nanoparticles interact with different gases, optical changes occur, 
including a shift in the SPR band in the presence of both (reducing and oxidizing) 
gases. Rifat and their group demonstrate a SPR sensor-based PCF design based on 
a graphene-silver coating [38]. The graphene covering is supposed to boost sensing 
performance by delivering a high surface-to-volume ratio, greater analyte absorption, 
and superior plasmonic characteristics, all while limiting silver oxidation [39].
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4.5 Electrochemical-Based Gas Sensor 

Analyte gas can pass through a membrane and be reduced or oxidized at an electrode 
in an electrochemical gas sensor [40]. It can detect a wide range of gases and quan-
tify them in small quantities. The electrochemical gas sensor can have two or three 
electrodes. The three-electrode setup constitutes of a working, counter, and a refer-
ence electrode. The electrode’s sensing material reacts with analytes that are also ion 
and electron conductors. The variation in the electronic charge density and carrier 
mobility is observed for semiconducting sensors [40]. The vast majority of elec-
trochemical gas sensors are amperometric, with the rate of the electrolytic process 
being determined by the change in current [40]. For the time being, an electro-
chemical strategy is the most practical method for studying changes in graphene’s 
chemical environment. The adsorption of different gas molecules in graphene-based 
gas sensors alters the interface charge layer. The electrical signal associated with the 
type of gas analyte used varies. When analytes containing electron donors are used, 
current is increased. Ion-polar analytes disrupt the charge transport and limit current 
flow in graphene. When analytes are detected, electrical properties such as resistance 
and capacitance can be measured in addition to current. 

5 Gas Sensors Based on Pristine Graphene 

Geim and colleagues used mechanical exfoliation to produce high-quality single-
layer graphene in 2004 [41]. They fabricated the near to ideal crystalline structure by 
separating the graphene sheets into single layer. Novoselov and others [42] in 2007 
exploited mechanically exfoliated graphene for gas detection. The limit of detection 
(LOD) of this graphene-based gas sensor was ppb, which is equivalent to the most 
sensitive gas sensors ever recorded. Graphene is a substance that, in theory, should 
have the same properties as carbon nanotubes (CNTs). Sensitivity of gas sensors is 
also related to pore volume and surface area of graphene-based materials. Higher 
surface-to-volume ratio leads to greater adsorption of gas species on them and thus 
increases the sensing capability with increased value of adsorption energy. More 
negative value of adsorption energy corresponds to short recovery time. A short 
recovery time enhances the adsorption of gas species on graphene’s surface. 

Graphene has piqued the interest of gas sensor specialists over the last decade. 
Graphene functionalization or reduced graphene oxide can improve graphene’s 
chemical affinity and selectivity over other carbon materials [43, 44]. Another advan-
tage of graphene-based sensors over conventional solid-state gas sensors is their 
operating temperature. 

Several other groups [45–48] investigated the sensing capabilities of pristine 
graphene, both experimentally and conceptually, and their sensors detected a variety 
of gases including NO2, NH3, CO2, and others. Temperature, target gas flow velocity,
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and graphene sheet length-to-width ratio are all parameters that can affect the effi-
ciency of these sensors. During the process of adsorption, the gas molecules can 
produce traps and scattering centers, causing a change in the amount of charge 
carriers or charge mobility. Although high-quality graphene can be produced via 
mechanical exfoliation, its productivity is still limited. 

This disadvantage can be mitigated in part by fabricating graphene sheets of high 
quality using chemical vapor deposition (CVD) technique. The CVD method creates 
graphene sheets onto a metal substrate including Cu, Ni, and Co at moderate temper-
atures (1000 °C) by decomposing hydrocarbon vapors [25, 49, 50]. These sheets can 
then be shifted on to various substrates and used to create gas sensing devices [35, 
51–53]. It has been studied that the resistance of a monolayer graphene sheets fabri-
cated using CVD changes dramatically upon adsorption of the O2 molecule [25]. 
These molecules act as a p-type dopant. These sensors can detect O2 with a LOD of 
1.25%. 

For the synthesis of pure graphene (also known as defect-free graphene or intrinsic 
graphene IG), CVD-based methods and graphite exfoliation methods are commonly 
used [54]. Various researchers have used IG to detect toxic gas molecules including 
NO, N2O, CO2,NH3,NO2,O2,H2O, and SO2 [46, 48]. The authors [42] created a few 
layered graphene layers using a mechanical exfoliation technique and demonstrated 
the first micrometer-sized sensor designed for individual single molecule NO2 detec-
tion in a high vacuum environment. Graphene is an extraordinary material with low 
noise, and with its use, we can achieve sensitivity at the single molecule detection 
level [42]. For the synthesis of pure graphene (also known as defect-free graphene 
or intrinsic graphene IG), CVD-based methods and graphite exfoliation methods 
are commonly used [55]. After adsorption of gas molecule, electrical conductivity 
of graphene changes which leads to change in resistivity. After removing the gas 
flow and heating it to 150 °C in vacuum, the sensor recovered in 100–200 s. The 
sensitivity of the graphene sensor reported for the first time was of several orders of 
magnitude higher than that of existing sensors [56]. Graphene is a potential material 
for gas sensing at the individual molecule detection level. Later, other groups [57] 
experimentally studied that chemical doping of graphene increases the sensitivity of 
IG to various gases. They studied the sensor characteristics of IG using conventional 
nano-lithographic techniques and calculated the sensing response of IG by removing 
contamination from the graphene surface. Even in the existence of strong analytes, IG 
sensitivity was found to be very low. This suggests that adding dopants to graphene 
can increase its chemical reactivity toward various gas molecules [57]. The authors 
[46] demonstrated a graphene-based sensor for NO2 detection where graphene layers 
were synthesized using mechanical exfoliation method with thicknesses ranging from 
3.5 to 5 nm on a silicon substrate. They used electron-beam lithography to connect 
two metal contacts across this substrate. This type of graphene-based gas sensor has 
a very fast sensor response, as well as high reproducibility, sensitivity, selectivity, 
and reversibility (ratio of change in resistance upon gas exposure to resistance in air) 
of 0.09 after exposure to 100 ppm NO2 gas at RT. 

The authors [48] used cured polydimethylsiloxane (PDMS) stamps to demonstrate 
highly ordered pyrolytic graphite flakes (HO PGR) on SiO2 substrate for CO2 sensing.
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This method allows for the deposition at desired locations on the substrate while 
leaving less residue on the substrate than the scotch-tape method. In comparison to 
other gas molecules, physical adsorption of CO2 on the surface of graphene results 
in easy desorption of CO2 due to a very short recovery time of about 10 s. As a 
result, CO2 gas molecule can adsorb and desorb at a much faster rate than other gas 
molecules [55]. 

The authors [58] recently demonstrated the gas sensing behavior of few-layer 
graphene synthesized by electrochemical exfoliation method (named FLG having 3– 
10 graphene layers) toward adsorption of liquefied petroleum gas (LPG) and CO2 gas 
at room temperature (RT). The sensitivity of an electrochemically based graphene 
sensor was 3.83 (0.92) for CO2 (LPG) having a response time of 11 s (5 s) and 
temperature of operation as 423 K (398 K), with recovery times of 14 s (8 s) [58]. 
The sensing behavior of a chemiresistive-based few-layer graphene sensor at low 
temperatures is promising for their use for detection of LPG [56]. 

The main disadvantage of mechanical graphene deposition is its poor selectivity, 
which means that we cannot distinguish between different gases. Fattah and Khatami 
demonstrated a graphene/n-Si Schottky junction-based H2S gas sensor [59]. The 
authors used mechanical deposition to create natural graphite (high orientation) 
on top of an n-type Si substrate. Variations in the diode’s forward bias current– 
voltage characteristics evaluate the sensor’s sensing performance at various temper-
atures. When compared to previously reported H2S sensors, the H2S sensor based on 
Schottky diode had high reproducibility, easy desorption/adsorption, and good selec-
tivity. Thus, H2S sensor employed graphene-based Schottky diodes have potential 
applications in gas detection fields [55]. 

6 Graphene Oxide-Based Gas Sensors 

It is a promising material in sensing applications because of its distinct electrical 
properties that involve higher electrical conductivity, lower electronic noise, and high 
specific surface area, which is two times greater than single-walled CNT and approx-
imately 300 times greater than graphite. However, one of its limitations in being used 
as a sensitive layer in devices is its zero-energy gap. As a result, there is a need to deco-
rate and functionalize graphene. The simplest method is to use graphene oxide (GO). 
GO is produced by oxidizing graphite; it is a thermally unstable compound that can 
be easily fabricated in large quantity and quality from graphite oxide. Graphite oxide 
possesses the structure similar to graphite, but it is highly enriched with functional 
groups such as epoxies, hydroxyls, carboxyls, and lactones attached to its surface. 
Among the most common approaches for graphene synthesis, chemical oxidation of 
graphite and reduction of graphite oxide are involved. The various functional groups 
present on the surface of GO increase the inter-atomic separation between layers 
of graphene oxide while also making these layered structures more hydrophilic or 
water loving [60]. Prezioso and colleagues [61] investigated various types of GO to 
improve efficiency of sensing as shown in Fig. 2. The authors used a drop-casting
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technique to create single-layer GO flakes on Pt electrodes. The average size was 
found to be 27 m, with a maximum size of 500 m. It yields a typical p-type response 
in reducing and oxidizing environment. The sensing response to NO2 is investigated 
at various temperatures and gas concentrations, and a p-type response for a given 
sensor is observed. The detection limit (DL) for NO2 is 20 ppb, which is the lowest 
value given in the literature when compared to other gas sensors based on graphene. 
It has also been proposed that having large number of active surface sites results in 
higher sensitivity of GO when compared to CNTs and RGO-based sensors [55]. As 
a result, GO is one of the materials attributed to gas sensing that is complementary to 
graphene. Wang and others [62] used alternating current dielectrophoresis (ac-DEP) 
to utilize GO nanomaterial-based sensor for hydrogen gas detection. 

By changing various parameters including processing time, frequency, and peak-
to-peak voltage (V pp), the Hummers method is used to synthesize GO and GO nanos-
tructures assembled into gold electrodes using the DEP process. The required DEP 
parameters for hydrogen (H2) gas sensing applications by utilizing GO nanostruc-
tures were found to be V pp = 10 V, frequency = 500 kHz, and t = 30 s. For hydrogen 
gas concentration of 100 ppm at RT, the device made of GO nanostructures was 
found to be more effective, with a sensor response, response time, and recovery time 
of 5%, 90 s, and 60 s, respectively [62]. 

In order to detect low concentrations of H2 and N2 in atmospheric air, a sensing 
device made of GO with SAW has been developed [63]. Concentration-dependent 
studies of various gases at various temperatures have been conducted. GO films 
can also be found in humidity sensors. They [64] explored GO to create a capaci-
tive humidity sensor at the microscale level. It was determined that the GO-based

Fig. 2 a Schematic depicting device fabrication. Electric contacts between pre-patterned inter-
digitated Pt electrodes are realized upon drop-casting deposition of large GO flakes. b Patterned 
substrate (front-size) with heating elements and temperature sensors on the backside. c SEM micro-
graph of few GO flakes linking two adjacent Pt electrodes. d SEM micrograph of a GO flake lying 
above an electrode edge. Reprinted with permission from Stefano Prezioso et al. [61]. Copyright 
2013 American Chemical Society 
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sensor has a sensitivity that is ten times more than that of the conventional capaci-
tive humidity sensors. The hydrophilic behavior of GO is reflected in its excellent 
humidity sensing ability. At lower relative humidity (RH), hydrophilic groups on the 
surface of GO provide active sites for physisorption of water molecules via weak 
double hydrogen bonding. The restriction from double hydrogen bonding allows 
water molecules to move freely in this interaction mechanism. Thus, the physical 
adsorption of water molecules requires a lot of energy, and GO films have a lot of 
electrical resistance. Thus, GO can be thought of as a better material for humidity 
sensing applications with higher sensitivity for a variety of applications. The func-
tional groups on the surface of GO are responsible for sensing of NO2 gas. At RT, 
a comparison of response time of NO2 in terms of resistance value change has been 
conducted for GO, reduced GO, and graphene-based sensors [65]. It was discovered 
that GO has a higher response to NO2 than graphene, which is not sensitive to NO2. 
The sensing behavior of GO is reported as p type in this study, but a few reports for 
n-type sensing are also available. When flakes of GO are deposited on pre-patterned 
substrates using the dielectrophoresis method, their n-type behavior is observed [62]. 
When these dielectrophoresis-assembled GO flakes are exposed to the reducing gas 
H2, their resistance decreases, indicating their n-type conductivity. The parameters 
used in dielectrophoresis are very important to have a high response value, and it 
was predicted that dielectrophoresis devices detect hydrogen in a dry air conditions 
in a range of 100–1000 ppm. Similarly, GO with SAW structure has been employed 
to detect low concentrations of H2 and NO2 in synthetic air atmosphere [63, 66]. 

7 Gas Sensors Based on Reduced Graphene Oxide 

Imperfections in graphene sheets are critical for gas detection. It is easy to fabri-
cate large quantity of RGO at low cost and is a potential material that can be used 
for the designing sensors for real world usage. GO which is a precursor to RGO is 
commonly produced by oxidizing graphite in an acidic environment with potassium 
permanganate. GO is oxidized form of graphene with various functional groups such 
as hydroxyl and epoxy groups that are present on carbon which is sp3 hybridized. 
After functionalization, these functional groups provide reactive sites for gas adsorp-
tion. The conductivity of GO is very low due to the disruption of the conjugated 
electrical structure via the oxygen-containing groups, thus making them unsuitable 
for use in electronic devices. However, the chemical or thermal reduction is one of 
the appealing methods of restoring its conductivity. Incomplete reduction results in a 
certain number of oxygen groups remaining in the corresponding RGO. Furthermore, 
the reduction process may produce voids and structural flaws that can serve as sites 
for adsorption. Interaction of the gas molecules among the defects of high energy in 
graphene has been shown to differ significantly from that of conjugated carbon struc-
tures. Graphene’s electrical response is dominated by defect adsorption. However, 
desorption from flaws was significantly slower than desorption from the pure sp2 

hybridized structure. Due to their high resistance, GO flakes are frequently reduced to
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Fig. 3 RGO sensor behavior for a 100 ppm NO2 and b 1% NH3 detection. Reprinted with 
permission from Lu et al. [74]. Copyright 2011 American Chemical Society 

produce RGO flakes, which partially restore graphene conductivity. Several methods 
for producing graphene oxide have been revealed in recent years. The use of hydrazine 
is a common approach [44, 67]. Other researchers proposed using NaBH4 for three 
hours at 125 °C partially reduces GO flakes [68]. Thermal annealing [69] or brief  
exposure to a hydrogen plasma can also be used to reduce GO flakes. In order to 
deoxygenate the GO, surface and selectively shaped flakes of GO, laser, Xenon lamp 
bursts, UV lamp, EUV laser, and synchrotron radiation have all been used [70–72]. 
RGO can be reduced partially to sheet-like graphene by eliminating the oxygen 
groups from GO and retrieving a conjugated structure. The process reducing GO 
has a notable impact on the nature of the produced RGO and thus on how close the 
RGO will be to IG. Due to similarization of the structure of graphene and functional 
group, RGO has been used potentially in a variety of applications, such as gas sensing 
[73]. RGOs outperformed IG in gas sensing due to low cost of production, structural 
fine-tuning and attributes like conductivity and water dispersibility, and the ability 
to be further modified. As a result, the sensors based on RGO have been thoroughly 
investigated for the identification and detection of gaseous species as shown in Fig. 3 
[73, 74]. 

Lu and others [74] used low-temperature thermal treatments to partially reduce GO 
and produce high-performance gas sensors. Following a process of heating at 200 °C 
(in one step) or heating at 100 and 200 °C (multi-step), the gas sensor responded well 
to 100 ppm NO2 and 1% NH3 (for 1 h each). Non-reduced GO, on the other hand, did 
not react with NO2 and NH3. The strong performance of the partially decreased GO 
sensor is imputed to the recovery of carbon atoms, vacancies, or microscopic holes 
formed while the heat treatment which intimate active sites for the adsorption of gas 
molecules. In comparison to 200 °C annealed GO, which had a sensitivity of 1.41 
to 100 ppm NO2, 300 °C annealed GO had a higher sensitivity (1.56) and a faster 
reaction time (1.41). The low-power simple GO sensor demonstrated a 4.3% esca-
lation for 1 ppm NO2 in conductance in comparison to the mechanically exfoliated 
graphene sensors [55]. Chemical sensors are synthesized via spin coating of chem-
ically converted graphene dispersions on interdigitated planar electrode arrays by 
authors and their coworkers and result into single-layer hydrazine-reduced graphene



508 R. Deji et al.

films [75]. Within 10 min of being exposed to 52 ppb of DNT (an explosive found 
in trinitrotoluene (TNT)), the sensor demonstrated accordant response with charge 
transfer among graphene and the analyte and a 0.028% drop in resistance. They 
discovered a reduction in sensitivity to 5 ppm NO2 at higher temperatures using a 
micro-hotplate as substrate [55]. RGO films produced by reducing exfoliated GO 
with ascorbic acid and printing them onto flexible PET using inkjet techniques [76] 
warranted selective and reversible sensing of chemically threatening NO2 and Cl2 
vapors at room temperature (RT) in an air sample containing vapor concentrations 
in the range of 100 ppm to 500 ppb. 

Because of the high oxygen reduction level in chemically reduced GO having 
C/O ratio of 11.0, which may result in large number of sites for adsorption of 
gas molecules, the highest response of 100 ppm NO2 was 9.15 [73]. Although 
the response reported for thermally reduced GO sensors was 1.3 [55], the resis-
tance increased by 1.7 times for NH3 gas. Hassinen and colleagues [77] presented 
a low-cost method for producing RGO-based gas sensors on paper as a substrate. 
They discovered that both the size and thickness, as well as the use of different 
reducing agents, influenced the detecting qualities of the RGO-based sensor. Nantao 
and colleagues [78] studied RGO sensors for the detection of NH3 at room tempera-
ture by reducing GO with pyrrole as a reducing agent. The improvement in sensing 
is due to the combination of the intrinsic properties of the adsorbed reducing agent 
and graphene. The sensitivity of 2.4% to 1 ppb NH3 in these low-cost and powered 
RGO sensors explains their practicality in practical applications. 

8 Modified Graphene-Based Gas Sensors 

The sensitivity of any sensor is an important feature to consider when designing a 
highly efficient gas sensor because it influences the ability of sensor to verify the target 
gas concentration’s minimum value. Because graphene-based materials have limited 
sensitivity and stability, designing commercially viable gas sensing devices neces-
sitates modified graphene systems with higher performance. In this new era, several 
methods are being used to optimize the interactions between graphene and gas. 
When graphene materials are combined with other materials such as nanoparticles 
(NPS), molecules, polymers, and so on, their properties frequently change, resulting 
in multifunctional materials that incorporate the advantages of each component. To 
change the physiochemical properties of graphene-based sensing applications, chem-
ical modification is usually required. As a result, numerous chemical modification 
approaches, such as the insertion of metal functionalization [79, 80], polymers [81, 
82], metal oxide NPs [83, 84], dopants [85, 86], and functional molecules, have been 
reported. These modifications enabled the physiochemical properties to be manipu-
lated to meet the demands, and a variety of highly efficient gas sensor devices based 
on above strategies have been described. The following sections investigate several 
methods to improve the sensing effectiveness of graphene-based materials.
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8.1 Chemically Modified Graphene-Based Gas Sensors 

Graphene doping with various heteroatoms, for example, boron (B), nitrogen (N), 
sulfur (S), silicon (Si), and others has been studied in biosensors, supercapacitors, 
lithium-ion batteries, oxygen reduction reaction (ORR), high-performance FETs, 
water splitting, electrochemical and photocatalysts, and other applications. The 
bandgap is frequently used to tailor the electrical features of such heteroatoms. The 
presence of defects modifies the physical and chemical features, which is useful to 
improve the performance of gas sensors. In the lab, several graphene-based sensors 
with doped graphene were tested. Niu et al. fabricated ammonia gas sensor of high 
sensitivity by phosphorus-doped graphene nanosheets (P-GNS) with use of annealing 
of GO at high-temperature and tri-phenyl phosphine combination [85]. The P-GNS-
based NH3 sensors demonstrated significantly better sensor responsiveness and slow 
response and recovery time at RT because of adsorption of NH3 onto the additional 
phosphorus atoms. 

Liang and his coworkers [87] recently discovered that doping of graphene with 
sulfur atoms using hydrogen sulfide gas flow at 1000 °C was a simple and effective 
method for increasing graphene’s NO2 adsorption capacity. Compared to adsorption 
study of other gases such as NH3, CH4, SO2, and CO, sulfur-doped graphene demon-
strated extremely selective NO2 detection [86]. Gas sensing behavior for gases such 
as NO and NH3 dramatically improved by doping of graphene with boron [88]. High-
quality graphene sheets doped with boron (BG) with large surface area can detect 
low concentrations (e.g., ppb) with a clear signal (s/n = 31.5 for 1 ppb NO2 expo-
sure and s/n = 50.1 for 1 ppm NH3 exposure). BG resulted in significant increase in 
sensitivity of 27 times for NO2 and 105 times for NH3, respectively, in comparison 
to intrinsic graphene, and detection limits of 95 and 60 ppb were observed [88]. An 
effective green reducing agent such as tannic acid (TA), used in place of generally 
used hazardous reducing agents such as hydrazine or sodium borohydride, was used 
to functionalize and reduce GO, resulting in selective detection of ammonia. 

As tannic acid possesses electron-donating behavior and observed response is 
caused by n-type doping of RGO which shows p-type behavior. Strong reducing 
nature of NH3 results into no change in resistance, when exposed to ethanol and 
acetone. This type of chemiresistive sensor demonstrated a wide detection range, 
operating temperature that is room temperature, better sensing efficiency, and long 
response and recovery times (40 and 260 s, for 1310–6550 ppm of NH3). Table 2 
lists out the different types of graphene-based gas sensors’ performance parameters.

8.2 Graphene/Nanoparticle Hybrid-Based Gas Sensors 

Graphene has a strong tendency for most of the gases because it changes conductance, 
with electron-withdrawing gases increasing conductance and with electron-donating 
gases decreasing conductance. Even though graphene and RGO-based sensors have
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Table 2 List of few researches about graphene-based gas sensors for sensing of several gases 

Sensing device Sensor type Gas molecule T rec (s) (recovery time) References 

RGO + Cu2O 
nanocrystal 

Chemiresistor H2 S 120 s [83] 

PSS-doped RGO/PANI Chemiresistor H2 S <90 s [89] 

RGO/SnO2 NFs Chemiresistor H2 S <198 s [90] 

RGO SAW H2 Nearly 1 min [91] 

G/SnO2 Chemiresistor H2 S 5 s [92] 

GR + PANI Chemiresistor NH3 50 s [93] 

GR/PMMA on a flexible 
PET substrate 

Chemiresistor NO2 1800 s [94] 

RGO/FeCl3 + a-Fe2O3 Chemiresistor NO2 44 s [95] 

Single-layered GR FET NO2 3000 s [96] 

RGO/WO3 Chemiresistor NO2 1080 s [97] 

GR/SnO2 NPs FET H2 1.6 s [98] 

GR/Al2O3 QDs Chemiresistor CO2 22 s [99] 

GR/Sb2O3 QDs Chemiresistor CO2 22 s [100]

great sensitivity for sensing of wide range of toxic molecules, their performance must 
be improved further to fulfill the demands of practical gas sensors, like strong selec-
tivity and a low detection limit. Gas sensing applications have showed potential for 
graphene-RGO hybrid nanostructures. Metal [79, 80] and metal oxide NP [83, 84] 
functionalization of graphene/RGO has proven to be promising methods to enhance 
the gas sensitivity properties of the material. Metal or metal oxide NPs show a strong 
synergistic effect in gas sensing when combined with graphene/RGO. These hybrids 
could have altered electronic properties, allowing for greater selectivity and sensi-
tivity. Functionalization of graphene with RGO exhibits different sensor responses 
toward different gases. Here, in this research, selectivity of RGO-based devices is 
one of the main topics which can boost the sensing performance of functionalized 
RGO toward different gases. The potential of metal NP with graphene in sensing 
applications is highlighted by Gutes and colleagues [79]. 

For gas sensing applications, graphene coated with noble metal NPs results into 
graphene–NP nano-hybrids, which have been synthesized. Authors use simple drop-
casting approach and synthesized Pt-decorated graphene sheets and Pt-decorated 
multi-walled carbon nanotubes (MWCNTs) and calculated sensing ability of H2 gas 
sensors [101]. Comparison of sensitivity of Pt-decorated graphene and Pt-decorated 
MWCNT has been done at room temperature, and twofold boost in sensitivity was 
observed over Pt-decorated MWCNT at a detection threshold of 4% H2 in air. Li et al. 
[102] fabricated NO gas sensor made up of graphene and ac-DEP produced graphene 
is used (Fig. 4a), in which sensing channel of RGO is coated with palladium (Pd) 
and connected across CVD-grown graphene electrodes.
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Fig. 4 a Pd-RGO NO sensor and b sensor response toward different concentrations of NO. 
Reprinted with permission from Li et al. [102]. Copyright 2011 American Chemical Society 

These sensors, after current annealing, were capable of detecting 2 to 420 ppb 
with several hundred seconds response time and 1000 s recovery time for 2 ppb NO 
(Fig. 4b). Gravure printing Ag NP-decorated-sulfonated RGO (Ag–S–RGO) inks on 
a polyimide (PI) substrate with Ag pre-patterned IDEs resulted in a 74.6% of sensing 
response in 12 s with recovery in 20 s for 50 ppm NO2 gas at RT [103]. This hybrid 
sensor’s performance was improved by chemically modifying RGO with sulfonated 
groups and silver nanoparticles. Even after 100 bending cycles, this sensor demon-
strated better response. Its few unique properties such as mechanical robustness, 
lightweight, and ease of handling make it better sensor for NO2 gas [55]. Wang 
et al. [104] built gas sensors based on RGO which were decorated with Pt NPs using 
ac-DEP and mid-temperature thermal annealing, allowing for sensing of different 
gas molecules. At RT, RGO sensors decorated with Pt NPs had sensitivities of 14%, 
8%, and 10%, respectively, for 1000 ppm H2, NH3, and NO gases. When compared 
to RGO sensors without Pt NP ornamentation, Pt-functionalized RGO improved 
performance by 25%, 60%, and 100% for NO, NH3, and H2 gases, respectively. The 
recovery/response time for H2 gas decreased with Pt ornamentation, but the opposite 
was reported for NH 3 and NO. Hybrid nanostructures made up of graphene and 
RGO provide increased sensitivity and selectivity. Recent papers on decoration of 
graphene/RGO with semiconducting metal oxide NPs such as WO3 [97], SnO2 [105, 
106], and ZnO [84, 107] have been published, as well as their use as gas sensors. 

An ideal ZnO- and RGO-based sensor (material ratio of 4:1) has been fabricated 
in which ZnO NPs are well dispersed on RGO, and this RGO-based sensor used for 
detection of acetylene gas provides sensing response of 143 at 250 °C [108]. High 
selectivity, long-term stability, quick responsiveness, and recovery were all obtained 
as well. RGO increases ZnO particle attachment and avoids particle agglomeration 
without creating substantial morphological or crystallographic changes, according 
to the physical parameters of ZnO/RGO composites made using the solvothermal 
process.
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8.3 Graphene/Polymer Hybrid-Based Gas Sensors 

Carbon nanotubes (CNTs) functionalized with polyaniline (PANI), an intrinsically 
conducting polymer, have been shown to improve gas sensing performance [109, 
110]. In few studies, graphene and RGO are additionally functionalized with poly-
mers. Graphene/RGO-based polymer hybrids [81, 82] improved detection properties 
when compared to pristine graphene and RGO. When exposed to 50 ppm NH3 gas, 
RGO functionalized with PANI (RGO–PANI hybrids) demonstrated a significantly 
faster increase in resistance of 59.2%, compared to 5.2 and 13.4% for pristine RGO 
and PANI nanofiber-based sensors. 

The RGO–PANI hybrid sensor detects ammonia gas 3.5 times more effectively 
than a pristine PANI nanofiber sensor and 10.4 times more effectively than a pris-
tine RGO sensor. Enhancement in sensitivity is caused by interaction of RGO sheets 
and decorated PANI NPs [81]. Despite this, authors discovered a recovery period of 
4 min for devices made up of these hybrids due to more surface ratio of RGO sheets 
and PANI NPs. These devices demonstrated better reversibility, long-term detec-
tion stability (even after several months), and more selectivity toward ammonia gas 
in presence of various analysts such as DMMP, methanol, dichloromethane, cyclo-
hexane, and chloroform. Huang et al. [111] evaluated RGO–PANI hybrids sensor’s 
NH3 gas detection performance to that of other sensors. 

T. Xie et al. synthesized sensors fabricated on organic thin film transistor (OTFT) 
composed of Poly(3-hexylthiophone) (P3HT) film and RGO/P3HT bilayer films for 
NO2 sensing, and sensing behavior of both fabricated samples was compared. It was 
predicted that after RGO was deposited as the bottom layer of the bilayer film in 
RGO/P3HT sample, the sensing response improves by about 80% [112]. Some of 
the RGO’s distinguishing characteristics include a more surface ratio, that provides 
various sites for NO2 adsorption due to graphitic carbon atoms, resulting in increased 
sensitivity. Furthermore, the sensing response for a few gases such as CO2,NH3,H2S, 
SO2, and CO was 2 orders lower in magnitude than that of NO2 which is because of 
P3HT layer that prevents the gases to come in contact with RGO. 

Ye and colleagues [82] produced RGO/Poly(3-hexylthiophone) (P3HT) hybrid 
films for NH3 detection, and it was revealed that the sensitivity of RGO/P3HT films 
was higher than that of RGO film sensors. Because of shape of hybrid films and inter-
actions between P3HT and RGO films, the RGO/Poly(3-hexylthiophone) (P3HT) 
sensor response was high. RGO/P3HT films have a sensitivity of 7.15, while RGO 
films have a sensitivity of 5.37. RGO/P3HT films have a response time of 141 s, while 
RGO films have a response time of 637 s. RGO/P3HT films have a recovery time of 
488 s, while RGO films have a recovery time of 609 s. Based on a hybrid of PMMA 
membrane-coated Pd NP and SLG, J. Hong et al. synthesized a hydrogen sensor 
as shown in Fig. 5 with good sensitivity and selectivity (single-layer graphene). 
Single-layer graphene was created using the CVD process for graphene synthesis 
(SLG). CVD synthesized single-layer graphene is deposited with Pd nanoparticle 
and using spin coating technique, PMMA membrane layer coated on Pd NP/ SLG 
and employing a graphene-buffered galvanic displacement reaction between Cu and
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Fig. 5 a Relative resistance response of PMMA/Pd NP/SLG hybrid sensors exposed to 2% H2 
with different value of cpd on single-layer graphene as a function of time. The inset indicates plot 
of sensitivity versus cpd on layer of graphene. b, c Schematic illustration of the conduction path 
through b graphene and c Pd. Reprinted with permission from Hong et al. [113]. Copyright 2015 
American Chemical Society 

Pd ions, the PMMA membrane-coated Pd NP/ SLG was formed [113]. Due to the 
selective filtration of H2 by the polymer membrane coating on the Pd NP/SLG hybrid, 
this constructed sensor did not respond to CO, NO2, or CH4 gas. This hybrid sensor 
displayed a sensor response of 66.37% in 1.81 min and a recovery time period 
of 5.52 min after being exposed to approximately 2% H2 [113]. The low selec-
tivity of graphene/RGO might be regained once it was functionalized with polymers, 
according to this research. 

9 Conclusion 

The most recent research publications linked to graphene-based materials in gas 
sensing applications for the detection of a wide spectrum of gases with better detec-
tion limits have been covered in this chapter. In the latest research, different new 
concepts are developed for achieving enhanced selectivity and sensitivity of sensors. 
Further, new strategies have been explored to enhance in sensitivity and response 
time for detection of several gases. Because of its unique physical and chemical 
properties, as well as its enormous surface-to-volume ratio, graphene oxide could 
be a possible contender for next-generation gas sensors. Functionalization of GO 
increases its surface activity which further helps the adsorption of gases and results



514 R. Deji et al.

in stronger chemical adsorption with increased sensitivity for gas sensing applica-
tions. There is increasing demand for such types of sensors based on GO for future 
perspectives that may help in monitoring and sensing of different analytes with high 
sensitivity and selectivity at a low cost. 
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Chapter 19 
Trends in Nanostructured Sorbent 
Materials for Passive Sampling 
Applications 

Lucas A. C. Minho, Eduard F. Valenzuela, Helvécio C. Menezesand, 
and Zenilda L. Cardeal 

1 Introduction 

The sampling process is a critical step in the analytical procedure. If the sampling 
stage is not carried out correctly, the later steps of the chemical analysis can lead to 
large errors that are hardly superseded. Among the environmental sampling options, 
the conventional sampling approach (grab sampling) is characterized by the acquisi-
tion of numerous samples, with long campaigns, covering a large area of the sampling 
region to generate statistically significant environmental information. On the other 
hand, the passive sampling modality collects pollutants over the long-term, since 
the pollutant uptake mechanism by passive sampling devices (PSDs) follows the 
laws of diffusion. Passive sampling avoids the use of pumps or more sophisticated 
instrumentation, making the sampling less expensive, more efficient and reliable. The 
calibration of PSDs provides uptake kinetics which allows the exploration not only 
of episodic contaminations but also provides the long-term monitoring of potential 
contaminants in sample bodies. PSDs allow a significant decrease in the number of 
samples that must be collected and analyzed in the laboratory since the process is 
carried out in situ involving the collection of a single sample. The aforementioned 
advantages of passive sampling enable more economical and sensitive monitoring; 
besides, contaminants can be detected in ultra-trace and trace levels, which are not 
available in grab sampling with low volumes collected. The correct choice and appli-
cation of PSDs are mainly related to the passive sampling time and the physicochem-
ical characteristics of the analyte. According to the exposure time and uptake mode, 
PSDs can report time-weighted average (TWA) concentrations in additive or kinetic 
mode, or equilibrium concentrations (CEquil) in equilibrium sampling mode.
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Since the introduction of nanotechnology in the last century, great revolutionary 
developments have been observed in the synthesis and application of nanostruc-
tures. The diversity of these materials’ physicochemical properties has facilitated 
revolutionary developments in areas such as electronics and medicine. In terms of 
environmental science, nanomaterials have been used in different applications, such 
as adsorbents, as enhancers of water filtration, providing antifouling, catalytic and 
antibacterial activity, and as catalysts, giving special attention to photoactivity and to 
the removal of contaminants [1]. This series of advantages of nanostructures together 
with the advantages of passive sampling has aroused the interest of the scientific 
community to merge these two tools during the manufacture of new samplers. 

2 Principles of Passive Sampling 

The diffusion laws are the core of the passive sampling theory. Considering a fluid 
flux, ji, loaded with the contaminant of interest through a limiting diffusion layer, like 
an ideal semipermeable membrane, toward the internal environment and reaching 
the uptake phase (i.e., the receiving phase), the difference in concentration between 
the uptake and available portions is directly proportional to the solute concentration 
gradient between the receiving phase within the limiting membrane and the external 
environment (i.e., donor phase). The mathematical expression of this relationship 
requires the proportionality factor of the mass transfer coefficients (Di), as described 
by Fick’s first law of diffusion [2]: 

ji = −DiΔC (1) 

where mass transport expressed by Di must be interpreted as a velocity dimension 
(e.g., cm h−1). The efficiency of passive sampling devices is connected to the contam-
inants finity for the receiving phase, since the concentration at the interface is near 
zero. 

On the other hand, the permeation of analytes will be affected by several physico-
chemical properties and external environmental conditions, such as the size or hydra-
tion sphere of the pollutant, temperature, fluid viscosity or solid compaction and 
turbulence [3]. 

More feasible description of passive sampling phenomena can be obtained by 
the sampler-water or air partition coefficient (K sw/a) in chemical equilibrium. The 
K sw/a is derived from the weighted ratio of the acceptor phase-water or air partition 
coefficient (KLw/a) and the membrane-water or air partition coefficient (Kmw/a) using  
the masses of the acceptor phase and membrane (ML and Mm, respectively). 

Ksw/a = Mm Kmw/a + ML KLw/a 

Mm + ML 
(2)
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Otherwise, K sw/a can be obtained experimentally through the ratio between the 
contaminant final concentration in the sampler (Cs) and in the water or air (Cw/a) 
during chemical equilibrium (Eq. 3). 

Ksw/a =
(

Cs 

Cw/a

)
eq. 

(3) 

According to the law of mass conservation, the sum of the amount of substance 
in the two phases must be equivalent to the initial amount of substance (C0Mw/a): 

C0 Mw/a = Cs Ms + Cw/a Mw/a (4) 

Assembly Eq. 3 with Eq. 4 and rearranging results in the amount of solute uptake 
by the PSD (Eq. 5). 

n = Ksw/a MsMw/a 

Ksw/a Ms + Mw/a 
C0 (5) 

It is important to note that under conventional conditions Mw/a >> Ms, thus, Eq. 5 
results in n = K sw/aMsC0. Therefore, the amount of matter extracted by the device is 
independent of the matrix extension, which depicts a relevant property for laboratorial 
and in situ calibration [4]. 

The semipermeable membrane device (SPMD) developed by Huckins and collab-
orators [5] enables the improvement of passive sampling concepts, relating them to 
previous knowledge, mainly with regard to the pollutant uptake kinetics in aqueous 
matrices. In SPMDs, the increments of contaminant concentration inside the device 
can be described by Fick’s second law adapted as a function of infinitesimal intervals 
of time [2]: 

dCs 

dt 
= Aλ 

Vs

(
Cw/a − Cs 

Ksw/a

)
(6) 

where V s and A are the volume and surface area of the PSD, respectively, and λ is the 
total mass transfer coefficient, a broader term than the one presented in Eq. 1 since it 
is a combination of the various contributions to the restriction of mass transport and 
therefore describes the movement of pollutants out of the starting solution through 
multiple barriers to the receiving phase [6]. Devices based on diffusive gradients in 
thin films (DGT), which were devised and applied by Davison and Zhang [7] for  
trace metals in seawater, are also very efficient for the sampling of contaminants 
in soils and sediments, having high spatial resolution [8]. The main limiting barrier 
in DGT is the thickness of the diffusive gel layer (δG); therefore, Cs can be easily 
estimated by the following equation: 

Cs = MaδG 

DGt 
(7)
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Equation 7 presents the equivalent form to the DGT uptake model in solution, 
where Ma is the contaminant mass that is directly measured, DG is the effective mass 
transfer coefficient of the solute in the diffusive layer, and t is the total exposure time. 
The theoretical aspects for the use of DGT and other devices in soils and sediments 
are the subject of other previous reviews. Since this is not the object of this chapter, 
it is recommended to read the work headed by Davison et al. [8]. 

λ from Eq. 6 can be described by three key components, of transport barriers of 
masses in water or air: 

λ = Dw/a + DbKbw/a + DmKmw/a (8) 

In Eq. 8, the indices w/a, b, m, bw/a and mw/a refer to the water or air 
boundary layer (W/ABL), biofilm, membrane, biofilm-water/air and membrane-
water/air, respectively. Parameters D are the specific mass transfer coefficients and 
K, the pollutant partition coefficients between these phases. The resistance to diffu-
sion of contaminants through these media is called total resistance and is directly 
proportional to the thickness (δ) of each of the barriers mentioned above (Eq. 9). 

1 

λ 
= δw/a 

Dw/a 
+ δb 

DbKbw/a 
+ δm 

DmKmw/a 
(9) 

Based on the knowledge of the physical attributions of the above parameters, 
differential Eq. 6 can be solved as a function of time assuming constant Cw/a: 

Cs = Ksw/aCw/a

(
1 − e λA 

Ksw/a Vs 
t
)
+ C0e 

λA 
Ksw/a Vs 

t (10) 

where C0 is the concentration of the contaminant at time t = 0. The exponential 
term in Eq. 10 corresponds to the fraction of the contaminant that migrates from the 
interior of the sampler to the external environment, the so-called elimination factor, 
Ke, in which: 

Ke = λ A 
Ksw/aVs 

= Rs 

Ksw/aVs 
(11) 

Rs is the sampling rate and represents the volume of water extracted as a function of 
time (e.g., L h−1) and can be interpreted as a link between passive sampling and grab 
sampling [9]. The graphic profile of the passive sample process is shown in Fig. 1.

The curve in Fig. 1 can be divided into three parts: linear, curvilinear and constant. 
For short periods of time, the contaminant concentration inside the sampler is very 
small when compared to the chemical equilibrium concentration (Cs << Kw/aCw/a), 
and therefore, Eq. 6 can be reduced to: 

dCs = Rs 

Vs 
Cw/adt (12)
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Fig. 1 Profile of an 
acquisition curve in passive 
sampling. Red: Linear 
regime, green: curvilinear 
regime and blue: (constant) 
equilibrium regime

The integral solution of Eq. 12 suggests that the phenomenon is described by 
first-order kinetics. As the uptake rate is linearly proportional to the concentration 
of the analyte in the water, a sampling performed at this stage is called kinetic or 
additive sampling [9]. Otherwise, the curvilinear regime is the transition between the 
linear stage and equilibrium. The time required to reach half the equilibrium concen-
tration, t1/2, corresponds to the boundary between the kinetic uptake regime and 
the curvilinear, which can be estimated from the calibration data, or mathematically 
extrapolated through Eq. 13 [10]. 

t1/2 = ln 2 
Ke 

(13) 

In long-term exposure periods, with constant Cw/a, the pollutant concentration in 
the PSD does not vary with time and Eq. 6 reduces to Cs = Cw/aK sw/a, corresponding 
to the last third of the sampling curve: the equilibrium regime. The samplings carried 
out in this uptake regime are called equilibrium sampling [9]. 

3 Passive Sampling Devices (PSDs) 

Although the passive sampling technique has been implemented for decades, its 
application has been in yet the subject of different studies and researches. These 
studies have generated multiple devices, some available on the market and others with 
promising results to be produced on a commercial scale. Different types of passive 
samplers are commercially available with a variety of applications and receiving 
phases such as liquid absorbents (SPMDs) and sampler based on hollow fiber liquid-
phase microextraction (HF-LPME), solid adsorbents (Chemcatcher and polar organic
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chemical integrative sampler (POCIs)) and gels (DGT). Table 1 shows the main 
passive sampling devices for the analysis of environmental contaminants in water 
with their respective compounds extracted, passive sampling time, advantages and 
disadvantages.

4 Principles of Green Chemistry, Nanosynthesis 
and Miniaturized Sample Preparation Techniques 

Almost 30 years ago, the United Nations Conference on Environment and Develop-
ment (Earth Summit, a.k.a. ECO92) took place in Rio de Janeiro city (Brazil), with 
the participation of 179 heads of State. On the occasion, the document Agenda 21 was 
prepared, in which the participating countries solemnly committed themselves to the 
so-called sustainable development, which can be succinctly defined as “development 
that satisfies the needs of the present without compromising the needs of the future” 
[17]. Thus, according to this declaration, exploration and extensive extractivism, as 
well as other anthropogenic activities with a high environmental impact, must be 
minimized and regularized, serving the progress and future of the next generations. 

ECO92 was not only responsible for a multilateral geopolitical collision, but also 
fostered the establishment and strengthening of civil society representations with the 
decisive participation of NGOs and the implementation of public policies as well as 
quality standards, including the ISO 14000 which standardizes aspects of environ-
mental management [18, 19]. Also, in Chap. 30 of Agenda 21, there is a proposal to 
adopt mass clean production together with business and industrial responsibility [18]. 
In line with the precepts of sustainable development, the strategic initiative known 
as green chemistry created by Anastas [20] emerged during a program launched by 
the US Environmental Protection Agency (EPA) a year before ECO92. 

The central pillar of green chemistry is the “design of chemical products and 
processes to reduce or eliminate the use and generation of hazardous substances” 
[20, 21]. Therefore, as a guide for the development of methodologies and procedures 
aimed at mitigating the risks associated with chemical practices and the reduction 
of waste and secondary products, with subsequent treatment and intelligent manage-
ment. The philosophy of green chemistry can be divided into 12 other fundamental 
principles [20, 22] as shown in Fig. 2.

In the synthesis of nanomaterials nowadays, certain principles of green chemistry 
are used; besides, the so-called green synthesis has become a synonym for biosyn-
thesis. The green synthesis makes the single or combined use of natural reducing, 
capping and stabilizing agents through the intermediary with biological entities, 
without the use of high cost or toxic stoichiometric reagents and with the usual low 
energy consumption [23]. 

According to Duan et al. [24], the green synthesis of nanomaterials has several 
advantages over chemical and physical methods, such as reducing production cost, 
avoiding environmental pollution, improving biological compatibility and reducing
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Fig. 2 Scheme of the 12 principles of green chemistry and brief explanations. Explanation taken 
from [20, 22]

potential physiological toxicity, in addition to be sustainable [23] and with the poten-
tial to be used for mass production of nanomaterials with strong commercial appeal 
[25, 26]. Thus, the green synthesis of nanomaterials is strongly aligned with several 
principles of green chemistry, e.g., principles 2–8 described in Fig. 2. Furthermore, 
in morphological, nutraceutical and bacteriological terms, many nanomaterials such 
as nanoparticles biosynthesized present superior characteristics than those synthe-
sized with chemical or physical methods. Since the contact of reaction agents with 
biomolecules such as carbohydrates, lipids, proteins and enzymes stabilizes the struc-
ture of nanomaterials, allowing them to mold and interact with other organisms more 
efficiently [23, 27] 

Several works using green synthesis with biological entities in vivo such as 
bacteria [28, 29], algae and cyanobacteria [30], yeasts [31], fungi [29] and other 
animals [32] are described in the literature. In addition, in vitro studies using plant 
extracts [33] as precursors, for example, are also described. 

On the other hand, the growing demand for faster, more efficient, sustainable and 
environmentally friendly analytical methods is the main driver for the improvement 
of classical treatment and analysis techniques. In this sense, the development and 
progress of analytical methodologies are directed to fundamental aspects of green 
chemistry, such as the publications of Namieśnik [34], who coined the term green 
analytical chemistry. According to Koel and Kaljurand [35], following the 12 princi-
ples listed in Fig. 2, principles 1, 5, 6 and 12 have been the basis for the development 
of many modern instrumental analytical techniques and methodologies. 

Also, the implementation of hyphenated instrumental techniques has led to 
conscious, efficient and intelligent consumption of energy, as well as helping to 
increase the analytical frequency and the rotation of routine analyses in laborato-
ries, especially with regard to the development of highly automated methodologies 
(end to end) or with on-line sample treatment with the measurement technique or 
chemical speciation system. The incorporation of more efficient energy sources in
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the most diverse processes such as microwave treatment [36], ultrasound [37] or,  
alternatively, the development of photochemical methods [38] can lead to consider-
able energy savings [35]. On the other hand, sample preparation procedures play a 
prominent role in modern chemical analyses, corresponding with the sampling, up 
to 90% of the total analysis time [39, 40]. Sample preparation is often introduced in 
order to overcome difficulties or incompatibilities with the analytical measurement 
system. 

Until the end of the 1980s, little emphasis was given to the sample preparation, 
even though its importance was remarkable. Classic sample preparation techniques 
such as liquid–liquid extraction (LLE), solid–liquid extraction (SLE), gas extraction 
(GE) and solid-phase extraction (SPE) were common; however, they have been asso-
ciated with a myriad of technical difficulties much due to its dependence on matrix 
complexity. In particular, LLE produces a large amount of waste as it demands large 
volumes of solvents that are harmful and/or unfriendly to the environment. In addi-
tion, the settlement and separation of phases are usually slow due to the formation 
of emulsions. LLE, as well as other classical extraction techniques, tends to be inef-
ficient due to the limited concentration factor, since the ratio between the extracting 
phase and the sample is usually low [41]. 

A natural way to “greener” sample preparation techniques has been their minia-
turization. Miniaturized sample preparation techniques emerged in the mid-1990s 
with the introduction of the solid-phase microextraction (SPME) technique [42] and 
the subsequent liquid-phase microextraction technique (LPME) [43]. The processes 
of miniaturization aimed to overcome the usual difficulties and increase reliability 
and efficiency, gradually supplanting classical techniques. Figure 3 presents the main 
miniaturized sample preparation techniques. 

The miniaturization including the adoption of greener procedures led to innova-
tions in sample preparation procedures for chemical analysis and for the synthesis of

Fig. 3 Scheme of the main representative miniaturized techniques. Adapted from Koel and 
Kaljurand [35] 
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nanomaterials. They were also the promoters for the development of more efficient 
and sensitive passive sampling devices and methodologies. 

5 Trends in PSD Miniaturization 

In the last 25 years, a growing trend toward the use of miniaturized passive samplers 
(MPSDs) (Fig. 4), which are those that use a microscale uptake phase, is noticeable, 
although in an incipient way, with few publications per year. The growing interest 
in MPSDs may be related to the development of the membrane-enclosed sorptive 
coating device (MESCO) by Vrana et al. [44] in 2001. The first version of MESCO 
was a passive sampling device adapted from the SPME technique with SBSE, which 
was also the approach chosen by Assoumani et al. [6, 45, 46], Zheng et al. [47] and 
Matsiko et al. [48] years later. 

Efforts have been applied in recent research to develop more sensitive and low-
costly passive samplers, adapted from miniaturized sample preparation techniques, 
mostly based on SPME such as those based on fibers [49–51], polydimethylsiloxane 
(PDMS) rods [52, 53], thin films [54, 55], silicone rubber [56–58] and even the use

Fig. 4 Number estimate of publications related to passive sampling with MPSDs over the years. 
Systematic survey carried out through the Web of Science repository using the keywords “Passive 
sampling” and “Microextraction”. 
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of drones combined with SPME for monitoring volatile organic compounds in the 
air [59]. Although adaptation of the SPME for the purposes of passive sampling is a 
reality, there is still a considerable vacuum in relation to the development of devices 
based on LPME, largely due to the low immobilization and recovery capacity of 
micro-amounts of solvent in the semipermeable membrane for an extended period 
of time. 

The natural path of passive sampling, as well as sample preparation techniques, 
would also be the use of miniaturized acceptor phases, but, as pointed out by Taylor 
et al. [60], miniaturized devices are still not able to overcome the use of typical 
samplers since the calibration and validation of most of these devices were carried 
out under restricted conditions and in short sampling times, which may be inadequate 
for longer exposures, or unrepresentative for the description of non-steady state. 

Another limiting aspect of miniaturized passive sampling devices is the low 
sampling rates. According to Eq. 11, the  Rs depend on the mass or volume of 
the acceptor phase. Large Rs do not imply greater performance or reliability of 
the device; nevertheless, higher Rs enhance detection sensitivities given the high 
concentration of substances around its useful area/volume, and at the same time, it 
requires tedious sample preparation processes. On the other hand, the combination 
of passive sampling with more efficient instruments such as gas, liquid, multidimen-
sional chromatography and electrophoresis coupled with more selective and sensitive 
detectors has potential to overcome this challenge. Another alternative is the use of 
nanostructured materials that have an inherent high surface area as an acceptor phase. 

6 Applications of Nanostructured Materials in Passive 
Sampling 

6.1 Inorganic Nanostructures 

Most passive sampling devices with acceptor phase based on nanostructured inor-
ganic materials, surveyed in this work, are constituted in part or in whole by partic-
ulate materials, such as immobilized gold nanoparticles (AuNPs) for the capture of 
Hg [61–65]. 

Mercury is a volatile heavy metal linked to intense anthropogenic activity [66, 
67]. In water, the most commonly found inorganic species is the Hg(II) ion. The 
ion 2+ methylation leads to its introduction into ecosystems at the trophic level and 
bioaccumulation at the end of the chain. Consequently, to high concentrations in 
fish and other animal tissues, raising concerns about the potential harmful effects of 
mercury residues on human health through consumption [68]. On the other hand, 
in the air, mercury appears in three forms: gaseous elemental mercury, Hg0 (GEM), 
gaseous oxidized mercury, Hg(II) (GOM), and particulate bounded mercury (PBM) 
[63, 69]. Metallic fumes and mercury vapors are released into the atmosphere by 
various routes such as emissions from fossil fuels burning, from the chlor-alkali
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industries, incinerations and fires, gold mining [66], in addition to industrial metal-
lurgical processes, mineral exploration, cement factories and waste from landfills 
and garbage dumps [67]. According to Pirrone et al. [67], due to the unstoppable life 
cycle of mercury: extraction, emission and deposition, it is considered a ubiquitous 
pollutant, being found throughout the atmosphere and troposphere. 

Mercury that is deposited in water and soil undergoes complex routes of transfor-
mation by microorganisms, forming organic complexes and other derived species. 
Organic mercury, such as methylmercury, [CH3Hg]+, due to its ability to bioac-
cumulate in fatty tissues such as the myelin sheaths (where it causes dysmyeli-
nation) is associated with several neurological disorders such as neuron death, 
memory loss and dementia, language deficit, movement abnormalities as abnormal 
reflexes and seizures, vision problems and also implicated in Alzheimer’s disease 
and other chronic degenerative diseases [70]. In addition to disturbing the nervous 
system, mercury has the potential to affect multiple organs, leading to generalized 
degeneration [71]. 

The maximum contaminant limit (MCL) established by the US EPA is 2 μg L−1 

in drinking water [72] although it does not establish a quality standard for mercury in 
air. Gold nanoparticles that have a high surface area in addition to being highly porous 
are a good solution for the extraction and concentration of mercury at trace levels 
from sample bodies; Hg0 is trapped by gold particles by amalgamation, a factor that 
has been widely explored in the literature [73, 74]. Passive samplers with acceptor 
phase based on AuNPs have sampling rates ranging from 0.006 to 0.014 m3d−1, with 
linear uptake ranges ranging from a few days (1 to 2 days) to 1 year. Apparently, 
the association of AuNPs with other materials such as the inorganic nanocomposite 
Au@TiO2 [61] improves their physical–chemical properties, such as their sorption 
capacity. 

For a more comprehensive view of the problem, the review by Huang et al. [73] 
covers several proposals for passive samplers for the assessment of mercury in air. 

6.2 Carbonaceous Nanostructures 

The main representatives of this category are carbon nanomaterials (CNMs). CNMs 
have great potential as adsorbent for organic and inorganic analytes in diverse sample 
matrices owing to their high surface area, three-dimensional structure, carbon large 
quantity, chemical stability and their negligible mass density [75]. Once the high effi-
ciency of CNMs in remediation of different contaminants and wastewater treatment 
has been demonstrated, they have been introduced in passive sampling processes. 
Although this approach is recent, there are already different works published in envi-
ronmental journals. Table 2 shows an overview of 5 passive sampling devices that 
use carbon nanomaterials as receiving phases. Within the allotropic forms of carbon 
(graphite, diamond, fullerene, graphene and carbon nanotubes), carbon nanotubes 
(CNTs) have the greatest use as receiving phase, with multi-walled carbon nanotubes 
(MWCNTs) being the most widely used. This is due to the characteristic structure
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and electronic properties of CNTs allowing them to interact strongly with organic 
molecules, via non-covalent forces, such as hydrogen bonding, π–π stacking, electro-
static forces, van der Waals forces and hydrophobic interactions [76]. These interac-
tions improve with the oxidation of carbon which increases mainly the concentration 
of hydroxyl and carbonyl surface groups.

As can be seen in Table 2, some CNM samplers have been based on typical 
commercially available devices (1 and 2). The authors proposed to change the 
receiving phases of the Chemcatcher® and POCIs by phases with carbon nanotubes. 
These modifications can facilitate its acceptance and its subsequent commercializa-
tion by the manufacturing company. From another perspective, some works offer 
the possibility of building the sampler in the laboratory by the user himself in a 
simple and fast way such as the development of needle trap devices (NTDs) for the 
use of receiving phases consisting of immobilized carbon materials (devices No. 
5). NTDs are miniaturized devices based on SPME; however, their choice implies 
some advantages compared to the direct use of solid-phase microextraction fibers 
in passive sampling: greater robustness, since the sorbent is protected inside a steel 
needle in addition to the modulation of the extraction capacity according to the expo-
sure of the solid sorbent to the environment [85]. More details about configurations, 
sorbents, applications and perspectives of NTDs can be found in the study of Lord 
et al. [86]. 

6.3 Nanofibers 

Nanofibers are recognized as elongated structures that have internal diameters lower 
than or equal to 500 nm and lengths ranging from a few hundred nanometers to 
several meters. They are materials of great interest in analytical chemistry, having as 
main features their large specific surface area and high aspect ratio. Thus, countless 
applications have been registered in the literature such as optical analysis: colori-
metric, spectrophotometric, fluorescence and chemiluminescence analysis, surface-
enhanced Raman scattering (SERS), ultra-thin layer chromatography, mass spec-
trometry ionization technologies, electrochemical analysis, gas sensors and biosen-
sors and sample preparation techniques [87, 88]. The properties of nanofibers as 
sorbent materials can be modulated according to the nature of the monometers or 
starting particles or by the different dopants used in their synthesis and production. 
In addition, nanofibers show an alternative for incorporation of functionalization 
processes or structural modification. 

Several strategies have been applied to obtain nanofibers including mechanical 
drawing [89], phase separation [90, 91], molecular self-assembly [92, 93], template 
synthesis [94], melt blowing [95], vapor deposition [96–98] (mainly for obtaining 
carbon fibers), sol–gel [99, 100] and seeding [101]. The high standard techniques for 
the production of nanofibers nowadays are electrospun and electrospinning, since 
with these techniques it is possible to manufacture long and uninterrupted fibers 
with an internal diameter, porosity, morphology and spatial orientation, controllable
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by the instrumental configurations; in addition, unlike wet synthesis, it has flexi-
bility to work with various synthetic polymers such as nylon-6, polyacrylonitrile 
(PAN), poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO), poly (lactic acid) 
(PLA), poly(lactic-co-glycolic acid) (PLGA), polypropylene (PP), polystyrene (PS), 
poly(vinyl chloride) (PVC), poly(vinylpyrrolidone) (PVP), resins, PDMS, polyani-
line (PANi), poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrenesulfonate) 
(PSS) and biopolymers such as cellulose, chitosan and gelatin (collagen) [102]. 

Although synthetic and natural nanofibers are considered new and promising 
sorbents, their use for passive sampling purposes is still an emerging topic. Haoran 
et al. [103], in a new application, proposed the use of cellulose nanofibers decorated 
with AuNPs as surface-enhanced Raman scattering substrates, obtaining consider-
able improvements in SERS. Their study also recognized the potentials of the mate-
rial designed for passive sampling due to its resistance to water, acid and alkaline 
solutions, high surface area and potential sorption capacity. 

Among the sparse publications on the application of organic nanofibers as 
nanostructured uptake phases, the works led by Martinez and Cwiertny [104– 
106] stand out. The authors developed proposals for receiving phases of equi-
librium samplers and tested polymers of different natures in the manufacture of 
nanofibers: PAN, PMMA, PS, polyethylene terephthalate (PET), poly(vinyl acetate)) 
(PVAc), polyvinylidene fluoride (PVDF) and ethylene–vinyl acetate (EVA), as well 
as composites such as PAN@CNTs and PS@CNTs. They obtained, through the elec-
trospun technique, fibers with controlled diameters ranging between 70 and 1000 nm 
depending on the treatment and the base polymer. Receiving phases were calibrated 
in the laboratory with hydrophilic model compounds (logKow < 2) such as aniline and 
nitrobenzene and hydrophobic (logKow > 4.5) such as selected PCBs and dioxins. 
In general, the authors assume that passive samplers equipped with nanofiber-based 
acceptor phases would be fast acquisition, since they would not be protected with 
limiting phase (such as membranes), reaching equilibrium in time lower than 7 days, 
with coefficients of sorbent-water partition (KENMW) estimated between -0.07 and 
2.8 log units for hydrophilic compounds and 3.2 and 6.4 for hydrophobic compounds. 

A patent regarding the development of a miniaturized passive sampling device 
based on HF-LPME using polypropylene membranes grafted with cellulose 
nanofibers, as well as the methodology for obtaining this material through a simple 
synthetic route based on sol–gel, was recently filed [107]. This work had as main 
motivation the correction of stability problems from the acceptor microphase of the 
previous sampler [16]. Through this modification process, nanofibers with lengths 
ranging from 29.8 to 48.6 nm were obtained, forming a covering on the surface of 
the microporous extractive membrane between 1 and 100 μm. In situ applications 
of these samplers include the determination of trace levels of emerging pollutants 
such as phthalates and pesticides (such as triazines and organochlorines) in natural 
waters. The device shows potential for sampling higher polarity organic compounds 
due to the functionalization of PP membranes with polar groups.
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7 Outlook 

Nanotechnology has covered different areas of knowledge where environmental 
sciences have been greatly benefited. The synthesis of nanomaterials and their 
respective application in the remediation of environmental pollutants has allowed 
the creation of new methodologies for the analysis of water, air and soil. Although 
initially its application was based on the emergence of microextraction techniques 
used in the laboratory, the introduction of passive sampling tools allowed its 
subsequent application in the field (in situ). Recently these nanomaterials have 
been proposed as receiving phases in typical samplers (Chemcatcher® and POCIs) 
enabling their inclusion as passive sampling alternatives. This trend in the use of 
conventional devices facilitates the understanding of the diffusion processes of the 
analytes and their subsequent adsorption on the nanoparticles since these devices are 
well documented and their calibration and uptake models are well known. 

Although these different types of nanostructures have shown great efficiency as 
receiving phases in passive sampling devices, they have been limited by surface 
defects during exposure to the environment. Thus, the transformations on the surface 
of nanomaterials enable the adsorption of macromolecules and metals cations, as well 
as biological interactions (adsorption of viruses, bacteria and protozoa) changer their 
colloidal stability, originating in some cases homoaggregation or heteroaggregation 
and biofouling, which in turn modify the surface reactivity and mobility [1]. In this 
sense, different investigations have focused on controlling the surface effects during 
nanomaterial exposure to the environment. To address this challenge, novel nanocom-
posite and nanoparticles have been prepared such as D-amino acid supported by poly-
dopamine and halloysite nanotube [108], sulfonated polyelectrolyte-silver nanopar-
ticle complexes [109] and modifications of polyvinylidene fluoride membrane by 
silver nanoparticles-graphene oxide hybrid nanosheet [110]. This new trend in the 
synthesis of nanomaterials improves the exposure times of the samplers in the 
different environmental compartments, allowing more efficient extractions. The 
properties of antimicrobial and antifouling from some carbon-based nanomaterials 
such as fullerene, mesoporous carbon nanoparticles (MCNs) and carbon quantum 
dots (CQDs) [111] make them excellent candidates as receiving phases of passive 
sampling, phases that should be evaluated in future studies. 

Physical methods have been used successfully to produce nanoparticles. Conven-
tional techniques like ball milling, laser ablation, evaporation/condensation and 
electro-spraying present the advantages of high purity, large-scale production and 
cost-effective, but involve high energy, long periods of time and contamination [112]. 
On the other hand, the chemical method approach such as the microemulsion method, 
sol–gel procedure, hydrothermal technique and chemical vapor deposition are able 
to generate high film durability, controlled surface morphology and easy operation, 
however, presenting some demerits such as toxic and corrosive compounds, explo-
sive precursor gases and difficulties to material deposition [112]. In this sense, the 
trends associated with green chemistry have sought to diminish the disadvantages 
of these methods through biological methods. The green synthesis or green route
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procedure to obtain nanomaterials is an efficient one-pot procedure that is generated 
by different biological organisms such as plants and their extracts, microorganisms 
(bacteria, fungi and actinomycetes), algae, enzymes, biomolecules and industrial or 
agricultural wastes [113]. Although these biological methods are recent, it is expected 
that they will be applied to the development of receiving phases for passive sampling. 

8 Final Considerations 

We are currently facing a boom in the synthesis of nanomaterials with high adsorption 
capacity. Besides, adsorption is today one of the most researched techniques for the 
elimination of pollutants which has shown equal or better results than techniques 
based on biotechnology, catalytic processes, membrane processes, ionizing radiation 
processes and magnetically assisted processes. The combination of passive sampling 
tools with the recent advances on nano-adsorbents offers a promising field of research 
in the detection and removal of pollutants which begins to take shape with the trends 
presented above. 

Although passive sampling devices are already applied in various countries of 
the European Union, they are used as complementary methods in surveillance and 
operational monitoring. According to the water framework directive (WFD), passive 
sampling involves some difficulties including biofouling, back-calculating to water 
concentration and calibration. The passive sampling technique and its latest trends 
with nanomaterials show a significant advance in the analysis of environmental pollu-
tants. These studies contribute to the introduction and acceptance of passive sampling 
as a monitoring method in conventional laboratories. 
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Chapter 20 
Porous Graphene-Based Materials 
for Enhanced Adsorption Towards 
Emerging Micropollutants (EMs) 

Alvin Lim Teik Zheng, Supakorn Boonyuen, and Yoshito Andou 

1 Introduction 

The contamination of emerging micropollutants (EMs) derived from various sources 
such as agricultural, pharmaceutical, and household has become a global issue in 
ensuring water security for the preservation of humankind. Emerging micropollu-
tants can be defined as minute biological or chemical contaminants produced at trace 
amounts (up to microgram per litre) that enter ground or surface waters [1–3]. EMs 
can be categorized as a subgroup of micropollutants [4]. The risk from these microp-
ollutants and their metabolites/side products often greatly affects the environment 
and human health attributed to the accumulation in water bodies that serve as drinking 
water reservoirs. There are significant limitations in conventional sewage treatment 
methods which are not adequate to remove EMs. Often, the combination of several 
process technologies is required to remove various EMs. In some countries, wastew-
ater treatment plants (WWTP) treated wastewater is released to water bodies such 
as lakes, ponds, rivers, and ocean waters, as shown in Fig. 1. As a result, numerous
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Fig. 1 Emerging micropollutant (EM) sources and their destinations in the environment 

EMs and their metabolites may probably end up in water bodies. Consequently, 
health dangers to humans may arise as EMs accumulate. There is a paucity of data 
on the environmental and human health implications of these chemicals. To date, 
many studies have reported on the harm of EMs to the living organism [5–7]. 

Over the past decade, there has been an increasing emphasis on leveraging 
nanoscience and nanotechnology to produce numerous nanostructured materials, 
as effective remediators for water treatment. The use of nanosized nanomaterials has 
been regarded as a feasible strategy in the wastewater remediation process [8–12]. 
Previously, it was found that various pollutants which include dyes, heavy metals 
ions, pesticides, and pharmaceutical compounds can be remediated using nanoma-
terials. In addition, they also exhibited interesting antimicrobial properties against 
water-borne bacteria [13]. Graphene and its derivatives have become ubiquitous in 
most studies spanning many applications such as energy, environment, construction, 
and health care [14–16]. The unique two-dimensional carbon allotrope possesses 
excellent electrical conductivity, unsurpassed mechanical strength, and high surface 
area which are sought-after [17–19]. The hype with this class of emerging material 
is projected to continue for at least the next few decades. However, most studies 
often do not use pristine graphene because of the absence of functionalities, high 
preparation cost, difficulty in handling, and their low yield [20]. Figure 2b depicts 
the derivatives of graphene which are often reported in the preparation of highly 
functional adsorbents.
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Fig. 2 a Graphene and their derivatives nanomaterials. Reprinted with permission from Wu et al. 
[21]. Copyright 2018 MDPI. b Top-down synthetic methods for graphene preparation. Reprinted 
with permission from Kumar et al. [22]. Copyright 2021 Elsevier 

The strategy in water treatment technologies includes biological, physical, and 
chemical actions [23]. Among them, methods such as precipitation, photodegrada-
tion, coagulation, membrane separation, microbial assistance, and ion exchange have 
been reported in the wastewater remediation [24]. However, the methods mentioned 
above have significant setbacks, such as cost-effectiveness, the ability to selec-
tively remove numerous contaminants, regeneration, and reusability. Of all treatment 
methods proposed, the adsorption process can be considered a traditional method 
which is relevant and appealing for eliminating micropollutants [25]. The process 
has numerous advantages, including ease of operation, low operational costs, robust 
batch process, and environmental friendliness [26]. In addition, some adsorbents
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have the possibility of reuse and regeneration. Adsorption has grown in popularity 
due to its ability to treat dissolved pollutants after chemical oxidation or biological 
treatment effectively. Batch reactors that use an adsorption process, on the other hand, 
require secondary sludge removal, which can be improved by using hybrid systems 
[27]. Traditional adsorbents have a limited and non-selective adsorption capability, 
which is a restriction of adsorption technology. The modifications to the graphene 
materials can raise surface area and pore size to improve adsorption capacity. This 
research direction has garnered continuous attention in the preparation of highly 
efficient adsorbents. 

Graphene materials as an adsorbent for removing EMs are still emerging compared 
to widely used activated carbon (AC). Compared to pollutant remediation of synthetic 
dyes and heavy metal, reported studies on adsorption of EMs are still developing 
[28]. Provided that interest in graphene’s potential in EM remediation is growing 
steadily, collating recent studies on this subject matter is timely. Mainly, graphene-
based adsorbents have gotten significant interest lately. By offering the latest trend 
of graphene-based composites in EM removal, this chapter intends to fill the knowl-
edge gap in the abundance of literature present on this subject matter. The chapter 
begins with a brief explanation of EMs, backed up by numerous studies determining 
their quantity in various water sources and current methods in their analysis. The 
recent report on a novel yet unique graphene-based composite/membrane fabrica-
tion processes is also examined. We shared the latest study on how well graphene 
and composites/membranes performed in the adsorption of various EMs. Finally, the 
obstacles to developing graphene-based adsorbents are examined, and their potential 
challenges are addressed. In addition, an attempt is also made to provide suggestions 
for future studies on graphene-based adsorbents. 

2 Emerging Micropollutants (EMs)—Current Status Quo 

Common sources of EMs include industrial chemicals, pharmaceuticals and personal 
care products (PPCP), antibiotics, pesticides, and biocides [29]. However, the list of 
compounds listed is constantly growing with new chemical substances being regis-
tered. Most research on EMs has focused on surface waters as they are frequently 
found to be at high concentrations, mainly when they are linked with industrial 
discharges. Secondly, surface water monitoring is less complicated than monitoring 
groundwater [30]. Commonly applied wastewater purification involves secondary 
processes which include activated sludge and trickling filters that do not offer the 
advantage of removing a wide array of pollutants. The standard wastewater treat-
ment processes used are inherently not able to remove EMs which led to their pres-
ence in the treated water. EM presence in the aquatic environment is associated 
with detrimental consequences such as prolonged toxicity and antibiotic resistance 
[30, 31]. 

The analysis to identify and quantify specific EM compounds is often carried out 
via chromatography methods (HPLC, LC, and GC) coupled with mass spectroscopy.
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However, due to the minute quantity introduced into the environment, quantification 
of EMs in treated wastewater is often challenging. Many unknown substances may 
also be present in the wastewater. Among the micropollutants, pharmaceutical and 
personal care (PPCP) compounds such as tetracycline, ciprofloxacin, sulfamethoxa-
zole, diclofenac, ibuprofen, naproxen, and triclosan are commonly found due to their 
complex chemical structures, multiple ionization sites, and polymorphism [32, 33]. 
The sources of these chemicals are often being discharged from households, hospi-
tals, and agricultural farms, as depicted in Fig. 1. Monitoring antibiotic contamina-
tion is especially important given its link to antibiotic resistance, which is worrying 
[34]. As in the case of PPCPs, liquid chromatography (LC) coupled with mass spec-
trometry (MS) technologies was commonly used for their detection instead of gas 
chromatography (GC) due to their thermal instability, high solubility, and polarity. 

Recent studies on the determination of various EMs in the surface waters indicated 
the dangers posed to living organisms. Rodriguez-Mozaz and co-workers reported 
antibiotic traces in final effluents of 7 European countries using an LC–MS [35]. They 
found at least 17 antibiotics detected in the final effluent, which posed a significant 
environmental risk. They proposed ciprofloxacin, azithromycin, and cefalexin to 
be used as markers in the determination of EMs. Antibiotic residues from at least 
7–12 different compounds were found to be steadily released in freshwater and 
marine ecosystems. In another study, 27 PPCPs were extracted from various sources 
using solid-phase extraction (SPE), subsequently detected via LC–MS [36]. As for 
pesticide contaminants, the presence of imazalil, pyrimethanil, and thiabendazole 
are potential environmental risks [37]. The risk quotient (HQ) employed in the study 
indicated that cyprodinil, etoxazole, imazalil, and propiconazole are considered high 
risk for aquatic organisms. 

3 Properties and Synthesis of Graphene Composite-Based 
Adsorbents 

The various synthesis of graphene derivatives has been extensively covered in many 
literature studies in the past years [38–43]. Currently, the process to synthesize 
graphene materials involved top-down and bottom-up approaches. The bottom-up 
processes include chemical vapour deposition, pyrolysis, and epitaxial growth, which 
are sophisticated as they necessitate expensive equipment and controlled operating 
conditions [22]. Top-down approaches merely involve the conversion of graphite 
to various graphene derivatives, as shown in Fig. 2a. Most commercially available 
graphene is made top-down since it is easier to prepare and less expensive when 
produced on a big scale. Often, the disadvantages of this approach include large 
defects present on the graphene sheets and the usage of harmful reagents [44]. In most 
instances, graphene oxide (GO) is the starting material when preparing composite-
based adsorbents ascribed to their functionalities and versatility. The preparation 
method of GO often follows the Hummers approach or its modified form. For
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graphene composite-based adsorbents, adding graphene sheets in a composite mate-
rial increases porosity, surface area, and the possibility of pollutant diffusion inside 
graphene pores [45]. 

In developing novel adsorbents with the prospects to remove environmental 
contaminants, graphene and its derivatives are considered to be a promising yet 
efficient material. Unlike EMs, the adsorption of organic pollutants such as dye 
molecules and heavy metals using graphene-based materials is commonly reported 
[46, 47]. Unmodified graphene derivatives, on the other hand, do not possess 
enhanced adsorption capabilities. Combining a series of modifiers with graphene 
materials has generated graphene composites with porous morphology and func-
tional groups that can remediate micropollutants effectively. The various functional-
ization methods have yielded composites that have good adsorption capabilities and 
excellent regeneration capabilities. Modified hybrid composites have been shown 
to address the drawbacks of bare graphene materials, allowing for highly efficient 
micropollutant remediation. Nanoparticles (NP), polymers, and biomaterials have 
been used to modify graphene sheets, resulting in increased binding sites or enlarged 
surface area. In addition, the various functionalities of graphene-based composites 
may remove many types of pollutants simultaneously. 

4 Adsorption of Micropollutants and Their Mechanism 

4.1 2D Graphene-Based Composites 

This section reports on the usage of bare graphene materials and their composites for 
the adsorption of various EMs. Often, adsorption behaviour on pollutants is influ-
enced by the physical and chemical characteristics of the graphene-based materials. 
Among them, the surface chemistry usually determines the adsorption capacity, i.e. 
the presence of interaction sites and the adsorbent’s surface area, which impact the 
removal efficiencies and mechanism. 

Due to the van der Waals interactions, graphene tends to develop interconnecting 
pores inside the aggregates which also assisted in the adsorption of EMs. A recent 
study accessed the influence of the surface area and physicochemical properties 
of graphite and Gr-based materials towards metronidazole (MNZ) and trimetho-
prim (TMP) adsorption [48]. When oxygen surface group concentration is low, both 
antibiotics were adsorbed on graphite and rGO materials via π–π interactions as 
the mechanism of interactions rely primarily on the surface area. However, the 
adsorption on bare GO corroborated the various adsorption mechanism, which is 
pH-dependent. In addition, they found that interlayer adsorption was not observed 
on GO, rGO, or N-rGO. The significant aggregation of graphene sheets due to π– 
π interactions and strong van der Waals interactions reduces their high adsorption 
capacity and limits their practical applicability [49]. The influence of sheet aggrega-
tion on the adsorption of several EMs was systematically investigated [50]. The work
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proved that rGO exhibited higher adsorption capacity than MWCNT and graphene, 
suggesting that aggregation of graphene sheets and the oxygenated functional groups 
played significant roles in influencing adsorption performance. Various methods have 
been proposed, such as adhering nanoparticles, preparing deformed graphene sheets, 
including spacers and conversion to a 3D network [51]. 

Often, chemical functionalization of the rich oxygen-based functionalities on the 
basal and edges of the sheet allows for more significant interactions with the pollu-
tants. The size effect of 3D adsorbents is essential in the removal of EMs. In the 
first instance, the physical adsorption of contaminants adsorbed into the porous 
layer from the surrounding environment occurs at the liquid–solid interface. As a 
result, determining the diffusion rate of EMs is an essential step in accessing their 
removal efficiency. The high specific surface area is often contributed by the large 
pores present on the material, which usually stacks the finite-sized nanosheets. The 
control of pore size is one method in speeding up the diffusion process. The expo-
sure of surface groups and active sites is essential in the heterogeneous interface’s 
physicochemical process. Previously, GO prepared through the Hummers method 
has been accessed for the adsorption of metformin using the batch adsorption studies 
[52]. Compared to the modified Hummers method, adsorption of metformin is higher 
than GO synthesized via the modified Hummers method. Metformin was found to be 
adsorbed on the GO surface first in a chemisorptive pattern, followed by a physisorp-
tion trend, according to isotherm and kinetic measurements. Gao and co-workers first 
reported the adsorption of tetracycline and its derivatives using GO, which showed 
a maximum adsorption capacity of 313 mg/g, which was calculated using the Lang-
muir model [53]. Doxycycline adsorption capacity is greater in GO suspensions in 
comparison to tetracycline or oxytetracycline. They posited that the different pKa 
values could explain the various maximum adsorption values on GO. The adsorption 
mechanism is deduced to occur from the π–π interaction and cation–π bonding. 
The hexagonal cells of GO and the ring structure of tetracycline enable π–π contact, 
and cation–π bonding was anticipated to occur between the amino group on the 
ring C4 of tetracycline and graphene pi-electron-rich structures. In another study, 
Ai and co-workers compared the adsorption of GO and rGO on tetracycline (TC) 
antibiotics using density functional theory (DFT) and molecular dynamics (MD) 
simulations [54]. The less polar solvent environments and acidic medium aided TC 
adsorption efficiency on the graphene materials from their binding energies. Rosli and 
co-workers accessed the adsorption capability of commercially obtained graphene 
nanoplatelets (GNP) towards sulfamethoxazole (SMX) and acetaminophen (ACM) 
[55]. They found that the smaller surface area of commercially GNP C300 possessed 
more excellent adsorption capability towards SMX than GNP C750, which is ascribed 
to the clumping or aggregation. The molecular docking experiments led to negative 
binding energy indicated proving a spontaneous and exothermic adsorption. Wang 
and co-workers accessed the adsorption molecular mechanism of some pesticides 
(carbaryl, catechol, and fluridone) on GO using DFT, MD, and binding free energy 
calculation [56]. They discovered that π–π stacking and van der Waals were mainly 
involved in the adsorption interactions between GO and the pesticides. The findings 
enabled a molecular understanding of the adsorption mechanism and also provided
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easy visualization of the process. Foschi and co-workers accessed the adsorption of 
triazine using thermally reduced rGO films [57]. They carried out optimization using 
the design of experiment (DOE) and response surface methodology (RSM) to obtain 
the optimal adsorption parameters. The influence of epoxy and hydroxyl groups after 
reduction, in addition to the amine pendants on triazine rings, favoured adsorption 
via hydrogen bonding. Moreover, the adsorption is further enhanced via electrostatic 
interactions between the amino groups and oxygen-containing functionalities of the 
rGO. Based on the RSM analysis, the optimal GO reduction conditions were 110 °C 
for 24 h. The advantage of computational analysis enabled fewer preliminary tests 
to be conducted, saving product, cost, and time. 

The application of pure GO as an adsorbent often results in an aggregated form that 
must be separated from the solution using an elaborate high-speed centrifuge [58]. 
Hence, the usage of polymer matrix or crosslinkers to improve mechanical stability is 
often attempted. Additionally, these polymers provide additional functional groups 
that can establish chemical interactions with the micropollutants, enhancing adsorp-
tion effectiveness for those pollutants. In one instance, GO was mixed into an algi-
nate matrix for stabilization and to maximize the ease of recovery. When combined 
with divalent cations like Ca2+, alginate forms a hydrogel with excellent mechan-
ical characteristics [59]. GO/sodium alginate (SA) beads were recently studied for 
their adsorption of ciprofloxacin (CIP) [60]. It was found that the inclusion of GO 
enhanced the pore uniformity and reduced the pore sizes of the gels. Kinetic studies 
revealed that after incorporating GO, the adsorption capacity of SA composite gels 
increased approximately 7–9 times. The adsorption of TC antibiotics using GO/SA 
composite using Ca as the cross-linking agent prepared via freeze-drying was also 
recently reported [61]. The π–π interaction, hydrogen bonding, and electrostatic 
affinity all played essential roles in enhancing the adsorption performance during the 
adsorption of aromatic compounds. 

The typical heteroatoms for doping in graphene-based materials are S, B, P, and N 
[62]. The co-doping of heteroatoms can enhance reactivity in potential applications 
as they endow the graphitic structure with improved physicochemical and structural 
properties. Previously, the heteroatom-doped graphene materials have shown better 
adsorption performance towards dyes and oil [63]. However, in the case of EM 
adsorption, few studies were reported for their adsorption capability. The adsorption 
of bisphenol A (BPA) and bisphenol F (BPF) on N-rGO was reported to be 1.75 times 
in comparison to rGO due to the enhanced interaction with the lone pair electrons of 
the N in the graphene sheets [64]. The theoretical study in gas and aqueous phases 
for the adsorption of various analgesic pollutants using DFT showed that N-doped 
Gr nanosheets exhibited higher reactivity, adsorption, solvation, and stability [65, 
66]. The theoretical findings showed that N-doped Gr showed higher stability in 
aqueous media which is paramount in the environmental remediation applications. 
Pham and co-workers found that the doping concentration of N in graphene plays 
a vital role in the water absorption [67]. Their DFT calculations indicated that the 
binding energy of water showed a linear relationship with the doping content as it 
enriches the occupied states at the valence band maximum.
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Membrane-based technologies to remove EMs have also been regarded as another 
simple yet effective strategy to remediate various EMs in aqueous media. The usage of 
GO membrane for the rejection of various EMs has been previously reported [68, 69]. 
The common problem with GO-based membrane is often the swelling of membrane 
ascribed to the enlarged d-spacing, which hindered the formation of ordered lamellar 
structure. Hence, comprehensive strategies were employed to address the shortcom-
ings of GO membrane in pollutant remediation, such as functionalization. Valizadeh 
and co-workers studied the interlayer spacing of GO membrane using a β-Alanine 
(βA) crosslinker for the rejection of antibiotics [70]. Often, the interlayer spacing 
increased in aqueous media due to GO hydrophilic nature which rendered the 
membrane unstable. The chemical bonding of the crosslinker via the carboxylic 
acid and amine led to less swelling and improved membrane stability. 

Solid-phase extraction with magnetic separation (MSPE) allowed for ease of sepa-
ration via an external magnetic field. Magnetic hybrid adsorbents offer easy removal 
and rapid recycling compared to conventional solid-phase extraction [71, 72]. Hence, 
integrating magnetic-based NPs on a graphene hybrid composite has become a plau-
sible approach for EM removal at the trace level. However, in some instances, the 
adsorption performance may be reduced due to aggregation of the particles on the 
pores and saturated the available functionalities. The decoration of ferromagnetic 
α-Fe2O3 on graphene sheets prepared via thermal treatment decreased the adsorp-
tion of TC compared to bare rGO under pH 7 [73]. The modification of magnetic 
NP modified the electrostatic interaction of the rGO layers for effective interaction 
with the TC, hence the regressed adsorption capacity. In a recent study, a magnetic 
nanohybrid composed of Zr-MnFe2O4/GO has been prepared via hydrothermal and 
ultrasonication methods for the adsorption of perfluorinated acid (PFOA) and perflu-
orooctane sulfonic acid (PFOS), which is depicted in Fig. 3a [74]. The adsorption 
of the perfluorinated chemicals on the hybrid composite was pH-dependent, which 
abide by the PSO kinetic model and Langmuir isotherm. Due to protonation under 
acidic conditions, the prepared nanohybrid had a positive surface charge. The proto-
nated nanohybrid can efficiently adsorb the EMs via electrostatic interaction at pH 
3. The adsorption affinity towards PFOS is higher in comparison to PFOA as a result 
of hydrophobic interactions. In essence, perfluorinated chemical (PFC) compounds 
tend to form micelles and hemimicelles in water due to the C–F chain aggrega-
tions. Hence, they can be adsorbed more quickly, as shown in Fig. 3b. Bao and 
co-workers prepared a magnetic adsorbent based on MnFe2O4/rGO nanocomposite 
and studied their adsorption capability towards TC [75]. The adsorption kinetics 
and isotherm showed good agreement with the pseudo-second-order and Freundlich 
models, respectively. The adsorbent was quickly removed via external magnetic 
energy and then simply regenerated by washing with an acid solution. A recent 
study also accessed the efficiency of filter based on porous graphene (PG) column 
to adsorb various emerging contaminants [76]. These column studies served as an 
efficient way to test the feasibility of the additional treatment option. They varied the 
column configurations and accessed their adsorption performance. The increase of 
PG doses and higher filter configuration increased the effectiveness of EC removal.
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Herein, it can be seen that the adsorbent porosity, surface area, and functionalities 
played significant role in influencing the removal of various EMs. 

Fig. 3 a Zr-MnFe2O4@rGO nanohybrid synthesis protocol. b Schematic representation of 
adsorption behaviours of Zr-MnFe2O4@rGO towards PFC. Reprinted with permission from 
Elanchezhiyan et al. [74]. Copyright 2021 Elsevier
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4.2 3D Graphene-Based Composites 

As mentioned, the strong π–π stacking interaction between 2D graphene sheets 
often leads to aggregation, hence reducing its adsorption capability. The transforma-
tion of two-dimensional (2D) to three-dimensional (3D) graphene via hydrothermal 
[77–81], self-assembly using chemical reductants [82, 83], and freeze-drying [84] 
prevents the sheets from clumping together and makes it easier for contaminants to 
diffuse and adsorb. After adsorption, the 3D structure can help separate solids from 
liquids more easily. There are far more advantages for 3D graphene than for 2D 
graphene in water pollution treatment [85]. 3D graphene-based graphene materials 
have exhibited amazing micropollutant adsorption, attributed to their macroscopic, 
highly porous structures. In terms of recyclability, 3D graphene possessed a superior 
advantage in comparison to its 2D form. The preparation of 3D crumpled graphene 
oxide balls (GCBs) prepared by droplet generated method and thermal annealing 
was recently reported to possess up to 8 times higher adsorption capacity for various 
micropollutants in comparison to granular activated carbon (GAC) [86]. Figure 4 
depicts the SEM image of the crumpled ball morphology and its removal percentage 
of selected micropollutants. The six times less specific area of GCB in comparison to 
GAC showed that it was still able to remove most of the micropollutants with >90% 
removal efficiency in 15 min. The enhanced adsorption capability of GCB is attributed 
to the oxygenated functional groups and improved dispersion in media and excess 
hydrogen bonding interactions. The GCBs have preserved many oxygen-functional 
groups and are amphiphilic due to the lower thermal annealing (150 °C). The 
hydrophilic GCB surface is less prone to aggregation and disperses more readily in 
water, facilitating interactions with micropollutants. In addition, the electron donor– 
acceptor (EDA) interactions contributed to the adsorption process. The oxygen func-
tionalities on CGB are posited to enhance both π-electron depleted and rich regions, 
favourable for π-electron-donating or π-electron-withdrawing micropollutants.

As mentioned previously, functionalization on graphene sheets has been regarded 
as one of the most effective methods to improve micropollutants’ adsorption perfor-
mance [87]. The enhanced adsorption performance towards bisphenol A (BPA) was 
recently reported using a 3D N, P, and S co-doped graphene-like adsorbent mate-
rial [88]. There are a variety of organic micropollutants that cyclodextrin (CDs) 
are good at capturing due to host–guest interactions and non-covalent interactions 
[89–91]. Nie and co-workers assessed the performance of 3D CD self-assembled 
GO aerogel microspheres (CD-GAM) for the adsorption of several organic microp-
ollutants, namely 2,4-dichlorophenol, propranolol hydrochloride, ethynyl estradiol, 
and bisphenol A [92]. The self-assembly preparation of CD and GO aerogel was 
described in Fig. 5. The SEM micrograph showed that the aerogels were spherical 
with a porous framework. The inclusion of the CD is evident from the additional 
layer formed on the spherical structure of GAM. They found that the supramolecular 
activity of CD plays an essential role in improving adsorption capacity because the 
qe values are higher than those of GAM and activated carbon combined.
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Fig. 4 SEM image of GCB and the removal percentage of selected micropollutants. Reprinted with 
permission from Fu et al. [86]. Copyright 2021 Elsevier

A critical aspect of a promising adsorbent is that it can be reused multiple times 
without a significant reduction in its performance [93]. Zhu and co-workers prepared 
a UV regenerable 3D adsorbent based on covalent triazine framework (CTF), GO, 
and PVA for the adsorption of various benzophenone pollutants [94]. The prepara-
tion of the 3D adsorbent with varying pore sizes is shown in Fig. 6a, while the water 
swelling and shape recovery test is depicted in Fig. 6b–e. The control of the pore size 
of the 3D adsorbent was achieved by varying the molecular weight of the PVA. The 
irregular pores of the 3D adsorbent prevented aggregation of GO sheets, inadvertently 
exposed adsorption sites via the π–π EDA interactions. A seven-day adsorptive cycle 
of the multifunctional adsorbent in natural water shows that it is stable and universal, 
with an 86.0% regeneration rate. In another study, Xu and co-workers synthesized a 
photoregenerable 3D nanosized adsorbent (rGC) via the cyano-functionalization on 
the rGO surface for the adsorption of aromatic contaminants [95]. The functional-
ized graphene adsorbent was prepared using various amounts of 1,4-dicyanobenzene 
ranging from 10 to 50 mg. The covalent triazine framework between the rGO layers 
increased the space expansion, which enables higher adsorption capabilities towards 
naphthalene and benzophenone. They posited that the contained microenvironment 
provided for the diffusion of the pollutant in their porous surface and confined in 
the nanospaces. Figure 6(f) depicts the regeneration process under sunlight irradia-
tion of the graphene composite adsorption. The excellent regeneration rate (91.24%) 
after four rounds of adsorption can be ascribed to the easy electron excitation, elec-
tron–hole separation, and surface reaction. The preparation of double-network (DN) 
hydrogel of amino-functionalized alginate/graphene was reported to enhance the 
adsorption of ciprofloxacin (CIP) up to 182% in comparison to ordinary single-
network hydrogel [96]. The double-network hydrogel was prepared with the addition 
of triethylenetetramine (TETA) as the crosslinkers. The findings suggested that the 
adsorption of CIP inclined to a chemisorption route. The NH2-DN surface has ample
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Fig. 5 SEM micrographs of a, b GAM and c, d CD-GAM in different magnification. e Preparation 
scheme of CD-GAM. Reprinted with permission from Nie et al. [92]. Copyright 2021 Elsevier
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amino groups because of the TETA modification. Additionally, hydrogen donors 
contributed by the H atoms in CIP’s hydroxy groups facilitated the easy interac-
tion. Hydrogen bonding can occur between the amino and carboxyl groups of the 
adsorbent because the N atoms act as hydrogen bonding acceptors.

A hybrid microsphere composite composed of GO and cross-
linked polyvinylpyrrolidone (GO/PVPP) was developed for the adsorption of 
2,4,6-trichlorophenol (2,4,6-TCP) in one investigation [97]. In this study, the 
adsorption of micropollutants such as ofloxacin and ciprofloxacin was attempted on 
a GO/biopolymer aerogel prepared by embedding or coating GO in the adsorbent 
framework [98]. Embedding and coating are effective methods of harnessing GO 
adsorption capability through hydrophobic interactions (GO-organics). When it 
comes to enhancing antibiotic elimination efficacy, it appears that the amount 
of GO played the most crucial role. The adsorption performance in actual water 
samples often differs from laboratory experiments which can be ascribed to the 
presence of solid particles, metal ions, organic matter, and other pollutants which 
may affect adsorption. The pore-blocking by suspended particles may inherently 
affect the adsorption performance. Yuan and colleagues accessed the adsorption 
of polystyrene microplastics on 3D rGO, which exhibited a maximum adsorption 
capacity of 617.28 mg/g for polystyrene (PS) microplastics which was influenced 
by various experimental conditions [99]. The principal mechanism of adsorption is 
ascribed to the strong π–π interactions between the aromatic rings of the rGO and 
the PS. The adsorption abided well to the Langmuir adsorption isotherm model and 
pseudo-second-order kinetic model. In addition, PS microplastic adsorption was 
spontaneous and endothermic process from the thermodynamic studies. 

Table 1 compares the adsorption capacities of several graphene-based adsorbents 
for selected micropollutants based on current literature reported. The comparison 
between the efficiency of EMs depends mainly on the surface functionalities. It is 
summarized that π–π interactions, cation–π, EDA-π, electrostatic forces, or H– 
bonding are among the commonly reported interactions to occur in the adsorption 
process. Graphene-based materials, especially in their 3D dimension, could be an 
effective and promising adsorbent due to their physical and surface properties in 
real-time analysis. All of the graphene as mentioned above and related composite 
for adsorption is restricted to batch adsorption experiments.

5 Conclusion and Future Outlook 

The growing number of reports focusing on graphene-based materials and their 
composites shows that they are emerging as promising candidates for excellent adsor-
bents towards EMs. Various pollutants such as PPCP, antibiotics, industrial chemi-
cals, and pesticides could be adsorbed on graphene-based materials and their compos-
ites efficiently. Fortunately, derivatives of Gr such as GO, rGO, and GNP offered an 
excellent candidate for use in the design of multifunctional adsorbents, eliminating 
the need to use graphene in its pure form, which had been plagued by manufacturing
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Fig. 6 a Schematic illustration of the preparation of the 3D adsorbents with different pore sizes. b–e 
Water swelling and shape recovery test of the adsorbent. Reprinted with permission from Zhu et al. 
[94]. Copyright 2021 Elsevier. f Removal mechanism and regeneration under sunlight irradiation. 
Reprinted with permission from Xu et al. [45]. Copyright 2021 Elsevier
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Table 1 Recent highlights of laboratory-scale adsorption performance of selected EMs using 
graphene-based materials/composites 

Adsorbent Selected 
micropollutants 

Adsorption 
capacity 

Adsorption 
kinetics, 
isotherm 

Additional comments 

MnFe2O4/rGO 
[75] 

Tetracycline (TC) 41 mg/g PSO, 
Freundlich 

• The adsorption of TC 
was influenced by the 
molecular structure of 
TC and rGO 

• The magnetic 
component of 
MnFe2O4 enabled 
easy recycling of the 
adsorbent 

Magnetic/GO 
(MGO) [100] 

Chlortetracycline 
(CTC) 
Oxytetracycline 
(OTC) 
Tetracycline (TC) 

303.95 mg/g 
289.86 mg/g 
141.44 mg/g 

PSO, 
Freundlich 

• The adsorption 
followed a 
spontaneous and 
endothermic process 

• MGO possessed 
higher adsorption 
efficiency for CTC 
under alkaline pH 

GO [101] Bisphenol A 
(BPA) 

49.26 mg/g PSO, 
Freundlich 
/Langmuir 

• π–π interactions 
mainly drive BPA 
adsorption on GO 

• Poor BPA adsorption 
is due to hydrogen 
bond formation with 
water molecules 

GO [102] Metformin 49.62 mg/g PSO, 
Freundlich 

• Metformin adsorption 
increased in acidic 
pH values from 4.0 to 
6.0 and decreased 
from pH 6.0 to 11.0 

• The adsorption 
followed a 
spontaneous and 
exothermic process 

• π–π interactions and 
hydrogen bonds 
posited to be the main 
adsorption 
mechanism 

GO [103] Chlorpyrifos 
Malathion 

98.04 mg/g 
1666.67 mg/g 

PSO, 
Langmuir 

• Interactions of EMs 
with adsorbents 
mainly through 
H-bonding

(continued)
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Table 1 (continued)

Adsorbent Selected
micropollutants

Adsorption
capacity

Adsorption
kinetics,
isotherm

Additional comments

Magnetic rGO 
(MPrGO) [104] 

Triclosan (TCS) 1105.8 mg/g PSO, 
Langmuir 

• Adsorption efficiency 
decreased with an 
increase in pH 

• MPrGO possessed a 
higher affinity than 
AC in WWTP 
effluent 

GO 
Nanopowder 
[105] 

Naproxen (NPX) 21.93 mg/g PSO, 
Freundlich 

• The adsorption 
followed a 
spontaneous and 
exothermic process 

Magnetic rGO 
(MPrGO) [106] 

Sulfadiazine 
(SDZ) 

6.26–6.74 μg/g PSO, 
Langmuir 

• The efficient 
adsorption and 
recyclability of 
MrGO are ascribed to 
the 3D interconnected 
petal-like structure 

Gr [107] Bisphenol A 
(BPA) 
Triclosan (TCS) 

2.0 × 103 μg/g 
11.60 μg/g 

PSO, 
Langmuir 
PSO, 
Freundlich 

• Similar maximum 
sorption capacities 
(qm) of BPA  on  Gr  or  
AC 

•  In comparison to AC,  
Gr has a lower 
adsorption capacity 
for TCS 

rGO [108] Nimesulide (NM) 82.4 mg/g General 
order, Liu 

• π–π interactions are 
posited to be the main 
adsorption 
mechanism 

• Functionalized rGO 
showed hydrogen 
bonding with NM 
(especially carboxyl) 

3D rGO [109] Naproxen (NPX) 
Ibuprofen (IBP) 
Diclofenac (DFC) 

357 mg/g 
500 mg/g 
526 mg/g 

PSO, 
Langmuir 

• The interaction with 
the drugs involved 
EDA interactions, 
H-bonding, and 
π-hydrogen bonding

(continued)
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Table 1 (continued)

Adsorbent Selected
micropollutants

Adsorption
capacity

Adsorption
kinetics,
isotherm

Additional comments

3DGNP/BN 
[110] 

Ciprofloxacin 
(CIP) 

185 mg/g PSO, 
Langmuir 

• BN and GNP 
possessed selective 
adsorption towards 
CIP. The –COO 
and –CO were 
adsorbed on the BN 
nanosheets and GNP 

• GNP/BNA exhibited 
good recycla-
bility properties 

Gr wool [111] Efavirenz (EFV) 
Nevirapine (NVP) 

4.41 mg/g 
48.31 mg/g 

IPD, Sips 
PSO, 
Freundlich 

• EPV and NVP 
adsorptions are 
spontaneous 
exothermic and 
endothermic, 
respectively 

GO [112] Carbamazepine 
(CBZ) 

9.2 mg/g PSO, 
Temkin 

• The adsorption is 
spontaneous and 
endothermic, 

• Adsorbent could be 
reused up to 8 times, 

BN—boron nitride; PSO—pseudo-second-order model kinetic model; IPD—intraparticle diffusion; 
Liu—Liu isotherm model

issues. In addition, the conversion to 3D graphene composite has been shown to offer 
the advantage of easy removal. Lately, polymeric compounds or crosslinkers have 
been mixed with graphene sheets to improve the stability/mechanical properties of 
the adsorbent. The functional adsorbents are enhanced by the inclusion of magnetic 
NP and supramolecular compounds such as CD. However, this research is still in 
its early stages, and several obstacles must be overcome before these materials can 
be used as adsorbents in real-world applications. Present studies have elucidated 
that pH inherently is vital in the adsorption process, among others, such as initial 
concentration of adsorbate, temperature, and contact time. The adsorbent surface 
characteristics and the ionization state of adsorbates are greatly affected by the solu-
tion’s pH, which substantially impacts the electrostatic interactions with the EMs 
[113]. An assessment of the toxic properties of graphene composite is one of the 
more critical aspects from the standpoint of health and well-being. The leaching of 
materials will eventually find its way into the aquatic systems, which are possible due 
to the available functional groups. Previously, there was mounting evidence that the 
accumulation of graphene materials in the marine environment may result in bioac-
cumulation [114, 115]. As a result, studies to determine the release and leaching of 
graphene materials and their composites are critical. The understanding of micropol-
lutant adsorption using graphene-based materials is far from perfect and continually
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developing. In addition, computational simulation methods have also gained traction 
as an innovative tool in studying the adsorption process at an atomic level. Many 
previous types of research have attempted various models to access the adsorption 
behaviour of various pollutants [116–118]. It is possible to anticipate the adsorption 
affinities of different EMs on graphene nanomaterials using multiple models. To date, 
many research suggestions have been offered to bring added value to future research 
[119–122]. Future studies may delve deeper into specific areas to address some of 
the more complex problems. Graphene-based adsorbents have variable adsorption 
capacities for different EMs, in which understanding the selectivity has only been 
studied in a few papers. As of now, no detailed research has been done on the selec-
tivity performance, and the physical mechanisms underlying such selectivity results 
are still a mystery. Adsorbed EMs must be recycled to prevent environmental damage, 
and photogeneration has shown to be a feasible yet cost-effective way. The future 
adsorbent design will benefit from knowing more about bonding behaviours and inter-
molecular interactions obtained using spectroscopy and microscopy. Because of this, 
we will have a better understanding of macroscale adsorbent system performance, 
such as thermodynamics and kinetics. Finally, this write-up is hoped to provide 
a comprehensive yet concise overview of graphene-based materials for effective 
adsorbent in the removal of EMs. 
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Chapter 21 
Response Surface Modelling 
and Optimisation of Activated Carbons 
Adsorption of Pollutants from Textile 
Wastewater 

Chinenye Adaobi Igwegbe, Joshua O. Ighalo, Kingsley O. Iwuozor, 
Okechukwu Dominic Onukwuli, and Adewale George Adeniyi 

1 Introduction 

The textile industry is notorious for emitting massive quantities of wastewater 
polluted with a wide range of chemicals [1, 2]. It uses a huge amount of water 
and chemicals during its processes [3]. Textile dyes such as congo red, vat yellow 
and malachite are toxic to the aquatic entities when waters containing these dyes are 
discharged to the environment [4, 5]. They can also trigger unnatural-looking condi-
tions in the receiving waters. They also obstruct the oxygen that enters the bodies of 
water. Also, a low dye content in water is unacceptable for agricultural, municipal, 
and industrial applications [6]. Dyes can damage human organs such as the brain, 
liver, and kidneys, as well as cause central nervous system disorder and skin irritation 
[3, 7]. 

Many methods were used by past researchers for the removal of dyes from effluents 
including coagulation [8–11], electrocoagulation [8, 12, 13], advanced oxidation [14– 
17], biological treatment [18–21], membrane filtration [22–25], bioremediation [26– 
29], phytoremediation [30–33] and adsorption [34–36]. However, the most popular
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and validated process is adsorption for the elimination of textile dyes in terms of cost 
[37, 38]. Adsorption is conveniently combined with other treatment technologies [39, 
40] such as advanced oxidation [41] and membrane filtration for dyes elimination. 
Adsorption is low cost and does not produce sludge [39, 42, 43]. 

Dye sorption processes have been implemented through the use of metallic 
nanoparticles [44–46], nanocomposites [41, 47, 48], nanotubes [49], carbon [36, 
50], raw biomass [4, 5, 51], clay [52], biochar [53–56], and polymers [57, 58]. Acti-
vated carbon (AC) is an excellent adsorbent since it is extremely porous and has a 
wide surface area for pollutants to be adsorbed [59]. Because of its low cost, tunable 
pore size, enormous high porosity, and high adsorptive capacity, activated carbon is 
the most commonly used adsorbent [39]. 

The global consumption of activated carbon is estimated to be around 275,000 
tonnes per year. The efficiency of this carbon for the treatment process can be 
improved by activation, which can be done chemically or physically which increases 
the pore sizes available for faster adsorption [60]. The rapidity of pollutant uptake 
is favoured by larger pore sizes, and likewise [42, 61]. Kumar et al. [62] discov-
ered that having a substantial percentage of pores in the mesoporous range boosts 
adsorption uptake capacity considerably. The study discovered that pores larger than 
10 nm improve adsorption kinetics. Chemical modification of carbon aids in the 
introduction of new functional groups or the intensification of existing important 
groups on the material; it also aids in the removal of dwelling groups in the carbon 
that may interfere with its performance. Another method is to pulverise the carbon 
particles, which helps to enhance the surface area and accessibility to the active sites 
for contaminants sorption [63]. A higher adsorption capacity is associated with a 
larger surface area [64]. Apart from the carbon’s characteristics, other factors that 
can improve pollutant adsorption on activated carbon include pH, adsorption dura-
tion, temperature, carbon dosage, and pollutant concentration. Amongst all these 
factors listed, pH is the most important process component that can directly impact 
the adsorption of pollutants by adsorbents because it affects the degree of pollutant 
ionisation as well as the surface characteristics and functional groups of the carbon 
[65, 66]. It also has an impact on the adsorption mechanism [65]. The contact time 
has a significant impact on adsorption processes and adsorption kinetics. Temper-
ature affects the kinetics and thermodynamic properties of the process; it speeds 
up the mobility of the pollutants. The dose of carbon is also important; when the 
proper dose of carbon is used, it improves the degree of adsorption; however, when 
the pollutant concentration rises, the effectiveness of adsorption decreases owing 
to oversaturation of the employed carbon [67]. As a result, a balance between the 
quantity of carbon dosage and the concentration of the pollutant is needed. 

Adsorption has the drawback that adsorbent recycling is expensive, time-
consuming, and damages the pores of the adsorbent [39, 44]. To remove solid 
hazardous wastes and ensure long-term development, it is necessary to regenerate 
used adsorbents. This is one of the issues that the world faces when it comes 
to disposing of solid wastes, including wasted adsorbents [68]. Because of the 
cost-efficient but effective regeneration procedure, solvent desorption is the best 
alternative.
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As per our search of the literature, no author has implemented a historical design 
based on data collected from textile wastewater treatment using ACs. As a result, an 
intriguing knowledge void exists, emphasising the study’s novelty. Thus, the data on 
textile wastewater treatment using ACs were modelled and analysed via (response 
surface methodology (RSM) and historical data design (HDD) on Design expert 
software. Operating factors considered in the study were AC’s surface area, particle 
size, initial pH, dosage of AC, solution temperature, adsorbate concentration and 
contact time. The percentage dyes elimination was the main parameter (response) 
investigated. The use of agro biomass aids in the reduction of waste in the environment 
by generating a profitable commodity, AC, by activation and carbonisation processes. 

2 Methods 

2.1 Development of Research Dataset 

The activated carbon was developed from Mucuna pruriens seeds, Hevea brasiliensis 
seed shells and Dacroydes edulis seeds. The biomass samples were cleaned with 
distilled water and oven dried for 8 h at 105 °C. They were then ground, sieved 
(1–2 mm), and stored in a sealed container. The specific surface area of the AC was 
varied by using various activation techniques. And, these were by NaOH and H3PO4. 
The activation agent (60% or NaOH or 60% H3PO4) was used to soak the sample for 
24 h at 25 ± 2 °C. They were carbonised at 300 °C for 3 h after wet impregnation 
in a muffle furnace (Model SX-2.5-10, Tianjin Taisete Instrument Co., Ltd., China). 
The carbonised sample was rinsed until there was no pH change. It was filtered and 
oven dried for 8 h at 105 °C. They were then cooled to room temperature, sieved to 
various particle sizes, and sealed in a container. The method described by Nwabanne 
and Igbokwe [69] was used to calculate the specific surface area. 

The adsorbate for the study were Vat yellow 4 (λmax = 498 nm, molecular mass = 
332.35 g/mol, chemical formula=C24H12O2), Congo red (λmax = 419 nm, molecular 
mass = 696.66 g/mol, chemical formula = C32H22N6Na2O6S2) and Malachite green 
(λmax = 618 nm, molecular mass = 364.91 g/mol, formula = C23H25ClN2) manu-
factured by LOBA Chemie (PVT Ltd., India). All adsorbates were of high analytical 
quality. The investigation was conducted by batch adsorption experiments. A UV– 
vis spectrophotometer was used to determine the final dye concentration after uptake 
(Model UV–VIS 754). The dye removal efficiency was determined using Eq. 1. 

RE% = C0 − Ce 

C0 
× 100 (1) 

where C0 is the initial dye concentration (mg/L) and Ce is the final dye concentration 
of its solution (mg/L).
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Table 1 Designation of factors and response 

S/N Designation Code Data Unit Data band 

1 Factor 1 A Specific surface area m2/g 735 < x < 999 

2 Factor 2 B Particle size (mm) mm 0.3 < x < 1.5  

3 Factor 3 C Dosage G 0.5 < x < 2.0  

4 Factor 4 D Initial conc mg/L 100 < x < 500 

5 Factor 5 E Time Min 10 < x < 150 

6 Factor 6 F Temperature °C 30 < x < 50  

7 Factor 7 G pH – 2 <  x < 10  

8 Response RE% Dye removal efficiency % 

The factors investigated were adsorbent specific surface area (in m2/g), adsorbent 
particle size (in mm), adsorbent dosage (in g), initial dye concentration (in mg/L), 
contact time (in min), temperature (in °C) and pH. The dataset for this modelling 
study is shown in the supplementary material for VY4 (Table S1), CR (Table S2) 
and MG (Table S3). Each table consisted of 354 lines of datum. 

2.2 Response Surface Modelling 

Response surface methodology (RSM) on Design Expert v11.0 (Stat Ease Inc., 
Minneapolis, USA), was used to statistically analyse and model the input data. RSM 
is a powerful statistical optimisation tool used for numerous environmental engi-
neering investigations [44, 70, 71]. The data was inputted based on Historical Data 
Design (HDD). HDD is flexible because it allows the researcher to develop the data 
design and specify the size of the chosen input [72, 73]. The inputted design was 
modelled by the software and the statistical significance was verified by ANOVA 
(analysis of variance) at a significance level of p < 0.05. The model was used to 
investigate the interaction of factors. Several factors were investigated in this study. 
These were summarised in Table 1. 

2.3 Numerical Optimisation 

Numerical optimisation was done using the ‘optimisation’ selection on Design Expert 
v11.0. The goal of the numerical optimisation was to maximise removal efficiency 
while maintaining all process variables within the parameters that were examined. 
The term ‘numerical’ indicates that the process is an iterative one [74, 75] that seeks 
to achieve a desirability value of unity.
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3 Results and Discussion 

3.1 ANOVA and Model Accuracy 

To establish the relationship between the factors and dependent variables within 
the domain, the ANOVA was done using the quadratic model and all its associated 
model terms at p less than 0.05 [76]. The p-value can be described as the probability 
of rejecting a null hypothesis and values [77]. Prob > F greater than 0.10 indicates the 
model terms were insignificant while values less than 0.05 indicate the model terms 
were significant [77]. From the ANOVA in Tables 2, 3 and 4, the three RSM models 
were statistically significant. It was also observed that the independent variables were 
all significant except for the variables; specific surface area and pH of MG having p-
values of 0.3382 and 0.5110, respectively. This implies that all factors or independent 
variables studied had specific impacts on the removal efficiency except for specific 
surface area and pH of MG. However, there were no multiple effects present. From 
the F-value as shown in Tables 2, 3 and 4, it is expected that the response of removal 
efficiency would be most affected by the variables: initial concentration, pH, and 
particle size, respectively, for VY4, CR and MG. 

The positive sign in front of the terms indicate the presence of the synergistic 
effect of the independent variables rather than an antagonistic effect depicted by the 
negative sign in front of the terms [78, 79]. The mathematical expressions for the 
relationship between removal efficiency and the seven independent variables; specific 
surface area, particle size, dosage, initial concentration, time, temperature and pH are 
shown in terms of coded factors in Eqs. 2–4. The levels for the independent variables

Table 2 ANOVA for VY4 model 

S/N Source Sum of squares df Mean square F value p-value 
Prob > F 

1 Model 22,731.12 7 3247.30 101.16 < 0.0001 Significant 

2 A-Specific 
surface area 

6438.18 1 6438.18 200.56 < 0.0001 

3 B-Particle size 3985.40 1 3985.40 124.15 < 0.0001 

4 C-Dosage 538.37 1 538.37 16.77 < 0.0001 

5 D-Initial conc 8116.38 1 8116.38 252.84 < 0.0001 

6 E-Time 1128.44 1 1128.44 35.15 < 0.0001 

7 F-Temperature 252.47 1 252.47 7.86 0.0053 

8 G-pH 1158.96 1 1158.96 36.10 < 0.0001 

9 Residual 11,106.75 346 32.10 

10 Lack of fit 10,296.96 294 35.02 2.25 0.0003 Significant 

11 Pure error 809.79 52 15.57 

12 Cor. total 33,837.87 353
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Table 3 ANOVA for CR model 

S/N Source Sum of 
squares 

df Mean square F value p-value 
Prob > F 

1 Model 56,772.22 7 8110.32 90.75 <0.0001 Significant 

2 A-Specific 
surface area 

1061.01 1 1061.01 11.87 0.0006 

3 B-Particle size 10,244.08 1 10,244.08 114.63 <0.0001 

4 C-Dosage 7490.30 1 7490.30 83.81 <0.0001 

5 D-Initial conc 361.26 1 361.26 4.04 0.0451 

6 E-Time 973.44 1 973.44 10.89 0.0011 

7 F-Temperature 1512.01 1 1512.01 16.92 <0.0001 

8 G-pH 14,648.59 1 14,648.59 163.91 <0.0001 

9 Residual 30,921.98 346 89.37 

10 Lack of fit 23,291.40 294 79.22 0.54 0.9992 Not significant 

11 Pure error 7630.58 52 146.74 

12 Cor. total 87,694.20 353 

Table 4 ANOVA  for MG model  

S/N Source Sum of 
squares 

df Mean square F value p-value 
Prob > F 

1 Model 6023.56 7 860.51 70.28 <0.0001 Significant 

2 A-Specific 
surface area 

11.26 1 11.26 0.92 0.3382 

3 B-Particle size 3118.83 1 3118.83 254.72 <0.0001 

4 C-Dosage 330.60 1 330.60 27.00 <0.0001 

5 D-Initial conc 156.12 1 156.12 12.75 0.0004 

6 E-Time 1183.21 1 1183.21 96.63 <0.0001 

7 F-Temperature 203.45 1 203.45 16.62 <0.0001 

8 G-pH 5.30 1 5.30 0.43 0.5110 

9 Residual 4236.50 346 12.24 

10 Lack of fit 3576.57 292 12.25 1.00 0.5149 Not significant 

11 Pure error 659.93 54 12.22 

12 Cor. total 10,260.06 353

are 735 < A < 999, 0.3 < B < 1.5, 0.5 < C < 2.0, 100 < D < 500, 10 < E < 150, 
30 < F < 50, and 2 < G < 10. 

VY4 RE% =140.6 − 0.0048A − 25.55B + 3.193C − 0.0438D 
+ 0.0596E + 0.0969F − 1.417G (2)
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CR RE% =78.23 + 0.02A − 40.67B + 13.47C − 0.0092D 
+ 0.0553E + 0.02322F − 4.959G (3) 

MG RE% =97.81 + 0.0022A − 22.21B + 2.321C − 0.006D 
+ 0.0609E + 0.0841F − 0.0654G (4) 

where A is adsorbent specific surface area (in m2/g), B is adsorbent particle size (in 
mm), C is adsorbent dosage (in g), D is dye initial concentration (in mg/L), E is 
contact time (in min), F is temperature (in °C) and G is pH. 

Equations 2–4 were modified through the elimination of the statistically insignif-
icant terms. The insignificant terms are variables that show no observable relation-
ship with the responses either by increasing or decreasing the response strength. The 
reason for this elimination is to obtain a more accurate model that best describes the 
effect of the factors [80]. All factors in Eqs. 2 and 3 are statistically significant and 
so their equations remain unchanged, but factors A and G in Eq. 4 are statistically 
insignificant. Withdrawing them from the model, the final models are now given in 
Eq. 5–7. 

VY4 RE% =140.6 − 0.0048A − 25.55B + 3.193C − 0.0438D 
+ 0.0596E + 0.0969F − 1.417G (5) 

CR RE% = 78.23 + 0.02A − 40.67B + 13.47C − 0.0092D 
+ 0.0553E + 0.02322F − 4.959G (6) 

MG RE% = 97.81 − 22.21B + 2.321C − 0.006D + 0.0609E + 0.0841F (7) 

If a model has a significant regression and a non-significant lack of fit, it is consid-
ered to be well-fitted to the experimental data [81]. The ANOVA results depicted the 
adequacy of the quadratic model to predict CR and MG dye removal within the 
various variable levels studied. This was further strengthened by the p-value of the 
lack of fit for both the CR and MG models which was more than 0.05 (not signifi-
cant), which implies that the model fits the experimental data. Even though all the 
models are statistically significant, the p-value for lack of fit for the VY4 model was 
significant (0.0003) and depicts that the model does not fit the experimental data 
well. The parity plot in Fig. 1a–c reveals that there is a close match between the 
model predictions and actual results [82, 83].
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Fig. 1 Parity plots for VY4 model (a), CR model (b) and MG model (c) 

3.2 Response Surfaces of Factor Interactions 

Response surface plot for single influence of specific surface area on the elimination 
efficiency of the dyes is presented in Fig. 2a–c while keeping other factors constant 
(adsorbent size = 0.9 mm, dose = 0.85 g, initial concentration = 300 mg/L, time = 
80 min, temperature = 40 °C and pH of 6). As can be seen from the plots, the dyes 
reacted differently to changes in the surface area of the carbon and this impacted the 
removal efficiency. As stated, the specific surface area had no observable impact on 
the removal efficiency of MG and this is also observed in Fig. 2c. It was observed 
that as the specific surface area of the carbon was increased, the removal efficiency of 
VY4 dye decreased. There is a general conception that the higher the surface area of 
an adsorbent, the better its adsorption properties [72, 84]. This assumption does not 
hold at all times because not all of the total surface area of an adsorbent is accessible 
for the adsorption of molecules in some applications [85, 86]. Micropores are very
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much responsible for the large surface area of activated carbons as determined by 
nitrogen adsorption [87] and then the reduction in removal efficiency may be due to 
the high molecular weight of VY4 dye which requires an activated carbon with high 
mesoporosity as removal efficiency is also directly related to secondary micropores 
and mesopores of activated carbon [85, 88]. By increasing the surface area of the 
adsorbent, it was revealed that the removal efficiency of CR was increased. The 
reason for this increase may be due to the corresponding rise in the amount of active 
or adsorbing sites on the carbon surface [89, 90]. 

Particle size is a phenomenon related to noticeable changes in the physical as well 
as chemical characteristics of an adsorbent as a result of the reduction of its particles 
[91, 92]. The effect of activated carbon particle size on removal efficiency was also 
studied for the dye samples at specific surface area = 867 m2/g, dosage = 0.85 g, 
initial concentration = 300 mg/L, time = 80 min, temperature = 40 °C and pH = 6

Fig. 2 Effect of specific surface area (A) on the  removal of VY4  (a), CR (b) and MG (c), obtained 
from RSM one factor analysis at B = 0.9 mm, C = 0.85 g, D = 300 mg/L, E = 80 min, F = 40 °C 
and G = 6 
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as shown in Fig. 3a–c. From the plot, there is an inverse proportionality relationship 
between the particle size and the removal efficiency for the three dyes under study. 
As stated above, the removal efficiency of MG is greatly affected by the particle size 
and this is further buttressed in Fig. 3c. The relationship between removal efficiency 
to the particle size of the activated carbon is dependent on the chemistry/chemical 
behaviour of the dye in question as well as the intrinsic characteristics of the activated 
carbon [93]. The noticed increase in the removal efficiency as the particle size was 
decreased could be due to the rise in the activated carbon surface area in addition to 
the overall pore volume accessible for dye removal [94]. Also, it could be due to the 
increase in the adsorbent’s pore diameter which permitted easier contact of the dye 
molecules into the activated carbon structure [95, 96]. 

The plot of removal efficiency against adsorbent dosage as given in Fig. 4a–c 
shows that adsorbent dosage is one of the independent variables that can alter the dye

Fig. 3 Influence of sorbent size (B) on the removal of VY4 (a), CR (b) and MG (c), obtained from 
RSM one factor analysis at A = 867 m2/g, C = 0.85 g, D = 300 mg/L, E = 80 min, F = 40 °C and 
G = 6 
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removal efficiency. The study was performed at conditions of specific surface area = 
867 m2/g, Adsorbent particle size = 0.9 mm, initial concentration = 300 mg/L, time 
= 80 min, temperature = 40 °C and pH = 6. The plot shows that removal efficiency 
increases as the adsorbent dosage is increased for the three dye samples under study. 
Of the three dyes, the removal efficiency of MG is greater than that of VY4 and CR 
as shown in the plot with changes in the activated carbon dosage. The reason for the 
increase in removal efficiency as the adsorbent dosage is increased may be due to 
the increase in surface active sites on the activated carbon for adsorption [97, 98]. 

Altering the dye initial concentration can alter the mass gradient between the 
activated carbon and the dyes and thereby alter the removal efficiency [99]. The 
impact of initial dye concentration on the removal efficiency was studied at specific 
surface area = 867 m2/g, Adsorbent particle size = 0.9 mm, dosage = 0.85 g, time = 
80 min, temperature = 40 °C and pH = 6. It was observed that the removal efficiency

Fig. 4 Influence of sorbent dose (C) on the  removal of VY4  (a), CR (b) and MG (c), obtained from 
RSM one factor analysis at A = 867 m2/g, B = 0.9 mm, D = 300 mg/L, E = 80 min, F = 40 °C 
and G = 6 
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reduced as the dye initial concentration was increased within the levels of initial dye 
concentration under study. From Fig. 5a–c, it was observed that the removal efficiency 
of VY4 dye was greatly affected by the change of its initial concentration than the 
other two dyes. This supports the claim as stated above that of all the independent 
factors, initial dye concentration affects the response for VY4 the most. The observed 
trend may be caused by the proportionate number of vacant sites on the activated 
number to the dye molecules at low initial dye concentration and the saturation of 
these active sites at a high concentration which would lead to repulsive interactions 
between the dye molecules on the solid and bulk phases leading to the observed 
decrease in the removal efficiency [67, 100]. 

The effect of contact time on removal efficiency was studied at conditions of 
specific surface area = 867 m2/g, adsorbent particle size = 0.9 mm, dosage = 0.85 g, 
initial concentration = 300 mg/L, temperature = 40 °C and pH = 6. The removal

Fig. 5 Effect of dye initial concentration (D) on the elimination of VY4 (a), CR (b) and MG (c), 
obtained from RSM one factor analysis at A = 867 m2/g, B = 0.9 mm, C = 0.85 g, E = 80 min, F 
= 40 °C and G = 6 
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efficiencies of the three dyes were affected similarly by contact time as observed 
from Fig. 6a–c. From the plot, it was noticed that the removal efficiency for the 
dyes increased with prolonging the time of contact between the activated carbon and 
adsorbate. This could be due to the movement of the dye molecules into the pores of 
the activated carbon which causes them to be adsorbed by the interior surfaces of the 
solid particles when the exterior surface of the activated carbon has been saturated 
as time progressed [93, 101]. 

The relationship between dye removal efficiency for the three dyes with temper-
ature at specific surface area = 867 m2/g, sorbent size = 0.9 mm, dosage = 0.85 g, 
initial concentration = 300 mg/L, time = 80 min and pH = 6 was studied. An 
important observation that can be drawn from Fig. 7a–c is that the removal effi-
ciency of the dyes improved as the temperature was raised. This could be due to the 
energy which the increase in temperature provides that enables the dye molecules to

Fig. 6 Effect of time of contact (E) on the elimination of VY4 (a), CR (b) and MG (c), obtained 
from RSM one factor analysis at A = 867 m2/g, B = 0.9 mm, C = 0.85 g, D = 300 mg/L, F = 
40 °C and G = 6 
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occupy the available active sites in the activated carbon at high concentrations amidst 
competition [102, 103]. The trend also relates that the adsorption of the three dyes 
is endothermic as it is favoured at high temperatures [104]. 

As stated above the removal efficiency of MG is independent of the pH of the 
solution, and this was also observed in Fig. 8c. The pH of the solution affects the 
ionization of the dye molecules as well as the activated carbon surface properties 
[105]. The plot of removal efficiency against pH at conditions of specific surface 
area = 867 m2/g, sorbent size = 0.9 mm, dosage = 0.85 g, initial concentration = 
300 mg/L, time = 80 min and temperature = 40 °C as shown in Fig. 8a, b shows 
that the removal efficiency decreases with an increase in pH. It was also observed the 
removal efficiency of CR was the most affected than the other dyes with the change 
in pH as stated above. At low pH, there exists an abundance of hydrogen ions which 
leads to the protonation of the functional groups present on the activated carbon’s

Fig. 7 Temperature influence (F) on the removal efficiency of VY4 (a), CR (b) and MG (c), 
obtained from RSM one factor analysis at A = 867 m2/g, B = 0.9 mm, C = 0.85 g, D = 300 mg/L, 
E = 80 min and G = 6 
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Fig. 8 pH impact (G) on the elimination of VY4 (a), CR (b) and MG (c), obtained from RSM one 
factor analysis at A = 867 m2/g, B = 0.9 mm, C = 0.85 g, D = 300 mg/L, E = 80 min and F = 
40 °C 

surface and an increase in surface charge too which causes the increment of dye 
adsorption through electrostatic attraction [106, 107]. At high pH, the reduction in 
hydrogen ions promotes electrostatic repulsion between the negative charges of the 
activated carbon and dyes which leads to the decrease observed in the removal of 
VY4 and CR [108]. 

3.3 Numerical Optimisation Results 

The numerical optimisation in this study seeks to find a combination of experimental 
variable levels that provided optimum process parameters to achieve maximum 
removal efficiency values for VY4, CR, and MG dyes using the activated carbon. 
The values of specific surface area, sorbent size, carbon dose, dye concentration,
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Table 5 Numerical optimisation results 

S/N Parameter Unit VY4 CR MG 

1 Specific surface area m2/g 749.9 970.7 941.9 

2 Particle size mm 0.300 0.439 0.321 

3 Dosage g 1.127 1.464 1.063 

4 Initial concentration mg/L 123.3 214.4 311.6 

5 Contact time min 90.11 139.9 69.86 

6 Temperature °C 31.29 44.53 45.62 

7 pH – 2.457 2.407 6.203 

8 Desirability – 1.000 1.000 1.000 

9 Removal % 99.61 100.0 100.0 

contact time, temperature and pH were within the study range and the conditions as 
stated in Table 1. Equations 2–4 were solved to obtain the best solutions such that 
the responses RE (%) are maximised within the experimental domain. Based on the 
information obtained above, all the seven independent variables under study affected 
the adsorption removal efficiencies of VY4 and CR dyes as they were all statistically 
significant while all independent variables except the specific surface area and pH 
contributed significantly to the adsorption removal efficiency of MG dye. Under the 
determined optimum process conditions as shown in Table 5, the maximum removal 
efficiencies were observed to be 99.61%, 100.0%, and 100.0% for VY4, CR and 
MG dyes, respectively. The desirability values of these parameters which is a depic-
tion of the ideal and desired values were observed to be 1.000 (unity) for the three 
dyes analysed. This confirms the acceptability of the predicted adsorption removal 
efficiencies as well as the applicability of the model for the dyes under study [109, 
110]. 

Table 6 shows the performance of activated carbons generated from various 
precursor materials used in the treatment of textile wastewater. Based on the adsorp-
tion efficiencies obtained in previous studies, it was determined that activated carbon 
is an effective adsorbent for textile effluent. They also have a good surface area. The 
greater the carbon’s surface area, the more pollutant is removed.

4 Conclusion 

Several conclusions were derived from this study. From the ANOVA, the three RSM 
models were statistically significant. It was also observed that the independent vari-
ables were all significant except for the variables; specific surface area and pH of 
MG having p-values of 0.3382 and 0.5110, respectively. This implies that all factors 
or independent variables studied had specific impacts on the removal efficiency 
except for specific surface area and pH of MG. However, there were no multiple
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Table 6 Performance of activated carbons generated from various precursor materials 

S/N Precursor Surface area Target pollutant Adsorption 
efficiency 

References 

1 Parthenium 
hysterophorus 

– Methylene blue 94% (synthesised 
effluent) and 91% 
for real effluent in 
100 min 

[111] 

2 Borassus flabellifer 
fruit husk waste 

– Reactive red 120 93.75% in 
120 min 

[112] 

3 Vinasse wastes 2015 m2/g Methylene blue 99%in 60 min [113] 

4 Bamboo chips 720.69 m2/g Methylene blue > 95% in 12.5 min [114] 

5 Corncobs 2308.27 m2/g Methylene blue 99.52% [115] 

6 Dacryodes edulis 
seeds 

– Congo red 99.7% in 60 min [67] 

7 Pomegranate fruit 
peel 

845.96 m2/g Remazol brilliant 
blue R 

81.35% [116] 

8 Rice husks 375.02 m2/g Methyl orange 98.5% in 30 min [117] 

9 Rice husks 375.02 m2/g Methyl blue 82% in 30 min [117]

effects present. The effect of process factors was also thoroughly analysed. Under 
the determined optimum process conditions obtained by numerical optimisation, the 
maximum removal efficiencies were observed to be 99.61%, 100.0%, and 100.0% 
for VY4, CR and MG dyes, respectively. The desirability values of these parameters 
which is a depiction of the ideal and desired values were observed to be 1.000 (unity) 
for the three dyes analysed. 
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Chapter 22 
Biochar: Porous Carbon Material, Its 
Role to Maintain Sustainable 
Environment 

Debomita Dey, Debalin Sarangi, and Prithusayak Mondal 

1 Introduction 

Biochar is a fine-textured carbonization product with a considerably high amount 
of organic C and low susceptibility to quick deterioration. It is made by pyrolyzing 
biomass and biodegradable waste [1]. Adding charcoal to the soil to improve soil 
quality has been a practice in agriculture for thousands of years [2]. The Amazon 
Basin’s native pre-Columbian civilizations boosted soil fertility by combining burned 
organic and inorganic waste remnants with the soils. These soils are called in 
Portuguese as “Terra Preta de Indio” (Indian black earth) due to having dark hue and 
origins. They are rich in organic matter and nutrients. However, at present years, the 
applications of biochar in agriculture are being studied extensively by the researchers 
worldwide. Biochar’s applications are expanding all the time, mostly in industries, 
agricultural purposes, and activities involving the environment (Fig. 1). Biochar can 
be utilized as a soil amendment, often used for fodders and silages, or used in water 
treatment [3]. It can be used to immobilize pollutants in soil and in sewage treatment, 
in addition to complement composting and methane fermentation processes [4, 5].

In this chapter, different biochar manufacturing technologies, their physical char-
acteristics, and biochemical features for attaining environmental sustainability have 
been explored.
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Fig. 1 Biochar and its multifarious applications (Adapted and redrawn from Nanda et al. [6]. 
Copyright© 2015, Springer Nature)

2 Biochar: Preparation and Characterization 

Biochar is a C-rich, porous organic product prepared by heating carbon-rich mate-
rials or biomass such as manures, wood, leaves, or other agricultural residuals in a 
confined container with limited or no aeration [7]. It aids in the promotion of phys-
ical, chemical, and biological features of soil through enhancing soil carbon status [8, 
9] and works as a climate change corrective tool by lowering harmful gas emissions 
from the ecosystem [10, 11]. 

Biochar can be prepared from an ample range of biomass feedstock like organic 
and agricultural waste (green yard waste, animal manure), bioenergy crops, forest 
residues, kitchen waste and sewage sludge, etc. Carbonizing biomass through pyrol-
ysis may be done by heating those at a higher temperature (ranging between 350 and 
700 °C) with little or no oxygen resulting in the fervent decomposition of lignocellu-
losic biomass preparing syngas, bio-oil and biochar [12]. Various methods used for 
biochar production are described in Fig. 2.
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Fig. 2 Various thermochemical conversion technologies for the generation of biochar [13] 

The quality and features of biochar are influenced by the feedstock materials 
used and the processing situations. Various morphological, spectral and physico-
chemical properties of biochar are also affected by the charring temperature, resi-
dence time, and heating rate [14, 15]. The fundamental structural unit of biochar is 
amorphous and graphene carbon (Fig. 3). The crystalline form of biochar changes 
as the pyrolysis temperature changes. With rise in the pyrolysis temperature, the 
carbon skeleton changes from amorphous to aromatic, resulting in the amalgama-
tion of different graphene sheets. Biochar’s vesicular structure contributes to its 
high porosity, whereas pyrolysis induces the development of nanopores with a large 
surface area that can retain water and soil nutrients [16, 17].

Biochar, having porous graphene-like structure (Fig. 3), caters a good surface 
for pollutants to attach to, reducing their availability to other environmental compo-
nents [20]. The fundamental mechanisms involved in the adsorption procedures are 
adsorption on surface (adhesion of contaminants on surfaces) at greater temperatures 
with carbonized structures and division of contaminant molecules in biochar micro-
pores at lesser temperatures with few-carbonized structures, according to numerous 
studies of various isotherms and kinetics related to sorption on biochar sorption [4]. 

The pH ranges from neutral to alkaline when biochar is prepared at temperatures 
above 500 °C. While raising the pyrolysis temperature ranging between 400 and 
600 °C, the volatile and nitrogen components of biochar dropped off, whereas the 
ash and fixed carbon content increased. The elemental ratios (H/C and O/C) are 
applied to ascertain the aromaticity degree of carbon structures [21]. Biochars made 
at 500 °C or lower temperature have H/C ratios of > 0.5, whereas those prepared at >
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Fig. 3 Biochar structure with distinct functional groups on its surface (Recreated from Brennan 
et al. [18] and Lehmann and Joseph [19])

500 °C temperatures have H/C ratios of 0.5, with less H/C ratios indicating a higher 
degree of aromaticity [22]. 

3 Biochar as Soil Amendment 

Soil health is denoted as an ability of living soil to perform within natural or 
controlled ecosystem bounds, sustaining biotic communities and improving their 
health and productivity, maintaining or improving air and water quality. From an 
agricultural perspective, the receptivity of soil to maintain and boost the advance-
ment of plants and animals along with enhancing the quality of the environment 
is known as soil health [23]. Depletion of soil organic matter results in severe soil 
deterioration including erosion, desertification, salinization, deficiency of nutrients, 
and most importantly reduction in soil fertility. It also hampers the soil quality, soil 
stability, and soil resilience. Therefore, the application of organic amendments espe-
cially stable carbon product like biochar into the soil seems to be very worthy to 
improve the quality of soil functions.
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3.1 Effects on Different Physical Properties of Soil 

Surface area, aggregation, porosity, water holding capacity, and aeration are all essen-
tial factors in soil fertility, which includes nutrient transformation and microbial 
activity [24, 25]. Biochar addition to soil helps to modify such physicochemical prop-
erties especially of degraded or nutrient-deficit soils as a soil amendment. Soil surface 
area has been observed to be enhanced up to 4.8 times compared to unamended 
soil [26]. Besides, in a long-term incubation experiment, upto 18% enhancement in 
surface area was recorded in clayey soil mixed with hardwood biochar @ 20 g kg−1 

[27]. Additionally, treatment with biochar to infertile soil helps to modify the porosity 
because of its porous nature [28]. The co-application of biochar, soil organic matter, 
and clay was reported to improve soil porosity leading to the development of higher 
micro-aggregates over time [29]. Thus, higher water or moisture retention occurs in 
biochar added soil as a function of biochars’ higher porosity and surface area (Fig. 4). 

Addition of biochar to barren soil has been demonstrated in several experiments 
to lower bulk density of soil, increase total pore volume, and increase water retention 
capacity [31, 32]. Gwenzi et al. [33] found that using biochar with a lower bulk density 
and higher stable organic carbon, they were able to reduce bulk density of soil and 
penetration resistance while enhancing overall soil porosity. Similarly, almost 17% 
and 20% decrement in bulk density of sandy and clay soil, respectively, was also 
observed in a column experiment designed by Barnes et al. [34]. Furthermore, in a 
2-year research on rice field, biochar treatment reduced bulk density of soil in both 
successive rice growth cycles [35]. In a greenhouse study in Spain, Alburquerque 
et al. [36] found that applying biochar to sunflower at 150 and 225 Mg ha−1 reduced 
bulk density of soil and enhanced field capacity, which had a favorable impact on plant 
growth and water economy. However, the influence of biochar addition to soil on soil 
hydrological parameters (such as moisture content, water holding capacity, hydraulic 
conductivity, water infiltration rate, and water retention) was significant [34, 37]. 
Laird et al. [27] conducted a long-term column incubation experiment and suggested

Fig. 4 Porous structure of rice husk biochar as seen under scanning electron microscope at a 2 KX  
and b 10 KX magnification level (Adapted from Mohan et al. [30]) 
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that, compared to unamended control soil, up to 15% higher water retention and soil 
water potentials were observed in hardwood biochar treated soil. In a field study 
in Finland, 11% greater water holding capacity was shown in Birch (Betula spp.) 
biochar amended silt loam soil than the control (17). In addition, adding Black locust 
(Robinia pseudoacacia) biochar to sandy soil has been observed to significantly 
enhance water holding capacity (97%) and saturated water content (56%), as well as 
decreasing hydraulic conductivity as moisture content rises [38]. In a column study, 
however, it was discovered that adding biochar to mesquite wood (Prosopis sp.) 
significantly reduced hydraulic conductivity in sandy soil and also reduced organic 
carbon significantly in organic soil, but increased hydraulic conductivity in clay-rich 
soil (328%) [34]. Brantley et al. [37], on the other hand, claimed that all biochars 
were not same in modifying soil moisture retention at varied rates of application 
over a wide variety of soil water conditions. Varying results in various studies were 
observed due to various soil types as well as different biochar production conditions 
and also it depends on biochar grain size, different rat of application, soil properties. 

3.2 Effects on Soil Chemical Characteristics 

Biochar has positive impacts in modifying the chemical characteristics of soils. 
Several soil quality indices, including soil pH, exchangeable cations, organic carbon, 
fertilizer usage efficiency, soil tensile strength, and others, have been shown to be 
significantly modified by the addition of biochar to the soil in several studies [16, 39]. 
In Ferro soil, the paper-mill biochar addition (10 t ha−1) was shown to considerably 
improve soil pH, exchangeable Ca, CEC, and total C while reducing exchangeable Al, 
while in Calcarosol, the same biochar application to soil resulted in an enhancement 
in C and exchangeable K [40]. Enhancement in soil pH and Ca levels and reduction 
in Al toxicity were reported due to high-pH biochar addition to red ferralitic soils 
[16, 41]. A test conducted by Granatstein et al. [42] showed different impacts of 
various types of biochar application on soil pH. They observed that adding biochar 
(39 t ha−1) made from herbaceous feedstocks to a sandy soil raised the pH from 7.1 to 
8.1, whereas, application of biochars derived from woody feedstock showed a lower 
overall increment in soil pH when applied to silt loam soil probably due to higher 
initial CEC and higher buffering capacity. Contrastingly, a significant reduction in 
salt content by 3.6 g kg−1 associated with an increment of soil pH, soil bulk density, 
SOC, and available P by 0.3, 0.1 g cm−3, 2.6 g kg−1, and 27 mg kg−1, respectively, was 
observed owing to the joint application of biochar and poultry manure in saline soil 
[43]. A high negative charge is implied to aged biochar particles promoting soil aggre-
gation as well as improves nutrient availability to plants [44]. Moreover, the use of 
bagasse biochar was observed to improve the soil’s CEC, AEC, and nutrient retention 
capacity [45]. Contrastingly, no significant change in soil CEC was also documented 
after biochar application in soil [42]. Various functional groups (siloxane, OH, C=O, 
COOH, N) present on biochar surface are mainly responsible for converting the real 
CEC of biochar, and it largely relies on the pyrolysis temperature and the biochar
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feedstock. Moreover, sorption capacity, water holding capacity (WHC), and micro-
bial habitat are widely effected by the specific surface area of applied biochar. The 
composition and structure of biochar are followed by the biomass type and pyrolysis 
condition, resulting in significant variation in biochar characteristics correlated with 
the variation in the nutrient availability in soil. 

3.3 Soil Biological Properties 

Various types of microorganism such as bacteria, fungi, nematodes, virus, protozoa 
with their varied inhabitants live in soil. Their presence and abundance in soil depend 
on soil type, management factors especially related to addition of different organic 
amendments to soil [46]. Several researches have found that biochar application has 
positive impacts on soil microbial activity [47–49]. The wide surface area of biochar 
and capacity to absorb nutrients create a benign environment for microorganisms 
(bacteria, mycorrhizae, and actinomycetes) to colonize, thrive, and reproduce [50]. 
The improvement in bulk density, pH, nutrient and water retention owing to the addi-
tion of biochar helps to enhance and modify the composition of microbial community 
and their activities [49, 51]. Besides, slow pyrolysis biochars (500 °C) obtained from 
swine manure, fruit peels, and reed grass (Phragmites australis) showed a signifi-
cantly positive correlation of bacteria-to-fungi ratio with soil C/N ratio, when applied 
to sandy loam soils [52]. Biochar addition, on the other hand, has been shown to have 
deleterious impacts on soil microorganisms because of the release of bio-oils and 
re-condensed organic molecules that are unsuitable for the microorganisms [53]. 

Incorporation of biochar into soil can have positive [54, 55], negative [56, 57], 
or no effect [58, 59] on microbial activities depending on type and rate of biochar 
addition, soil type, pyrolysis condition. The addition of biochar to a variety of appli-
cations from resulted in a linear enhancement in microbial activity [41]. Similarly, 
the incorporation of willow wood biochar (prepared at 700 °C) into sandy loam soil 
was reported to increase microbial biomass carbon by 29% [54]. Some other studies 
have also suggested that a few slow pyrolysis biochars generated at lower tempera-
tures, from diverse feedstocks having lower lignocellulosic contents have promoted 
microbial biomass when applied to soil [57, 60]. On the other hand, treatment with 
Eucalyptus biochar (produced at 600 °C) in coarse textured sandy soil significantly 
reduced microbial biomass carbon by 28% [61]. Moreover, biochar addition has also 
positive impact on N2-fixing bacteria (diazotrophs). Various studies have reported 
that biochar addition showed a significant enhancement in biological nitrogen fixa-
tion by legumes [59, 62]. Increasing trend in N2 fixation was observed with increasing 
rates (0, 30, 60, and 90 kg ha−1) of biochar application, which also enhanced yield of 
beans by 30–40% [63]. However, a significant reduction in the abundance of arbus-
cular mycorrhizal fungi (AMF) by 58% and 73% was observed due to the use of 2% 
(w/w) and 4% (w/w) pine biochar, respectively, also reducing soil P availability by 
28% and 34%, respectively [64]. Similarly, 163% and 208% increment in P avail-
ability, while 43% and 77% decrement in AMF abundance were reported due to the
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addition of mango wood biochar with 23.2 and 116.1 t C ha−1rate, respectively [64]. 
Therefore, the conflict nature of biochar application on soil microbial activity relies 
on the type and characteristics of biochar, type of soil and the production condition 
of biochar. 

3.4 Soil Nutrient Retention 

Due to its porous structure and increased surface area of biochar, it can retain 
and absorb nutrients while also improving soil fertility. Several studies mentioned 
the positive effects of biochar addition including enhanced CEC, microbial activi-
ties, liming as well as reduced nutrient leaching [47, 62, 65]. Biochars have been 
shown to have a brief and/or long-term impact on soil nutrient availability and 
recycling, particularly in soils with low fertility and exchange capabilities [66–68]. 
The type and quality of feedstock and rate of biochar addition largely influence 
the amount of nutrient uptake by crop plants and biomass production [65]. In this 
aspect, biochar may act as an organic fertilizer by directly attributing to soil fertility 
through supplying nutrients to plants or indirectly by modifying soil health and 
quality through enhancing fertilizer use efficiency [65, 69]. The basic chemical struc-
ture of biochars differs from other organic materials due to the presence of greater 
amount of aromatic carbon, especially fused aromatic C rings [47], which makes 
biochar highly stable in nature. High pyrolysis temperature biochars generally show 
greater C/N ratio that leads N deficiency in plants resulting in lower crop yields [65]. 
Besides, biochar application into soil can influence soil pH and electrical conduc-
tivity (EC) that also affect the availability of plant nutrients [62, 70]. The overall 
impacts of biochar on soil nutrient transformation and availability is discussed in 
Table 1.

3.5 Effect on Biotic and Abiotic Stresses 

Allen [79] revealed for the first time that biochar application reduced the effects of 
numerous plant diseases like rust and mildew. Both soil-borne and foliar pathogens 
contribute to the formation of pathosystems in plants [80]. Bonanomi et al. [81] 
carried out an experiment for testing the impact of biochar on plant disease in 13 
distinct pathosystems, and the results were reviewed and summarized. They estimated 
that biochar had an 85% beneficial influence in reducing the disease severity of 
plants, a 12% neutral impact, and a 3% negative impact by generating plant diseases. 
Furthermore, the influence of varying rates of biochar addition on disease suppression 
and severity was investigated in 30 different pathosystems with 15 pathogens to 
compare the impacts of various levels of biochar with the unaffected control [82]. 
In the case of the highest degree of biochar addition, it had no detrimental impacts 
on plant diseases compared to the unaffected control. Contrastingly, several other
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Table 1 Impact of different biochars on soil nutrient transformation 

Source of biochar Effect on soil nutrient transformation References 

Brazilian pepperwood biochar Significant reduction in entire amount 

of NH+ 
4 , NO

− 
3 , and  PO

3− 
4 in the 

leachates by 34.7%, 34%, and 20.6%, 
respectively than the unamended 
control 

[71] 

Peanut hull biochar Leaching reduction of NH+ 
4 –N and 

NO− 
3 –N by 14% and 34% than 

control, respectively 

[72] 

Willow and acacia derived biochars and 
their co-composted mixture 

Significant decrementing leaching of 
nitrate, nitrogen, phosphorus, 
potassium, calcium, magnesium, and 
sodium 

[73] 

Biochar derived from various wood 
species 

Leaching reduction of N, P, Mg, and 
Ca 

[74] 

Eucalyptus biochar Decreased leaching of ammonium and 
nitrate by 20% and 25%, respectively 

[61] 

Biochar derived from various tree 
residues 

Significantly enhanced net nitrification 
rates, adsorption of ammonia, and 
promoted mineralization and 
immobilization of nitrogen 

[75] 

Biochar derived from tree residue (green 
waste) 

Reduced application rates of N on 
wheat and radish biomass and 
enhanced uptake of nitrogen by 
decreasing addition of nitrogenous 
fertilizer up to 90% 

[40] 

Bamboo biochar (Bambuseae spp.) Enhanced N retention [76] 

Biochar (charcoal and smoke 
condensates) 

Significant enhancement in retention 
and uptake of nitrogen by adsorbing 
ammonia and thus minimizing loss of 
nitrogen by means of volatilization 

[77] 

Wheat straw biochar Significantly enhanced agronomic N 
use efficiency as well as maize yield 
with enhancing rates of biochar 

[78]

reports showed the significant inhibition of diseases due to the low levels of biochar 
addition (≤ 1%) in detached growing media, while higher rates of biochar addition 
(3%) showed no significant effect on plant diseases [80, 83, 84]. 

Biochar addition has been shown in multiple studies to improve agricultural 
production under normal situations while also modifying crop productivity in adverse 
situations like drought, salinity, and sodicity [85, 86]. The permanent wilting point 
(PWP) of biochar enriched soil was improved, whereas the amount of water retained 
at field capacity (FC) was modified to a greater extent than the water retained at 
PWP, resulting in rise in the amount of plant accessible water [32]. Furthermore,



604 D. Dey et al.

another in vivo (pot and field) experiment confirmed that application of biochar at 
rates of 10–20 t ha−1modified the advancement of seedling and wheat and soybean 
yield, most likely by reclaiming the water deficiency stress [87]. Furthermore, the 
use of biochar in less fertile sandy soils enhanced plant development by altering the 
soil–plant–water relationship under drought conditions [85]. 

4 Impact of Biochar Addition on Yield of Different Crops 

Numerous studies reported that applying biochar into soil could enhance plant growth 
and output by improving the availability of plant nutrients, improving soil microbial 
activity and fertilizer usage efficiency, and decreasing exchangeable Al3+ [88–90]. 
Biochar has been observed to greatly boost crop growth, root biomass, and yield 
when applied to soil [73]. Crop output was improved by altering soil pH, CEC, and 
WHC, boosting nutrient availability and uptake, and directly providing nutrients to 
crop plants as a result of biochar addition [10, 73]. Biochar application into soil has 
been observed to have both beneficial [31, 91] and negative [92] effects on crop yield  
for a variety of crops (Table 2). Positive impacts on crop yield due to different rates 
of biochar addition were attributed to higher pH and greater availability of macro 
and micronutrients, as well as higher modification in different soil properties [32, 
41], while negative effects on crop yield were attributed to the modifications in soil 
properties and pH initiated deficiency of micronutrients due to biochar additions 
[73, 93]. One of the major reasons for reducing crop yields were observed to be 
the nitrogen deficiency which resulted due to immobilization by microorganisms 
because of the application of biochars having higher C:N ratio and produced at 
high temperature [94]. The impact of biochar on crop output is mostly determined 
by parameters such as soil pH, type of soil, fertilizer rate, biochar feedstock type, 
rate of application, and crop species [10]. Crop yields have been reported to benefit 
from improved soil characteristics and water usage efficiency as a result of biochar 
addition. Several studies, on the other hand, have suggested that applying biochar 
into nutrient-rich soils has minimal effect on grain yields, if any at all [92, 95]. Most 
of these studies available till now are basically based on short-term experiments. 
Therefore, more long-term experiments are required to evaluate the effects of biochar 
addition on crop yield.

5 Biochar and the Environment 

As a soil amendment, biochar can satisfy following targets: achieving food security 
by enhancing crop productivity, promoting soil health and quality by modifying soil 
properties and avoiding land deterioration, beside of reducing the climate change by 
reducing greenhouse gas emission and adsorbing hazardous elements onto its surface.
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Table 2 Impact of different rates of various biochar application on crop yield 

Biochar source Biochar application 
rate 

Crop type Crop response References 

Wheat straw 
biochar 

0–40 t ha−1 Maize At 20 t ha−1 and 40 t  
ha−1, maize yields 
were enhanced by 
15.8% and 7.3%, 
respectively, without 
addition of 
N-fertilizers and by 
8.8% and 12.1%, 
respectively, with 
addition of 
N-fertilizers 

[78] 

Mango wood 
biochar; corn 
stover biochar 

0–16 t ha−1; 2–91 t 
ha−1 

Maize Enhanced biomass 
(30–43%) and 
increased (22%) crop 
yield through 
modification in 
different soil physical 
properties and 
nutrient availability 

[96, 97] 

Acacia bark 
biochar 

10 L m−2 Maize and 
peanut 

Yields of maize and 
peanut were 
increased almost 
two-fold because of 
greater availability of 
nitrogen and bases 
and lower 
availability of Al 

[98] 

Teak and rose 
wood biochars 

4–16 t ha−1 Rice and 
sorghum 

Significant 
enhancement in plant 
growth and yield 
were observed 

[41, 99] 

Paper-mill 
biochar 

10 t ha−1 Wheat and 
radish 

Enhanced (around 
250%) biomass 
modifying fertilizer 
use efficiency in 
Ferrosol, while 
decreased biomass in 
Calcarosol 

[40] 

Wood biochar 
and cow 
manure biochar 

0–20 t ha−1 Maize Yield increment from 
14 to 150% by 
improving soil 
quality parameters 
and reducing 
exchangeable acidity 

[38]

(continued)
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Table 2 (continued)

Biochar source Biochar application
rate

Crop type Crop response References

Green waste 
and poultry 
litter biochar 

0–100 t ha−1 Radish 42–96% increment in 
yield because of 
improved soil 
physicochemical 
properties due to 
biochar addition 

[39] 

Waste water 
sludge biochar 

10 t ha−1 Cherry and 
tomato 

64% higher yield in 
biochar treated field 
than control because 
of higher NP 
availability 

[100] 

Oil palm fruit 
bunch biochar 

0–40 t ha−1 Rice Grain yield was 
enhanced by 
141–472% than 
control 

[101] 

Maize straw 
biochar 

20–40 t ha−1 Choy sum and 
amaranth 

28–48% increment in 
yield 

[102]

The alteration of terra-preta soil into highly fertile soil as an outcome of biochar 
application is a fine example of biochar’s involvement in soil and environmental 
sustainability. 

5.1 Biochar and Carbon Sequestration 

Generally, soil has a large capacity to stock C as high as 95% of total stock of C 
on land. For mitigating the current higher CO2 emission inducing global climate 
change, the long-term sequestration of terrestrial C is now considered as a bene-
ficial way as more than 2.5 times greater carbon is held by terrestrial resources 
than atmosphere [103]. Different geo- and eco-engineering approaches have been 
suggested for enhancing terrestrial C pool such as no or zero-tillage or geological 
carbon sequestration, biochar sequestration, of which biochar sequestration to soil 
has been considered as an unique and potent way to create a long-term significant 
sink for conserving atmospheric CO2 in terrestrial ecosystem due to its greater recal-
citrance nature (fused ring aromatic structure including amorphous carbon) against 
microbial attacks as well as subsequent modification of soil environment [104, 105]. 
Almost about 50% of the initial C is sequestered due to the conversion of biomass 
C to biochar while only 3% and < 10–20% (after 5–10 years) of initial C is left 
after burning and decomposition, respectively. It suggests more C stabilizing poten-
tial of biochar production than burning or direct land application of biomass [106].
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According to a report given by Woolf [107], if all the excess crop residues world-
wide can be transformed into biochar, almost 1 GT of C can be sequestered into 
soil which can be very beneficial to mitigate the climate change. By 2050, biochar 
processing is expected to store around 2.2 GT C yearly over the world [1]. Different 
indices have been in use to determine the stability and lability of biochar, such as 
the recalcitrance index [108], representing the thermal stability of biochar, and the 
stable organic matter yield index [109], which decreases as the pyrolysis tempera-
ture rises. Biochar addition to soil can play a significant role in C sequestration due 
to its slow degradation and mineralization, as well as its millennial-scale residence 
period [90]. Biochar application into soil has also been reported to be more long-
lived (> 100 years) than the application of ash and charcoal into soil (< 100 years) 
[110]. The stability of biochar is influenced by a number of parameters, including 
soil clay concentration, pyrolysis temperature, O:C ratio, H:C ratio, volatile matter 
content, and so on [111, 112]. Biochar with high volatile matter had lower C seques-
tration capacity, whereas biochar with moderate volatile matter and high O/C (> 
0.2) and H/C (> 0.4) ratios had moderate sequestration potential; however, biochar 
with lower volatile matter (< 80%) and lower O/C and H/C ratios had greater C 
sequestration potential [113]. On a global scale of removal of C from atmosphere, 
biochar-bioenergy can play a critical role to inhibit the erratic climate change. This 
helps to capture and store C from atmosphere at lower prices where biochar applica-
tion significantly enhances the crop yield. Biochar has been claimed to be capable of 
sequestering nearly 62–66% of CO2 emissions [114]. The release of CO2, methane, 
and nitrous oxide from soil can be reduced nearly by 12%, with a total net release 
of 130 Pg CO2–C equivalent over a century, which could be an important sink of 
carbon [115]. 

5.2 Biochar and Greenhouse Gas Emissions 

Agricultural systems are frequently regarded one of the primary sources of green-
house gas (GHG) emissions worldwide, accounting for roughly 10–12% of global 
anthropogenic releases each year, with forestry and land use sectors accounting for 
over 24% [116, 117]. Agriculture accounts for almost a fifth of global greenhouse 
gas emissions, according to a report released by FAO [118]. Adaptation of modern 
advanced technologies is enhancing the productivity as well as the farmers’ income 
but subsequently contributing negative effects on the climate and environment. Aside 
from CO2, other greenhouse gases such as methane and nitrous oxide have become a 
significant environmental issue. Studies showed that the agricultural soils contribute 
12% in the total CH4 emissions globally, mostly from paddy field whereas, N2O 
is produced through denitrification. Therefore, proper management of crop residues 
would help to slow down the emissions of GHGs. In this regard, biochar soil ameliora-
tion has been shown to be efficient in reducing GHG emissions while simultaneously 
enhancing agricultural productivity and generating carbon-negative biofuels based 
on feedstock requiring less fertilizer and water on a wide scale. However, biochar
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amelioration to soil has been observed to reduce the emissions of N2O and CH4 [119, 
120]. Besides, co-composted biochar has also been reported to decrease N2O release 
from soil through altering several enzyme activities (such as nosZ, nirK, and nirS) as 
well as effecting the activities of nitrifiers and denitrifiers in soil [121]. The mecha-
nisms related to biochar application and GHGs emissions still cannot convincingly 
describe why biochar sometimes reduces GHGs emission or increases in some cases. 
Different methods of GHGs release like, C mineralization, denitrification, methane 
oxidation have been reported to show various impacts in biochar amended systems 
[47, 122]. Application of biochar into soil reduces the emission of CH4 by suppressing 
the oxidation of ambient CH4 depending upon soil type, the properties of biochar 
and environmental condition. On the other hand, the impact of biochar on nitrogen 
transformation process is still fuzzy. Compared with other fresh organic materials, 
biochar application helps to reduce N2O emission as well as NH+ 

4 leaching from 
soil. Apart from that, biochar also reduces the emission of N2O even under reduced 
conditions of paddy fields because of the oxidative reactions which occurs on the 
biochar surfaces with aging [123]. It was suggested that biochar addition at the rate 
20 and 40 Mg ha−1could reduce the total release of N2O by 10.7–41.8%, respec-
tively [78]. Furthermore, soil N2O fluxes have also been reported to be decreased 
up to 79% in biochar treated soil [124]. Therefore, addition of crop-residue-based 
biochar to soil in lieu of sole residue application into soil would be more beneficial as 
biochar amelioration helps to improve soil health and nutrient status simultaneously 
reduces the release of GHGs to a large extent especially from paddy fields [125]. 
However, GHGs emission from biochar treated soil depends on type of crops. Lower 
emission of GHGs with less intensity was observed due to addition of wheat straw 
biochar from wheat crop than the rice crop [125]. Now-a-days, in several studies 
various impacts regarding biochar application, GHGs emissions, and climatic condi-
tions have been reported with contrasting results. To overcome such possible limits 
for sustainable agriculture, it is critical to investigate the inter-connections among 
crop-specific, biochar-origin-specific, and characteristics-specific aspects. 

5.3 Biochar to Reduce Nutrient Pollution 

Higher and incessant application of inorganic fertilizers into soil results in higher 
release of readily available nutrient elements in soil that cannot be taken up by plants 
resulting in leaching of excess nutrients that causes nutrient pollution both in soil 
and water. Biochar with recalcitrant nature, higher surface area and porous struc-
ture retain nutrients like nitrate, ammonium, phosphates and reduces their leaching 
into groundwater. Amelioration with biochar is observed to reduce nitrogen leaching 
into groundwater as well as to decrease the requirement of fertilizers which are 
the basic source of excess readily available nitrogen [126]. The pyrolysis of animal 
manures can result in a significant reduction in the mobility of phosphorus in animal 
manures. This technique will help in converting the bulk amount of the organic wastes 
containing soluble inorganic phosphate into the adsorbed phosphate in biochar. It is
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also evident that biochar prepared from poultry litter and pine chips through pyrol-
ysis at 700 °C ensued reduction in Escherichia coli transport. Biochar and biochar-
compost combination treatments were found to reduce cumulative leaching of several 
nutrient elements by increasing soil water conservation and reducing the volume of 
leachates [73]. 

5.4 Biochar as Adsorbent Material 

Biochar can stabilize many organic pollutants through adsorption, absorption, 
chemisorption to reduce their harmful effect on environment because of structural and 
surface characteristics (broader surface and presence of various functional groups 
[5]. Chemical adsorption, technically called as chemisorption, is a technique for 
determining the quantity of accessible active sites in order to expedite chemical 
reactions. It happens from the chemical interaction between adsorbate molecules 
and active sites on a material’s surface. High temperature biochars are observed to 
be more efficient in adsorbing organic and inorganic pollutants (e.g., polyaromatic 
and polyaliphatichydrocarbons, heavy metals, and toxic chemicals) from soil, sedi-
ments and water environment as compared with low temperature biochars which are 
more effective in removing heavy metals. As high temperature biochars are basi-
cally alkaline in nature, they approach a better way to decontaminate soil pollution. 
Because of its alkaline nature, biochar helps to raise soil pH, which aids in the 
immobilization of pollutants by precipitation, coordination by π electrons (C=C), 
or even electrostatic contact with the carboxyl group of biochar [127]. Furthermore, 
biochar’s higher CEC and lower zeta potential aid in the reduction of toxicity of 
heavy metals and organic contaminants by building up negative charges on the soil 
surface through various means such as electrostatic interaction and precipitation 
for heavy metals and surface adsorption and sequestration for organic pollutants [4, 
128]. Biochar’s graphene-like architecture, governed by surface functional groups, is 
thought to help with adsorption and electron transfer from various adsorbates [129]. 
However, biochars cause the reduction of phytotoxicity of several organic pollu-
tants such as herbicides (acetochlor, atrazine, fluometuron), pesticides (simazine, 
atrazine, pyrimethanil), fungicides, phenols. Biochar is highly able to immobilize 
such organic residues due to its higher sorptivity and sequestering nature. Because of 
having higher surface area, micro-porosity and hydrophobicity, biochars produced at 
high temperature can stabilize the pollutants by adsorbing and partitioning the pesti-
cides, herbicides and fungicides on carbonized and non-carbonized fractions present 
in it [130]. Sorption affinity with organic residues is observed to be an unchangeable 
and it can enhance with reducing solid/solution ratio.
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5.4.1 Role of Biochar in Adsorption of Heavy Metals from Soil 

Materials having the capability of neutralizing the strength of contaminants through 
reducing their toxicity or bioavailability by lowering mobility are known as adsor-
bents. Biochars show higher both adsorbing and absorbing capacities due to having 
greater surface area and different functional groups on its surface which helps it 
to be a better absorbent by removing various organic and inorganic pollutants and 
heavy metals from soil and water. Many studies have reported about higher adsorp-
tion of heavy metals (such as Cd, Pb, Cu) by the biochar treatment [127, 131]. 
Besides, biochar-nacomposites (in different proportion of Fe-oxides and biochar) 
have been observed to effectively remove arsenic (As(V)) from contaminated soil 
[132]. Biochars made from dairy manure can adsorb lead, but biochar made from 
Pinus radiata has a better sorption and desorption efficiency for a pollutant called 
phenanthrene from the soil. However, in a Cd-contaminated rice field, application of 
biochar resulted in a 20–90% drop in Cd concentration in rice grain, most likely due 
to biochar-influenced pH changes that reduced Cd pool availability [133]. Depending 
on the composition of the soil, the characteristics of biochar, and the contact period 
between the soil and biochar, the sorption capacity of soil for hydrophobic organic 
molecules is increased when it is treated with biochar. Because biochar is naturally 
occurring, it can also absorb persistent organic pollutants (POPs) and poly aromatic 
hydrocarbons (PAHs), which have a high affinity for it. Immobilization of Pb, Cu, 
Zn was observed to be higher by oxidized biochar that is rich in carboxyl groups 
rather than un-oxidized ones. The enhancement in soil CEC and base saturation due 
to biochar amelioration helps to furnish liming effect to acidic soils polluted with 
Al and Fe oxides [134]. Furthermore, multiple studies have indicated a decline in 
extractable heavy metals such as Cu, Cd, Ni, and Pb from polluted soils when biochar 
and lignite fly-ash were applied together, most likely due to the increased pH caused 
by the combined application [20, 135, 136]. However, As biochar surface contains 
numerous polyaromatic hydrocarbons, it is sometimes thought as a contaminant to 
the soil. As a result, it must be taken into account before its administration into 
soil. It has been found that drying biochar before adding it to soil reduces its PAH 
concentration [137]. 

5.4.2 Role of Biochar in Decontaminating Heavy Metals and Organic 
Pollutants from Waste Water 

As biochar contains several oxygen-holding functional groups such as hydroxyl, 
phenolic, carboxyl, it plays an important role as sorbent for purifying waste water 
from heavy metals and other organic contaminants. The mechanism behind this 
adsorption generally follows pseudo second order reaction. Such adsorption attains 
maximum at the pH ranging 5.0–6.0 [138]. Some metal cations (like Pb2+, Cd2+, Ni2+, 
Cu2+) have been reported to be removed from waste water by using digested dairy 
waste biochar and digested sugar beet biochar [139]. The affinity of biochar to carry
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away heavy metals from solution can be enhanced by treating the biochar hydrother-
mally with H2O2 as it helps to ensure the oxygen containing functional groups within 
biochar. Besides, by using chitosan-modified biochar as well as graphene-biochar 
composite which are safe economic adsorbents can be used to decontaminate waste 
water from heavy metals by means of surface complexation with C=C, –OH, C=O 
groups [140]. Moreover, some organic residues like salicylic acid and ibuprofen were 
found to be removed by using fast pyrolysis pine wood biochar. As biochar surface 
may contain MgO nanoparticle, phosphorus can also be removed from waste water 
by using it. The majority of the sorbed phosphate can be utilized as slow-release 
P-fertilizers (due to its bioavailability) or desorbed within 24 h [141]. 

5.5 Biochar in Reclamation of Problem Soil 

Soil compaction, salinity, sodicity, and acidity are the major environmental factors 
that largely deplete the soil quality and fertility. Soils greatly affected by compaction, 
salinization, alkalization, acidification are known as problem soils. These have 
become major constraints hampering yield and productivity of crops especially in dry 
(arid and semi-arid) regions. According to the modern concept, application of biochar 
in soil helps to ameliorate problem soils by improving various physicochemical prop-
erties of soil. Co-application of biochar-manure compost along with pyroligneous 
solution resulted in significantly lower soil pH and salt and sodium concentrations 
than the unamended control in a salt affected cropland probably because of higher 
adsorption of Na+ from soil [43]. Besides, Lashari et al. [142] also observed that the 
co-application of co-composted manure with crop straw biochar along with pyrolig-
neous solution reduced salinity stress to maize simultaneously enhanced the produc-
tivity in salt-stressed soil. However, the positive impact of biochar on physiology, 
growth, and yield of wheat (pot grown) was reported by Akhtar et al. [143] under 
salt-stressed condition. They also observed the significant decrement in Na+ concen-
tration as well as significant increment of Ca2+ and Mg2+ in the leachates in case of 
biochar treated soil due to the enrichment of Ca2+ and Mg2+ on the exchangeable 
sites of soil surface through reducing the exchangeable Na+ in those sites which 
led to the modification of physical properties in salt-stressed soil. Similarly, biochar 
amelioration to salt affected soil was also observed to reclaim the salinity stress 
in potatoes due to higher sodium adsorption capacity of biochar [144]. In a glass 
house experiment, Thomas et al. [145] observed the reclamation of salt stress and 
mitigation of salts’ effect on plant growth due to salt sorption by biochar derived 
from lignocellulosic materials. Mechanically, addition of biochar reduces transient 
Na ions by adsorption and also releases minerals such as K, Ca, Mg into soil solution 
that help in binding soil particles and improving the stability of soil structure thus 
ameliorating salt stress. Besides, biochar being alkaline in nature raises the soil pH 
that reduces the soil acidity promoting overall soil quality.
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6 Role of Biochar in Sustaining Bioeconomy from Soil 
to Agricultural Production 

In the context of the circular economy, biochar is used for a variety of agricultural and 
environmental reasons in modern society. Biochar’s use as a peat substitute and in 
composting is promising because it decreases nitrogen losses, speeds up the process, 
and modifies the quality of final composts. Biochar may be tailored by choosing the 
suitable feedstock and optimizing the pyrolysis conditions, which improves soil char-
acteristics and increases crop production. Biochar can also be used to partially replace 
peat, a nonrenewable resource, and increase the compost quality, while reducing the 
environmental impact [146]. Because biochar may be integrated into standard fertil-
ization processes, particularly in organically managed food production systems, it 
could be crucial in building a circular economy in agriculture. For starters, biochar 
could be a long-term solution for managing farm pruning wastes; as for example, 
fruit orchards undergo severe pruning each year which may pose environmental 
hazard if not properly disposed of [147]. Pyrolysis is one such waste management 
technique that permits pruning wastes to be converted into biochar, a desirable soil 
supplement. The biochar produced could be incorporated into conventional fertil-
ization approaches using manures, composts and anaerobic digestates to minimize 
the environmental impact, while also increasing the agronomic value of the organic 
amendments [148]. 

7 Constraints to Biochar Production and Application 
Technology 

Despite the fact that various research have been undertaken with the goal of 
employing biochar as a possible soil ameliorant and carbon sequestration agent, 
three important pieces of knowledge are still missing, which is restricting the prac-
tical application of biochar as a soil supplement. The following are some of the 
limitations: 

(a) Higher sorption of water and nutrients on the biochar surface sometimes reduces 
the availability of plant nutrients causing the reduction in crop yield. 

(b) Highly recalcitrant nature of biochar produced at high temperature results in 
immobilization of nutrients which make them unavailable to the plants. 

(c) Uncertainty concerning the long-term nature of biochar when used in the field. 
(d) The lack of standardized application rate. 
(e) Slow pyrolysis generates Poly-aromatic hydrocarbons (PAHs) those remain 

attached to anionic surfaces of biochar, which could have a negative impact 
on the soil and microbial population, which is one of the primary limits. 

(f) In addition, during pyrolysis, condensed ring structured hazardous organic 
compounds having low molecular weight such as naphthalene, fluorine, furans,
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and others are formed, those pose negative effects on microbial activity in the 
soil during the early days of application. 

(g) Pesticide and pre-emergent herbicide activity is reduced due to sorption on the 
surface of biochar. 

(h) Fine ash from biochar could be a source of dust, posing a danger of respiratory 
disease. 

(i) Mineralization of volatiles or labile fractions has a negative influence on soil 
microorganisms. 

(j) Increased salinity and phytotoxicity due to biochar application at a higher 
concentration in the soil. 

8 Conclusion and Outlooks 

Biochar is a promising bioresource for both biomaterial and energy generation, 
soil refinement, carbon sequestration and pharmaceuticals. Since there are many 
benefits and challenges associated with different biochars, some key issues must be 
pondered upon before their commercial adoption. The majority of the research was 
done in a lab setting and over a short period of time. As a result, long-term biochar 
field trials are required. The majority of the research was done in tropical areas, 
although their applications in temperate settings have not been thoroughly investi-
gated. Due to the presence of wide variety of biochars and lack of standardization 
among the recently available biochars, the application of biochar can be confusing. 
Therefore, a firm definition and standardization of proper and good biochar, needs to 
be developed. Thorough trade-off analyses are required to establish the application 
of proper biochar into proper soil and for proper crops. Future research should be 
devoted on better understanding of biochar functionality and seeking novel strate-
gies to enhance biochar performance by modifying functional groups. Application 
of biochar with other substances, such as compost, organic fertilizers, controlled-
release fertilizers, zeolite, or beneficial microorganisms, should be explored for soil 
property enhancement and maximizing crop yields. 
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Chapter 23 
Application of Porous Carbon Material 
for Water Treatment and Gas Storage 

Saikat Sinha Ray, Mohammed J. K. Bashir, Harshdeep Singh Bakshi, 
Young-Nam Kwon, and Mahesh Ganesapillai 

1 Introduction 

Porous materials have garnered considerable attention in recent years from materials, 
chemical, and energy specialists, among others. As a result, research and devel-
opment of innovative porous materials are accelerated. In recent decades, greater 
emphasis has been placed on various fields of separation and purification technolo-
gies, catalysis, adsorption, gas storage, energy storage and conversion, etc., among 
others, in addition to their commercial implications [1–7]. In the twenty-first century, 
rapid growth in the industrial sector increased residential activities, and global popu-
lation growth has resulted in an unprecedented surge in water contamination and 
pollution. As a result, wastewater treatment is required before discharge into the 
environment. The various potential strategies for the purification of micropollutants 
from wastewater, including adsorption and membrane technology [8, 9]. Adsorption 
on porous materials has typically been a promising technology due to its low cost 
and simplicity of disposal. Due to its structural characteristics with a higher specific
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surface area, activated carbons have become the most extensively utilized adsor-
bents to remove organic contaminants. However, porous carbon materials exhibit 
structural heterogeneity in macro-, meso-, and micropores [1]. Several novel forms 
of porous carbon materials, including carbon nanotubes and carbon nanofibers, have 
been studied for gas storage applications in recent decades. The potential function of 
carbon materials in natural and hydrogen gas storage applications will be evaluated in 
this context. Additionally, methane (CH4) storage entails an adsorption mechanism 
utilizing porous carbon adsorbents, widely regarded as a cost-effective and environ-
mentally friendly technology [10]. The porous carbon used for water treatment and 
gas storage is mostly microporous or mesoporous. 

1.1 Brief Insight of Carbon Materials 

Nanostructured carbon compounds exist in a wide range of shapes and sizes, and they 
can be employed in various applications across a wide range of industries. Carbon 
nanofibers, carbon nanotubes, fullerene, graphene oxide (GO), and graphene (GR) 
have been the most versatile research development components for the last three 
decades. As far as recent research is concerned, these nanostructured carbons have 
been successfully utilized to produce composite materials such as carbon/ceramic, 
carbon/metal, carbon polymer, and carbon/cement composites [11]. 

These nanostructured carbon compounds are strikingly distinct in terms of struc-
ture, properties, production processes, and uses. Carbon materials in various forms 
have recently been used in medical, biological, electrical, electromagnetic, electro-
chemical, and environmental applications. As a result, rigid nanostructured carbon 
materials have been identified as a viable research topic in the field of environmental 
remediation. 

Environmental pollution has become a significant issue as a result of limited reme-
dial solutions. Notably, nanostructured porous carbon materials have been effectively 
used for air and water purification [12]. In addition, porous carbon is successful in 
treating a variety of wastewater contaminants, including heavy metals, nitric acid, 
hydrogen sulphide, organic dyes, pharmaceutical waste, and other micropollutants, 
via adsorption or membrane technology. Following an extensive investigation, nanos-
tructured porous carbon materials demonstrated an adsorption efficiency of greater 
than 80%. Additionally, carbon materials are typically cost-effective and ecologically 
sustainable [13, 14]. 

The relevant survey is depicted in Fig. 1a, which was analysed based on peer-
reviewed articles, book chapters, and reviews, published in the last 10 years, corre-
sponding to the phrases “porous carbon” and “environment”. Additionally, Fig. 1b 
illustrates the research contributions of various countries in terms of publications 
based on porous carbon in the environmental field. The presented database was 
compiled using Scopus’s advanced scholar search engine, and China was reported to 
be the leading in terms of numbers. The graph clearly illustrates the growing need for 
porous carbon materials in the field of environmental remediation. Additionally, it
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Fig. 1 a Survey of peer-reviewed papers published since 2012; b Survey of peer-reviewed papers 
published since 2012 (country-wise contribution). Note As of May 2021, a database was obtained 
from Advanced Scopus Search Engine using the words “porous carbon” and “environment” 

implies that various carbon-based composites have been used in water treatment and 
gas storage applications. Since the last decade, there has been a noticeable increase 
in research and development on "energy and the environment". 

1.2 Background 

Carbon-based materials are well known for their versatility, owing to their ability 
to create strong covalent bonds in many other materials, resulting in perfect phys-
iochemical properties. Recently, much study has been undertaken on synthesizing
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Fig. 2 Different allotropes of carbon and their various applications 

innovative carbon-based materials that meet the required characteristics for using 
various sectors, including membrane separation, sensor technology, energy storage 
and conversion, gas storage, and neurosciences. Figure 2 provides a pictorial 
representation of carbon allotropes and their various applications. 

Carbon nanotubes have been shown to improve the strength, stability, antifouling 
characteristics, and flow rate of ultrafiltration (UF) membranes when composited 
with polymer membranes [15]. The significant improvement in membrane properties 
associated with carbon nanotubes incorporation can be attributed to their increased 
surface area, antibacterial capabilities, hydrophilicity, pore channels, and other func-
tional features of the polymer matrix [16]. Another significant application of innova-
tive porous carbon material such as carbon nanotubes and vapour carbon nanofibers is 
the storage of natural gas and hydrogen gas, facilitated by the materials’ strong C–H 
bonds [17]. While applying carbon-based materials in the domains mentioned above 
presents unique problems, current research has demonstrated that these obstacles can 
be addressed by refining the synthesis of carbon-based materials.
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2 Categories of Carbon Materials 

Due to their highly porous surface and surface area and ease of chemical modification 
and regeneration, carbon materials have been employed for various applications 
over the last two decades, including removing organics, heavy and toxic metals, and 
biological contaminants. Carbon nanotubes, carbon nanofibers, graphene, graphene 
oxide, activated carbons, and fullerenes are all carbon materials employed in energy 
storage, drug delivery, water, wastewater treatment sensors, gas storage, etc. These 
carbon materials have been well exploited due to their superior thermal, electrical, 
and chemical capabilities. Carbon materials are often classified according to their 
dimension. Carbon materials with three sizes less than or equal to 100 nm are zero-
dimensional carbon materials (fullerene and quantum dots) [18]. 

On the other hand, carbon materials with a single dimension greater than 100 
nm and two sizes less than 100 nm are one-dimensional carbon materials (carbon 
nanotubes) [19, 20]. Two-dimensional carbon materials have two dimensions greater 
than 100 nm (graphene). Finally, three-dimensional carbon compounds have dimen-
sions greater than 100 nm (Graphite and other nanocomposite materials) [21]. The 
advantages and disadvantages of various dimensional carbon compounds that are 
highly effective in environmental remediation are summarized in Table 1.

Graphene-based nanomaterials are thought to be toxic because of their particle 
size, surface functional groups, oxygen content, surface charges, and impurities. 
The formation of reactive oxygen species (ROS) is thought to be the most common 
mechanism. In some studies, the low toxicity does not seem to depend on the attached 
functional groups. Carbon nanodots with different amounts of nitrogen and oxygen 
have no effect on cell survival, but in others, the toxicity of certain functional groups 
is found. 

ROS is one of the ways that raw GQDs can be toxic. In practice, different appli-
cations may have different needs for toxicity levels, so there are likely times when 
the toxicity of certain types of GQDs needs to be eased or lowered even more. So, 
it is also important to come up with ways to control the toxicity of GQDs. Hydrox-
ylation was thought to make nanoparticles more biocompatible, but when it comes 
to GQDs, the hGQDs were the most toxic of the three GQDs that were made. If 
you think that surface chemistry affects the safety of nanomaterials too much, you 
should not generalize too much. Instead, the risk assessment of nanomaterials should 
be done on a case-by-case basis [28–30]. Compared to graphene sheets, GQDs are 
more biocompatible and less toxic. CQDs, like GQDs discovered by Pan et al. [31], 
are much more efficient than semiconductor QDs because they are less toxic, more 
biocompatible, have less chemical inertness, and can be easily absorbed by the body 
[31, 32]. Because of their low toxicity, great photostability, and chemical inertness, 
QDs are employed in many fields such as gas storage and water treatment [33, 34].
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2.1 Graphene 

Graphene is an allotrope of carbon that shows existence as a two-dimensional planar 
layer. In other words, it is a single atomic graphitic layer. It is a carbon compound with 
extraordinary properties, as represented in Fig. 3. Due to the unique characteristics 
stated below, it has a wide range of applications in various fields. 

• High electrical and thermal conductivity 
• Maximum flexibility and elasticity 
• Maximum resistance and hardness 
• Lighter in weight 
• Antimicrobial and antibacterial activity 
• Show lesser joule effect, heating while conducting electrons 
• Consume lower electricity as compared to other materials. 

Graphene has the potential to increase the efficiency of solar energy significantly. 
Thus, solar energy efficiency and production can be increased by incorporating 
graphene into solar panels. Similarly, graphene exhibits potential capabilities in the 
same technology, specifically in water and gas separation. Due to graphene’s imper-
meability, a single layer of atoms functions as an excellent barrier in separation and 
purification technologies. However, the pores in graphene may allow for the passage

Fig. 3 Various advantageous physicochemical characteristics of graphene 
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Table 2 Comparative study of various approaches for obtaining graphene 

Methodologies Expected morphology Applications Reference 

Mechanical exfoliation In the form of flakes Quantum hall physics 
Low temperature-based 
physics 

[35] 

Chemical exfoliation Micrometre flakes 
Mass production 
Nanosheet production 

Polymer composite 
Gas sensing 

[36] 

Pyrolysis of carbon 
precursor(s) 

Activated porous carbon in 
the form of molecular 
sieving carbons (MSC) 

Gas storage 
Gas separation 

[37] 

Catalytic decomposition 
of carbon precursor(s) 

Carbon nanofibers (CNFs) Electrode for fuel cells 
Hydrogen storage 
Functional 
nanocomposites 

[38] 

Laser ablation and arc 
discharge 

Carbon nanotubes (CNTs) Energy storage 
Functional 
nanocomposites 

[39] 

Chemical vapour 
deposition (CVD) 

Nanosheet 
Micrometre flakes 

Electronic devices 
Gas storage 
Conduction films 
Sensing 

[40] 

Reduced graphene oxide 
(RGO) 

In the form of micrometre 
flakes 
Nanosheet 

Energy storage by 
fabricating electrodes 
Li-ion battery 
Supercapacitors 

[41] 

Silicon carbide (SiC) 
sublimation in vacuum 

In the form of micrometre 
flakes and films 
Nanosheets 

Compatible with 
Si-Tech supercapacitor 

[42] 

of gases and water molecules, transforming graphene into a material capable of selec-
tive gas and water permeability. Table 2 is a concise review of five typical protocols 
and their associated applications. 

2.2 Nano-porous Carbon 

The synthesis and study of the physicochemical characteristics of nano-porous carbon 
materials produced from biomass are now the focus of nanotechnology. In addi-
tion to having a large specific surface area and good electroconductivity, the carbon 
materials produced have a high micropore volume. The distinguishing characteris-
tics of plant raw materials are their absence of hazardous admixtures that degrade 
manufactured items’ quality, profitability, environmental sustainability, and ease of 
handling and planning for pyrolysis. The factors mentioned earlier and the promising 
findings of synthesizing nano-porous carbon suggest high prospects for improving
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future technologies for biomass pyrolysis. Thermochemical activation is the primary 
approach for treating biomass that enables nano-porous carbon materials to manufac-
ture various topologies using zinc and aluminium chlorides, alkaline metal hydrox-
ides and carbonates, and phosphoric acid [43]. Porous carbonaceous materials are 
generally considered powerful adsorbents due to their high adsorptive capacity and 
surface area [44]. Typically, activated carbons have been widely used as an adsor-
bent for removing pollutants from gaseous or liquid phases, as well as catalysts and 
catalytic supports [45, 46]. 

Recent decades have seen a surge in Nano-porous carbon materials in energy 
conversion and energy storage applications (catalysts/additives). However, before the 
actual demonstration of the advantages of using nano-porous carbons as inert supports 
for semiconductors and electron acceptors that improve photogenerated excitons 
splitting, a large number of researchers have looked into the critical role of carbon 
matrices coupled to various types of photoactive materials. Carbon nanotubes and 
carbon nanofibers are two types of nano-porous carbon materials that have generated 
considerable interest due to their exceptional properties, including high strength 
and modulus, large surface area, low density, high electrical conductivity, chemical 
stability, thermal conductivity, and fire resistance [47]. 

2.2.1 Carbon Nanotubes 

Carbon nanotubes have been lately added as adsorbents with the potential to recover 
heavy metals due to their ability to generate electrostatic bonds between the heavy 
metals and the functional groups of the nanotubes. Carbon nanotubes are a kind of 
molecular carbon that resemble cylinders made up of coiled graphene layers. The 
carbon nanotubes may be single-walled carbon nanotubes with a diameter of under 
one nanometre or multi-walled carbon nanotubes with more than 100 nm, depending 
on their size [48]. 

Their lengths can range from few micrometres to millimetres. Carbon nanotubes 
exhibit extraordinary aspect ratios (length to diameter ratios), often surpassing 1000 
and occasionally reaching 2,500,000. Carbon nanotubes with multiple walls can 
have a wall count of tens to hundreds, with typical wall separations of 0.34 nm. 
Thus, every conceivable arrangement of single-walled carbon nanotube is unique 
due to their chiral angle. Additionally, the rolling direction, diameter, and length of a 
theoretical graphene layer are specified. In contrast, multi-walled carbon nanotubes 
each have their chiral angle [49]. 

Applications for these materials include field emitters, radio-wave reflectors and 
electrostatic discharge protectors, bio-molecular and chemical sensors, hydrogen 
storage media, fuel cell and catalyst support, and composites with better mechan-
ical properties. As a result, a wide range of applications has been successfully 
commercialized [50, 51]. The following section discusses the applications of carbon 
nanotubes and their advantages and disadvantages.
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Carbon nanotubes have a wide range of potential applications, which are as 
follows: 

• Nanotubes reinforced composites 
• Magnetic nanotubes 
• Nano balance 
• Solar energy storage 
• Hydrogen energy storage 
• Thermal Protection 
• Space elevator 
• Reinforcement polymer 
• Reinforcement armour and other materials are all being researched and developed 

at the moment. 

Advantages of carbon nanotubes 

Carbon nanotubes have several advantages, including the fact that they are small 
and lightweight, making them suitable for metallic wires. They can also improve the 
conductive mechanical properties of composites. The resources required to create 
them are in plentiful supply. Additionally, it is possible to make using a tiny amount 
of material. They are temperature insensitive, which means they function almost as 
well in severe cold as in high heat. 

Disadvantages of carbon nanotubes 

Carbon nanotubes have several disadvantages. Regardless of how much research is 
done, scientists are still baffled about how carbon nanotube functions. The manufac-
ture of nanotubes is a time-consuming and complex procedure. A thorough approach 
would be to use this new technology to completely replace outdated technology in 
all of its applications. However, because it is minimal, it is difficult to work with. 
Considering the rate at which technology becomes obsolete, placing a bet on this 
technology may be risky. 

Comparing carbon nanotubes to traditional materials, they are well suited for virtu-
ally any application requiring high strength, durability, thermal conductivity, elec-
trical conductivity, and lightweight qualities [51]. At the moment, carbon nanotubes 
are mainly used for and materials, such as plastics. Carbon nanotubes are available for 
purchase as a powder from a variety of sources. It is necessary for carbon nanotubes 
to be untangled and equally distributed across the substrate to unlock their properties. 
Another need is that the carbon nanotubes be chemically linked to the substrate, such 
as plastic. Carbon nanotubes are functionalized for this purpose, which means that 
their surface has been chemically modified to allow for optimal incorporation into 
diverse materials and for the specific application in question. 

Carbon nanotube production reached a record high of several thousand tonnes per 
year in 2013, with applications in energy storage, device modelling, sporting goods, 
water filters, automobile parts, boat hulls, coatings, thin-film electronics, actuators, 
and electromagnetic shields, among other things. The number of publications on 
carbon nanotubes more than tripled in the previous decade, and the number of patents
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issued increased substantially as well. Carbon nanotubes have indeed been suggested 
for a hypothetical space elevator since they enable the creation of structures such as 
“forests”, threads, and regular sheets in much lesser amounts [52]. 

Recent research has shown the possibility of utilizing carbon nanotubes as crit-
ical components in fabricating three-dimensional macroscopic all-carbon circuits for 
various applications, including biomedical devices. A new radical-initiated thermal 
crosslinking method is described in this article for the production of macroscopic, 
free-standing, porous, all-carbon scaffolds made of single and multi-walled carbon 
nanotubes as building blocks, which may be used in conjunction with other mate-
rials [53]. The porosity of these scaffolds may be adjusted to suit the requirements 
of specific applications, and they contain macro, micro, and nanostructured pores. 
Three-dimensional all-carbon scaffolds/architectures are being investigated for a 
variety of applications, including the creation of next-generation energy storage 
devices, supercapacitors, field emission transistors, high-performance catalysis, 
photovoltaics, and biomedical devices and implants. 

2.2.2 Carbon Nanofibers 

Carbon nanofiber has been widely studied by a large number of researchers and in 
a broad range of practical uses, and it has been established as the most significant 
member of the carbon fibre family. Carbon nanofibers are produced when a hydro-
carbon feedstock reacts chemically with a metallic catalyst. Carbon nanofibers are 
presently one of the most reliable nanofillers accessible, and their many properties 
enable them to be utilized in a broad variety of applications [54]. Carbon nanofibers 
are potential materials for a variety of applications, including electrical and elec-
tronic devices, electrode materials for supercapacitors, and sensors. In applications 
where the dispersion and percolation status of the matrix materials are essential [55– 
57], high electrical conductivity materials are typically advantageous because they 
may improve dispersion and percolation. When compared to raw carbon fibre, the 
structural properties of carbon nanofibers are very similar. Their mechanical, elec-
tromagnetic shielding, electrical, and thermal stability, all of which are improved by 
their presence on the nanometre scale, make them highly versatile and well known 
in the field of nanotechnology. 

The properties of carbon nanofibers are determined by the fibre structure, which 
is determined by the manufacturing technique and post-treatment processes. Typical 
carbon nanofibers are a sequence of long, fibrous, platelet-type carbon layers arranged 
in layers perpendicular to the axis of the carbon nanofibers, with each layer being 
perpendicular to the axis of carbon nanofibers. The catalyst used to create the carbon 
nanofibers has an impact on the way they are organized. It is required to use partic-
ular, complex, and microscopic techniques to evaluate the structure and content 
of nanofibers to research their properties. Nanofibers have an average diameter of 
50–200 nm and a single atom between 0.1 and 0.5 nm [58]. 

Carbon nanofibers, regardless of their microscopic size, possess excellent chem-
ical and mechanical properties. The fact that different polymers will be thermally
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treated after electrospinning allows them to retain their high electrical and thermal 
conductivity and dimensional stability [59]. Furthermore, they are lightweight, easy 
to manufacture, and shape, and have excellent corrosion resistance and excellent rein-
forcing capabilities. Carbon nanofibers are suitable for usage in thin films because 
of their low density of 1.3–2 g/cm3. Depending on temperature and material, their 
heat transfer coefficients range from 1950 to 6000 W/m K, while their electrical 
resistivities range from 1 × 10−3 to 1 × 10−4. Its tensile strengths range between 
2.92 and 500 GPa and its tensile modules from 220 to 1500 GPa in this material. In 
some instances, the carbon nanofibers can be as long as 100 µm in length and feature 
pores 0.2 µm in diameter [58]. 

Carbon nanofibers with a high aspect ratio, strong adhesion, homogenous distribu-
tion, and good dispersion between the polymer matrices and the carbon nanofiber are 
the most important factors to consider when manufacturing multifunctional carbon 
nanofibers and polymer composites reinforced with exceptional mechanical prop-
erties [60–62]. A technique known as melt mixing is the most effective way for 
creating composites that are compounded to allow carbon nanofibers to fulfil their 
purpose. To help and facilitate the distribution and dispersion of carbon nanofibers 
and preserve the high aspect ratio of carbon nanofibers, it is essential to feed carbon 
nanofibers after melting polymer pellets to use a compatibilizer to prevent mixing 
circumstances. 

Applications of Carbon Nanofibers 

The use of carbon nanofibers has recently been expanded to include developing 
lithium-ion battery electrodes that are fourfolds the total storage capacity of existing 
lithium-ion batteries [63]. Recently, researchers are even using carbon nanofibers to 
create sensors that can detect the absorption of chemical vapours by altering the colour 
of their appearance; accord nanofiber sensors should be used to monitor the situation 
in which the layer that collects and filters pollutants in a gas mask gets saturated with 
potentially hazardous components or compounds [64]. The remarkable and one-of-a-
kind structure of carbon nanofibers is responsible for their high reversible capacity, 
excellent cycle stability, and excellent electrochemical performance, among other 
things. This property is applicable when carbon nanofibers are used as electrodes for 
lithium-ion batteries capable of being recharged. 

The availability of raw materials at reasonable prices will determine the direc-
tion of the market’s development in carbon nanofibers in the future. Using a tech-
nology combining catalytic chemical vapour deposition [65], scientists and innova-
tors have demonstrated their ability to manufacture large quantities of highly pure 
carbon nanofibers at a meagre cost. Additionally, stabilizing and carbonizing carbon 
nanofibers after electrospinning polyacrylonitrile is a simple, appropriate, and evident 
method of synthesizing continuous and fibrous carbon nanofibers [62].
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2.3 Activated Carbon 

Activated carbon refers to a range of Carbon-based materials such as carbonized 
biomass, lignite, coal, charcoal, and peat. Activated carbons are among the most effi-
cient adsorbents due to their high adsorption capacity, high porosity, larger surface 
area, thermal stability, inertness, various surface chemistry, and high surface reac-
tivity [66]. Figure 4 illustrates the use of activated carbon as an adsorbent owing to its 
porous structure and other physiochemical properties. Activated carbon is employed 
for various applications, including wastewater, water purification, medical purposes, 
gas storage, and separation. Activated carbon is applied in various forms: The granu-
lated activated carbon (GAC) consists of granules of 600–4000 µm, and the powdered 
activated carbon (PAC) consists of powdered particles of size lesser than 44 µm. 
Although powdered activated carbon particles allow faster adsorption owing to their 
small size, they are less convenient to handle in fixed adsorption beds. 

On the contrary, granulated activated carbon particles are easier to handle and 
can be regenerated easily but are relatively costlier. On the other hand, the fibrous 
activated carbon materials are the most expensive but cause the least hydrodynamic 
resistance to their ability to easily mould according to the shape of the adsorption 
system [67]. Recently, a lot of research is being carried out to discover novel envi-
ronmentally friendly methods of producing activated carbon and its application in 
various fields.

Fig. 4 Illustration of the use of activated carbon as an adsorbent for wastewater treatment 
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3 Adsorption Application 

Porous carbon compounds have gotten a lot of attention due to technological advance-
ments and the growing demand for resources. They are the most extensively used 
adsorbents in various environmental applications, primarily due to their micro-
porosity and larger surface area (which substantially impacts the adsorption process). 
Due to their mild heat of adsorption, low energy consumption, high adsorption 
capacity, fast kinetics, cost-effectiveness, relatively easy regeneration, and the exis-
tence of various functional groups, they have proven to be a viable contender for 
adsorption. In general, the term “physisorption” is defined by the intermolecular 
force of interaction between adsorbents and adsorbates. The van der Waals force is 
a type of intermolecular force that exists. Since physisorption is also known as van 
der Waals adsorption, the binding force is weak with lower heat of adsorption, and 
the rate of adsorption and desorption rate is fast. Thus, the adsorbed gas on carbon 
base materials can be easily extracted without any changes. In contrast, chemical 
adsorption or chemisorption can be defined as the transfer, sharing, and exchange of 
electrons between adsorbents and adsorbates (atoms or molecules). In other words, 
the adsorption of adsorbates is due to the formatting of chemical bonding between 
them [68]. 

The characteristics of a carbon material are dependent on surface morphology 
determined by internal structure and their arrangement in the matrix. Recently, 
few researchers have prepared carbonic molecular sieves (CMS) and sorbents from 
various carbon materials. Typically, carbonic molecular sieves are microporous 
carbons with slit-shaped pore openings [69]. The gas adsorption of different adsor-
bate molecules is dependent on the size, structure, shape, and electronic interaction 
among the molecules with the adsorbent. Based on recent reports, adsorption of CO2, 
CH4, N2, and O2 on carbon materials occurs in the micropores. This characteristic 
feature is because the carbon materials could be synthesized in fine powdered from 
a developed microporous structure and due to the specific nature of the interaction 
between gas molecules and carbon-based materials. Since carbon-based materials 
possess a high specific surface area and sizeable microporous volume, carbon can 
be considered one of the developed fast reaction adsorbents [70]. 

Most importantly, they are less humidity-sensitive than other CO2-philic materials 
currently available [8]. Based on those mentioned above, they are used in a wide range 
of applications such as gas adsorption and separation, decontamination of water, 
energy storage (supercapacitors), structural support (activated fibre), and biological 
applications (diagnostic materials, drug delivery). Porous carbons include activated 
carbon, soft and hard templated mesoporous carbons, activated carbon fibres, and 
porous nano-carbons, to name a few. Among all types of nano-porous materials, 
porous carbons are most used in numerous scientific, technological, and industrial 
sectors. When utilized as an adsorbent, a porous carbon material with a broad pore 
channel may considerably increase molecules’ diffusion and diffusion properties 
[71].
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Adsorption in porous materials is influenced by the strength of the fluid-wall 
and fluid-fluid interactions and the state and thermodynamic stability of fluids in 
narrow pores. Its absorption capacity for adsorbates is affected by the adsorbent 
(functional groups and pore size and structure) and the solution conditions (pH, 
ionic strength, and temperature). These forces influence chemical compound binding 
and accumulation on various adsorbents in the aqueous phase. Adsorption requires 
hydrogen and phosphorus bonds, covalent and electrostatic interactions, and the 
hydrophobic effect [72]. 

Physical contact (electrostatic or dispersive forces) and chemical bonding hold 
molecules or atoms (absorbable) to the carbon surface. As a result, CBM adsorbents 
must have a large specific surface area. In addition, activated carbons have micropores 
that are analogous to the adsorbate molecules. The ability of carbon molecular sieves 
to separate diverse species, particularly gas mixtures, is determined by the molecule’s 
pore volume traversal [73]. Water vapour also affects the effectiveness of activated 
carbon beds in gas filters. The absorbed mixture’s composition is another aspect 
to consider when assessing volatile chemical uptake by these carbon beds. Carbon 
adsorbents prefer fewer flammable chemicals. There is no clear relationship between 
a chemical compound’s characteristics and the sorption bed’s capacity [74]. 

Carbon aerogel, a novel form of mesoporous carbon material, is a promising 
adsorbent. The presence of oxygen, nitrogen, and sulphur compounds on the surface 
of carbon-based materials, notably carbon aerogels, can enhance the adsorbents’ 
porosity, hydrophilicity, and selectivity [75]. Carbon nanoparticles are effective 
adsorbents for separating inorganic and organic contaminants due to their high 
selectivity and adsorption capacity. The development of carbon-based adsorbents 
for pollutant removal has been studied extensively. Carbon functional group interac-
tions are critical in the elimination of contaminants from aqueous solutions. Analyses 
of carbon nanomaterial adsorption properties show that functionalization and deco-
rating dominate [73]. Due to their ability to develop a large specific surface area 
(over 3000 m2/g.), tunable surface texture, and functionality, activated carbons have 
grown into a significant class of porous materials with a wide range of applications 
in large-scale industrial processes. 

3.1 Gas Storage 

Typically, membrane gas separation occurs due to the differences in transport of the 
various species passing via the membrane itself. As far as gas separation within 
porous carbon materials is concerned, both porous inorganic and dense organic 
membranes can be used as selective gas separation films. However, mostly the gas 
separation membranes are made of either polymers or carbon-based materials [76], 
whereas the mechanism of gas storage in carbon-based materials significantly differs 
from the traditional gas reservoirs. The sorption capacity and amount of gas should
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be analysed to evaluate the gas resources in carbon materials. The amount of gas indi-
cates the gas content in carbon materials at starting reservoir pressure and tempera-
ture. Furthermore, the sorption capacity illustrates the maximum limit of gas content 
(i.e., upper limit of adsorptive capacity) as a function of pressure [77]. 

Carbon capture and storage technologies, which aim to reduce CO2 emissions, 
increase attention from researchers from various backgrounds and disciplines. Most 
carbon capture and storage methods need an effective adsorbent to absorb CO2 

from sources like fossil fuels (pre-combustion) or flue gas from power production to 
capture CO2 from sources such as these (post-combustion). Recent years have seen an 
increase in the series of research on the development of cost-effective adsorbents with 
a high capacity, strong stability, and the ability to regenerate. Because of their large 
surface area, superior resistance, and increased porosity, a variety of Nano-porous 
carbon materials, such as activated carbon, carbon nanotubes, and nanofibers, have 
been suggested as suitable supplies for this challenging job. These materials include 
activated carbon, carbon nanotubes, and nanofibers, among others. For example, the 
advancement of CO2 capture, storage, and utilization strategies looks to be a logical 
solution [78]. 

Typically, heteroatom doping carbon materials with a tailored pore structure, 
surface functionality, chemical composition, and atomic architecture demonstrate 
exciting categories of porous carbon for various applications in the field of catal-
ysis, energy conversion, gas storage, and water treatment. Compared to commercial 
carbon materials, heteroatom-doped carbon provides better electrocatalytic activity 
for reducing oxygen in both acidic and alkaline mediums. In addition, heteroatoms, 
such as nitrogen, sulphur, boron, and phosphorus with dual and ternary doped carbon 
materials, possess high durability in an alkaline/acidic environment. Meanwhile, 
heteroatoms doped with N, S, B, and P transform the surface functionality and chem-
ical composition and impact the distribution of electrons of the carbon network, which 
enhances electrochemical properties and gas storage [79]. 

Nonetheless, one of the most pressing concerns with carbon capture and storage is 
that the process requires a certain level of energy consumption, resulting in extra CO2 

emissions [80, 81]. Hence, carbon capture and storage seek to improve CO2 adsorp-
tion and adsorbent regeneration procedures to reduce offset. This has the potential 
to reduce CO2 emissions by a significant amount. An adsorption unit packed with 
an adsorbent capable of high CO2 absorption capacity may be included in designing 
a new power plant or retrofitting into an existing power plant to accomplish this 
objective. Depending on the technology used, CO2 collected will either be trans-
ported and stored in designated CO2 reservoirs or converted into other chemicals 
utilizing carbon capture in the early phases of development on a large commercial 
scale. In terms of CO2 adsorption, such materials have a large surface area and pore 
volume, with some examples exhibiting selective adsorption to CO2 from a mixture 
of gases. Adsorbed natural gas (ANG) technologies [82], which are currently under 
development, might also be beneficial to the various uses of methane as an energy 
vector because of its high efficiency. 

When suitable adsorbers are used, the gas storage pressure within tanks may be 
lowered by up to 20% of the value needed for compressed natural gas (CNG). The
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quantity of gas stored can be significantly increased at the same pressure [83]. It 
is believed that activated porous carbons are the most appealing of the different 
materials suggested for use in ANG applications for various reasons [84]. These 
characteristics include flexibility, which allows for fine-tuning of the porosity by 
adjusting the starting materials and reaction conditions, high mechanical and chem-
ical stability, and the creation of low-cost and scalable performance characteristics 
[84]. To achieve carbon capture and sequestration at this time, several technical 
approaches are being pursued, including post-combustion, pre-combustion, oxy-
combustion, chemical looping combustion (CLC), and even ambient air. The benefits 
and drawbacks of each of the routes mentioned are outlined in Table 3. 

One of the most influential thermodynamic properties used to characterize the 
adsorption process is adsorption’s differential isosteric molar heat. It yields a ratio 
between adsorbate/adsorbate and adsorbent/adsorbate interactions, and thus, it is 
deemed an essential factor for the storage of gases. The heat of adsorption plays a 
pivotal role in assessing the interactions between the gas species and the adsorbent

Table 3 Advantages and disadvantages of current CO2 capture technological processes [84] 

Capture pathway Advantages Disadvantages 

Post-combustion Mature technology (e.g., 
aqueous monoethanolamine), 
commercially deployed in 
some industries 
Suitable for most existing 
power plants 
Possible for retrofit to 
existing plants 

High parasitic power 
requirement 
Low capture efficiency due to 
low CO2 partial pressure 
High capital and operating 
costs 

Pre-combustion High CO2 concentration 
High partial pressure 
Mature physical absorption 
technology (e.g., Selexol and 
Recticel), commercially 
deployed in some industries 

Applicable mainly to new 
integrated coal gasification 
combined cycle (IGCC) plants 
H2-rich gas-induced 
temperature and efficiency 
issues 

Oxyfuel combustion Developed air separation 
technologies available 
Very high CO2 concentration 
Possible for retrofit and 
repowering to existing plants 

Costly and energy-intensive air 
separation step 
Retrofit unattractive due to 
significant plant changes 

Chemical looping combustion Very high CO2 concentration 
Low-cost oxygen carrier 
materials 

Immature, currently under 
development 

Air capture Truly and directly reduce the 
atmospheric CO2 
concentration 
A viable alternative for CO2 
captures from mobile and 
decentralized sources 

Immature, currently under 
development 
Cost and an energy intensive 
due to deficient CO2 
concentration (−400 ppm) in 
air 
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material—both of these are positively correlated, i.e., with an increase in the heat 
of adsorption, the interactions between adsorbent material and gas species increase 
as well. This is a highly desirable trait because it increases the feasibility of the 
adsorption phenomenon. For hydrogen storage, an ideal adsorbent must possess 
small and uniform micropores at very high densities since it ensures an enhanced 
heat of adsorption [85]. A material like Activated Carbon with a higher heat of 
adsorption can perform without the requirement of excessive pressure or cooling 
conditions—making it an ideal candidate to be used as an absorbent [86]. 

Numerous studies were conducted to successfully assess the kinetics and the 
thermodynamic factors associated with the process of adsorption. Both physical and 
chemical adsorption usually exhibit a largely endothermic nature with positive values 
of Enthalpy (∆H). On the contrary, the Gibbs free energy (∆G) calculated usually 
yields a negative value for both types of adsorption processes. ∆G yielding a nega-
tive value suggests that the process is a spontaneous one and can effectively be used 
as an indicator to determine the feasibility of the adsorption process. The value of 
entropy of adsorption (∆S) indicates a discernible decrease in randomness between 
the adsorbent and the target species (adsorbate). It also depicts a reduction in the 
degree of freedom for the adsorbate—this reveals that the adsorbent material has 
successfully entrapped the target species inside its structure. Carlos et al. conducted 
a study assessing a Microporous activated carbon material as adsorbent—the total 
entropy varied as temperature increased and ultimately declined at a steep rate indi-
cating that molecules incurred a loss of one degree in terms of translational motion 
and one degree in terms of rotational movement during the adsorption process [87]. 

3.2 Energy Storage Applications and Technology 

Large-scale gas storage for energy storage improves energy network management 
and integration of renewable energy sources. It also aids in the transition to a low-
carbon economy by storing massive amounts of CO2. Underground storage of H2, 
CH4, and CO2 is proposed in porous rock formations or salt caverns, topped by 
impermeable rocks (cap rock) to prevent gas leakage to the surface [88]. For example, 
keeping natural gas (methane) at room temperature requires high density. Adsorption 
is utilized in bulk transportation and peak shaving in the natural gas industry. To date, 
the most efficient carbon adsorbents have reached the highest adsorption storage 
capacities. A large micropore volume per unit volume carbon is desired for methane 
adsorption at ambient temperatures. Commercial carbons can presently only store 
roughly half the compressed gas at 20 MPa (around 230 v/v methane at 298 K)[89]. 

Particle size selection allows for modest improvements in packing for granular 
carbon. Using low macropore carbon increases storage capacity. Carbides with many 
micropores per unit volume should be helpful for methane storage, as they adsorb 
more methane per unit mass than the original PVDC carbon [89]. Because of their 
structural stability, cyclability, and regeneration, nanopore-activated carbons are 
considered feasible CO2 storage materials via physisorption. Because nanopores
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have a higher adsorption potential, they can condense more CH4 at lower pressures 
(30–40 bar). For porous materials with similar textural properties, adsorption values 
of 7.5 wt% are expected at 298 K [90]. Activated carbon was nitrogen doped with 
ammonia and then impregnated with platinum nanoparticles using ultrasonic. This 
is due to the lack of metal-encouraging storage mechanisms such as gas dissoci-
ation or rebuilding on platinum’s surface and the negative consequences of metal 
pore-blocking and increased metal particle density [91]. 

In storing and transferring hydrogen gas, absorption (metal hydrides and complex 
hydrides) and adsorption are favoured (carbon materials). Adsorption of hydrogen on 
carbon compounds appears to be more efficient than absorption. Carbon compound 
pore size impacts hydrogen adsorption (50 nm). Adsorption and compression on solid 
surfaces combine to form physisorption capacity. The hydrogen-carbon bond is weak 
in any carbon material, and the low adsorption energy ruled out hydrogen adsorp-
tion in the nanotube interstitial channels. Despite its strong polarizability, graphite’s 
interlayer distance and specific surface area (SSA) are negligible. Graphene platelets 
fill the gaps between the graphene sheets, providing a large surface area and more 
interaction sites for adsorbents [92]. 

3.3 Wastewater Treatment 

For the last three decades, activated porous carbon has been widely used in water 
treatment or purification of wastes and gases in the industrial sector. Nevertheless, 
many efforts were given to produce activated porous carbon by reusing various natural 
resources and eventually preventing environmental pollution. Therefore, more and 
more innovations have been tried to optimize these carbonaceous materials in produc-
tion and regeneration. Recent studies suggested that activated porous carbon comes 
in amorphous carbon, which can be functionalized to enhance the porous structure. 
Typically, these activated porous carbon are microporous, with excellent adsorption 
sites for the adsorption of chemical agents/species. This kind of adsorption can be 
attributed to the presence of van der Waals type of physical attraction. On the other 
hand, adsorption may cause the generation of covalent bonds between the adsorbate 
and active sites of porous carbon, which is also known as chemisorption [93, 94]. 
Table 4 demonstrates the wastewater applications of various carbonaceous material 
along with characteristic properties.

Recent research suggests that transforming the surface of carbon architec-
ture improves the high adsorption performance of these carbon materials. Thus, 
the heteroatom-doped carbon materials with a tailored pore architecture illustrate 
exciting families of porous carbon materials in the area of water treatment. Many 
researchers have changed the surface of carbon materials by considering the reaction 
mechanism, permitting a higher degree of uptake of environmental contaminants by 
these adsorbents. Furthermore, functional chemical groups can directly interact with 
fused aromatic rings in hydrocarbon [68, 99]. Table 5 indicates the physicochemical
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Table 4 Characteristics features of various carbonaceous materials for wastewater treatment 
applications 

Carbonaceous materials Characteristic properties Waste water treatment 
applications 

References 

Carbon nanotubes (CNTs) Large surface area 
Ease of functionalization 
High aspect ratio 
Fast water transport 

Brine and saline 
desalination 
Removal of heavy and 
toxic metals 
Oil water separation 
Removal of emerging 
pollutants 

[95] 

Graphene High surface area 
Good hydrophilicity 
Tunable surface 
chemistry 
High mechanical strength 
Excellent corrosion 
resistance 

Graphene oxide 
membrane filtration 
Water desalination 
Pre-treatment filtration 
Membrane applications 

[96] 

Carbon fiber High stiffness 
High chemical resistance 
High temperature 
tolerance 

Adsorption of organic 
pollutants 
Adsorption of inorganic 
pollutants 
Degradation of organic 
pollutants 
Microbial 
decontamination 

[97] 

Carbon black High surface area to 
volume ratio 
Larger specific surface 
Ease of functionalization 

Carbon-based filters for 
water treatment 
Carbon filters for removal 
of Biological and 
chemical oxygen demand 
and Total organic carbon 
Removal of Persistent 
organic pollutants (POPs) 

[98]

surface adsorption of various activated porous carbon governed by the nature of the 
carbon precursor and initiating chemical reagents and activation methodologies.

4 Membrane Separation by Carbon Materials 

Typically, porous carbon-based membrane has become a novel approach to replace 
the current issues of the polymeric membrane in water and gas separation areas 
due to excellent sieving effect [108–110]. The pyrolysis process is one of the proto-
cols of transforming a polymer-based membrane into a carbon-based membrane. The 
pyrolysis process is performed by differentiating the degree of porosity, structure, and 
features of separation, which are also dependent on carbonization conditions [111].
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Table 5 Experimental conditions of various activated porous carbon for removal of different 
chemical species 

Carbon 
precursor 

Activation 
process 

Reagent used Specific 
surface area 
(m2/g) 

Pollutant References 

Apricot shell Chemical H3PO4 307 Tetracycline [100] 

Bamboo Chemical H3PO4 1400 Reactive black 
5 

[101] 

Coconut husk 
and Shell 

Chemical KOH/NaOH 1448 and 876 Fluoride (F-), 
Methylene blue 
(MB) 

[102, 103] 

Durian shell Physical CO2 917 AMX and 
Tetracycline 

[104] 

Palm shell Chemical H2SO4 + 
K2S2O8 

770 Bis-A, 2,4, 
DNP and 4-CIP 

[105] 

Coffee husk 
and Coffee 
spent 

Physical H2O 383 and 464 Nickel [106] 

Acrylic 
fibrous waste 

Physical O2 280 Methylene blue 
(MB) 

[107]

On the other hand, the inorganic-based membrane is usually exploited by complex 
fabrication methodology, problematic permeation property, and high-priced opera-
tional cost. At the same time, the simplistic approach of polymeric membranes due to 
simple fabrication and high mechanical strength can overpower the membrane perfor-
mance compared to that of the inorganic membrane [112]. However, the operational 
temperature became the major limitation of the polymer membrane. Additionally, 
poor diffusivity and selectivity of specific gases are other drawbacks of polymeric 
membrane performance [54, 113, 114]. 

Recently, there has been an increase in the application of carbon-based membranes 
for water and gas separation due to the excellent sieving effect that offers 
better remarkable selectivity and excellent mechanical, the chemical and thermal 
stability of the commercially available polymeric membrane. Typically, carbon-based 
membranes were categorized into supported carbon membranes and unsupported 
carbon membranes [108]. The supported carbon membranes can be divided into two 
designs, namely tubular and flat. Most interestingly, supported membranes are more 
popular due to their excellent separation and mechanical stability in flat and tubular 
structures. The flat or tubular membranes are Tubular or flat supported carbon ranges 
attached to macro-porous substrates. At the same time, unsupported carbon-based 
membranes can be capillary, hollow or flat. Usually, hollow fibre membranes are 
used in H2 separation because of cheap operational cost and excellent separation 
efficiency. However, the defect-free membrane layers can be produced by consid-
ering the following factors such as (a) polymer concentration; (b) percentage of
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precursor solution (if needed); (b) coating methodology; (c) operational temperature; 
(d) operational pressure; and (e) operation time duration [115, 116]. 

4.1 Mechanical and Chemical Stability 

Typically, carbon-based membranes were widely utilized for various purposes such 
as gas separation and wastewater treatment due to excellent separation efficiency, 
excellent mechanical stability, and lower production costs [117]. Carbon-based 
membranes possess remarkable mechanical stability because of their turbostratic 
or graphitic structure [118]. In addition, carbon-based membranes showed higher 
mechanical stability, which can withstand high pressure for a given membrane 
thickness [119]. Recent research suggested that carbon-based membranes exhib-
ited maximum elastic modulus with lower breaking elongation points than polymeric 
membranes [120]. For instance, Linkov et al. has demonstrated various techniques to 
develop narrow pore sized distribution in carbon membranes. They fabricated carbon-
based membranes by carbonizing asymmetrical polyacrylonitrile (PAN) precursors, 
which led to the production of a highly flexible range of porous carbon-based 
membranes with excellent pore size distribution along with remarkable porosity 
and excellent mechanical characteristics [121]. 

Interestingly, porous carbon-based membranes are more advantageous than poly-
meric membranes regarding thermal, selectivity, and chemical stability. More atten-
tion has been given to such materials (such as zeolites, silica, and carbon) having 
molecular sieving characteristics that seem to be emerging candidates in the field 
of gas separation and water treatment [122]. It was observed that carbon-based 
membranes exhibited remarkable absorptivity application in few specific gases, 
which results in better gas separation efficiency [123]. 

Furthermore, carbon-based membranes demonstrate good chemical stability 
while maintaining excellent permeate selectivity. The high permeate selectivity can 
be attributed to the connectivity of ultra-micropores (smaller than 0.4 nm) and micro-
pores, leading to high porosity. Recent developments have allowed for the production 
of carbon-based membranes from polyimide membranes, capable of withstanding 
extremely high operating temperatures without deforming [113, 124, 125]. Because 
of their exceptional strength and extraordinary chemical and heat resistance capabili-
ties, these carbon membranes can be manufactured with maximum carbon yields and 
maintain structural forms even after pyrolysis. Figure 5 illustrates the enhancement 
in physiochemical properties of the membrane after incorporating carbon- based 
material. Due to their outstanding heat and chemical tolerance, materials can be 
used to fabricate carbon membranes with high carbon yields and retain their struc-
tural shapes during high-temperature pyrolysis [54]. Table 6 provides an overview of 
carbon membranes in terms of transport method, chemical stability, and mechanical 
stability, as well as their mechanical properties.
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Fig. 5 Enhanced membrane characteristics after incorporation of carbon-based material 

Table 6 Insight of carbon membranes 

Parameters Impact References 

Separation mechanism Knudson diffusion: ≥10 Å 
Solution diffusion: ≤50 Å 
Capillary condensation: ≥30 Å 
Molecular sieving: ≤6 Å  

[126] 

Chemical stability Excellent chemical stability with high permeate 
selectivity 

[127] 

Mechanical stability Excellent mechanical strength [128] 

Withstand high pressure 

Advantages Excellent thermal stability [127] 

Excellent porosity 

It can be utilized at aggressive operation 

Cheap fabrication methodology 

Disadvantages Exposure to organic pollutants as well as water vapour 
might have a detrimental effect 

[129] 

Brittle in nature 

4.2 The Efficiency of Filtration Medium 

New polymeric membranes are not effective enough in many separation operations, 
especially when dealing with emulsions with less than 20 mm droplets and usually 
require a follow-up treatment to separate the constituents [130]. Hence recently, a lot 
of research has been focussed on developing novel carbon-based materials having 
high separation efficiency. Out of various carbon allotropes, graphene and carbon 
nanotubes (CNTs) have drawn significant attention due to their one-dimensional
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structure, high hydrophobicity, oleophilic nature, and large specific surface area 
[131]. Liu et al. used functionalized multi-walled carbon nanotubes (F-MWCNTs) 
for the separation process and found them highly effective for oil-water separation. 
The results showed that the functionalized multi-walled carbon nanotubes could 
remove 99.8% of oil from the oil-water emission [132]. In another study, Zhang et al. 
incorporated graphene oxide sheets on the surface of electrospun-aminated polyacry-
lonitrile (APAN) fibres. The modified membrane exhibited high hydrophilicity, flux 
over 10,000 L.m−2.h−1, very low oil adhesion, more than 98% rejection rate, and 
excellent antifouling properties for the separation of tested oil-water emulsion [133]. 

Although incorporating carbon allotropes onto a pure polymeric membrane has 
been shown to increase separation efficiency considerably, they are not stable enough 
under harsh conditions due to the base’s low thermochemical stability (new poly-
meric membrane). To overcome this issue recently, a lot of research has been focussed 
on developing and using pristine carbon-based membranes having superior physic-
ochemical properties, higher mechanical stability, and highly integrated operation. 
They pose high strength even in harsh conditions. However, these membranes are 
relatively pricey and have a higher environmental impact due to the additional chem-
ical reagents required to clean these membranes. Hence, so far, they are not considered 
suitable for large-scale industrial operations. 

5 Future Perspectives and Challenges 

In today’s modern world, the commercialization of carbon-based nanomaterials for 
environmental remediation is subjected to eco-systems [134]. Therefore, researchers 
are doing various studies to analyse the toxicity level, human risk assessment, 
life cycle assessment (LCA), and dispersion of nanomaterials in the water system. 
These prominent findings would result in better dispersion of nanomaterials in water 
systems [135, 136]. Additionally, due to extensive research and development on 
carbon-based nano-porous adsorbents for gas storage application, it is expected that 
an enhanced techno-economical process will strengthen the adsorption performance 
of various gas. Therefore, it can be concluded that carbon-based nanomaterials play 
a prominent role in advancing novel and innovative technologies for sustainable 
renewable energy [137]. 

Regardless of excellent research and development in the field of environmental 
remediation using gas storage, membrane fabrication, and adsorption-catalytic 
process using various sustainable porous carbon materials such as carbon nanofibers, 
carbon nanotubes, quantum dots, GO, and RGO, more attention is needed to focus 
on below-mentioned problems in future advancements [136, 138, 139]: 

• Development of novel methodologies for fabrication of cost-effective carbon-
based nanomaterials for the enhanced absorption-catalytic process. 

• More emphasis on the reusability of magnetic carbon nanomaterials for water 
treatment.
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• Research and development on cost-effective adsorbents for removal of organic 
dyes and pollutants. 

• Reusing of biowaste-derived carbon materials of environmental remediation. 
• Evaluation of life cycle assessment and toxicity of various carbon nanomaterials 

reduces the potential threat to human lives. 
• Advancements of tunned nanomaterials with hydrogen-rich moieties to improve 

the hydrogen storage adaptability and performance. 
• More emphasis must be given to machine learning, as it emerges as the powerful 

subject for improvised product designing and production of hydrogen storage 
materials. 

• Exploring more and more 2-D carbon-based nanosheets which could improve the 
efficiency of hydrogen storage. 

Carbon materials have attracted a great deal of scientific attention due to their wide 
variety of uses and exceptional characteristics. For example, porous carbon materials, 
such as activated carbon, have long been employed as adsorbents in water treatment, 
gas separation, gas purification, and storage. However, the challenges offered by 
these materials have maintained the researchers’ attention. For example, while acti-
vated carbon has been used to treat residential and industrial water for decades, the 
tremendous effort of preparing them from various sources has significantly reduced 
adsorbent manufacturing costs [140, 141]. 

However, one of the most significant drawbacks of utilizing activated carbon in 
water treatment is that its adsorption capacity deteriorates with time, increasing 
foreign molecule adhesion on the active site, necessitating heat regeneration or 
complete medium replacement [142]. Furthermore, activated carbon treatment is 
insufficient since it lacks disinfection, requiring post-treatment, which raises overall 
expenditures and effluent discharge [143]. Therefore, other porous carbon materials, 
such as graphene oxide, activated carbon enhanced with nanoparticles, and Nano-
porous carbon generated from metal-organic frameworks (MOF), have been devel-
oped to overcome these concerns since they have greater selectivity, permeability, 
and electrical conductivity. 

Porous carbon compounds offer enhanced gas storage capabilities and are 
reversible and fast-kinetics adsorption process [144]. However, even though 
hydrogen is one of the cleanest fuels, storing hydrogen is challenging. Liquid 
hydrogen has traditionally been stored at very low temperatures and high pressures, 
making it difficult and dangerous. As a result, solid-state hydrogen storage based on 
porous carbon materials has a promising future. 

Overall, it appears that porous carbon materials could be useful in water treatment 
and gas storage. They are affordable adsorbents with high selectivity, recyclability, 
and fast kinetics. However, they will need to put in more effort to expand their 
gas storage capacity. In addition, it is also crucial to address early activated carbon 
inactivation and improve long-term stability. Another area that may be looked at is 
the use of materials to capture harmful and hazardous gases.
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6 Conclusion 

This book chapter reviewed the progress achieved in terms of processing and applica-
tions of porous carbon nanomaterials. The low-dimensional carbon materials such as 
carbon nanotubes, carbon nanofibers, graphene, graphene oxides, reduced graphene 
oxides, and their derivatives were in the field of environmental issues, remediation, 
and applications. Despite the extensive use of breakthrough technologies, adsorp-
tion or integrated adsorption-catalysis can be regarded as effective in a mass produc-
tion application, given porous carbon materials’ feasibility, cost, and processability. 
Despite the extensive use of breakthrough technologies, adsorption or integrated 
adsorption-catalysis can be regarded as effective in a mass production applica-
tion, given porous carbon materials’ feasibility, cost, and processability. Thus, more 
research and development can be performed in the real field using collaboration 
among academic groups and industrial facilities. 

Recently, green nanotechnology has been considered in various fields, including 
manufacturing, product designing, and applications development. More research and 
development must be explored for nanomaterials. The present book chapter presented 
the importance of carbon-based nanomaterials for water treatment and gas storage 
applications. The versatility of carbon nanomaterials was attributed to their proper-
ties, including excellent average pore size and pore size distribution, higher surface 
area, ease of chemical tunability, and surface modification of porous carbon nano-
materials making them promising candidates for environmental remediation and 
energy as well as gas storage. Tunning the surface of carbon nanomaterials provides 
additional opportunities to tailor desired chemical modification for the applications 
mentioned above. Carbon nanomaterials are highly usable for environmental reme-
diation due to the ease of tuning surface chemistry via modification of oxidation 
levels, surface tailoring, and opportunities for doping. Environmentalists, scientists, 
engineers, and product engineers should collaborate on multidisciplinary research 
projects as an emerging field. 
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141. Serafin J, Ouzzine M, Junior OFC, Sreńscek-Nazzal J (2021) Preparation of low-cost activated 
carbons from amazonian nutshells for CO2 storage. Biomass Bioenerg 144:105925 

142. Simpson DR (2008) Biofilm processes in biologically active carbon water purification. Water 
Res 42:2839–2848 

143. Korotta-Gamage SM, Sathasivan A (2017) A review: potential and challenges of biologically 
activated carbon to remove natural organic matter in drinking water purification process. 
Chemosphere 167:120–138 

144. Broom D, Webb C, Hurst K, Parilla P, Gennett T, Brown CM, Zacharia R, Tylianakis E, 
Klontzas E, Froudakis G (2016) Outlook and challenges for hydrogen storage in nanoporous 
materials. Appl Phys A 122:151



Chapter 24 
Utilization of Aquatic Plants Dead 
Biomass in Adsorption of Heavy Metals 
from Wastewater 

Asha Singh and Sunil Kumar 

1 Introduction 

Rapid and uncensored industrialization has been seen in the past century of human 
society. The rapid expansion of industries outcome is the generation of metal-
containing wastes which are ultimately injected into the water bodies. Water is very 
necessary for all life forms present on Earth, but its quality is deteriorating day by 
day a huge amount of waste from different sources is discharged into the fresh-
water ecosystem which pollutes water. Water pollution is the undesirable change 
in its physical, chemical, and biological characteristics which impairs water useful-
ness and affects the environment and health of human beings. Various industries 
discharge their waste into water bodies which makes them unfit for use, but heavy 
metal-containing waste is of most concern area. Heavy metal is any element having 
an atomic weight between 63.5 and 200 and a specific gravity greater than 5.0 [1]. 
Heavy metals like arsenic, zinc, copper, cadmium, chromium, lead, mercury, nickel, 
etc., are released from metal plating industries, mining, battery and pigment manu-
facturing, smelting, textiles, petroleum refining, tanneries, pesticides, paint, printing, 
and photographic industries [2, 3]. Heavy metals are considered carcinogenic and 
toxic. These are non-biodegradable as they accumulate in the body through the food 
chain. These cause serious health threats when they entered the human body above 
permissible limits. Heavy metals should be eliminated from the environment as they 
cause lots of problems to human beings and the environment. 

Various conventional methods which have been used for the elimination of 
heavy metals are chemical precipitation, coagulation, ultra-filtration, electro-dialysis, 
reverse osmosis, etc., but most of the methods are suitable for large-scale treatments
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only. These methods are very expensive and economically unfavorable and techni-
cally complicated. Incomplete removal of heavy metals, production of toxic sludge, 
and high energy requirements are some disadvantages of conventional methods 
[4]. Numerous studies have been done for developing a more effective method in 
removing metal pollution. It was found that the adsorption process is more practicable 
than other conventional methods. Adsorption is an easy, most simple, economically 
efficient method for removing heavy metals from wastewater [5]. Adsorption is the 
deposition of a gas or liquid (adsorbate) at the solid’s surface (adsorbent or substrate). 
Various substances like plant parts, plant waste, industrial by-products, agricultural 
waste, aquatic plants may be used as adsorbents for heavy metals adsorption. The 
adsorbents may be used either naturally or modified with some chemicals. Various 
researches show that a variety of materials have been used as adsorbents including 
rice husk, papaya wood, fava beans, banana and orange peels, neem bark, maize leaf, 
carrot residues, sugarcane bagasse, etc. The conversion of these materials as low-
cost adsorbent leads to a potential and economic application for metal removal from 
wastewater. The adsorbent is said to be low cost as it is found in abundant amount 
and cost-effective as it requires less processing cost and is useful in adsorption. In 
this chapter, an overview of various low-cost adsorbents is shown by highlighting 
their capability for removing heavy metals from wastewater. 

2 Sources of Heavy Metals 

Heavy metals are found naturally on earth. Due to the staggering increase in the 
number of heavy metals used, a sudden increase in metallic substances in the terres-
trial and aquatic environments is imminent [6]. The volcanic eruption and weath-
ering of metal-bearing rocks are natural sources. The anthropogenic sources are 
mainly mining, industrial, and agricultural activities which include smelting, textile, 
petroleum refining, pesticides, paint, pigment manufacturing, tanneries, printing and 
photographic industries, agricultural chemicals, etc. The main heavy metals are 
copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), arsenic (As), mercury (Hg), arsenic 
(As), silver (Ag), chromium (Cr), iron (Fe), and cobalt (Co), and their emission 
sources are listed in Table 1.

3 Toxic Effects of Heavy Metals on Human Health 

The presence of heavy metals leads to many health problems due to their accumula-
tion in the human body. However, some heavy metals are considered essential heavy 
metals for their roles in biological systems. They are important to living beings and 
require low concentrations in the body. Some important heavy metals are Cu, Zn, Fe, 
and Mg. Non-essential heavy metals do not have a biological role in living organ-
isms, and some of them are Hg, Cd, Pb [10, 11]. The health problems caused due to
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Table 1 Sources of heavy metal [7–9] 

Heavy metal Sources 

Cadmium (Cd) Alloys, pigments, metal coatings, Ni/Cd batteries, pesticides, neutron 
absorber in the nuclear reactor 

Chromium (Cr) Leather tanning, electroplating, paints, alloys, metal ceramics 

Cobalt (Co) Electroplating, paints, glasses, ceramics, pottery, enamels 

Copper (Cu) Electroplating, copper wires, alloys, coins, pipes, pigments 

Lead (Pb) Lead piping, lead-acid batteries, pigments, plastic, ceramic 

Nickel (Ni) Ni/Cd batteries, electroplating, arc-welding, glasses, pigments, paints, coins, 
jewelry, catalysts 

Arsenic (As) Pesticides, ceramics, textile and tanning, pigments, fireworks, electric 
components, wood preservatives, etc. 

Mercury (Hg) Barometers, thermometers, gold recovery, tooth fillings, compact fluorescent 
lightbulbs, insecticide, catalyst, rectifiers, electrical switches 

Zinc (Zn) Zn alloys, batteries, paints, cosmetics, pharmaceuticals, textiles, paints, and 
rubber industry

excess heavy metals include skin dermatitis, kidney and lung problems, dizziness, 
headache, irritability, anemia, weakness of muscles, gastrointestinal distress, renal 
damages, etc., which are summarized in the given Table 2. 

Table 2 Toxic effects of heavy metals [12] 

Heavy metal Effects on human health 

Cadmium Kidney failure, lung disease, pneumonitis, Itai-Itai disease, bone defects, 
osteomalacia, osteoporosis, and myocardial dysfunctions 

Chromium Nercosis, nephrites and gastrointestinal irritation, nasal and mucous 
membrane ulcers, and cancers 

Cobalt Asthma, allergy, respiratory failure, heart disorder, dizziness 

Copper Irritation of nose, mouth, and eyes, dizziness, diarrhea 

Lead Carcinogen, anemia, kidney problem, cause sterility 

Nickel Cancer of lungs, nasal sinus, chronic bronchitis 

Arsenic Gastrointestinal disorders, carcinogenic 

Mercury Dermatitis, anorexia, kidney damage, corrosive to skin, eyes, and muscle, 
Minamata disease 

Zinc Restlessness, metal fume fever (short-term illness)
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4 Conventional Methods of Heavy Metals Removal 

Various methods which have been used for the removal of heavy metals from 
wastewater include chemical precipitation, ultra-filtration, ion exchange, coagula-
tion, reverse osmosis, electro-dialysis, and phytoremediation. Chemical precipitation 
is a method in which heavy metals are removed from inorganic effluents based on pH 
adjustment. Ultra-filtration uses porous membranes under pressure-driven membrane 
operation for the removal of heavy metals. During ion exchange, metal ions are 
removed from the dilute solution and replaced by the ions held in the exchange resin 
by electrostatic force. Reverse osmosis uses a semi-permeable membrane which is 
used to trap heavy metal ions at a pressure higher than the osmotic pressure which 
is caused by the dissolved solids in the wastewater. Phytoremediation is a method 
in which specific plants are used to purify metal-contaminated soil, sediments, and 
water. Electrochemical methods are metal selective, and pure metals are obtained in 
these methods. These methods are expensive, technically complicated, and there is 
also the release of toxic material and improper heavy metals removal [4]. Adsorp-
tion overcomes the disadvantages of conventional methods. Exploration of new and 
cheap methods to remove metal ions from wastewater showed that adsorption is 
the most economically viable method. The advantages and disadvantages of some 
conventional methods are summarized in Table 3. 

Table 3 Conventional methods for heavy metal removal 

Methods Advantages Disadvantages 

Chemical precipitation Simple and inexpensive capital 
cost 
Treat high metal ion conc 

Generation of toxic sludge 
Ineffective when metal ion conc. 
is low [13] 

Ion exchange Resins can be generated and 
widely used method for metal 
removal 

Secondary pollution can be 
caused and high cost for treating 
at a large scale [14] 

Ultra-filtration Less chemical consumption 
and high efficiency 

High cost and partial removal of 
certain ions [15] 

Reverse osmosis Recovery of metal salts Expensive [16] 

Electrochemical methods Metal selective 
Less chemical consumption 

Requires high amount of energy 
High cost [14] 

Phytoremediation To clean up soil, sediments, and 
water with contaminated metal 

Long process and regeneration of 
plant for further use are not 
possible [17]
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5 Adsorption: A Low-Cost Method for Heavy Metals 
Removal 

Adsorption is the mass transfer from the liquid phase to the surface of a solid (adsor-
bent) to form an atomic or molecular film (adsorbate). Adsorption is practicable 
over other conventional methods as this is currently considered to be very suitable 
for removing or minimizing heavy metals from wastewater even at low concentra-
tions. Adsorption is a simple process and cost-effective. Adsorption occurs due to the 
attractive forces between the surface and the adsorbate. It is of two types—physical 
adsorption, which is a result of the weak Van der Waals forces of attraction between 
the adsorbate and adsorbent, and chemisorption, which is a result of the chemical 
interaction between the solid and adsorbed substance. Adsorption is considered to 
be one of the effective methods for the removal of heavy metals from industrial 
effluents. This method is more suitable due to its high efficiency and low cost, no 
generation of sludge, less energy requirement, recovery of metal [18]. 

Therefore, attempts are made to use waste materials as various adsorbents, like 
plant waste, agricultural waste, and industrial by-products. These can be found in 
abundant amounts and used as an adsorbent. An adsorbent is said to be “low cost” 
if it is found in abundant quantity, requires less processing, or can be a byproduct or 
waste material from another process [19]. Conventionally activated carbon, alumina, 
zeolites, fly ash, and different coal forms were used as adsorbents in adsorption. 
Many investigators investigated the various waste material as low-cost adsorbents 
for heavy metal removal, namely rice husk [20], banana peel [21], tree fern [22], 
groundnut shells [23], maize leaf [24], neem bark [25], sawdust [26], papaya wood 
[27], and orange peel [28]. 

5.1 Adsorption Capacity of Adsorbents for Heavy Metals 

The adsorption capacity of the adsorbent is computed as in Eq. 1: 

qe = (Ci − Ce)V 

x 
(1) 

where qe is the adsorption capacity of adsorbent (mg/g), Ci is initial and Ce is equi-
librium concentration of the metal solution (mg/L), x is the weight of the adsorbent 
(g), and V is the volume of the metal solution (L). 

The removal percentage of adsorbates (heavy metal) by adsorbent is calculated 
as removal efficiency (RE) in Eq. 2: 

Removal(%) = (Ci − Ce) × 100 
Ci 

(2) 

where Ci and Ce are same as in Eq. 1.
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6 Mechanism of Adsorption 

Adsorption is a mass transfer process between two phases, such as gas–solid, gas– 
liquid, liquid–liquid, or liquid–solid interface. The adsorbing material is adsorbent, 
and the substance being adsorbed is the adsorbate. 

The adsorption mechanisms are complex, because no single theory fully explains 
the adsorption of metal ions on the adsorbent. Various studies have been reported to 
describe the mechanism between adsorbate and adsorbent. Langmuir’s model and 
Freundlich’s model are often used to describe adsorption isotherms while kinetically, 
pseudo-first-order kinetics, and pseudo-second-order kinetics can be used for the 
adsorption kinetics. 

6.1 Adsorption Isotherm 

The sorption isotherm describes the interaction mechanism of adsorption on the 
surface of the adsorbent. Several isotherm models are available for the analysis 
of experimental adsorption equilibrium parameters, but the well-known adsorption 
isotherm models used are the Langmuir and Freundlich isotherms. 

In the Langmuir isotherm, the molecules are adsorbed on fixed and well-defined 
active centers that are homogeneously distributed on the adsorbent’s surface. The 
adsorbed molecules do not interact, and only a monolayer is formed [29]. 

Langmuir equation is written as 

Ce/qe = 1/bqmax + Ce/qmax 

where qe and qmax are the metal adsorption capacity and maximum adsorption 
capacity of the adsorbent (in mg/g), respectively. Ce is the equilibrium solute conc., 
and b is Langmuir constant. 

In Freundlich isotherm, adsorbate is adsorbed on heterogeneous surfaces, and 
there is not restricted to the formation of monolayer [30]. 

Freundlich equation is written as 

log qe = log KF + 1/n log Ce 

where qe is the metal adsorption capacity of adsorbent at equilibrium, Kf is the 
adsorption equilibrium constant while 1/n is the heterogeneity coefficient related to 
adsorption capacity and strength, and Ce is the equilibrium concentration.
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6.2 Adsorption Kinetics 

The adsorption kinetics can be used to study the rate-limiting step in the adsorption 
process in terms of kinetic energy. 

The pseudo-first-order kinetic equation of Lagergren model is given as [31]: 

dqt /dt = k1(qe − qt ) 

where qe is the amount of metal adsorbed at equilibrium and qt is the amount of metal 
adsorbed (mg/g) at any instant of time t (min) and k1 is the rate constant of pseudo-
first-order equation (min−1). It deals with the assumption that the rate of change of 
the amount of solute adsorbed over time is proportional to the difference in saturation 
concentrations and to the adsorption processes that determine the amount of solids 
adsorbed over time. 

The pseudo-second-order kinetic equation is given as 

dqt /dt = k(qe − qt )2 

The assumption of this is based on the limiting step which may be the result of 
chemisorption, involving valence forces through the exchange of electrons between 
the adsorbate and the adsorbent [32]. 

7 Factors Affecting the Adsorption Process 

Various parameters which affect the adsorption process include initial concentration, 
temperature, pH, contact time, adsorbent dose [33]. 

pH—pH changes the adsorbent’s surface charge and adsorbate’s degree of ioniza-
tion. At a particular pH, metal adsorption increased with increasing pH to a certain 
limit but reduced when further pH increases. 

Temperature—It influences the adsorption equilibrium which depends upon the 
exothermic and endothermic nature of a process, and it affects the adsorption capacity 
of the adsorbent. 

Contact time—The time to achieve equilibrium interactions between adsorbate 
and adsorbent to ensure the completion of adsorption process is called contact time. 

Adsorbent dose—It is the dose of adsorbent at which adsorption is maximum, 
and it also affects the adsorption process. 

Initial concentration—This is an important parameter to provide a significant 
incentive to overcome the metal’s resistance to mass transfer between the aqueous 
and solid phases.
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8 Aquatic Plants Dead Biomass as Adsorbents 

Aquatic plants are found to be the potential scavengers of heavy metals from 
wastewater as studied by various investigators in the previous years. Various aquatic 
plants like Lemna, Eichhornia, Hydrilla, Potamogeton, Ceratophyllum, Salvinia, 
Myriophyllum, Pistia, Spirodela have been used for heavy metals adsorption. 

Saraswat and Rai [34] studied the adsorption of Zn(II), Cd(II), and Cr(VI) with 
varying different conditions of metal and biomass concentration, pH, and agitation 
time on Eichhornia crassipes dead biomass in single, bi, and tri-metal systems. The 
maximum adsorption capacities were observed 12.4, 9.3, and 5.6 mg/g at pH 5, pH 
6, and pH 2 for Cd(II), Zn(II), and Cr(VI), respectively. Several studies were done 
on Eichhornia crassipes by different investigators for removal of heavy metals as Cr 
[35], arsenic removal using hyacinth roots [36], Pb, Cu, Zn, and Cd removal in the 
order Pb > Cd > Zn > Cu by using Eichhornia crassipes [37]. 

Keskinkan et al. [38] showed that Myriophyllumspicatum can be used as an adsor-
bent for copper, lead, and zinc removal. The maximum adsorption capacities were 
10.37, 46.49, and 15.59 mg/g for copper, lead, and zinc, respectively. Similar exper-
iments were conducted by Keskinan et al. [39] with another submerged aquatic 
plant Ceratophyllumdemersum for removal of copper, lead, and zinc. The maximum 
adsorption capacities were 6.17, 44.8, and 13.98 mg/g for Cu(II), Pb(II), and Zn(II), 
respectively. 

Lima et al. [40] studied the adsorption of Cr3+ and Pb2+ ions on the aquatic 
macrophyte P. stratiotes, and the maximum removal was 0.317 and 0.225 mmol/g 
for Cr3+ and Pb2+, respectively. Meitei and Prasad [41] examined the maximum 
adsorption capacities of Spirodela polyrhiza (L.), that is, 52.6, 35.7, and 28.5 mg/g for 
Cu (II), Mn (II), and Zn (II), respectively, under optimized conditions. The sequence 
of adsorption capacities for metals is as follows: copper > manganese > zinc. 

It was noticed that the dead biomass of Ceratophyllum demersumcan removes Cd 
(II) [42]. The batch study showed the fast adsorption of cadmium at pH 5 and 1.0 g 
of biomass in 20 min. Cadmium adsorption increases with an increasing adsorbent 
dose. Cadmium ions adsorbed on Ceratophyllum demersum were efficiently desorbed 
with 0.1 M EDTA (97%), 0.1 M HCl (94%), and 0.1 M HNO 3 (85%), indicating 
that the adsorbed cadmium was recovered. The equilibrium studies showed that 
the Freundlich isotherm model fits the sorption data, suggesting multilayer adsorp-
tion and adsorption of Cr, Cu, and Pb using non-living biomass of Ceratophyllum 
demersum [43]. 

The dried Azolla filiculoides has been used as biomass for heavy metals removal 
using batch experiments [44]. The maximum removal capacities of A. filicu-
loides for Ni and Cu ions were approximately 0.77 and 0.54 mmol/g, respec-
tively. Zhao and Duncan [45, 46] investigated the adsorption of Cr(VI) and Ni on 
Azollafiliculoides from the effluent of the electroplating industry. The batch study 
showed that the maximum adsorption capacity of A. filiculoides for Cr was 20.2 mg/g 
at pH 2 at 32 °C. In another study done by the same researcher, the sorption capacity 
at pH 6.2 was observed as 31.3 mg/g. In another study, A. filiculoides was also used
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Table 4 Aquatic plant 
adsorbents used for heavy 
metal removal 

Aquatic plant Metals adsorbed References 

Eichhornia crassipes Zn, Cd, Cr 
Pb, Cu,  Zn, Cd  
Cr 
As 

[34] 
[37] 
[35] 
[36] 

Ceratophyllum demersum Cd 
Cr, Cu, Pb 

[42] 
[43] 

Azolla filiculoides Ni, Cu [44] 

Lemna minor Fe, Cu,  Zn, Pb [48] 

Hydrilla verticillate Pb, Cu, Cr [49] 

Spirodela polyrhiza Pb [50] 

Pistia stratiotes Cr [51] 

Lemna perpusila Pb [52] 

Myriophyllumspicatum Zn, Pb, Cu [38] 

Spirodela intermedia Cd, Cu,  Zn, Ni,  Pb [53] 

Egeriadensa Cu [54] 

Salvinia molesta Cr [55] 

Typha latifolia Cr [55] 

Nymphaea lotus Pb [56] 

Echinodorus amazonicus Pb, Cd,  Zn, Cu [57] 

Ruppia maritime Pb, Cd,  Zn, Cu [57] 

in zinc removal in batch systems, and the column was observed at pH 6 and pH 6.2 
to be 45.2 and 30.4 mg/g, respectively [47]. 

Some aquatic plants which have been used for adsorption are listed below 
in Table 4. 

9 Advancement in Aquatic Plant Adsorbents 

Earlier aquatic plants were dried and grounded to powder for use as adsorbents in raw 
form for removal of heavy metals. Later on, researchers tried to increase the efficiency 
of adsorption. They modify or treat the adsorbents using various agents like acids 
(citric acid, hydrochloric acid, nitric acid, sulfuric acid, tartaric acid, thioglycollic 
acid), base solutions (sodium hydroxide, calcium hydroxide, sodium carbonate), 
organic compounds (ethylenediamine, formaldehyde, epichlorohydrin, methanol), 
and oxidizing agents (hydrogen peroxide). The chemical modification increases the 
adsorbent’s active binding sites, improves ion exchange characteristics, and creates 
new functional groups that aid metal adsorption [58]. 

Ganji et al. [59] examined the adsorption of Cu, Cd, Pb, and Zn by treating Azolla 
filiculoides with H2O2/MgCl2. The Azolla samples (each 2 g sample) were soaked
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in 2 M MgCl2 and 30 ml of 8 M H2O2 for 12 h at 125 rpm and pH 7. The Azolla 
samples were washed at pH 10.5 for 6 h in NaOH solution and dried. The maximum 
adsorption capacities of Azolla for Cu, Cd, Pb, and Zn ions were approximately 62, 
86, 228, and 48 mg/g (Azolla dry), respectively, under optimal conditions. 

Elangoven et al. [60] studied the removal capacity of dried biomass of aquatic 
weeds like reed mat (Cannomois vvirgata), water lettuce (Pistia stratiotes), lotus 
flower (Nelumbo lucifera), water hyacinth (Eichhornia crassipes), arrow leaved tear 
thumb (Polygonum sagittatum), water lily flower (Nymphea sp.), green taro (Colo-
casia esculanta), and mangrove leaves (Rhizophora mangle L) which were modified 
using NaOH and H2SO4 at a concentration of 4 N. 10 g of raw adsorbent was mixed 
with 100 ml of NaOH and H2SO4 solution and stirred for 24 h, washed several times 
until the pH was neutral, and then dried. The modification significantly increases the 
adsorption capacities of all adsorbents for Cr(VI) and reduces for Cr(III). 

Yoonaiwong et al. [61] prepared a modified adsorbent by treating a50 g sample 
of dry Utricularia aurea biomass with CaCl2 solution (0.2 M) at pH 5 and stirred for 
24 h. The calcium-treated biomass was washed several times and dried in an oven 
at 103 °C for 24 h. The treated adsorbent was then passed through a 125–1000 µm 
sieve to give particle sizes of 250–500 µm. It was found that pretreated U. aurea for 
removal of Pb (II) and Cd (II) ions is inexpensive biomass due to its high abundance 
and has a considerably higher adsorption capacity at low concentrations. 

Ferreira et al. [62] used the dried biomass of Pistia stratiotes and Salvinia sp. for 
adsorption of lead which was modified by treating with 0.1 M NaOH solution and 
stirring for 2 h. The biomass was then washed several times with distilled water and 
then washed with acetone and ethanol to extract soluble organic substances and dried 
in an oven at 70 °C for 4 h. Adsorption studies indicate modification enhances the 
adsorption capacity. 

The nano-EC and nano-LM were synthesized using the sol–gel method by Eich-
hornia crassipes (raw EC) and Lemna minor (raw LM) [63]. SEM, FTIR, BET, EDX, 
and TGA analyzes were used to characterize the nano-adsorbents. In 120 min, the 
highest adsorption of Cr(VI) ions by nano-EC and nano-LM was detected at pH 2, 
and the maximum adsorption of Ni(II) by nano-EC and nano-LM was observed at 
pH 5.3. Because nano-EC is numerous and has a higher adsorption capacity than 
nano-LM, it was determined that it might be used as a possible nano-sorbent for the 
removal of Cr(VI) and Ni(II) ions. 

It can be concluded that there is more need to work on the modification of the 
adsorbent to increase efficiency. Nano-adsorbents can be made out of this and can 
be prepared by green synthesis or loaded on the adsorbent. 

10 Challenges of Aquatic Plants Adsorbents 

The main problem in using aquatic plants is to collect the samples from water as 
they spread densely over the water surface. Also, difficulty arises in the separation of 
plant material from other unwanted waste like dirt, weeds found in the aquatic bodies.
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They also collected in large quantities because of their lightweight. Secondly, the 
problem arises in the regeneration of adsorbent and disposing of. The spent adsorbent 
may include toxic substances which should be treated before disposal. It will require 
operation costs which could not be economical for use. Similarly, regeneration is 
also difficult for aquatic plants. Their efficiency is also low as compared to activated 
charcoal. They need to be modified to increase the efficiency but it also leads to add 
some additional costs. 

11 Conclusions 

A review of various low-cost adsorbents shows the potential and effectiveness of 
adsorption for the removal of heavy metals from wastewater. The study on aquatic 
plants for using them as adsorbents has brought the attention of many researchers 
for the adsorption of heavy metals. More attention should be taken to minimize 
metal pollution by promoting the large-scale use of non-conventional adsorbents. 
Adsorbents should be economically efficient and have maximum removal efficiency. 
Although chemical modification can also increase the adsorption of heavy metals. 
To make “low-cost” adsorbents, the cost of chemicals employed and techniques 
of modification should be considered. Further studies can be employed by using 
nano-adsorbents derived from aquatic plants and making the process cost-effective. 
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1 Introduction 

Today, the use of portable gadgets and smart electronic devices has become an 
immense need of the modern society. With the exponential growth of such electronic 
machines, the biggest challenge is to protect these devices from the unintentional 
transmission of electromagnetic radiations emitting from different sources of electro-
magnetic field, interfering with the electronic signals, and resulting in malfunctioning 
of these devices. Radio frequency electromagnetic waves are the most common 
cause of electronic circuit failures and known as radio frequency, or noise or electro-
magnetic interference (EMI). Further, synchronization and miniaturization of multi-
functional electronics have brought up omnipresent electromagnetic pollution in the 
world which is much stronger than any natural electromagnetic field source. Due 
to the electrostatic discharge (ESD) from these electromagnetic field sources, EM 
signals are radiated and emitted which interfere with the electronic devices, degrading 
their performance, and resulting electronic equipment to partial or full failure [1]. 
For these reasons, electronic industries are seeking technology-based solutions to 
develop advanced materials with excellent EMI shielding capabilities over a wide 
temperature range which can absorb EM waves and protect the electronic devices 
from sudden failures [2]. EM shielding is also known as RF shielding as it is obvious 
from its name, blocking radio frequency electromagnetic radiations emitted from 
electromagnetic field sources. RF shielding helps as protective barrier by coupling 
of radio waves, electromagnetic fields as well as electrostatic fields. In addition, 
chemical composition, coating thickness of the shielding material, morphology, and 
geometrical design of the shield, and frequency of electromagnetic field are highly 
correlated to the reduction of EMI. 

2 Electromagnetic Interference (EMI) Shielding 

EMI shielding is a technique of creating a barrier that prevents leakage of strong 
electromagnetic fields that can interfere with sensitive devices and signals. They 
can be installed to isolate the electromagnetic field source or as an enclosure of 
the device that needs protection. Any unwanted electrical or electromagnetic energy 
which causes undesirable responses, degradation, or equipment failure is known as 
electromagnetic interference. As electronics both emit and are affected by electro-
magnetic (EM) waves, it is essential to shield them adequately. Some examples of the 
effects of EMI interference are malfunctioning flight control systems due to passen-
gers using electronics such as mobile phones and laptops, momentary disturbance in
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television and radio reception due to the usage of electric shavers or coffee grinders, 
and failure of precision medical devices such as ventilators or ECG monitors due 
to EM wave interference from other electronics. EM waves from electronic source 
to their surroundings, or vice-versa, must be shielded according to regulations for 
electromagnetic compatibility (EMC). Hence, to comply with EMC regulations, it is 
necessary to enclose electronics with proper shielding materials so that the devices 
do not interfere with their own operation or the operation of other devices due to EM 
radiation. 

3 Mechanism of EMI Shielding 

EMI shielding depends mainly on electrical conductivity and magnetic permeability 
of shield material, the frequency of radiation. EM waves can be classified into near 
field or far field, based on the distance between the EMI source and shielding enclo-
sure. The wavelength of EM waves divided by 2π gives the transition point between 
the fields. In this dissertation, we employed an EMI setup operated in the far field, 
and all the equation and shielding mechanisms are explained for the far field. For 
the far field, EM wave is considered a plane wave with electric and magnetic fields 
perpendicular to each other. In the near field, the waveform is more complicated. 
For both, when the EM waves strike the shield material, a portion of the waves are 
transmitted through the shield (Fig. 1).The shielding effectiveness of the material is 
calculated based on the logarithmic ratio of incident power (PI) to transmitted power 
(PT) through the shield, as given by Eq. (1): 

EMI SE (dB) = 10 log(PI /PT ) (1)

Figure 1 Schematic of EMI shielding mechanism and EMI SE is expressed in 
decibels (dB). Considering Eq. 1, a shielding effectiveness of 20 dB corresponds to 
99% attenuation (i.e., PT = 0.01PI) of EMI radiation; this value 20 dB is considered to 
be an adequate level of shielding for many commercial applications. EMI shielding 
mainly involves three mechanisms: reflection, absorption, and multiple reflection. 
The total shielding effectiveness (SET) is calculated from the summation of shielding 
effectiveness by reflection (SER), absorption (SEA), and multiple reflection (SEMR), 
as shown in Eq. (2): 

SET(dB) = SER + SEA + SEMR (2)
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Fig. 1 Schematic illustration on EMI shielding mechanism

3.1 Shielding by Reflection (SER) 

Reflection is often the primary mechanism for EMI SE for metal shields. For shielding 
by reflection, the shield material should possess mobile charge carriers such as elec-
trons or holes, which interact with the EM field in the radiation. The material tends to 
be electrically conductive, even though high electrical conductivity is not required. 
For conductivity, the network of conduction path is very important, whereas for 
shielding, it is not. Since metals have more free electrons, they attenuate EM radi-
ation significantly by reflection. For CPN, shielding by reflection is enhanced by 
increasing the surface area of the filler in the polymer material. For homogeneous 
materials such as bulk metals, shielding by reflection can be calculated by Eq. (3): 

SER = 39.5 + 10 log(σ/2π f μ) (3) 

where σ is the volume conductivity of the shield material, f is the radiation frequency, 
and μ is the magnetic permeability of the shield material. This equation can be 
modified for heterogeneous materials such as CPN, using the scattering parameter 
explained in Chap. 2.



25 Porous Carbon Materials and Their Composites … 673

3.2 Shielding by Absorption (SEA) 

In EMI shielding, after reflection, absorption is the second most relevant mechanism 
which is expected to take place. For example, polymer nanocomposites promote 
absorption of the EM smog which are mostly amorphous or semi-crystalline mate-
rials as compared to metals having crystalline structure favoring the reflection of 
EM radiations. In case of shielding by absorption, dielectric and magnetic proper-
ties of the shielding materials are important where electrical and magnetic dipoles 
interact with the incoming electromagnetic waves. Typical materials examples with 
high dielectric constant and magnetic permeability are zinc oxide or barium titanate 
and ferrite or nickel, respectively. Shielding mechanism by absorption generates 
current and magnetic fields by induced EM radiations which causes Ohmic losses 
and magnetic hysteresis losses. Shielding by absorption for homogeneous materials 
can be calculated as follows using the Eq. (4): 

SEA = 8.7d/δ = 8.7d 
√

π f μσ (4) 

where d represents shield material thickness, δ is the skin depth. Based on the above 
equation, the incident frequency of the EM beam and shield materials thickness are 
directly proportional to shielding by absorption. However, in contrast, the incident 
EM radiation frequency is inversely proportional to the shielding by reflection. 

3.3 Shielding by Multiple Reflections (SEMR) 

Multiple reflections help in the attenuation of EM radiation. When the incident 
EM waves pass through the incident surface of the shield at the adjacent surface 
(such as a polymer air interface) of the shield, it reflects back and forth or “multiple 
times”. These multiple reflections occur predominantly in materials which possess 
a large surface area, such as porous or foam materials and materials which possess 
high interfacial areas, such as multilayered shield materials. The transmitted wave 
increases due to multiple reflections, and this has a negative impact on the overall 
EMI shielding. At high frequencies, EM radiation penetrates only near the surface 
of the conductor, and the magnitude of the radiation exponentially decreases with 
thickness. The thickness at which the magnitude of the radiation drops to 1/e of the 
incident radiation is termed “skin depth” and is calculated by Eq. (5): 

δ = 1/
√

π f μσ (5) 

Shielding due to multiple reflections can be estimated by the following equation 
if skin depth > material thickness, 

SEMR = 20 log10(1 − e−2d/δ ) (6)
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This shielding by multiple reflections can be neglected when the shield is thicker 
than the skin depth (δ). 

4 How the EMI Shielding Works 

Electromagnetic radiations or waves composed of electric and magnetic components 
which interact with the electronic materials by inducing currents or magnetic fields 
and generate force fields on the static or moving charge carriers such as electrons. 
Example of changing magnetic field results in producing eddy current. In shielding 
by reflection, which is most common for conductors where applied electric field 
cancels the induced or generated current. Similarly, due to eddy currents generation, 
the applied magnetic field is canceled out. Overall, electromagnetic interference 
becomes null and void. 

Several factors serve to limit the shielding capability of real RF shields. One is that, 
due to the electrical resistance of the conductor, the excited field does not completely 
cancel the incident field. Also, most conductors exhibit a ferromagnetic response 
to low-frequency magnetic fields, so that such fields are not fully attenuated by the 
conductor. Any holes in the shield force current to flow around them, so that fields 
passing through the holes do not excite opposing electromagnetic fields. These effects 
reduce the field-reflecting capability of the shield. 

In the case of high-frequency electromagnetic radiation, the above-mentioned 
adjustments take a non-negligible amount of time, yet any such radiation energy, as 
far as it is not reflected, is absorbed by the skin (unless, it is extremely thin), so in this 
case, there is no electromagnetic field inside either. This is one aspect of a greater 
phenomenon called the skin effect. A measure of the depth to which radiation can 
penetrate the shield is the so-called skin depth. 

5 Materials Used for Effective EMI Shielding 

The selection of electromagnetic shielding materials plays very important role for the 
better shielding performance. Typical metal shields are used in the form of sheets, 
screens, or foams. The most common metals or alloys include copper, tin, silver, 
nickel, steel, and brass. Physical properties of shielding materials which have direct 
influence on the shielding performance include thickness, permeability, conductivity, 
and weight. Shield materials conductivity influences the incoming EM radiation 
differently such as for electrically or magnetically dominant EM waves. For instance, 
lower and higher conductive metals provide very effective shields to magnetically 
and electrically dominant waves, respectively. Homogeneity and isotropy are equally 
important. Presence of any defects or machined holes smaller or larger than the wave-
lengths of the incoming radiation have different impacts on the shielding efficiency. 
One should be careful while designing the effective shield. Another commonly used
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Fig. 2 Schematic illustration of the structure of different allotropes of carbon and carbon quantum 
dots 

shielding method, especially with electronic goods housed in plastic enclosures, is 
to coat the inside of the enclosure with a metallic ink or similar material. The ink 
consists of a carrier material loaded with a suitable metal, typically copper or nickel, 
in the form of very small particulates. It is sprayed on to the enclosure and once 
dry, produces a continuous conductive layer of metal, which can be electrically 
connected to the chassis ground of the equipment, thus providing effective shielding. 
There are variety of materials employed for the fabrication of EMI shielding appli-
cation including metals, polymers, carbon ceramics, and their composites materials. 
Among these carbon materials are the special class of materials and widely used 
materials including graphite, carbon nanotubes, fullerene, and graphene oxide alone 
or in composite with polymeric materials. Figure 2 shows the schematic illustration 
on the structure and morphology of the different carbon materials employed for the 
EMI shielding. 

6 Porous Graphite and Amorphous Carbon for EMI 
Shielding 

As discussed earlier, EMI shielding refers to reflection and/or absorption of elec-
tromagnetic radiations particularly at high frequencies, e.g., radio waves, which is 
distinguished from the magnetic shielding that represents shielding against magnetic 
fields at low frequencies, e.g., 60 Hz. The charge carriers (electrons or holes) mobility



676 D. A. David et al.

in shielding materials is believed to be the primary mechanism during reflection of 
electromagnetic radiation, however, high conductivity is not necessarily required (an 
order of 1 Ω cm volume resistivity will be sufficient for a typical shield material). The 
demand of carbon materials and their composites is growing for EMI shielding [2]. 
Exfoliated graphite or flexible graphite GraFoil® has been tested for EMI shielding 
application by Luo [3], which is made by compressing the exfoliated graphite flakes 
without using any binder. Due to honeycomb like structure and high specific surface 
area, shielding performance of exfoliated graphite appeared exponentially high as 
130 dB, greater than that of solid copper. 

Carbon materials are more attractive over metals which are by far the most 
common materials for this application due to their oxidation resistance, chemical 
and thermal stability as well as lower density, and high dielectric loss properties 
[4]. Since last two decades, among other 1D and 2D carbon-based materials; 3D 
porous graphite and amorphous carbon have been successfully developed, and their 
microwave absorption performance has been tested by many researchers [5–10]. 

Porous carbons are usually synthesized by carbonization of precursors of natural 
or synthetic origin, followed by activation [11]. Most of the porous carbon are micro, 
meso and macroporous. First time 3D mesoporous ordered carbons have been synthe-
sized by Ryoo et al. [12] using ordered mesoporous silica templates where they 
obtainedCMK-1 (a carbon molecular sieve) by carbonizing sucrose inside the pores 
of the MCM-48 mesoporous silica molecular sieve [13]. 

Zhou et al. [6] have successfully modified surface of ordered mesoporous carbons 
(OMC) CMK-3 by in situ polymerization and grafting of methyl methacrylate 
(MMA) without using any solvent. This new technique significantly enhanced 
the electric conductivity (0.437 Sm−1) of the resulting PMMA-g-CMK-3/PMMA 
composite, which is almost two orders of magnitude greater than that of obtained via 
solvent mixing method. The maximum absorbance efficiency or minimum reflection 
loss increases remarkably for in situ polymerized sample (−27 dB) as compared to 
the one prepared with solvent (−0 dB) in an X-band frequency range (8.2–12.4 GHz), 
respectively. The performance data show that mesoporous carbon materials is a 
potential candidate for microwave absorption. 

In a similar study, Guo et al. [9] reported synthesis of ordered mesoporous 
carbon (OMC) using a triblock copolymer F127 and soluble phenolic resin (phenol, 
formaldehyde, and resole) as a structure-directing agent and carbon sources, respec-
tively. Later, this OMC was used to obtain a composite coating of Fe–Ni(0.2)/OMC 
by mixing metal salts with OMC in 20 ml of deionized water, followed by stirring, 
adding 4.6 ml of 1 M NaOH, stirring, hot water bath, and vacuum heat treatment up 
to 500 °C for 2 h. The effective absorption bandwidth of Fe–Ni(0.2)/OMC/paraffin 
wax composites with 2 mm thickness was < −10 dB at 4.8 GHz. The Fe–Ni alloy 
coatings on porous carbon enhanced dielectric loss and magnetic loss which played 
a crucial role in the EM wave-absorbing process. 

Shen et al. [7] reported nitrogen-doped ordered mesoporous carbon (NOMC) 
decorated with ferrite nanoparticles on the surface via coprecipitation method. These 
composites show excellent EMI shielding performances with absorption bandwidth 
<−10 dB at 5.0 GHz with 40 wt% CoFe2O4/NOMC composite (1.5 mm thickness).
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The minimum reported reflection loss value was −38.3 dB at 3.9 GHz with 30 wt% 
CoFe2O4/NOMC composite (4 mm thickness). 

EMI shielding properties of multilayered carbon fiber felt (CFF)-glass fiber felt 
(GFF)/epoxy resin composites, with/without carbonyl iron powder, and with different 
layer angle were investigated in the X-band frequency range recently [5]. Study shows 
that at low layer angle (0°), multilayered CFF-GFF/epoxy composite with 4 mm 
thickness results in high shielding effectiveness, however, carbonyl iron powder 
improves the shielding performance beyond 35° of layer angle. 

Carbon nanotube (CNT)–multilayered graphene edge plane (MLGEP) core–shell 
hybrid foams were prepared by Shen et al. [8] where CNTs were grown using a 
template-directed CVD approach, and then, MLGEPs were in situ grown on the 
CNT cores with seamless junctions using plasma enhanced CVD which forms a 
nanoporous shell without using metal catalyst. These hybrid porous structures exhibit 
ultrahigh EMI shielding performance. 

Another porous carbon structure for EMI shielding reported by Xu et al. [10] where 
hollow graphene nano-spheres uniformly confined in porous amorphous carbon 
matrix by facile pyrolysis of bi-metal organic framework (bi-MOF). These bi-MOFs 
were fabricated by coordination reaction using cobalt and zinc ions as the metallic 
nodes and 2-methylimidazole as an organic linker. The amount of these hollow 
graphene nano-spheres can be controlled and brought to be optimum for better 
microwaves absorption by tuning the Co/Zn molar ratio. The minimum reflection 
coefficient (RCmin) reduces to −32.43 dB @ 9.19 GHz (3.70 mm thickness), and 
with 10% of filler loading, the effective absorption bandwidth can cover the whole 
X-band (8.2–12.4 GHz, <−10 dB, 3.50 mm). 

6.1 Porous Graphite and Amorphous Carbon Nanoplatelets 
for EMI Shielding 

Carbon nanostructures and their composite species have brought great advances and 
contributions in EMI shielding. Among various carbon-based materials, amorphous 
sp2 hybridized carbon in the form of graphite and graphene and their nanocom-
posites have emerged excellent capability of absorbing electromagnetic radiations. 
Exfoliated graphite nanoplatelets (xGnP) are new forms of nanoparticles made from 
graphite which are produced from exfoliating the acid intercalated graphite by rapid 
thermal treatments. These nanoplatelets vary in size which can be obtained usually in 
the range of 1–10 µm by sonication and milling. The thickness of individual platelet 
is in the range of 5–20 nm depending on the intercalation as well as the exfoliation 
processes [14]. 

In recent study [15], a multiphase hybrid nanocomposite of para-Toluenesulfonic 
acid (p-TSA) doped polyaniline (PANI)–graphene nanoplatelet (GRNP’s) composite 
coatings (1.5 mm thickness) were successfully produced by in situ polymerization 
of aniline in the presence of graphene nanoplatelets. The EMI shielding performance
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of these nanocomposites shows a strong correlation on GRNP’s content in the PANI 
matrix. The nanocomposite with 10 wt% of GRNP’s in PANI matrix exhibits very 
high shielding efficiency (>95%) in the X-band. 

Synergistic effect of graphene nanoplate (GNP) and carbonized loofah fiber (CLF) 
with polyether-ether-ketone (PEEK) composites were reported with excellent EMI 
shielding properties in the X-band region [16]. With the addition of 9 wt% CLF 
content, the composite exhibits 27.1 dB of average total shielding effectiveness. 
Both additives improve the conductive network in PEEK-based composite, resulting 
excellent shielding performance. 

Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon 
rubber have been fabricated using novel and facile foaming routes [17]. The 
3D conductive GNP network in polydimethylsiloxane (PDMS) rubber composites 
exhibits excellent EMI shielding efficiency (~86 dB at a thickness of 2 mm). 

Functionally graded polymers and graphene nanoplatelets (GnPs) composite 
foams have shown a great promise toward the electromagnetic shielding effective-
ness, confirmed very recently [18]. These composite foams with graded microcellular 
structures were produced using a scalable technique of foam injection molding where 
supercritical fluid treatment followed by foaming via rapid depressurization in the 
mold cavity. 

6.2 Porous Graphite/carbon Foams for EMI Shielding 

Lightweight electrically conducting materials are considered ideal for EMI shielding 
capabilities. Porous graphite/carbon foams [19–23] have received a lot attention 
recently due to their inherent properties that are suited for EMI shielding. They 
are widely used in weight sensitive applications such as aircraft structures, thermal 
insulation [24], automobiles, and marine vessels [25, 26]. EMI capability of the 
material is normally enhanced by high electrical conductivity, and graphite materials 
are known to have better electrical conductivities. In this section, we review various 
graphite/carbon foams and their composites as effective EMI shielding materials. 

Different techniques have been proposed to design lightweight, conducting foams 
mentioned above. Many have emphasized the best technique should be scalable so 
as to allow its wide scale adoption. We will review these techniques in the following 
sections. Zheng et al. [27] prepared a wood derived magnetic porous carbon compos-
ites that is a highly ordered anisotropic porous architecture (Fig. 3).The wood was 
obtained from natural fir and cut into different sizes along the growth direction. 
The wood was dried and later immersed in Ni (NO3)2·6H2O solution with varying 
concentrations for 30 h while being ultra-sonicated and then dried in vacuum oven 
at 80 °C for 12 h. The sample was later calcined under argon flow at heating rate of 
5 °C/min up to 800 °C with a holding period of three hours. The resulting material is 
magnetic, lightweight, stiff, and hydrophobic important properties needed for EMI 
shielding. EMI measurement showed that addition of nickel nanoparticles has a great 
influence on the EMI of the porous material. When measured in the 8.2–12.4 GHz
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Fig. 3 Preparation of carbon foam for EMI shielding that is stiff, magnetic, hydrophobic, and 
lightweight by addition of nickel nanoparticles (reprinted from Ref. [27] with permission) 

range for the radial and axial orientations at 2 mm thickness, EMI SE values of 
increase dramatically as the Ni nanoparticle loading is increased. The highest nickel 
nanoparticle content of 1.5 wt% led to the maximum value of 50.8 dB meaning the 
composite was able to block virtually all EM allowing only 0.001%. Also, axial 
direction EMI shielding is higher than radial orientation due to the aligned stacking 
conductive paths possessed by axial direction sample that dissipates the incident 
electromagnetic waves by multiple reflections. 

A similar wood derived porous carbon/graphite has also been synthesized 
exhibiting desirable EMI shielding capability [28]. The wood used here was sapwood 
from poplar tree, and iron oxide nanoparticles were added and material carbonized 
at high temperature. The EMI absorbing reached 64.26 dB at 14.36 GHz with a 
thickness of 2.25 mm. The improved shielding improvement was attributed to the 
self-assembly morphology of iron oxide nanoparticles in the inner surfaces of the 
wood lumen walls permitting optimal impedance matching. 

Yuan et al. [29] used a template method to synthesize a foam with an EMI shielding 
effectiveness of around 36–43 dB in the X-band. The graphite/carbon monolith foam 
consisted of honeycomb structure that was filled with a horizontal laminated reduced 
graphene to increase its stiffness. With its high thermal conductivity (0.057 W/(m K) 
and flame retardancy, this material could be used as a multifunctional one with a 
potential to be used in the aerospace industry. To provide EMI shielding at extreme 
operating temperature, a system containing graphite/graphene, carbon nanotubes, 
etc., were designed [30]. In this work, a core–shell 3D “nanofiller” of CNT/graphene 
was added into prycarbon so as to make a cellular hybrid material. The effectiveness
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of shielding at the X-band was in the range of 26.6–45.3 dB. Carbon/graphite foams 
have also been synthesized from polymer precursors to be used as EMI shielding 
materials. To achieve high strength in the foam, Li et al. [31] synthesized carbon 
foams from thermosetting polyimide. As a result of cross-linking, the foam had 
excellent thermal stability and very high compressive strength (0.25 MPa at 10% 
strains). Foams carbonized above 1200 °C had EMI shielding effectiveness of 54 dB 
at 10 GHz. It was further shown that stiffness and lightweight of the foams can 
be adjusted by varying the properties and quantities of polyimide starting material. 
Another attractive material entirely made from graphite for EMI shielding is the 
flexible graphite. This material is made by compressing exfoliated graphite flakes 
and with no help of any binder. The exfoliation can be achieved using well-known 
graphite exfoliation species that get in-between layers and expand and exfoliate the 
graphite. The compression of the exfoliated graphite leads to interlocking with one 
another thereby forming a strong film without any binder. It is a chemically and inert 
materials possessing very low coefficient of thermal expansion (CTE). Effectiveness 
EMI shielding as high as 130 dB at 1 GHz has been reported [2]. 

6.3 Composites of Porous Graphite/carbon Foams for EMI 
Shielding 

Composites of the foams or thin films mentioned in the previous section are an attrac-
tive material for EMI shielding especially in application that do not need high temper-
ature. Several research teams have proposed methods to infiltrate polymer binders 
into these porous and films materials. This is mainly done to increase their toughness 
when the application requires it. Three-dimensional graphene/graphite foams have 
been widely used in this area. Scalable thin-layer graphite foam synthesized through 
template-directed thermal annealing process showed an EMI shielding effectiveness 
of 36.1 dB over a frequency range of 8.2–18 GHz [32]. The foam was synthesized 
by carbonizing polyacrylonitrile (PAN) polymer at high temperature and then infil-
trated with polydimethylsiloxane (PDMS) polymer. Compressive strength increased 
by 254% compared to virgin foam. An important property of this composite was its 
reversible compressibility in as many as 1000 cycles without degradation in proper-
ties. And, with an improved electrical conductivity, this material is an ideal candi-
date for future flexible electronics. A confined foaming techniques have been used 
to synthesize flexible graphite/graphene films showing exceptional EMI shielding 
capacity [33]. This technique was thought as being more energy efficient compared 
to current methods. Graphite/graphene precursor was optimized by selecting flakes 
with few defects that led to an improved structure order thereby high mechanical 
strength and high electrical conductivity. The hierarchical and oriented porous struc-
ture had very low density and excellent folding capability. The EMI effectiveness 
(SE) was reported as 43.8 dB as a result of hierarchical structure leading to multiple 
reflections and dielectric loss. The specific SE/thickness of 29 178 dB cm2 g−1 was
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the highest graphene/graphite shielding efficiency among reported graphene/graphite 
materials. With such improved properties, it was suggested that this could be a great 
material for foldable and wearable electronic devices. 

An efficient method has been used to prepare lightweight, freestanding, and flex-
ible membrane/film by cross-linking polyacrylonitrile (PAN) nanofiber and metal 
nanoparticles [34]. In this method, the PAN was electro-spun into nanofibers then 
followed by electro-less deposition of the metal nanoparticles. The composite had 
very high electrical conductivity and effectiveness 90 dB. This value was achieved 
at very thin membranes (53 µm) and is much higher than those synthesized from 
pure metals. The composite also exhibited excellent flexibility and was proposed to 
be used in smart portable wearable electronics. A composite of carbon and red mud 
has also been proposed as a lightweight EMI shielding material [35]. This material is 
synthesized by mixing phenolic resin (carbon source) with red mud (filler) then uses 
polyurethane (PU) foam as a template to infiltrate with the solution of phenolic plus 
red mud then carbonized above 1000 °C. Presence of red mud enhances the dielectric, 
thermal, and magnetic as well as EMI shielding properties of the composites. It was 
postulated that absorption is the main contributor to the EMI shielding effectiveness 
that was 51.4 dB in the frequency range of 8.2–12.4 GHz with a 20 wt% of red mud. 
A nanocomposite of carbon spheres and manganese dioxide has also been synthe-
sized to be used in EMI shielding. The manganese dioxide (MnO2) nanoflakes are 
used to uniformly coat the carbon core spheres by a water-bathing method [36]. The 
MnO2 was estimated to be 24.7 wt% in the nanocomposite. With such a high loading, 
the nanocomposite had a very high dielectric loss value as well as EMI shielding 
effectiveness of 16–23 dB at the frequency range of 8–18 GHz attributed to enhance 
absorption loss. 

7 Porous Graphene for EMI Shielding 

Graphene is considered as a wonder material since the discovery of the material. The 
revolutionary outbreak was bought about by the accidental discovery of graphene 
which was honored by the prestigious Nobel Prize for Physics in 2010 shared by 
Kostya Novoselov and Andre Geim. The stacks of few layers of sp2 hybridized atoms 
hexagonally bonded together forming an extended conjugated 2D sheet structure 
with extra ordinary electrical conductivity, thermal conductivity as well as stability. 
The ballistic electron transport of graphene enables it for a wide variety of appli-
cations particularly in the electric field [37]. The structure of graphene is demon-
strated in the Fig. 4. The excellent electrical property of graphene is the fundamental 
grounds for the shielding property. The enhanced surface area add-ons the electro-
magnetic shielding property of the material. The lightweight, absence of corrosion, 
and minimum quantity enhance the wide acceptance of the carbon allotropes for 
EMI shielding applications [38]. A variety of graphene products are applied for EMI 
applications like graphene foams, graphene films, functionalized graphene as well 
as graphene composites.
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Fig. 4 Schematic illustration of two-dimensional structure of graphene nanosheet 

7.1 Porous Graphene Foams for EMI Shielding 

A potential interest is enhanced for the development of lightweight, as well as multi-
functional electromagnetic waves absorbing which possess extraordinary thermal and 
mechanical properties along with chemical stability are inevitable for EMI shielding 
application in for space, aerospace. A lightweight porous graphene-based aerogel 
for EMI shielding was synthesized compositing poly vinylidene fluoride (PVdF) 
polymer matrix with graphene nanoplatelets (GNPs) [39]. The synthesis procedure 
of PVdF/GNS composite aerogel is depicted in the Fig. 5. The varying composition 
of the GNS incorporated composites from 7–15 wt% was synthesized. The EMI 
shielding properties relied on the absorption of the EM waves. The composite aero-
gels containing 11 and 15 wt% of GNPs, and thickness of each absorber was confined 
to have a minimum reflection peak between 12 and 15 GHz as well as a maximum 
bandwidth with reflection coefficient below −20 dB. 15 wt% samples delivered a 
maximum performance at a thickness of 2.2 mm absorbing panel with a reflection 
peak at ~13.5 GHz and bandwidth with reflection coefficient lower than −20 dB or 
−10 dB wider than 6 GHz or 9 GHz, respectively (Table 1).

7.2 Porous Graphene Films/paper for EMI Shielding 

The modification of the graphene oxide sheets to porous paper structure was achieved 
by appropriate chemical designing. Recently in 2020, Lai et al. [33] synthesized 
porous graphene films by modifying graphene oxide (GO) synthesized by modified 
Hummer’s method by different methods (pre-oxidation modified Hummers’ method 
(PGO), a classic modified Hummers’ method (CGO), and a low-temperature modi-
fied Hummers’ method (LGO)). The GO synthesized was dried at room temperature



25 Porous Carbon Materials and Their Composites … 683

Fig. 5 a Schematic procedure for the production of PVdF-GNP nanocomposite aerogel samples. 
Lightweight aerogel samples made of neat PVdF (b) and GNP-loaded PVdF (c) over flower petals. 
Water drop over the hydrophilic of (d) or hydrophobic (e) surfaces of aerogel samples, made of 
PVdF or GNP-loaded PVdF, respectively [39] 

Table 1 List of the produced graphene-based aerogel samples with their GNP concentrations, 
density, and porosity values 

Process temperature: 65 °C Process temperature: 85 °C 

Sample GNP 
content 
(wt%) 

Density 
(g/cm3) 

Porosity 
(%) 

Sample GNP 
content 
(wt%) 

Density 
(g/cm3) 

Porosity 
(%) 

G00A 0 0.274 78.95 G00B 0 0.289 79.97 

G07A 7 0.280 65.25 G07B 7 0.265 71.58 

G11A 11 0.270 80.17 G11B 11 0.190 86.61 

G15A 15 0.192 70.80 G15B 15 0.187 77.00

in Petri dish. The dried samples formed a film structure which was further sand-
wiched between hydrazine hydrate precoated glass plates with desired thick spacers. 
The samples were stored in sealed containers maintained at 90 °C for approximately 
2 h. The characterization of the resultant films revealed the formation of highly 
porous graphene sheets with variable thickness accordingly based on the spacers
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Fig. 6 Schematic illustration of the proposed structural features of the various GO precursors and 
the method of confined foaming to controllably fabricate porous graphene films [33] 

applied [33]. The schematic illustration of the fabricated GO films and the properties 
has been illustrated in the Fig. 6. 

The ID/IG ratios of the PGO, CGO, and LGO sheets are measured to be 0.88, 
0.92, and 0.98, respectively, indicating the enhanced graphitic nature of the samples 
synthesized at lower temperatures due to minimization in the defect states. The 
morphology of the films as depicted in the Fig. 7a–i reveals the presence of GO 
films with similar cross section despite of change in the synthesis method. The 
thickness of the films formed is approximately 10 mm indicating the homogeneity 
and interlayer binding of the samples in the proposed synthesis method. A sufficient 
enhancement in the performance of EMI shielding is observed for all the samples. The 
overall shielding effectiveness (SETotal) increases from 19.71 to 25.17 dB for PPGF, 
whereas SETotal increases from 27.21 to 34.37 dB for CPGF sample on increase in 
foaming thickness from 100 to 1000 mm. The maximum performance was observed 
for LPGF samples which showed an increment of ~30% with an EMI SE value of 
37.43–48.59 dB for 100–1000 mm thick samples, respectively.

The effective performance of shielding property of the porous graphene sheets is 
attributed accordingly based on the proposed mechanism depicted in Fig. 8. When 
an electromagnetic wave is incident on the surface of the porous graphene sheets, 
a definite number of waves are reflected due to the enhanced impedance mismatch 
between the air and sample. A compact as well as conductive films always facilitates 
this reflection loss. A definite number of waves enter the films leading to further 
scattering of the electromagnetic waves due to the collision of wavelets with the 
sub-atomic particles to generate a counter induced field, leading to the development 
of polarizations and dielectric loss. The enhanced porosity and scattering of the 
electromagnetic waves cause a transfer of energy within the system leading to the 
dissipation of the excess energy as heat. Thus, a minimum number of waves are 
transmitted through the material leading to an effective shielding though the porous 
graphene sheets.
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Fig. 7 Cross-sectional SEM views and inset optical pictures of various 10 mm thick GO films of a 
PGOF, b CGOF, and c LGOF. Surface and cross-section optical pictures and cross-sectional SEM 
images of expanded 100 mm thick porous graphene films of d PPGF, e CPGF, and f LPGF. SEM 
images of the facture cross sections of 200 mm thick porous graphene films of g PPGF, h CPGF, 
and i LPGF [33]

7.3 Functionalized Porous Graphene for EMI Shielding 

Graphene sheets form lightweight as well as flexible two-dimensional (2D) struc-
tures. The enhancement in the electronic mobility in sheet structures owing to 
the extended conjugation enables the elevation in the shielding property. The 
enhancement in the shielding property can be achieved by the functionalization 
of the graphene sheets by appropriate dopants. In 2017, Wan et al. [38] reported 
the graphene paper synthesized by reducing graphene oxide (GO) from modified 
Hummer’s method. The GO thus prepared was doped with iodine using hydroiodic 
acid (HI) at a temperature of 90 °C for 12 h. The doped samples were repeatedly
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Fig. 8 Schematic illustration on the EMI shielding mechanism

washed with water and ethanol. The samples were dried, and paper was clamped 
tightly between two graphite plates and annealed at 1600 °C for 60 min in inert 
atmosphere to prepare iodine doped graphene sheets. The schematic illustration of 
the synthesis and doped graphene has been depicted in Fig. 9a, b. The morphology of 
the shielding film is displayed in Fig. 9c. The shielding property of the paper depends 
on the thickness and conductivity of the graphene paper formed. The various sized 
graphene sheets were analyzed at a frequency range of 8.2–12.5 GHz.

The EMI shielding effect of lower sized graphene with different thickness 
measured at 8.2–12.5 GHz and 11.9–18 GHz is displayed in Fig. 10a, b [38]. The 
value of shielding effect is almost independent of all the measured frequency range, 
which is different from the reported carbon-based materials possessing fluctuated 
SE curve with frequency [38, 39]. The EMI shielding effect is increased with the 
thickness of LG, from 39.1 dB for 3.9 mm to 47.0 dB for 12.5 mm at 8.2 GHz. 
After doping process, the SE is further increased. The primary mechanism of carbon 
shielding materials proposed by the previous reports is the interaction between charge 
carriers (electrons or holes) and the electric vector of the incident electromagnetic
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Fig. 9 a Fabrication process of iodine doped LG and b its corresponding schematic illustration; c 
picture of thickness measurement and SEM results: d plan and e cross section of the film [38]

field, which mainly based on two ways. One is that the free carriers absorb energy 
from the incident wave and move in response to the EM wave. The other is that EM 
field caused by the moving charge carriers creates induced field, which in turn inter-
acts with the incident EM wave [9, 40]. For the detailed information, a comparison 
of carbon-based EMI shielding materials is shown in Table 2. 

Fig. 10 a, b Shielding effectiveness of LG with different thickness under different frequency range 
and the improvement after iodine doping [38]
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Table 2 Comparison of carbon-based EMI shielding materials [38] 

Sample Conductivity (S m−1) Thickness (µm) EMI SE 
(dB) 

Year/reference 

Electrochemically 
exfoliated graphene 

l 250 17 2015 [40] 

Chemically reduced 
GO 

2.43 × 104 15 20 2015 [41] 

CVD synthesized 
graphene 

1.34 × 104 50 60 2015 [42] 

Thermally reduced 
GO 

1.0 × 105 8.4 20 2014 [43] 

Multilayer graphene 1.44 × 105 18 55 2015 [44] 

Graphene foam 310 × 100 300 25.2 2016 [45] 

Carbon/graphene 
foam 

1.5 × 104 24 24 2016 [46] 

S-doped graphene 3.1 × 104 150 38.5 2016 [47] 

Graphene/WPU 
filma 

2.1 × 103 320 49 2016 [48] 

Magnetic 
graphene/PVAb (6 
wt%) 

3.11 × 100 360 20 2014 [49] 

Iodine-doped LG 
paper 

1.05 × 105 12.5 52.2 2017 [38] 

aWPU, waterborne polyurethane with graphene of 76.2 wt% 
bPVA, poly(vinyl alcohol) with loading ~6 wt% 

7.4 Composites Based on Porous Graphene for EMI 
Shielding 

The EMI shielding effectiveness (SE) of a composite material is relied on intrinsic 
conductivity, dielectric constant, and aspect ratio of the material incorporated to 
the matrix. The synergistic effect and effective absorption/reflection of the elec-
tromagnetic waves play a crucial role in the performance efficiency. Few layers 
thick graphene, with large aspect ratio and high conductivity, is proven to be an 
effective EMI shielding material. In 2009, Liang et al. [50] reported the synthesis 
of graphene composites-based functionalization of graphene in epoxy matrix. 
The electromagnetic interference (EMI) shielding performance of the composites 
revealed low percolation threshold (0.52 vol.%). EMI shielding effectiveness of 
the composite films was analyzed in the frequency range of 8.2–12.4 GHz (X-
band). The superior performance of the sample fabricated with graphene epoxy 
composite with 15 wt% (8.8 vol.%) loading delivering a shielding efficiency of 
21 dB. Later, Yan et al. [51] reported the EMI shielding effect of graphene/polystyrene 
composite materials synthesized by high-pressure compression molding combined 
with salt leaching, fabricating the samples with specific shielding effectiveness 
64.4 dB cm3 g−1 for a thickness of 2.5 mm. Liu et al. reported a ternary composite
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with epoxy-water-inorganic filler suspended emulsion polymerization. A porous 
graphene nanoplatelet (GNP)/Fe3O4/epoxy nanocomposite was prepared with low 
density of 0.34–0.73 g cm−3. The porous nanocomposite with same ratio of graphene 
nanoplatelets and Fe3O4 nanoparticles (7:7 wt%/wt%) exhibited enhanced perfor-
mance with a specific electromagnetic interference (EMI) shieling effectiveness of 
∼37.03 dB/(g cm−3). The samples also delivered excellent thermal and mechan-
ical properties. In 2020, Guo et al. [52] reported a highly flexible thin films of 
RGO/CNF/Ag–Fe3O4 (RGCF) porous film for EMI shielding application. The 
graphene oxide and silver decorated carbon nanofiber along with Fe3O4 nanoparti-
cles were mixed together in the ratio 1:1:0.33, 1:1:0.666, and 1:1:1 ratio, respectively, 
via sonication followed by filtering the samples in an AAO membrane. The films 
thus obtained were subjected to autoclaving in the hydrazine hydrate atmosphere 
at 100 °C for about 9 h for reducing the graphene oxide to reduced graphene oxide 
leading to the formation of the composite membranes. A schematic illustration of the 
synthesis has been demonstrated in the Fig. 11. The sample with 1:1:1 ratio exhibits 
enhanced mechanical with EMI shielding effectiveness of 21.0 dB.

7.5 Graphene-CNT Hybrid Structures for EMI Shielding 

The emergence of graphene has opened up innumerable opportunities in the field 
of materials science and nanotechnology research due to its exceptional electrical, 
mechanical, electronic, electrochemical, and thermal properties. Graphene has a 
unique band structure with band-tuning ability and extremely high carrier mobility (in 
excess of 1,00,000 cm2/V s) [53, 54]. Unfortunately, these properties only emerge in 
the 2D planar direction of the graphene structure, which limiting its scope and applica-
tion. Recently, many strategies have attempted to address this weakness of graphene 
by developing hierarchical hybrid structures, wherein graphene acts as a platform 
for support, scaffold, or a 2D planar substrate for anchoring other nanomaterials. For 
instance, carbon nanotubes (CNTs), their properties emerge in the axial direction, 
can be functionalized onto the surface of 2D nanosheets of graphene, combining 
the properties of the two major carbon allotropes in all directions while allowing 
for an increased active surface area and faster electron transfer kinetics. This unique 
method adopted to expand the scope of its usage, graphene hybrids which combine 
the synergetic properties of graphene along with other nanostructured materials and 
is a widely emerging field of research. 

The flat monolayer of sp2 carbon atoms tightly packed in two-dimensional 
honeycomb-like lattice is the building block for graphene. Compared to carbon 
nanotubes, graphene exhibits potential advantages of high surface area, ease of 
processing, low cost, safety [55], and high purity (absence of transition metals, Fe, 
Ni, etc.) [56]. Carbon nanotubes (CNTs), consisting of cylindrical graphene sheets 
with nanometer diameter, have high mechanical strength and chemical stability, 
good electrical conductivity, rich optical properties, and high surface area. When 
combining these two unique nanomaterials materials result in to an intelligent and 
unique hybrid materials, which could overcome the shortcomings and limitations of
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Fig. 11 a Schematic illustration on the steps involved in the fabrication of RGCF porous film, b 
digital image of GCF film, c RGCF porous film, and d bending properties of RGCF-3

individual components. Thus, many efforts have been made so as to obtain graphene-
carbon nanotube hybrids by different methods of synthesis [57–64]. Early researches 
on graphene-CNT are focused on the assembly of graphene and CNT to generate 
hybrid fillers rather than making nanostructured architectures for a specific appli-
cation. The synthesis/fabrication of graphene-CNT hybrids generally categorized
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into four different approaches, including solution processing/casting, [65–70] layer-
by-layer deposition, [68, 71, 72] vacuum filtration, [73, 74] and chemical vapor 
deposition (CVD) [59, 62, 63, 75–85]. Among all the synthesis method reported 
for the graphene-CNY hybrids, CVD approaches are reported to build hierarchical 
nanostructures with reasonable structural stability and mechanical strength [75, 
86]. Recently, the possibility to explore the graphene-CNT hybrids to fabricate 
EMI shielding materials having improved shielding efficiency than the individual 
components. Blending of large surface area, one-dimensional carbon nanotubes 
with a two-dimensional graphene matrix having high charge density, has been 
displays the enhanced EMI shielding properties due to the synergistic effect on 
magnetic, electronic, and charge transfer properties. The hybrid material also shows 
large specific area and catalytic properties compared with either pristine CNTs or 
GO/graphene [87]. Generally, when dispersing in an organic matrix, CNTs tend to 
agglomerate, therefore, numerous efforts were developed to disperse the CNT by 
using micelles, ionic liquids, surfactants, polymer wrapping, and other chemical 
functionalization approaches. It was demonstrated that when CNT is mixing with 
graphene nanosheets forms a stable dispersion of CNT, in which graphene acts as 
a barrier to prevent the agglomeration of seamless tubular CNT, and the resulted 
dispersion is called as graphene oxide-CNT hybrid filler (GO-CNT) [88]. The strong 
π–π stacking interaction operating between graphene and CNT makes a uniform 
three-dimensional network similar to cross-linked structures for the hybrid material 
and provides exceptional stability [89]. 

The formation of CNT networks acts as conducting wires inside the already 
conducting graphene structure, thus promoting the electronic as well as thermal 
conductivity of the hybrid material [61]. Chen et al. [90] used graphene-MMCNTs 
structures to study the EMI shielding of these hybrid structures. A commercial sponge 
was coated with silver nanoparticles and then dip-coated with graphene (GP) ink, 
multi-wall carbon nanotubes (MWCNTs) ink, or hybrid GP/MWCNTs ink to form 
Ag/carbon nanomaterial hybrid composites and compared the EMI shielding (in the 
frequency range of 0.45–1.5 GHz), properties were compared with sponge without 
Ag coating. Figure 12 schematically depicts the coatings of Ag particles and carbon 
nanomaterial fillers onto the surface of inner pores within sponge and their surface 
morphologies. The SEM and TEM images of the samples are displayed in Fig. 13. 
A 50  × 50 mm size square composites sample was subjected to EMI measure-
ments in the frequency range of 0.45–1.5 GHz. For comparison, the sponges without 
Ag nanoparticle coating were also prepared. The EMI SE tests using an indus-
trial microwave oven showed that nearly 80 and 90% of the power density were 
shielded by the sponge composites coated with GP/MWCNTs/ink without and with 
the Ag nanoparticle coating, respectively. The maximum values of approximately 
14.4 dB could be achieved with these sponges without Ag nanoparticles, while the 
hybrid composites with Ag nanoparticle coating exhibited maximum EMI shielding 
of 24.33 dB, predominantly by reflection due to their porous structure.

Goyal et al. [91] prepared polycarbonate (PC)/graphite nanoplatelet 
(GNP) nanocomposites PC/GNP by a facile solution mixing method in combi-
nation with the hot compaction method and studied effect of GNP on electrical
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Fig. 12 Schematic figure of the sponge composites coated with Ag nanoparticles and subsequently 
GP/ink, MWCNTs/ink, and GP/MWCNTs/ink

properties and electromagnetic interference shielding effectiveness (EMI SE) of the 
nanocomposites in X-band. A very low percolation threshold of 0.005 vol. fraction 
GNP was achieved for these composites. The composite having 0.037 vol. fraction 
GNP displayed the electrical conductivity of about 0.413 S/m. It is widely reported 
that an electrical conductivity of 1.0 S m−1 is necessary to achieve the SET of − 
20 dB which is required for commercial applications. However, the 1 mm thick 
samples show an SET value of approximately—35 dB for PC/GNP composite with 
an electrical conductivity of about 0.413 S/m. Further increase in sample thickness 
to 2 mm resulted in a SET value of—47 dB (@8.2 GHz). An exponential increase 
in EMI SE was observed with increasing logarithm of electrical conductivity. 

Bose et al. [92] fabricated PC-based hybrid nanocomposites with doped rGO 
(doped with ferromagnetic, Fe3O4 or paramagnetic Gd2O3) and CNTs as nanofillers 
using melt mixing, followed by a compression molding. The surface morphology 
(FE-SEM) and TEM images on the morphology of the composites are displayed in 
Fig. 14a–d. The percolation threshold of CNTs was found to be lower than 0.5 wt%. 
Atomic wt% of Gd (atomic mass 157.25 u) was less than Fe (atomic mass 55.845 u), 
and degree of GO reduction was slightly higher in rGO-Fe3O4 than rGO-Gd2O3. It  
was observed that PC-based nanocomposite with 3 wt% CNT, 3 wt% CNT/5 wt% 
rGO-Fe3O4, and 3 wt% CNT/5 wt% rGO-Gd2O3 resulted in the SET value of −23, 
−28, and −33 dB, respectively, for 5 mm thick samples and at 18 GHz frequency 
(Fig. 14e, f). Absorption was determined to be the dominant shielding mechanism in



25 Porous Carbon Materials and Their Composites … 693

Fig. 13 SEM images of a pristine sponge; sponges coated with b GP/ink, c MWCNTs/ink, and 
d GP/MWCNTs/ink without Ag nanoparticle coating. SEM image of sponge coated with e Ag 
nanoparticles, and SEM images of the Ag-coated sponges followed by coating of f GP/ink, g 
MWCNTs/ink, and h GP/MWCNTs/ink, i TEM image of folded GP on grid, FE-SEM images of j 
GP and k MWCNTs

all the composites, with magnetic losses being the primary mechanism in the rGO-
Fe3O4-based nanocomposite and dielectric losses being primary in rGO-Gd2O3-
based nanocomposite.

Li et al. [93] designed a reflection-absorption compartment unit with a lossy core 
made up of rGO-Fe3O4 (RGF) dispersed in PC and a conductive shell made up
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Fig. 14 SEM micrographs of a PC/3 wt% MWCNT (low magnification), b PC/3 wt% MWCNT 
(high magnification), c PC/3 wt% MWCNT/5 wt% rGO-Fe3O4 (low magnification), d PC/3 wt% 
MWCNT/5 wt% rGO-Fe3O4 (high magnification), e PC/3 wt% MWCNT/5 wt% rGO-Gd2O3 (low 
magnification), and f PC/3 wt% MWCNT/5 wt% rGO-Gd2O3 (high magnification)



25 Porous Carbon Materials and Their Composites … 695

of CNTs wrapped onto the microspheres. CNT-wrapped microspheres of uniform 
size with an average diameter of 237.9 µm were then consolidated at 260 °C and 
100 MPa to obtain a honeycomb-like architecture of CNT/RGF/PC with distinct 
conductive pathways formed by cementing the CNT walls between neighboring 
shielding compartments as shown in Fig. 15a. The average size of Fe3O4 was around 
10 nm, and the mass fraction of Fe3O4 anchored on rGO was about 80 wt% (satu-
ration magnetization of RGF ~50.7 emu/g). SET value of −43.5 dB with a SEA/ 
SET ratio of ~90% was obtained for the 2 mm thick composite shielding mate-
rial prepared with 4 wt% CNT/5 wt% RGF compartments in X-band. This SET 
value is about 22.5% higher than that of randomly dispersed filler (−35.5 dB). It 
is worthy to note that the SET value of CNT/PC compartment-based composites is 
inferior to that of CNT/RGF/PC compartment-based composites when adding the 
same CNT content due to the synergistic effect; e.g., for 4 wt% CNT, the SET value 
is 10.3 dB higher in CNT/RGF/PC compartment-based composite. There was no 
considerable difference in electronic conductivity observed between CNT/PC and 
CNT/RGF/PC compartment-based composites because they have the similar three-
dimensional conductive network; however, electrical conductivity for random disper-
sion of fillers was significantly lower than the compartment model. The shielding 
mechanism in these unique composites is illustrated in Fig. 15b. In this core-shell 
structure, the outer CNT walls act as reflectors to generate multiple reflections.

Lozano et al. [18] studied the EMI shielding effectiveness of multi-wall 
carbon nanotube (MWCNT) filled polypropylene composites and carbon nanofiber 
composite mats. The developed systems were then used to prepare interlayered 
composites that exhibited improved electrical conductivity and electromagnetic inter-
ference (EMI) shielding efficiency. The hybrid MWCNT-carbon nanofiber composite 
mats were prepared by centrifugally spinning mixtures of MWCNT suspended in 
aqueous poly(vinyl alcohol) solutions followed by the dehydrated under sulfuric acid 
vapors and then heat treated. Figure 16 shows a comparison of the SEM images of 
the MWCNT filled carbon nanofiber mats with different MWCNT contents, before 
and after the carbonization process. Interlayered samples were fabricated using a 
nano-reinforced polypropylene composite as a matrix and then filled with carbon 
fiber composite mats.

Figure 17 displays the schematics of the process used to fabricate the interlay-
ered composites. The in-plane and through-plane electrical conductivity of an eight-
layered flexible carbon composite (0.65 mm thick) were shown to be 6.1 and 3.0× 
10−2 Scm−1, respectively. The EMI shielding effectiveness increased from 17 dB for 
the one-layered composite to 52 dB for the eight-layered composite at 900 MHz. 
It was found that the reflection of the electromagnetic waves was the dominating 
mechanism for EMI shielding in the developed materials. These studies utilizing the 
synergistic effect offered by the hybrid fillers opens up new opportunities for the fabri-
cation of robust and novel lightweight materials that are to be used in communication 
systems.
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Fig. 15 a Scanning electron micrograph of CNT/RGF/PC composite, b and c are the higher 
magnification micrographs of (a), d energy dispersive X-ray elemental mapping of Fe and 
e, f transmission electron micrograph of CNT/RGF/PC composite. The inset cartoons show 
the composite’s observing area; g shielding mechanism of the reflection–absorption-integrated 
shielding compartment. Adapted with permission from Li et al. [81], copyright 2020 Elsevier

8 Conclusion 

EMI shielding blocks the EM radiations (radio waves and/or microwave radiation) by 
acting as a radiation barrier that depends on the electrical conductivity as well as the 
magnetic permeability of shield material and the frequency of radiation. Unlike from 
the adsorption mechanism, reflection being the prominent mechanism that involves
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Fig. 16 SEM images of MWCNT filled carbon nanofiber mats with different contents of MWCNT 
before and after carbonization. a, c PVA nanofibers mats with 0.05 and 0.1 wt% MWCNT and b, 
d CNF mats filled with 0.05 and 0.1 wt% MWCNT, respectively

Fig. 17 a Schematic representation of the fabrication process of interlayered composites; digital 
pictures of b MWCNT filled carbon nanofiber mats; c NRPCS used as starting materials; and d a 
resultant one-layer interlayered flexible composite

the interaction of EM field with the mobile charge carriers such as electrons or 
holes and thus attenuate the EM radiations. Materials having high dielectric constant 
and high magnetic permeability can be used for EMI shielding. For instance, mate-
rials like metals, polymers, carbon, ceramics, and their composite materials can be 
tuned for EMI shielding applications, in which carbon-based materials are found
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to be more prevalent due to its oxidation resistance, chemical, and thermal stability 
as well as lower density and high dielectric loss properties. Carbon-based mate-
rials include porous graphite and amorphous carbon-based materials/composites, 
porous graphene-based materials/composites, and graphene-CNT hybrid structures. 
Functionalization of porous graphene can be tuned for EMI Shielding. Thus, EMI 
shielding can be applied in different portable gadgets and electronic devices for 
various applications including medical applications. 
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Chapter 26 
Porous Carbon Materials and Their 
Applications in Environmental 
Monitoring and Food Safety 

Alma Mejri, Abdelmoneim Mars, and Hamza Elfil 

1 Introduction 

Considered the 5th most abundant natural element in the universe, carbon and its 
derivatives have aroused great interest in various fields, including materials science, 
electronics, biomedical sciences, nanotechnologies, etc. [1–5]. As a subclass, porous 
carbon materials (PCMs) exhibit interesting properties such as excellent electrical 
conductivity, high chemical, and thermal stability, important specific surface area, 
and adjustable channels and pore size [6]. Structurally, PCMs are classified into three 
categories based on their pore size. Microporous, mesoporous, and macroporous 
carbonaceous materials have pore sizes (d) in the ranges of d < 2 nm, 2 nm < d 
< 50 nm, and d > 50 nm, respectively [7]. Meanwhile, mesoporous carbonaceous 
materials have gained much of the attention devoted to PCMs due to their ease of 
functionalization, biocompatibility, high hydrophilicity, and good dispersibility in 
water [8, 9]. It is worthy to highlight that enormous attention has been paid to PCMs 
with designed pore architecture, and scientific publications on this subject are on the 
rise in recent years as presented in Fig. 1.

2 Applications of Porous Carbon in Environmental 
Monitoring 

Currently, the rapid development of urbanization and industrialization across the 
world has caused the pollution of the ecosystem and water resources by various

A. Mejri (B) · A. Mars · H. Elfil 
Desalination and Natural Water Valorization Laboratory (LaDVEN), Water Researches and 
Technologies Center (CERTE), BP 273, 8020 Soliman, Tunisia 
e-mail: almaa.mejri@gmail.com 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. N. Grace et al. (eds.), Handbook of Porous Carbon Materials, 
Materials Horizons: From Nature to Nanomaterials, 
https://doi.org/10.1007/978-981-19-7188-4_26 

705

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7188-4_26&domain=pdf
mailto:almaa.mejri@gmail.com
https://doi.org/10.1007/978-981-19-7188-4_26


706 A. Mejri et al.

Fig. 1 Number of publications with mentioned “porous carbon for environmental monitoring and 
food safety” terms

pollutants such as heavy metals, pesticides, and toxic residues from industrial activ-
ities causing a serious threat to human health [10]. To protect the environment and 
human life, periodic monitoring and regular control of pollution sources is an urgent 
necessity. For this, many international organizations, including WHO and EPA, have 
set up a large number of regulations to properly manage the situation. In this regard, 
various monitoring and remediation tools have been developed such as sensors and 
pollutant removal tools. 

2.1 Sensors Based on Porous Carbon for Environmental 
Contaminants 

Recently, the development of affordable, simple, and portable electrochemical 
sensors that enable on-site and semi-continuous monitoring of various pollutants 
that pose serious risks to the environment and human health has become possible 
thanks to PCMs. Indeed, the presence of polyvalent functional groups, high specific 
surface area, as well as the controllable channels and pore sizes of this nanomaterial 
are considered to be key parameters to achieve excellent analytic sensing parameters 
such as very high sensitivities and very low detection limits [11, 12]. Nowadays, 
numerous studies have been reported in the literature describing the use of PCMs 
in the development of sensitive electrochemical platforms for the quantification of 
traces of hazardous environmental contaminants, in particular heavy metals, and 
residues from industrial activities.
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2.1.1 Sensing of Heavy Metals 

Heavy metals are classified as potential environmental contaminants due to their high 
toxicity, persistence, and bio-accumulative nature. Thus, their presence even in trace 
amounts can be considered as a serious threat to human health and living organisms 
[13]. Therefore, the development of sensitive analytical tools for the detection of 
heavy metal ions in various matrices is of considerable interest to minimize risks 
to ecosystem and human health. In this context, electrochemical platforms based on 
porous carbon have been widely used for the determination of trace heavy metal ions. 
For instance, a selective voltammetric sensor based on nitrogen and sulfur codoped 
PC nanofibers for the quantification of cadmium (II) traces in water samples was 
developed by Gao et al. [14]. In this work, PCMs were prepared by pyrolysis of 
trithiocyanuric acid, polyacrylonitrile, and silica nanospheres. To design the electro-
chemical sensor, the authors chose N,S-codoped PC nanofibers to decorate GCE. The 
as-prepared platform enabled highly sensitive and selective quantification of Cd(II) 
ions using the differential pulse anodic sweep voltammetry method. The electro-
chemical results showed that porous N,S-codoped PC nanofibers can be considered 
as interesting candidates for monitoring cadmium (II) ions in various water samples 
with recovery rates of 103%. In the same context, N,S-codoped PCMs were used 
to sense the presence of cadmium (II) in water samples. To enhance the porosity 
of PCMs, Wu et al. [15] have proposed the preparation of N,S-codoped PCM by 
carbonization process of protic salt in the presence of a silica sphere. The latter was 
employed as an auxiliary template and was removed by hydrofluoric acid treatment. 
It has been demonstrated that the resulting nanocomposite contains rich amounts of 
N and S with hierarchical textural porosity. To decorate the surface of the electrode, 
the authors have used nafion to immobilize the as-prepared PCM (Fig. 2). The elec-
trochemical results showed excellent sensitivity and selectivity for the presence of 
Cd(II) ions even in the presence of other metals. PCM-based platform was applied 
for the quantification of Cd(II) ions in tap water samples. The sensor was yielded 
promising results with good analytical performances.

Furthermore, Niu’s group [16] has described the use of screen-printed porous 
carbon-based electrodes functionalized by bismuth nanoparticles for the simulta-
neous quantification of a trace of cadmium (II) and lead (II) ions in water samples. The 
combined process of one-step sol–gel and pyrolysis was employed for the synthesis 
of PC nanocomposite. The latter was used then to print the working electrode. The 
results demonstrated that the porosity of bismuth-based carbon material allows the 
sensing of Cd(II)and Pb(II) ions at very low concentrations below 4 ppb. The designed 
platform was applied to quantify target ions in tap water and wastewater samples. 
Thereafter, the same research group has reported the use of bismuth nanoparticle-
PC nanocomposite for the fabrication process of screen-printed electrodes [17]. The 
above-mentioned nanocomposite was synthesized using a combined method between 
the one-step sol–gel and pyrolysis. A grinding step is necessary to obtain a specific 
distribution of particle size for the synthesis of screen-printing inks. Thus, this elec-
trochemical platform was applied for the rapid and in situ quantification of lead (II) 
and cadmium (II) ions in various water samples with good analytical performances.
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Fig. 2 Schematic presentation of preparation process of N,S-codoped porous carbon-based plat-
form for the detection of Cd(II) ions. Reprinted with permission from Wu et al. [15] Copyright 2021 
Elsevier

More interestingly, a new method of green preparation of PCM was reported by 
Guan’s group by exploiting an ocean resource, kelp [18]. The authors have reported 
that kelp, used as a carbon source, allows the amelioration of the specific surface 
area where a porosity-rich structure offering many active sites has been observed. 
The results also revealed an abundant micro/mesopore structure with an important 
specific surface area of 2064 m2 g−1. These proprieties encourage authors to apply 
the prepared PCM in the sensing and the removal of lead (II) and cadmium (II) 
ions. The sensing process was conducted by the decoration of the GCE surface with 
fabricated PCM. Electrochemical results demonstrated excellent analytical sensing 
performances with a detection limit of 23.3 nM and 11.38 nM for Cd2+ and Pb2+, 
respectively. To introduce the different applications of PCMs in the platform devel-
opment, the authors summarize the different systems reported in the literature for 
the sensing of heavy metal ions in water samples (Table 1).

2.1.2 Sensing of Toxic Compounds 

Nowadays, industry activities have resulted in the contamination of the environment 
and water resources by various pollutants including hydrazine and nitroaromatics. 
These have become one of the first on the list of priority compounds to monitor. 
Consequently, many scientific efforts have been devoted to develop analytical devices 
and improve these performances for the quantification of contaminant traces. Due to
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its great ability to strongly concentrate target analytes in their channels and pores, 
PCMs have been extensively applied to build high-performance sensors. Recently, 
Yallappa et al. [30] have reported an eco-friendly synthesis method of mesoporous 
carbon nanoparticles using the Areca nut as a carbon precursor. The as-prepared 
PCMs were used to decorate the GCE surface. The authors have investigated this 
platform for the nitrite quantification in water samples. The results exhibited that 
the designed sensor exhibited great analytical performances such as a large linear 
concentration range from 0.2 to 400 μM, a low detection limit of 0.0146 μM, and an 
acceptable recovery rate. Therefore, the authors have interpreted that founded perfor-
mances are attributed to the synergistic effect between the important porosity, high 
specific surface area, and high catalytic activity of mesoporous carbon nanoparticles. 
In the same context, Madhu and colleagues [31] have described a green preparation 
procedure for PCM using banana stems as a carbon precursor. The amounts of carbon, 
nitrogen, and sulfur were determined as follows: 61.12, 0.4315, and 0.349, respec-
tively. The spectroscopic characterization revealed an important specific surface area 
of the order of 1465 m2 g−1. In addition, the designed sensor exhibited interesting 
catalytic activity for nitrite oxidation with a linear concentration range of 1–127 μM. 
The detection limit was found to be 0.07 μM. Further, the platform was applied for 
the nitrite quantification in lake and seawater samples. 

Since doping improves the hydrophilicity, the conductivity, and the reactivity of 
the produced PCM, many research groups have used various doped PCMs for the 
quantification of toxic compound traces [32, 33]. For instance, the nitrogen doping of 
PCMs induces the maintenance of specific porous structures and increases the charge 
density. In this context, N-doped porous carbon was used to construct an electrochem-
ical sensitive sensor for hydrazine and nitrobenzene quantification by Yan’s group 
[34]. In this work, an eco-friendly and cost-effective preparation approach using 
polydopamine as a precursor of carbon and nitrogen was reported. The authors have 
exploited the effect of nitrogen groups in enhancing the electrocatalytic activity of 
PCM toward the reduction and oxidation of nitrobenzene and hydrazine, respectively. 
Indeed, the results revealed that the electrocatalytic activity of the N-doped PCMs 
was improved with the larger surface area and more significant amounts of graphitic 
and N-pyrrolic groups. Under optimized conditions, the N-doped PC-modified GCE 
showed a linear dependence on the current density and target analyte concentration. 
The limits of detection were found to be 0.62 and 0.47 μM for nitrobenzene and 
hydrazine, respectively. Moreover, Hu et al. [35] have investigated N-doped hierar-
chical PC-based platform for the detection of 4-nitrophenol in water samples. As 
shown in Fig. 3, the hierarchical N-doped PC was prepared using a cost-effective 
method which is based on the carbonization of pomelo peel after adsorption of 
melamine. The as-prepared PCMs exhibited a hierarchical porous structure, charac-
terized by an important high surface area of the order of 1071 m2 g−1. An excel-
lent transfer rate and abundant micro, meso, and macropores were recorded. As an 
electrochemical application, the authors chose an indium-tin-oxide electrode to be 
decorated by fabricated material using chitosan as dispersing and stabilizing agent. 
The detection process was controlled using differential pulse voltammetry and the
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Fig. 3 Schematicpresentation of preparation process and the detection process of 4-nitrophenol 
sensor. Reprinted with permission from Hu et al. [35] Copyright2018 American Chemical Society 

obtained results revealed a good linear correlation between the peak intensity and 
the 4-nitrophenol concentration. The limit of detection was found to be 5.44 μM. 

More recently, Xiao’s group [36] has used the cobalt phosphide (CoxP) decorated 
N-doped porous carbon microspheres for the development of 4-nitrophenol sensor. 
To demonstrate the effect of N-doped PCM on enhancing the electrocatalytic activity 
of the sensor, the authors have developed a comparison study using various electrodes 
including bare GCE, N-doped PCM-modified GCE, and CoxP decorated N-doped 
PC-modified GCE. The results revealed that the N-doped porous carbon-modified 
GCE exhibited the most remarkable electrocatalytic activity toward 4-nitrophenol. 
Thus, the authors have succeeded in developing a PCM-based platform for the quan-
tification of 4-nitrophenol using an electrocatalytic sensing strategy. The limit of 
detection was estimated to be 2 nM. 

Furthermore, several studies have investigated the effect of the functionaliza-
tion of PCMs with metallic nanoparticles in order to improve the analytical perfor-
mance of detection platforms. In this regard, Qin and collaborators [37] have used  
gold nanoparticles (AuNPs) to decorate hierarchical porous carbon. The prepared 
nanocomposite was applied to develop a sensitive electrocatalytic detection plat-
form for the detection of nitroaromatic pollutants in water samples. The authors 
have reported that PCMs modified by AuNPs revealed high catalytic activity for 
the reduction of nitroaromatics. This can be explained by the abundant hierarchical 
pores of carbon and the synergistic effect between the carbonaceous material and the 
AuNPs. 

More interestingly, Andy et al. [38] have proposed an electrochemical platform 
based on PCMs for the quantification of traces of cyanide in river water samples. 
To fabricate the sensor, the authors have used physical adsorption to immobilize 
nanocomposites on the surface of the carbon paste electrode. In this work, square 
wave adsorptive anodic stripping voltammetry was used as an electrochemical tech-
nique to monitor the sensing event. Under the optimized conditions, the sensor exhib-
ited a large linear range of concentrations from 5.9 × 10−7 to 9 × 10−6 M, with a 
detection limit of 7× 10−8 M. Table 2 regrouped various PC-based sensors which was
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reported in literature and used for electrochemical detection of toxic environmental 
contaminants.

2.2 Porous Carbon-Based Systems for Environmental 
Monitoring 

Currently, PCMs open up great prospects for applications in the fields of environ-
mental preservation, in particular in the development of platforms for the elimination 
of environmental pollutants. For this reason, this section will be devoted to presenting 
the relevant applications of PCMs for the removal of environmental contaminants. 
Table 3 represents a limited overview of the use of activated PCMs for the elim-
ination of water pollutants. In fact, the activation process of PCMs induces the 
improvement of the texture characteristics such as porosity, access to the internal 
structure, and surface functions [58]. Thus, the active PCMs allowed the removal of 
various toxic compounds with an important adsorption capacity. It is to highlight that 
the nature of carbon precursor and activating agent influences the physicochemical 
surface characteristics. In fact, Nowicki et al. [59] have employed various potassium 
carbonate materials as carbon precursors for the synthesis of PCMs which used for 
the elimination of methylene blue and methyl red. The results exhibited that this 
waste allowed the obtention of the activated PCMs with important specific surface 
areas reaching 1188 m2/g. Thus, the authors have concluded that the efficiency of 
the removal process of methylene blue and methyl red from water samples depends 
on the nature of carbon precursor and that the adsorption capacity increases with the 
specific surface area. In the same line, Baysal et al. [60] have reported that the adsorp-
tion capacity of methylene blue enhances from 580 to 965 mg/g when the specific 
surface area of activated PCM increases from 2090 to 2690 m2/g. The authors have 
reported that the amelioration of the specific surface area can be attributed to the 
type of activation agent. The obtained results revealed that the most important value 
of adsorption capacity was recorded with sodium hydroxide.

In particular, a significant number of scientific reports have described the employ 
of PCMs as efficient systems for the capacitive deionization removal technology 
of heavy metal ions from polluted water samples to protect human health and the 
ecosystem. As an example, Zhang et al. [78] have synthesized a three-dimensional 
honeycomb-like PCM via a hydrothermal carbonization process using corncob waste 
as a carbon precursor. The as-prepared PCM was employed as a capacitive deioniza-
tion electrode material to remove chromium (VI) from water samples. Electrochem-
ical investigations exhibited that this electrode showed a good electrical conductivity 
and specific capacitance of the order of 452 F g−1. Thus, the 3D-porous carbon-based 
electrode was applied for the elimination of chromium (VI) in water samples with
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Table 3 Selected production process of activated PCMs, specific surface areas, and maximum 
adsorption capacities of different pollutants 

Carbon 
precursor 

Activating 
agent 

Specific 
surface area 
(m2/g) 

Pollutant Maximum 
adsorption 
capacity 
(mg/g) 

References 

Acacia erioloba H2SO4 10.4 Methylene blue 1.5 [61] 

Acacia glauca H3PO4 311.2 4-Nitrophenol 204.7 [62] 

Bamboo H3PO4 1400 Reactive Black 5 489.9 [63] 

Banana peels K2CO3 1188 Methylene blue 454.5 [64] 

Tomato waste ZnCl2 1093 Methylene blue 400 [65] 

Corncob KOH 1054.2 Hg(II) 2.3 [66] 

Corncob NaOH 2381 Pb(II) 381 [67] 

Pomelo peels K2CO3 836 Methylene blue 222.2 [59] 

Potato peels H3PO4 904.5 Bisphenol A 445.9 [68] 

Potato peels H3PO4 676 Pb(II) 8.9 [68] 

Residue 
Frombiomass 
gasification 

ZnCl2 259 Fe(II) 20.5 [69] 

Sugarcane 
bagasse 

ZnCl2 182.9 Hg(II) 11.5 [70] 

Banyan tree KOH 988 Phenol 26.9 [71] 

Eucalyptus 
residue 

H3PO4 1545 Methylene blue 977 [72] 

Eucalyptus 
sawdust 

FeCl3 645.2 Methylene blue 162.8 [73] 

Black wattle 
bark waste 

ZnCl2 414 Phenol 85.7 [74] 

Waste carpets H3PO4 953 Methylene blue 769.2 [75] 

Waste tires KOH 265 Pb(II) 49.7 [76] 

Cd(II) 10.4 

Walnut shell ZnCl2 1626.9 Congo Red 281.4 [77]

an important removal efficiency of 91.58%. On the same line, Fe3O4 nanoparticles-
modified-porous graphitic carbon nanosheets (Fe3O4/PGCN) were applied as high-
efficiency and low-cost electrode material for capacitive deionization removal tech-
nology. As illustrated in Fig. 4, a membrane-free hybrid capacitive deionization 
system was constructed using Fe3O4/PGCN and amino-functionalized commercial 
active carbon (A-AC) as cathode and anode, respectively. The prepared electro-
chemical cell was applied to remove lead (II) and cadmium (II) ions from drinking 
water samples. The removal capacities and removal efficiency were found to be 
greater than 95%. It is worthy to note that a remarkable desorption behavior assisted 
by the presence of magnetic nanoparticles was observed. The results revealed that
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Fig. 4 a Schematic presentation of the developed system. b The concentration variation of lead 
(II) and cadmium (II) ions with operation time. c The stability test of the developed system for the 
elimination process of lead (II) and cadmium (II)ions with initial concentrations of 0.5 mg L−1 and 
0.1 mg L−1, respectively. Reprinted with permission from Zhao et al. [79] Copyright 2021Royal 
Society of Chemistry 

the functionalization of PGCN with Fe3O4 nanoparticles induced the amelioration 
of wettability, surface negative, and electrosorption capacity compared with those 
obtained with unmodified PGCN [79]. 

Furthermore, the adsorption process is considered to be an effective separation 
approach for wastewater treatment and water decontamination applications. Thus, 
high-efficiency adsorption of PCMs has been explored to reduce and remove organic 
contaminants. In this regard, Yan and collaborators [80] have reported the employ of 
hierarchical PCM for the efficient adsorption of organic contaminants from contam-
inated water samples. In this work, straw waste and KHCO3 were used as a carbon 
source and an activator agent. This porous nanocomposite presented an abundant 
macro, meso, and microporous structure with a large specific surface area. The 
obtained specific structure facilitates the adsorption process of the target pollutant and 
ameliorates the adsorption performance. In the presence of 50 mg g−1of the amount 
of fluoroquinolone antibiotics, the developed system exhibited important adsorption 
efficiency and adsorption capacity within 30 min of 99.53% and 199.07 mg g−1, 
respectively. Interestingly, Kundu et al. [81] have used hierarchical PC nanospheres 
for the elimination process of toxic organic pollutants, methylene blue and phenol, 
from industrial effluents. The hydrothermal method was applied to prepare PCMs 
using various triblock copolymers as soft templating agents. A study of the effect of 
different triblock copolymers on the adsorption efficiency of the resulting PCMs was 
developed. The results exhibited that the PC nanosphere system reached peak adsorp-
tion values of 98.9 and 100% within 10 min for phenol and methylene blue, respec-
tively. More interestingly, the N,S-codoped PCM was used as an easy and efficacy 
method for adsorption and oxidation elimination of pharmaceutical contaminants by 
Tian et al. [82]. To synthesize the N,S-codoped PCM, a direct pyrolysis approach 
was utilized using glucose and thiourea as carbon and N, S elements precursors,
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respectively. The PCMs showed excellent adsorption abilities and efficient catalytic 
activities for the oxidative degradation of the pharmaceutical pollutant, sulfachlor-
pyridazine. The comparison study revealed that the obtained adsorption capacity is 
extremely important than that obtained with other carbon materials such as graphene 
oxide, reduced graphene oxide, and commercial single-walled carbon nanotubes. 
Thus, the authors have suggested that the N,S-codoped PCMs can be considered as a 
promising candidate for water remediation. Moreover, many reports have described 
the advanced oxidation process based on reactive radicals as one of the most effi-
cient and powerful technologies for the total degradation of organic pollutants in 
wastewater [83]. Recently, Guo et al. [84] have applied S-doped PC as a catalyst for 
the persulfate activation process to degrade organic contaminants. Indeed, the acti-
vation of persulfates such as peroxymonosulfate (PMS) and peroxydisulfate (PDS) 
generates free radical species capable of degrading contaminants. S-doped porous 
carbon was synthesized using thiophene as a carbon/sulfur precursor and KOH as an 
activating agent. The results exhibited an interesting catalytic activity for the acti-
vation of persulfate to degrade 4-chlorophenol, chosen as an organic contaminant. 
Thus, doping PCMs with sulfur increases the catalytic activity of the porous carbon. 
Zhang and collaborators [85] have developed a porous carbon aerogel/persulfate 
system for efficient degradation of the phenolic contaminants. The resulting system 
revealed good performances on the removal process of target pollutants in a wide 
range of pH from 3 to 11. In the presence of persulfate, the manufactured PCM 
allowed the removal of p-nitrophenol, p-chlorophenol, phenol, and p-diphenol in 
120 min with adsorption efficiencies of 72.7, 95.4, 99.8, and 99.9%, respectively. 
Therefore, PC aerogel has proven its efficiency as a green catalyst for the treatment 
of phenolic pollutants from wastewater. As regards the adsorption process, the nega-
tively charged surface of carbon in the basic pH promoted the uptake of methylene 
blue, which is a cationic dye, via hydrogen bonding and/or electrostatic attraction. 
However, the phenol adsorption on PCM can be explained by different types of inter-
action including π − π interactions, hydrogen bonding, and electron donor–acceptor 
mechanism. 

3 Applications of Porous Carbon in Food Safety 

Food safety is defined as the set of methods involved in the preparation, handling, 
and storage of aliment to prevent the contamination and foodborne illness. There 
are many sources of contamination, posing a real threat to human health, present 
throughout the food chain such as the excessive use of veterinary drugs and pesticides, 
the use of illegal additives in the production process, and the formation of various 
toxins due to the long-time of storage [86, 87]. Therefore, it is crucial to monitor the 
food contaminants to keep their level within the acceptable limits for human health 
[88]. The scientific community devoted an important interest to the development 
of platforms based on PCMs for the quantification of trace pollutants in aliment 
matrices to protect consumers. Besides, great efforts have been dedicated to the
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adsorbent material development for the food safety screening. In particular, PC was 
widely used as adsorbents due to its exceptional proprieties such as ultra-small pore 
size and important surface-to-volume ratios. PCMs allowed the effective elimination 
of contaminants from aliment matrices [89]. 

3.1 Sensors Based on Porous Carbon for Food Safety 

PCMs is considered an essential tool for designing ultrasensitive electrochemical 
(bio)sensors due to its exceptional characteristics. As a result, an important number 
of PCM-based sensors for the quantification of various aliment contaminants such as 
mycotoxin, veterinary drug, and pesticide residues have been described in the litera-
ture (Table 4). Recently, Fei and collaborators [90] have developed an ultrasensitive 
electrochemical sensor-based ordered mesoporous carbon for the quantification of 
ractopamine in pork samples. In the presented work, ordered mesoporous carbon 
was prepared by pyrolysis process using sucrose and SBA-15 as a carbon source 
and template, respectively. Further, the sensor was constructed by drop-coating of 
prepared PCM onto a GCE. The PC-modified electrode revealed a remarkably elec-
trocatalytic activity toward the oxidation of ractopamine with excellent analytical 
performances. The platform exhibited a broad linear concentration range of 0.085– 
8.0 μM, with a detection limit of the order of 0.06 μM. Thus, the reported method was 
applied for the ractopamine quantification in pork samples with interesting recov-
eries of around 104.5%. Moreover, the same sensor design was used by Yang et al. 
[91] for the quantification of Sudan I, a potential carcinogen aliment additive, in 
ketchup samples. The developed platform is a rapid and efficient method in which 
a large linear range of analyte concentration from 4.03 × 10−7 to 6.60 × 10−5 M 
was recorded. The limit of detection was estimated to be 44 nM. Additionally, it has 
been interpreted that the good analytical performances of the sensor were attributed 
to the great catalytic activity of the prepared carbon material toward the oxidation of 
Sudan I.

Furthermore, PCMs have aroused great interest in the development of 
(bio)electrochemical platforms for the quantification of mycotoxins and veterinary 
drugs due to their unique properties namely electrochemical signal amplification 
and high-capacity loading of analytes. It should be noted that these characteristics 
have made it possible to improve the selectivity and the analytical performance of 
sensors. For instance, Yin et al. [92] have employed the ordered mesoporous carbon 
(OMC) and multifunctional graphene-iron oxide-gold nanoparticles nanocomposite 
(Gr-Fe3O4-AuNPs) for the development of a highly sensitive aptasensor for the 
detection of the antibiotic streptomycin. In this work, OMC and Gr-Fe3O4-AuNPs 
were used as signal amplifiers and biosensing substrates, respectively. The prepared 
PCM is characterized by an important specific surface area, large pore volume, well-
ordered structure of pores, and high thermal stability. In addition, the electrochemical 
results revealed a linear correlation between the relative intensity and the strepto-
mycin concentration in a broad range from 0.05 to 200 ng/mL (Fig. 5). The limit of
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a b  

Fig. 5 a Schematic presentation of the preparation process of the streptomycin aptasensor. b Cali-
bration curve of sensing response in the presence of various streptomycin concentrations (inset: 
DPVs recorded with different concentrations of streptomycin). Reprinted with permission from 
Yin et al. [92] Copyright 2021 Elsevier 

detection was found to be 0.028 ng/mL. Thus, the platform was employed for the 
quantification of streptomycin in milk samples. The electrochemical results were in 
good agreement with the conventional methods. 

Moreover, the molecularly imprinted technique was used for food safety applica-
tions owing its high selectivity toward the target analyte. As an example, Hu et al. 
[93] have developed a molecularly imprinted electrochemical platform for the patulin 
quantification in juice samples with a low limit of detection of 7.5 × 10−3 μg L−1. 
The molecularly imprinted polymer produced different imprinting cavities presented 
on the surface of the developed platform. These sites allowed the effective recog-
nition of patulin, the improvement of the adsorption capacity, and the selectivity of 
the sensor. It is to highlight that the PtPd nanoparticles decorated N-PCM was also 
employed for the development of patulin platform as an amplifier signal. 

Nowadays, significant attention has been paid to PCM derived from metal–organic 
frameworks (MOFs) which are considered a promising class of hybrid porous mate-
rials. Indeed, MOFs have been extensively used as precursors of PCMs prepared 
due to the offered characteristics such as important porosity, diverse structures, and 
adjustable chemical and physical properties [2, 94]. Therefore, MOFs-derived porous 
carbon was widely applied in the conception of electrochemical (bio)sensors for the 
quantification of food contaminants, especially residues of antibiotics used for the 
treatment of infectious animal diseases. Recently, Du’s group [95] has employed a 
platform based on iron oxide-mesoporous carbon (mPC) nanocomposite-modified 
gold electrode for the quantification of oxytetracycline. These nanocomposites were 
prepared by calcination of Fe(II)-based metal–organic framework (525-MOF). The 
electrochemical spectroscopy impedance was applied to monitor the sensing process. 
Further, the authors reported that the prepared mPC can easily bond with the oxytetra-
cycline aptamer owing to its excellent bioaffinity and biocompatibility. The employ 
of Fe3O4@mC nanocomposites induces a high efficiency of oxytetracycline aptamer 
detection. Interestingly, the designed PCM-based aptasensor exhibited good analyt-
ical performances such as high selectivity, broad linear concentration range, low
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detection limit, high reproducibility, and regenerability. The applicability of the 
designed sensing platform was investigated in milk samples and showed a good 
recoveries rate. Moreover, an electrochemical platform based on exfoliated PC for 
the quantification of chloramphenicol trace in honey samples was recently developed 
by Wang and collaborators [96]. This nanomaterial was synthesized by a one-step 
solvent exfoliation using an isoreticular-8 organometallic framework (IRMOF-8) as 
a carbon precursor. The as-prepared PCM was characterized by an important specific 
surface area of 1854 m2 g−1. The development of the sensor was based on modifying 
the GCE surface with the prepared MOF-based PCM. The results demonstrated that 
the exfoliated PCM induced a remarkable amelioration of chloramphenicol electro-
chemical response compared with that obtained with its parental carbon precursor. 
This is due to the improved dispersibility and increasing surface area of the exfoliated 
PC. Besides, the electrochemical results, recorded with the square wave voltammetry 
technique, showed a good linear correlation between the relative current intensity 
and the chloramphenicol concentration. 

Pesticide residues are currently considered hazardous substances in aliment prod-
ucts. Thus, the development of ultrasensitive platforms for the quantification of 
these pollutants is necessary and urgent. Interestingly, the doped PCMs were widely 
employed for the quantification of different pesticide residues in food samples. For 
instance, Wei and Feng [97] have recently developed an amperometric biosensor 
based on nitrogen-doped PCM for the quantification of organophosphorus pesti-
cides, fenitrothion and dichlorvos, in vegetable samples. In this work, N-doped PCM 
was synthesized using silica spheres and 1-butyl-3-methylimidazolium dicyanamide 
ionic liquid as hard templates and precursors, respectively. The platform was 
constructed by the surface modification of boron-doped diamond electrodes with 
N-doped PCM and the immobilization of the enzyme acetylcholinesterase (AChE). 
Under the optimized conditions, the sensor showed good analytical performances 
and was applied for the trace quantification of dichlorvos and fenitrothion in lettuce. 

3.2 Porous Carbon-Based Systems for Food Safety 

Since the number and varieties of food contaminants are enormous, the development 
of sanitation systems based on effective adsorbents has become an urgent matter 
to reduce the levels of pollutants in food samples and therefore to protect human 
health. In the literature, various extraction systems, in particular adsorption and 
magnetic solid-phase extraction, have been developed to remove food contaminants 
from biological matrices. The efficiency of the extraction systems generally depends 
on the adsorption capacity and the extraction efficiency of the used adsorbents. It has 
been evaluated by determining the extracted quantity of pollutants. In this regard, 
PCMs have been widely explored as effective adsorbents in the process of solid-
phase extraction of food contaminants from biological matrices with good adsorp-
tion performance. Recently, Wang et al. [111] have used phthalocyanines-containing 
polymer-derived PCM as an adsorbent in the solid-phase extraction (SPE) process
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to remove phenylurea herbicides. In fact, the combination of PCM-SPE and high-
performance liquid chromatography technique was used for monitoring and removal 
of phenylurea herbicides from white turnip and cucumber samples. The obtained 
results exhibited that the detection limits were estimated to be in the range of 0.05– 
0.01 and 0.03–0.05 ng/g, with coefficients of determination of 0.9987 and 0.9998 
for white turnip and cucumber, respectively. 

Furthermore, magnetic solid-phase extraction (MSPE) is currently considered 
a promising preconcentration process used in the field of food safety. Its extrac-
tion performance depends on the properties of the adsorbents used. Character-
ized by an abundant porous structure, high adsorption, and separation capacities, 
PCMs properly played the role of adsorbent in the MSPE process [112, 113]. As 
an example, the magnetic PC nanofibers (Fe3O4@P-CNFs) were used by Meng’s 
group [114] as an efficient adsorbent in the MSPE procedure for the extraction 
of Sudan dyes in foodstuffs. As shown in Fig. 6, the magnetic nanocomposite was 
prepared via electrospinning technique using polymethyl methacrylate and polyacry-
lonitrile as precursors. Then, it was decorated by Fe3O4 nanoparticles. The developed 
Fe3O4@P-CNFs nanocomposite was employed as a magnetic adsorbent in the MSPE 
removal process of Sudan dye residuesin complex matrices. Then, the eliminate 
amount was determinate using ultra-high-performance liquid chromatography-mass 
spectroscopy (UPLC-MS)with satisfying recoveries of 86.6–99.7%. 

Besides, Zhang et al. [115] have developed three-dimensional magnetic PCM 
for the efficient elimination of ractopamine and clenbuterol in mutton samples. 
The magnetic composite exhibited significant adsorption capacities of 62.50 and 
123.45 mg g−1 for clenbuterol and ractopamine, respectively. The coupled UPLC-MS 
techniques were used for the quantification of target analytes in mutton samples with

Fig. 6 a Schematic presenation of synthesis process of Fe3O4@P-CNFs and b MSPE procedure. 
Reprinted with permission from Li et al. [114] Copyright 2020 Elsevier 
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satisfactory recoveries ranging from 95.64 to 114.65%. The obtained results exhibited 
that the described magnetic PCM is an efficient adsorbent for ractopamine and clen-
buterol extraction in complex matrixes. More interestingly, Wang et al. [116] have  
developed sensitive methods for the removal and determination of chlorophenols 
from peach juice and water samples. It should be highlighted those phenolic 
compounds are widely used in the production processes of dyes and pesticides. 
The magnetic PCMs were prepared using zeolite ZSM-5 and sucrose as a template 
and carbon sources, respectively. The as-prepared magnetic PCMs was employed 
as an adsorbent for removal process of chlorophenols from complex matrices. The 
extracted amount was quantified using the HPLC technique with recoveries in the 
range of 87.8–102%. Thus, the authors have demonstrated that the reported non-toxic 
adsorbents exhibited good adsorption capacities toward chlorophenols from peach 
juice and water samples. 

Regardless, membrane-protected micro-solid-phase extraction (μ-SPE) was also 
employed to remove and quantify food contaminants in complex matrices. This 
extraction procedure was based on inserting a small quantity of adequate sorbent 
inside a porous polypropylene bag using the heat-sealing technique [117]. In this 
context, Sajid et al. [118] have exploited the zinc oxide nanoparticles incorporated 
carbon foam as a sorbent in the μ-SPE process for the removal of organochlorine 
pesticides in milk samples. The authors chose the gas chromatography–mass spec-
trometry technique (GC–MS) to determine the concentration of extracted pesticides. 
The results revealed that the developed method exhibited good analytical perfor-
mances including low detection limits. Thus, zinc oxide nanoparticles incorporated 
carbon foam were considered as efficient and sensitive sorbent in μ-SPE-GC–MS 
system for removal of organochlorine pesticides in complex biological matrices. 

4 Conclusion 

In this chapter, the authors emphasized the advanced applications of porous carbona-
ceous materials in the environmental monitoring and food safety fields, including the 
detection and removal of pollutants and toxic compounds. Regarding the metrolog-
ical performances of platforms based on PCMs, the effect of the distribution and size 
of the pores, and the influence of functionalization or/and the doping on the improve-
ment of the electrochemical properties, the chemical stabilities, and the adsorption 
efficiencies were presented and discussed. It has been shown that the doping with 
nitrogen and sulfur improves dramatically the electrocatalytic activities of the devel-
oped sensors toward the presence of various environmental pollutants. Furthermore, 
the functionalization with magnetic nanoparticles (Fe3O4NPs) allows the use of 
PCMs for the extraction of food contaminants with high extraction efficiency even 
in complex matrices.
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Chapter 27 
Porous Carbon in Food Industry 

Shreyan Bardhan, Avijit Chakraborty, Sagnik Roy, Sudip Das, 
Dibyajit Lahiri, and Banani Ray Chowdhury 

1 Introduction 

Carbon materials have great qualities that may be utilized in a vast variety of industrial 
operations [1, 2]. Carbon is used to make the single most powerful fibers, finest solid 
lubricants (graphite), finest electron conducting substances like graphite, the struc-
turally efficient substance for high temperature stress–strain applications, including 
some of the efficient most highly permeable gas adsorbers like activated carbon, and 
a primarily non impermeable material like vitreous acetate. 

Every one of these morphologies are created by selecting raw ingredients and 
treatment conditions with care. Porous carbons are divided into two types. First 
are the porous carbons with enhanced active surface ligands for thermophysical 
applications which are being used in ceramics industry lately. Secondly, activated 
carbons having extra activated surface chemical groups for thermophysical appli-
cations. Active porous carbons are among the most significant kinds of industrial 
carbons, and they’ve been used for millennia. 

Charcoal has been utilized in water filtration since 2000 BC, at that time when 
medieval the people of Egypt employed it in the filtration of water because of its use in 
therapeutic causes. Significant advances in the usage of porous carbons commenced
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around World War I, so there was no turning back thereafter. Ever since, new and 
much more sophisticated methods for both production and utilization of this versatile 
substance have emerged [3]. The most recent inclusion to the family of porous carbons 
is activated porous carbon fibers having big exterior area of about 2000 m2/gm [4]. 

The above fibrous substances have expanded the range of applications for gas 
preservation and power. Activated carbon is a type of substance having a signifi-
cant inherent pore volume and surface area, thus a huge potential for adsorption of 
chemicals from liquids and gases. Porous carbons are highly adaptable industrial 
adsorbents that are utilized in a broad array of operations involving the elimination 
of unwanted species from gases or liquids by adsorption in an attempt to achieve 
restoration or the purification of chemical contents. 

They also act as catalysts or assistance for catalysts [5–7]. The key characteristics 
of activated carbon adsorbents, as well as its relatively inexpensive when contrasted 
to other inorganic adsorbents such as zeolites, account for their prominent commer-
cial presence. In porous carbons, wide range of shape and size of pores are typically 
generated, whereas pore size in zeolites is practically consistent. As a result, acti-
vated carbons are more adaptable as absorbing substances. Novel procedures for 
developing these substances, principles, substance characterization, and emerging 
applications are related with porous adsorbent carbons. The utilization of optimal 
sustainable energy resources has grown highly critical and crucial in recent times, 
as a result of rising energy necessities and the depletion of old fossil energy sources 
[8–11]. Academic researchers from all over the globe are working to investigate 
and create biomass energy as a viable alternative to fossil fuels. Due to its supe-
rior electrochemical features, namely, quick rate of charge/discharge, strong power 
density and great cycle stability, supercapacitors were a hot study area as electro-
chemical energy storage devices [12, 13]. Supercapacitors could be categorized into 
two classes according to their energy storage mechanisms: pseudo capacitors and 
electrical double-layer capacitors (EDLCs) [14]. Traditionally, the quasi-Faraday 
capacitance produced by redox reactions has monopolized the energy storage of 
pseudo capacitors [15, 16], whereas the capacitance generation of EDLCs is primarily 
dominated by the behavior of electrostatic charge diffusion and buildup at the elec-
trode/electrolyte surface [17–20]. Pseudo capacitors, on the other hand, have a large 
capacitance, while EDLCs have a higher energy density and better cycle efficiency. 
Both kinds of supercapacitors have advantages. Development of resource of a thor-
ough supercapacitor which permits the two varieties to coexist devoid of sacrificing 
their distinct advantages is thus a fantastic technique to obtain a higher-performance 
supercapacitor. 

1.1 What is Activated Carbon? 

Activated carbon is formed using organic substances that contain a lot of biological 
carbon. Most prevalent supplies are wood, peat, and coconut husk. In a reduced 
atmosphere, the substance is gently heated. This produces char, which is subsequently
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activated using physical and/or chemical methods to greatly expand its surface region 
and generate a submicroscopic web of pores. 

Specific compounds are drawn to the exterior molecules of activated carbon by 
the mechanism of adsorption, whereupon they bind to form a film. Substances can 
reach every possible site thanks to the large surface area and porous matrix. Activated 
carbons products are commonly used in the food and beverage sector to process cane 
sugar, cleanse edible oils, remove color from fruit juices, adjust flavor attributes in 
alcoholic beverages, and improve food ingredient flavors. Such activated carbons are 
also important in ensuring the safety of specific food items. 

1.2 Role of Porous Carbon in Food Industry 

Porous carbon can be used in making of various food items as follows: 

1.2.1 Beverages 

Beverage manufacturing companies use activated carbons pulverized and dusted 
activated carbon materials to fulfill the needs of consumers across the globe, spanning 
fruit juice to liquor. 

Activated carbon is employed by liquor manufacturers to eliminate off tastes and 
colors, and other fermentation by-products. Organic but unwanted chemicals can alter 
color, flavor, and odor in juices as well as other fruit-based beverages. Food chemists 
can have better influence over all these beverages thanks to activated carbon. 

1.2.2 Edible Oils 

Bleaching earth is commonly used to eliminate color compounds from raw nut and 
vegetable oils. Activated carbons chemicals are utilized to eliminate both color and 
polycyclic aromatic hydrocarbons (PAH), which are a controlled substance in the 
European Union. This results in higher purity oils which fulfill the greatest quality 
and safety criteria. 

1.2.3 Flavoring Agents 

Monosodium glutamate (MSG) and hydrolyzed vegetable proteins (HVPs) are 
both common flavor enhancers in the food business. The top quality dusted acti-
vated carbon from activated carbons lightens and refines the flavor of various food 
ingredients.
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1.2.4 Food Chemicals 

Organic glycerin and citric acid are two of the most frequent dietary ingredients. 
They are employed to create unique appearances and flavors, yet they can both 
include substances that taint the final version. Activated carbon products are utilized 
to eliminate these compounds’ color and odor-causing components. 

1.2.5 Sweeteners 

Sugar as well as other sweeteners comprise organic molecules which can affect the 
final item’s flavor, structure, and look. Activated carbons (PAC and GAC) purifies 
sweeteners with high grade powdered and granular activated carbon (PAC and GAC) 
having precise pore size distribution (PSD). 

1.2.6 Fruit Juice 

Activated carbon is often used in the production of concentrated fruit juice. It is 
efficient in the removal of patulin, which is an intensely regulated organic substance 
frequently detected in apples and other fruit juices. It can also be utilized to modify 
the color and odors of food. 

1.2.7 Lactic Acid, Gelatin, Mono Sodium Glutamate (MSG) 

Activated carbons are widely used to produce the preservatives lactic acid, MSG 
(monosodium glutamate), and thickener gelatin. 

1.2.8 Glycerin 

Activated carbon can be used for glycerin refinement, including aging control and 
stabilization of the ultimate product and eliminating undesired byproducts and colors. 

1.2.9 Wine and Vinegar 

Activated carbon stocks are used in the wine and vinegar industries to eliminate 
undesired odors, remove contaminants, and modify color (Fig. 1).
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Fig. 1 Different sources of porous carbon 

2 Mechanism of Porous Carbon Synthesis 

Carbon is employed in a range of activities, both in dense and porous solid state. 
Pyrolysis and activation of carbonaceous natural and manmade precursors produce 
activated porous carbons. Pyrolyzed woods have the same architecture as natural 
wood, but have much lower surface regions and adsorption capabilities. Based on the 
activation circumstances, such as physical or chemical, these have enhanced adsorp-
tion capacities of 05–08 cm3/gm and exterior areas of 700–1800 m2/gm. Former 
carbons have a heterogeneous pore size dispersion, whereas chemically activated 
carbons have micropores in abundance. 

As a result, these carbons can be employed to adsorb a large range of molecules, 
ranging from gas to liquid. Mono-layer or multi-layer molecule accumulation at pore 
boundaries causes molecular adsorption inside the pores, resulting in various forms of 
adsorption isotherms. Regulated pyrolysis and physical stimulation of unstructured 
carbon fibers, while on the other hand, can produce activated carbon fibers with a 
regulated microporous structure and surface region in the vicinity of 2500 m2/gm. 
Active carbon fibers with unrivalled pore architecture and surface properties are 
available as well as state-of-the-art porous materials for a variety of purposes ranging 
from pollution control to energy conservation [21]. 

Over the last few years, supercapacitors (SCs) have seen a considerable surge 
in study and marketing. Porous carbon is manufactured at an industrial level using 
standard carbonization-activation processes as the principal and foremost significant 
electrode active ingredient for commercial SCs [22].
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Massive attempts have been undertaken in past years to establish innovative 
synthesis techniques for porous carbon substances. Whey powder, a by-product of 
the dairy sector, was used to create 3D porous carbon architectures at CSIC. These 
components can be molded with millimeter accuracy or created utilizing additional 
production processes with micrometric accuracy. These components can be made in 
desired shape or size. Filters, catalyst assistance, carbon molecular strainers, frame-
works for tissue engineering, reactors, films, filtration or assistance of enzymes or 
biomolecules, 3D carbon electrodes are only a few of the usage. Companies of carbon 
materials or activated carbons are now being sought as industrial collaborators to 
cooperate under a patent license contract. 

2.1 Activated Carbon’s Pore Size 

The pore width of the activated carbon is the most important component to consider 
prior to actually utilizing it in the adsorption procedure. The adsorption surface 
area is proportional to the pore size distribution of activated carbon. The larger the 
surface area of activated carbon, the higher the porosity. It was observed that as the 
porosity of the activated carbon grew, it was able to absorb more hydrogen [23]. The 
activated carbon’s pore structure can be categorized into three categories according to 
the IUPAC classification: macropore (pore size greater than 50 nm), mesopore (pore 
size between 2 and 50 nm), and micropore (pore size less than 2 nm) [24]. Depending 
on the inherent structure of the starting material and the activation process, different 
types of activated carbon have distinct pore size distributions. The type of biomass 
used to make activated carbon does have a big influence on the pore diameter diversity 
and surface region of the finished product. Relative to biomass made of xylene and 
lignin, biomass dense in cellulose has the most activated carbon surface region [25]. 

Powder-activated carbon having a particulate width of lower than 0.2 mm have 
greater micropores although no macropores, whereas granular-activated carbon has 
a blend of various pore sizes in varying ratios. Adsorbate particles’ preferential 
adsorption on the internal porous architecture of activated carbon is administered by 
pore width. Adsorbate particles should be allowed to permeate via a certain pore width 
of activated carbon well before the adsorption mechanism can commence. It explored 
the impact of activated carbon pore size dispersion on organic substance adsorption 
and discovered that for the greatest effective adsorption, the desired adsorbate width 
should be 1.3–1.8 times lower than the pore width [26]. Water and metal ions, for 
instance, could flow via the micropore having molecular dimensions of 2–6 Å, while 
bacterial cells having molecular dimensions greater than 104 Å cannot pass via the 
mesopore and choke at the pore wall entryway. 

Moreover, based on the dimension of the adsorbed component, the aqueous phase 
adsorption prefers macropore, the gas phase adsorption prefers micropore, and the 
mesopore is appropriate for both gas and aqueous phase adsorption. Micropore’s 
adsorption is typically a pore-filling mechanism in which pore volume governs 
adsorption potential. Adsorption in the mesopore is mainly caused by physical
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engagement among the molecule and the pore interface; as a consequence, mono 
and multilayer adsorption, accompanied by pore-filling, proceeds primarily at the 
mesopore exterior. Owing of the macropore’s wide pore size, adsorption proceeds 
primarily at the pore wall contact, which is viewed as inconsequential owing the 
adsorption region is small in contrast to the mesopore, yet the macropore serves as a 
pathway for compounds to enter the micropore and mesopore. As a result, utilizing 
the incorrect pore width in activated carbon may consequence in poor adsorption 
performance. 

2.2 Surface Structure of Activated Carbon 

In active regions, compounds adsorb to the activated carbon pore region. The 
surface chemistry of activated carbon has a well-known effect on adsorption ability. 
Numerous studies attempted to reconfigure the initial surface morphology of acti-
vated carbon, that consisted solely carbon atoms and had nonpolar or hydrophobic 
characteristics, utilizing a wide range of chemical substances, along with zinc 
chloride (ZnCl2) [27], phosphoric acid (H3PO4), sodium hydroxide (NaOH) [28], 
potassium hydroxide (KOH), and ammonia (NH3) [29]. 

The two types of adsorptions which activated carbon frequently causes are 
physical and chemical adsorption. The largest prevalent form of adsorption for 
activated carbon is physical adsorption, wherein the adsorption energy is lower 
than 40 kJ/mol. It is caused by weak intermolecular interaction, like H-bonding, 
hydrophobic bonding, Van der Waals, or dipole bonding. This interaction proceeds 
fast at lower temperatures, and at higher temperatures, the homeostasis can swiftly 
revert. 

Whenever functional groups on the surface are available, chemical adsorption 
involving highly covalent bonds arises. Chemical adsorption is triggered by the 
passage of electrons or atoms through the adsorbate units to the functional groups 
on the surface of activated carbon. At elevated degrees, adsorption is often perma-
nent. A chemical activation method utilizing 10% H2SO4 boosted the adsorption 
potential of organic compounds like toluene and benzene on activated carbon by 
18 and 47%, accordingly [30]. In a research based on inorganic substance adsorp-
tion, it was discovered that chemical activation of activated carbon using organic 
acid solutions including such phosphoric acid and hydrochloric acid improved the 
activated carbon’s adsorption potential from 3.5 to 9.8 mg g−1 and 9.7 mg g−1, 
correspondingly [31]. 

The heteroatoms’ existence from the surface functional groups on the microcrys-
talline carbon layers’ periphery outcomes from chemical stimulation of activated 
carbon, that not just improves the permeability or contact region of the activated 
carbon, but as well rises the existence of heteroatoms from the surface functional 
groups on the periphery of the microcrystalline carbon layers, that might boost 
bonding to the adsorbate molecules. The hydrogen and oxygen-containing functional
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groups are the most important in influencing the acidic, basic, or neutral surface char-
acteristics. Increased carbon–oxygen groups, like carboxylic (–COOH), lactone, and 
phenolic groups (–OH), for instance, contribute to a rise in the polarity or hydrophilic 
properties of acid activated carbon (AAC). Since it includes carbon–oxygen teams 
such pyrone, carbonyl and benzopyranyl, or N-containing groups as well as pyrrolic, 
nitrogen oxide (NO), pyridinic, ammonia, and quaternary nitrogen groups, basic 
carbon is more hydrophobic than acid activated carbon [32]. 

The irreversible selectivity adsorption of activated carbon is centered on its 
functional groups on the surface that make strong interactions with the selective 
substances. It was discovered, for instance, that possessing oxygen-containing groups 
on activated carbon boosted hydrophilic properties and enhanced ion-exchange 
potential, meaning that activated carbon might serve a vital function in metal adsorp-
tion, such as Cd (II) ion adsorption [33]. Fundamental activated carbon, on either 
hand, would improve the adsorption of hydrophobic organic molecules. It was discov-
ered, for instance, when reacting KOH activated coconut shell-based carbon using 
NH3 increased benzene and toluene adsorption [29]. The influence of surface alter-
ation on carbon dioxide adsorption within activated carbon that may be assisted via 
nitrogen functional groups like amide, imide, as well as pyridinic groups [34]. 

3 Classical and Latest Technologies in Porous Carbon 
Synthesis 

3.1 Activation 

Carbons are classified into graphitic and non-graphitic based on their level of crys-
tallographic organization. Non-graphitic carbons do not have three-dimensional 
symmetry like graphitic carbons [35]. As previously noted, following carbonization, 
the open interstices in the carbon molecules are completely or at least partially occu-
pied by disorganized “amorphous” carbon, presumably due to material accumulation 
resulting in the carbonized substance having a relatively low adsorption potential. 
Some of the tar is likely to stay in the interspatial region of both crystallites and on 
their surfaces, at least for carbonization at reduced temperatures. 

After eliminating waste compounds by steam-based heating or using inert 
gas, excavation with an appropriate solvent, or chemical reaction by carbonized 
substances can be partially activated. The activation procedure has resulted in the 
width of the holes generated through the carbonization phase are increased, and fresh 
porosity is generated, leading in the production of a well-formed and freely attain-
able pore architecture with a significant interior surface region. Activation can be 
accomplished in two methods, as detailed in the preceding sections (Fig. 2).
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Fig. 2 Activation of porous carbon 

3.1.1 Chemical Activation 

Wood is used as the precursor material for chemical stimulation. Wood is coated with 
a strong solution of activating chemicals at the start. Cellulosic substance is degraded 
as a consequence. The chemically coated substance is therefore pyrolyzed in the 
lack of air at temperatures ranging from 400 to 600 °C. To eliminate the activating 
agent, the pyrolyzed substance is cooled and washed. Calcination causes charring 
and aromatization, as well as the formation of porous architecture, in coated and 
chemically dehydrated raw resources. Activating agents come in a variety of forms. 

H3PO4, ZnCl2,H2SO4,K2S, KSNS, KOH, RbOH, HCO3−, and Cl− of Mg+2, Ca+2 

and Fe+3 are several of them [3, 36]. All activating substances are dehydrating, influ-
encing pyrolytic breakdown and inhibiting tar accumulation. They effectively reduce 
the generation of acetic acid, methanol, and other hydrocarbons while increasing 
carbon output. 

3.1.2 Physical Activation 

It is a method wherein a carbonized substance forms a porous architecture with 
increased surface region and molecular dimensions after being heated to 800–1000 °C 
in the company of appropriate oxidizing gases like carbon dioxide, steam or air 
[37]. The subsequent endothermic processes result in gasification of the carbonized 
substance involving steam and CO2: 

C + H2O → CO + H2(29 kcal),
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C + CO2 → 2CO (39 kcal), 

CO + H2O → CO2 + H2(39 kcal), 

CO + H2O → CO2 + H2(39 kcal), 

CO + H2O → CO2 + H2(39 kcal), 

CO + H2O → CO2 + H2(39 kcal), CO (10 kcal). 

The H2O molecule is smaller than the CO2 molecule, therefore, it disperses into 
the carbon pores more quickly. As a result, the steam process is quicker than the 
CO2 process. When contrasted to steam stimulation, CO2 stimulation accelerates 
external oxidation and the formation of big pores. The quantity of exterior and interior 
oxidation relies on how thoroughly the pores in the carbonized substance have grown. 
The activation of chars without the formation of significant pore architecture simply 
leads to a depletion in the diameter of carbon granules. Activation is linked to carbon 
loss and, as a result, to a reduction in the mass of the host carbon. 

The rate of weight loss is proportional to the activation temperature and time. 
The formation of mesopores and macropores is dominated by activation at lower 
temperatures. 

At higher activation temperatures, the efficiency of formation of pores with no 
capability of adsorption, known as macropores, increases, while the average pore 
width drops. In the instance of oxygen stimulation, the occurring reactions: 

C + O2 → CO2 + 924.4 kcal, 

2C + O2 → 2CO + 5396 kcal. 

Because the pair of simultaneous reactions are exothermic, they produce a lot of 
heat and are difficult to manage. Furthermore, because there is constantly significant 
localized overheating, the final output is not uniform. Burning is unrestricted and 
happens on the surface of the grains as a result of the reaction’s ferocity, resulting in 
substantial mass loss. 

3.1.3 Mechanism of Activation 

The composition of the source resources as well as the chronology of their 
carbonization determine the architecture of the pores and pore size dispersion [38]. 

Carbon atoms change in their reactivity based on how they are arranged in space. 
Activation removes unstructured carbon, subjecting aromatic sheets to activation 
chemicals and resulting in the formation of a microporous architecture. Because 
activation is linked to losing weight of the host carbon, the amount of carbon material 
burned off is used to determine the level of activation [39]. Weight loss gradually



27 Porous Carbon in Food Industry 743

increases with activation time at a given temperature. Usually, whenever the burn-off 
is around 10%, the unorganized carbon is burned primarily in the first stage. Stuck 
pores are opened as a consequence of all this. 

As a result, the aromatic ring system’s carbon begins to burn, resulting in active 
areas and larger pores. Severe activation reaction leads to the activated agents 
breaking down the walls and losing weight of more than 70% in the subsequent 
stage. As a consequence, the number of in transitional pores and macropores 
increases. There really is hardly any substantial surge in adsorption potential or 
inside surface region as the volume of the micropores diminishes. The variation 
in porosity generated by diverse activating agents becomes increasingly evident at 
increased burn-off. 

In a classic instance, water vapor activation of a hard wood leads to the continuous 
formation and broadening of all size pores until the activated material has a well-
developed porous architecture with a broad pore size dispersion at a burn-off of 70%. 
The overall adsorption volume increases from 06 to 083 cm3/gm after activation with 
50–70% burn-off [40]. However, because it is mostly related with pore widening, 
the surface area remains nearly unchanged. Carbon dioxide activation mostly creates 
microporosity over the whole burn-off range. Micropores account for around 73% 
of total adsorption pore volume and more than 90% of total exterior area. In case of 
steam-activated carbon, micropores account for just 33% of overall pore volume and 
63% of surface area. 

As a result, carbon generated by carbon dioxide activation has overall pore volume 
(49 cm3/gm) than carbon generated by steam activation. Nevertheless, the effective 
surface region is nearly the same as in both circumstances. This is primarily owing 
to micropores’ impact to the surface region. 

Furthermore, carbon atoms along the margins and edges of aromatic sheets, as 
well as those near fault positions, displacements, and discontinuities, are coupled with 
delocalized electrons or have leftover vacancies; these have a lot of potential energy. 
As a result, these carbon atoms are more reactive, and during oxidative activation, 
they are more likely to form surface oxygen complexes [5]. Such chemical group on 
the material’s surface promote adsorption, which is beneficial in some applications. 

Conversely, these surface oxygen complexes degrade and strip away the carbon 
(di/mono) oxides from the surfaces, exposing fresh carbon atoms that aren’t satu-
rated for subsequent interaction with an activating agent. As a consequence, the 
activation process can be seen as an interaction between both the activating agent 
and the carbon atoms that make up the framework of the substantial carbonized 
product, culminating in a massive internal surface region with interlinked pores of 
the preferred measurements and chemical surface groups. 

3.1.4 Activated Carbons Synthesis from Synthetic Precursors 

Artificial precursors such as phenolic, poly-acrylonitrile, Poly furfuryl alcohol, and 
others are carbonized to produce crystal carbons with sealed porosity. As a result,
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activation of these chars necessitates extremely strict temperature, timing, and envi-
ronmental factors. Nevertheless, when carbonization is executed at 800–1000 °C 
when carbon dioxide is present, the final char has a large surface region and open 
pores [41]. Typical pyrolysis occurs up to 700 °C heat treatment in this situation. 
CO2 begins an activation reaction at 700 °C before the pores seal. Pyrolysis and 
activation of synthetic precursors can therefore be carried out in a CO2 condition. 

3.2 Recent Methods of Porous Carbon Synthesis 

Because of the vast range of applications, investigations on COFs and MOFs have 
grown tremendously in recent years. 

3.2.1 Porous Carbon Synthesis from Covalent Organic Frameworks 
(COFs) 

COF substances show promise as a starting point for creating extensively customized 
porous carbons [42]. The linkages and linkers are the two major constituents in the 
creation of COFs, and numerous organic compounds have been used as these struc-
tural components. At the molecular scale, this enables for customized heteroatom 
species, large surface regions, and programmable shapes. A deeper structural rela-
tionship among the porous carbon produced and COFs precursors is envisaged seeing 
that its covalent structures are greater proof against hard conditions. COFs are excel-
lent blueprints or precursors for fabricating porous carbons because of all of these 
features [43–48]. The simplest approach is to carbonize the porous organic origi-
nator without delay below regulated circumstances. The resultant carbon is usually 
a nano porous substance, attributable to its permeability now no longer best because 
of the precursor’s porous structure, however additionally because of carbon burn off 
at some point of the carbonization. By carefully selecting the predecessors, several 
morphologies can be created [49–51]. In 2009, argon was used to carbonize the 
molded carbon-austenite fibrous and tubular polyphenylene precursors to produce 
one-dimensional carbon fibers and fibers. Carbon nanofibers (CNFs) and carbon 
nanotubes (CNTs) with exterior surface area of uptill 900 m2/g are produced and 
evaluated with improved electrodes in the electrochemical double-layer capaci-
tors [52]. In 2014 N-doped graphitic porous carbon utilizing 2D covalent organic 
polymer precursors was created, allowing them to regulate the precise placement of 
the heteroatom [53]. The electrocatalytic activity of these substances was shown to 
be highly correlated with the N-doped carbon properties. In 2011, a thienyl-based 
polymer was used as a precursor to create a microporous sulfur doped carbon [54]. In 
2016 the Sonogashira coupling procedure was employed to make nitrogen and sulfur 
linked porous polymers that can be utilized as a porous products precursor containing 
doped carbon. Later, coal was effectively used to reduce oxygen and store energy 
[55]. At catalyst-free circumstances, an imine-linked polymer produced via Schiff
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base condensation yielded a microporous polymer shape with an exterior surface area 
of 744 m2/g [56]. Carbons which are doped with nitrogen with narrow particle dimen-
sions and morphology and higher nitrogen functional group density (5.58–8.74%) 
can be synthesized through direct pyrolysis of polymers. The carbon generated by 
pyrolysis at 800 °C was employed for CO2 absorption, and the computed adsorp-
tion potential of 7.41 mol of CO2/m2 at 25 °C and 1 bar changed into one of the 
most important but recorded for porous carbon adsorbents [57]. The substances’ 
durability and ease of renewal and reuse were also shown, with no significant 
degradation of CO2 adsorption capability. Directly carbonized imine-bound COF, 
triformylphloroglucinol and p-phenylenediamine COF (TpPaCOF) allows graphite-
like N-doped carbon as the sulfur host material when preparing the cathode substrate 
of lithium-sulfur batteries to look for new components. You can now use it for the 
high efficiency lithium-sulfur batteries [58]. Spherical, hollow nitrogen-rich acti-
vated porous carbon shells were prepared by directly carbonized structured porous 
organic frameworks at intense temperatures [59]. This substance was created of 
amorphous carbon with micropores in the shell frame and a specific surface area 
of 525 m2/g. Microporous N-doped carbon was effectively constructed using direct 
carbonization of an azine-bound 2D molecular network [60]. The carbonized COF 
had a large specific exterior surface area (1596 m2/g), a homogeneous micropore 
(<1 nm), and a graphite-like structure of carbon, doped with nitrogen. Moreover, 
the creation of nitrogen gas through the thermal breakdown of the azine bond adds 
to the generation of nano porous structures, according to the research. The electro-
chemical capacitance of these substances was increased. Free-standing carbonaceous 
membranes of polymer structures were created [61]. The author used superacid-
catalyzed copolymerization of acetyl monomers to perform thermal decomposition 
of the pyrrole ring containing the polymer membrane in one process. Carbonization of 
a triazole-functionalized-triazine framework yielded a nitrogen-doped carbonaceous 
free-standing porous membrane in different methods [62]. The N2/CO2 selectivity 
and CO2 permeability of the carbonaceous membranes that resulted were remarkable. 
These approaches have demonstrated the ability to create customized carbons with 
specified topologies as well as the simple and effective insertion of heteroatoms into 
porous carbon structures. Taking advantage of the straightforward preparation proce-
dure, vast accessibility of precursors, adaptable structure regulation, and simpler 
modification of the number of heteroatoms, it appears that several novel and enhanced 
materials are still to be produced through meticulous shortlisting of precursor frame-
works and carbonization environments. However, for the ambiguous constructional 
relationship among the sacrificial COF and the final material, some scientists agree 
that the rational design of COF precursors remains a big issue [63–67] (Fig. 3).

3.2.2 Porous Carbons Synthesis from Metal Organic Frameworks 
(MOFs) 

Because of its versatility and unique properties, MOFs are highly dependent on 
controlled thermal decomposition [68] and metal-based porous materials such as
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Fig. 3 Porous carbon synthesized from TpPa

metal carbides, oxides, sulfides, phosphides, and nitrides [69]. A suitable precursor 
for the formation of porous carbon. Carefully tuned temperature settings allow the 
production of metal–carbon hybrids and metal-free porous carbons, synthesized from 
MOFs. Generally, metal/carbon mixtures or metal-free porous carbon substances are 
formed when carbonization occurs under inert gas flow, but aerobic thermal treat-
ments frequently result in nanostructured metal oxides. Both very porous substances 
are proven to be attractive substances with many uses, especially in catalysis, in this 
regard. It is noteworthy that organized porous carbon with high density and large 
surface area of catalytically active sites, wide range of heteroatoms, and adjustable 
porosity can be simply generated from MOFs by not using templates. This improves 
catalytic capacity [70, 71]. In particular, MOF-derived porous carbon can have a 
shape and hierarchical porosity derived from the MOF pattern, allowing for the 
logical engineering of porous structures with increased catalytic performance while 
focusing on energy conservation and the creation of important chemicals. This study 
outlines several key elements of the preparation and utilization of porous carbons
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Fig. 4 Porous carbon derived from MOFs [73] 

made from MOFs, both as a carbon precursor and as a sacrificial arrangement for 
other carbon sources that are a rapidly expanding sector [72] (Fig. 4). 

MOFs as Precursors for Metal-Free Porous Carbon Synthesis 

Recently, the ultra-porous carbon compounds production from MOFs and the future 
applications of them have been discussed [74]. The MOF-5 and ZIF-8 series, as well 
as related series, are the widely studied metal–organic networks for producing porous 
carbon substances. Here, we have selected and described some exemplary cases to 
summarize the high relevance of these highly attractive porous carbons. In this regard, 
a wide range of metal-free porous carbons with unique topographical features that 
can be used as supercapacitors have been created via direct pyrolysis of MOFs. By 
thermal degradation of MOF-5, it was [75] documented the production of metal-
free mesoporous carbon substances with large surface regions (up to 1800 m2/g). 
The process, which involves the emission of CO2 and benzene while creating ZnO 
coated by amorphous carbons, takes place at around 400 °C. The ZnO was removed 
in this instance after an acid treatment with HCl. It was [76] reported the direct ther-
molysis of MOF-5 at 900 °C to produce three forms of porous carbons, providing 
fascinating mechanism findings. It’s worth noting that Zn cations were minimized and 
evaporated, preventing the need for extra washing. Researchers also used phenolic 
resins and carbon tetrachloride and ethylenediamine as different carbon sources to 
impregnate MOF5 in and around the pore structure, which affected the pore struc-
ture. All samples were treated with KOH to adjust the microstructure activation, 
following carbonization, changing the mechanical characteristics and pore archi-
tecture. It is generally recognized that in electric double-layer capacitors, carbons 
with established microporosity for mesoporous carbon have the largest capacity, 
and while microporous properties have a significant effect on surface expansion, 
faster mass transfer. Environmentally friendly and non-toxic carbon sources such 
as glucose [77] or glycerol [78, 79], have also been used in the carbonization of 
MOF-5 to produce hierarchically micro- and mesoporous carbons beneficial in the
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production of electrodes. Utilizing the incipient wetness approach [68], manufacture 
of nano porous carbon with large pore volume and high SBET using MOF5 have 
been documented. However, furfuryl alcohol is also included as an additional carbon 
supply. Samples were pyrolyzed at various temperatures (range 530–1000 °C) and 
SBET was found to be temperature dependent (range 1141–3040 m2/g). Existence 
of Zn species on carbon is highly influenced by the temperature of carbonization. 
At 1000 °C, a completely metal-free sample was acquired, while at lower tempera-
tures (800 °C), Zn was detected. These compounds outperformed carbons made from 
SBA-15 mesoporous silica regarding electrochemical performance as an electrode 
component of electric double layer capacitors. The usage of glycerol in combina-
tion with various concentrations of Bi(NO3)3H2O has a significant influence on the 
surface area and pore diameter spread of the products. CO2 capture [80] and hydrogen 
retention [81] have also been discovered to be remarkable prospects for hierarchically 
porous carbons generated by direct carbonization of various MOF. Porous carbons 
were produced with large surface regions (up to 2734 m2/g) and increased overall 
pore volumes (up to 5.53 cm3/g) from three distinct MOFs (MOF-5, MOF-74, and 
MIL-53) [80]. Modifications in MOF precursor production settings have a signif-
icant impact on the morphology and porosity of these materials. In particular, the 
appearance of millimeter-sized crystals in MOFs produced in high yields can explain 
the increase in surface area and pore volume of these samples. ZnO and carbon with 
scarcely established porosity are formed through the carbonization phase at temper-
atures ranging from 600 to 800 °C. ZnO is diminished at higher temperatures (up 
to 900 °C), and Zn species evaporate and CO is released, resulting in hierarchical 
highly porous carbons. Using layered metal hydroxides as a template and using self-
sacrificing metal sources, we have developed an ingenious synthetic approach for 
producing MOFs with flaky morphology. The organic ligand (2-methylimidazole) 
obtains a metal cation from a previously produced metal hydroxide and distributes 
Zn2+ and Co2+ in the same molar ratio. As a result, ZnCoZIF1, which is a bimetal 
MOF, is generated, and Zn and Co coexist and are uniformly distributed [81]. 
Substances with capacitive deionization include porous carbon having controllable 
morphological features derived from MOFs [82]. Some of the preliminary stages 
show excellent performance [83]. The formation of various porous carbons from 
Zn-containing MOFs at 1000 °C-ZIF8, [Zn (MeIM) 2], [Zn4O (bdc) 3] and Zn3 
(fumarate) post-pyrolysis morphology is well preserved. Some of the preliminary 
stages show excellent performance. In certain instances, Co species can function 
as catalytic species, causing graphene-like carbons to emerge. Despite the fact that 
most metal species were eliminated utilizing acidic HCl solution, several Zn and 
Co nanoparticles remained embedded in the graphitic layers [72, 84]. Note that the 
surface area and graphitization of carbon can be formed according to the molar ratio 
of the metal used to make the MOF precursor [85–87] (Fig. 5).
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Fig. 5 Bimetallic metal–organic frameworks [88] [Under CC. By. NC. ND. 4.0] 

4 Application of Porous Carbon in Food Industry 

The existence of gaseous substances in the packing architecture like oxygen, carbon 
dioxide, or relative humidity, influences the integrity and hygiene of the foodstuff in 
the package. These factors influence the deteriorating effects of enzyme processes, 
chemical interactions, physical modifications, microbiological proliferation, respi-
ration, the ripening stage, sensory attributes, and storage stability of food products, 
primarily fresh food that are actively respiring. The incorporation of activated carbon 
into packaged foods is a multipurpose way for maintaining or controlling gaseous 
environments in the packaging. Because activated carbon has the ability to operate as 
simultaneously a releaser and an absorber, it might be utilized to discharge the volatile 
chemical even while adsorbing the gaseous particles. As shown in the previous inves-
tigations, activated carbon can be specifically changed for specific adsorption goals, 
allowing it to precisely remove the dominating gas molecules that have a significant 
impact on the quality and safety of various meals in packaging systems. On the other 
hand, it can also emit antimicrobial substances like ethanol and sulfur dioxide to limit 
the proliferation of germs that could cause food poisoning or spoiling. The utiliza-
tion of activated carbon has indeed been categorized into two ways, depending on the 
adsorption and release of the component, in an attempt to characterize the probable 
capability of activated carbon in food packaging [89] (Fig. 6).
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Fig. 6 Types of food packaging 

5 Mechanism of Action of Porous Carbon Against 
Microbial Cells 

5.1 The Release of Antimicrobial Compounds from Activated 
Carbon 

There are two forms of antibacterial agent adsorption-release on activated carbon. 
The primary is the adsorption of aqueous antimicrobial agents, such as ethanol and 
natural compounds that could be liberated from activated carbon by volatilization 
[90]. Before antimicrobial action occurs, the emitted antimicrobial vapor may spread 
through the packaging environment and settle on the surface of the food. The other is 
the adsorption of metal nanoparticles on the activated carbon surface, including such 
silver nanoparticles, that requires contact surface to transport nanoparticles from the 
surface of the activated carbon to the surface of the food (Table 1).
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Table 1 Antimicrobial activity of metal nanoparticle-activated carbon 

Activated carbon 
(AC) sources 

Activation agent Metal nanoparticle Microbes involved References 

Corncobs H3PO4 AC/Ag E. coli [90] 

Chestnut shells ZnCl2 Ag-AC – [91] 

Activated carbon – Ag-NP E. coli [92] 

Coconut shell Physical activation Ag/AC E. coli [93] 

Palm seed H2SO4 Pb-AC E. coli [94] 

5.2 Release of Volatile Antimicrobial Compound by Activated 
Carbon 

Among the numerous antibacterial substances utilized all over the globe are ethanol as 
well as essential oils, both of that are recognized as volatile organic compounds with 
antimicrobial characteristics and are utilized in a diverse array of foods, including 
ethanol pads, that are commonly shown in bakery packaging, as well as essential oil 
coatings on a wide range of fruits. Essential oil vapor has recently been acknowl-
edged in the medical community for its potent antimicrobial properties. Nonetheless, 
because of its limitations in administration approach and a longevity that requires to 
be improved, it is unsuitable for engagement inside the food sector. Due to studies 
performed by the lab, the Innovation of Essential Oil for Food Safety and Pack-
aging at Walailak University, activated carbon can be absorbed as well as generate 
essential oil vapor. Additionally, the vaporized essential oil has antifungal effective-
ness against a number of post-harvest pathogenic molds, particularly Penicillium, 
Aspergillus flavus, Aspergillus niger, and Rhizopus spp. [89]. 

Ethanol is other volatile antibacterial chemical. It was discovered that activated 
carbon can adsorb ethanol as well as that 98% of the adsorbed ethanol might be 
readily liberated in the vapor at room temperature [95]. Physical adsorption, van der 
Waals force, hydrophobic-bound force, or H bonds that are readily broken at room 
temperature has been observed for the adsorption of polar ethanol units on activated 
carbon. 

The notion of the adsorption energy (E) of ethanol onto activated carbon is less than 
40 kJ/mol (range: 5–5.5 kJ/mol) demonstrates such. They also observed that while 
enhancing the amount of oxygen surface functional groups enhanced the adsorption 
capability of ethanol on activated carbon, the engagement among the oxygen groups 
as well as the ethanol on activated carbon lowered the ethanol’s removing capabilities 
(at about 91%) [95]. It was verified that the adsorption and emission capabilities of 
ethanol on activated carbon via developing an adsorption model of ethanol over 
activated carbon [96, 97]. Considering this, hardly any research has been conducted 
on the antibacterial properties of the discharged ethanol.
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5.3 Mechanism of Emission of Antimicrobial Agents Inside 
Food Packaging 

Several mechanisms for chitosan’s antimicrobial activity have already been 
published. Among the most widely recognized mechanisms is also that chitosan’s 
positive charge interferes with anionic charged microbial cell membranes. The 
interactions among the protonated ammonium group of chitosan and the micro-
bial cell surface, causing an osmotic imbalance, while CNT synergistically affects 
the membrane in situ to regulate the microbe’s overall development. According to 
another concept, it causes the hydrolysis of intracellular peptidoglycans in microbes 
[98]. The presence of the outer layer of E. coli prevents CNT binding to introduce 
antibacterial activity, in all likelihood because of the robust net negative charge at 
the surface of E. coli. Direct adhesion of bacterial surface proteins with CNTs is 
the mechanism of active antimicrobial activity against S. aureus. The nanotubes 
are released from the hydrogel as well as target the microbes during 24 h, causing 
microorganism cytomembrane lysis and consequent membrane potential loss [99, 
100]. S. aureus, a Gram-positive bacterium, was hindered by chitosan with a higher 
molecular weight. The major reason for this could be that chitosan’s higher molec-
ular weight inhibits nutrient absorption. Higher molecular weight chitosan, on either 
hand, had no effect on Gram-negative bacteria [101]. 

CNTs are thought to form aggregates as a result of van der Waals interactions, 
which can include a vast variety of pathogen cells due to the size of the aggregates. 
As a result, shortened CNTs self-agglomerate in a fluid system without involving a 
large number of microbial cells, whereas longer encapsulated CNTs affect a greater 
number of cells trapped within the aggregates [98]. 

5.4 Food Quality Check 

The activated carbon treatment is a simple and versatile approach for enriching 
ACE-inhibiting peptides from a wide array of protein hydrolysates for use as ingre-
dients in hypotensive foods with minimal side effects [102]. Polar furfural substances 
can be obtained from aqueous solution via p–p stacking, p–cation interaction, and 
hydrogen bond creation owing to the combination of the carbon skeleton and the 
PPDA polymer. Furthermore, the magnetic properties of MPC@PPDA enable the 
isolation procedure (which takes less than 18 min). Eventually, the described method 
has been successfully implemented to the fast separation and quantification of polar 
furfural substances in dry milk samples and baby food [103]. Some examples based 
on literature review are provided in Table 2.



27 Porous Carbon in Food Industry 753

Table 2 Application of Porous carbon in food quality check 

Application of porous carbon Food type References 

Natural ACE inhibitors are selectively 
enriched 

Functional meals that are hypotensive 
and have fewer adverse effects 

[102] 

Extraction or quantification of target 
compounds 

Baby food and dry milk powder samples [103] 

Detecting trace PAHs Different tea beverages [104] 

Detection of Sudan dye residues Food stock [105] 

5.5 Release of Nanoparticles by Nanoporous Carbon 
in Activated Form 

The use of nanoporous carbon in liberated metal nanoparticles restricts bacterial 
development and contamination. Metal nanoparticles have been shown to have 
antibacterial properties [91]. Numerous studies have attempted to investigate the 
activated carbon’s antimicrobial activity covered with several forms of nanoparticles 
[92, 93]. 

Carbon nanomaterials have various functionalities in a wide range of fields. Never-
theless, their synthesis and functionalization typically necessitate complex processes 
or difficult experimental constraints. QCNSs with high antibacterial activity were 
produced by hydrothermal treatment of chitosan and hexadecyl betaine (abbreviated 
as BS-16). The hydrothermal process involves the direct reaction and carboniza-
tion of chitosan containing amines and BS-16 containing carboxyls. The QCNSs 
have a well-defined spherical shape and a homogeneous size distribution in their 
as-prepared state, with an average diameter of 110 nm. The QCNSs were able to 
kill Gram-positive bacteria at a minimum inhibitory concentration (MIC) of 2.0– 
5.0 g mL−1. Meanwhile, the QCNSs demonstrated high hemocompatibility with red 
blood cells and excellent cytocompatibility with normal human liver and lung cells 
[106]. 

5.6 Food Odor Adsorption Property of Activated Carbon 

Foul/unpleasant odor of food is among the most important characteristics and may be 
employed in determining the food quality. An off-odor is unappealing to customers. 
This foul odor is influenced by a combination of volatile hydrophobic organic 
molecules which are a result of food decomposition and contamination by bacteria 
or biochemical processes such as lipid oxidation. The potential of activated carbon to 
remove odors has always been recognized. Now, it’s used to get rid of odors in refrig-
erators at residences. It’s also appropriate for its use in packaging of food. Powdered 
activated carbon in the packing of exposed cooked beef can reduce foul/unpleasant 
odors caused by the irradiation operation [107]. Furthermore, according to sensory
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analysis, majority consumers favor irradiation ground beef stored with activated 
carbon to regular beef. Several significant volatile constituents of odors in pack-
aging employing activated carbon are reduced both in non-irradiated and irradiated 
samples. 

5.7 Adsorption of Ethylene by Activated Carbon 

It is observed that ethylene adsorption by ethylene scavengers based on activated 
carbon in tomato and broccoli have delayed the depletion of chlorophyll concen-
tration which causes loss of redness in tomatoes and yellowing of broccoli. It also 
improves firmness in tomato and extends the shelf-life of tomatoes and broccoli 
[108–111]. 

5.8 Adsorption of Oxygen by Activated Carbon 

A multitude of methods are used to regulate the level of oxygen in preservation to 
maintain or enhance fruit and crop quality. Use of oxygen absorbers is a strategy for 
eliminating oxygen, or leftover oxygen, from preservation environments, thereby 
limiting grade change [112]. A wide range of compounds can be utilized for oxygen 
adsorption. In commercial oxygen absorbers, chemical oxidation mechanisms as 
iron powder bases or ascorbic acid bases, or enzyme activities including glucose 
oxidase/catalase bases, are utilized to absorb and decrease oxygen to lower than 
0.01%. Chemical absorbers, on either hand, could be hazardous. They are not edible 
and can be used alongside liquids. Activated carbon, on either hand, holds a lot of 
potential as a low-cost, versatile, robust, non-toxic, environmentally friendly, safe, 
and effective adsorbent for oxygen removal in agro crop packaging. For eliminating 
oxygen from food packaging, activated carbon has a great promise. In contrast, 
activated carbon has a hydrophobic nature which attracts and physically adsorbs 
non-polar molecules such like oxygen [32, 33, 113]. Regardless of the unsatu-
rated carbon atoms toward the layer edges like graphite, activated carbon could 
rapidly set up a strong covalent bond binding oxygen, leading in weaker interactions 
involving carbon–oxygen functional groups including the carbonyl and hydroxyl 
groups [114–117]. 

5.9 Activated Carbon: Vapor Phase Molecule Scavenging 

Processed foods in food packaging are classified into two types depending on inherent 
respiration behavior: respiration food (vegetables and fresh fruits) and non-respiring 
food (cereals, meat, and processed foods). The gaseous circumstances which precede
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the packing of food procedure affect the food’s structure and hygiene in a variety 
of ways. Whenever it concerns respiring items, oxygen is a critical element in the 
operation that produces byproducts such as carbon dioxide, ethylene, as well as 
water vapor. Reduced oxygen levels in food packing inhibit respiration, prolonging 
vegetable & fruit development and resulting deterioration. Furthermore, eliminating 
or suppressing ethylene in preservation circumstances is crucial for maintaining 
freshness and extending the post- harvest life of a variety of fresh goods. It was 
also found that ethylene levels as minimal as 20 L/L (ppm) are sufficient to elicit 
unwanted maturation processes in climacteric fruits [118]. As a consequence, elim-
inating ethylene from fruits and vegetables may help them last longer. Many fruits 
and vegetables, including tomatoes and broccoli, have indeed been processed using 
activated carbon to reduce ethylene levels & preserve quality during preservation 
[108, 119, 120]. 

The safety and quality of non-respiring, besides that, is mostly determined by 
the amount of oxygen and water vapor present (moisture content). The oxidation 
reaction is accelerated by high oxygen levels, leading in off-odor, color alteration, 
and nutrition depletion. Furthermore, it creates favorable circumstances for aerobic 
deterioration microbes, which are responsible for food spoiling and sickness. Addi-
tionally, high moisture levels produce free molecules of water, which can be used 
in enzymatic operations, chemical processes, and microbiological activity, culmi-
nating in product disintegration, spoilage, and a reduction in grade. It also alters the 
structure of food, causing it to turn soft or shriveling. As a result, the amounts of 
ethylene, oxygen, and relative humidity or water vapor in food packaging must be 
lowered or managed in need to sustain the product’s safety and quality. Furthermore, 
in certain items, the odor of the meal is a significant feature that is utilized to identify 
the product’s grade and sensory attributes [27, 121]. 

6 Conclusion 

The remarkable ability of adsorption of porous carbon is dependent on the surface 
chemistry and the size of pores of porous carbon. By modifying porous carbon’s 
surface chemistry and pore size, we can make porous carbon capable of adsorbing 
several particular substances. Porous carbon can be utilized in the food industry for 
controlling food safety, food packaging, and food quality maintenance. Because of 
its antimicrobial evacuation capacity, porous carbon is useful in limiting the develop-
ment of germs on foodstuff in packaged foods. The capacity of adsorption of porous 
carbon can reduce the agents which affect the quality of food, such as ethylene, 
oxygen and water vapor which results in senescence and deterioration of food. It 
induces the extension of the shelf-life of food products containing porous carbon in 
the food industry.
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Chapter 28 
Chitosan-Based Porous Carbon 
Materials for Agriculture 
and Agro-waste Applications 

Srinivasan Latha, T. Gomathi, S. Pavithra, P. N. Sudha, Abhishek Nalluri, 
and Preetam Bhardwaj 

1 Introduction 

Modern agriculture must adapt to extreme weather patterns as well as rising food 
requirements [1–3]. Sustainable cropping is crucial in view of limited natural 
resources, particularly in agricultural productions, which are more subject to climate 
extremes and require more agricultural inputs [4, 5]. Farmers need to manage the 
agricultural lands and their produce and imbibe better technologies that will be 
environmentally sustainable. Better soil quality, farmers supported technically for 
money, and expertise to raise crops under optimal conditions become crucial for food 
security [6]. Biostimulants, for example, are manageable, effective innovative tools 
or supplement to artificial components (i.e., agrochemicals) for improving nutrient 
usage efficiency and yield stability of agricultural and horticulture crops in ideal and 
sub-optimal conditions [7, 8]. 

The ideal impacts of biostimulants incorporate the incitement of root develop-
ment, expanded supplement take-up, and the formation of phytohormones, just as
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osmotic rectification through the combination of natural osmolytes. Biostimulants 
can likewise be used to decrease the use of mineral inorganic manures, which is 
viewed as an ecologically harmless method with negligible effect on organic product 
quality and absolute creation [9, 10]. 

A few specialized forward leaps have been introduced over the most recent thirty 
years to work on the manageability of rural creation frameworks by essentially 
decreasing engineered agrochemicals like pesticides and composts. 

Regular plant biostimulants are promising and harmless to the ecosystem advance-
ment that lifts blossoming, plant development, natural product improvement, crop 
creation, and supplement usage productivity, just as further develop resilience to a 
wide scope of abiotic stressors. Plant biostimulants are named humic acids, fulvic 
corrosive, protein hydrolysates, ocean growth removes, N-containing compounds, 
botanicals, kelp extricates, chitosan, and other related biopolymers, supportive 
microscopic organisms and parasites, and inorganic compounds [11, 12]. 

Chitosan is one of the powerful biomaterials which can animate plant develop-
ment and yield, just as further developing plant resistance. Chitosan is broadly viewed 
as a promising and financially savvy crop assurance arrangement, harmless to the 
ecosystem, biocompatible, and biodegradable polymer with a wide scope of appli-
cations [13, 14]. Moreover, chitosan animates cells as well as upgrades infection and 
bug obstruction in the field and during storage [15]. 

Chitosan has been shown to trigger plant safeguard systems by improving the 
optional digestion, protection quality (PR 155) enactments, and collections of 
isoflavonoid phytoalexin and pisatin [16]. Chitin and chitosan-treated plants produce 
chitinase, which separates the chitin and chitosan chains into a more dissolvable 
structure. Indeed, even without compound compost, chitosan used in farming can 
support microbial populaces and convert natural supplements into inorganic supple-
ments that are effortlessly consumed by plant roots [17]. Plants treated with chitosan 
may likewise be less helpless to natural burdens like the dry season, saltiness, and 
temperature [18–20]. 

The chitosan polymer has been displayed to increment photosynthetic rates, 
bringing about expanded dietary admission and digestion, which further develops 
development and advancement. It additionally shows an expansion in the level of 
seeds that grow and sprout [21–24]. By decreasing breath and transpirational misfor-
tunes, the chitosan polymer shapes a semi-permeable covering that expands the 
postharvest life of products of the soil. When used as a covering for agricultural 
things, the chitosan polymer has various benefits. It has exceptional qualities like 
non-toxicity, biodegradability, and antibacterial and cancer prevention agent capac-
ities. It is harmless to the ecosystem and a safe strategy for controlling pathogenic 
organisms and creepy crawly bothers. Accordingly, chitosan has a wide scope of 
uses in farming, including crop creation and insurance, stockpiling, dietary quality, 
etc.
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2 Chitosan—Sources and Properties 

2.1 Sources of Chitin/Chitosan 

Chitin (C8H13O5N)n, approach from the Greek expression “chiton,” represents a 
mail coat. It was at first distinguished in 1811 by scientist Henry Braconnot. The 
fundamental wellspring of chitin/chitosan is shellfish shell, for example, crab and 
shrimp [25, 26], where N-acetyl-d-glucosamine units are overwhelming in the poly-
meric chain [27]. It is the second most normal kind of polymerized carbon in nature 
[28, 29]. Chitin is a whitish, inflexible, inelastic, nitrogenous polymer found in the 
exoskeleton and in the inside life systems of spineless creatures. 

Chitin exists to a great extent in three polymeric shapes: α, β, and γ. The chains are 
put in α-chitin stacks or sheets and in an equal arrangement the adjoining c-hub sheets 
take a similar heading. The alpha chitin happens in scavenger exoskeletons. In the 
instance of β-chitin, adjoining sheets along the c-hub are masterminded against one 
another and can be found in squid pen, certain diatoms, and vestimentary creatures. β-
chitin is available in restricting orientations [30]. Every third sheet, notwithstanding, 
is the other way to the past γ-chitin sheets. The parasite and yeast are essentially 
found [31]. 

Chitosan is a hetero-polysaccharide derived from chitin. Generally, the molecular 
weight of chitosan is in between 300 and 1000 k darely upon its chitin source. 
Chitosan is economically possible from the crab shells produced as waste from the 
food sector, particularly where carotenoids are recovered. Chitin can be converted 
into chitosan in two methods: (1) Chemical method and (2) Biological method. 

2.2 Physicochemical Properties 

Chitin’s usefulness is limited by its acetyl groups; however, it may be converted 
into chitosan via the deacetylation procedure. During deacetylation, the acetyl group 
in chitin is transformed into hydroxyl (–OH) and amino (–NH) groups in chitosan. 
By altering the reactive functional groups of chitosan, it can be used in a larger 
range of industries [32]. Chitosan’s versatility is owing to its active amino groups, 
which operate as a reactive site for a range of novel group attachments under mild 
reaction circumstances, as well as the cationic character of chitosan materials, which 
is furthermore related to the amino groups in addition to so referred to as amino 
polysaccharide.
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2.2.1 Color and Appearance 

The nitrogenous polysaccharide chitin is monotonous to partially white and inflex-
ible, while chitosan fine particles are moderately flaccid in nature and its color 
fluctuates from pastel yellow to white [33]. 

2.2.2 Molecular Weight 

Chitosan’s functions rely upon biological, physical, and elemental characteristics, 
and chitosan relies upon two factors, such as degree of deacetylation (DD) and 
Molecular weight [34, 35]. Chitosan is a fragile base with a pKa value of 6.5DD, 
and Mw of chitosan are significantly exaggerated by reaction surroundings like 
high temperature, reagents concentration, and reiteration of alkaline steps, time, 
and atmospheric surroundings of the deacetylation [36, 37]. The 500 kDa is average 
Mw of chitosan through 100% of DDA. The DDA enhances quickly to about 68% 
through the initial hour of alkali healing (50% NaOH) at 100 °C and in addi-
tion gradually augmented with time [38]. On the basis of Mw, chitosan is cate-
gorized into three diverse categories, specifically low-molecular-weight chitosan 
(LMWC; <50 kDa), medium-molecular-weight chitosan (MMWC; 50–250 kDa), 
and high-molecular-weight chitosan (HMWC) (>250 kDa) [39]. 

Mw is calculated using a variety of methods, including light dispersion, gel pene-
tration chromatography (GPC), and capillary viscometry. The most basic and exten-
sively used technique for determining the Molecular weight of chitosan is capillary 
viscometry. 

2.2.3 Solubility 

Chitin is a monochrome, crystalline, or nebulous fine particles that are indecipherable 
in aqueous and organic solvents as well as in weakened acids, and alkalis. It liquefies 
in strong mineral acids with instantaneous deprivation of the polymer [40]. Though 
chitosan is unsolvable in water, it does liquefy in aqueous organic acids, such as 
acetic and formic acids, in addition to inorganic acids. 

In an acidic arrangement, the polymer’s amino gatherings are protonated, yielding 
a dissolvable polysaccharide with a positive charge. Due to the various cationic 
locales made by acids protonating amino gatherings along the chitosan chain, its 
dissolvability is expanded by raising both the extremity and the level of electrostatic 
aversion [41]. Chitosan’s solubilization is a huge quality for its numerous appli-
cations. The amino gatherings are answerable for various basic compound modifi-
cations in chitosan, which makes it a decent contender for an assortment of uses 
[42–44].
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2.2.4 Viscosity 

The level of polymer deacetylation, sub-atomic weight, fixation, ionic strength, pH, 
and temperature all affect the thickness of chitosan in arrangement. The consistency 
of a polymer arrangement diminishes as the temperature ascends overall. A pH 
adjustment in the polymer arrangement, nonetheless, may create various outcomes 
relying upon the kind of acids utilized. When utilizing in acidic or corrosive medium, 
generally chitosan viscosity will rise as pH diminishes, but when utilizing in HCl, 
viscosity will reduce as the pH diminishes. 

Chitosan’s intrinsic viscosity is a function of both ion strength and degree 
of ionization [45]. The intrinsic viscosity of the polymer solution would be 
reduced if chitosan ionization or ion strength was increased. According to their 
findings, chitosan acts like a non-draining worm-like molecule in dilute solu-
tion, with its molecular shape determined by electrostatic interactions between 
polyion-counterions. 

2.2.5 Degree of Deacetylation 

The scale of deacetylation (DA) is described as the mole division of deacetylated 
component in the polymorph sequence, which has a considerable impact on the 
compound behavior of chitin and chitosan. The amount of deacetylation refers to 
the elimination of the acetyl group from the sequence and this is designed as poten-
tiometric titration using the formula DD percent = 100 – DA percent, where DA 
stands for degree of acetylation [46]. The DDs in chitin typically vary from 5 to 
15%. The low solubility of chitin in common solvents leads to higher degree of DA 
[33]. In nature, chitin is crystalline, and the degree of crystalline is a function of the 
DD [47]. Chitosan’s elemental, physical, and biological characteristics, for example, 
adsorbent, covalent linking, and encapsulation, are all affected by DD [48]. 

Furthermore, due to the statistical distribution of the residues, our re-acetylated 
structures presented us with a wide range of DAs soluble in water, ranging from 
0 to over 70%. Chitosan is an amphiphilic cationic polyelectrolyte in water-based 
solution. The properties of the material are then resolved through the balance of 
hydrophilic and hydrophobic interactions. 

2.3 Biocompatibility and Biodegradability 

The degree or power of unsafe consequences for living being communications is 
alluded to as biocompatibility [23]. Chitosan has prevalent biocompatibility with 
vertebrates, including human beings. In acidic to nonpartisan arrangements beneath 
its pKa (6.3), the amino gathering in its design goes through protonation, causing 
chitosan to become dissolvable and fill in as a bioadhesive, contingent upon the pH 
of the arrangement, its atomic weight, and level of acetylation.
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Chitosan is environmentally friendly, and it is biodegradable depending on the 
degree of deacetylation. 

According to the United States Environmental Protection Agency [49], chitosan 
utilization will most probably have no negative impact on the surroundings. 
According to Yogesh Kumar and his research colleagues, the elevated deacetylated 
chitosan polymers deteriorate at a slow speed [22]. Furthermore, it has been found 
that it can be deteriorated via microorganisms, fungi, flora, and humans, in addition 
to a variety of redox reactions and antioxidant reactions. 

2.4 Antimicrobial Activity 

Chitosan has a wide range of antimicrobial activity and a higher kill rate and is 
less hazardous to human tissues [50]. Chitosan has been shown to have significant 
antibacterial action in numerous tests. However, the precise mechanism of inhibition 
is still unknown. The most reasonable explanation is that associations between the 
positively charged polysaccharide (chitosan at pH under 6.5) and the negatively 
charged layer cause a change in cell penetrability. The positively charged polymer 
on the tissue surface responds with anionic parts, for example, neuraminic acid, 
N-acetylmuramic acid, and sialic acid, resulting in bacterial growth suppression 
[51]. 

2.5 Antioxidant Activity 

Chitins and chitosans have a powerful biological antioxidant effect with applications 
in a broad variety of field. They are, however, insoluble in water, which is a limiting 
issue in their use in biological systems. As a result, hydrolysis of soluble chitin 
or chitosan derivatives is critical. To address this limitation, live cells were tested 
using N-acetyl chitooligosaccharides of various MWs generated from crab chitin 
hydrolysis [52]. The oxidation of DNA and proteins was inhibited by two types of 
NA-COSs with MWs of 1–3 and 1 kDa. 

Furthermore, their occurrence boosted intracellular glutathione levels and radical 
scavenging ability in mouse macrophages (RAW 264.7), which had an inhibitory 
influence on cellular oxidative stress. COS has also been shown to protect human 
embryonic hepatocytes (L02 cells) against hydrogen peroxide-induced oxidative 
damage [53]. Low-MW chitosans were found to limit neutrophil activation and serum 
albumin oxidation, both of which are frequent in hemodialysis patients, resulting in 
a reduction in oxidative stress associated with uremia [54].
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3 Chitosan-Based Carbon Composites—Synthesis 
and Characteristics 

3.1 Modification of Chitosan 

In chitosan, we found five functional groups such as C3–OH, C6–OH, C2–NH2, and 
acetylamino and glycoside linkages [55]. The glycosidic bonding and acetylamino 
linking are equally strong, which is difficult in breaking. The vigorous chemical 
characteristics of C2–NH2 and C6–OH allow additional groups to be introduced 
into chitosan molecules through various types of molecular design. Chitosan can be 
chemically modified to increase its physical and chemical characteristics, as well as 
to broaden its uses and study domains [56–58]. A schematic diagram of modification 
of chitosan is shown in Fig. 1. 

Over the precedent two decades, the significance of chitosan has augmented, as it 
emerges to be an outstanding resolution for numerous confront facade by the busi-
ness manufacturing across the world. A number of technique have been illustrated 
to command in fabrication of chitosan compound, and the major process of manu-
facturing comprises suspension inter-linking, electro-spinning, freeze drying, LBL,

Fig. 1 Reactive functional groups of chitosan involving in chemical reaction [59] 
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molecular self-assembly, coacervation/precipitation, reverse micelles, template poly-
merization emulsion-droplet coalescence, and ionotropic gelation [60]. The prepara-
tion of any of the techniques relies on elements, for example, molecule size prereq-
uisite, thermal and chemical constancy of the vigorous agent, replica ability of the 
kinetic delivery, security of the concluding item, and lingering harmfulness correlated 
with the concluding item. 

Emulsion Interconnection 

Emulsion interconnection technique is frequently being used to yield both chitosan 
nano- along with micro-sized particles [61]. The emulsion cross-linking strategy 
uses the responsive practical gatherings of chitosan to interconnect with a cross-
linking agent. The researcher [60] found a technique which employs the progress of 
a water-in-oil mixture by emulsifying chitosan liquid in an oily phase. An appro-
priate surfactant is used to stabilize the aqueous droplets. To stabilize the polysaccha-
ride droplets, the emulsion is subsequently treated with a suitable interconnection 
mediator, for example, glutaraldehyde. Lastly, the particles are being washed out 
and dehydrated. Reference [62] Explained about the hardening agent utilized and 
the rate at which the mixture is stirred throughout the formation of the emulsion 
determines the elemental dimensions of the final product [63]. Researchers prepared 
the palygorskite-chitosan resins along with tannic acid (TA) as template molecules 
(CPRT) that were being prepared by emulsifying interconnection technique. Here, 
they used one type of organic one-dimensional clay, functioned as perfect part in this 
study to develop the property of adsorption and resistance of chitosan resin (CR). 

Electrospinning 

Researchers have prepared chitosan-Zein compound in which fibrous films have 
been fabricated from ethanol solution by electro-spinning [64]. Composites based 
on chitosan, Chitin nano-scaled fibrils, and Poly(ethylene oxide) were prepared by 
electro-spinning[65]. Here, compound of chitosan fibers comprises 20 wt% chitin 
nano-scaled fibrils and 10 wt% of PEO are acquired through the electro-spinning 
technique. Incorporation of 0.5–25.0 wt% chitin fibrils into chitosan emulsion with 
proportions of 3–7.5 wt% in ethanoic acid with 75 vol.% leads to irrelevantly raise 
the electronic conduction, surface tension coefficient, and consistency of these mixed 
suspensions. 

Solomon Mengistu introduces fabrication of refined and firm chitosan fibers through 
electro-spinning process [66]. Here, the electro spun was executed to acquire chitosan 
fibers from mixture of chitosan and poly(ethylene oxide). Blend of chitosan and PEO 
consists of 102 kg/mol of chitosan, and PEO ratio is 1000 kg/mol that was vigi-
lantly selected to upgrade the electro-spinning procedure factors. The poly(ethylene 
oxide)fine particles were mixed into chitosan emulsion at various weight proportion 
in 0.5 M ethanoic acid. 

Freeze drying method 

The blending of electronic spraying and following freeze aeration can attain chitosan 
fibrous 3D complex configuration from small proportion of chitosan solutions, well 
fiber making by different proportions. A regulated electronic praying procedure
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was used to create chitosan nanoparticle suspensions, which were subsequently 
lyophilized to form fibrous matrix. The creation of a columnar ice stage followed by 
aeration resulted in chitosan fiber configuration with a radius of some microns. X-
ray diffraction outcomes and fiber surface morphology designate a distinctive system 
of biaxial density of fiber formation [67]. This study used a freezing-lyophilization 
drying process to successfully manufacture novel porous chitosan microspheres, 
which were then used as adsorbents to remove a hazardous metallic iron, hexa-valent 
chromium (Cr(VI)) reported [68]. 

Molecular Self-Assembly 

Extensive research conducted in the agriculture, food packaging industry, and medic-
inal industries has focused on molecular self-assembly to generate nano-scaled struc-
ture substances, as it is considered an effective method for creating such materials 
[69]. As this technique is low cost, flexible, and simplistic, it unseals a route for 
various functions. Diffusion is followed by specialized connection of atoms by non-
covalent interfaces, such as electrostatic as well as aquaphobic corporations, in the 
self-build procedure, which is described as the independent arrangement of elements 
into composition that has distinct collections. After association with a liquid environ-
ment, aquaphiliac polymers instinctively form self-assembled nano-scaled particles, 
via intra- or intermolecular relations among the aqua phobic entities, principally to 
diminish the coupling free energy system. The innovative self-build chitosan and two-
dimensional material composite hydrogels were efficiently fabricated by the addition 
of reduced graphene oxide, carbon nanotubes, and double-layered hydrotalcitum 
converted into chitosan hydrogel with Glutaric acid dialdehyde as a cross-linking 
mediator [70]. The assemblage and structural dimensions of the achieved hydro-
gels composite were characterized by Brunauer–Emmett–Teller method, scanning 
electron microscope, and X-ray diffraction (XRD). 

Layer by Layer Technique (LBL) 

A novel recyclable composite was attained from layer-by-layer (LBL) method by 
exceptionally deacetylated chitosan and cellulose nano-scaled whiskers obtained 
from eucalyptus timber. The layer development was pursued by UV–Visible spec-
troscopy during the utmost intensity of the absorption band at 195 nm and demon-
strates the impeachment of 14.5 mgm−2 of chitosan biopolymer in every sequence. 
SEM graphs disclosed immense bulkiness and consistent transmission of cellu-
lose nano-scaled whiskers that were adsorbed on every chitosan layer. Intersec-
tional description of the composed layers expresses an average diameter of ∼7 nm  
as per reported research work [71]. Two different materials have been arranged 
by two different methodologies, and mixing and LBL electrostatic coatings were 
utilized to merge two biodegradable polymers that are gelatin and chitosan, in palat-
able layers or covering [72]. The enforcement of the combined and layer-by-layer 
complex layers along with mono-integrant gelatin and chitosan films was equated 
in aspects of physical, ocular, and spectroscopic characteristics. The established 
outcomes recommended that the LBL phrasing illustrated superior performance in
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preservation of fruit quality and also slightly condensed fruit mass loss, whereas the 
unified formulation did not affect these factors. 

4 Applications in Agricultural 

4.1 Crop Production and Protection 

4.1.1 Crop Production 

The growing requirement of food to nourish the earth growing community has led 
to the progress of agronomic procedures that can boost plant yield dramatically. In 
recent days, customers demand for more organic, harmless food, with great quality 
and a persistent shelf life, and without any chemical preservatives and cost-effect 
fertilizers [73]. Be that as it may, this has prompted an always expanding utilization 
of synthetic manures and pesticides and high soil utilization. To make an end to this 
pernicious pattern, numerous analysts explored farming uses of chitosan-dependent 
materials, and in a few circumstances, these materials came about ready to expand 
plant yield, as elucidated in Table 1. Additionally, a positive effect of chitosan has 
been observed as it can encapsulate it by itself and in grouping with other materials in 
the manufacture of slow-release fertilizers, owing to its cationic nature, biodegrad-
ability, non-toxicity, adsorption properties, and development of roots, shoots, and 
leaves of various plants including gerbera [74, 75].

For example, correlation of corn plants conferred with free S-nitroso-
mercaptosuccinic (MSA) was found corrosive under saline conditions as compared 
with the plants conferred with chitosan nano-scaled particles enclosed with S-nitroso-
MSA at 50–100 μM fixation. It reveals that the dealing with S-nitroso-MSA-chitosan 
nano-scaled particles at the two different proportions was prevailing in alleviating 
the evident impressions of salt pressure in the plants contrasted with free S-nitroso-
MSA. This experiment demonstrated that results are more feasible at 100 μM fixa-
tion. Controller plants were dealt with just with refined water or salt with no handling 
[82]. Ram Chandra Choudhary and his co-workers reported that by Zinc-encapsulated 
chitosan nanoparticle to promote corn crop yield. Here, researcher synthesized Zn-
chitosan nanoparticles (NPs). Zn-chitosan NPs (0.01–0.16%) displayed solid in vitro 
antifungal and sapling development promoted exercises. Further, Zn-chitosan NPs 
displayed critical infectious prevention through reinforcing of plant intrinsic invul-
nerability by lifting prevention agent antioxidant and guard compounds, adjusting 
of responsive oxygen species (ROS), and improving lignin amassing [83]. Nano 
chitosan-NPK fertilizer has been discovered by Heba M. M. Abdel-Aziz and his 
co-workers to develop the growth or production of wheat plants. Assessment of the 
outcomes uncovered that the life expectancy of the control and typical NPK-treated 
wheat plants developed on sandy soil arriving at gathering stage after 170 days from 
the date of planting. Then again, wheat plants developed on sandy soil and prepared
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Table 1 Chitosan effects on plant development and production 

Plant varieties Chitosan preparation and 
observation 

Chitosan outcome References 

Rice 0.05% (plants drenching and 
spraying) 

Expansion in plant 
development, higher 
photosynthesis rate 

[76] 

Maize 0.045–0.15% (seeds drenching 
and plant spray) 

Encouragement of plant 
development furthermore, 
granule mass 

[77] 

Chilli Nano-scaled chitosan, 115 kDa, 
85–95%, pH 4.5 

Boost in whole root and leaves 
weight up to 75 and 27%, 
correspondingly upon use of 
1.1 mg/L of nano-scaled 
chitosan 

[78] 

Wheat Chitosan-Zn nanoparticles, 
60 kDa, 85% 

Stomatal positioning of 
nano-scaled particles was 
witnessed. Improvement in 
grain zinc concentration up to 
43% 

[79] 

Flowers, corms Chitosan with different 
molecular weights 

Plant development flowering 
and corms productivity of 
potted freesia 

[80] 

Tomato and egg Olingo-chitosan High yield of vegetables [81]

with chitosan-NPK nano-fertilizers arrived at the reaping stage following 130 days 
from the date of planting [84]. 

Combination of Zinc and Copper ions along with nano chitosan has extra benefits 
of giving nourishment for plants and helping in their growth development of plant 
for additional assurance from abiotic and biotic stress. Cu/Zn-chitosan nanoparticles 
have been effectively tried against many plant pathogenic microbes and parasites by 
R. C. Choudhary and his co-researchers [85]. The enhancement of onion crop growth 
by chitosan and nano chitosan treatment on plants for productivity and quality has 
been developed by Geries and his co-workers. Observed results showed that the 
greatest upsides of development qualities (plant tallness, No. of leaves/plant, dry 
load of plant, explicit leaf region, leaf region list, and harvest development rate), 
attractive, and all out yields were gotten by soaking seedling with Nano chitosan at 
the pace of 75 ppm, while the base qualities were recorded under drenching with 
water (control), in both seasons. Showering with Nano chitosan at the pace of 50 ppm 
came about the most elevated upsides of all development characters, attractive and 
complete yields, and bulb quality boundaries (bulb width, TSS%, and DM %) as 
contrasted and the other showering medicines or then again, the control. From the 
investigation, based on the onion efficiency and the financial examination of the 
outcomes, it is clear the promising part of Nano chitosan as a guide to expand the 
productivity of conventional manures and increment the net return per took care of 
[86].
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A pot experiment was carried out to see how different chitosan treatment methods 
affected tomato growth, yield, and quality by M. A. Parvin and her co-workers. 
The test was spread out in totally randomized plan (CRD) with four replication 
processes and twelve treatment blends. The investigation results reported that there 
were huge varieties among the treatments on number of leaves, number of blossom 
groups, natural product length, and production of tomato. The best return of tomato 
was acquired from the treatment T6 (combination of Soil application of chitosan 
(SAC) @80 ppm and Foliar spraying of chitosan (FSC) @60 ppm), while the most 
minimal was gotten from regulated treatment. Nutrient C and lycopene substance of 
tomato natural products differed from 2.19 to 4.09 and 2.38 to 3.58 mg 100 g−1 test, 
individually [87]. 

4.1.2 Crop Protection 

Plant pathogens are widely regarded as economically important agricultural microbes 
all over the world. During the growth season, they cause deterioration in a wide 
range of agricultural crops and postharvest. Chitosan and chitin are natural existing 
compounds that have the prospective to administer plant infections in farming appli-
cations. These compounds have been discovered as non-toxic and helpful in stopping 
fungi expansion and growth [88]. They were accounted as vigorous compounds 
against infections, microscopic organisms, and other plant infections. They are 
employed as biocides against plant infection and manage the plant bacteria and 
fungi, pests and insects, plant development support, and seed coating, either alone 
or in combination with other products, and postharvest [89]. Chitosan has resilient 
outcome on farming, for example, performing as the carbon resource for microorgan-
isms in the soil. It hastens the conversion procedure of organic material into inorganic 
material. Moreover, it contributes to the root structure of flora to take up additional 
nutritional elements from the soil. 

4.1.3 Antipathogen Activities of Chitosan 

In pear natural plant, treatments with chitosan diminished the illness frequency 
and repressed the sore extension triggered by fugal microorganisms [90]. Chitosan 
prevented Botrytis cinerea development in aqueous medium and decreased gray 
mold infection and bunch spoil in Chardonnay and Sauvignon blanc wine grapes 
originated by the fungi on isolated grapevine foliage [91]. Cowpea (Vigna unguicu-
lata L.) plants were protected through chitosan against Fusarium oxysporum disease 
[92]. In plants, chitosan produces several protective reactions correlated to organic 
and inorganic stresses. Amid of changing atmospheric circumstances and growing 
food requirement cause an untenable practice of artificial chemicals. The utilization 
of chitosan acts as an evoker that has an advanced potential for addressing stress 
adaptation concerns caused by abiotic and biotic pressures.
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Chitosan as well as Chitin can defend plants in opposition to inorganic stress with 
diverse technology with reverence to divergent stresses. For example, their foliar 
functions bring dehydration tolerance by direct anti-transparent covering, initiation 
of stomatal closing, and accumulation of stress defensive enzymes and metabolites 
[93]. Foliar utilization of chitosan improves enlargement and adjusts appearance 
of protective genes in chilli pepper (Capsicum annuum L.), thus diminishing the 
rigorous losses in chilli productivity that induced by Phytophthora capsici disease 
[94]. 

Asgar Ali and his co-workers have developed lemongrass oil-chitosan composite 
and examined as possible preservative for polysaccharide-supported coverings. In 
this research work, the efficiency of merging of chitosan with lemongrass oil as an 
edible covering for bell pepper was observed. Lemongrass oil at two proportions of 
0.5 and 1.0% was integrated with same ratio of chitosan solution. It was estimated 
that by controlling anthracnose of bell pepper in vitro and in vivo fungal growth was 
efficiently regulated through 0.5 and 1.0% chitosan solution. The utilization of 1.0% 
chitosan solution was established as an efficient proportion, and that was utilized in 
succeeding in vivo examination as a supported coating for preserving the protection 
and eminence of fresh bell peppers reserved at room temperature for 20 days [95]. 

Mixture of chitosan with other compounds such as alginate, starch, and gum is a 
suitable process to enhance its properties for premeditated discharge of pesticides. 
The utilization of chitosan compounds can be useful in protection of plants from 60 
types of contaminations. He Liu and co-authors reported antifungal characteristics 
and performance of three types of chitosan in opposition to the growth of rice sheath 
blight infectious pathogen, called Rhizoctonia solani. The obtained outcomes demon-
strate all chitosan types had resistance nature and have antifungal action against R. 
solani and defend rice seeds from fungal infection. By using a specific approach, 
two kinds of acidic soluble chitosan perform a 65–90% restrain in mycelial devel-
opment, 30–85% discretion in infection occurrence, and 65–90% reduction in lesion 
span [96]. In a former study, chitosan inhibits the development of a broad variety of 
bacteria. The insignificant progressions reduce the proportions of different species 
that vary from 10 to 103 ppm. Chitosan-based quaternary ammonia salt, for example, 
N-propyl-N,N-dimethylchitosan and N,N,N-trimethylchitosan, was demonstrated to 
be an existent compound that successfully obstructed the development and progress 
of Escherichia coli [97]. 

4.2 Chitosan Seed Treatment and Micronutrients 

Numerous outcomes have been given evidence for chitosan utilization in plant life. 
Predominantly, it can be utilizing for plant protection methods for decreasing the 
effect of biotic and ecological stress situations and it acts as a plant development 
supporter. It is also useful to escalate the stomatal conduction and decrease exhaling 
of water vapors or it can be useful as a covering material in seedlings. Now, chitosan is 
being utilized as a seedlings coat substance for fruits, nuts, cereals, and vegetables.
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It varies penetrability of the seedling’s plasma membrane, raising the proportions 
of proline and sugars; in addition to this, it improves catalase (CAT), phenylala-
nine ammonia-lyase (PAL), peroxidase (POD), and tyrosine ammonia lyase (TAL) 
actions. Chitosan was also able to regulate the seed-borne contamination of F. gramin-
earum and also promote the crop productivity by 25%. Subsequently, wheat, peas, 
and lentil seedlings kept dealing up to 5 years of testing, plant productivity improved 
by 25–35%, and it also suggested the possible utilization of chitosan in postharvest 
conservation of vegetables and fruits [98]. 

Chitosan prescription of 2.5–8.5 mg/mL with wheat seedlings considerably 
enhanced seed sprouting that meets the seed accreditation standards that is >85%. 
This also provides vigor at proportions up to >4 mg/mL in two cultivars of spring 
wheat that are Norseman and Max by domineering seed-borne contamination by F. 
graminearum. The seed sprouting was found 85.5% in chitosan-cured seeds. The 
diminution of seed-borne infection was found > 50% by F. Graminearum and this 
can be improved by prominent chitosan curing that is correlated to regulating the 
infections [99]. Seed curing with chitosan symbiosis plant development encourage-
ability of Pseudomonas aeruginosa-P17 in sorghum (Sorhumbicolor L.) that has been 
revealed by Praveen Kumar and his team [100]. Sprouting rates of seedlings enhance 
appreciably and seedling’s growth is faster, enhanced, and vital. Seeds drenched 
with chitosan had improved the power of sprouting, sprouting proportion, lipase 
action, and gibberellic acid (GA3) and indole acetic acid (IAA) intensity in peanut. 
Seed priming in maize increases chilling tolerance. Blend with chitosan condensed 
the comparative penetrability of the plasma crust of the maize beneath lower heat 
conditions that cause less damage from low-temperature stress [101]. 

In north-eastern China, soybean seeds are attacked by a variety of pests, resulting 
in a lower yield. Until recently, pesticides such as insecticides were used to fulfill the 
purpose of pest control. Chitosan, a seed-coating compound fabricated from chitin 
deacetylation, which is a viable contender for controlling agrotis ipsilon, soybean 
shell borer, and soybean aphid efficiently. An investigation of all earning of effects of 
different concentrations of chitosan on pest regulation and soybean productivity has 
been conducted in the research. Chitosan-based coatings were utilized as a feeding 
deterrent as well as to improve the germination and quality of soybean seedlings. 
In addition, seed sprouting, plant development, and soybean productivity were all 
improved by chitosan coating [102]. 

Lisbel Martínez González and his teammates studied the effect of chitosan on 
rice seedlings (Oryza sativa L.) has been developed in saline medium [103]. Here, 
the researcher conducted grain (Oryza sativa L.) seedlings type that is INCA LP-5 
were cured for 24 h with different proportions of chitosan that are 0 to 500 mg L−1. 
The sprouted rice seedlings were placed in containers with an adulterate Hoagland 
nutritive solution, which were complemented with or without NaCl concentration of 
100 mmol L−1, and seeds were positioned in a development cavity with regulated 
conditions. The progress and biochemical pointers were calculated after eleven days 
under stressful circumstances. Seedlings preserved with concentration of 100 mg L−1 

of chitosan that rouse shoot area and dried out substance in salty medium and also help 
in growing up saplings. It also lessens the malondialdehyde and augmented proline
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intensity. Both chitosan doses increased catalase and peroxidase enzyme activity, 
despite the fact that a better impact becomes acquired with chitosan concentration 
of 500 mg L−1. 

Recently, in an experiment the effects of oligochitosan foliar spraying as well as 
oligochitosan nano-scale silica spray on the soybean seedling’s productivity have 
been studied. Results indicated that soybean seed production was enhanced by 10– 
17% for oligochitosan and oligochitosan nano-scale silica spray, respectively. In this 
effort, oligochitosan contains an average molecular weight of 5000 g/mol that was 
prepared by degradation through Co-60 gamma radiations containing a 4% chitosan 
solution that also comprises 0.5% H2O2 at 21 kGy. The nano-scaled silica with a size 
of 15–30 nm was manufactured by calcining the acidic cured rice husks at 700 °C for 
2 h. The mixture of 2.5% oligochitosan and 2.5% nano-scaled silica was synthesized 
by dispersing nano-scaled silica in the blend of oligochitosan and that was taken for 
production of soybean with enhanced seed yield [104]. 

The researchers evaluated the outcomes of seed priming with GA3-containing 
chitosan-alginate and tripolyphosphate chitosan on the development and production 
of Solanum lycopersicum grown in the farmland. The consequence revealed that 
nano-carrier technology can develop great fruit yield, with the improved production 
by almost 5 times by utilizing GA3-containing chitosan-alginate [105]. 

4.2.1 Micronutrients 

It is common knowledge that having enough fertilizer and irrigation, also micronutri-
ents such as Manganese, Copper, Molybdenum, Iron, and Zinc, encourage premier 
development. As a result, every increase in plant output necessitates an enhanced 
utilization of growth-promoting micronutrients and irrigation sources. At the existing 
time, it is approximated that the aimed plants cannot soak up 85–95% of phosphorus, 
45–75% of nitrogen, and 55–75% of potassium confined in compost. This reservoir 
waste is simply a money loss, but it also contaminates the environment [106]. 

Ngoc Minh Chau Ha and his co-workers developed KPN nano-fertilizer by 
filling potassium (K), phosphorous (P), and nitrogen (N) into chitosan particles. The 
chitosan particles were arranged through ionic gelatine of tripolyphosphate and 
chitosan blend. The outcomes disclosed that the nano-fertilizer boosted the accep-
tance of nutritious elements, photosynthesis, and development of vegetation of coffee. 
Utilization of the nano-fertilizer upgraded by 67% potassium, 16% phosphorous, and 
17% nitrogen concentration in the leaves of cured plots correlated to the regulated; 
total chlorophyll concentration prominent up to 30 and 71% of photosynthesis net 
rate [107]. 

Ashwin Dapkekar and his co-researchers improvised the complex of Zinc with 
chitosan-TPP nano-scale particles (Zn-CNP, which have ~40 mg/L of zinc) and 
considered its utilization in biofortification, in the durum variety of wheat. In pot 
experiments, they noticed 28 and 41% zinc enhancement in two genotypes of the 
grain [108].
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Ram Chandra Choudhary and his co-workers found copper-chitosan nanoboost 
for maize growth. Here, Cu-chitosan nanoparticles cured plants illustrated consid-
erable defensive reaction through the elevated actions of antioxidant (superoxide 
dismutase and peroxidase) and defensive enzymes (phenylalanine ammonia-lyase 
and polyphenol oxidase). Considerable regulation of CLS infection of maize has 
been observed at 0.05–0.17% of Cu-chitosan nano-scale particles cured in jar and 
0.13–0.17% of NPs cured in farmland environment. NPs cured revealed develop-
ment enhancer effect in provisions of plant tallness, stem width, root depthness, root 
quantity, and chlorophyll concentration in jar experiments [109]. 

Crop destruction primarily occurs due to natural causes, which consist of soil-
borne phyto-pathogens, pest vermin, host-dependent organisms, and carnivore. Food 
rotting by different microorganisms accounts for the majority of food losses in the 
food sector. The usage of nanoparticles in food and agriculture can be improved 
because of advances in nanotechnology. So metal encapsulated chitosan composites 
have been used for many plant growths. 

Copper-chitosan nanoparticles have been combined and utilized to investigate its 
effectiveness on Ragi plant (finger millet plant) as a standard plant system. The prime 
objective was to investigate the efficiency of CuChNputilizatin to regulate the slight 
ailment of Ragi. Copper-Chitosan particles were assessed to Ragi either in the form of 
foliar sprayer or as combined application. Here both treatment methods improved the 
figure millet plant’s development profile and production. In the collective utilization 
technique, the enhanced production was about 89% [110]. 

Paresh Deshpande developed a complex with Zinc and chitosan/TPP nano-scale 
particles for trace elements which are carrier that suits for foliar application. The main 
aim was to grow cereals on zinc-depleted soil; the nutritional quality of the grain 
suffers. They looked explored zinc complex chitosan particles as a possible “nano-
carrier” for foliar fertilization in order to boost zinc density in grain. Zinc complex 
chitosan particles were created with tripolyphosphate as an inter-connector. Spherical 
diameter of Zinc complex chitosan particles is 255–302 nm which were positively 
charged (zeta potential, +42.34 mV) and restrictedupto∼20 mg Zn/g (w/w). Plant 
development in zinc-deficient sand media, followed by foliar utilization of Zinc 
complex chitosan particles for twice-week, for 5 weeks by the following anthesis, 
ensures the increases in grain zinc content by 28 and 41%, respectively. This inves-
tigation demonstrates the suitability of chitosan-based nano-carriers in agronomic 
biofortification [111]. 

Copper-chitosan particles were manufactured and calculated for endorsing their 
development and antifungal effectiveness in tomato. In a small-scale level, the manu-
factured particles proved to be considerably effective in endorsing their development 
promotory effect on tomato seed sprouting, seedling tallness, and fresh and dry mass 
at 0.08–0.13% points. On the 0.13% proportions these particles originate 70 and 73% 
suppression of mycelia development and 61 and 83% suppression of spore sprouting 
in Alternaria solani and F. oxysporum, respectively, is an in vitro standard. In jar 
experiments, 0.13% concentration of Copper-chitosan particles was found to be of 
great valuable in percentage efficiency of disease regulation in tomato plants with 
the values of 87% in early blight and 61% in Fusarium wilt. The overall observed
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outcomes verify the major development promotory as well as antifungal potential of 
Copper-chitosan particles [112]. 

Alternatively, chitosan can be included with plant abundant elements such as 
magnesium [Mg], phosphorus [P], manganese [Mn], nitrogen [N], potassium [K], 
manganese [Mn], and sulfur [S] and trace elements that are copper [Cu], nickel 
[Ni], zinc [Zn], boron [B], iron [Fe] and chlorine [Cl]. Food crop seeds frequently 
have vulnerability to various inorganic and organic stresses. As a result, researchers 
inspected the impact of Copper-chitosan particles on physiological and biochemical 
alterations during maize sapling growth. Improved figures show percent sprouting, 
shoot and root tallness, root quantity, seed size, fresh and dry mass, and seed vigor 
index were obtained at 0.05–0.12% proportions of Copper-chitosan particles as 
contrast with water, Copper sulfate, and bulk chitosan treatments. Copper-chitosan 
particles at 0.15% and CuSO4 (Copper sulfate) at 0.01% proportions confirmed 
suppressive effect on seed development [113]. 

4.3 Biostimulant and Delivery System 

Chitosan-based products offer a variety of unique properties that make them useful in 
agriculture. Chitosan is used as a biostimulant to improve the plant development, raise 
plant tolerance to abiotic stress, and enhance the disease resistance. Chitosan actu-
ates a few cautious qualities in plants, for example, pathogenesis-associated genes, 
such as glucanase and chitinase. In addition to this, it initiates numerous proteins in 
the responsive oxygen species scavenging method, like superoxide dismutase, cata-
lase and peroxidase. Chitosan is usually utilized as an elicitor and biostimulant to 
invigorate the creation of dynamic/drug compounds both in plant and in vitro frame-
works [114]. Chitosan elicitation has been likewise received as a viable procedure 
to upgrade auxiliary metabolite creation, such as xanthones and other polyphenols, 
in Hypericum perforatum in vitro roots [115]. 

Putalun and his co-workers revealed Artemisinin formation by hairy practicalities 
(roots) of Artemisia annua L. that was augmented by 6 times to 1.8 microg mg−1 dry 
weight over 6 days via addition of 155 mg of chitosan [116]. To improve crop yield, 
Oscar Goni and his colleagues created chitosan oligosaccharides (CHOS) blend for 
plants biostimulants, it was utilized as a cost-efficient enzyme. The result of blend 
of CHOS establishes a considerable enhancement in the plant healthiness pointers 
for example improved biomass, disease control. Finally, they were conducted finest 
CHOS research in expressions of plant bioactivity that was extent up and authenticate 
by an initial field experiment with the engineering tomato cultivar H9661 [117]. The 
researchers used chitosan biopolymer for stimulates accumulation of antioxidants 
in strawberry fruit. In this report, researchers determined the outcomes of chitosan 
utilization in the field of plant development, fruit productivity, and antioxidant actions 
in strawberry plant. Here foliar utilization of chitosan on strawberry considerably 
improved plant expansion and fruit productivity that is up to 42% advanced as eval-
uate with unprocessed strawberry plants. Due to the chitosan utilization, there is
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better fruit productivity that was accredited to advanced plant growth, individual 
fruit mass, and whole fruit mass/vegetation [118]. 

Chitosan utilized as a biostimulant in cucumber flora from humidity-activated 
diseases that are mainly originated in the presence of Phytophthora capsica. Here, 
cucumber seedlings are reacted with series of chitosan ratios, for example, 125– 
500 ppm, to estimate consequence on seed germination, and new root and shoot 
mass. Cucumber seeds from chitosan-reacted seedlings demonstrate superior oppo-
sition to humidity-activated diseases that are originated by P. capsici contrast to 
unprocessed seeds. It has been concluded that the outcomes recommend that chitosan 
could be utilized as an innate and surroundings protective choice to a artificial devel-
opment supporter and act as insect repellent for prolong fabrication of cucumber 
[119]. The consequence of biostimulant in rose plants via employing chitosan in the 
series proportion from 0.01 to 0.02% (w/v) provides shielding against Sphaerotheca 
pannosa var. rosae, Peronospora sparsa, and Diplocarpon rosae. At this time, 
chitosan utilizes as a shower for two times in a week [120]. 

Chitosan diminishes fusarium head blight and mycotoxin impurity in 
Triticum (Wheat) plants. Commonly, Fusarium head blight (FHB) originated 
through Fusarium graminearum that is an infection that is responsible for production 
loss and mycotoxin infection in wheat crop. This particular examination discloses the 
consequence of a plant biostimulant fabricated from a brown macroalga Ascophyllum 
nodosum (Liquid Seaweed Extract; LSE) unaided and also prepared by blend with 
chitosan in controlling Fusarium. Wheat seeds through LSE and chitosan in mixture 
demonstrate a significant reduction in harshness of F. graminearum contamination 
on leaves [121]. 

Lesser time period that is 35 days of activities with chitosan used within soil at 0 
to 0.30% (w/w), on lettuce (Lactuca sativa) development, chlorophyll fluorescence, 
and gaseous substitution were estimated in a growth chamber examination. Leaf areas 
were increased from 674 to 856 cm2by utilizing chitosan ratios at 0.05–0.15%, and 
fresh leaf mass improved from 28.7 to 39.7 g, respectively. Chitosan ratios from 0.10 
to 0.30% augmented leaf chlorophyll index from 29.7 to 41.5, respectively. Chitosan 
at 0.20–0.30% improved leaf growth as well as improved photochemical efficacy 
and photochemical productivity, and chitosan at 0.10–0.30% also augmented leaf 
electron transportation rate [122]. 

Mehregan M and collaborators conducted slab creation with three replicas in the 
conservatory treatments that comprises chitosan spray in four stages with 0.05, 0.1, 
and 0.2% ratios. The regulated activity was accomplished by spraying with distilled 
water. Chitosan spray has been used to calculate the influence of varieties of chitosan 
ratios as biostimulant on floral biomass characters and act as second-class catabo-
lite of Stevia plant. The acquired outcomes suggested that variance investigation 
demonstrate that chitosan sprinkling had considerable outcome on leaf dehydrated 
mass, shoot dried up mass, and leaf span. Here, the highest quantity of phenol was 
distinguished at 0.15% concentration. Also, chitosan at 0.25% proportions had the 
utmost result on rebaudiosides. Finally, chitosan sprinkling enhanced floral biomass 
characters and biochemical factors for example rebaudiosides A in stevia plants 
[123].
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4.4 Pesticide: Herbicide: Weed 

Synthetic pesticides are of prime province because of their harmful influence on 
personal healthiness and environment. The wide ranges of synthetic pesticides are 
responsible for issues via focusing on helpful creatures and rehashed utilization of 
these manufactured pesticides prompts deficiency of biodiversity. A few pesticides 
are not biodegradable and industriousness in climate from not many to numerous 
years hence, they are answerable for soil, water, and a wide scope of natural contam-
ination. Chitosan has been recognized globally for its prospective like a bio-control 
agent [124]. The studies were conducted to understand the usefulness of oligochi-
tosan as well as chitosan on regulating plant diseases by Oliul Hassan and his co-
worker. After the application of chitosan and oligo-chitosan, the plant can develop 
an increased tolerance to the stressful growth environment, as well as the method of 
disease protection in plants and its impact on the colonies of microbes in the rhizo-
sphere. Beside these advantages, the stimulating outcome of chitosan on valuable 
microbes led to this biodegradable creation to integrate with the IPM (Integrated Pest 
Management) procedures. 

Nano-carrier arrangement of microbicides (diuron) as a photosynthetic suppresser 
for the control of wild plants that were created by interconnections of carboxymethyl 
chitosan and 2-nitro benzyl that has 140 nm sizes as per normal HRTEM breadth 
dimension. The nano formulations have been created through a photograph-regulated 
delivery system [125]. The agricultural research system is still focused on the green 
revolution technology paradigm of producing short-duration high-yielding crops, 
irrigation, and intense fertilizer and other agrochemical use. Among the various 
constraints in agriculture, wild plants are always exist there and responsible for 
considerable constraints to crop production globally. The study found that a silver 
nanoparticles-chitosan encapsulated paraquat nano formulation had better herbicidal 
action against Eichhornia crassipes when tested versus controlled release. The nano-
formulated herbicide was made by chemically reducing silver nitrate with sodium 
borohydride, then mixing the silver nanoparticles with chitosan and paraquat field 
concentration. Encapsulation efficacy was found to be 89.0% in this investigation. 
In a controlled release testing, 90.0% of the product was released after 24 h, with 
significantly increased herbicidal action against E. crassipes [126]. 

The microbicides imazapic and imazapyr were encapsulated in chitosan-alginate 
and tripolyphosphate chitosan nano-scale particles. By utilizing RT-PCR (real-time 
polymerase chain reactions), the impacts of microbicides and microbicides encum-
bered chitosan particles on soil microbes were investigated in depth. The chitosan 
particles had an average size of 410 nm and stayed constant in storage at room 
temperature for 30 days. For both types of particles, satisfactory encapsulation effi-
ciencies of 50–70% were achieved. In cytotoxicity tests, the encapsulated herbicides 
were found to be less hazardous than the unbound chemicals, and genotoxicity was 
reduced. This research shows that encapsulating the herbicides has enhanced their 
type of activity and lowered their pestilential nature, indicating that they could be 
used in practical applications in the future [126].
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4.5 Soil Health Improvement and Biofertilizer 

As earlier depicted, chitosan utilization can be done in a different way to lower plant 
illness levels what’s more, improve the turn of events and spread of infections, in this 
manner saving harvest yield and quality. The chitosan is utilized as soil improvement 
to provide numerous advantages to different plant groups by sinking the pathogen 
assault and infectivity. Chitosan has been discovered to effectively reduce Fusarium 
wilt in a variety of plant types [127]. Similar researchers were reported against 
Cylindrocladium floridanum [128], A. solani [129], and subsequent to soil dealing 
with chitosan. The alteration of soil through chitosan is environment accommodating, 
while in the soil, chitosan can be debased on the significant speed, because of the 
plenty and diversity of microscopic organisms in variety of soils and the assumed 
existence of chitinases in an impressive part of the bacterial populaces. 

Amena Sultana and her co-workers investigated persistent effect of chitosan 
(CHT) powder as a raw material on the elemental characteristics of rice-producing 
soils. They found that utilization of the raw material of chitosan powder in agri-
culture is a novel chapter and can be utilized as an another supply of raw nitrogen, 
increasing the effectiveness of functional inorganic nitrogen and add to expand the N 
content in rice-producing soils of Bangladesh. Other than this, the remaining impact 
of the unprocessed substance of CHT powder exaggerated morphological, concep-
tive, yield ascribes, and grain yield of BRRI (Bangladesh Rice Research Institute). 
The remaining impact of the powder additionally positively affects the enhance-
ment in the usual nitrogen, usual carbon, usual other substances, and pH of the rice 
developing soils. Along with different treatments T4 is designed for outstanding 
consequence of the raw material of CHT powder @ 4.0 t/ha has been performed 
that is the best treatment in contrast with the direct dealing and other indulgences. 
However in this case, if there should rise in the occurrence of non-critical bound-
aries the behavior may be different. The examination was directed to explain the 
residue impact of the chitosan powder to the enhancement of the characteristics of 
soils. From these both the results, outcomes show that leftover impact of the crude 
material of CHT powder could assume an important part to improve the practical soil 
wellbeing [130]. Priyanka Khati and her colleagues used nano chitosan in combina-
tion for growth promotes rhizobacteria on maize growth and soil health maintenance. 
The results show seed germination occurs from 60 to 96.97%, plant altitude is 1.5 
times enhance and leaf area is improved by two times. Other health indicators are 
also enhanced by this treatment [131]. 

Chitosan incorporation has the ability to improve the interparticle cohesiveness 
between the particles of soil, which leads to improvement of the mechanical quali-
ties of sandy soil which were studied by Nader Shariatmadari and his co-workers. 
They found chitosan can improve soil cohesion, and its concluded form compressive 
strength here sample used as dried in condition [132]. 

Mulawarman and his colleagues investigated the plant favorable capability of 
chitosan, magic wet and they estimate their outcome on bacterial and nematode 
colony in soil.
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Tomato seeds have been sown into container including a sand/soil mixture with 
1:1 ratio and that have been treated with Magic Wet and chitosan at 2 hundred kg/ha. 
After 0, 1, 3, 7, and 14 days’ time period, the soil factors are estimated for instance 
soil pH, microbes population density (cfu/g soil), generally extensive multiplicity 
of parasitic nematodes and saprophytic. Finally, samples of Fresh weight of tomato 
shoots and roots, as well as Meloidogyne infection, have been recorded. After 24 h, 
the bacteria in soil population densities increased after dealing with fourfold quantity 
of Magic Wet and 19-fold quantity of chitosan. Here, the founded bacteria species 
such as 32% ratio of pseudomonas, 42% ratio of bacillus for the control, and 81% 
ratio of pseudomonas for chitosan. The observed results show significant benefits 
of naturally harvested products like chitosan, which leads to the stimulation of soil 
antimicrobial action, and therefore, the antagonist probability in soils is improved in 
nematode infestation and finally it can improve the plant growth [133]. 

Chitosan fertilizer is obtained by chitin deacetylation process, which is exten-
sively present in environment. Chitosan operates as compelling manure because of 
its high availability of nitrogen within it. Currently, controlled discharge fertilizers 
(CDF) have been chosen as majority as well as suitable technique to escalate their 
effectiveness, suppress the nutrient deprivation, and diminish the pestilence outcome 
to the atmosphere. Conversely, due to non-degradable polymer residues in the soil, 
many kinds of polymer-coated CDF have been fabricated that are sources of other 
ecological problems, including the deprivation of farming land and a diminution in 
soil productiveness. Hence, consequently CDF should be coated with a biodegrad-
able material that will thrash this concern. One of the important biodegradable poly-
mers that can be consumed as covering in CDF manufacture is chitosan biopolymer. 
Chitosan is accessible bounteously in environment and furthermore can frame film 
that does not dissolvable in water. 

The study is pointed toward getting ready CRF covered by multi-facet of chitosan-
polyanion as an obstruction layer that can hold the compost supplements like 
nitrogen, phosphorus, and potassium. The resultant polyanion-chitosan multilayer, 
for example, alginate chitosan, pectin chitosan, and tripolyphosphate chitosan, was 
proficient to create a coating as a fertilizer pellet casing that improved mechan-
ical potency and abridged nitrogen discharge. The modified chitosan-alginate layers 
are also capable to suppress the nitrogen release. When altering the layer chitosan-
alginate, it is founded that mechanical strength has increased and low discharge of 
nitrogen comparing with other layers [134]. 

Nano fertilizers also approach in agriculture research nowadays. To examine the 
deliverance of chitosan encumbered with potassium, nitrogen, and phosphorus (KNP) 
for wheat flora by utilizing foliar consumption. Here, chitosan-KNP compound 
are effortlessly pertain to leaves pedestal and goes inside the stomata during gas 
consumption, evade direct commencement with soil structure. The treatment with 
chitosan-KNP manure gives momentous enhancement in plant harvest indicator, 
crop yield, and mobilization indicator of the measured wheat production indicators, 
as evaluated with control production indicators of wheat flora extravagance with 
regular non fertilized crops and regularly fertilized with KNP manure crops [135].
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Yang-Er Chen and his co-workers worked with chitosan and chemical fertilizer 
combination to the improvement of growth and disease resistant in Begonia hiemalis 
Fotsch. This work deals with chitosan as a fertilizer additive to encourage the growth 
of begonia hiemalis Fotsch Schwabenland red development and strength for fungus B. 
cinerea. They calculated the treatment parameters with fertilizer contains in various 
ratios NPK with chitosan on plant growth and mainly resistant to disease. Over 
sixteen treatments examined, the final results founded with the ratio NPK 2:8:1:0:1.4 
and chitosan 0.10 g/L had the effective plant height, crown improvement and other 
benefits in horticultural traits at 20, 40, and 60 days after the treatment procedure 
followed [136]. 

Chitosan can also act as plant growth regulator (PGR) that is a group of ordinary or 
anthropogenic complex created with plant hormone. Ethylene, jasmonic acid, auxin, 
cytokinins, and Gibberellins are example of low-concentration chemicals that operate 
at the cellular stage and work in throughout the various phases of plant growth [137]. 
Boonlertnium and his co-workers used chitosan for dropping the usage of chemical 
fertilizer in waxy corn plant. This experiment was organized by using split plot. 
Experiment was designed through two focal plots and four subplots and reiterated 
with four time periods. Chitosan was key plot and organize by non-utilization of 
chitosan and subplot rate is in following proportions that are 50 + 50, 50 + 25, 25 + 
50 and 25 + 25 kg/rai of compound fertilizer blend with the following prescription 
that is 16-20-0 and 46-0-0 ratios. The outcomes showed that chitosan application 
fundamentally expanded (p < 0.05) leaf region, ear size, waxy corn yield, and fiber 
rate. It additionally altogether held (p < 0.05) leaf greenness at reaping time yet no 
critical impacts at V8 (8 genuine leaves) and R1 (silking) development stage. In any 
case, chitosan didn’t influence leaf nitrogen content. As to substance compost rate 
impacts, it was tracked down that no huge distinction was found as far as waxy corn 
yield and agronomic qualities, aside from nitrogen substance and fiber rate. This 
discovery proposed that chitosan application can be utilized to improve waxy corn 
yield and furthermore to lessen compound compost utilizes in waxy corn developing 
[138]. 

Maize growth has been improved by utilizing sulfate based supplemented with 
nitrogen richer nano-fertilizer. Sulfate improved potassium, nitrogen, and phosphorus 
(KNP) fertilizer contents and that are nano-formulated by the ionic gelation done with 
tripolyphosphate and chitosan nanoparticles at pH value of 5 to bear the cost of nano-
fertilizers. The chitosan nanoparticles and chitosan-based KNPS nano-fertilizers are 
designed by utilizing diverse portion of chitosan varying with 0.125, 0.25, 0.5, and 
1% and in NPKS-based fertilizer is 25, 45, and 65 ppm. A fundamental test of 
these nanoparticles alongside inorganic KNP and KNPS manures is led beneath the 
circumstance of greenhouse by consuming maize (Zea mays L.) as testing crop and 
justify improvement conditions. Discoveries from these investigations disclosed that 
inorganic KNPS with ratio 20:7:3:0.5 fertilizers, chitosan nanoparticles, and planned 
KNPS nano-fertilizers provide better maize plant life and improved development 
rather than KNP manure and other regulator medicines [139] (Table 2).
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Table 2 Reported investigation on chitosan effects on the plant life 

Plant and 
application 

Chitosan formulation and 
observation 

Functions References 

Okra (plant 
production) 

Chitosan used as spray and 
pot method with different 
concentrations 

Tallness of shrub, leaf 
quantity, and fruit produced 

[140] 

Potato (plant 
protection) 

Plant activators 
Acibenzolar-S-Methyl 
(ASM) and chitosan in the 
control of potato verticillium 

Elevated new weight of 
tuber and overall production 

[141] 

Chilli (antiviral) Chitosan and Virex-H were 
put to the test to see how 
effective they were 

Reduce CMV (cucumber 
mosaic virus) infection in 
chilli through biotic defense 
inducers 

[142] 

Crop 
(antibacterial) 

Chitosan products blended 
with monoterpenes 

Utilization of biodegradable 
chitosan polymeric coatings 
as postharvest films for 
unpreserved farming 
products, which can 
diminish the Lipid oxidation 
with less WVP rate coatings 

[143] 

Mango 
(antifungal) 

Chitosan loaded with metal 
ions 

Chitosan silver 
nanoparticles exhibit 
conidial germination was 
successfully inhibited of C. 
Gloeosporioides and also 
condensed the anthracnose 
incidence on mango 

[144] 

Chilli 
(biostimulant) 

Oligochitosan Plants’ growth enhancement 
and disease infection 
elicitation 

[145] 

Soybean 
(pesticide) 

G-Poly (acrylic acid) 
chitosan nanoparticles 

Antifungal and insecticidal 
effects on fungi and insects 
in soybean 

[146] 

Soybean (seed 
protection) 

Coating based on chitosan Chitosan coating elevated 
the seed germination, plant 
development, and soybean 
production efficiently 

[147] 

Tomato plant 
(foliar spray) 

Ch-derived nanoparticles Improved plant growth and 
flowering 

[148] 

Tomato (soil 
addition) 

Chitosan used as different 
concentrations 12.5 or 37 
Mg/L 

Decreased disease severity, 
controlling greenhouse 
diseases instigated by 
soil-borne pathogens 

[149]

(continued)
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Table 2 (continued)

Plant and
application

Chitosan formulation and
observation

Functions References

Lavender plant 
(micronutrient) 

Combination of 
micronutrient Fe + 
Zn-chitosan 

Increase the plant growth, 
yield components and plant 
pigments as well as volatile 
oil production of this 
important aromatic plant 

[150] 

5 Applications in Agro-waste Treatment 

5.1 Wastewater Treatment 

Water is the universal requirement. Sustainable Development Goal 6 targets access 
to clean water and sanitation by 2030. Section 6.3 addresses to get better water nature 
by plummeting contamination, remove dumping, and weaken discharge of harmful 
elements and materials, reducing the volume of unprocessed wastewater, and rising 
reprocessing and secure reuse worldwide. 

In most areas of the earth, increase in human population, the utilization of enor-
mous amount of industrial products in modern countries, the development and escala-
tion of erstwhile manufacturing procedures add a huge amount of sewage and wastew-
ater. As a result, wastewater management efforts should be attempted to eliminate 
substances with an elevated BOD, pestilential organisms, and injurious compounds. 
This has directed to enhance perceptive of procedure and handling technology and 
the ultimate advancement of water quality values. The figures demonstrate severe 
worry for the countries that countered water disaster [151]. 

Saran and his colleagues accounted that 41% of the worldwide people is located 
in serious water–worried basin, which signifies the water disaster for farming. There-
fore, wastewater reutilization in cultivation is a perfect source to restore freshwater 
utilization in agriculture [152–154]. 

Subsequently, the elimination of this contaminant with high toxic content, even 
when currently at low concentration, has been progressively more considered in the 
scientific world. Numerous methods have been developed based on hybrid systems, 
membrane filtration, and biological degradation to diminish the concentration of 
contaminants in water. In adding, researchers are not very proficient when the 
waste matter has a less concentration of pendant colloidal elements and an elevated 
content of organic matter. Industrial wastewater treatment is frequently categorized 
as organic, chemical, and physical processes [155–160]. 

The generally adopted advanced techniques might be alienated into (i) pre-
treatment, (ii) primary; primary processing is done to remove solids and large objects 
by passing the wastewater through a series of screens. Rapidly sedimentable solid 
particles (‘grit’) then settle out during flow through a grit chamber. Primary treatment 
removes about 60% of settle able solids and about 35% of oxygen-demanding waste.
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In other words, it results in 35% reduction in BOD. (iii) secondary and tertiary; 
Secondary processing is required to degrade the dissolved organic compounds. 

By using natural aerobic process, microorganisms degrade the organic compounds 
in water as secondary processing technique. The resulting sludge is either disposed 
of or sent to a digester. At the end of the secondary treatment the strength of the 
effluent is reduced to 30:20 (i.e., suspended solids 30 mg per liter and BOD 20 mg 
per liter), which can be discharged into water sources. However, major part of the 
nitrogen and phosphorus compounds still remains in the effluent. (iv) refinement and 
(v) purification. 

Usually, industrialized wastewater is characterized into two modules: (1) organic 
industrialized wastewater and (2) inorganic industrialized wastewater. The major 
components in inorganic industrialized wastewater are present in iron and coal 
industry, non-metallic raw materials industry, metals built-up surface progression, 
and in industrial venture. Capable substitutes that deal in this process are mostly 
adsorption processes, because of its ease of procedure and best efficacy. 

Consequently, investigators have determined solutions on the decontamination of 
wastewater via filtration, coagulation/flocculation, electrocoagulation, absorption, 
ion-exchange, advanced oxidation processes (AOPs), activated sludge processes 
(ASP), sequencing batch reactors (SBR). In recent times, these procedures were 
acknowledged extensively for elimination of contaminations from wastewater. 
Numerous low-cost absorbents were building up in recent times. These absorbents 
were extensively utilized for the healing of wastewater comprising heavy metals. 
These absorbents were prepared from the waste commodities created from industrial 
actions, waste produced from farming activities, and natural resources. 

Agricultural practices have to deal a lot with nonpoint source of water pollu-
tion. Sediment runoff, nutrient runoff, and pesticides are nonpoint source of water 
pollution. Excessive water logging inhibits plant growth. Nutrient runoff finds its 
place among crop residues and irrigation water. Pesticides inhibit the water quality 
of the aquifer. These wastes harmed the immediate environment and necessitated 
the research for biopolymers for agro-industrial waste management. Literature has 
assessed a variety of biopolymers and their many treatment methods for their 
advantages and disadvantages. A huge variety of biopolymers which comprise of 
starch, alginate, cellulose, chitin, chitosan, etc. are aggressively implemented as 
nano-carriers for the managed transport of agrochemicals [158]. 

Adsorption can be characterized as a mass transport procedure which relocates 
the matter from the fluid phase to the surface of a solid and shift to extent that deals by 
physical and elemental exchanges. Among many methods, biosorption of pollutants 
using modified natural polymers and porous carbon is carving a niche now. Conse-
quently, the investigation for novel absorbent materials to alleviate water pollutants 
has been encouraged. Chitin and Chitosan play a great role as they themselves are 
wealth from waste converters. 

The biopolymer chitosan is drawing significant attention as a medium for 
absorbent substance progress, because this chitosan has a elevated density of hydroxyl 
groups (–OH) and primary amines (–NH2) that perform as vigorous adsorption spots, 
building it a well-organized absorbent. They could be utilized as congealing and
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Table 3 Current studies about the exclusion of heavy metals and adsorption capacity of chitosan 
and its composites in wastewater treatment 

S. no Metal ions 
removed 

Chitosan composites Absorption 
capacity 

References 

1. Cr(VI) 
Cu(II) 

Chitosan-graphene 
oxide-poly-ethylenimine 

90% for Cr(VI) 
78% for Cu(II) 

[161] 

2. Pb(II) 
Cu(II) 
As(III) 

Chitosan functionalized magnetic 
graphene oxide and 
ethylene-diamine-tetra-acetic 
acid (EDTA) 

206 mg/g 
207 mg/g 
42 mg/g 

[162] 

3. Cr(VI) Magnetite-chitosan composite 92 [163] 

4. Cd(II) Chitosan-hydroxyapatite 
composites 

122.1 mg/g [164] 

5. Ni(II) 
Cu(II) 
Cd(II) 
Pb(II) 

Chitosan-poly ethylene oxide 
(PEO) 

175 mg/g 
163 mg/g 
143 mg/g 
135 mg/g 

[165] 

6. Cd(II) Chitosan-TiO2 composite 256 mg/g [166] 

gelatin agents for contaminated wastewaters, in heavy metals or metalloid absorp-
tion such as Cu(II), Cd(II), Pb(II), Fe(III), Zn(II), and Cr(III) for the elimination 
of dyes from industrialized wastewater (i.e., fabric wastewaters), in addition to the 
elimination of other organic contaminants, for example, organochloride pesticide, 
organic oxidized, or fatty and oil impurities [161–166]. Table 3 represents the current 
studies about the exclusion of heavy metals and absorption capacity of chitosan and 
its composites in wastewater treatment. 

Chitosan is mostly utilized as an efficiently bio-sorbent in ecological engineering. 
The key benefit of chitosan over the ordinary activated carbon and other bio-sorbents 
is its cheap cost, bountiful and elevated attraction for a numeral of pollutants (because 
of the existence of amino and hydroxyl groups), chemical constancy, elevated reac-
tivity and selective in relative to contaminations. Chitosan and its derivatives or 
composites have been productively utilized for the elimination of heavy metal ions, 
coloring pigments in textiles, phenols, a variety of anions, insecticides, pesticides, 
etc., via adsorption process. 

The physicochemical characteristics of chitin and chitosan dynamically rely on 
molecular sequence direction and usual packing. Chitosan is more soluble and less 
crystalline than chitin. It is observed that by using mild acids, more cationic sites 
were created, thereby increasing the polarity and also the number of adsorption sites 
for encapsulating the pollutants. Researchers studied that the amine groups because 
of the presence of lone pair of electrons on the nitrogen pair had a greater affinity 
for metal ions. Adsorption of anionic dyes, halogens, and phenol adsorption onto 
chitosan hydrogel scaffold modified with carbon nanotubes was studied [167]. The 
presence of the amino and the hydroxyl functional groups show great affinity toward 
adsorbing pollutants of a spectrum nature. The simplicity was because these smart
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Table 4 Current studies about the removal of dyes and adsorption capacity of chitosan and its 
composites in wastewater treatment 

S. No Dyes 
removed 

Chitosan composites Absorption 
capacity 

References 

1. Remazol 
blue 

KSF montmorillonite-chitosan composite 311 mg/g [168] 

2. Crystal 
violet 
Sunset 
yellow 
Naphthol 
green 

sodium 
acrylate-co-acrylamide/nanoclay-chitosan 
composite 

256 mg/g 
208 mg/g 
221 mg/g 

[169] 

3. Direct blue 
71 
Reactive 
blue 19 

Silicon dioxide-CNTs-chitosan composite 61 mg/g 
97 mg/g 

[170] 

4. Methyl 
orange 

Chitosan-graphene oxide composites 398 mg/g [171] 

5. Methyl 
orange 
Amido 
black 

Porous chitosan-graphene oxide aerogels 686 mg/g 
573 mg/g 

[172] 

6. Acid-Red 
88 

Silica-chitosan Composite 25 mg/g [173] 

7. Methylene 
blue 

Chitosan-graphene oxide-magnetic 
β-cyclodextrin composite 

84 mg/g [174] 

biomaterials were low cost, easy to use, and accommodated modifications in several 
forms. 

Researchers explored the application of chitosan-based absorbent such as chitosan 
with alginate and clay-tailored aerogel compound to efficiently eliminate equally 
cationic as well as anionic dyes and heavy metal ions from effluents and were effi-
cient still following four cycles. The brown sea algae that originated alginate is as 
well accessible in abundance. Using agro-waste, chitosan derivatives mitigated agro-
waste accumulation and healed the ecosystem thereby increasing environmental and 
economical viability. So, we see that modified chitosan has been used extensively 
for wastewater remediation. Table 4 represents the current studies. 

5.2 Application of Chitosan in Air Filtration 

Deep research is needed to access clean air. India trails behind China closely to top 
the world in infant mortality arising due to poor air quality. Immediate action by 
the government and the Central Pollution Control Board must be enforced to protect
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infants and pregnant women from air pollution exposure. A relationship between air 
quality and managing COVID 19 has also been established. India needs to quickly 
wake up to decarbonizing its power sector and health sector policies to make the 
Paris agreement achievable by 2030. Farmers in the northern parts of India have 
understood that inefficient agro-waste management has brought down the air quality 
causing large losses to human lives, quality of living, and economy. Farmers in 
neighboring Punjab and Haryana have to set fire to their paddy stubble in their fields 
after harvesting the crop. Though the farmers are aware of the harm, they cannot 
afford the new technology due to economic viability. 

New absorbents and technology that are farmer-friendly and easily adaptable to 
on-farm practices will help in cutting down air pollution. Agro-waste composting 
increases the soil microbial activity and reduces the economic load on transportation, 
pesticides, and fertilizers. Moreover, agro-waste can be used to improve the soil 
quality and sequester carbon, thereby reengineering the effects of global warming. 
The research community is looking for technical support to build new methods to 
diminish CO2 emissions and to eliminate it from atmosphere. Chitosan as well as 
its derivatives are promising as carbon sequesters, however, their low mechanical 
strength is the limitation that has to be overcome. 

Sundquist and his research team studied the incorporation of CO2 into various 
carbon products like cellulose lignocellulose, chitin, hemicellulose, and lignin using 
autotrophic and heterotrophic organisms [175]. Another perspective is to design 
protective measures to prevent inhaling of air pollutants especially particulate matter 
and fine dust. In these lines, Nabil and his team worked on bioactive multifunc-
tional textiles for fabricating recyclable defensive fabric materials for several appli-
cations [176]. They loaded cotton/polyester blended fabric with chitosan, various 
metal oxide nano-scaled particles using cross-linking agents to enhance the carboxyl 
group quantity. This increased the functional properties like wettability, antibacte-
rial activity, UV protection, self-cleaning, resiliency, and durability to wash. The 
product sustained 15 washing cycles. This study enabled a lot of further research on 
protective textile materials with the onset of COVID-19. Air contamination through 
particulate matter (PM) has caused a remarkable hazard to human healthiness and 
living worth. Particulate matter, Nanoaerosols, and bacteria, for example, E. coli and 
Staphylococcus aureus are the major sources of air pollution. Generally, PM parti-
cles can be classified on the basis of aerodynamic corresponding dimension that is 
varying from nanometers to micrometers. 

Liu and his colleagues have been effectively made up flexible and adaptable 
PMMA-chitosan and PDMS air sieve by electro-spinning process. Synergistic conse-
quence of diminutive diameter and the polar element functional groups from the 
external surface of chitosan fibers has prepared the stringy membrane a perfect appli-
cant for resourcefully detaining PM particles in addition to bacteria. The prepared 
nano-scaled fibrous sieve membrane is proficient of seize an exceptional detain effi-
cacy for PM particle that is for PM2.5 > 98.1%, and for PM10 > 98.5%, at lower pres-
sure fall of 20 Pa, and an elevated flow speed of 1.8 m s−1 after 1 h in a soaring wetness 
environment. Moreover, the electrospun translucent nano-scaled fibrous membrane 
with 55% optical transmittance could be constantly functional in an enormously
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harmful atmosphere for long 100 h with constant elimination of PM2.5effectively. The 
filter was also capable to preserve elevated elimination efficiency subsequent to five 
clean-up series. In addition, the nano-scaled fibrous filters as well show outstanding 
antibacterial capability due to the chitosan constituent [177]. 

Al-Sayed A. Al-Sherbini and his team designed chitosan/Ag bionanocomposites 
for the removal of E. coli and G. bacillus from indoor environment and worked as air 
filters [178]. By utilizing nonsolvent-induced phase separation technique, Wang and 
his colleagues developed polyvinyl alcohol (PVA)-chitosan (CS) composite film for 
air micro-filtration. The depth of the film is strongly connected to the ultra-filtration 
execution and the undeviating capture on film surface that was the leading method 
for elimination of NaCl aerosol elements. M30-3 with the depth of 35 μm display 
the uppermost excellence factor for air filtration and 95.59% filtration efficiency 
attained at pressure drop of 630 Pa. In addition, the resulting casings display elevated 
antibacterial capability in opposition to E. coli and S. aureus [179]. 

Mishra and his research colleagues prepared Lemongrass oil with chitosan-
nanocellulose composite filter for bioaerosols found in indoor air that participate 
and have a foremost responsibility in the conduction of transferable infections to 
human beings. Authors evaluate restraining outcome of the composite structure on 
culturable bacteria in interior air done with diverse positions that is air capacity 
from 35 to 85 m3 and in unlike dimension proportions of aerosol (<0.25–2.5 μm). 
The composite structure had elevated encapsulation efficiency (88–91%) and citral 
content. A considerable diminution in cultural bacteria of aerosol was experiential 
in existence of cellulose-chitosan composites [180]. 

Mohraz and his colleagues prepared Polyurethane/chitosan nanofibers filters 
for Nanoaerosols and E. coli bacteria present in surrounding environment. They 
have investigated the effects in the variations in diameter and uniformity utilizing 
RSM statistics modeling. The prepared filter was performance evaluated against 
Nanoaerosols like KCl nanoparticles under optimum conditions. The researchers 
investigated consequence of air face speed on the filtration effectiveness and quality 
feature of manufactured PU/CH nanofiber filter medium. The outcomes of antibac-
terial action were investigated, and results confirm that chitosan is a superior option 
to produce an antibacterial and efficient filter medium by making blend with other 
materials [181]. 

Zhao and his co-workers studied the hazardous effects of PM2.5 through lung 
inflammation in rats. They have studied toxicity of PM2.5 and health issues due to 
excessive amount of PM2.5 presence in environment. They have prepared chitosan 
oligosaccharides and investigated the inhibition effect on toxicity of PM2.5. The study 
demonstrates that chitosan oligosaccharides. Chitosan oligosaccharides are effective 
in diminishing toxicity of PM2.5 and stimulate lung inflammation practically. The 
obtained results show realistic implication of prepared chitosan oligosaccharides to 
stop pulmonary toxic by PM2.5 and 95% capture efficiency is reported [182]. Table 
5 discuss the comparative study on the performance of chitosan composites in air 
filtration applications.
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Table 5 Comparative study on the performance of chitosan composites in air filtration applications 

S. 
no 

Materials Targeted pollutant Capture efficiency Reference 

1. PDMS/PMMA-chitosan 
nanofiber air filters 

Particulate matter (PM2.5) 
Bacteria 
(E. coli and S. aureus) 

98.39% for PM2.5 
96.5% for E. coli 
95.2% for S. 
aureus 

[177] 

2. Chitosan/Ag 
bionanocomposites 

Bacteria (E. coli) and  (G. 
bacillus) 

Anti-bactericidal [178] 

3. Chitosan/polyvinyl 
alcohol blend membranes 

PM2.5 
E. coli and S. aureus 

95.59% 
94.8% 
and 91.3% 

[179] 

4. Lemongrass oil into 
chitosan-nanocellulose 
composite 

Pseudomonas otitidis, 
Staphylococcus sp., Bacillus 
cereus, Bacillus 
pseudomycoides sp., and 
Pseudomonas sp. Cf0-3 in 
bioaerosols 

88–91% [180] 

5. Polyurethane/chitosan 
nanofibers 

Nanoaerosols and E. coli 
bacteria 

90% [181] 

6. Chitosan 
oligosaccharides 

PM2.5 95% [182] 

5.3 Utilization of Chitosan in Animal Fodder Supplement 

Livestock rearing is a key livelihood of farmers in India. There is an increase in the 
livestock population in India. Limitation of animal fodder is a challenge and intensive 
research needs to be spearheaded to tackle the issue. The Department of Animal 
Husbandry & Dairying (DADH) in 2019 has recorded that only 4% of cropping 
area is used for animal feed cultivation. The farmers are left with no choice, but to 
feed the animals optimally and the animals are half starved. Fodder cooperatives are 
minimal in number and lack the expertise to bridge the gap. Conventional farmers 
have limited information on the subject to utilize agro by-products as animal feeds. 
Research to integrate quality control systems in feed analysis and reduction in loss 
of feeds is another critical area. 

Xu and his colleagues evaluated the significance of chitosan nano-scaled particles 
on the immunity and growth performance of piglets when utilized chitosan as diet 
supplement. They assigned 144 piglets in four groups and were given four different 
amounts of chitosan nanoparticles in the base diet that are 0, 100, 200, and 400 mg/Kg 
and feed for four weeks. It is found that enhancement in the chitosan nanoparticle 
amount as supplement diet-enhanced standard daily gain and reduced the diarrhea 
rate. These results demonstrate that dietary supplement with chitosan nano-scaled 
particles also restrain the development of possible bacterial pathogens and improve 
the immune system of piglets [183].
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Shi-bin and Hong evaluated the effect of chitosan feeding on the development 
and immunity factor in ducks. The ducks were fed with a control diet that having 
ratios of 0–4.8 g/Kg of 85% chitosan for 35 days. This was concluded that the ratios 
of 1.2 and 2.5 g/Kg of chitosan supplement diet were appropriate for ducks to attain 
an improved development and immunity index against infections [184]. 

Li and his research team investigated and conducted a research to examine the 
consequence of chitosan on immunity as well as antioxidant functions in 24 beef 
bulls having same body mass and age. The bulls were divided into three different 
groups and three different weight diets were assigned to them comprising mass ratios 
from 0 to 1000 mg/Kg of chitosan in the diet. The experiment conducted for 84 days. 
This is established that accumulation of 500 mg/Kg chitosan proportion influenced 
and improved immune function and also enhanced the anti-oxidative parameters of 
beef cattle [185]. 

Tiago A. Del Valle and his colleagues investigate the consequence of chitosan on 
the routine of milk yield and immunity system of 24 dairy cows. The study conducted 
on 21 days and this was concluded that chitosan inclusion in diet improved food 
intake, digestibility, metabolism rate, and productive performance. It also improved 
concentration of unsaturated fatty acids in the milk. Chitosan inhibits in vitro bio-
hydrogenation [186]. 

Hu and his team have examined the effects of chitosan feeding as dietary supple-
ment on pigs. They have done an evaluation on 40 piglets of same age and same weight 
for 28 days. The basal diet has 50 mg/Kg concentration of chitosan. The outcomes 
of this study clearly indicate that 50 mg/Kg concentration of chitosan enhanced the 
growth performance of pigs, effectively controlled the intestinal inflammation, and 
enhanced the intestinal barrier functions [187]. 

Osho and Adeola studied the performance of chitosan oligosaccharide and did 
experimental studies to calculate the optimized concentration to improve diges-
tion activities, growth, intestine morphology and immunity index in chickens. The 
basal diet has 0–2.5 g/Kg concentration of chitosan oligosaccharide. It is found that 
1.0 g/Kg concentration was the optimized concentration and results indicate that there 
is an enhancement in body growth as well as digestion index of chickens. The chitosan 
oligosaccharides also enhance the feed intake and reduce the pro-inflammatory 
cytokine genes. It also decreases the mortality rate of chickens [188]. 

Lokman and his colleagues evaluated the performance of cricket and shrimp-
derived chitin and chitosan on the development routine and organ properties of 
chickens. In the experiment chickens were feed with 0.5 g/kg concentration of cricket 
chitin and cricket chitosan. The studies disclose that concentration of cricket chitin 
considerably enhanced growth and organ characteristics of chickens. Also, supple-
ment diet of chitin and chitosan reduce the mortality rate of chickens [189]. Table 
6 illustrate comparative study on the performance of chitosan in the animal fodder 
supplement application.
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Table 6 Comparative study on the performance of chitosan in the animal fodder supplement 
application 

S. no Materials Targeted 
animal 

Improving factors Diminishing factors Reference 

1. Chitosan 
nanoparticle 

Pigs Average daily 
gain (ADG), 
improved 
immunity factor 

Decreased 
Feed and gain (F/G) 
factor and diarrhea 
rate (p < 0.05) 

[183] 

2. Chitosan Ducks Average daily 
feed intake and 
feed conversion 
ratios 
Immune Index 

Decrease fat 
digestibility 

[184] 

3. Chitosan Bulls Immune function 
Anti-oxidative 
functions 

Decrease oxidative 
agents 

[185] 

4. Chitosan Cows Intake, 
digestibility, 
metabolism rate 
and productive 
performance 

Inhibits in vitro 
bio-hydrogenation 

[186] 

5. Chitosan Pigs Growth 
performance, 
intestinal 
morphology, 
barrier function, 
cytokine 
expression and 
antioxidant 
system 

Decrease intestinal 
inflammation 

[187] 

6. Chitosan 
oligosaccharides 

Chickens Growth 
performance, 
digestive 
functions, 
intestinal 
morphology, and 
immune organs 

Decrease mortality 
rate 

[188] 

7. Chitin and 
chitosan 

Chickens Growth 
performance, 
carcass quality, 
and organ 
characteristics 

Decrease mortality 
rate 

[189] 

5.4 Chitosan Agro-waste Composites 

Chitosan agro-waste composites comprise of four different categories that are listed 
below and a comprehensive discussion has been done on the importance and use of 
these composites in the below sections. These composites category are:-
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(a) Chitosan-Activated carbon composite 
(b) Chitosan-biochar composite 
(c) Chitosan-lignin and 
(d) Chitosan-cellulose composite 

5.4.1 Chitosan-Activated Carbon Composite 

Numerous absorbents, for example, metal oxides, activated carbon, clays, silica, 
etc., have been utilized for the elimination of heavy metals and other pollutants from 
aqueous environments. Though, activated carbon has been more favored absorbent 
for numerous time periods in the exclusion procedure of heavy pollutants because 
of its elevated absorption capability, high absorption speed, and excellent opposition 
to abrasion. Activated carbons are harmless carbonaceous creations, comprising a 
permeable configuration and a huge interior surface area. This material can soak up 
an extensive range of undesired variety of pollutants from the gaseous or fluid stage 
in direct to influence the consequence of decontamination of aqueous environments. 

Hydari and his research team manufactured chitosan-activated carbon composite 
beads by sol–gel method and utilize them for the removal of cadmium. The particle 
size found for composite is 0.425 nm with pH of 6. In this work, the experimental data 
were analyzed by Freundlich and Dubinin–Radushkevich (D–R) isotherms. Under 
optimum conditions 100% cadmium has been removed by chitosan-activated carbon 
composite beads with an adsorption capacity of 52 mg/g [190]. M. Auta and his 
co-workers prepared tea waste-derived activated carbon-chitosan composites for the 
removal of Methylene blue dye and acid blue dye from wastewater. Authors reported 
495 mg/g of adsorption capacity and composite retained 50% adsorption efficiency 
for the removal of cationic and anionic dyes [191]. 

Jacques K. Fatombi and his colleagues prepared peanut shell-derived activated 
carbon-crab shell-derived chitosan composite by using conventional high tempera-
ture method. Authors reported the removal of indigo carmine dye with an adsorption 
capacity of 208 mg/g and particle size is 67 nm. Composite exhibits surface area 
of a 458 m2/g [192]. Fabiana Paiva de Freitas and his team synthesized plywood 
residue derived activated carbon-chitosan composite through carbonization method. 
Composite exhibits average pore diameter of 1.8 nm and surface area of a 253 m2/g. 
Authors reported removal of red dye from aqueous solution with an adsorption 
capacity of 30 mg/g [193]. A. Venault and his research team synthesized chitosan-
activated carbon gels composite by using wet-casting procedure for the removal of 
phenol as organic pollutant in water treatment. The authors claimed a pore size of 
25 nm and surface area of a 275 m2/g for the prepared composite gels. 

Khalid Z. Elwakeel and his colleagues manufactured activated carbon and chitosan 
composite beads for the removal of copper and cadmium ions from aqueous solution. 
The authors reported removal of copper and cadmium ions from wastewater with 
maximum adsorption capacity of a 3.43 mmol/g for Cu (II) ions and a 2.38 mmol/g 
for cadmium ions [194].
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The above studies clearly show a significant role of chitosan-activated carbon 
composites in the removal of heavy metals as well as dyes from the aqueous 
environments (Table 7). 

Table 7 Current studies on chitosan-activated carbon composites and their applications 

S. no Materials Fabrication 
method 

Applications Size and surface 
area of 
composite 

References 

1. Chitosan-AC 
composite beads 

Sol gel method Cadmium 
removal with 
adsorption 
capacity of 
52 mg/g 

0.420 nm [190] 

2. Tea waste-derived 
activated 
carbon-chitosan 
composite 

Sol gel method Removal of 
methylene blue 
dye and acid blue 
dye, 50% 
adsorption 
efficiency and 
adsorption 
capacity of 
495 mg/g 

– [191] 

3. Peanut 
shell-derived 
activated 
carbon-crab 
shell-derived 
chitosan 
composite 

Conventional 
high 
temperature 
method 

Indigo carmine 
dye, adsorption 
capacity is 
208 mg/g 

67 nm, surface 
area-458 m2/g 

[192] 

4. Chitosan-activate 
carbon films 

Carbonization 
and high 
temperature 
procedure 

Removal of Red 
dye, adsorption 
capacity is 
30 mg/g 

1.8 nm and 
surface area of a 
253 m2/g 

[193] 

5. Chitosan-activate 
carbon gels 

Wet-casting 
procedure 

Removal of 
Phenol 
Adsorption 
capacity is 
84 mg/g 

25 nm and 
surface area of a 
275 m2/g 

[195] 

6. Sugarcane 
waste-derived 
activated 
carbon-chitosan 
composite beads 

Wet chemical 
method 

Removal of 
copper and 
cadmium ions 
maximum 
adsorption 
capacity is 
3.439 mmol/g for 
copper ions and 
2.38 mmol/g for 
cadmium ions 

Specific surface 
area of 96 m2/g 

[194]
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5.4.2 Chitosan-Biochar Composite 

On evaluation among conservative carbonaceous resources for example commercial-
ized activated carbon, the major benefits of biochar are its cheap price and a wealth 
of resources of biomass to produce biochar. Due to plentiful, reusable, recyclable 
and non-hazardous in character biochar and its composite with chitosan biopolymer 
widely used in water treatment and removal of inorganic as well as organic pollutants 
in the aqueous environments. 

Kumuduni and her team prepared iron-loaded chitosan-biochar fibrous compos-
ites utilized for removal of phosphate from aqueous solution. Biochar has been 
produced from paper mill sludge and composite fibers prepared by wet chemical 
method followed by extruder with 0.2-mm thickness plastic hub needle. The fibrous 
composite employed in the removal of phosphate and the adsorption capacity is 
19.24 mg P/g. Authors reported a pore size of 1.8 nm and a surface area of a 
12.30 cm2/g for these fibers composites [196]. 

Chunmiao Zhu and his co-workers synthesized chitosan-reed biochar composite 
through wet chemical method. The authors discover the adsorption behavior of 
Ofloxacin and analyzed through Langmuir model. The prepared composite shows 
a very promising results with an adsorption capacity of 6.64 mg/g [197]. Yang and 
his research team developed an innovative nano-scaled iron sulfate-biochar-chitosan 
composite for the adsorption of chromium heavy metals impurities from aqueous 
solution. Soya sauce residue is used as a biomass feedstock for the fabrication of 
biochar in this study. Authors revealed the removal of Chromium with an elimina-
tion capacity of 103 mg/g [198]. Liu and his colleagues productively fabricated a 
low-cost biochar-magnetic chitosan for the removal of arsenic from aqueous solu-
tion. XPS studies have been carried out for understanding the significant adsorption 
phenomenon of Arsenic ions by composite. The removal efficiency is 17.8 mg/g as 
per obtained results by pseudo-second order and Langmuir model [199]. Arabyarmo-
hammadi and his research team synthesized biochar, clay, and chitosan composite 
for the removal of heavy metals from water. Authors synthesized biochar by using 
bark chips residual and embedded this with nanoclay-chitosan. This is a combina-
tion of inorganic and organic materials with chitosan utilized for removal of lead, 
zinc, and copper metals from aqueous solution. Correspondingly, authors revealed 
the highest absorption capability of the prepared composite at 25 °C for copper, lead 
and zinc from aqueous samples are 121, 335, and 134 mg/g. The composite exhibits 
pore size diameter of 1.9 nm and 252 m2/g. From the above studies, this is concluded 
that biochar-chitosan composites are proficient absorbents for pollutants present in 
atmosphere and effectively utilized for its purification. These composites expediently 
removed pollutants from aqueous solution by following absorption mechanism [200] 
(Table 8).
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Table 8 Current studies on chitosan-biochar composites and their applications 

S. no Materials Fabrication 
method 

Applications Size and 
surface area 
of composite 

References 

1. Iron-loaded 
chitosan-biochar 
fibrous composites 

Wet chemical 
method 
followed by 
extruder with 
0.2-mm 
thickness 
plastic hub 
needle 

Removal of 
phosphate 
Adsorption 
capacity is 
19.24 mg P/g 

Pore size is 
1.8 nm 
Surface area 
is 12.30 
cm2/g 

[196] 

2. Chitosan-reed biochar 
composite 

Wet chemical 
method 

Removal of 
ofloxacin 
Adsorption 
capacity is 
6.64 mg/g 

– [197] 

3. Chitosan-biochar-iron 
sulfate composite 

Wet chemical 
method 

Removal of 
chromium 
Elimination 
capacity of 
103 mg/g 

– [198] 

4. Rice straw-derived 
biochar-magnetic 
chitosan composite 

Wet chemical 
method 

Adsorption of 
arsenic ions 
Adsorption 
capacity is 
17.8 mg/g 

– [199] 

5. Clay-biochar-chitosan 
composite 

Pyrolysis 
method 
followed by 
wet chemical 
method 
dehydrated at 
85 °C in oven 

Removal of 
lead, zinc and 
copper metals 
from aqueous 
solution 

Pore size is 
1.9 nm 
Surface area 
is 252 m2/g 

[200] 

5.4.3 Chitosan-Lignin and Chitosan-Cellulose Composite 

Lignin is an unstructured, cross-linked, and aromatic biopolymer, is clearly observed 
in biomasses, and is likewise a major non-sugar matter of wooden samples. Lignin is 
accurately revealed as a devastating spinoff from pulp and paper manufacturing 
companies. V. Nair and his team developed alkali lignin-chitosan composite for the 
exclusion of remazol Brilliant Blue R (RBBR), anthraquinonic dye, and chromium 
metals from aqueous environments. Authors revealed an adsorption capacity of 111– 
24.5 mg/g for dyes and chromium impurities in water. The dynamic adsorption loca-
tions were established through hydroxyl and functional groups of the composite, 
and the adsorption method was attributable to electrostatic interface of coordi-
nation bonding between amino and hydroxyl groups with anion of the dyes and
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Chromium metallic ions [201]. Ajay K. Mishra and his colleagues prepared lignin, 
titania and chitosan composite for exclusion of black dye from aqueous solutions. 
Authors synthesized lignin from pulp black liquor and paper used for preparation 
of composite. Authors reported removal of black dye with an adsorption capacity 
of 15 mg/g via Langmuir model [202]. Kevin and his team prepared lignin-chitosan 
films by solvent casting technique and study antioxidant properties. The authors 
studied composite layer permeability to nitrogen as well as for oxygen calculated at 
70% RH. These two gases were utilized in command to measure if lignin accumula-
tion may change or advance the barrier property of chitosan coatings. A noteworthy 
variation is perceptible when lignin is integrated into the film articulation and perme-
ability is measured for nitrogen or oxygen. There is increase in absorbent capability 
of films including lignin for equally in Nitrogen as well in oxygen gases. As antiox-
idant property is directly correlated to the surface of the films, therefore there is an 
enhancement in permeability that correlates with interconnected polymer arrange-
ments [203]. Zhang and his research team prepared polyethyleneimine functionalized 
chitosan-lignin composite porous structures for the removal of mercury ions from 
aqueous environments. Porous composite shows an adsorption capacity of 663 mg/g 
and the adsorption kinetics learning is pre-eminently explained by a pseudo-second-
order kinetic representation, and Langmuir isotherm modeling that is mainly suitable 
to illustrate the absorption performance of composite for Hg(II) ions. The prepared 
samples can eliminate 83% of the mercury ions via crucial adsorption within 1 min 
time period while preliminary concentration of Hg(II) ions is 665 mg/L [204]. Sohni 
and his team fabricated palm shell-derived nano-lignin and made chitosan composite 
for the removal of methylene blue dye from wastewater. Authors reported an average 
pore size of 150 nm. Adsorption capacity of methylene blue is 74 mg/g and removal 
efficiency is 83% as per analysis by Langmuir isotherms [205]. The above results 
also conclude that Lignin-chitosan composites diminish ecological and community 
health vulnerability associated with the discarding of waste matter from the paper 
and pulp industry (Table 9).

Cellulose is individual largely extensively dispersed natural polymer complex, 
with high-quality recyclability, decomposability, and environment-friendly with low 
cost. Specifically, cellulose-chitosan composites are extensively studied and encour-
aged to accomplish their applications in hemostasis, bio-waste management, water 
purification, and antimicrobial activities. Shan Lin and his co-workers prepared silver 
nanoparticles embedded chitosan-Cellulose composite films for antibacterial activi-
ties. The average size of films is 9 nm containing 7% mass loading of silver nanoparti-
cles [206]. The prepared composite films illustrate considerably enhanced antimicro-
bial performance and can therefore be potentially utilized to manufacture improved 
bio-fouling resistant mortify membranes. Chieu D. Trana and his team fabricated 
chitosan-cellulose composite membranes for the elimination of microcystin from 
aqueous environments. Authors obtained the results that have reflected collective 
benefits of constituents, explicitly advanced mechanical constancy due to cellulose 
and admirable absorption capability. The authors revealed an adsorption capacity 
of 96 mg/g and 10 nm is an average size of membrane [207]. Xialian Fan and his 
team prepared chitosan-cellulose sponge by alkali-urea solvent method for rapid
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Table 9 Current studies on chitosan-lignin composites and their applications 

S. no Materials Fabrication 
method 

Applications Size and 
surface area 
of composite 

References 

1. Alkali lignin-chitosan 
composite 

Wet 
chemical 
method 

Exclusion of 
remazol brilliant 
blue R (RBBR), 
anthraquinonic 
dye and 
chromium metals 
Adsorption 
capacity is 
111 mg/g 
24.5 mg/g 

30 nm pore 
size and 
surface area 
is 2.45 m2/g 

[201] 

2. Lignin-titania-chitosan 
composite 

Wet 
chemical 
method 

Removal of 
brilliant black dye 
Adsorption 
capacity is 
15 mg/g 

15 m [202] 

3. Chitosan-lignin 
composite films 

Solvent 
casting 
method 

Antioxidant 
property related to 
moisture 

– [203] 

4. Polyethyleneimine 
functionalized 
chitosan-lignin 
composite sponge 

Wet 
chemical 
method 

Removal of 
mercury ions from 
aqueous 
environments 
Adsorption 
capacity is 
663 mg/g 

[204] 

5. Palm shell-derived 
lignin-chitosan 
composite 

Wet 
chemical 
method 

Elimination of 
methylene blue 
dye 
Adsorption 
capacity is 
74 mg/g 

150 nm 
Removal 
efficiency is 
83% 

[205]

hemostasis and antibacterial activities. The fabricated combined sponge has high-
quality water adsorption capability and mechanical potency, and it too has noticeable 
restrain consequences on E. coli. In vitro coalescence and entire blood cell linkage 
experimentation demonstrate that the combined effects on hemostatic phenomenon 
by sponges that have good bonding to erythrocytes and platelets, which resultant in 
high-quality coagulation capability [208]. Zhuang and his collaborators successfully 
synthesized chitosan-cellulose fibrous composite by using wet spinning technique for 
the removal of Cobalt from wastewater. The prepared fibrous composite exhibits an 
average size of 95 μm and surface area of a 2.5 m2/g. In accordance with the Langmuir 
isotherm representation report, the adsorption capacity is found to be 26 mg/g for 
these fibrous composites. Furthermore, the production of fibrous composite through 
physical method is more ecological and cleaner as compared to chemical methods
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[209]. Chen and his team developed an innovative oxycellulose-chitosan composite 
through wet chemical method for the removal of lead and chromium ions from water. 
Composites revealed highest adsorption capacity of 102 mg/g for lead and 126 mg/g 
for chromium metallic ions from water [210]. In contrast with above studies, it is 
anticipated that substantial variation of chitosan with cellulose significantly enhanced 
its adsorption capability and mechanical strength, created chitosan-based composites 
as a capable bio-sorbent for the removal of heavy metals, microcystin from aqueous 
environments as well as effectively utilized in antimicrobial activities (Table 10).

6 Conclusions and Future Prospects 

India is an agricultural land generating economy and livelihood for many people. 
Agro-waste management has gained immense importance over the years. Researchers 
are turning toward tapping the wealth from agro-waste not only for economic viability 
but also for sustaining environmentally friendly practices. Waste from being a pollu-
tant is being resourced as a useful product. Agro-waste initially was directly used as 
fuel in low efficiency furnaces. Later, the evolution of briquettes for hotel kitchens and 
the local availability attracted focus on better utilization of agro-wastes. Now, they 
find various applications like water treatment, drug formulation, bio-based textiles, 
air purifiers, and many more avenues to be explored. Chitin and particularly chitosan 
are organic polymers with numerous functional characteristics and are extensively 
utilized in a broad scope of application. Presently, the main commercial source of 
chitin and chitosan comprises waste streams from the marine fishery industry. The 
application of these biopolymers lies in the number of hydroxyl groups and free 
amine sites that make the wealth from waste biopolymers a potential material for 
versatile applications. 

Though, their accessibility is restricted by natural features and season. The current 
enhancement in requirement of chitin and chitosan in the large-scale in market has 
drawn consideration to substitute resource that is independent of oceanic fishery 
waste. The attention has now touched insect breeding farms that generate side stream 
(deceased adults, exuviate, exoskeletons, frass, and remaining feed) to be optionally 
explored. The chitin contents availability in whole creatures is proportionally low 
and is characterized by function of species, their food source, and the stage they are 
in their life cycle stage. The challenge lies in the data excruciated from extraction, 
purification, deacetylation, degree of purification, and the purification processes. This 
is a promising evolution. In future, the knowledge gaps of this future can be investi-
gated. Also, the limitations of low thermal and mechanical stability can be overcome 
by appropriate scaffolds and modifications. Chitosan can be suitably modified based 
on the applications, and this waste material can be put to great applications in the 
future.
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Chapter 29 
Carbon-Based Porous Materials 
in Biomedical Applications: Concept 
and Recent Advancements 

Jnanraj Borah and Anupam Chetia 

1 Introduction 

Nanoscience, or the control of matter at the nanoscale scale (one billionth, or 109th 
of a metre), has accelerated the development of carbon materials over the last couple 
of decades [1]. Even research done on one of carbon allotrope, namely graphene 
has been awarded Nobel Prize in Physics in the year 2010 [2]. Since the beginning 
of 1990, significant efforts have been made to investigate porous carbon materials 
[3–5]. Porous carbon materials (PCMs) are pervasive and essential in several fields 
due to their unique capabilities [5]. Their use in interdisciplinary fields like material 
science, physical chemistry, membrane science, and many more are attributed to 
their outstanding chemical and physical properties [1]. Porous carbon materials are 
utilized in many applications, including supercapacitor and electrochemical appli-
cations, catalysis supports, pollutant adsorption, etc. [6–10]. Their wide availability 
is also a considerable advantage for their use in diverse fields [5]. Particularly in 
biomedical porous carbon materials are explored extensively because of a number 
of their intriguing properties, for example, regular geometry, adjustable pore size, 
pores that are uniform and interpenetrating, abundant framework compositions and 
high surface area, as well as their excellent biocompatibility which are highlighted in 
Fig. 1 [6, 10, 11]. They can interact with different guest species (for example atoms 
as well as molecules or larger molecules), as compared to their bulk counterparts, not 
only with the external surface but also on the entire inner channels. Porous carbon 
materials may be a combination product for two types or the entire three types of 
pores or contain just one type of porous system. When such porous systems exist in
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Fig. 1 Few intriguing properties of porous carbon materials 

the form of a networked or interconnected porous system, these materials are referred 
to be porous materials in a hierarchical way. Furthermore, the current porous system 
or porous systems combination can be arranged in order or disordered in terms of 
size, shape, and location [6]. 

At high temperatures, pyrolysis, as well as chemical or physical activation of 
organic precursors, yield traditional carbon materials with pores, such as activated 
carbon, carbon molecular sieves, and other porous carbon materials. Coal, wood, 
fruit shells, and polymers are examples of organic precursors [12–14]. These carbon 
compounds typically possess a wide range of pore sizes in the micropore and meso-
pore ranges, where micropore corresponds to the pore size <2 nm and mesopore 
correspond to the pore range 2–50 nm [5]. Porous carbon materials can be made in one 
of two ways: nanocasting, which uses a hard template (HT) to construct the carbon 
structure, or direct synthesis, which uses a soft template (ST). Zeolite and silica are 
the most common HTs utilized in the nanocasting procedure [6, 15]. The synthesis 
of porous carbon material using sol–gel synthesis, in which a ST is employed to 
form the porous structure, is referred to as direct synthesis. A polymer/surfactant, as 
well as a carbon precursor and a polymerization agent, make up a ST. In addition to 
porous carbon material created using the aforementioned ways, porous carbon mate-
rial created using naturally occurring resources is also accessible. Coconut husk, 
paddy husk, tea trash, and other naturally occurring resources are offered as low-cost 
materials [6].
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A result of their physiochemical and biological characteristics that are unique 
and different, including bigger surface area and large pores with adjustable porous 
structure, the presence of favourable functional groups comprising π-π stacking and 
an effectively modifiable surface, high thermal convertibility, unique optical qualities, 
high chemical stability, high biocompatibility, and mechanical durability, etc., these 
materials have gotten a lot of attention. The biological applications of such PCM are 
summarised in this short review. 

2 Classification of Porous Materials 

Porous materials are those that have channels or cavities termed as pores. Pores are 
voids in materials that occur between particles of any shape. The porosity of the 
materials is represented by these vacant spots, defined as the proportion of air inside 
the material that corresponds to the total volume filled by the material’s voids divided 
by the total volume of the material. The zone of porous space is continuous where 
there is no solid substance located [16, 17]. 

The diameter of the pores is used to classify porous materials, in accord with the 
“International Union of Pure and Applied Chemistry-USA (IUPAC)”. The categories 
are microporous, mesoporous, and microporous. The pore size of microporous mate-
rials is less than 2 nm, pore diameters in mesoporous materials vary from 2 to 50 nm, 
whereas pore sizes in macroporous materials are higher, exceeding 50 nm. Based on 
this classification porous carbon are categorized into micro, meso, and macro porous 
carbon and are depicted in Fig. 2 [18, 19]. 

Fig. 2 Classification of porous materials based on pore diameter
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3 Carbon-Based Porous Materials 

3.1 Mesoporous Carbon (MC) Materials 

IUPAC’s official definition of the word “Mesoporous Carbon” is a solid material 
that may be disordered or ordered and made up of networks of any number of pores 
with a distribution of 2–50 nm [20]. Ryoo et al. [21] published the very first complete 
structural composition of highly ordered MC material employing a mesoporous silica 
template, and since then, there has been much focus on the synthetically manufactured 
methodologies and their applications [22–25]. Since research had to begin quickly, 
for the purpose of developing mesoporous using carbon precursors and the self-
assembly of copolymer molecular arrays, the rate of development was sped up [26– 
29]. Despite the great range of uses of microporous materials in catalysis, adsorption, 
and separation, there are significant drawbacks due to the processes employed to 
produce them. A few of the disadvantages of activated microporous carbon materials 
comprise: “(a) Slow mass transport of molecules due to the restriction of space that 
the small pore sizes introduce, (b) Low conductivity, as the huge surface functional 
groups and defects in the material increase, decrease conductivity, and (c) Collapse 
of porous structures during treatments such as high-temperature or graphitization” 
[5]. 

New synthetic techniques have been developed in order to expand upon these 
existing constraints. These efforts include, but are not limited to, the following: “(a) an 
increased degree of activation due to the use of physical or mixed physical/chemical 
procedures [30–32] (b) the carbonization of carbon precursors consist of one ther-
mosetting component and one thermally unstable component, which [33, 34] explains 
(c). Catalytic activation of carbon precursors with metal (oxides) or organometallic 
compounds through a catalyst may be used [32, 35–37], (d) The carbonization of aero-
gels or cryogels may be used [38, 39], (e) replicative synthesis using pre-synthesized 
HTs, which involves impregnation, carbonization, and template removal [40, 41], and 
(f) self-assembly using STs, which entails co-condensation and carbonization [42– 
44]” [5]. Only MC compounds having wider pore-size distributions (PSD) emerge 
from methods (a) through (d). i.e. an extensive range of pore sizes and notable 
microporosity. As a result, these tactics are less alluring. With recent advances in 
synthesizing MC materials, methods (e) and (f) are linked to new technologies for 
creating MC materials with critically controlled mesopores. The use of appropriate 
synthetic approaches is necessary in order to develop acceptable MC materials that 
serve certain biological applications [5, 32, 45]. 

3.1.1 Hard Template (HT) Method 

The nanocasting technique was the first and one of the most widely used processes for 
producing MC materials, in which as-synthesized mesoporous silica that had been
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created via the nanocasting process as the host template was used [46]. When meso-
porous silica is produced, it is first used as a HT, and then an organic carbon source 
is added to impregnate and infuse the mesoporous structure. To get ordered MC, 
carbonization or polycondensation of carbon sources at high temperatures followed 
by chemical etching of the silica template, yields the desired product [11, 45]. 
Employing the nanocasting approach, Kim et al. were able to design and fabri-
cate spherical MC nanoparticles having ordered mesoporous architectures by using 
MCM-48 mesoporous silica naonoparticles (SNs) as the HT [47]. Nanocasting, the 
conventional approach for fabricating MC nanoparticles, has many issues when it 
comes to manufacturing hydrophilic MC nanoparticles with uniform spherical shape 
and high dispersity. Organic carbon precursors included in the mesopores cannot be 
effectively removed during the casting process, and a washing step would remove it 
as well [11]. 

In the past, vast amounts of microporous activated carbon have been generated and 
employed as an adsorbent in gas or liquid adsorption. However, carbon compounds 
templated with mesoporous structure were not successfully synthesized until the early 
1980s. Knox and associates detailed the synthesizing method of MC as a method 
employing spherical solid gel as a template [40, 41]. The HT deposition of MCs 
using precisely defined mesoporous structure typically includes the following four 
phases: “(a) production of a silica gel having a defined pore structure, (b) impreg-
nation/infiltration of the silica template with monomer or polymer precursors, (c) 
cross-linking and carbonization of the organic precursors, and (d) silica template 
dissolution”[5]. After the host silica materials are eliminated, formerly occupied 
space by silica components is converted to carbon compounds’ pores, the carbon in 
the host silica pores creates a continuous carbon lattice [5]. 

Knox’s pioneering work continues to be the subject of extensive investigation, and 
this research focuses on using more ordered porous materials to provide templates for 
creating porous carbon materials. A study was performed by Kyotani and others, who 
used zeolites as template materials to create polymer materials and porous carbon. 
Although the exact crystalline structure of zeolites could not be reproduced in the 
templated porous materials, following dissolution of the zeolite frameworks [48–50]. 
Kyotani et al. established a dual step synthetic strategy (chemical vapour deposition 
after impregnation of a substrate), and a microporous carbon was successfully synthe-
sized by the researchers [51]. In the late 1990s, there was a surge of interest in the 
production of ordered MC materials, after an extensive study into the development 
of mesoporous molecular sieves with consistent pore size and a well-ordered struc-
ture, as structural guiding agents, block copolymers, ionic surfactants, and neutral 
amines were used [52–56]. Wu and Bein were investigating the conductivity of 
carbon inside MCM-41’s hexagonally organized cylindrical mesopores, were the 
first to successfully produce an ordered carbon material within ordered silica pores, 
obtaining first ever ordered carbon substance in ordered silicon holes [57]. But, the 
first self-supported highly ordered MC material, which came out in 1999, was made 
by Ryoo et al. and their group [21], who synthesised MC materials, CMK-1, MCM-
48, an ordered aluminosilicate with structural characteristics, was used as a HT. In the 
third month after this publication SNU-1, an ordered MC material, was synthesized
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by Hyeon et al. and authors, MCM-48 was used as a template, and phenolic resin was 
used as a carbon precursor. Ordered MCs have also been synthesized with the use 
of chemical vapour deposition (CVD) [58]. As reported by Ryoo’s group, this group 
developed a CVD method to manufacture ordered mesoporous CMK-4 at 1073 K by 
using acetylene as a carbon precursor and the aluminosilicate MCM-48 as a template. 
The structure and pore size of MC materials created utilizing hard-template synthetic 
techniques are significantly affected by the molecular structure of carbon precursors 
and carbon precursors like sucrose, sucrose, and furfuryl are frequently used with 
loose molecular structures like sugar, sucrose, and furfury and frequently produce 
MCs with micropores on the pore walls [21, 45]. With regard to potential applica-
tions, MC compounds with graphitic pore wall structure are gaining popularity [5, 
59, 60]. For instance, the following research groups are exploring the benefits of 
this kind of material. Carbon materials with a well-developed pore structure have 
an amorphous pore-wall structure, which is distinct from graphitic crystallinity. “To 
make ordered MC with graphitic structure, three different synthesis techniques were 
utilized: the first entails the use of carbon precursors with fused aromatic struc-
tures, the second utilizes high temperature (>900 °C) CVD, and the third consists of 
treating carbon with amorphous pore walls at elevated temperatures (above 2000 °C) 
in order to promote graphitization” [5]. A number of methods for creating uniformly 
pored disordered MC materials have been added, rapid advancements in the forma-
tion of ordered MC compounds have been made with diverse geometries utilizing 
ordered silica as templates. Templating with SNs or using crystals anodic alumina, 
silica gel, or alumina– silica and as a template, copolymerize carbon precursors with 
alkoxide inorganic precursors like tetraethylorthosilicate (TEOS), are included in 
these procedures. The development of porous carbon materials with varying hierar-
chical pore architectures and/or intriguing morphologies, so progresses[5]. A group 
of researchers created MC material through carbon and silica nanocomposite, which 
was created by the copolymerization process of TEOS and furfuryl alcohol [61]. 
Han’s team created a MC from SNs with a diameter of 12 nm that was the template for 
the synthesis. By partially impregnating the mesocellular aluminosilicate foam with 
phenol/formaldehyde, carbonising, and then removing the template, Hyeon, Sohn, 
and Lee created a mesocellular carbon foam with homogeneous mesopores [62]. 

3.1.2 Soft Template (ST) Method 

Block copolymers, for example, have been widely used as STs; surfactants and 
amphiphilic compounds have also been widely exploited as STs in the generation 
of ordered mesoporous oxides. Since researchers at the Mobil Company initially 
reported on the use of mesoporous silica in 1992, ordered inorganic oxides have 
featured regularly in the investigation of nanomaterials [5, 52]. Despite the fact that 
ordered polymeric mesoporous materials, which are not as popular as their inor-
ganic siblings, have been investigated for over two decades, these materials, which 
first appeared in 1988, were the first ordered polymeric mesoporous materials to 
be discovered [63]. Porous carbon materials have distinct physicochemical features,
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which may act as a technological blank canvas, ordered MC is emerging sponta-
neously, on which many technologies may be painted. The self-assembly method, 
on the other hand, makes it difficult to make organized MC compounds. It is impor-
tant to note that there are four important aspects to consider while synthesizing MC 
materials using STs: “(1) Precursor components have the capacity to organize into 
nanostructures on their own. (2) At least one pore-forming component and at least 
one carbon-yielding component must be present. (3) the pore-forming component’s 
stability, which allows it to withstand the temperature necessary during carboniza-
tion for the purpose of curing the carbon-producing component while also being 
readily dissolved with the least amount of carbon yield and (4) the capacity of the 
carbon-yielding component to create a strongly cross-linked polymeric material that 
retains its nanostructure after the pore-forming component has been dissolved or 
detached” [6]. Until now, a small number of materials have proven up to these speci-
fications. The first reported effort to synthesis ordered MC material, Moriguchi et al. 
did this by using micelle templates [64]. The result of their synthesis of MCM-41 
inspired them to employ the surfactant cetyltrimethylammonium bromide (CTAB) 
as a template and lead to the successful assembly of phenolic resin and surfactant 
mesophases. It has also been investigated if a ST, like CTAB, may be used to synthe-
size MC materials. The unique phase behaviours and adjustable features of block 
copolymers are what interest researchers, whereas self-assembly and diverse macro-
molecular structures are the main reasons for their appearance. Several investigations 
were performed to synthesis mesoscopic carbon structures using the direct carboniza-
tion of self-assembled block copolymers [5, 65, 66]. Notable here is that the group 
of researchers, Matyjaszewski et al., sought to create carbon nanostructures using 
carbonization of a self-assembled framework [67]. Over the past two decades, there 
has been a considerable amount of study into the self-assembly of block copolymer 
thin films. It was not a happenstance that ordered MCs that were first synthesized 
using STs were found to be in the shape of thin films [5]. 

3.2 Carbon Nanotubes 

Carbon nanotubes (CNTs) (Fig. 3c), the first observation of which was made in 1991 
by Japanese researcher Sumio Iijima, are a different type of carbon seen for the first 
time in the process of synthesizing fullerenes [16]. These tubes have been referred to 
as graphene sheets that are twisted into themselves in the shape of microtubes, which 
subsequently is to be changed to the term multiwall carbon nanotubes (MWCNTs). 
In the early 90s, single-walled carbon nanotubes (SWCNTs) were synthesized by 
improving a previously known technique of synthesis in which an electric arc was 
used [68–70]. Carbon nanotubes form hexagonal arrays of carbon atoms on their 
surfaces, and other molecules or atoms interact strongly with these surface arrays. 
Multi sheet nanotubes are made of many stacked graphene sheets that are twisted 
concentrically with a space between two sheets of roughly 3.6 Å, somewhat more 
than the space between two sheets in graphite. The size of the nanotubes ranges
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from 1 to 50 nm, and their lengths may touch 1 μm. SWCNTs are made up of a 
graphene sheet that has been coiled around itself to produce a tube with a diameter 
ranging from 0.4 to 3 nm. CNTs are built by one or more sheets of carbon atoms, 
similar to graphite, which is then coiled to create a tube. CNTs are well-suited 
for use in both the mechanical and electrical processing, with high tensile strength, 
superior adhesion, and exceptional conductivity. These tubes have different electrical 
characteristics, some of which are metallic and others semiconductive. SWCNTs and 
MWCNTs are synthesized by the same general process, but there is a slight difference 
in how the catalyst is applied. While nickel, iron, or cobalt is usually used, generally 
referred to as a metal catalyst, which is necessary for the synthesis of fullerenes. 
These techniques generally use arcs discharge, laser ablation, and chemical vapour 
deposition to fabricate them. While carbon nanotubes are useful in many industries on 
an industrial scale, their exceptional properties in relation to the quantity of impurities 
are more advantageous on an individual level when it comes to being employed in 
reinforcement polymers and composites, nanoporous materials. Carbon nanotubes 
have received a lot of interest since they were discovered, thanks to their highly 
specific features. Their exceptional properties allow them to be used in applications 
like energy, biomedical, etc. [16]. 

Fig. 3 a Graphene, b graphite, and c carbon nanotube is shown in a conceptual design (reprinted 
with permission from Ben et al. [16], copyright 2020, MDPI)
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3.3 Activated Carbon 

The porous, amorphous organic substance known as activated carbon has a compli-
cated structure and a high carbon content. Activated carbon refers to a class of mate-
rials having a large internal surface area and porosity, and therefore a high capacity 
of chemical absorbing from liquids and gases. Activated carbons are highly flexible 
industrial adsorbents that are utilized in a broad variety of applications involving the 
removal of unwanted species from liquids or gases via adsorption [16, 71]. Acti-
vated carbon, which comes in a variety of forms and is produced from a variety of 
materials, has a long history of usage in oral medicine [72]. The unique character-
istics of activated carbon adsorbents, as well as their cheap cost when compared to 
other inorganic adsorbents such as zeolites, account for their strong market posi-
tion. Any material with a high carbon concentration may be used to make activated 
carbon. Activated carbon is usually made in two steps. To make a carbon surface, 
the first step is to carbonize the source material. This is followed by chemical oxida-
tion or an eat treatment to improve the surface of the material produced. Activated 
carbon is extensively utilized in industry for a number of purposes, each of which 
necessitates a specific kind and form of activated carbon. Activated carbons are clas-
sified for general purpose depending on their physical characteristics, e.g. powdered, 
granulated, and are shown in Fig. 4 [16, 71]. 

Fig. 4 Activated carbon types: a activated carbon powder, b granular activated carbon, c extruded 
activated carbon, d impregnated activated carbon, and e activated carbon fabric are all examples of 
activated carbon (reprinted with permission from Ben et al. [16], copyright 2020, MDPI)
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3.4 Fullerenes 

Since their discovery and mass manufacturing, the Fullerins have played a pivotal 
role in science, culminating in the awarding of the 1996 Nobel Prize in Chemistry to 
Kroto, Curl, and Smalley for their groundbreaking discovery. Fullerene molecules are 
completely made of carbon and come in the shape of a hollow spherical, ellipsoid, or 
tube. Buckyballs are another name for spherical fullerenes. The remarkable symmetry 
of the C60 molecule is a significant feature. Many scientists predicted numerous 
technological possibilities based on the unusual physical and chemical characteristics 
of these new forms of carbon. However, fullerenes’ poor processibility has posed a 
significant challenge in the desperate quest for therapeutic uses. In aqueous media, 
C60 is insoluble and readily agglomerate. Chemical reactions with high chemical 
activity and a wide range of adjustability are generating a lot of attention for their 
potential uses in developing new medicinal materials [73–75]. 

3.5 Graphene 

Graphene is linked to graphite, and it was first extracted experimentally from graphite 
in 2004. It is a hexagonal planar material (Fig. 3a) in the form of a two-dimensional 
crystal consisting of a simple plane of carbon atoms in sp2 hybridization, frequently 
likened to a honeycomb network. It’s best defined as a single layer of carbon atoms 
tightly packed in a structure of a benzene ring in a pure carbon monocrystalline 
graphitic sheet. “A top-down method from graphite (Fig. 3b), which consists of 
graphene layers stacked parallel to each other in a three-dimensional, crystalline, 
long-range arrangement”, is the most common way to produce graphene [76]. 
Because of its strictly two-dimensional structure, graphene has unique thermal, elec-
trical, and mechanical characteristics, and has enormous promise for technological 
purposes. “Graphene has a large theoretical specific surface area (2630 m2 g−1), high 
intrinsic mobility (200,000 cm2 v−1 s−1), a high Young’s modulus (~1.0 TPa), high 
thermal conductivity (~5000 Wm−1 K−1), high optical transmittance (~97.7%) and 
good electrical conductivity” [76]. Membranes made of graphene are impervious to 
all liquids and gases (i.e., are vacuum-tight). The wide range of excellent biolog-
ical and physicochemical characteristics mentioned above demonstrates graphene’s 
potential for use in a wide range of scientific areas. Indeed, graphene-based mate-
rials have been used in a number of areas, including bioelectronics, tissue engi-
neering, drug delivery, antimicrobial materials creation, biosensing, gene transfer, 
cancer therapy, and other biomedical applications since their introduction. Mechan-
ical strength, electrical conductivity, biomolecule adsorption are the most responsible 
properties that contribute graphene based biomedical applications [16, 76].
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4 Biomedical Application 

Due to the intriguing properties of porous carbon materials, a wide horizon of possi-
bilities opens for use in biomedical applications. A few potential biomedical appli-
cations of porous carbon materials are shown in Fig. 5 and discussed in the following 
texts. 

4.1 Drug Delivery 

An efficient carrier or vehicle of drugs is a very challenging element in the drug 
delivery process. For drug delivery, a variety of carriers have been used, including 
polymers, nanoporous silica, nanotubes, micelles, and nanoporous carbon [77]. 
Porous materials are especially favourable to drug delivery matrices as the size 
of the pores and porous structures are controllable [78]. Nanoporous carbons, or 
functionalized nanoporous carbons, have recently piqued attention in the world of 
drug delivery [77]. A nanoparticle based targeted drug delivery system in Fig. 6. 
The porous carbon based drug delivery field mainly includes immediate, sustained,

Fig. 5 Potential biomedical applications of porous carbon materials 
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Fig. 6 Nanoparticle-based targeted drug delivery system

controlled and targeted drug delivery systems [10]. One of such materials is Fullerene, 
which is an inorganic nanoparticle that is widely available due to their tiny size (1 nm) 
and biological activity. The behaviours of this allotropic carbon form are based on the 
characteristics of the both fullerene core and its chemical change. The fullerene core 
is very hydrophobic, whereas functional groups linked to the core give additional 
intricacy to the behaviour. By adding hydrophilic components, Fullerene becomes 
water-soluble and can be used to transport drugs and genes [73]. A commonly used 
drug for the treatment of tonsillitis, pharyngitis, and sinusitis is clarithromycin, which 
causes adverse effects such as mucous tissue swelling. The nanoporous carbon, func-
tionalized with amine groups, was utilized as a carrier molecule to minimize the 
negative impact of clarithromycin. The nanoporous carbon modified with amine was 
completely biocompatible [79]. Cytotoxicity assessment also studied MOF-derived 
nanoporous carbon and found the narrow distribution in pore size suited for the 
controlled release of cisplatin [80]. Zhang et al. employed porous carbon monoliths 
in their research with orderly macropores and uniform mesopores of around 5.2 nm as 
a drug carrier, also address a lack of solubility of the valsartan in water [77]. CNT can 
also be used in drug delivery systems. Both single and multi-walled carbon nanotubes 
hold exclusive mechanical, electrical, and structural properties which lends them 
higher forte, litheness, and electrical conductivity toward various biological entities 
that can be utilized for drug delivery. Functionalization reduces this bundling effect 
that occurs due to the van der Waals forces between the adjacent nanotube surfaces, 
which aids in enhancing the biocompatibility and thus helps in cellular internalization 
and movement. Drug entities can be attached to the functionalized CNTs sidewalls 
through covalent or noncovalent bonding. Saikia N and Deka RC concluded that the 
optimum length and chirality of the CNTs is essential to comprehend the electronic 
characteristics of functionalized CNTs to understand the mechanism of the delivery 
of drugs. Functionalized CNTs lead to PEGylation, which enhances the stability 
of bodily fluids. On the CNTs’ terminal functional groups or on the PEG chains, 
hydrophilic and hydrophobic drug materials can be coupled with PEGylated CNTs 
[81]. Anticancer medicines such as doxorubicin, flutamide, cisplatin, methotrexate,
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and paclitaxel have all been effectively conjugated with CNTs. Integrin-binding 
arginine-glycine-aspartic acid (iRGD)-conjugated polyethyleneimine (PEI) func-
tionalized MWCNTs coupled with candesartan (CD) were developed by Chu et al. 
These components were constructed using plasmid AT (2) (pAT(2)). They used 
iRGD-MWCNT-CD to target tumour endothelium’s avb3-integrin and AT1R, as well 
as lung cancer cells. A synergistic reduction in vascular endothelial growth factor 
(VEGF) was seen when the anticancer medicinal molecule was combined with pAT 
(2), suggesting that the molecule effectively inhibited angiogenesis. Curcumin, pacli-
taxel, docetaxel, vinca alkaloids, camptothecin, quercetin, oridonin, and other herbal 
anticancer medicinal substances have been successfully delivered to cancer cells 
when coupled with CNTs. Using a mix of chemotherapy and photothermal treat-
ment, Zhao et al. created a drug delivery system that responds to multiple stimuli. 
Nanoparticles with great loading efficiency of DOX were synthesized and employed 
as near infrared-responsive drug carriers by the researchers [81]. Chemotherapeutic 
drugs [82], genes [83], peptides [84], and tissue engineering [85] have all been used 
to deliver these materials using graphene or its derivatives. It is possible to adsorb 
hydrophobic medicines, such as doxorubicin and docetaxel, onto graphene through 
simple physisorption via stacking and utilizing antibodies to target just cancer cells. 
Stacking and electrostatic or hydrophobic interactions of graphene provide a high 
carrying capacity of poorly soluble drugs deprived of conceding drug strength. The 
oxygen-rich surface of the GQDs is the key feature that makes them appropriate for 
drug adsorption and increasing colloidal strength in vivo, along with the features of 
a mono atomic layer and compact size. The fluorescent characteristics of graphene 
quantum dots render them traceable when targeted to e.g., cancer cells [86]. Tian 
et al. developed a framework of zeolite imidazolate (ZIF-8)-embedded DOX-loaded 
GQDs, which showed an acidic pH-responsive drug release behaviour.

4.2 Photothermal and Synergistic Therapy 

Photothermal therapy (PTT) has been commonly used to control cancer as a treat-
ment process where the absorption of near-infrared (NIR) light has been converted 
into cytotoxic heat by the utilization of NIR resonant nano agent to destroy malig-
nant cells while reducing aggressive damage to normal tissues. Direct thermal abla-
tion of cancer cells is known to usually require an elevated temperature (e.g. more 
than 50 °C), which may harm the other healthy cells and tissues [77]. But PTT has 
considerably milder photothermal effects, and the tumour ablation can be efficiently 
caused by raising the temperature at the tumour location to 43–45 °C and main-
taining the hyperthermia for some time. NIR light with wavelengths ranging from 
700 to 1100 nm can profoundly enter the tissues (up to 10 cm) while being absorbed 
by tissues and skin at a minimum level, allowing for efficient cancer cell ablation 
[87–89]. MCNs are distinguished from other photothermal agents by their significant 
optical absorption in the near-infrared range, indicating their possible usefulness as 
an NIR-resonant nanoagent for converting NIR light into heat and causing cancer
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cell ablation. The MCNs were capable of achieving chemo photothermal cotherapy 
after being loaded with anticancer medicines [11]. MCNs updated with FA and PEI 
were developed by Xu et al. [10] for targeted drug delivery and chemo-photothermal 
treatment. HeLa cells absorption of drug-loaded MCNs which exaggerate folate 
receptors could be considerably improved by modifying FA. In the presence of near 
infrared light, the DOX filled FA/PEI/MCNs displayed increased effectiveness of 
treatments compared to chemotherapy alone, and the produced heat could not only 
lead to tumour cell demise but also expedite the release of DOX. 

Carbon materials could be used as drug carriers alone or with the combination 
of others. Such as mesoporous silica covered carbon was produced and employed 
for drug delivery due to its increased biocompatibility and functionalizable surface. 
Wang et al. [90] developed a coreshell graphitic carbon–silica nanospheres system 
that had a large capacity of drug loading as well as a regulated drug releasing 
sequence. The semi graphitized carbon demonstrated a number of advantageous 
features, including: (1) enhanced drug receiving capacity due to the sp2-hybridized 
structure, and (2) improved photo-thermal transfer capability due to graphitic pore 
wall hotspots. Furthermore, the hydrophilicity and targeted drug delivery of the meso-
porous silica shell might be improved. Wang et al. [91] also coupled a novel HB5 
aptamer to a MC–silica composite loaded with DOX (MSCN-PEG/DOX), which 
might be used to target HER2-overexpressed breast cancer cells (SK-BR-3). The 
combination index (CI) of MSCN-PEG-HB5/DOX chemotherapy and photothermal 
therapy was 0.253, showing a synergistic effect. Zhang et al. [92] published another 
study where MCNs with a radius of 75–100 nm were combined with copper sulphide 
(CuS) nanoparticles (NPs) [10]. 

As in many cases, conventional cancer treatment fails to entirely remove the 
tumour. Anti-cancer treatment may be improved by combining several therapeutic 
modalities in a synergistic or combination manner, which can lessen systemic toxi-
city and adverse effects [93, 94]. The synergistic impact of combining chemo and 
photothermal treatment in one system may boost cancer therapy’s effectiveness 
[95, 96]. For chemo and photothermal therapies, Zhou and coworkers have created 
MWCNT loaded with DOX magneto fluorescent carbon quantum dot (CQD), a newly 
found nano-compost [94]. Combining photothermal PTT and photodynamic therapy 
(PDT) on cancer is possible using a nanohybrid of reduced nanographene oxide 
(rGO) with a polyethylene glycol-modified Ru(II), which is termed as the Ru-PEG 
nanohybrid. Through—hydrophobic interactions and π-π stacking, the photosensi-
tizer and imaging agent Ru-PEG is attached to the delivery and PTT agent rGO [95]. 
Facile one-step fabrication of a bimodal treatment system (Ru@SWCNTs) for PTT 
and two-photon PDT (TPPDT) was achieved by depositing Ru(II) complex on the 
surface of SWCNTs through noncovalent π-π interaction and it is found that the 
combination of this bimodal PTT and TPPDT is more effective in fighting cancer.
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4.3 Bio-imaging 

The speed of developing excellent studies and tactics for efficient tumour diagnosis 
has accelerated as our understanding of the pathophysiology of diverse malignancies 
has deepened. Researchers have recently focused their focus on the following topics 
in order to improve treatment efficiency: (1) early detection and diagnosis; (2) tailored 
medication administration, and (3) real time observing in vivo. These procedures, 
known as “theranostics,” integrate cancer diagnosis and therapy technology. As a 
result, a slew of imaging approaches that incorporate many aspects into a multi-modal 
therapeutic platform and produce excellent outcomes have sprung out [46]. 

4.4 Fluorescent Imaging 

Because of their easy functionalization, high biocompatibility, and supramolecular p– 
p stacking, MCNs have emerged as a new theranostic nanoplatform. The illumination 
of fluorescent compounds that have been implanted or loaded attached to MCNs 
can be temporarily quenched by supramolecular p–p stacking, but the fluorescence 
will rebound when the molecules are disengaged from the MCNs. Li et al. [97] 
created a fluorescent aptasensor by modifying a ssDNA probe (Cy3-labeled) (P0-
Cy3) on the surface of oxidized MC nanospheres (OMCN). The aptasensor was able 
to discover the mucin1 protein in liquid and measure cancer cells in a solution with 
high selectivity [10]. Using an organic carbon source of citric acid solution and a 
precursor carbonized in hot solvent method, Kong et al. [98] produced hydrophilic 
MCNs with ease. The MCNs had homogenous pores and particle size distribution of 
around 2.7 nm and 100 nm, respectively, in the prepared state. With a quantum yield 
of 37%, MCNs produced using this approach have extremely steady multicolour 
and up conversion photoluminescence capabilities. Furthermore, the MCNs were 
well-tolerated by cancer cells, allowing them to be visually labelled when exposed 
to various wavelengths ranging from ultraviolet to near-infrared [46]. 

4.5 Magnetic Resonance Imaging 

Magnetic resonance imaging is a strong noninvasive monitoring tool with great 
structural perspective. Inorganic nanoparticles, such as Fe3O4, gadolinium (Gd), 
and manganese oxide, are typically incorporated into MCNs to generate magnetic 
composites for MR imaging, with the mesoporous channels of the MCNs serving 
as room for cargo storing [99–101]. With MnOx-decorated HMC nano capsules 
(HMCNs), Zhang and colleagues developed some good MCN-based stimuli respon-
sive and diagnostic imaging nanosystem. Supramolecular p–p stacked between the 
carbon based structure of the MnOx-HMCNs and the aromatic drug molecules was
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also used to create pH/ultrasound-sensitive drug release nano platforms with an excel-
lent anti metastasis effect and great achievement for reversing cancer cell multi drug 
resistance [46]. 

4.6 Photoacoustic Imaging 

Photoacoustic (PA) imaging is a strong diagnostic imaging method that uses ultra-
sonic waves as the signal and a pulsed laser as the energy source. When compared to 
traditional optical imaging, PA overcomes the disadvantage of limited imaging depth 
and efficiently increases level of signal transmission into tissues, which is attributed to 
the ultrasonic wave’s significantly longer wavelengths. Lee and colleagues developed 
a hollow mesoporous PEG-Si/C NP for pH responsive administration and photoa-
coustic imaging guided chemo thermal treatment. Wang and colleagues developed the 
MemHsp70 receptor-mediated multifunctional OMC nanospheres, a “four-in-one” 
theranostic system. PEI and a memHsp70 receptor-targeting peptide (TKD) were 
grafted on DOX-loaded OMCN in this system. This theranostic device was able to 
provide discrete PA imaging, NIR/pH sensitive drug/gene release, and synergistic 
targeted therapy as a result [46]. 

4.7 Antibody-Based Biosensors for Biomedical Applications 

Antibody-based biosensors also termed as immunosensors play a crucial role in rapid 
diagnosis of diseases and timely diseases of such diseases. Immunosensors are being 
used to plenty of analytes including contaminants in food and environment, disease 
markers, illicit drugs, and many more. Sensors benefit greatly from the high speci-
ficity and sensitivity provided by antibodies, which are an excellent biorecognition 
component. Laboratories, high end equipments along with qualified personnel are 
required in vitro techniques, which are at the same time consumes much time. A 
variety of sensor devices rely on antibodies (Abs), which are among nature’s most 
delicately built and designed molecules owing to their exceptional target selectivity 
and affinity [102]. A disease system’s primary job is to keep the body safe from 
potentially hazardous infectious organisms. As part of the body’s defensive mech-
anism, the immune system identifies and categorizes all cells and molecules inside 
the body as either harmful or non-harmful. Specialized immune system cells create 
immunoglobulins (i.e. antibodies) that selectively bind these antigens in the influx 
of foreign molecules (i.e. antigens). Processing and recognition of the antigen are 
the initial steps [103]. When an antigen is detected, the acquired immune system 
generates an army of immune cells that are specialized to target that antigen. As a 
result of their high affinity and specificity, antibodies are effective biorecognition 
elements. As a result, they make excellent identification components for sensors. 
Analytes may be detected using a variety of biosensors based on antibodies. “(i) the
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ability to immobilize recognition elements (biological molecules) while maintaining 
their natural activity; (ii) the accessibility of the recognition element to the relevant 
analyte in solution; and (iii) low non-specific adsorption to the solid support” are 
three critical factors that determine the performance of a bio/immuno-sensor [104, 
105]. An immunosensor’s most critical step is to immobilize antibodies on a sensor 
surface without affecting their specificity or immunological activity. The detection 
limit, sensitivity, and overall performance of the immunosensor are all affected by 
the immobilization stage. Non-covalent, covalent and affinity based immobilization 
are the three techniques for immobilization of antibody onto sensor surface. 

Carbon nanomaterials play a crucial role in bioelectrocatalytic processes owing 
to their large specific surface area and greater biocompatibility. Because of its 
ability to incorporate large surface area, nontoxicity, and good biocompatibility, 
carbon nanofibers (CNFs) are particularly appealing in bioanalytics [106]. Conven-
tional CNFs (CNFs) were shown to be excellent for mass transfer, catalyst support, 
and adhesion, whereas porous carbon nanofibers (PCNFs) are found to be better 
for electrical conductivity and adsorption. PCNF/RTIL (room temperature ionic 
liquid) membranes have been developed by Sheng et al. (2010) to facilitate direct 
electron migration of ferrous haemoglobin proteins in a suitable environment 
[107]. Different carbon material based immunosensors are being used for carci-
noembryonic antigen detection, carbohydrate antigen detection, miRNA detection 
[106, 108, 109]. (Table 1).

5 Challenges and Need for Future Research 

Carbon-based porous materials (CPMs) have great attention due to their excellent 
properties. Various devices based on these materials give effective techniques for 
therapy, diagnosis, and imaging. However, there have been several concerns about 
the safety of CPMs when used in biomedical scenarios. The persistence of CPMs 
in biological systems is thought to be a contributing factor to many of the toxicity 
and long-term impact issues. The pharmacokinetics, metabolism, long-term in vivo 
effects of CNMs, and toxicity must all be studied in detail. Studies on the toxicity 
of CPMs have yielded inconsistent results about their ability to be used in biological 
applications. Toxicity has been shown to be affected by factors such as the concen-
tration of the substance, its lateral dimension, its surface qualities, and the kinds and 
presence of functional groups it contains. In addition, its manufacturing requires a 
significant amount of time and money, making it difficult for mass production. As a 
result, improvements to the problems of creating vast quantities of non-toxic carbon 
nanomaterials at low cost and speed are urgently needed. In the future, CPMs could 
be combined with new, intuitive guiding moieties to allow them to directly reach the 
target cells, or researchers could develop carbon nanomaterials that could be driven 
from the outside to the affected tissue or organ, thus avoiding the negative effects 
of CPMs on nearby healthy tissues. Nano-parous carbon materials deriving from a
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Table 1 Some significant studies reporting the use of porous carbon based materials in biomedical 
applications 

Porous carbon 
materials 

Specification Applications References 

1. Meoporous carbon 
materials 

Displayed high loading 
efficiency of DOX 

Near infrared responsive 
carriers 

[82] 

Loaded with anticancer 
medicines 

Capable of achieving 
chemo photothermal 
cotherapy 

[11] 

Updated with FA and PEI For targeted drug delivery 
and chemo-photothermal 
treatment 

[79] 

Mesoporous carbon–silica 
composite loaded with 
DOX(MSCN-PEG/DOX) 
with a novel HB5 aptamer 

Used to target 
HER2-overexpressed 
breast cancer cells 
(SK-BR-3) 

[93] 

Fluorescent aptasensor 
with a ssDNA probe 
(Cy3-labelled) (P0-Cy3) on 
the surface of oxidized 
MCN 

The aptasensor was able 
to discover the mucin1 
protein in liquid and 
measure cancer cells in 
solution with high 
selectivity 

[79] 

Multifunctional OMC 
nanospheres (MemHsp70 
receptor-mediated) 

Able to provide discrete 
PA imaging, NIR/pH 
sensitive drug/gene 
release, and synergistic 
targeted therapy 

[46] 

2. Carbon nanotubes Functionalized CNTs Leads to PEGylation, 
which improves constancy 
in the body fluids 

[82] 

Doxorubicin, flutamide, 
cisplatin, methotrexate, 
paclitaxel, etc., conjugated 
with CNTs 

Anticancer therapy [82] 

Integrin-binding 
arginine-glycine-aspartic 
acid (iRGD)-conjugated 
polyethyleneimine (PEI) 
functionalized MWCNT 
conjugated with 
candesartan (CD) 
assembled with plasmid AT 
(2) (pAT(2)) 

They targeted 
avb3-integrin, AT1R of 
tumor endothelium and 
lung cancer cells with 
iRGD-MWCNT-CD 

[82]

(continued)
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Table 1 (continued)

Porous carbon
materials

Specification Applications References

3. Fullerene With the addition of 
hydrophilic components 

Can be used to transport 
drugs and genes 

[74] 

4. Graphene With their derivatives Explored for the delivery 
of chemotherapeutic 
agents, genes, peptides 
and tissue engineering 

[83–85] 

Zeolite imidazolate 
(ZIF-8)-embedded 
DOX-loaded GQDs 

Showed an acidic 
pH-responsive drug 
release behaviour 

[87] 

5. Nano-compost MWCNT loaded with 
DOX magneto fluorescent 
carbon quantum dot (CQD) 

PTT and PTD [97] 

Ru-PEG nanohybrid PTT and PTD [96] 

Ru@SWCNTs PTT and TPPTD [96]

metal organic framework and carbon quantum dots are also prospective options for 
future biological modification and development [81]. 

6 Human Health Effect of Carbon-Based Porous Materials 

Though the introduction of carbon-based porous materials has paved the way for 
the early detection, delivery, and diagnosis of a variety of disorders but they possess 
some harmful effect on human health. Several research analysed the impact of carbon 
based porous materials on different cell types. Numerous toxic effects of carbon 
nanomaterials, including DNA damage, mitochondrial dysfunction, ROS genera-
tion, lysosomal damage, and eventual cell death via apoptosis or necrosis. Many 
cytotoxicity outcomes for carbon-based materials could be due to a variety of vari-
ables, including changes in the structures of carbon nanomaterials or physicochem-
ical properties, target cell types, and particle dispersion methodologies [110]. These 
materials also have immunological effects. Some reports have demonstrated that 
af-SWCNTs were macrophaged and located in lysosomes, resulting in damaged 
mitochondrial function and phagocytic activity [111]. Acid-treated MWCNTs and 
taurine functionalized MWCNTs were found to cause considerable cell death and 
decreased cellular phagocytosis [112]. So, it is important to evaluate the materials’ 
potential toxicity and determine the physicochemical parameters that cause toxicity.
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7 Conclusion 

Porous carbon materials are attracting the scientific global research community due 
to their appealing physiochemical properties, adsorption capacity and greater surface 
area. Some widely researched porous carbon materials such as MC, carbon nanotube, 
graphene, fullerene, and activated carbon are discussed in this mini review. The 
advancement of growth techniques of these materials with superior physical and 
chemical properties makes them good candidate for different applications including 
biomedical field. Porous carbon materials definitely have a profound impact on 
biomedical fields and are being employed in drug delivery, medicines, bio-imaging 
and many more. However, production of porous carbon materials at a rapid pace and 
a lower cost, and with zero toxicity is a matter of tremendous research topic. 
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Chapter 30 
Fanatical Clout of Porous Carbon 
Materials—A Peek in Therapeutics 

Madhu Raina, Sonia Sharma, and Sakshi Koul 

1 Introduction 

Porous materials are considered to be important elements for diverse maneuverings 
owing to their intrinsic aptitude to set up network with various atoms, molecules 
as well as ions. This interaction remains operational at the surface level which 
is maintained within the structure as well. Apparently, such interactions became 
prominent during the development of supercapacitors which encompassed the usage 
of ruthenium oxide (RuO2) electrodes [1]. The interface between these electrodes 
and electrolytes thereof exhibited an uncommon capacitance which was quite hefty 
than expected rates during redox reactions. Porous materials are, therefore, versatile 
resources with significant industrial applications. 

Carbon, one of the most important components on this planet, is a non-metallic, 
tetravalent element. Its abundance and unusual ability to form polymers at varying 
temperatures enable it to serve as a common element of all life forms. It is the second 
most abundant element in human biomass (about 18.5%) exceeded only by oxygen 
[2]. The atomic structure of carbon imparts several inimitable bonding potential 
forming different structures with divergent attributes in diverse organic compounds. 
During the initial times, carbon was largely utilized in the form of charcoal and 
carbon black. While the former consists of combusted wood or coal with removed 
volatile substances, the latter comes when vegetable oil is moderately flamed. In the 
Stone Age which spans from 35,000 to 11,000 BC both the carbon forms especially 
charcoal was used as a black color pigment for making images in the Altamira Cave 
(Spain). Such special illustrations signify the apogee of Paleolithic cave art across
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Europe [3]. Similarly, the Egyptians and Sumerians in 3750 BC utilized carbon as 
smokeless fuel and in the bronze manufacturing process to reduce copper, tin, and 
zinc minerals [4]. This exploitation continued for centuries. 

The first and foremost evidence of the medicinal use of carbons dates back to 1550 
BC when Egyptians used charcoal in papyrus and applied the same to adsorb stinging 
odors from moldering wounds. They reportedly used the same to treat intestines-
related problems also [5]. However, the therapeutic use of carbon to treat various 
diseases was later brought into forefront by the Greeks somewhere during ca. 460– 
370 BC and Romans for the duration of AD 23–79. Among different diseases known 
to get cured using carbon that time included epilepsy, food poisoning, anthrax, and 
chlorosis [3, 6]. Further, Greeks were of the belief that water should be consumed 
only after being filtered using carbonized wood. This would facilitate the elimination 
of bad flavor and odor from it [7]. This did not remain limited to Greek and Rome 
only but during 450 BC Indian manuscripts also referred to the use of sand and char-
coal filters as a means to purify water to make it amenable for drinking [5]. Carbon 
as a means of medical precaution gained a momentum in AD 157 when a medicine-
based article from Claudius Galvanometer published the advantages of using carbon 
possibly to treat myriad collection of diseases. Consequently, huge information kept 
on adding to the medicinal values of carbon from time to time depending upon the 
information available at a particular time. One such information was poured from 
one of the earliest Sanskrit manuscripts during AD 200 which described the simple 
disinfection procedure of water using carbon. The document emphasized that keeping 
water in copper vessel and then given ample sunlight does not guarantee its disin-
fection but it must require coal filtration to assure degradation of contaminants from 
it [5]. This maneuver sustained for a pretty long time. Above and beyond thousands 
of years of history with heaps of medicinal and therapeutic applications, different 
techniques were discovered to activate the charcoal, so as to improve different prop-
erties thereof to a greater extent. And it was only twentieth century’s wakeup call that 
presaged the most stupendous capacity of carbon-based substances: “the possibility 
of enclosing a huge porosity into the carbon material structure” [8]. This activation, 
therefore, processed the material to have small, low-volume pores roofed by the 
atomic carbon and produced activated carbon. Known to amplify the surface area 
available for adsorption of different substances and/or chemical reactions, these new 
materials have freshly been designated as the nanoporous carbons. Among different 
properties acquired by these porous materials, the most basic includes the surface area 
and porosity. Secondary analysis including pore shape, chemical nature and compo-
sition at the surface, exterior roughness or behavior toward electrical field is equally 
vital to comprehend their potential so as to unravel their other important parame-
ters [8]. Nevertheless, hierarchical porosity certainly remains decisive. According to 
International Union of Pure and Applied Chemistry (IUPAC), nanopores are featured 
with the following pore size [9]. However, the maximum aperture does not exceed 
100 nm. 

(a) pore diameter <2 nm-Micropores 
(b) diameter range from 2 to 50 nm-Mesopores 
(c) width >50 nm-Macropores.
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In all probability, the structure of the porous carbons is the most imperative feature 
affecting its overall properties including chemical stability, electrochemical interca-
lation of active substances, potential of catalysis, sorption, etc. At the same time, it 
is quite doable to regulate the morphology of porous carbon material (PCM) both 
internal and external using appropriate molds [10–12]. Whereas the former include 
efficient or chaotic micro-, meso-, and macro-pores the latter encompass spheres, 
terapods, monoliths, nanowires, etc. While the system of pore classification remains 
to be central, more emphasis is being given on planning the pore architecture in 
PCMs. Accordingly based on the designed porosity significant advantages vis-a-vis 
distribution of pores and their access on carbon material are likely to be acquired. 
The following examples underline the applications of pore structure that can offer 
direction for future studies involving meso- and macroporous designer carbons. 

1.1 Sensors 

Selecting the accurate substrate plays an elementary role in the functionality and 
consistency of the assembled component. Porous carbon materials typically with 
large-sized pores are reasonably appropriate for sensor substrates in different appli-
cations. For instance, to avert enzyme discharge during a biological reaction, there is 
a possibility to fix it within the pore aperture. MSU-F-C, a carbon foam with meso-
pores, has been employed as a host for enzyme glucose oxidase (GOx) [13]. The 
carbon used is mixed with Nafion. The mixture is applied on a glassy-carbon elec-
trode, and enzyme is made static in the process. Compared to graphitic or activated 
carbon material, the mesoporous MSU-F-C exhibit increased sensitivity, prompt 
substrate response with more loading capacity of 39.1± 0.7 wt% for GOx. This appli-
cation did not remain confined to mesoporous system but extended to porous carbon 
with macropores as well. 3D ordered macroporous (3DOM) carbon when used in the 
sensing system of solid-contact ion-selective electrode (SCISE) [14] was utilized as a 
solid contact. Herein the carbon and a metallic current collector were joined together 
and both were enveloped with a sensing membrane. This membrane typically had 
polyvinyl chloride (PVC) coating and sites for ionic channels including ionophores. 
The assembly was made discerning for K+ ions. With a detection perimeter of 
10–6.2 M, the sensor demonstrated prolonged constancy and remained defiant to 
meddling from O2 as well as luminosity. This is on contrary to other sensing mate-
rials including semiconducting polymers where interference by light is on record 
[15]. Ahead of behaving as a substitute for sorption system, porous carbons present 
themselves as congregation bodies for biological catalysts, for instance, enzymes.
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1.2 Property of Sorption 

A phenomenon of fixing or capturing a substance in gaseous or vapor phase by 
another substance in condensed state (solid or liquid) is called sorption. While the 
former substance is sorbate, the latter is called sorbent. Carbon-based substances 
particularly those with randomly or orderly arranged mesopores are frequently used 
as sorbents in solid–gas and solid–liquid phases. In fact porous carbon tailored to have 
a typical pore structure (both meso- and macropores) has a potential to house a myriad 
enzymes and various essential molecules. This is due to their typical surface proper-
ties including the pore architecture that sets a fine-tuning with these biomolecules. 
Further, due to the absence of charge, the porous carbon as sorbent remains neutral 
toward any functional group of the active sites of enzymes. This is in contrast to 
other porous materials like those of silica where acidic silanes chemically interact 
with the enzymes [16]. Owing to this property, PCM finds important applications 
in catalytic reactions, food sciences, biosensing, etc. One such application of meso-
porous carbon is in water purification. The porous carbon saturated with Iron (II) 
Chloride and tarnished with sodium hypochlorite (NaClO) acts a sorbent to make 
water free from arsenic impurities [17]. Similarly, in liquid chromatographic tech-
niques, especially the ones involving electrochemical strength, the stationary phase 
comprises of porous graphitic and vitreous carbon [18]. Based on the immobiliza-
tion as well as neutral surface properties, it was recognized that lysozyme when 
interacting with such porous carbon surfaces gets adsorbed therein without losing 
its surface integrity and activity [16]. Two factors have been underscored and found 
responsible for this behavior; pore structure and pH of the solution in which enzyme 
mixture were prepared. It was established that with a molecular weight of approxi-
mately 14 kDa (kilo Dalton), lysozyme got adsorbed the most when its pH approached 
isoelectric point (pH(I) = 11.1). At this point since enzyme carries no net charge, 
their packaging on the porous surface was more compact without any denaturation. 
This property to adsorb more enzyme molecules gained a momentum when oxida-
tion was carried out in the presence of an inorganic, colorless, readily water-soluble 
ammonium persulfate [(NH4)2S2O8] [19]. This process changed interactive groups 
on the surface, adhesive and cohesive forces between solid and liquid phases and 
more importantly pore architecture got customized. This in turn assisted in making 
entry of proteins on adsorption surface/sites. 

1.3 Catalysis 

It is well-established that carbonaceous materials play a pivotal role in wide catalytic 
reactions [20] including nitrous oxide reduction, reactions involving addition or 
removal of hydrogen, removal of sulfur, nitrogen oxygen, and many more. In most of 
these reactions with bulky substrate molecules, the distribution of pores on PCM is 
decisive in improving the rate of reaction. In such cases, usually porous carbon with
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mesopores is chosen [21]. However, after the prolonged usage of natural carbon, the 
impurities filtered by the pores are likely to deactivate the enzyme. To overcome 
this, synthetic porous carbons are usually employed [20]. Undoubtedly, despite a 
uniform distribution of mesopores, disparity in the scattering of the metal impurities 
in such enzyme-catalyzed reactions with PCM requires an urgent management. It 
is pertinent to mention here that not only the surface characteristics of carbon but 
detailed knowledge of pore architecture, its distribution, and control is also equally 
important to persuade the spreading of metal crystals [21]. Literature puts on record 
few studies of different catalyst-based reactions in a comparative mode. For instance, 
compared to cobalt–molybdenum catalyst system prepared on gamma-alumina, the 
one geared up on activated carbon based on resorcinol and formaldehyde had overall 
greater activity. This was due to the defined pore structure of carbon material coupled 
with better quality of dispersion of metal in soaring surfaces [22]. At the level of 
pore structure, the inherent potential was least in pores with diameter <2 nm due to 
blockage by metallic particles. In this case, the mesoporous carbon showed maximum 
activity since metal dispersion was less significant. 

Based on the precursor used, a large number of methods are now available to 
synthesize porous carbons (PCs). While precursors include a variety of biomass 
derived from plants, animals, fungi, and sewage sludge materials [23], the promi-
nent synthesis techniques encompass strategies like hard template, soft template, 
and template-free methods. In recent years, owing to unique physical and chem-
ical properties of such versatile materials an implausible expansion has been seen 
in nano-biomedical studies, principally in exploiting engineered nanomaterials in 
biomedical applications [24, 25] as diagnostic probes, nano-carriers, and biomarkers 
[26]. Further, it is doable to explore such porous carbon materials at the cellular and 
subcellular levels vis-a-vis probing, adjusting, and controlling different biological 
processes. 

In this chapter, we focus on the therapeutic applications of porous carbon (or 
nanocarbon) materials, primarily fullerene nanoparticles, drug delivery, carbon 
nanohorn, carbon nanotubes, nanodiamonds, and porous nanocarbon. In addition, 
the possible toxicities of these PCMs have also been highlighted. At the same 
moment, utmost care has been taken to juggle manifold errands, from digging up and 
appraising the pertinent literature to blending information from various sources via 
critical thought process to paraphrasing, appraise, and citation skills. It is pertinent to 
mention here that the probable impact of shape as well as toxicity of such PCMs on 
various biological traits has been described based on the reports from the literature. 

2 Fullerenes 

Fullerenes encompass members with pentagonal and hexagonal carbon rings struc-
tured to give them a cage-like configuration. One among such molecules is exem-
plified by pristine fullerene, wherein 12 five-membered carbon rings are complexed 
with the six-membered rings. The family takes in members such as C60, C70, C82,
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and so on. The most widely accepted method to produce fullerenes includes laser 
technology or arc release method, wherein adulterant-free graphite is employed as 
main source of carbon and the synthesis takes place in the presence of inert gases, 
especially helium or nitrogen. During its production metal alloy is usually put inside 
a fullerene cage where it serves as discharge anode. Such alloys principally corre-
spond to Lanthanoid or Scandium family. The structure so produced is known as an 
endohedral metallofullerene (EMFs). These include Li@C60 where lithium ion is 
collided with C60 and similarly Sc3 N@C82, Gd@C82, etc. [27]. Likewise, exo-
hedral addition of certain molecules also opens window to different such deriva-
tives. Consequently, such endo- as well as exo-hedral amendments radically modify 
fullerenes both physically and chemically, augments the functionality thereof and 
also make them appropriate to be used in numerous applications. Fullerenes gained 
a momentum for having the biological effects when it was claimed that C60 has 
an inhibitory action on protease activity of AIDS virus. This is for reason that it 
appropriately locks itself into the cavity of the enzyme where it shows least affinity 
with water [28]. Since then, there have been numerous reports on the active partic-
ipation of fullerenes in the medical science, including in destruction of cancer cells 
by light and photosensitizer exposure, non-invasive resonance imaging technology 
[29]. Nevertheless, potential of fullerenes as “radical sponges” in different formats 
has been broadly explored and highly appreciated [30]. 

2.1 Buckysomes as Hydrophobic Molecule Delivery System 

Paclitaxel, a potent anticancer water repellent drug (solubility ~0.3 μg/mL) [31], 
has been used since 1967 to treat Kaposi’s sarcoma [32], ovarian, breast, and lung 
cancers. The drug was formerly administered through dissolution in polyoxyethy-
lated castor oil followed by parched alcohol. On the other hand, due to the toxicity of 
the former [33], other alternatives for its delivery were scrutinized. Prominent among 
them was the use of nanoscale carrier vectors [31, 34] for example liposomes [35]. 
Many amphiphilic monomer fullerenes, AF-1 are self-assembled to form a spherical 
nanostructure with size ranging from 100 to 200 nm. This is called buckysome. Chem-
ically, these monomers consist of C60 molecules modified with dendritic unit. They 
contain 18 COOH (carboxylic acid) groups wherein five positions are engaged by 
octahedrally placed dodecyl malonates (Fig. 1). The cage-like structure so produced 
implants anticancer paclitaxel drug into the hydrophobic pocket to form paclitaxel-
embedded buckysomes or PEBs (Fig. 1) [36]. In such buckysomes, therefore, features 
of both liposomes and porous nanoparticles are combined to generate a novel drug 
delivery system.

This exclusive fictionalization allows buckysomes to probably tender various 
recompenses over phospholipid liposomes as nano-vectors. This approach may perk 
up circulation rate in the blood, safeguards anticancer drug from degrading action of 
harmful enzymes, and more importantly condense absorption by phagocytic organs.
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Fig. 1 Fullerene monomer AF-1: chemical composition and formation of polymer

Further, dendritic groups present on the PEB exterior too offer furtive function to 
trim down clearance. 

The therapeutic worth of PEBs gained an impetus when it was compared 
to Abraxane®, a medicine strongly recommended to treat advanced-stage breast 
cancers. Similar to this nab-paclitaxel, the PEBs when tested on a commonly 
used breast cancer cell line MCF-7 [37] facilitate the uptake of antineoplastic 
chemotherapy drug. This method bypassed the requirement of non-aqueous solvents, 
which otherwise discomfort and cause redundant reactions to the patients. Literature 
also puts on record the capacity of PEBs to administer increased doses of potent drug 
than delivered by nab-paclitaxel. These results ultimately pave a way to reduce the 
cocktail and increase tumor uptake for improved anticancer potency. This, in turn, 
opened the door to authorize the biodistribution of PEBs in animal model as possible 
drug carriers in vivo. Owing to nanoscale dimensions of fullerene-based deliverance 
system another attractive feature is the passive targeting. The nanoparticles enter 
into tumor cells via leaky blood vessels of endothelial cells and become capable to 
accumulate at tumor sites. Further, PEBs are also endowed with appending target 
assemblage to their fullerene components. With the result, they can be effortlessly 
made purposeful to affix active targeting. 

The aptitude of fullerene to fabricate a superlative lipophilic gradual discharge 
arrangement offers a concrete arena for covalent bonding of drugs to craft single-
bout “drug cocktails.” One such aspect can be exemplified in lung cancer therapy. 
A fullerene-paclitaxel conjugate, with 120–145 nm size, has been designed to facil-
itate gradual release of the drug paclitaxel via enzymatic hydrolysis. The formula-
tion has 80-min shelf-life of release in bovine plasma [38]. Liposome formulation 
based on 1,2 dilauroylphosphatidylcholine (1,2-DLPC) conjugate reportedly has a
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shared maximal inhibitory concentration (IC50) value. This is practically indistin-
guishable to the corresponding value for paclitaxel-DLPC expression in A549 cells, 
the adenocarcinomic human epithelial lung carcinoma. Thus, owing to the clinical 
appropriateness of hydrolytic rate and momentous cyto-lethality in in vivo culturing 
of tissues, the fullerene-paclitaxel conceptualization has proven to have aptitude for 
improved therapeutic efficacy of paclitaxel. 

Besides playing a pivotal role in drug delivery, fullerenes have also been scruti-
nized as vectors in transfection process. These vectors with a potential to mediate 
gene transfer actively deliver exogenous DNA into cells [39, 40]. This, in turn, adds 
to the possible benefits in gene therapy systems. However, expertise in this field 
has not gained much recognition since the initially generated fullerene-based trans-
fection vectors showed signs of high cytotoxicity as well [40]. This is understood 
by the fact that when different water-soluble C60 derivatives were prepared, there 
was smooth DNA uptake, transport across cell followed by successful evocation 
of gene expression [41]. Notwithstanding the booming genetic expression, the effi-
cient in vitro transfection has been characterized by octa- and dodeca-amino derived 
C60 vectors. This behavior is generally reasoned for their aggregation behavior. 
Apparently, vector clustering of different functionalized fullerenes is liable to cause 
enhanced cytotoxicity. Hence, future studies based on such aggregation ought to be 
addressed before designing any such fullerene derivatives. 

2.2 ROS Quenching 

Reactive oxygen species or ROS refers to the miniature molecules of molecular 
oxygen produced as a result of their partial reduction [42]. Some commonly produced 
ROS by a cell include various anions like superoxide anion (O2

·−), hydroxyl anion 
(OH−); peroxides such as hydrogen peroxide (H2O2), and oxides like nitric oxide 
(NO). Of these, NO is generated principally by endothelial cells and acts as an 
effective vasodilator. 

Literature is flooded with the examples of pristine fullerenes to have radical 
scavenging properties and produce ROS, thereby suggesting their possible role in 
photodynamic therapy. The benzyl radicals generated during photochemical reac-
tions smoothly react with C60 and produce various radical as well as non-radical 
adducts typically (C6H5CH2)n C60 where n = 1–15. Those with n = 3 or 5 stay ther-
mally stable beyond 50 °C. Importantly, the unpaired electrons remain exceedingly 
confined to the C60 surface and the steric fortification of these curbed radicals by 
benzyl substituents imparts extraordinary stability on the surface of pristine fullerenes 
[43]. Ever since the potential of fullerenes to scavenge ROS was documented, there 
has been an immense concern in using fullerenes as an antioxidant. Contrarily, in rats 
C60 can reportedly prevent radical formation as well as damage to liver and kidney 
caused by carbon tetrachloride [44, 45]. For the meantime, it is acknowledged that 
fullerene derivatives acquire great competence to seize ROS and various radicals [46]. 
It is, nevertheless, pertinent to mention here that while imparting hydrophilicity to
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fullerens, elements of scavenging radicals ought to be maintained. After an innovative 
article on “carboxyfullerenes as neuroprotective agents” got a press in Proceedings 
of National Academy of Sciences USA by Dugan and co-workers [47], the versa-
tile scavengers of ROS and free radicals especially C60 emerged as biologically 
unique antioxidants [48]. For instance, C60(OH)x, a polyhydroxylated fullerene are 
known for their cell protection properties. It reportedly averts the damage due to 
compounds like hydrogen peroxide and 3-morpho linosydnonimine that could be 
detrimental to the neurons [49, 50]. Similarly, during neuronal apoptosis and excito-
toxic necrosis, carboxyfullerenes have been found to be very efficient in providing 
protection to the cellular system and function as neuroprotective drugs in vivo. This 
escorted an idea that oxidative stress, a causal factor in many persistent diseases, is 
a crucial impending intermediary in contrasting neuronal fatalities. In this mecha-
nism, the water-soluble property of fullerenes imparts increase efficiency in brain and 
neurons. In zebrafish, the COOH groups present in C60 fullerenes scavenge radicals 
from ionizing radiation to safeguard the developing embryos [51]. Similar to this, 
tris-malonyl group of C60-fullerene suppresses mitochondrial damage in mice due 
to superoxide radicals by penetrating through the barrier between blood and brain. 
Compared to the untreated control mice, the given treatment of fullerenes was more 
superior in terms of having prolonged life with more retaining competence [52]. 
Fullerene nanoparticles typically C60 when modified by mechanical milling with 
different surfactant molecules such as cyclodextrin, sodium dodecyl sulfate (SDS), 
and ethylene vinyl derivatives increase ROS-scavenging aptitude. This, in turn, coun-
terbalances the superoxide radicals from mitochondria and hence prevents apoptotic 
death due to nitric oxide exposure [53]. Congruent with this, colloidal derivatives of 
C60-polymer including poly N-vinyl pyrrolidone (NVP) exhibit antioxidant proper-
ties against ultraviolet radiations in human skin keratinocytes or superoxide radicals 
in CATH.a neurons produced by angiotensin II [54]. Such studies clearly indicate 
role of pristine fullerenes derivatives as scavengers of ROS. 

In yet another study, the antioxidative property of carboxyfullerenes capable of 
suppressing lipid peroxidation due to iron and imparting neuroprotection against 
nigrostriatal dopaminergic degeneration system was demonstrated [55]. This study 
extended to show non-toxicity of carboxyfullerene to rat brain. Successive research 
confirmed its protective action against apoptosis of peripheral blood mononuclear 
cells and their potential in the involvement of mitochondrial membrane potential 
integrity [56]. 

Although conflicting statements on radical scavenging by pristine fullerenes 
are on record, there are reports on ROS interruption as well. Since scavenging 
ability largely depends on morphological features of fullerenes, a comparison of the 
same among three hydrophilic fullerenes, viz. carboxyfullerene [C60(C(COOH)2)2], 
fullerenol [C60(OH)22], and multihydroxylated nanoparticles [Gd@C82(OH)22] 
revealed greatest ROS-scavenging capacity in cells with multihydroxylated nanopar-
ticles. Such cells were further resistant to toxicity induced by hydrogen peroxide. Of 
three, carboxyfullerenes were least protective and fullerenol nanoparticles showed 
intermediate effect [57].
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Oxidative stress is a phenomenon where production and accumulation of ROS in 
cells do not make a tally and consequently liberate radical ions including superoxide 
(O2 

.), hydroxyl radicals (HO·), singlet oxygen (1O2), hydrogen peroxide (H2O2), etc. 
[58, 59]. Fullerenes with scavenging activity play a vital role in therapeutics. Accord-
ingly, molecular mechanism of how fullerenes scavenge ROS needs to be understood. 
Interestingly, the quenching mechanism of superoxide radical anion shares similarity 
with superoxide dismutase [60]. The free radical approaches the fullerene cage and 
sets a bond with available electron-deficient area and afterward transfers electron. 
Binding of subsequent O2 

. to the same spot destructs O2 
.. The reaction produces 

H2O2 and regenerates the fullerene. Similar mechanism is mimicked and during 
deactivation step, the singlet oxygen (1O2) joins together with fullerene to produce 
a charge-transfer complex [61]. Scavenging of more radicals, like HO·, involves  
saturation of electron-deficit areas of fullerenes with definite proportions of radical 
[43]. Based on this pathway, cancer cells become susceptible to oxidative stress vis-
a-vis increased ROS concentration. Consequently, cellular proliferation, mutations, 
and genetic instabilities get stimulated. Hence, fullerenes, with a capability to seize 
ROS, possibly find an application in medical science in maintaining general health 
during cancer therapies. 

2.3 MRI Contrast Agents 

As mentioned earlier, EMFs comprise different categories of functionalized 
fullerenes. With a proficiency to trap atoms within structure EMFs especially those 
readily soluble in water have played a pivotal role in therapeutics. Once inside the 
body, fullerene cage in EMFs shields the encapsulated drug-like liposomes and 
also assures unprovoked discharge of the metal within the body. In this frame-
work, gadolinium-confined fullerenes are expected to enhance MRI quality [62–64]. 
Second attribute of such contrasting gadofullerenes is to certify the firm placement 
of metal atom within the cage. Such atoms usually correspond to the ones that 
generally require longer residency times before being utilized. Strong pH depen-
dency of the proton requirement has made two water-soluble Gd@C60(OH)x and 
Gd@C60[C(COOH)2]10 fullerenes great candidates as MRI contrast agents [62]. 
Sitharaman and colleagues [64] proceeded this study with a success in demon-
strating the promising nature of anionic gadofullerene {Gd@C60[C(COOH)2]10} 
for ex vivo labeling. This was typically achieved within 2–8 h of incubation for 
marrow stromal cells. Moreover, their inability to infiltrate and destroy healthy tissue 
under natural conditions during MRI tracing has also been brought to the forefront 
[64]. Non-leakage of this gadofullerene during pulse-chase experiments from the 
cells had similar concentrations of gadolinium irrespective of the time limit. This, in 
turn, is suggestive of the fact that labeling process is irreversible and gadofullerene 
remains reluctant to leach out post labeling. Also, cellular labeling with this fullerene 
derivative remains intracellular and/or there is intrusive inserting of magnetic labels 
deep within the cell membrane. Further assays carried out on viability and toxicity



30 Fanatical Clout of Porous Carbon Materials… 851

under laboratory conditions did not result in any kind of damage to the cell due to 
labeling. Compared to clinically used Gd-DTPA (Magnevist™), the signal strength 
reportedly increases 300 folds at 0.04 mM concentration of gadofullerenes. This has 
been revealed from T1-weighted MRI phantoms study. Also, at similar concentra-
tion the former bestowed diminutive enrichment when balanced with distilled water. 
Furthermore, high relaxivity of gadofullerenes, even taken at modest concentration, 
testimonies for considerable reduction of T1 of labeled cells. This discrimination 
between labeled and unlabeled cells with respect to T1 apparently proves detrimental 
by MRI images at 1.5 T strength of magnet used. This in turn has proven to be a 
boon in medical diagnosis since it aids in detecting stem cells at resolutions prospec-
tively accomplished in living systems under natural conditions. Studies carried out 
on hydrophilic metallofullerene Gd3N activated with polyethylene glycol (PEG) 
and [Gd3N@ C80[DiPEG5000(OH)x] have demonstrated their potential as MRI 
contrast agents [63]. This property is acquired due to their T1–T2 water relaxation 
rate constant being 40 times more than due to conservative gadolinium-containing 
MRI contrasting agents. 

2.4 Antitumor Effects 

Cancer is one among the somber menaces to human health. This multistep process 
encompasses alterations in tissue designing coupled with the development of preneo-
plastic nodules which culminates as cancer. Such changes are usually allied with the 
alteration in cell phenotype including epithelial to mesenchymal transition (EMT) 
followed by cell migration. Ultimately, local hypoxial regions are formed that 
uphold the endurance and expansion of tissue stem cells and encourage angiogen-
esis. Alternatively under unfavorable conditions like stress, autophagy also props 
up the endurance of preneoplastic as well as tumor cells. Whereas the escalation 
and continued existence of normal cells are partly controlled by hormones as well 
as different growth factors, occasional genetic, epigenetic and microenvironmental 
changes too alter the signaling pathways and make cells quite defiant and sovereign 
to such pathways. Understandably, the growth and proliferation of cells become 
independent of cell cycle checkpoints and apoptotic pathways. Owing to epigenetic 
modification in the gene expression of a cancerous cell, the distorted signaling path-
ways and altered metabolomics profile are therapeutically reversible at the outset. 
Contrarily, progression of tumor becomes pharmacologically more complicated to 
target afterward [65]. 

Apart from having genetic basis, growth of tumor and its spread too have a phys-
ical basis. From the biophysical perspective, metastasis is known to transpire when 
cells from the primary tumor separate. The process involves breaking of adhesive 
bonds between cells. Such loose and free cells when drift through stroma with dense 
matrix usually create pressure to degrade matrix composition. This takes the helm 
through the proteinaceous matrix fiber via pores. While doing so, the cells usually get 
squeezed and deformed. As the cells intravasate into vasculature, they start getting
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circulated in the blood flow. To withstand the pressure of circulation, the metastatic 
cells adhere to the walls of the vessel. Gradually, they squeeze through the vasculature 
and transmigrate to colonize a secondary tissue [66]. 

Notwithstanding the genetic and physical backgrounds, human cancers typically 
stem from centrosome amplifications. These microtubule-organizing centers mainly 
play a pivotal role in spindle formation at two opposite poles during mitotic division. 
Following a synchronized pattern, the centrosome and hence the spindle account 
for accurate segregation of chromosomes so that each daughter cell receives equal 
number of genetic material [67]. In mammals, augmentation in centrosome loses 
control on mitosis, makes it abnormal, and thus adds to chromosomal flux and tumor 
formation [67, 68]. The effect of centrosome escalation gets reflected clinically since 
it hinders correct prophecy in various tumors like breast cancer [69]. One among 
various reasons for centrosome amplification is the effect of radiations which effi-
ciently targets and damages DNA in cancerous cells. Such cells are largely devoid of 
p53 and chk1 activities involved in DNA damage checkpoints [67, 70]. This results 
in the development of spindle at multiple poles during mitosis. Conversely, divi-
sion of cell at multiple poles may impart damaging effect to the cell. Thus, there is 
either cell arrest or progenies so derived are destined to programmed cell death [67]. 
However, cancer cells have developed a distinctive mechanism to restrain formation 
of multipolar spindles so as to break out the deleterious multipolar cell division. 
Known as centrosome clustering, the process encompasses clustering of numerous 
centrosomes to restore two typical spindle poles. Understandably, cancer cells with 
multiple centrosomes that do not practice centrosome clustering have death fate. 
Conversely, prohibition of this clustering specifically inhibits cancer cells compared 
to a usual cell with two functional centrosomes [71]. 

With short survival expectations and poor life quality, cancer patients have 
higher mortality rates than expected [72]. Though advanced technologies including 
surgery, chemotherapy, and radiotherapy have been introduced cancer treatment still 
requires further research. Of these, surgery in most of the cases remains incapable 
to completely eradicate all the cancerous cells. Similarly, the therapies usually have 
side effects of normal cells. These include apoptosis of normal cells in addition 
to the timorous ones. This is attributed to doxorubicin (DOX), a commonly used 
chemotherapeutic agent. However, radiotherapy has been proven to be quite effective 
in the treatment of nearly 50% of cancerous patients [73]. This therapy is especially 
recommended to the women suffering from breast cancer since it usually helps them 
to optimize control post-surgery [74]. Nevertheless, pneumonitis and fibrosis like 
several side effects due to radiation are likely to get induced to adjacent normal cells. 
Such drawbacks are the major impediment to the successful radiotherapy. Although 
several signal transduction pathways for cell survival are allied with radiation sensi-
tivity in cancer as well as adjacent normal cells, the combined application of targeted 
drugs like EGFR, PI3K, and AKT and radiotherapy is still restricted by different detri-
mental effects [73]. Thus, there is an utmost requirement of improving the medical 
procedure for successful radiotherapy so that normal cells become less prone to 
the side effects. Recent study has shown that competence of radiotherapy in breast 
cancer cells can be increased when centrosome clustering is specifically targeted. The
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ionized radiations provoke amplification of centrosome, and the method causes less 
damage to the ordinary fibroblast cells. Remarkably, when irradiated declustering 
of centrosome radiosensitizes such cancerous cells by multipolar spindle induction 
without affecting the viability of normal cells. This radiosensitizing effect of centro-
some declustering is mediated by one of the centrosome clustering proteins Kinesin 
Family Member C1 (KIFC1) in breast cancer cells [75]. 

From the past few years, nanotechnology has emerged with certain noteworthy 
achievements, typically in application of photons in health care, assemblage of molec-
ular complexes held together by non-covalent bonds and drug delivery systems. Apart 
from practical utility of EMFs in therapeutics during radioactive tracing technology or 
resonance imaging [76, 77], recently a holmium-containing hydrophilic MF deriva-
tive was espoused to track its distribution and biological behavior. Different studies 
carried out on multihydroxylated nanoparticles [Gd@C82(OH)x] have primarily 
focused on their involvement in MRI as contrast agents, wherein such particles have 
proven to be quite efficient with low toxicity. However, based on the biological impact 
of Gd@C82(OH)x recent research has come up with anti-proliferative properties of 
this popular fullerene [78, 79], wherein complementary mechanism leads to the stim-
ulation of programmed cell death in tumorous cell lines. Compared to the clinical 
antineoplastic agent CTX, a Gd@C82(OH)22 solution exhibits 1000 times higher 
tumor-inhibitory capability. While CTX, an alkylating agent, treats many types of 
cancer by damaging the cell’s DNA and apparently kill cancer cells, the fullerene 
solution significantly reduces tumor density in tumor-affected mice. The mechanism 
of multihydroxylated nanoparticles to act in anticipation of cancer may possibly 
open a window of opportunity to aim and assemble novel antitumor pharmaceutical 
agents. Studies have shown that when Gd@C82(OH)22 nanoparticles are adminis-
tered into the body, only small doses reach the tumor cells [80]. Coupled with this, 
these nanoparticles remain non-toxic to various cells like human breast cancer cells 
and hepatomas. Thus, these particles do not target cancer cells directly [81] but kill 
the same via indirect antitumor mechanism. 

As mentioned earlier, Gd@C82(OH)22 fullerens can intercept different reactive 
oxygen species to prevent oxidative stress owing to their stupendous antioxidant 
property. Co-incidentally, cancerous cells develop profuse oxidative stress too [82]. 
Under such conditions Gd@C82(OH)22 nanoparticles regulate oxidative defense 
system. They do so by preventing cancer cells to proliferate, changing microenvi-
ronment of surrounding normal cells, and averting their mutation. Apart from devel-
oping the scavenging activity, Gd@C82(OH)22 nanoparticles impede the pathway 
of tumor’s involvement into normal cells and thus boost the immune system. The 
latter is facilitated by early maturation of dendritic cells which is typical of immune 
defense system to activate Th1 immune responses [83]. After administering the 
Gd@C82(OH)22 nanoparticle, immune response was exclusively reflected by tumor 
tissues of affected mice while the control region/group remained unaffected [84]. 
This response encompassed encapsulation of neoplastic tissues, comprising partic-
ularly of capillaries, fiber tissues, and lymph nodules which inhibit the growth of 
tumor tissues and prevent their incursion into the surrounding healthy environment.
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Apart from the development of envelope to restrict unwanted movement of 
cancerous cells, these nanoparticles put off metastasis by restraining the activity of 
matrix metalloproteinases (MMPs) [85]. The drug targets the enzyme and lowers 
down the activity of MMP-2 and MMP-9. It also extends its effect to suppress 
angiogenesis and hence inhibit tumor growth further. While suppressing MMP-9, 
Gd@C82(OH)22 nanoparticles obliquely interfere with the substrate and bind to 
its critical regions typically to ligand specificity loop S10. This reduces the over-
crowding of catalytic sites coordinated by zinc to maintain hydrophobic nature and 
structural integrity of protein involved [86]. 

Another noteworthy effect of Gd@C82(OH)22 nanoparticles on biological system 
is their involvement in antitumor therapies. While using different chemicals as ther-
apeutic agents, cancer cells effectively become prone to death. However, due to 
acute cytotoxicity and prolonged exposure to chemical agents, cancer cells some-
times become susceptible and often develop resistance to various chemicals. Conse-
quently, serene treatment alternatives often become restricted. The multihydroxy-
lated nanoparticles, Gd@C82(OH)22 are known to bring down tumor resistance to 
different antineoplastic agents, typically Cisplatin [87]. In tumorous cells, the endo-
cytic recycling compartment often becomes faulty and Cisplatin uptake gets affected. 
Under such conditions, nanoparticles reinstate the drug, reduce its resistance by cells, 
and diminish viability of Cisplatin-resistant cancerous cells. Thus, growth of tumor 
is effectively suppressed, thereby enhancing the antitumor effect. 

Overall, porous carbon materials as fullerens are exceedingly proficient and play 
a very crucial role in therapeutics. As squat toxicity antitumor agents, nanoparticles 
are widely accepted as antioxidants which boost immunity, curb metastasis, and 
trim down drug resistance (Fig. 2). They are exceedingly constructive in antitumor 
therapies. Nonetheless, despite these biomedical applications, their comparatively 
low synthetic yield poses a great challenge to develop them as unique nano-medicines 
on large scale. Primarily, it becomes costly and protracted to take apart identical 
fullerene species from unprocessed grunge. At present, researchers are working round 
the clock to develop certain sophisticated methods for their production at extensive 
scale and flippant segregation procedures for acquiring fullerenes with least impurity 
at economical rates so that these nanoscale particles can be exercised in drug approval 
[88, 89].

3 Drug Delivery Tools 

Carbon nanomaterials (CNMs) have been comprehensively detailed out with note-
worthy paradigms in technological sensors [90], medical imaging [91], catalysis 
[92], energy storage [93], water treatment [92], solar cells [94], etc. Emerging as 
an extremely adaptable cluster of nanomaterials, CNMs thus exhibit diversified and 
desirable properties in medical science. Owing to their frictional and chemical stabil-
ities, carbon surfaces precisely contact blood as well as tissue systems and thus can be
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Fig. 2 An illustration showing secondary antitumor action of Gd@C82(OH)22 nanoparticles

customized to meet manifold requirements [95]. Based on this, porous carbon mate-
rials actively participate in controlled drug release [96] as well as cellular delivery 
[97]. Graphitic-based CNMs, for instance, presently occupy a strong position in heart 
valve during cardiac surgery while diamond-resembling carbons find relevance in 
musculoskeletal system [98]. 

3.1 Targeted Delivery System Pathway 

The construction of porous carbon nanomaterial-loaded drugs and their 
behavior toward the microenvironment of tumor cell line are crucial in 
attaining targeted delivery of antitumor drugs [99]. These nanomaterials 
are effectually studded and made functional with receptors of target cells.
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However, to accomplish the successful and targeted delivery of the drug, system 
has to rely on certain sensitive stimuli. Some commonly used are as follows: 

3.1.1 Endogenous Sensitive Stimulation 

Such stimulations usually rely on distinctive physiological signals of tumor cells. 
These include: 

(a) pH-dependent target system 

The microenvironment surrounding the tumor cells has weak acidity usually 
ranging from 6.2 to 6.8. This is due to the fact that tumor cells require abundant 
energy to sustain their growth which they usually achieve by rapidly degrading 
sugar molecules. This results in the production of lactic acid in bulk which 
hoards at the tumor site. The area becomes quite distinct since pH of endosomes 
and lysosomes work at ~5.8 and ~4.8, respectively [100]. Thus, sensitivity of 
drug carriers toward pH helps to construct the pathway for efficient and targeted 
drug delivery system. Spherical porous carbon materials with <100 nm diam-
eter reportedly have ability to act as transmembrane carriers and deliver anti-
tumor drugs. However, to do so they are required to undergo certain hydrophilic 
surface modifications. Concurrently, owing to difference in physiological pH 
between normal and tumor cells, the altered porous carbon material is expected 
to promote the drug delivery and makes better targeting presentation. This can 
be exemplified by loading of pH-sensitive doxorubicin on 90-nm-sized porous 
carbon spheres [101]. The drug was successfully delivered to cervical cancer 
cells where it showed better therapeutic consequences. 

(b) Enzyme-dependent target system 

One among various important features of tumor tissues is the secretion of some 
marker enzymes [102]. This feature paves a way to construct targeted drug 
delivery systems with enzyme specificity. In this pathway, surface of porous 
carbon particles is modified using small stretches of oligonucleotides. These 
nucleotides show strong affinity toward the marker enzyme present in the tumor 
cells and in turn develop a concrete pathway of target recognition system. As an 
analogy, MUC1 (mucin) is peculiarly produced in various tumor cells. Using this 
transmembrane protein as a biological indicator of cancer cells, nanoparticles are 
coated with nucleic acid aptamer. During drug release this aptamer specifically 
targets and binds MUC1. The strategy thus aids in targeted tumor therapy [103]. 

(c) Redox reaction sensitive targeting 

Tumor or neoplasm that arises without any obvious reason accumulates different 
unique things within itself. Sometimes it varies from normal cells in concen-
trating varying amount of different metabolites. For instance, tumor cells gener-
ally accrue more glutathione than the normal cells [104]. With a net negative 
charge at neutral pH, unequal distribution of glutathione develops a consider-
able difference in the reduction inside and outside the cell. Such an environment
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establishes a reduction-sensitive targeted delivery system. Zhou et al. [105] 
customized hyaluronic acid on the exterior of PCM by altering few S–S bonds 
followed by loading doxorubicin drug. This was done to create a drug-carrying 
system, which can concurrently take care of glutathione and hyaluronidase in 
cells and release the drug in a controlled manner. 

3.1.2 Exogenous Sensitive Targeting 

These encompass certain external stimuli as discussed below; 

(a) Light sensitivity 

Researchers across globe are working round the clock to eradicate the fatal 
cancer disease. One such approach used by them is light sensitivity stimulation 
method to create antitumor drug delivery system in the tumor cells. Owing to the 
atypical physiological environment of tumor tissues, they are quite susceptible 
to heat. On the other hand, nanoporous materials are capable to take in light 
energy from infrared region with wavelength ranging from 700 nm to 1 mm 
at corresponding frequency from 430 THz (tetrahertz) to 300 GHz (Gigahertz) 
and release the same as heat energy. This shortly increases the surrounding 
temperature to >40 °C. Therefore, as drug is administered via porous carbon 
nanospheres, tumor tissues at 37 °C undergo thermal damage due to increase 
in their physiological temperature [106]. One such successful attempt was 
made by Xu et al. [107]. These workers modified nanosphere surfaces using 
mixture of polyethylenimine and folic acid. Aim was to develop chemically 
tailored photothermal targeted deliverance system. Amalgamation of chemo-
and photothermal therapies exercised enhanced therapeutic effects. 

(b) Magnetic sensitivity 

Apart from light sensitivity, another source to raise cellular temperature is the 
magnetic field. Carbon nanoparticles exhibiting magnetic properties are capable 
to produce heat [108] which translates magnetic energy into heat energy. Produc-
tion of the latter raises local temperature to effectively treat the cells. Thus, 
during magnetic drug delivery, the magnetic field is created near the tumor 
cells. This strategy helps to amass maximum drug in cancer cells [109]. Porous 
nanoparticles containing doxorubicin drug when sequentially modified by iron 
oxide, ethylenediamine and hyaluronic acid exhibited better biocompatibility 
as well as photothermal conversion abilities. This targeted drug delivery system 
proved to be quite fatal to cervical cancer cells [110]. 

3.1.3 Multiple Sensitive Stimulation 

It involves merging more than one stimulus to figure out a multifunctional targeting 
mechanism with more inductive effects. This strategy is expected to augment 
nanospheres to carry and deliver drugs with greater efficiency and performance and 
at the same time reducing the side effects [111]. These may include:
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(a) Dual-sensitivity of pH and glutathione for targeting drug delivery 

In this approach, mesopores of carbon nanospheres were specifically enveloped 
using polyacrylate to make them susceptible for pH and glutathione. During drug 
delivery, these carriers were obliterated by decreasing glutathione concentration 
[112]. 

(b) Dual sensitivity of pH and magnetic field for targeting drug delivery 

Herein, nanospheres loaded with doxorubicin drug were sheathed with folic 
acid to impart dual sensitivity of pH and magnetism. During deliverance, the 
drug showed improved therapeutic effects, efficiently entered into tumor cells 
without affecting normal cells [113]. 

(c) Magnetic and photothermal dual-sensitive targeting 

Chen et al. [114] prepared ordered mesoporous carbon spheres with dual func-
tions of thermosensitivity and magnetic properties. Using doxorubicin as a 
model drug, the controlled release of doxorubicin was achieved, which provides 
a new way to construct a dual-sensitive antitumor drug delivery system. Wang 
et al. [115] prepared porous carbon materials modified by nano-gold and 
Fe3O4 and constructed a magnetic-near-infrared dual-function sensitive drug 
delivery system. The release of mycin with near-infrared photothermal effect 
can effectively kill tumor cells while regulating the drug release rate, exerting 
synergistic effect of magnetocaloric and photothermal. Compared to a single 
sensitive stimulus, dual-sensitive stimuli can exert a better synergistic effect 
and have a more lethal effect on tumor cells. 

(d) Multi-sensitive targeting of pH, glutathione, and light and heat 

In this targeting strategy, hollow magnetic spheres were encapsulated with poly-
γ-glutamate to carry Adriamycin drug [116]. Thus, a triple response of pH, 
glutathione, and infrared light was attributed. The system develops various 
important therapeutic consequences and achieves outstanding capabilities of 
antitumor therapy. At the same time, it also prevents drug leakage from carriers 
before reaching to the target tissues. 

Therefore, carbon furnishes inherently enduring material for amending properties 
so as to congregate manifold intricate demands inflicted by medical science. Three 
important applications of different carbon nanomaterials as drug delivery tools have 
been discussed as follows: 

3.2 Nanodiamonds as Anticancer Drug Delivery System 

Nanodiamonds also called diamond nanoparticles refer to the diamonds with <1 μm 
size [117] although they could not find a permanent place in the field of thera-
peutics including biolabeling and sensing, target drug delivery, etc., until recently 
[118]. Owing to their inertness, hardiness and low toxicity, nanodiamonds have been
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proven to be a better substitute for traditional nanomaterials to carry drugs, synthesize 
biosensors, and biomedical robots [119]. Further, due to their potential to undergo an 
effective alteration in surface properties nanodiamonds have been adapted to achieve 
potential of being used in electronic as well as quantum engineering [120]. Since 
this chapter aims to consolidate the therapeutic application of nanomaterials, we 
will focus on few such studies that lay an emphasis on the role of nanodiamonds in 
cellular delivery of various therapeutic agents. Diamond nanoparticles typically can 
be effectively produced by the process of combustion using supersonic, exothermic 
fronts under conditions of high temperature and high pressure. Following mechanical 
milling or treatment by any strong acid, the deagglomerated diamond particles with 
desirable size are obtained. Since its production involves the prevalence of certain 
abrasive conditions, different oxygenated moieties generally tag the surface of these 
diamond nanoparticles. Consequently, in pristine detonated nanodiamond surfaces, 
these oxygen-containing groups promote surface modification via interaction with 
polar molecules, electrostatic attraction, and covalent bonding. These modifications, 
in turn, make pristine diamond quite less active [121] (Krueger 2008). Further, a 
number of bioactive molecules, for instance, cytochrome c and N-acetylmuramide 
glycanhydrolase can be crippled on surface of nanodiamonds so as to maintain their 
chemical and biological activities [122, 123]. 

As a drug delivery agent, activated nanodiamond surfaces carry a number of ther-
apeutic agents to be delivered into cells. This can be exemplified by the release of 
a hydrophilic chemotherapeutic agent Cisplatin. After being added to the carboxyl 
groups on surface of diamond nanoparticles, the drug was carefully released into cells 
[124]. Similarly, various hydrophobic anticancer drugs have also been loaded and 
successfully delivered to the target cells with improved therapeutic efficiency [125]. 
For example, with an aim of selective targeting, imaging and therapy, a multifunc-
tional platform was constructed using diamond nanoparticles [126]. This strategy 
was primarily based on functionalization of nanodiamonds using sulfosuccinimidyl 
6-(30-[2-pyridyldithio]propionamido)hexanoate. This acted as a cross-linker and 
attached thiol-containing biomolecules on the surface. To these molecules, Pacli-
taxel, the chemotherapeutic drug was then attached. To track their pathway inside 
the cell system, the assembly was coupled with fluorescently labeled oligonucleotide 
and a thiolated antibody. The dose administered showed a much-increased rate of 
cellular internalization as well as therapeutic efficiency than shown by paclitaxel 
alone [127]. Similar such study was carried out on wherein doxorubicin molecules 
were bonded to the surfaces of diamond nanoparticles. This combination of cancer-
killing drug and nanoparticles created ND-DOX drug. When injected inside the 
body, tumor cells were unable to eject this hybrid drug, thus increasing its ability 
to affect tumor more appropriately without any side effect [128]. Akin to this, the 
large nanodiamonds exhibits potential to serve as cellular labels which owes to their 
high uptake efficiency [129] and increased stability and biocompatibility in solution 
[130]. Moreover, it is also quite possible to spawn secured and vivid fluorescent 
nanodiamonds by making crystal lattice vacant to introduce nitrogen atoms that aid 
in numerous biological processes [131].
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Conclusively, a range of bioactive molecules can be administered into the cells 
using nanodiamond platform. However, seclusion of homogenous nanoparticles with 
comparable surface chemistry and electrostatic charge remains the foremost confront 
in applying them in drug delivery systems. 

3.3 Porous Nanospheres as Drug Delivery 

Amorphous or porous carbon nanospheres with large surface area and internal 
volumes are considered to be stupendous fluorescent nanomaterials that have been 
adapted to achieve diverse biological functionalities vis-a-vis biolabeling, imaging, 
and sensing [132]. One such application that literature puts on record pertains to 
their involvement in cellular delivery of therapeutic agents as during oral delivery 
of insulin. A biodegradable polymer is coated over nanospheres which serves the 
purpose of delayed insulin discharge in organs with acidic pH like stomach but 
facilitates the same at near neutral conditions [133]. 

Similarly, in case of cancer cells, mesoporous carbon nanospheres of 90 nm dimen-
sion have successfully mediated delivery of doxorubicin to HeLa cells. Again, where 
the drug is going to get released during its pathway is decided by the pH of the envi-
ronment [101]. Since drug doxorubicin can exist in both ionized and non-ionized 
forms, the pH susceptibility was accredited chemically by the interactions between 
carbon nanospheres and state of drug existing at a particular time. Understandably, 
drug delivery by these mesoporous carbon nanospheres can be regulated. Usually, at 
physiological pH, the drug prefers to remain inside nanospheres, but gets precisely 
and effectively released in the acidic environment of tumor cells. Moreover, imper-
ceptible pores present on their outer surface can be exploited to establish nano-
valves with stimulus-sensitive properties. This could enhance therapeutic efficacy 
of the drug targeting mechanism in a controlled manner. However, despite all these 
advantages, some major concerns like regulating size and structure of particles need 
a cogent filling. Coupled with this, the biostability of porous carbon nanospheres 
ought to be gauged before being broadly used as carriers. 

3.4 Carbon Nanohorns 

Carbon nanohorns (CNHs) or carbon nanocones are one-dimensional, conical-
shaped carbon nanostructures [134]. Owing to certain outstanding properties, viz. 
great specific surface area, exceptional catalytic properties, superior porosity, high 
productivity, thermodynamic stability, etc. CNHs can replace carbon nanotubes effi-
ciently. Due to this, CNHs expanded their platform to diverse fields like quantitative 
detection of chemical compounds using redox currents, detection of target molecules 
based on immune response, biofuel cell, supercapacitors, and most importantly
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biomedical application as nano-medicine [135, 136]. In addition to these advanta-
geous properties, CNHs have an exceptional property to form, during their synthesis 
process, aggregate spherical clusters of diameter ~100 nm. This is similar to that 
of the “dahlia” flower. These “dahlia” like CNHs correspond to the concoction of 
graphene and nanohorns bound securely through relatively weak electric forces [137]. 
This aggregation property, however, imparts certain limitation like functionalization 
intricacy, dispersion obscurity, severance of each nanohorn. Nevertheless, researchers 
in the present date are surmounting this predicament using novel approaches of 
synthesis and modification [138]. 

Under high-temperature conditions at 2500–3500 K and in the presence of colli-
mated electron beam for ~4 h, CNHs are known to exist in two forms. These are single 
(SWCNHs or SWNHs) and multi (MWCNHs)-walled CNHs. Of two, SWCNHs 
measure 40–50 nm in length and 2–5 nm in diameter. It encloses graphene tubes 
coupled with excruciating cone-shaped, horn-tipped sp2-bonded carbon atoms [134]. 
Thousands of SWNHs frequently amass and form vigorous spherical aggregates of 
80–100 nm diameter. Hence after, these aggregates of SWCNHs would correspond 
to assembled structure and only “SWNHs” to different single-carbon nanohorns. 

3.4.1 Surface Modifications of SWNHs 

SWNHs are characterized by water-repelling graphite surfaces. In order to increase 
their hydrophilicity and enhance biocompatibility, physical or chemical modifica-
tions of these surfaces with functional groups is central. This greatly makes them a 
surreptitious and also enables to execute target-specific drug delivery. To accomplish 
this, carboxylic acid group offers the most widely accepted and compatible functional 
group to be modified. Modification can also be done by making diverse oxidation 
reactions to take place on the surface. This encompasses the reaction between an 
oxidant, for instance, hydrogen peroxide, and the other on SWNHs which generates 
carboxylic groups and, in turn, oxidizes SWNHs [139]. Apparently, such SWNHox 
aggregates react with moieties like bovine serum albumin (BSA) to form BSA-
modified SWNH complex. This complex becomes homogenous in phosphate buffer 
and is effectively assimilated by mammalian cells [139]. 

In order to diffuse various hydrophobic compounds in hypertonic aqueous solu-
tion, certain osmotic laxatives based on hydro- and lipophilic properties like polyethy-
lene glycol (PEG) can be appropriately used since these efficiently avert protein 
engrossment to the surface. Taking this advantage, different PEG-based molecules 
with dispersion properties find an application to modify SWNHs surface, thus 
reducing imprecise binding onto SWNH aggregates [140, 141]. One such modi-
fication can be seen when PEG-doxorubicin dispersed SWNH aggregates. The 
conjugates so produced stimulated programmed cell death of tumor cells under 
the influence of anticancer pharmacokinetics of doxorubicin [142]. Another drug 
Cisplatin-loaded SWNH aggregate was too lucratively tailored with a dispersing 
agent embracing single PEG chain and a peptide aptamer [143]. The dispersibility 
was further improved when the hydrophobic surface of SWNH aggregates was
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enveloped by increased density of PEG chains due to the introduction of comb-shaped 
PEG components [144]. 

Compared to carbon nanotubes (CNTs), SWNHs do not require any metallic 
catalyst during their production via laser ablation method. Consequently, SWNHs 
are produced with high purity and greater yield so that these could be used in 
practical applications. Characterized with effective surface area and volume, the 
same can be increased by inserting nanoholes in their side walls. Such properties 
with increased occupied area and abundant crystal structure make SWNHs more 
gifted for catalytic schemes, biosensing and other radioactive approaches, agents 
for drug loading and delivery of drugs [145, 146]. One such example can be given 
of dexamethasone. After incubation period at room temperature for 24 h, the anti-
inflammatory and immune-suppressant drug is bonded to water repellent surface 
of oxidized SWNH or SWNHox. The reaction ensues into aggregation [147]. In 
other study, both vancomycin (an antibiotic agent) and prednisolone (man-made 
form of corticosteroid hormone) were adsorbed and absorbed by SWNH aggregates 
which as drug basin facilitated their systematic and precise release in a controlled 
manner [148]. Chopart’s joint of rats affected with arthritis, for example, showed 
anti-provocative effects when the target was hit by SWNHs-prednisolone assem-
bled structures. Likewise, Cisplatin effectively deposits on and inside SWNHox 
aggregates and when released into the cancer cells reduce their viability and kill 
them [136]. In gene therapy, SWNH aggregates efficiently carry polyamidoamine 
dendrimers and discharge genetic material skilled to moderate protein level involved 
in prostate cancer development [149]. 

Apart from having increased capacitance to load drugs, SWNHs too facilitate 
controlled release of drugs which can be attributed to their nano size. At the same 
time, there is every likelihood of diverse systems to deliver drugs to a defined target. 
Such systems would be advantageous in terms of cardiac output rate, elevated levels 
of drug accumulation under steady-state conditions and improved biocompatibility. 
However, there has been an equal prospective that morphological characteristics of 
SWNH aggregates favor penetration of drug and continue to hold it for prolonged 
period by exuding through the ruptured vessels of tumors and accrue at transcriptional 
control [150]. Another exciting asset of SWNHs is their photothermal properties that 
allocate them in hyperthermia treatments under low-frequency irradiation, with high 
tissue transmission ability. Notwithstanding the exceptional candidature in several 
practical biological schemes, the major limitation of these aggregates is their high 
withholding capacity that does not let them degrade easily [151]. Nonetheless, small-
sized SWNHs could provide a way to struck these problems [152]. 

Above all, the absence of any metallic debasement in pristine SWNHs elimi-
nates the possibility, if any, of their toxic nature. A recent appraisal on toxicological 
effects of SWNHs, carried out through histological studies on mice deduced that 
the endovenous presence of SWNHs barely reflect palpable pernicious response 
post 6 months [153]. Their marvelous aptitude to incorporate drug within the struc-
ture and squat virulence toxicity make SWNHs a hopeful contender for successful 
nostrum deliverance [154].
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Overall, compared to myriad collection of research, only a few porous carbon 
material-based drugs have been put into practice clinically. To perk up the situation, 
additional pains need to be taken to reduce the mechanism of toxicity reduction, 
elucidate enhanced permeability and drug retention in human body. At the same 
time, mimicking in vivo environment and testing porous carbon material in models 
need to be considered. Therefore, advanced research is required to be elucidated 
on the performance of porous carbon materials. For this, defined targeting methods, 
tumor microenvironment drug release strategy, pooled therapies, self-assembly of 
nanomaterials are some of the realistic approaches to bring effectiveness as well as 
the bioavailability of the drug to augment the targeting specificity. These, in turn, are 
expected to trim down the lethality of carbon nanomaterials drugs on normal cells 
so as to benefit cancer patients. 

4 Carbon Nanohorns and Bone Marrow Formation 

Owing to the idiosyncratic characteristics and favorable cyto-compatibility, nanoma-
terials are encouraged to be considered for applications in biomaterials [155, 156]. 
Of several such outstanding characteristic features, electrical conductivity [157, 158] 
and the typical surface structure [159] thereof correspond to their application in bone 
regeneration. Because of their unique network-like structure, the nanotube-coated 
collagen sponges, for instance, are known to assist in smooth adhesion as well as 
differentiation of osteoblasts [159]. 

Among different nanomaterials like CNHs, CNTs, graphenes, however, the pres-
ence of several impurities like amorphous carbons and metal catalysts apparently 
make them to scrutinize for clinical uses [160]. Contrarily, owing to less harmful 
effects [161] and large inner nanospaces, CNHs have gained much attention toward 
biomaterial and biomedical fields. These spherically assembled huge nanotubes 
of 100 nm diameter [137] act as a platform, wherein drugs can be loaded easily 
[156, 161]. 

Research carried out on rat skull model [162] evaluated re-construction of a new 
material for hard-tissue. Study shows that with slight prophlogistic effect along the 
membrane, CNHs promote osteoblast formation at the outset in defect made in the 
skull of rat after two weeks and also correlates the same with macrophages. The CNHs 
laminated got affixed to osseous tissue directly while those scattered entered bone 
matrix and managed to contact collagen fibers. Osteoblasts that emerge from phago-
cytic WBCs instigate from hematopoietic stem cells [163]. Therefore, macrophages 
involvement is apparent in the breakdown and assimilation cycle of bone growth. 
Thus, CNHs have been considered to be attuned with osseous tissue and effective 
for directing growth of new bone and gingival tissue. Undeniably, literature reveals 
certain evidences of negative impact of macrophages on bone marrow formation 
[164]. Nevertheless, majority of other studies are suggestive of their involvement in 
bone formation. In such studies macrophages reportedly produced osteo-inductive
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factors, for instance, bone morphogenetic protein-2, GF-β [165], and osteopontin 
[166] under varying conditions. 

Similarly, polytetrafluoroethylene (PTFE) membrane when coated with CNH 
promoted bone formation within 2 weeks after surgery [162]. This property has 
also been allied to the macrophages [167]. When macrophages encounter CNHs, the 
former engulfs the latter. This hastens delineation of mesenchymal stem cells into 
osteoblasts through release of Oncostatin M [168]. While continuous bone remod-
eling was observed in the CNHs/PTFE complex, the phagocytes and macrophages 
were scrutinized around CNHs. Compared to SCNHs/PTFE group, the CNHs/PTFE 
complex specifically promoted bone marrow tissues. This was reasoned to the 
removal of CNHs by scrubbing. In dental implant therapy, research has shown that 
following anodization of CNH-coated titanium (Ti) (generating Ti oxide layer, AnTi) 
via electrodeposition, the complex exhibited favorable biocompatibility with bone 
[167]. The CNH/AnTi complex engrossed osteoblastic cells vigorously and more 
effectively than what AnTi alone could do. Further during bone healing the nanohorns 
were quite virtual since they stimulated early bone regeneration in vivo. Also, during 
the premature post-implantation phase, newly regenerated bone tissues maintained a 
contact with CNH/AnTi complex, suggesting their possible role in accelerating “con-
tact osteogenesis.” Such implants where the formation of bone tissues is promoted are 
likely to be more efficient in aged people and diabetic patients. Thus, the CNHs/AnTi 
emerges as an expectation for next-generation surface implant treatments. 

5 Carbon Nanotubes and Embryonic Development 

Single-walled carbon nanotubes (SWCNTs) refer to a section of nanomaterials engi-
neered enough to have adaptable physical and chemical properties. One among 
the lately developed products that exhibit a range of applications, SWCNTs have 
attracted much interest to serve different functions from industry to biomedicine 
[35]. These mainly include their role in micro-fabrication of conjugated activators 
of polymers, composite materials, scanning electron microscopy, etc. Although how 
human body responds to the exposure of CNTs is principally unraveled, detrimental 
effects thereof could not be ignored. In the past few years, extensive research on the 
toxic effects of CNTs has been carried out [169, 170] and inclusive acquaintance of 
their effects is yet to understand. This breach is still larger pertaining to their effects 
on embryonic development, for which only scrubby data are accessible and most of 
which refer to aquatic species [171, 172]. Owing to some advantageous characteris-
tics, one such study has been focused on the zebrafish embryo. The embryo completes 
its entire development within four days in open environment. This facilitates a direct 
prophecy of various steps involved in morphological changes occurring. Research 
has demonstrated that under laboratory conditions hatching after the stimulated time 
indicates the presence of nickel and cobalt adulteration, and CNTs do not interfere 
with proper embryonic development [171].
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Apart from work on zebrafish model, interaction between SWCNTs and devel-
oping embryo in mammals revealed certain contrasting facts [173]. Medication with 
less concentration of pristine and oxidized SWCNT when administered to expecting 
mice adversely targets the post-implantation embryo. The study indicated SWCNTs 
to have a possible role of embryotoxic agents in mammals. The teratogenic effect was 
observed at a dosage as high as 30 μg/mouse and as low as of 0.1 μg/mouse. While 
the former dosage of SWCNTs characterized miscarriages and gross fetal morpho-
logical abnormalities, the latter imposed fetuses with gross malformations. However, 
at the lowest concentration of 0.01 μg no such results were ever observed. It is further 
realistic to presume that a negligible concentration of the infused drug reaches the 
placenta and hence the fetus. Nevertheless, the latter is highly sensitive to the drug. 
Also, at such a reduced dosage none of the CNTs were detected in placenta and/or 
fetus. Therefore, the study failed to make a proper discrimination in actual effects 
of SWCNTs. Of three different classes of SWCNTs used; pristine (p-SWCNTs), 
oxidized (o-SWCNTs) and ultra-oxidized (uo-SWCNTs), maximum malformation 
occurred in uo-SWCNT treated mothers followed by o-SWCNTs. This behavior has 
been largely ascribed to an improved scattering of the drug and its ensuing elevated 
availability in the medium [174]. Moreover, stringent connectivity among different 
stages of embryo development including retardation in placenta at any stage due to 
higher doses of CNTs and apparently crossing the blood-placental barrier [175] are  
suggestive of placenta in mediating embryotoxic effect. 

Reports of crossing the placenta to have access on developing embryo by SWCNTs 
are obligatory. Studies suggest potential risk for occupational pregnant women when 
exposed to SWCNTs where the probability of inadvertent contact may become 
factual. Therefore, advance research is indispensable to comprehend the fundamental 
idea of tempting embryo toxicity by CNTs (especially oxidized CNTs) and substan-
tiating the steadfastness of embryonic stem cell tests in speculating embryo toxicity 
for other ENMs. 

6 Nanocarbon-Based Cardiovascular Applications 

Cardiovascular diseases (CVDs) are one among the leading causes of mortality across 
globe. The basic reason of CVDs is the sudden stoppage in nutrient and oxygen supply 
to heart due to obstruction in blood vessels. The disease outlines as atherosclerosis. 
The blockage generally occurs in coronary arteries either due to fatty substances and 
cholesterol accumulation or by platelets and proteins. This, in turn, opens a door 
to the related heart diseases, viz. ischemic heart disease (IHD), cerebro-, reno- or 
peripheral-vascular disease, mesenteric ischemia [176, 177]. This interrupts and alto-
gether reduces the availability of blood to the heart and eventually results in a myocar-
dial infarction (MI), another name for heart attack. Being severe, heart attack can 
permanently damage cardiomyocytes. The inherent repairing thought averts cardiac 
shattering by a fibrotic scar, yet heart can stop pumping blood due to non-contractile 
nature of the scar tissue [178]. At present, accessible pharmacotherapy is based on
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analgesic properties of drug [179, 180], for instance, as cholesterol-reducing agents, 
angiotensin-converting enzyme (ACE) inhibitors or even by surgery [181]. However, 
such measures often cause the random drug distribution throughout the body, reduce 
the competence thereof, and often become toxic to the cells. Such gaps, therefore, 
need a cogent filling through regenerative therapeutics and tissue engineering [182]. 

Introduction of CNMs has resolved this problem to a large extent. Ensuring correct 
design and installation as well as electric conductivity of various devices, namely 
cardiac patches or regenerative scaffolds used in biomedical science [183, 184] have  
improved progressively. This has opened new avenues to invent fresh biosensors 
having superior targeting properties [185]. Expectedly, this would ease scientists to 
prepare target specified medicine with the ability to be tailored according to patient’s 
needs [186]. As carbon nanotechnology is emerging rapidly, surface modifications 
of nanocarbon with different ligands make it target-specific, especially in CVDs. 
This, in turn, improves its cellular interaction, reduces the toxicity thereof [187] 
and necessitates in different biomedical devices. Some of its applications have been 
discussed as follows: 

6.1 Drug/biomolecule Delivery 

Target drug delivery is an important aspect in cardiovascular medication. For antic-
ipation and conduct of different CVDs, oral or intravenous drug administration 
is fundamental therapy [188]. Conventional drugs are dispensed to diminish fatty 
substances deposited on the inner walls of arteries, encourage formation of new 
blood vessels in ischemic tissues and enhance the affected body parts to recover 
[189, 190]. However, off-target effects, recurrent dosing to achieve therapeutic effi-
ciency and poor bioavailability of the drug are some of the widespread problems 
embraced by these drug delivery approaches. Ultimately, such prominent parame-
ters pose noteworthy confronts in obtaining maximum benefits from drug therapies. 
This ultimately calls for some advanced mechanics of drug delivery systems capable 
to address these concerns. 

To tackle this situation, CNMs have proven to be the outstanding hauliers for 
transporting drugs to the target site. In fact in the budding area of nanotechnology, 
allotropes of carbon gained momentous attention and have been judged as one among 
the fundamental classes in drug delivery applications [191]. For instance, graphene 
derivatives due to their exorbitant surface area, soaring firmness, flippant water 
interacting properties bear drug heaping competence [192]. Irbesartan, a blocker 
of angiotensin receptor, finds application to lower down blood pressure in CVD 
patients. An electro-conductive hydrogel was primed by reinforcing 20% reduced 
graphene oxide (rGO) into three components, viz. hyaluronan, gelatin, and oxide 
of polyethylene hydrogel [193]. Reportedly, the hydrogel effectively regulated irbe-
sartan availability for 10 days in the patient, giving an indication of rGO acting as 
well-structured drug conveyor for CVD therapy. Another example can be given of 
Diltiazem, a derivative of benzothiazepine with calcium channel blocking ability is
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used to manage severe chest pain and treat high blood pressure. For effective and 
controlled release of the drug, a complex comprising of graphene oxide (GO) and 
methylcellulose (MC) was prepared that purportedly served the function success-
fully [194]. Similarly, atherosclerosis, a serious concern often causes occlusion of 
blood vessels. Under such conditions, therapeutic angiogenesis via introduction of 
vascular endothelial growth factor (VEGF) is one such treatment to develop new 
blood vessels from the older ones [195, 196]. This process of angiogenesis improved 
many fold when VEGF was functionalized with GO. Comparative analysis showed 
a significant increase in the density of blood vessels and availability of oxygen in the 
muscle with inadequate blood supply when VEGF-GO combination was used, thus 
demonstrating the curative interest of GO in the formulation. 

6.2 Biosensors 

Discovery of biosensors proved to be a boon to medical science. The promising tools 
facilitate CVD treatment on time and perpetuation of cardiac function by ascer-
taining cardiac defects at the early stage [197, 198]. An ample array of biochemical 
molecules, for example, proteins, nucleic acids, and even different metabolites can 
be easily detected using biosensors [199]. Biosensors have two components, viz. 
biocatalyst and transducer. While the former can be nucleic acids, antibodies or 
any biomolecule which detects biological component, the latter can be electrochem-
ical and optical sensors which analyzes interaction between enzyme involved and 
target analyte and also quantify their concentration [200, 201]. The involvement of 
nanotechnology has exponentially improved sensitivity and robustness in biosensors. 
This is due to the fact that nanomaterials provide a larger aspect ratio for improved 
enzyme interaction and can have a dual function of sensing element as well as a 
transducer in a biosensor [202]. Akin to gold nanoparticles, CNMs serve as biosen-
sors in various aspects in CVDs. Payable to being cost-effective, smaller size and 
unique optical and electrical properties, nanomaterials as sensors are used as model 
candidates in interpreting CVDs [203, 204]. Figure 3 explicates CNMs in diagnosis 
of CVD.

6.3 Tissue Engineering 

During inception of necrosis of myocardium, the affected area is often character-
ized by colossal cell death among functional cardiomyocytes due to ischemia. Even 
after the recovery and restoration of regular blood circulation, cardiac muscle still 
lacks potential to revitalize itself completely. Consequently, ailment, yet in the latent 
mode, gradually makes perpetual non-conductive and inflated pockmark in the infarct 
site. Depending upon the extent of loss occurred, the pumping function of heart 
may unfavorably be affected and can even lead to heart failure [205]. The damaged



868 M. Raina et al.

Fig. 3 CNM application in biosensors for CVD diagnosis; note the cardiac biomarker trajectory 
in plasma of CVD patients and their detection by sensors carrying different biocatalysts on their 
surface. The value so obtained is amplified and displayed on the screen

myocardium cannot be completely repaired using conventional therapies. Alterna-
tively, the only option left remains the heart transplantation. However, surgery is 
not the permanent solution since it can often lead to chronic illness. Nevertheless, 
these predicaments can be permanently resolved via therapies based on tissue engi-
neering. It encompasses various cells and biomaterials to redevelop the muscular 
tissue lost during a myocardial infarction. Encroachments in nanotechnology have 
further enhanced this diagnosis by engendering advanced frameworks, boostered 
hydrogels, and cardiac patches. The carbon nanomaterials offer structural potency 
akin to collagen in the extra cellular matrix. Also, the conductive properties thereof 
facilitate advanced dynamism among enduring contracting cells in heart muscles 
and transplanted stem cell plagiarized cardiomyocytes [206]. Figure 4 demonstrates 
cardiac tissue engineering model based on CNM.

6.4 Cardiac Patches 

Porous carbon nanotubes (CNT) have been employed to generate hydrogel complex 
of gelatin methacrylate (CNT-GeIMA). Cardiomyocytes of neonatal rat were incor-
porated into this CNT complex and cardiac bioactuators were constructed [207]. This 
power pack combination of a caged nanomaterial with GeIMA increased the effi-
ciency of electrophysiological functions, imparted synchronous beating rates almost
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Fig. 4 Overview of CNMs in cardiac tissue engineering. CNMs besides strengthen differentia-
tion and maturation of stem cell-derived cardiomyocytes also participate in CNMs-based cardiac 
constructs. These constructs comprise of three components: cardiac cells, polymers, and growth 
factors which effectively treat heart-related ailments during MI

three times as compared to that from CNT-GeIMA alone. The compression modulus 
was also enhanced from 10- to 32-kilo pascal due to the incessant fortification round 
films [207]. It is of the general concern that sustained cells, if seeded on flabby 
tissue underlayer, are usually prone to programmed cell death [208]. Due to the 
nanofibrous lattice created inside the gelatin meshwork, cells consistently spread on 
CNT-GeIMA complex. Surprisingly, the retention rate coupled with cell viability 
proportion in CNT-GeIMA complex was considerably larger than those in pristine 
GeIMA [207]. 

The cardiac patches structured to have an aperture dimension ranging from 120 
to 150 μm possibly will recommend an appropriate pore aspect for dissemination 
and establishment of arteries, capillaries, and veins in the inner lining of endothelial 
heart cells. Employing CNT system as a potential biomarker in stem cell delivery 
greatly affected the porosity of polymeric matrix [209]. The electromotive force so 
produced was used to manipulate magnitude of charges within CNT construction. 
Consequently, it affected both the ends of dipole to align correctly so as to generate 
purposeful sarcomeres, thus enhancing cardiac differentiation [210].
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6.5 Additional Nanomaterials for Cardiovascular 
Therapeutics and Diagnostics 

Carbon propounds an intrinsically sustainable material to tailor and modulate surface 
chemistry and morphology of nanoarchitecture so as to fill a gap in the emerging 
requirements by medical science [211]. As mentioned earlier in this chapter, fullerene 
(truncated icosahedrons, 60 carbon atom compounds) together with nanodiamonds 
are adapted to achieve diverse functionality. Reportedly they have the potential to act 
as strengtheners in creating contractile tissues of heart [212]. When administered into 
blood vessel deficit areas of MI rats, these caged molecules significantly improved 
the endurance and retention of brown adipose-derived stem cells (BADSCs) in 
fullerenol/alginate composite [213]. This proved their likelihood to be applicable 
in cardiovascular theranostics. 

Recently, biosensors based on the amalgamation of nanodiamond and graphdiyne 
were structured to perceive quantitative measurement of cardiac troponin I (cTnI) 
in plasma and haematin extent in human serum. On comparing the CNM-based 
biosensors with the handy ones, for instance, black phosphorous, etc., the former 
was found competent enough to trace even diminutive concentration of haematin 
(0.01–1000 pg/ml) [214]. Nonetheless, notwithstanding these stimulating details, the 
relevance of nanodiamonds and fullerenes in medical science encounters different 
stumbling blocks, including their toxicity. It, therefore, calls for an exhaustive exper-
imental investigation to develop advanced functional moderations for proper plan of 
action. This would open a window for these CNM to materialize as one of the best 
choices for therapeutics and diagnostics for circulatory system in the future. 

7 Toxicity of PCM-A Question of Safety? 

Carbon nanomaterials emerge as an awfully adaptable collection of nanomaterials. 
Encompassing enviable characteristics particularly those of wrangling and chem-
ical firmness, CNMs can be customized to meet diverse requirements [95]. While 
carbonaceous nanomaterials have a direct bearing upon the biomedical field, a 
number of debates about their virulence are still underway [215, 216]. Different 
in vitro cellular studies focusing on the lethality, especially on the structure or 
functioning of immune system of humans or rats have made known different toxic 
effects of CNMs [217, 218]. And several factors such as structures, surface chemistry, 
impurities, method of synthesis, aspect ratio [127], critical dosage amendments, and 
important delivery routes have been reported to contribute to their toxic nature. For 
instance, SWCNTs and MWCNTs exhibit toxicity due to the presence of fibers in 
their structure [219]. Of two, high probability of cancer is associated with MWCNTs 
which owes to the presence of metal impurities in long stiff structure [160, 220]. 
Contrarily, spherical-shaped single-walled carbon nanohorns (SWNHs) are usually 
free from metal impurities [137, 221] and are not noxious [160, 219, 220] with
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different surface modifications during cell viability assessments [136, 139]. Nega-
tive mutagenic and clastogenic results further authenticate their non-carcinogenic 
nature [153, 221]. Likewise, in various animal tests the absence of abnormal cellular 
degeneration, necrosis, histological abnormalities, viz. granuloma and fibrosis, unde-
sired inflammatory responses indicate their non-damaging nature to several tissues. 
All of these results are, therefore, suggestive of SWNH being low toxic under natural 
as well as experimental conditions. 

The toxicity of fullerenes, another spherical nanocarbon material promising as 
nano-medicine is often associated with variation in the size enclosure and surface 
chemistry. Pristine C60 potentially has dual functions; while it accounts for genera-
tion of reactive oxygen species, it can simultaneously scavenge free radicals. Based 
on this, certain combating details narrate its harmful effects. While some are of the 
opinion that pristine C60 is lethal and causes damage to cells others judge it to 
be the powerful antioxidant with no acute toxicity [44, 222]. It is quite difficult to 
demonstrate the toxic nature of pristine C60 since the same can be governed by the 
conditions applied, for instance, impurity level, light irradiations, etc. Accordingly, 
under certain conditions C60 becomes an effective, moderately non-toxic medica-
ment representative. On modifying the same to become water soluble, fullerenes are 
expected to impart acute animal toxicity. As an analogy, polyhydroxylated C60, based 
on surface chemistry can be second in toxicity after pristine C60 [223]. The modi-
fied compound reasoned for the meager development is hydrogen peroxide instead of 
superoxide. Consequently, polyhydroxylated C60 failed to persuade oxidative stress 
[224]. Therefore, based on various toxicological studies, fullerenes and its derivatives 
ordinarily show low toxicity [225]. 

Several studies reportedly claim toxicity of graphene and its derivatives in different 
cellular models which often result in complications like excessive inflammation and, 
if severe, can even lead to everlasting genetic disorder and even apoptosis [226]. A 
study carried out by Duch and co-workers [227] on lungs reported an imbalance in the 
production of ROS and antioxidant defense mechanism when graphene was present 
as an oxide. However, the same elicited no toxicity when existed as hydrophobic 
graphene. This study, therefore, brought into light the relevance of surface function-
alization as well as dispersion that greatly enhanced the biocompatibility of graphene. 
Hence, size, surface chemistry, and appropriate distribution of graphene nanosheets 
are the key concerns that ought to be controlled to diminish harmful effects. Similar 
to this study was the one carried out by [228]. This group employed different sizes as 
well as concentrations of graphene oxide (GO) to evaluate their outcomes on embry-
onic development of zebrafish. The hatching time of the embryos got slower, with 
reduction in the body length, altered heartbeat and circulation rates and stimulated 
genes to promote cell death when GO was used at 100 mg/l concentration. This study, 
however, showed that dimensions of graphene oxide have no bearing upon the toxic 
nature when injection concentration exceeds 10 mg/l. Hence, selection based on the 
size and concentration of CNMs holds much importance not only for their safety but 
their unmatched efficacy for therapeutic applications as well. 

Toxic nature of CNTs is reported to limit their application in biomedically impor-
tant aspects, for instance in detecting biological receptors, loading and unloading of
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drugs, repair and replacement tissue systems especially in heart and brain [229, 230]. 
Inceptive toxicity of CNTs in animals is often scrutinized using short-term exposure 
of lungs. The prime target of CNTs is the lungs which become brutally affected 
via inhalation of the nanomaterial. This effect gradually extends to the cardiac 
tissues [230, 231]. In order to minimize these toxic effects, the non-toxic chem-
ical groups are either conjugated or reactive functional groups present on the surface 
are removed. However, a comparative study was carried out on SWCNTs and acid 
functionalized SWCNTs. The toxicity of both was evaluated in mice through oropha-
ryngeal aspiration. The study revealed dose-dependent accumulation of neutrophils 
and increased edema formation in the lungs when exposed to acid functionalized 
SWCNTs. Because of their massive and outsized dimensions, such nanomaterials 
aggregated in aqueous solutions unlike easily dispersed smaller CNMs. This, in turn, 
mediates CNM toxicity inside the cells [232]. 

Several laboratory-based toxicological studies on carbon nanodiamonds and 
nanoparticles with some permanently established cell cultures have been reported to 
be non-pathogenic and least toxic with no detrimental effects on cellular proliferation 
[121, 132, 233]. Different bioassays carried out typically on nanodiamonds revealed 
that after being incubated these CNMs turned negative for inducing inflammation, 
stimulating adipokine and cytokine transmembrane proteins and even nitric oxide 
synthase in cells [234]. Besides this, owing to fluorescing property of nanodiamonds, 
their surface modifications account for non-toxic and highly biocompatible nature 
thereof. 

Overall, it can be comprehended that the representatives of porous carbon mate-
rials are not intensely noxious up to a defined period. Even their surface functional-
ization demonstrates compact toxicity. It is yet obligatory to execute more meticulous 
and in-depth investigation to unearth the mechanics behind and evaluate persistent 
side effects and disintegration potential. Despite being exploited for nano-therapeutic 
applications, the intricate fatal side effects of nanomaterial cannot be ignored and 
hence need to be understood more. Nonetheless, studies based on CNMs indicate 
spherical shape to have taken edge over others in many biological systems. 

8 Summary and Outlook 

The present book chapter abridges promises and challenges associated with the ther-
apeutic concerns of CNMs and their derivatives in diverse fields including targeted 
drug delivery, repair and replacement of tissues, physiochemical detection, and regu-
latory alteration of immune system. In vitro studies rated on understanding adminis-
tration strategy, therapeutic dosage compensation, biological degradation, and non-
hazardous performance of CNMs have opened a window of opportunity to synthesize 
next-generation biomaterials holding therapeutics worth. Although the clinical exer-
cise is still premature to conclude, the biocompatibility of these materials is appar-
ently a decisive factor for their applicability in therapeutics. Further, since CNMs own
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several important properties which make them eye-catching candidates for biomed-
ical application, numerous challenges triumph over their successful clinical appli-
cations. Hence, in-depth knowledge is crucial to comprehend the safety contour 
and fundamental benefits in different in vitro animal models. Understandably, this 
will provide an insight to the researchers for the fine-tuning of CNMs towards their 
pharmacokinetic and pharmacodynamic profiles. Concurrently, the presence of these 
products in the environment after their usage may add to the potential contamina-
tion leading to ecotoxicity problems in the near-future. Therefore, before exercising 
porous carbon materials in therapeutics, execution of more meticulous and exhaus-
tive long-term toxicological studies is central. Hence, upcoming efforts should also 
focus on resolving these issues as well. 
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Fe2O3 NPs Iron oxide nanoparticles 
RNA Ribonucleic acid 
NPC Nitrogen doped porous carbon 
MOF Metal–organic framework 
MCNs Mesoporous carbon nanoparticles 
MRI Magnetic resonance imaging 
MR Magnetic resonance 
PEG Polyethylene glycol 
MSN Mesoporous silica nanoparticles 
LE% Loading efficiency % 
HMC Highly ordered mesoporous carbon 
FOMC Fibrous ordered mesoporous carbon 
CEL Celecoxib 
CAR Carvedilol 
IDDSs Immediate drug delivery systems 
SDDSs Sustained drug delivery systems 
CDDSs Controlled drug delivery systems 
TDDSs Targeted drug delivery systems 
LOV Lovastatin 
HMCN Highly mesoporous carbon nanoparticles 
DOX Doxorubicin 
VER Verapamil 

1 Introduction 

Porous carbon materials (PCMs) have emerged as promising materials in various 
fields, citing industrial activities, environmental monitoring, biomedicine, and biode-
tection [1–4] due to their excellent physicochemical and electronic properties such 
as good chemical stability, fast electronic response, high surface area, and tightly 
controlled pore size [5–7]. Structurally, porous carbon materials are solid materials 
with three different pore sizes (micropores (< 2 nm), mesopores (2–50 nm), and 
macropores (> 50 nm)) [8]. Interestingly, numerous studies have revealed that the 
presence of the aforementioned three pore ranges in the same material is unique in that 
it provides a high specific surface area, good mass transfer, and numerous centers of 
response for guest molecules provided by macropores, micropores, and mesopores, 
respectively [9]. It is worth noting that various preparation methods of porous carbon 
materials were reported in the literature citing template, pyrolysis, hydrothermal 
carbonization, spray pyrolysis, chemical vapor deposition methods [10, 11]. More-
over, the functionalization of porous carbon materials with heteroatoms has generated 
enormous interest as it is a powerful means of dramatically improving material prop-
erties [12], thus enabling them to offer efficient solutions to global issues, including 
increasing energy demands, industrial pollution, and health problems. Therefore, the
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Fig. 1 Different forms of porous carbon materials and their applications in biosensing, drug 
delivery, and medical diagnostics 

authors emphasize the use of porous carbonaceous materials in their various forms 
in biosensing, drug delivery, and medical diagnostics (Fig. 1). 

2 Porous Carbon Materials in Biosensing 

The International Union of Pure and Applied Chemistry (UIPAC) has defined the 
biosensors as analytical sensing devices composed of the transducer and immobilized 
biomolecules or organisms (e.g., enzymes, DNAs, antibodies, cells, and microorgan-
isms) as sensitive elements (bioreceptors) which can recognize selectively the target 
of interest [13]. The transducer is responsible for converting the molecular recogni-
tion between the bioreceptor and the target analytes into recognizable and measurable 
analytical signals [14] (Fig. 2).

Currently, there is a lot of interest in developing both invasive and non-invasive 
biosensors because of the huge promise of a plethora of applications. However, the 
scarcity of stable and reliable non-invasive biosensors has stymied progress in the 
field of invasive biosensors. Before proceeding, it is necessary to define the term 
“invasive biosensors”. Nowadays, numerous commercial biometrics biosensors can 
be found on the market, such as ACCU-CHEK (Roche Diagnostics, Inc.) and Lactate 
Scout (Sport Resource Group, Inc.) for glucose monitoring. It is worth highlighting 
that the aforementioned biosensors are non-invasive, requiring only a small volume 
of biological fluids, as opposed to invasive biosensors, which usually require labora-
tory tests of blood or other body fluids. To develop a reliable non-invasive biosensor, 
special attention should be paid to critical analytic parameters such as limit of detec-
tion and specificity, which are two of the most difficult challenges. As far as specificity 
is concerned, it is considered the most important property of a sensing system because 
it defines the sensor’s capacity to differentiate between target and non-target enti-
ties. Critically, the integration of nanomaterials into the structures of the biosensor



888 A. Mars et al.

Fig. 2 Schematic representation of biosensor structures

remarkably improves the analytical performance of the platforms, allowing them to be 
explored in different applications including healthcare, environmental monitoring, 
and military security [15]. Among these nanomaterials, porous carbon materials 
have widely been used to meet these requirements due to their large specific surface 
area, high loading capacity, controlled nanoscale structures, and high conductivity 
[16–18]. These unique properties endorse electron transfer reactions between the 
bioreceptor and the analyte, which tend to increase specific molecular recognition 
and enhance the detection limit. As a result, more than 13,500 scientific reports 
were published in 2020 using the words “porous carbon and biosensors”. A large 
number of them describe the application of porous carbon in the enzymatic electro-
chemical sensing of glucose [19–21]. In this context, Chen et al. [22] described the 
use of a mesoporous carbon framework (MCF) decorated with Co3O4 nanoparticles 
as nanometric support for the enzyme glucose oxidase (GOx). The hydrothermally 
prepared Co3O4@MCF nanocomposite had a high porosity and a large surface area 
which allowed efficient immobilization of a large number of enzymes. The drop-
coating construction method was adopted to develop the reported biosensor using a 
glassy carbon electrode as a working electrode. The electrochemical results revealed 
that the developed porous carbon platform exhibited excellent analytical biosensing 
performances toward glucose with a limit of detection of 107.7 μM. Similarly, meso-
porous carbon-chitosan nanocomposite was used to fabricate an efficient electro-
chemical biosensor for quantification of glucose in various biological fluids citing 
human saliva [23]. Indeed, S. Angaiah et al. reported that used mesoporous carbon 
was prepared via a combination of copolymerization and template methods. In the 
reported work, sucrose and melamine were used as precursors and calcium carbonate 
(CaCO3) as a template. Amperometry results showed that mesoporous carbon-based 
biosensor revealed good catalytic response toward glucose with a Michaelis–Menten 
saturation value of 2.14 mM. Chen and coworkers [24] proposed the use of porous 
carbon (PC) and Prussian blue (Pb) nanocomposites to fabricate a sensitive electro-
chemical enzymatic glucose biosensor. In this work, melamine foam was applied
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Fig. 3 LIG electrode on PI film (125 μm in thickness). Reprinted with permission from reference 
Park et al. [25]. Copyright 2020 Elsevier 

as a precursor synthesis of PC allowing an excellent matrix for efficient loading of 
the enzyme glucose oxidase (GOx). They demonstrated that the presence of Pb in 
the porous architecture improved the catalytic activity of the biosensor. Further, the 
synergistic effect between PC and Pb enhances considerably the sensitivity where it 
was found to be 50.63 μAmM−1 · cm−2. The biosensor exhibits excellent analytical 
performance, suggesting a potential model for constructing sensing platforms that 
release or consume oxygen during the recognition process. More interestingly, Park 
and coworkers [25] have recently developed an ultrasensitive glucose biosensor based 
on laser-induced porous graphene (LIG) functionalized with platinum nanoparticles 
(PtNPs) (Fig. 3). 

Indeed, they proposed the use of acetic acid treatment to alter the surface of 
porous graphene. This treatment reduced carbohydrate functional groups which 
dramatically enhanced the conductivity. Additionally, they demonstrated that this 
step exhibited a uniform dispersion of Pt nanoparticles on electrode surface. As result 
developed LIG electrode platform displayed an acceptable analytical performances 
(sensitivity of 4.622 μA · mM−1, LOD less than 300 nM, and a wide linear range 
up to 2.1 mM). The practicability of the biosensor was demonstrated using sweat 
matrices with acceptable recovery rates. Furthermore, triglyceride (TG) ensures a 
key role in transporting adipose fat and blood glucose from the liver. It has been 
shown that a quantity above 200 mg/dL can originate serious illnesses including 
heart disease, diabetes, hepatic obstruction, nephrosis, and endocrine disorders [26]. 
So far, various analytical methods have been developed to quantify TG concentra-
tions in biological samples, but electrochemical methods remain the fastest and most 
sensitive [27]. In this context, Sharma et al. [28] described the development of a highly 
sensitive sensing platform based on porous carbon nanofibers (CNFs) functionalized 
with silver nanoparticles (AgNPs) for TG sensing. They justified that the presence 
of AgNPs considerably increased the conductivity of the electrode and favored the 
graphitization of CNFs. To detect TG, the authors chose to use the lipase (Lip) and 
glycerol dehydrogenase bienzymatic system. The substantiated results showed that 
the sensitivity was four times higher for the electrode modified with Ag@CNF than 
for the electrode modified with only CNFs. The reported biosensor showed high
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selectivity, acceptable reproducibility, and rapid response (less than 10 s). Addition-
ally, porous carbon materials were used to fabricate sensitive DNA or aptamer-based 
biosensors. In this context, Karimzadeh and collaborators [29] described the fabri-
cation of an electrochemical biosensor for the sensing of EGFR exon 21-point muta-
tion. To develop the sensing platform, the surface of the graphite electrode pencil 
was modified sequentially by metallopolymetric nanoparticles (NiOTC NPs) and 
ordered mesoporous carbon functionalized reduced graphene oxide nanocomposite. 
The immobilization of the ssDNA probe was established by the formation of an 
amide bond between amine groups at the 5' end of ssDNA and carboxylic groups of 
the rGO/f-OMC/PGE surface. The results demonstrated that the prepared biosensing 
platform displayed great analytical performances including a great dynamic concen-
tration range with a low limit of detection (less than 120 nM). As an aptamer-based 
porous carbon biosensor example, Besharati et al. [30] have recently reported the 
development of sensitive determination of insulin. The authors proposed the use 
of a serigraphic carbon electrode decorated with 1,3,6,8-pyrenetetrasulfonate (TPS) 
modified ordered mesoporous carbon as electrochemical support for insulin aptamer 
probe. By this method, insulin can be determined within the concentration range of 
10–15–10–11 molar, with a limit of detection less than 0.18 femtomolar. The evaluation 
of the applicability of the proposed biosensor was carried out in spiked human serum 
samples. Therefore, they described that the developed method is highly sensitive, 
selective, and stable. Moreover, Zhang and coworkers [31] have described the devel-
opment of an impedimetric aptasensor for the highly sensitive detection of ochratoxin 
A which poses a serious threat to human health. The authors choose to modify the 
electrode surface by gold nanoparticles (AuNPs) and carboxylic porous carbon mate-
rial. They reported that gold nanoparticles and porous carbon were used to amplify 
the impedimetric signal and improve the loading of the target analyte; respectively. 
The impedimetric results revealed that the developed biosensor displayed a loga-
rithmic relationship between the concentration of OTA and the variation of charge 
transfer resistance DRct. The limit of detection was estimated to be 10–8 ng/mL. In 
another context, the combination of porous carbon materials and magnetic nanomate-
rials, which improve the performance of electrode materials, has been widely used to 
develop reliable and robust electrochemical biosensors [32]. For instance, a sensitive 
electrochemical thrombin aptasensor was developed by Lui’s group [33]. The used 
porous carbonaceous material was synthesized by the carbonization of metal–organic 
zinc (II) -2-methylimidazole framework. Indeed, they used magnetic nanoparticles 
to immobilize the aptamer probe functionalized with methylene blue (MB) and to 
easily separate the MB released after the detection step. Consequently, the forma-
tion of the aptamer-thrombin complex induces the release of methylene blue which 
causes a proportional increase in the electrochemical signal MB to the concentration 
of thrombin detected after analysis of the supernatant solution. The authors summa-
rized the analytical performance of the biosensor as follows: low limit of detection of 
0.8 femtomolar, wide dynamic range from 10 femtomolar to 100 nM, good recovery 
rate from 98.1% to 99.4% with a deviation of relative type of 3.9%. More inter-
estingly, a sensitive bienzymatic biosensor for the sensing of H2O2 and paraoxon 
was developed by Huang and coworkers [34]. The described platform was based on
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the functionalization of carbon paste electrodes (CPE) with porous carbon decorated 
with Fe2O3 nanoparticles. The used porous carbon-based nanocomposite (Fe2O3@C) 
was prepared by the annealing of Fe-1,3,5-benzenentricarboxylate metal–organic 
framework. In this work, the authors choose to conjugate the modified surface 
Fe2O3@C/CPE by two different probes. To sense hydrogen peroxide, the modi-
fied electrode surface was conjugated, consecutively, with ionic liquid and myohe-
moglobin enzyme. Concerning H2O2 detection, the modified electrode surface was 
functionalized with Nafion and acetylcholinesterase enzyme. The research showed 
that Fe2O3@C was a viable material for electrode surface modification and the fabri-
cation of several biosensors for the sensitive detection of target analytes other than 
H2O2 and paraoxon. Regarding fluorometric biosensors based on porous carbon 
materials, enormous studies have revealed that metal–organic frameworks are one 
of the efficient optical quenchers for DNA/RNA sensing [35]. However, the appli-
cation of these quenchers is very limited due to their weak structural stability. To 
overcome this issue, many groups of researchers doped the porous carbon mate-
rials with nitrogen to develop stable platforms of biosensors [36]. In this context, 
Duan et al. [37] reported the preparation of a stable nitrogen-doped porous carbon 
(NPC) using MOFs as precursors. This porous material was applied to fabricate 
a sensitive system for the fluorescence quantification of Zika virus RNA. Before 
sensing step, the presence of MOFs-based N doped porous carbon quenches the 
fluorescence signal by forming probe-DNA@NPC complex. Nonetheless, the DNA 
probe could be freed from NPC by the establishment of a double-stranded hybrid 
upon the addition of the complementary target Zika RNA inducing a fluorescence 
recovery. The report describes that the proposed method assay has a low limit of 
detection of 0.23 nM. Recently in 2020, Liu’s group [38] has fabricated a fluoro-
metric biosensing system using porous carbon which was prepared by the calcination 
of Enteromorpha prolifera. The authors discovered that the resulting porous carbon 
materials had unique enzymatic properties, such as oxidase and peroxidase-like activ-
ities. The platform was successfully applied to detect hydrogen peroxide, glucose, 
and acid phosphatase with limits of detection of 0.017 μM, 30 μM, and 0.1 U/L, 
respectively. Additionally, they demonstrated that bi-enzyme mimics porous carbon 
material induced high reproducibility and stability (Table 1).

3 Porous Carbon Materials in Medical Diagnosis 

Nowadays, medical diagnostic techniques have rapidly developed and become one 
of the most important areas of modern medicine. In this regard, many researchers 
have relied on the use of porous materials to ensure the efficiency of the diagnostic 
agent [56, 57]. Among these porous materials, porous carbon nanoparticles have 
been widely used as theragnostic agents in early diagnosis and real-time monitoring 
of cancers in vivo [58]. Recently, MCNs have been integrated with fluorescence, 
magnetic resonance imaging, and photoacoustic imaging owing to their excellent 
biocompatibility, controlled pore size, and high surface-to-volume ratio.
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Table 1 Selected applications of porous carbon-based electrochemical biosensors reported in 
literature 

Platform Analyte method Detection 
limit (μM) 

Linear range 
(μM) 

References 

3D-PC/Ni0.05NPs/GCE Glucose CV 4.8 15–6450 [39] 

HAC/NiO 
nanocomposite/GCE 

Glucose CV 0.055 5–4793 [40] 

GOD/3D-CVS electrode Glucose CV 0.19 0.58–16,000 [41] 

NPC/SPCE Glucose CV 30 50–1500 [42] 

Co7Fe3/NPC/GCE Glucose CV 1 1–14,000 [43] 

CoS@PC/GCE Glucose CV 2 10–960 [44] 

Cu nanospheres@PC 
electrode 

Glucose CV 4.8 15–5620 [45] 

CoMoO4/MPC/GCE Glucose CV 0.13 75–725 [46] 

PCMS/GCE Dopamine DPV 0.45 0.10–3 10–3–0.1 [47] 

Uric acid DPV 6 0.10–3 0.01–3000 

NPCNPs/GCE Ascorbic acid DPV 0.74 8.104–2.106 [48] 

Dopamine DPV 0.011 0.5.103–30. 
103 

Uric acid DPV 0.021 4.103–50.103 

3D-PC electrode Dopamine DPV 0.1 0.8–400 [49] 

3D-N,P-PC electrode Dopamine DPV 0.6 2–200 [50] 

Fe2O3 NPS/PC 
aerogels/GCE 

Dopamine DPV 0.109 5–500 [51] 

N,Co-PC NPs/GCE Dopamine DPV 0.34 2–69.5 [52] 

Uric acid DPV 0.98 5–192 

Mercapto-MP-C-CPE Omeprazole DPV 4 10−5 0.25.10−3–25 [53] 

Nafion/OMC/GPE Epinephrine CV 7 20–4000 [54] 

OMC/GCE Glutathione CV 0.09 – [55] 

Cysteine CV 0.5 3–130 

3D-CVS (3D) porous cane vine (wisteria) stem-derived carbon; DPV differential pulse voltam-
metry; CPE carbon paste electrode; GCE glassy carbon electrode; GOD glucose oxidase; HAC 
Heteroatom-enriched porous carbon; mercapto-MP-C-CPE mercapto-mesoporous carbon; MPC 
mesoporous carbon; NPs nanoparticles; OMC ordered mesoporous carbon; PC porous carbon; 
PCMS porous carbon nanocubes accumulated microspheres; SPCE screen-printed electrode; CV 
cyclic voltammetry

3.1 Fluorescence Imaging 

Many studies have exploited the supramolecular π–π staking interactions of MCNs 
to develop MCNs-based fluorescence medical diagnostic agents. Indeed, this type 
of interaction can control the quenching of fluorescence of the MCNs based on
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functionalized or loaded molecules. Recently, Li et al. [59] have reported the modu-
lation of oxidized MCNs with Cy3-labeled ssDNA probe (P0-Cy3) to develop a 
fluorescence imaging agent for breast and prostate cancer tissues. They described 
that grafting Po-Cy3 via π–π staking supramolecular interaction on the surface of 
oxidized MCNs quenches the probe’s fluorescence signal. Meanwhile, the formation 
of the complex Po-Cy3-mucin1 protein (cell-surface marker) leads to dissociation 
between MCNs and Po-Cy3 probe resulting in the restoration of fluorescence signal. 
Further, they described that the “turn-ON” feature of MCNs-based imaging agent 
not only can be used to sense tumor cells in fluid but also to localize cancer tumor 
cells with high specificity. Therefore, the authors suggested that these advanced 
oxidative MCNs nanocomposites could enhance cancer diagnosis by multiple detec-
tion and imaging, along with the intrinsic multifunctionality of MCNs such as drug 
delivery and photothermal converter for cancer photothermal therapy. More interest-
ingly, fluorescent MCNs were developed by Kong et al. [60] for bioimaging. Indeed, 
they described an easy method of preparing upconverting multicolored photolu-
minescent mesoporous carbon nanoparticles (MCNs) using citric acid as a carbon 
precursor in 1-octadecane without the need of a surfactant. They reported that the 
developed nanocomposites are endowed with high stability of multicolor photolumi-
nescence and upconversion with high quantum efficiency of approx. 37%. The results 
demonstrated that MCNs can effectively recognize cancerous cells when exposed to 
excitations ranging from ultraviolet to near-infrared. 

3.2 Magnetic Resonance Imaging 

Currently, magnetic resonance imaging (MRI) is now a required tool for obtaining 
information with greater resolution in a non-invasive manner [57, 61]. Many groups 
of researchers have proposed the integration of various types of nanomaterials to 
improve the efficiency of the magnetic resonance imaging technique. Among these 
nanomaterials, porous carbonaceous nanoparticles have been largely used. Recently, 
Zhang and coworkers [62] have developed ordered MCNs incorporated with γ-
Fe2O3 and GdPO4 nanoparticles. They reported that prepared nanocomposites were 
used for dual-mode magnetic resonance imaging in vitro, with relaxivity values r1 
and r2 of 2.7 and 183.7 mM−1 · s−1, respectively, demonstrating a satisfying T1-
and T2-weighted MR imaging effect. Furthermore, manganese oxide nanoparticles 
embedded in hollow MCNs were recently used as MRI agents by Zhang et al. [63]. 
The results showed an exceptional disease-triggered MRI performance where a 52.5-
fold increase of longitudinal relaxivity (r1 = 10.5 mM−1 s−1) and on nude mice 4T1 
xenograft were observed. The authors hypothesized that developed MCNs could 
pave the way for new methods for developing sophisticated nanofamilies for cancer 
therapy. 

Moreover, Wu and colleagues [64] proposed the coating of porous carbon nano-
materials modified with hyaluronic acid with Fe3O4 nanoparticles and their simulta-
neous use as a guided magnetic resonance imaging agent and drug delivery system.
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In this work, magnetite and hyaluronic acid were used as a fluorescent agent for IRM 
and as a target tumor guide, respectively. 

4 Porous Carbon Materials in Drug Delivery 

Currently, the advances in nanotechnologies and pharmaceutical researches have led 
to a great improvement in pharmacological and therapeutic proprieties of admin-
istrated drugs notably in drug delivery systems [65]. These systems must have a 
nanometric size, i.e., in the range of 1–100 nm, to be able to penetrate through 
biological and physiological barriers. In this regard, porous materials, especially 
mesoporous particles with pore sizes between 2 and 50 nm, are in high demand in 
this application because they have a maximum surface area to volume ratio than 
bare particles, which makes them a good agent for loading cargo [66]. As a conse-
quence, efforts have been made to create novel porous carbon materials (PCMs) with 
required properties and functions. Generally, PCMs are prepared by pyrolysis proce-
dure using various carbon sources including bio-masses and green wastes-based 
cellulose and lignin. Several studies have shown that nanoarchitecture of PCMs is 
directly influenced by preparation methods or carbon sources, thus enhancing thera-
peutic effectiveness of PCMs in drug delivery systems. Recently, a new generation of 
mesoporous carbonaceous materials has been incorporated into drug delivery systems 
and generated great interest due to their exceptional active surface area, excellent 
biocompatibility, high drug loading capacity. Drugs, tunable pore structure, and easy 
functionalization improving release control and facilitating targeting of drug delivery 
by reducing side effects [67]. Owing to these exceptional merits, mesoporous carbon 
nanoparticles (MCNs) have evolved widely as effective carriers in the fields of drug 
delivery, including various systems (immediate, extended, controlled, and targeted 
drug delivery systems) [68]. Before describing these categories, it should be empha-
sized that the preparation of MCNs is generally carried out by hydrothermal or 
calcination processes at specific temperatures. The obtained MCNs are therefore 
hydrophobic because most of the oxygenated groups are lost during the prepara-
tion step under the effect of the very high temperature. Since the hydrophilicity 
of pharmaceutical vehicles is an important characteristic, MCNs must regain their 
hydrophilicity [69]. Thus, many studies have proposed the modification of the surface 
of MCNs either by oxidation or by the addition of hydrophilic groups. Oxidized 
MCNs could be further functionalized using a large multipurpose bio(molecule) 
library for a variety of uses including PEGylation, grafting, polymer coating, and 
stimuli-responsive [70, 71]. Moreover, Quinn et al. [72] have recently demonstrated 
the ability of porous carbon microparticles to carry fluorescein dye into normal (HEK 
293) cell line as a low solubility material (Fig. 4).
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Fig. 4 Schematic representation illustrating the cellular interactions of fluorescent dye molecules 
modified CμPs via two different surface functionalization approaches [72] 

4.1 Immediate Release Drug Delivery Systems 

Considered the most convenient route of drug administration, oral delivery has gained 
attention owing to its efficiency and reduced risk of infection. However, numerous 
drugs are hydrophobic compounds with limited application due to their low solu-
bility and bioavailability in the gastrointestinal tract [73]. Nowadays, mesoporous 
carbon nanoparticles are presented as an effective carrier for delivering poorly soluble 
drugs and for meeting clinical needs [74]. Recently, Shi et al. [75] reported an 
important comparative study between the drug delivery performance of mesoporous 
carbon nanoparticles and mesoporous silica nanoparticles (MSN) which is regarded 
as one of the most commonly used drug delivery systems using camptothecin as 
drug model. The results revealed that by MCNs, the drug loading efficiency (LE%) 
of camptothecin was 17% higher than that achieved by MSN. They explained that 
the increase in the percentage of LE is related to the presence of aromatic rings 
of MCN which is considered a compatible environment for camptothecin. Further-
more, the response of simvastatin loading efficiency to particle sizes was studied by
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Zhang et al. [76] utilizing three distinct kinds of highly ordered mesoporous carbon 
matrices (HMCs) with varying morphologies (including hexagonal, spherical, and 
fibrous) and particle sizes (700 nm, 400–900 nm, and 1–4 m). The results showed that 
the dissolution rate of the drug simvastatin released by the spherical monodisperse 
HMCs was considerably faster than that obtained with the other forms. Moreover, the 
effect of pore size has been studied by Zhao et al. [77] using fibrous ordered meso-
porous carbon (FOMC) and celecoxib (CEL) as drug delivery system and model 
drug, respectively. CEL is an insoluble drug and designed to be administered orally. 
The results showed that increasing the pore size from 4.4 nm to 7 nm accelerated the 
dissolution rate of CEL. Therefore, the high active surface area and high porosity of 
MCNs allow the encapsulation of drugs with excellent cargo rate. More interestingly, 
numerous studies have demonstrated that carboxylation of MCNs improves remark-
ably the hydrophilicity of hydrophobic drugs which improves their bioavailability 
after administration. For instance, Zhang et al. [78] used CAR as poorly water-soluble 
drug to investigated the results of the carboxylation of MCNs on the loading capacity 
and the bioavailability of the drug. The findings showed that a relative bioavailability 
of studied drug was enhanced by 179.28 ± 20.5% in comparison with the commer-
cial product drug. Furthermore, Eu3+/Gd3+-EDTA co-doped carboxylated hollow 
mesoporous carbon (HMC) was prepared by Liu and coworkers [79]. The studied 
carrier was intended to enhance the pharmacokinetic properties of poorly soluble 
drugs while tracing their in vivo administration process. The results showed that the 
carboxylation of hallow MCNs and the co-doping with europium and gadolinium 
ions enhance dramatically the bioavailability of used CAR drug in the gastrointestinal 
tract. 

4.2 Sustained Release Drug Delivery Systems 

Since the release of drugs from immediate drug delivery systems (IDDSs) is uncon-
trollable and immediate, many research groups have engaged in the fabrication 
of more controlled drug delivery systems such as sustained drug delivery systems 
(SDDSs). These can reduce the frequency of drug administration by gradually deliv-
ering the encapsulated compounds through an extended period. Generally, the release 
of drugs by sustained drug delivery system is controlled by three main mechanisms 
including pore structure and channel length, interaction force between MCNs and 
loaded drug, and diffusion hindrance effect. 

4.2.1 Pore Structure and Channel Length 

As demonstrated for immediate drug delivery systems (IDDSs), the morphology and 
pore size of the carrier directly influence the loading efficiency of the developed 
system. It was proven that SDDS should be produced with an interconnected porous 
structure and a low pore volume. Recently, Zhao and collaborators [80] have proved
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the effect of the morphology of MCNs on the release rate of lovastatin (LOV) drugs. 
The researchers discovered that when two-dimensional nanoparticles and a longer 
channel length were used, the rate of LOV delivery was correspondingly slower than 
when three-dimensional nanoparticles and a shorter channel length were used. In this 
context, the hollow mesoporous carbon nanoparticles (HMCNs) have been widely 
used to develop SDDSs owing to their hollow cavity. 

4.2.2 Interaction Force 

Numerous reports have investigated the influence of the strong force of interaction 
between MCNs and the loaded drug in delaying the rate of drug release. The MCNs-
based carbonaceous framework was shown to exhibit supramolecular π –π stacking 
interactions with aromatic drug molecules which provoked prolonged delivery [79]. 
Furthermore, a 90 nm diameter MCN-based carrier was used as a transmembrane 
delivery system for the doxorubicin drug (DOX). The authors reported that a high 
carrying capacity of DOX has been demonstrated, and this is due to established π– 
π supramolecular stacking interactions between DOX and MCNs. In addition, the 
sustained release was observed under acidic solutions and physiological pH. As an 
application, Bai et al. [81] explored the dependence profile of DOX release versus pH 
to sustained release of DOX as a tumor-specific drug-using MCN carrier. It should 
be emphasized that HMCNs were also been used for the sustained release of DOX 
for chemo-photothermal therapy. 

4.2.3 Diffusion Hindrance Effect 

The diffusion hindrance by grafting polymers on MCNs is considered to be a method 
of sustained release of the drugs most used in this profile. Indeed, grafted polymers 
have a direct effect on the interactions between delivered drugs and functionalized 
carriers by increasing the diffusion distance. In this regard, poly dimethyl diallyl 
ammonium (PDDA) capped mesoporous carbon nanoparticles (CMK-5) nanocom-
posite was used by Zhang et al. [82] to deliver nimodipine, carvedilol, and fenofibrate 
as water-insoluble drugs. The results showed that the release rates of the three drugs 
using PDDA-coated MCNs were significantly delayed compared to those achieved 
by carboxylated MCNs. The release using carboxylated MCNs was rapid and cumu-
lative reaching 80% within 1 h, while it was delayed for 12 h with PDDA@MCNs. 
Alternatively, lipids have also been applied as a delivery delay where recently Zhang 
and coworkers [83] described the application of lipid bilayer modified mesoporous 
carbon nanocomposites as a delivery agent for nimodipine. The results showed that 
the presence of lipids in MCNs exhibited prolonged drug discharge into the simu-
lated intestinal fluid. As a result, the bioavailability of nimodipine was dramatically 
improved, and lasting plasma drug levels were longer compared to commercial IDDS.



898 A. Mars et al.

4.3 Controlled Drug Delivery Systems 

Recently, controlled drug delivery systems (CDDSs) have gained the attention of 
several research groups because of the unique characteristics they can provide. This 
is because these systems prevent the premature release of the drug causing drug losses 
and side effects. The CDDS mechanism relies on the integration of gatekeepers or 
guardians at the carrier pores’ entry via both covalent bonds or physical adsorptions. 
Essentially, the role of these gatekeepers is to restrict drug molecules from escaping 
carriers unless they are presented with new stimuli (pH, redox potential, enzymes, 
temperature, etc.). Various gatekeepers have been used to develop CDDSs patterns 
including carbon dots, zinc oxide quantum dots, manganese oxide, poly (N-isopropyl 
acrylamide), etc. [84–87]. Regarding stimuli response drug delivery systems, pH-
responsive CDDSs were the most extensively employed stimuli in controlled drug 
delivery systems owing to presented pH variations between normal and sick tissues 
and between the cytoplasm and intracellular compartments [88–90]. For instance, 
ZnO quantum dots gated MCNs carriers were employed to achieve Rh6G drug release 
that was regulated by stimuli. Huang et al. [91] proposed the use of functional ZnO 
quantum dots (QDs) with N-(3-Trimethoxysilylpropyl) ethylenediamine triacetate 
as gatekeepers. The findings revealed that controlled drug release may be obtained 
by either decreasing the pH to the tumor cells’ acidic microenvironment or heating. 
Therefore, the cumulative effects of pH and temperature may significantly increase 
the rate of Rh6G release from MCNs at the tumor site. Furthermore, many reports 
described the exploitation of temperature as a stimulus in CDDSs profile. In this 
context, poly(N-isopropyl acrylamide) (PNIPAM) was widely used as a thermo-
responsive polymer. Recently, Zhu et al. [92] reported the use of modified ordered 
PNIPAM modified MCNs (CMK-3) as CDDS. They demonstrated that in aqueous 
media and below 25 °C, PNIPAM establishes hydrogen bonds with water leading to 
polymer bonding stretching and triggering of CMK-PNIPAM channels that prevents 
the discharge of the drug. Nonetheless, the breakage of hydrogen bonds produced 
between the PNIPAM and water could be induced by the monitor of the temperature 
of the CMK-PNIPAM environmental medium. At a temperature of 25 °C, the polymer 
bonds would break, which would keep the CMK-PNIPAM gates open and suitable 
for drug release. 

4.4 Targeted Drug Delivery Systems 

Generally, the administration of traditional chemotherapy medication is assisted 
by a loss of specificity limiting their therapeutic efficacy, inducing side effects, 
and causing multidrug resistance [93–96]. Recently, targeted drug delivery systems 
(TDDSs) have emerged as an effective solution to overcome these restrictions [97] 
(Fig. 5).
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Fig. 5 Illustration of difference between controlled and targeted drug delivery system based on 
MCNs for the in vivo process [97] 

In particular, TDDSs have the potential to significantly decrease the need for 
significant concentrations of compounds and can harm to healthy cells and tissues. 
Within the last decades, mesoporous nanoparticles have been extensively applied 
in the development of TDDSs. Furthermore, mesoporous carbon nanoparticles are 
considered to be an ideal reservoir for drug delivery that could protect payload 
drugs from degradation during delivery. To meet the needs of TDDSs, Wan and 
coworkers [98] have proposed the use of uniform MCNs functionalized with fluo-
rescein isothiocyanate (FITC) and folic acid (FA) to selectively deliver paclitaxel 
drug. They reported that in vivo delivery results revealed that developed carriers-
based MCNs could target the FA-positive tumors. Further, they also showed that the 
proposed TDDSs released paclitaxel in a non-cytotoxic and regulated manner within 
cells. Compared with conventional paclitaxel formulations, the reported MCNs-
based system showed a superior antitumor effect where the tumor growth inhibi-
tion rate was 86.53% in comparison with the control group (saline). Furthermore, 
folic acid functionalized uniform MCNs were used by the same group as TDDSs to 
enhance the oral absorption of paclitaxel medication. In fact, Wan et al. [99] described 
that developed carrier enhanced cellular uptake of selected drug and this because of 
the presence of folic acid, considered as a selective receptor to Caco-2 cells which 
was used as in vitro model. The results revealed that permeability across Caco-2 
cell monolayers was increased by 5.37-fold compared to commercial Taxol. More-
over, in vivo results demonstrated that designed carriers decrease the gastrointestinal 
toxicity of paclitaxel. 

More interestingly, special interest was devoted to the development of dual 
controlled-targeted drug delivery systems which could transport payload medicine
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directly to the target region and discharge it in a controlled manner. For instance, a 
hyaluronic acid conjugated uniform MCNs were used by Wan et al. [100] as targeted 
enzyme responsive drug delivery. The presence of hyaluronic acid ensured the encap-
sulation of the drug into the carriers and increased the MCNs stability, biocompat-
ibility, the ability of cell-targeting, and the control of the cargo release. The find-
ings showed that the newly designed carrier might target cancer cells that overex-
press CD44 receptors. In the tumor microenvironment, the authors revealed that 
developed MCNs-based delivery agent, loaded with doxorubicin (DOX) and vera-
pamil (VER), provoked a dual pH and hyaluronidase-1 responsive release. Moreover, 
Zhou et al. [101] described the development of a novel multifunctional nanoplatform 
based on MCNs decorated with hyaluronic acid for dual response drug delivery and 
combinatorial chemo-photothermal therapy. It is worth noting that hyaluronic acid 
offers a drug delivery method with exceptional targeting capability for cancer cells. 
Thus, the MCNs-based multifunctional nanoplatform has an effective therapeutic 
efficacy vis-à-vis the target cells. 

5 Conclusion 

The present chapter summarizes the recent advances in porous carbonaceous mate-
rials (PCM) in bioscience fields citing biosensing, medical diagnosis, and drug 
delivery. Indeed, they have exceptional properties including a high active area and a 
controlled diffusion rate allowing them to be one of the most attractive materials. In 
biosensing, PCM is considered the key to obtaining robust, miniaturized, and portable 
biosensing devices due to their merits citing high robustness, high load capacities, 
and high electrocatalytic activities. Furthermore, due to their customizable pore size, 
huge channel volume, and simplicity of surface functionalization, PCM has been 
widely applied in drug delivery. For medical diagnostics, PCM provides an effec-
tive intervention without side effects. Despite the extensive applications of PCMs in 
in vivo applications, research on the consequences of their exposure on human health 
is restricted, and the human body’s side effects are unknown. It is worth noting that 
various factors have been documented to influence MCP cytotoxicity, including size 
and concentration, shape, and surface modification, which is also a typical concern 
for MCPs in bioscience. 
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Chapter 32 
Carbon Nanotubes-Based Anticancer 
Nanomedicine 

Sougata Ghosh, Ratnakar Mishra, Amrendra K. Ajay, Nanasaheb Thorat, 
and Ebrahim Mostafavi 

1 Introduction 

Cancer has emerged as the key factor for global mortality that has become a significant 
obstacle to life expectancy. According to World Health Organization (WHO) in 2019, 
maximum cancer-associated death before the age of 70 years has been reported in 
112 of 183 countries. An estimated 19.3 million new cancer cases and almost 10.0 
million cancer deaths occurred in 2020 globally. The most common type of cancer is 
female breast cancer (11.7%), followed by lung (11.4%), colorectal (10.0%), prostate 
(7.3%), and stomach (5.6%) cancers. 

Other cancer types include various organs such as lip, oral cavity, salivary glands, 
oropharynx, nasopharynx, hypopharynx, esophagus, stomach, colon, rectum, anus,
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liver, including intrahepatic bile ducts, gallbladder, pancreas, and larynx [1]. Conven-
tional cancer treatment includes various anticancer agents such as doxorubicin, 
daunorubicin, cytarabine, paclitaxel, and vincristine. However, they have poten-
tial side effects that include hypersensitivity, severe myelosuppression, nausea, 
neutropenia, stomatitis, rash, mucositis, vomiting, anorexia, and diarrhea [2]. Hence, 
it is necessary to develop innovative strategies for cancer treatment with minimum 
or no side effects and maximum efficacy. 

Nanotechnology-driven solutions employing exotic nanostructures with notable 
physicochemical and opto-electronic properties have come up as an attractive alterna-
tive for cancer management [3–5]. Several metallic nanoparticles composed of gold, 
silver, copper, platinum, and palladium are reported to significantly inhibit the cancer 
cells [6–9]. Likewise, magnetic nanoparticles help in targeted delivery of drugs that 
avoids nonspecific drug accumulation and adverse effects [10]. The smaller dimen-
sion and the large surface area of the nanoparticles make them ideal for multifunc-
tionalization of drugs, antibodies, peptides, nucleic acids, fluorophores, and contrast 
agents. Further, functionalized nanoparticles may help for tissue specific delivery 
of drugs, triggered release, bioimaging, and monitoring the disease progression and 
drug efficacy [11–13]. 

Carbon-based nanoparticles, particularly carbon nanotubes (CNTs) with higher 
penetrability, enhanced stability, and larger surface loading capacity, are considered 
ideal theranostic agents for their promising applications in multimodal therapy and 
diagnosis [14]. 

In this chapter, various single- and multiwalled carbon nanotubes (SWCNTs 
and MWCNTs)-based anticancer agents are discussed with their application in 
photothermal, photodynamic, chemo-photothermal, immune-photothermal, sonody-
namic, and chemo-sonodynamic therapy against various cancers. 

2 Therapeutic Modality-Based Nanomedicine 

Notably, unique physicochemical and opto-electronic properties of CNTs have made 
them attractive nanocarriers for various drugs, targeting ligands, contrast agents for 
simultaneous therapy and diagnosis in cancer. Hence, CNTs-based theranostics with 
high capacity of binding to a wide range of biomolecules are specific to various 
therapeutic modalities which are discussed in detail in this section and summarized 
in Table 1.

2.1 Photothermal Therapy 

The conventional cancer treatment strategies include chemotherapy, radiotherapy, 
or targeted therapies which have their own limitations due to severe non-specific 
adverse effects. Certain nanomaterials can convert wear near-infrared (NIR) light
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to high heat resulting in photothermal therapy (PTT) that is able to cause mito-
chondrial dysfunction, generation of reactive oxygen species (ROS), and eventually 
cytotoxicity to cells either by apoptosis or necrosis [15]. Although various nanoma-
terials are fabricated for cancer treatment, they have exhibited unsatisfactory perfor-
mance toward ideal PTT. Hence, carbon-based nanomaterials with unique advan-
tages for PTT have received wide attention for their applications in biomedical field, 
most notable being cancer therapy. The ultrahigh specific surface area, high thermal 
stability, photothermal conversion efficiency, photoacoustic imaging potential, and 
reduced toxicity make the SWCNTs candidate photothermal agents [16]. 

Lu et al. reported SWCNTs-based nanoprobes coupled with the sensitive imaging 
agent and targeting antibodies as shown in Fig. 1 [17]. Initially, the water solu-
bility of the raw single-walled carbon nanotubes (SWNT-RAW) was enhanced by 
converting them into carboxylated single-walled carbon nanotubes (SWNT-COOH) 
after refluxing in concentrated acid. The amphiphilic molecule, 1,2-distearoyl-
sn-glycerol-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (DSPE-
PEG5000-NH2) was attached to SWNTs by non-covalent interaction. Next, the 
SWNTs conjugated with DSPE-PEG5000-NH2 (SWNT-PEG) were reacted with 
Cyanine7-N-hydroxy-succinimide (CY7-NHS) to obtain SWNT-CY7 that attributed 
to its imaging property in the NIR region that directs PTT. It is important to note 
that the overexpression of insulin-like growth factor receptor (IGFR) in aggressive 
pancreatic cancer cells is associated with its proliferation, differentiation, survival, 
metastasis, and resistance to anticancer therapies. Hence, insulin-like growth factor 
type-1 receptor (IGF-1R) is considered as potential target for cancer therapy. 
Thus, SWNT-CY7 was further coupled with anti-IGF-1R antibody (IGF-1R Ab) 
to develop SWNT-CY7-IGF-1Ra so that the nanocomposite can reach the tumor 
via the enhanced permeability and retention (EPR) effect and simultaneously aggre-
gate into the tumor region via antibody targeting. Substantial uptake of the nanotubes 
conjugated with IGF-1R Ab was observed in pancreatic cancer (BXPC-3 and PANC-
1) cells. The accumulation of the nanoprobes (SWNT-CY7-IGF1-Ra) was highest 
at 18–24 h selectively in the tumor tissue of tumor-bearing mice which were later 
metabolized by the liver and intestine mainly. Laser irradiation (785 nm, 1 W/cm−2) 
for 5 min significantly elevated the tumor temperature up to 48.53 ± 1.38 °C when 
treated with SWNT-CY7-IGF-1Ra resulting in marked cell damage associated with 
coagulative necrosis, pyknosis, apoptosis, and loss of adhesion.

Further, SWNT-CY7-IGF1-Ra mediated PTT effect in the orthotopic pancreatic 
cancer models exhibited high survival rate. This might be attributed to satisfactory 
pancreatic cancer ablation due to active targeting associated enhanced accumulation 
of nanotubes in the tumor tissue followed by laser treatment. In view of the back-
ground, SWNT-CY7-IGF-1Ra can be promising nanomedicine for imaging-guided 
photothermal therapy against pancreatic cancer. 

In some cases, hyperthermia resistive tumors cannot be eradicated by slow heating 
from 39 °C–45 °C. In such cases, photothermal ablation is more effective as it uses 
light to increase the temperature within the biologic tissue above 60 °C within a short 
time. Due to high heat generation, death of cancerous tissue occurs via necrosis which 
can be a promising alternative for controlling chemoresistive as well as hyperthermic
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a b  

c 

Fig. 1 Synthesis and characterization of nanotubes. a Schematic illustration and TEM images in 
the synthesis procedure of nanotubes. The bar is 100 nm; b Distribution of nanoprobes in vivo. In 
vivo continuous observations (48 h) of mice administered SWNT-CY7-IGF-1Ra via the tail vein. 
The black dotted circle represents the location of the pancreatic carcinoma in situ; c Ex vivo imaging 
of tumor and major organs. Note: H heart. Li liver. P pancreas. T tumor. S spleen. Lu lung. K kidney. 
In intestine. Reprinted with permission from Lu et al. [17] Copyright 2019 Elsevier Ltd

resistive tumors [18–21]. Virani et al. reported phosphatidylserine targeted SWCNTs 
for photothermal ablation of bladder cancer [22]. Enhancement of nanotube accumu-
lation inside the tumor tissue specifically was achieved by conjugating the SWCNTs 
with annexin V (AV), which strongly binds with phosphatidylserine (PS) present 
on tumor cells and tumor vasculature. Interestingly, no detectable tumor after 24 h 
was observed in the C57BL/6J female mice with orthotopic MB49 murine bladder 
tumors after treatment with the SWCNT-AV conjugate and NIR light treatment at an 
energy and power density of 50 J cm−2 and 1.67Wcm−2, respectively (time = 30 s). 
Rather it showed a 50% cure rate at 116 days after treatment. 

Another innovative cancer treatment modality is plasmonic photothermal therapy 
(PPTT) where plasmonic nanoscale metals, such as silver nanoparticles (Ag NPs) 
with notable optical absorbance can be used in conjugation with CNTs with good 
thermal conductivity and cell penetration ability. Behnam et al. functionalized the 
MWCNTs with silver which could rapidly transform the photon energy into heat via 
a series of radiative and non-radiative phenomena, eventually ablating cancer [23]. 
The AgNPs had an average diameter of 20 nm, which were attached to MWCNTs 
were synthesized. Treatment with CNT/AgNPs against melanoma tumor induced 
by injection of B16/F10 cell line to the inbred mice exhibited enhanced optical 
absorption of CNTs mediated improved tumor destruction, which was attributed to 
PPTT brought about by irradiation via laser diode (λ = 670 nm, P = 500 mW, and 
I = 3.5 W/cm2). 

Sobhani et al. improved the dispersibility of MWCNTS in water employing initial 
oxidation followed by surface coating with polyethylene glycol (PEG) [24]. The 
nanotubes with 80% PEG loading exhibited less cytotoxic activity against HeLa and
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HepG-2 cell lines. On exposure to continuous-wave near-infrared laser diode (λ = 
808 nm, P = 2 W and I = 8W/cm2) for 10 min, the PEG-coated oxidized MWCNTs 
could sharply reduce the average size of melanoma tumor from 975 to 125 mm3 in 
mice. Hence, such coated MWCNTs can be a powerful candidate for eradicating 
solid tumors employing the PTT technique. 

In another study, Suo et al. proposed MWCNTs-based approach to combat P-
glycoprotein (Pgp)-medicated multidrug resistance (MDR), which poses a major 
challenge to existing cancer therapy [25]. This novel nanocomposite was designed by 
combination of antibody-based cancer targeting and locoregional tumor ablation with 
photothermal therapy. Intercellular diffusion was enhanced, and non-specific cellular 
interaction was reduced using a dense coating of phospholipid−poly(ethylene glycol) 
around the MWCNTs. The coated MWCNTS were further chemically functional-
ized with an anti-Pgp antibody to facilitate Pgp-specific cellular uptake. Photothermal 
heating efficiency determines the toxicity of MWCNTs which generally increases 
with the diameter. The MWCNTs with 20–30 nm diameter generated maximum heat 
per unit. The MWCNTs with 8–15 nm diameter were coated with a 2 w/v % solution 
of a mixture of polyethylene glycol5000 terminated with a methoxy group (DSPE– 
PEG), maleimide (DSPE–PEG–Mal), and fluorescein isothiocyanate (DSPE–PEG– 
FITC) at a 5:4:1 mass ratio followed by conjugation with Pgp antibodies (Pab) 
to generate Pab–MWCNTs as illustrated in Fig. 2. Acid oxidation and coating of 
MWCNTs using a 2 w/v % solution of DSPE–PEG reduce nonspecific cell uptake at 
least sixfold compared to bare MWCNTs without any loss of heat transduction capa-
bility. Moreover, this strategy dramatically increases the diffusibility of MWCNTs 
through the extracellular space. Cellular uptake of FITC-labeled Pab–MWCNTs 
was very high in the case of 3T3-MDR1 cells. The dose-dependent phototoxicity 
in the presence of NIR laser irradiation was notably high in Pab–MWCNTs treated 
3T3-MDR1 cells. Further, the Pab–MWCNT-mediated PTT enhanced cytotoxicity 
against the multicellular, NCI/ADR-RES tumor spheroids which might be attributed 
to high intratumor diffusion and Pgp-specific cellular uptake.

2.2 Photodynamic Therapy 

In photodynamic therapy (PDT), oxygen-dependent cytotoxicity in cancer tissue is 
brought about by two individually non-toxic components, one of which is a photo-
sensitizer. This photosensitive molecule localizes within cancer tissue. The second 
component activates the photosensitizer by administering a specific wavelength of 
light which is followed by the generation of ROS due to the transfer of energy from 
light to molecular oxygen. Since this reaction is associated with the light-absorbing 
photosensitizer, the cytotoxicity is specific and limited to only those tissues exposed 
to light [26]. CNTs-based nanomedicine for PDT has become an attractive alternative 
cancer management strategy owing to their negligible nonspecific adverse effects. 

Fukuda et al. fabricated one chiral s-SWNTs, (6,4)-SWCNTs, for photogener-
ation of all three major ROS, i.e., singlet oxygen (1O2), superoxide anion (O2

•−),
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a b c  

d e f  

Fig. 2 Morphological features of MWCNTs and Pab–MWCNTs. a, b Photoelectron micrographs 
of unstained and c uranyl acetate stained MWCNTs. d, e Photoelectron micrographs of unstained 
and f uranyl acetate stained Pab–MWCNTs. White arrows in e and globular masses (approx. 10 nm 
diameter) in f indicate the location of antibody molecules on MWCNTs. Reprinted with permission 
from Suo et al. [25]. Copyright 2018 American Chemical Society

and hydroxyl radical (•OH) [27]. The NIR illumination at 880 nm resulted in the 
photogeneration of 1O2 by the (6,4)-SWCNTs while highly enriched (6,4)-SWCNTs 
resulted in abundant •OH in the presence of NIR illumination. The photodynamic 
effect was attributed to the intrinsic optical function of the (6,4)-SWCNTs. Further, 
apolipoprotein A-I (apoA-I), a lipid-binding protein of the high-density lipoprotein 
type, was used for functionalization where the first truncated form conjugated with the 
(6,4)-SWCNTs was denoted as (6,4)-SWCNTs/apo. Labeling with fluorescent Alexa 
Fluor 546 (Alexa546) indicated 79% accumulation of (6,4)-SWNTs/apo complexes 
specifically in the mitochondria, which is the predominant site of ROS generation 
and photodynamic therapy. Superior photostability and efficiency to generate signif-
icantly high level of •OH attributed to the enhanced photodynamic effect in (6,4)-
SWCNTs. The serum protein-coated (6,4)-SWCNTs were more stable, leading to 
effective cancer ablation against HeLa cells where cell viability was reduced by 
40%. In an interesting study, Ogbodu et al. initially conjugated zinc mono carboxy 
phenoxy phthalocyanine (ZnMCPPc) to spermine via amide bond which was further 
functionalized onto SWCNT to develop a nanocomposite denoted as ZnMCPPc-
spermine-SWCNT. The loading of ZnMCPPc-spermine on SWCNTs was 42% [28]. 
The complex showed superior photophysical features resulting in more than 50% 
increase in triplet and singlet oxygen quantum yields. Photodynamic activity indi-
cated 95% decrease in MCF-7 cell viability at 40 mM concentration with an irra-
diation time of 1200 s. On a similar line, ZnMCPPc was chemically modified with 
ascorbic acid via an ester bond to give ZnMCPPc-AA, which was further conju-
gated to SWCNTs via π–π interaction to give ZnMCPPc-AA-SWCNT [29]. This 
strategy enhanced the photophysical properties, including improved triplet lifetimes
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and quantum yields and singlet oxygen quantum yields. Further, the composites 
showed high photodynamic activities against MCF-7 breast cancer cells with 67% 
decrease in cell viability. The enhanced anticancer activity might be attributed to 
the phthalocyanines, which are excellent photodynamic agents. Moreover, SWNTs 
with their photothermal properties might have enhanced the cumulative therapeutic 
potential. Sundaram and Abrahamse coupled SWCNTs with hyaluronic acid (HA) 
and chlorin e6 (Ce6) to design a nanocomposite represented as SWCNTs-HA-Ce6 
[30]. The high loading efficiency of Ce6, equivalent to 70%, was attributed to the 
large surface area of the SWCNTs. The size and zeta potential of the nanostructure 
was 203 ± 6.6 nm and −18.9 ± 1 mV, respectively. The 10 J/cm2 irradiated colon 
cancer cells (Caco-2) showed 84.9% cell death on treatment with SWCNTs-HA-Ce6, 
confirming the photodynamic potential of the nanocomposite against cancer as shown 
in Fig. 3. Among several agents, porphyrins are the major class of photosensitizers 
used in photodynamic therapy, and hematoporphyrin monomethyl ether (HMME) is 
the newer generation of photosensitizers, which has reduced toxicity and shorter skin 
photosensitizing ability [31]. Photodynamic therapy of HMME combined CNTs has 
been shown to reduce tumor growth in mouse models [32]. 

a 

b 

Fig. 3 Photodynamic activity of SWCNTs-HA-Ce6 nanocomposite against colon cancer cells 
(Caco-2). a Microscopic images of untreated and treated cells (10 J/cm2) of 0 and 24 h. Scale 
bar represents 100 μm. Black arrows indicate the cellular death. b Flow cytometry Annexin V PI 
staining analysis of apoptosis. Reprinted from Sundaram et al. [30]



32 Carbon Nanotubes-Based Anticancer Nanomedicine 917

2.3 Combined Phototherapy 

Combination of phototherapy with chemotherapy or other therapeutic modalities 
such as radiation, chemotherapy, pre and post-surgery treatments to enhance the 
cancer cell killing and achieve higher therapeutic index has gained significant interest 
in the past few years. The development of novel nanomaterials and their combination 
with phototherapy provides wide range of modulating power for designing specific 
and controlled therapeutic methods. 

Wang et al. fabricated a degradable carbon–silica nanocomposite (CSN)-
based immunoadjuvant [33]. In this process, 3D dendritic degradable mesoporous 
silica nanoparticle (MSN) was initially synthesized using triethanolamine (TEA), 
cetyltrimethylammonium chloride (CTAC), tetraethyl orthosilicate (TEOS), and 
cyclohexane was added at 60 °C as depicted in Fig. 4. The MSN powders were 
finally recovered by drying at 50 °C in a vacuum. Further, the MSNs were reacted 
with (3-aminopropyl)triethoxysilane (APTES) for 20 h at 80 °C in order to modify 
the amino group on the surface of the MSNs. The NH2-MSN was reacted with 
α-D-glucose for 20 h at 160 °C to prepare MSN@Glu that was further dried and 
carbonized under a nitrogen atmosphere at 540 °C for 4 h to obtain the CSN. D-α-
tocopherol polyethylene glycol was used for modifying the CSNs. Monodispersed 
CSN exhibited uniform particle size of 100 nm, which is advantageous for enhanced 
accumulation in the tumor region via enhanced permeability and retention (EPR) 
effect. The elemental composition of the CSN was contributed by carbon, silicon, 
oxygen, and nitrogen with mass percentages (wt%) of 36.1%, 27.6%, 35.0%, and 
1.3%, respectively. The photothermal property was indicated by a sharp increase in 
temperatures (27.6–78.2 °C) of CSN dispersions under NIR light (808 nm, 2 W cm−2) 
irradiation was a function of time (10 min) and concentration (200 μg mL−1). The 
photothermal conversion efficiency (η) of CSN  was  ∼34.5%.

Generation of singlet oxygen (1O2) by the CSN in combination with NIR increased 
by 124.7%, confirming its superior photodynamic property. The CSN facilitated 
maturation of bone marrow-derived dendritic cells (BMDCs) from BALB/c mice 
which was associated with higher expression of costimulatory CD80, CD86, tumor 
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). It was speculated that the 
rough surface of CSN with 100 nm size could be efficiently taken up by the DCs 
followed by the maturation of DCs. The superior photothermal and photodynamic 
properties of the CSN were exploited for antitumor efficiency in combination with 
NIR light in 4T1 tumor model as shown in Fig. 5a, b. Tumor in mice was inhibited 
up to 93.2% on treatment with CSN with NIR. Further, patient-derived xenograft 
(PDX) tumor model was developed by subcutaneous injection of human CRC cancer 
tissue fragments into B-NDG mice. Treatment with CSN in combination with NIR 
exhibited 92.5% suppression of the tumor growth in PDX tumor-bearing mice as 
shown in Fig. 5c, d. Hence, carbon–silica-nanomaterial-based therapeutic strategy 
can be promising next-generation anticancer nanomedicine.

Zhang et al. reported fabrication of novel magnetofluorescent Fe3O4/carbon 
quantum dots (CQDs)-coated SWCNTs as trimodal therapeutic agents with imaging
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a 

b 

e 

c d  

Fig. 4 Synthesis and characterization of CSN. a Schematic illustration of CSN synthesis. b Scan-
ning electron microscope (SEM) and c high-resolution transmission electron microscope (HR-
TEM) images of CSN. d Size distribution of CSN. e High-angle annular dark field scanning TEM 
(HAADF-STEM) image and element mapping of CSN. Scale bar: 50 nm. Reprinted with permission 
from Wang et al. [33]. Copyright 2020 American Chemical Society

a b  

c d  

Fig. 5 In vivo antitumor experiments of CSN. Schematic illustration of the establishment of a 
4T1 and c PDX tumor models and therapy procedure of CSN (1 mg mL−1, 200 μL) combined 
with NIR light (808 nm, 2 W cm−2, 5 min) irradiation (n = 5). Photographs of b 4T1 and d PDX 
tumor-bearing mice, as well as corresponding dissected tumors after the therapy. Scale bar: 1 cm. 
Reprinted with permission from Wang et al. [33] Copyright 2020 American Chemical Society
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as well as chemo/photodynamic/photothermal (CT/PDT/PTT) properties [34]. 
Initially, the branched PEG 2000 N was grafted covalently (with 17.8% loading) 
on the surface of oxidized and shortened SWCNTs with more carboxylic acid group 
on its side walls. The polymer shell was 5–7 nm thick. Hydrothermally synthesized 
spherical CQDs were 2.8 ± 0.3 nm in size. Further, doxorubicin (DOX), a standard 
anticancer drug, was loaded into the pore structure of the synthesized SWCNTs-PEG-
Fe3O4@CQDs nanocarriers with high efficiency which were then conjugated with 
a sgc8c aptamer, denoted as SWCNTs-PEG-Fe3O4@CQDs-DOX-Apt, for targeting 
dual modalfluorescence/magnetic resonance (MR) imaging. It is important to note 
that the SWCNTs-PEG-Fe3O4@CQDs exhibited superior upconverted photolumi-
nescence properties and can be excited by long-wavelength light (λ > 600 nm) 
with the upconverted emissions located in the range of 420–520 nm. Significant 
reduction in viability of HeLa cells on treatment with SWCNTs-PEGFe3O4@CQDs 
was attributed to the simultaneous generation of OH• and •O2

−, DOX release and 
hyperthermia-associated CT, PDT, and PTT using a single NIR laser. Interestingly, 
Fig. 6 shows rapid increase of the temperature at the tumor site to 52 °C in the 
presence of SWCNTs-PEG-Fe3O4@CQDs/DOX-Apt upon NIR laser illumination 
(within 5 min) HeLa tumor-bearing nude mice. Due to combined therapy, the tumor 
volume reduced significantly.

Hence, this combined therapeutic strategy demonstrates exceptional success 
through irradiation to generate limited heat for cancer cell killing for more specific 
induction of necrosis or apoptotic cell death only in irradiated cancer cells/tissues. 

2.4 Chemo-Photothermal Therapy 

CNTs provide ideal surfaces for functionalization of chemotherapeutic agents with 
anticancer potential. Such nanocomposites exhibit promising chemo-photothermal 
properties because of their remarkable cell membrane penetrability, sustained release 
and noteworthy photothermal effects. In one such study, Li et al. conjugated curcumin 
to SWCNTs functionalized with phosphatidylcholine and polyvinylpyrrolidone to 
yield SWCNT-Cur [35]. Sixfold increase in the cellular uptake of SWCNTs-Cur 
by human prostate cancer PC-3 cells was observed. Further, the concentration of 
curcumin increased 18-fold in blood along with residence time on treatment with 
SWCNT-Cur. Synergistic tumor suppression by SWCNT-Cur in combination with 
808 nm laser irradiation at 1.4 W/cm2 was noticed along with reduction in tumor 
weight and volume in S180 mice tumor models. 

In another study, a natural biological polysaccharide, lentinan (LEN), was initially 
functionalized on MWCNTs for delivery of an anticancer drug, tamoxifen (TAM) 
which is schematically represented in Fig. 7 [36]. The loading ratio of TAM and 
LEN in the composite (MWCNTs-TAM-LEN) was 28.6% and 26.5%, respectively. 
The nanocomposite not only exhibited superior stability and water dispersibility but 
also demonstrated remarkable photothermal properties. The MWCNTs-TAM-LEN 
was further labeled with Rhodamine 123 which showed enhanced cellular uptake by
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a b  

c 

e 

d 

Fig. 6 a IR thermal images of HeLa tumor-bearing mice incubated with various media: a PBS, 
b 100 μg/mL of SWCNTs-PEG-Fe3O4@CQDs-Apt + laser (808 nm, 0.5 W/cm2), c100 μg/mL 
of SWCNTs-PEG-Fe3O4@CQDs/DOX-Apt + laser (808 nm, 0.5 W/cm2) and  d 100 μg/mL of 
SWCNTs-PEG-Fe3O4@CQDs/DOX-Apt + laser (808 nm, 2 W/cm2). b Heating curve of the 
five laser-irradiated groups. c Representative photographs of tumor-bearing mice after different 
treatments. d Time-dependent tumor growth curves observed after different treatments (n = 5, P < 
0.05 for each group). e H&E staining of tumor sections gathered from various treatment groups of 
mice on day 2. Scale bar = 50 μm. Reprinted with permission from Zhang et al. [34]. Copyright 
2018 Elsevier B.V.

MCF-7 cells due to penetration into the cell membrane followed by accumulation 
in the cytoplasm. High cell growth inhibition up to ~91.7% was observed when 
treated with MWCNTs-TAM-LEN in combination with NIR irradiation at the TAM 
concentration of 5 μg mL−1. Similarly, rate of apoptosis increased to 78.11% when 
the MCF-7 cells was treated under aforementioned condition.

Zhang et al. fabricated a drug delivering three-component composite denoted as 
MWCNTs-Ge-Le comprised of MWCNTs, gemcitabine (Ge) and lentinan (Le) as
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a 

b 

Fig. 7 a Illustration diagram of MWCNTs-TAM-LEN synthesis; b TEM images of MWCNTs 
(a) and MWCNTs-TAM-LEN (b and c). Reprinted with permission from Yi et al. [36]. Copyright 
2018 Elsevier B.V.

schematically represented in Fig. 8 [37]. The nanocomposite displayed antitumor 
activity which was attributed to combination of chemotherapy and photothermal 
therapy. Loading of gemcitabine and lentinan in MWNTs-Ge-Le was 31.8% and 
10.4%, respectively. The increase in temperature from 25 to 45 °C under 2 W cm−2 

NIR irradiation for 10 min indicating its photothermal property of the MWCNTs-Ge-
Le solution (25 μg mL−1). After tagging with rhodamine 123, the MWCNTs-Ge-Le 
was observed to be internalized within the MCF-7 cells within 3 h followed by dose-
dependent antiproliferative effects. MWCNTs-Ge-Le combined with NIR irradiation 
exhibited remarkable inhibitory effects on cancer cells. The temperature of tumor site 
increased to 42.6 °C on treatment with MWCNTs-Ge-Le in presence of 808 nm laser 
NIR irradiation (1 W cm−2, 3 min). This was attributed to maximum accumulation 
of MWCNTs-Ge-Le nanoparticles at the tumor site through EPR effect. Hence, 
this synergistic strategy of combining drug therapy with near-infrared photothermal 
therapy can be a powerful tool for treatment and management of cancer.

In another study, Yoo et al. designed a nanocomposite (MWCNTs-Met/PEG) by 
functionalizing an antidiabetic drug metformin (MET) on the MWCNTs via PEGy-
lation [38]. The nanocomposite metformin and PEG content of 22.5% and 15.7%, 
respectively. MWNTs-Met/PEG solution rapidly increased beyond 45 °C under 
2 W cm−2 NIR irradiation confirming the photothermal effect of the MWCNTs-
Met/PEG toward induction of strong localized heating associated pro-apoptosis.
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a 

b c  

d 

Fig. 8 a Approach for preparing MWNTs-Ge-Le; b In vivo antitumor effect. Infrared thermo-
graphic images of tumor-bearing mice after treatment with PBS, gemcitabine, MWNTs, MWNTs-
Ge and MWNTs-Ge-Le followed by laser irradiation. The scale bar is different for each image; 
c Average tumor volume in a MCF-7 tumor-bearing mice model of treatment without laser 
in vivo; d Average tumor volume in a MCF-7 tumor-bearing mice model of treatment with 
laser in vivo. The relative tumor volumes were normalized to their initial size (n = 4 for each 
group). The bars are presented as mean ± SEM (unpaired t-test, *P < 0.05 compared with 
all the other experimental groups; ▲P < 0.05 compared with PBS group, gemcitabine group, 
MWNTs group and MWNTs-Ge group). Abbreviations: EDAC 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide; MWNTs multiwalled carbon nanotubes; MWNTs-COOH oxidized multiwalled 
carbon nanotubes; MWNTs-Ge multiwalled carbon nanotubes/gemcitabine; MWNTs-Ge-Le multi-
walled carbon nanotubes/gemcitabine/lentinan; NHS N-hydroxysulfosuccinimide; Mcf-7 Michigan 
cancer foundation-7; NIR near-infrared; PBS phosphate-buffered solution; SEM standard error of 
the mean. Reprinted with permission from Zhang et al. [37] Copyright 2018 Dove Medical Press 
Limited
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Internalization within HepG-2 cells took place in 3 h. Cell viability in the HepG-
2 cells drastically fell to 5.7 ± 1.2% on treatment with MWNTs-Met/PEG in 
combination with NIR irradiation. 

2.5 Immune-Photothermal Therapy 

Although PTT is effective for treating cancer cells locally as they are sensitive to high 
temperature, weak immunogenicity of tumors is a major challenge. Hence, combi-
nation of PTT and active immunological stimulation can synergistically improve 
the effectiveness of the anticancer therapy. Zhou et al. designed immunologically 
modified SWCNTs-based system employing an immunoadjuvant, glycated chitosan 
(GC) denoted as SWCNTs-GC [39]. A concentration and laser dose-dependent rise 
in temperature from 30 to 60 °C was observed when the SWCNT-GC was irradiated 
with a 980 nm laser at 0.5–1 W/cm2 for 120 s. SWNT-GC exhibited superior stimula-
tion of NO production in macrophages along with expression of CD80 indicating the 
maturation of dendritic cells. The SWNT-GC tagged with FITC entered into EMT6 
cells and accumulated in the cytoplasm. The nanocomposite also accumulated in 
the RAW264.7 cells owing to phagocytosis in macrophages and stimulated a higher 
level of IFNγ secretion. Mouse mammary tumor developed by injecting EMT6 cells 
in the flank of Balb/c female mice was treated with SWNT-GC in combination with 
laser irradiation with a power density of 0.75 W/cm2 for 10 min and showed drastic 
elevation in the temperature. Within 2 min, the tumor tissue surface temperature rose 
to 62 °C that began to plateau after 5 min at 72 °C which resulted in induction of 
89.2% apoptosis. 

In another extensive study by Wang et al., photothermal ablation of primary 
tumors with SWCNTs in combination with anticytotoxic T lymphocyte antigen-4 
(CTLA-4) antibody therapy was demonstrated to be highly effective against tumor 
metastasis in mice as schematically illustrated in Fig. 9 [40]. The SWCNTs were non-
covalently modified using polyethylene glycol (PEG)-grafted amphiphilic polymer. 
This composite not only destroyed tumor due to photothermal properties but also 
triggered the release of tumor-associated antigens and served as an immunological 
adjuvant facilitating the maturation of bone marrow-derived dendritic cells (DCs) 
separated from BALB/c mice. Further, the PEGylated SWCNTs up-regulated the 
expression of CD86 and CD80 along with enhancement of interleukin IL-1β and 
IL-12 secretion by DCs. The nanomaterial treated mice bearing subcutaneous 4T1 
murine breast tumors showed high tumor ablation on irradiation with an 808-nm 
NIR laser at 0.5 W/cm2 for 10 min due to dramatic temperature elevation to 53 °C 
in the tumor tissues. It is important to note that this therapeutic strategy completely 
eliminated all tumors in mice without showing a single case of tumor relapse at 
their original sites after treatment. SWCNTs-based PTT mediated enhancement in 
the secretion of pro-inflammatory cytokines IL-1β, IL-12p70, IL-6, and TNF-α was
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speculated as the key immunomodulatory effect behind the effective tumor inhibi-
tion. Additionally, anti-CTLA-4 antibody is able to target CTLA-4, which is constitu-
tively expressed by regulatory T cells (Tregs) and up-regulated after T cell activation. 
Hence, SWNT-based PTT-associated CTLA-4 blockade may favor the infiltration of 
effective T cells while greatly abrogate regulatory T cells at distant tumors. The 
study showed that primary tumor ablation employing SWNT-based PTT followed 
by CTLA-4 blockage significantly inhibited the development of secondary tumors. 
This might be attributed to the CD8+ killer T cells [cytotoxic T (Tc) cells] medi-
ated destruction of cancer cells by releasing cytotoxins perforin, granzymes, and 
granulysin that eventually result in apoptosis of targeted cancer cells. Moreover, a 
combination of SWNT-based PTT and anti-CTLA-4 therapy significantly reduced 
lung metastasis with less than 1 metastasis sites in lungs. Additional study in murine 
B16 musculus skin melanoma indicated that residues of both 4T1 cells and B16 cells 
after SWCNT-based PTT activated DC maturation. 

In an innovative research, Kohshour et al. exploited trastuzumab (Herceptin®), 
a monoclonal antibody (mAb) for specific ablation of malignant breast cancer 
cells that over-expressed HER2 [41]. Proliferation of the cancer cells was effec-
tively inhibited by MWCNTs-based nanoimmunoconjugate comprised of covalently 
immobilized trastuzumab conjugated to diphtheria toxin (DT). The cell viability 
of HER2-overexpressing SK-BR-3 cells was reduced to 70.42% and 80% by 
trastuzumab-MWCNT conjugates and trastuzumab-DT, respectively.

Fig. 9 Hypothesized mechanism of antitumor immune responses induced by SWNT-based PTT 
in combination with the anti-CTLA-4 therapy. Reprinted with permission from Wang et al. [40] 
Copyright 2014 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim 
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2.6 Sonodynamic Therapy 

Sonodynamic therapy (SDT) has come up as an innovative and effective strategy for 
treating solid cancers employing ultrasound irradiation of low-intensity along with 
a sonosensitizer. This therapeutic mode is advantageous due to its very low or negli-
gible adverse effects and invasiveness, deep tissue penetration, and targeted uptake. 
Behzadpour et al. fabricated a polypyrrole-coated MWCNTs-based nanocomposite 
(PPy@MWCNTs) which exhibited superior sonosensitizing properties due to its 
efficient absorption of ultrasound irradiation by both of its components [42]. The 
PPy@MWCNTs were comprised nanotubes with 36.3 ± 5.1 nm of diameter and 
several micrometer in length. Ultrasound irradiation at 1 MHz and 1.0 W cm−2 for 
60 s resulted in rise in 16.3 ± 2.8 °C increment in temperature. The nanocomposite 
exhibited a concentration-dependent cytotoxicity on multistep ultrasound irradiation 
against C540 (B16/F10) cell line and a melanoma tumor model in male balb/c mice. 
After ten days of SDT using PPy@MWCNTs, 75% necrosis was observed in the 
tumors that led to 50% decrement in tumor volume. The higher antitumorigenic 
properties could be attributed to the cumulative thermal effects and ROS generated 
during the PPy@MWCNTs-associated SDT. 

In another study, Yumita et al. reported SDT using polyethylene glycol-modified 
carbon nanotubes (PEG-modified CNTs) [43]. Sonodynamic exposure to PEG-
modified CNTs resulted in twofold cytotoxicity in sarcoma 180 cells which was 
attributed to the singlet oxygen generated during the treatment. Further, 100 μM 
PEG-modified CNTs enhanced the nitroxide production up to threefold. Combina-
tion of ultrasound and PEG-modified CNTs synergistically inhibited the solid tumor 
growth in CDF1 mice with the carcinoma cells transplanted subcutaneously in the 
left dorsal scapula region. In a similar work, Bosca et al. fabricated a porphyrin 
grafted SWCNTs for SDT where three different porphyrins were covalently conju-
gated to SWCNTs using either Diels–Alder or 1,3-dipolar cycloadditions [44]. ROS 
production was enhanced and cell viability of the human colorectal cancer cell line 
(HT-29) significantly reduced upon ultrasound irradiation in spite of low porphyrin 
content indicating the efficiency of the therapy. 

2.7 Chemo-Sonodynamic Therapy 

Occassionally ultrasound-based SDT employ a sonosensitizer in combination with 
a chemotherapeutic agent which is referred as chemo-sonodynamic therapy. This 
strategy is more effective for treating cancer by induction of apoptosis and/or 
necrosis. Wang and Li encapsulated a sonosensitizer, protohemin (Ph) non-covalently 
into MWCNTs-COOH (MWCNTs-Ph) enhanced antitumor efficiency [45]. About 
68.8% (w/w) Ph loading was achieved on MWCNTs-COOH carrier. In presence of 
ultrasound (1.0 MHz and 0.5 W/cm2 for 100 s), MWCNTs-Ph remarkably inhib-
ited the growth of HepG-2 cells up to 95 ± 8.5%. Tumor developed in mice
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by subcutaneous injection of HepG-2 cells into the right armpit of nude BALB/c 
mice was inhibited more than 80% on treatment with MWCNTs-Ph and ultrasound 
together. Hence, MWCNTs-Ph-based cancer management can serve dual purpose 
of tumor inhibition and reduction of side effects. On a similar line, Wang et al. 
covalently attached oridonin-liposome containing microbubbles (LUMO) to folic 
acid-conjugated MWCNTs functionalized with protohemin (FMTP) to form a novel 
composite (FMTP-LUMO) [46]. Oridonin used in this composite is a chemother-
apeutic drug for chemotherapy, whereas protohemin is a sonosensitizer as stated 
previously. In combination with ultrasound, the FMTP-LUMO inhibited the HepG-
2 cells up to 95.4 ± 5.9% which might be attributed to superior release profile (90%) 
of oridonin due to ultrasound exposure of 60 s. Further, FMTP-LUMO treated liver 
cancer induced by implantation of HepG-2 cells in BALB/c nude mice showed more 
than 90% tumor inhibition after ten days. 

3 CNTs-Based Strategies Against Nervous 
System-Associated Cancer 

Developing CNTs-based nanomedicine against cancer of the brain is one of the 
most challenging tasks which need thorough understanding about the physiological, 
biochemical, immunological, and genetic attributes of the cancer. The growing cancer 
cells generate a lot of pressure inside the skull and could be life-threatening. Cancer-
associated uncontrolled cell growth in the brain forms a tumor-like mass in most 
cases and is commonly referred to as a brain tumor. A brain tumor is classified into 
two different classes based on its point of origin—primary and secondary type of 
brain tumor. Primary brain tumor originates in the brain itself while in the secondary 
brain, tumor metastasizes from another organ to the brain [47]. The primary brain 
tumor generally originates from glial cells and is referred to as glioma. There are 
four different grades of glioma based on size and growth (grade I–IV), grade I 
glioma does not infiltrate deep into the brain tissue and could be treated by surgical 
interventions, whereas grade IV glioma infiltrates deep into the brain tissue, called 
as glioblastoma are difficult for surgical interventions [48]. Stage IV glioblastoma is 
the most common type of brain cancer with 17,000 new diagnoses every year and is 
associated with a median survival rate of 14 months with poor life quality [48, 49]. 

Currently, there is no complete cure for glioblastoma and the patients generally 
survive for less than two years [50–53]. The current treatment strategy includes the 
use of aggressive anticancer drugs, surgery, radiation, and chemotherapy [53–55]. 
Such aggressive treatment has a lot of side effects and with high chances of tumor 
recurrence; the patients typically die within two years of treatment. The treatment 
of glioblastoma is difficult even with radiation and chemotherapy due to the highly 
invasive nature of the brain tumor; thus, a targeted drug delivery system could be 
used for delivering anticancer or immunotherapeutic drugs [53].
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CNTs are biocompatible, hollow, tubular nanostructures that have extensive ther-
apeutic potential as a drug delivery system, imaging tool, and implantable devices in 
the nervous system as well [56]. The reason for the low success rate of brain tumor 
treatment lies mainly with the invasive nature of the tumor, and the penetration of the 
treatment molecule through the blood–brain barrier (BBB). The tumor is formed deep 
inside the brain tissue which is difficult to access by surgery or with radiation; there-
fore, a perfect drug delivery system is required to direct the therapeutic molecules to 
the brain tumor and cross the BBB. The latest understanding of molecular details and 
cellular pathways of glioblastoma is paving way for use of SWCNTs and MWCNTs 
for the treatment of brain gliomas due to their length/diameter ratio, electrical conduc-
tivity, biological compatibility, and easy conjugation with therapeutic or diagnostic 
molecules [53, 54, 57, 58]. 

One of the limiting factors in the treatment of glioblastoma is the migration or 
invasiveness of the tumor cells deep into the brain tissue. In a study, Alizadeh and 
colleagues demonstrated that CpG oligodeoxynucleotide (CpG ODN) bound with 
CNTs inhibits the migration of the glioblastoma cells via activating toll-like receptor 9 
[53]. CpG ODN is a synthetic single-stranded DNA molecule that contains unmethy-
lated cytosine and guanine motifs derived from bacterial DNA. Therapeutic mech-
anism of CpG ODN includes protective immunity, cancer therapy, increasing the 
response to the vaccine, and suppression of allergic reactions [59, 60]. Hence, the 
use of CpG with suitable CNTs can have multiple therapeutic potentials in cancer 
therapy as well as in modulating the immune response of the body as illustrated in 
Fig. 10.

SWCNTs conjugated with CpG (SWCNTs/CpG) showed greater immunostimu-
latory effects than compared to free CpG in glioma models [61, 62]. A single dose 
of intracranial injection of SWCNTs /CpG in a GL261 murine model eradicated the 
gliomas in 50–60% of the mice, suggesting the high efficacy of SWCNTs/CpG in 
cancer treatment [61]. Furthermore, the glioblastoma chemotherapy drug molecule 
temozolomide showed enhanced effect when combined with SWCNTs/CpG in the 
treatment of the glioma mouse model [62]. The in vitro glioma histology suggests 
that SWCNTs/CpG locally alters the invasive properties of the tumor by inhibiting 
the migration of glioma cells followed by decreased NF-κB activation and an overall 
reduction in intracellular ROS [53]. Thus, SWCNTs/CpG could be tested in future 
clinical trials for the treatment of glioblastoma due to its ability to activate the innate 
immune system and inhibit the migration of tumor cells to the brain tissue (migration 
of tumor cells is one of the most challenging aspects in treating glioblastoma. 

Another limiting aspect of brain tumor treatment is the delivery of therapeutic 
molecules across the blood–brain barrier (BBB) to the glioma [63]. BBB is a highly 
selective semipermeable membrane covering the central nervous system, made of 
tightly packed endothelial cells which prevent the passage of blood-borne pathogens 
and non-selective molecules from the circulating blood into the cerebrospinal fluid 
of the central nervous system [64]. In a study, MWCNTs conjugated with NH3 

+ 

were able to cross BBB in an in vitro model of BBB composed of porcine brain 
endothelial cells and rat primary astrocytes cells [65]. In cancer treatment, MWCNTs 
conjugated with cell-penetrating peptide (CPP) and anticancer molecule showed
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Fig. 10 Proposed therapeutic application of CpG based on the interaction of CpG with cells of the 
immune system. Reprinted with permission from Klinman [59]. Copyright 2004 Nature Publishing 
Group

enhanced BBB penetration and anticancer activity for glioma treatment [63]. CPP 
like trans-activating transcriptional activator (TAT) was used in the previous study 
to increase the permeability of BBB [66]. However, increasing the permeability also 
increases the chances of non-specific penetration of CPP [67]. You and colleagues 
have designed and synthesized MWCNTs loaded with TAT and anticancer drug 
oxaliplatin for the precise targeting of glioma. The results of this study suggest that 
the MWCNTs with TAT and oxaliplatin were more cytotoxic to the glioma cells 
compared to free oxaliplatin [63]. Thus, SWCNT and MWCNT could be effectively 
be used as drug delivery machinery which could cross the BBB and specifically 
target the brain tumor cells inhibiting its further migration into the deep brain tissue. 
However, more detailed studies are required to completely establish the molecular 
mechanism of CNTs interactions in brain tumor treatment before it could be tested 
in clinical trials. Figure 11 summarizes the key points that could be achieved by the 
use of CNTs in brain cancer treatment.

The brain is not the only organ of the nervous system that is affected by cancer; the 
cancer of the retina called retinoblastoma, is one of the most common types of intraoc-
ular cancer mostly affecting young children [68, 69]. The most common symptom of
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Fig. 11 Therapeutic potential of CNTs in brain tumor treatment

retinoblastoma is visible whiteness in the pupil of the eye called Leukocoria, notice-
able in dim light [70]. Retinoblastoma is highly sensitive to chemotherapy treatment 
and can be treated by injecting chemotherapy drugs either directly in the ocular 
cavity or intravenously [68]. The use of CNTs in retinoblastoma treatment can further 
enhance the uptake of chemotherapy drugs during the treatment. The retinoblastoma 
cells have a high affinity for folic acid and biotin because of the enrichment of 
folate and biotin receptors on retinoblastoma cells [71–73]. Demirci and colleagues 
had demonstrated that CNTs conjugated with fluorescein isothiocyanate and folic 
acid/ biotin (CNTs-FITC-FA/Bio) injected into the vitreous humor of the transgenic 
retinoblastoma mice model show high penetration into the retinoblastoma cells [74]. 
In view of the background, CNTs-FITC-FA/Bio composite can serve as a promising 
drug delivery system for the delivery of chemotherapeutic agents for treatment of 
intraocular tumors [74]. The studies so far suggest the potential application of CNTs 
in the treatment of cancers of the nervous system. However, the details regarding the 
cytotoxicity and uptake of CNTs by the nervous system are not completely under-
stood, which is one of the limiting factors for potential use of CNTs for treating 
nervous system-associated cancers. 

4 Future Perspectives 

Development of cancer drug resistance is major challenge for the existing chemother-
apeutic strategy. Hence, nanotechnology-driven solutions are thought to be better 
candidates with multimodal therapeutic perspectives. Cancer therapy combining 
chemoradiation with sonodynamic therapy has been shown to decrease tumor growth 
in pancreatic cancer cellular models [75]. Gold nanoparticles release heat through 
a light-driven surface plasmonic process [76–78]. Similarly, conjugation of organic 
polymer particles has shown high heat transfer efficiencies [79–81]. Hence, getting 
synergistic efficacy by combinatorial approaches has been a topic of research to 
enhance cancer therapeutic efficacy. Combination of chemotherapeutic drugs with
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CNTs-associated photothermal treatments can show promising for various cancer 
treatments that can be confirmed using cell-based in vitro studies and in mouse 
models. Photothermal treatment employing CNTs combined with daunorubicin and 
cytarabine may promote cell apoptosis [82]. Likewise, doxorubicin encapsulation in 
poly N-isopropylacrylamide-co-acrylic acid (PNA) gel in combination with CNTs 
mediated photothermal therapy can be an effective strategy to inhibit tumor cells 
[83]. Doxycycline encapsulated in photothermal agent polydopamine (PDA) has 
been shown to be effective in the treatment of oral squamous cell carcinoma cell 
lines which may further be enhanced by conjugating with SWCNTs or MWCNTs 
[84]. 

Multi drug resistance (MDR) is a major problem due to use of a single drug 
and combination therapy serves as a promising approach to overcome the MDR. 
Delivery of CNTs with doxorubicin may reduce the chemoresistance in combi-
nation of photothermal therapy against drug resistant hepatocellular carcinoma in 
mouse [85]. Also, ribonuclease A (RNase A) conjugated gold nanoparticles are used 
in combination of photothermal therapy of colon cancer cells, which in turn may 
be synergistically enhanced in presence of CNTs [86]. CNTs-based photothermal 
therapy with immune-adjuvant nanoparticles together may attribute to checkpoint 
blockade for effective cancer immunotherapy [81]. Quantum dots based on black 
phosphorus in combination with CNTs-based photothermal therapy may effectively 
inhibit relapse and metastasis in triple-negative breast cancer (TNBC), which is one 
of the aggressive cancer types to treat and causes high mortality [87]. Likewise 
CoFe2O4-quantum dots functionalized on SWCNTS/MWCNTs may exhibit syner-
gistic photothermal therapy in non-small-cell lung carcinoma due to induction of 
apoptosis by downregulating AKT signaling pathway [88–91]. Sonosensitizers such 
as, adriamycin, hematoporphyrin, ATX-70, pheophorbide A, ATXS10, and porfimer 
sodium, may act as sonosensitizer which can be functionalized on CNTs along with 
anticancer drugs with effective chemo-sono-photo-dynamic properties [92, 93]. 

Insolubility of CNTs in water is a key obstacle for gastrointestinal absorption, 
blood transportation, secretion, and biocompatibility and so on. Hence, dispersion 
can be ensured by developing strategies for wetting the hydrophobic tube surfaces 
and modifying the tube surfaces to decrease tube’s bundle formation. Foldvari 
et al. have proposed four basic approaches for ensuring the uniform dispersion of 
CNTs in the aqueous medium which can be summarized as follows: (1) surfactant-
assisted dispersion, (2) solvent dispersion, (3) functionalization of side walls, and (4) 
biomolecular dispersion. Among the above mentioned strategies, functionalization 
with hydrophilic moieties is considered as the most effective approach [94]. 

Cellular uptake of CNTs is a prerequisite for the therapeutic activity. Hence, 
proper distribution at the target sites and selective retention at the place of delivery 
are of great importance in clinical pharmacology of CNTs as drug carriers. PEG 
chain lengths is a key determining factor of the biodistribution and circulation of 
CNTs. PEG-5400-modified SWCNTs have a circulation time (t1/2 = 2 h) much 
longer than that of PEG-2000-modified counterpart (t1/2 = 0.5 h). Further, func-
tionalization of the arginine-glycine-aspartic acid (RGD) peptide with the PEGy-
lated SWCNTs facilitates the accumulation in integrin-positive U87MG tumors.
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Moreover, adsorption of the shorter chain PEG (PL-PEG-2000) to CNTs cannot 
protect them from macrophagocytosis. However, adsorption of longer chain PEG 
(PL-PEG-5000) can effectively reduce nonspecific uptake of CNTs. It is important 
to note that functionalization of CNTs with PEG grafted branched polymers, namely 
poly(maleicanhydride-alt-1-octadecene)-PEG methyl ethers (PMHC18-mPEG) and 
poly (g-glutamic acid)-pyrine(30%)-PEG methylethers (70%) (gPGA-Py-mPEG), 
can enhance circulation time in the blood after intravenous injection [95]. 

The morphology of CNTs plays a crucial role in determining its drug loading 
capacity and delivery. The wall of CNTs results from rolling up of either single or 
multiple layers of graphene sheets forming SWCNTs or MWCNTs, respectively. 
Both SWCNTs and MWCNTs are capped at both ends of the tubes in a hemispher-
ical arrangement of carbon networks called fullerenes warped up by the graphene 
sheet. Although the CNTs have various lengths from several hundreds of nanometers 
to several micrometers, they can be rationally shortened chemically or physically 
for their suitability for drug carriers. Opening both ends with useful wall defects 
facilitates intratube drug loading and chemical functionalization. Also, appropriate 
chemical treatment can result in development of desired charge on the surface of the 
nanotube that enable ionic interactions mediated adsorption of the charged molecules 
like drugs, targeting ligands and contrast agents. Aromatic molecules, nucleic acids 
and amphiphilic peptides can be functionalized based on the π-π stacking interac-
tions between the CNT surface and aromatic bases/amino acids resulting in enhanced 
solubility and dispersion [95]. 

Another effective novel system developed by Li et al. is “dual-targeted drug 
nanocarrier” which was first reported by conjugating MWCNTs with iron nanoparti-
cles and folate molecules [96]. Conjugation with targeted moieties of folate (FA) and 
an external magnetic field together facilitated the targeted delivery of doxorubicin into 
the HeLa cells. Similarly, FA-modified SWCNTs for targeted delivery of cisplatin 
into Ntera-2 cells, phosphatidylserine-modified SWCNTs for delivering cytochrome 
C into phagocytic cells, NPs-modified multiwall carbon nanotube (MWCNT) for 
delivering gemcitabine into lymph nodes and antibody-modified SWCNTs for deliv-
ering doxorubicin (Dox) into WiDr cells are examples for promising targeted delivery 
using CNTs. Such delivery systems can further be conjugated with magnetic probes 
for designing an effective dual targeting nanoplatform. This will ensure the delivery 
of anticancer drugs by guiding the nanocarriers to cancer sites efficiently using both 
receptor–ligand interaction and an external magnetic field. 

Hence, several key factors should be considered before developing an ideal 
nanomedicine based on CNTs for effecting targeting and drag delivery in cancer. 

5 Conclusions 

Although, phototherapy alone has been effective against the cancer treatment 
since decades, Recent studies show promises for the CNTs mediated combination
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therapy which can provide synergistic treatment modalities. Combination of CNTs-
based phototherapy with chemotherapy may address the emerging chemoresistance 
among cancer cells. Similarly, combination of phototherapy with immunomodula-
tory inhibitors may provide great opportunities for synergistic personalized medicine. 
Immune checkpoint inhibitors and radiosensitizers combined with CNTs may offer 
novel combination to treat metastatic cancers. However, there is still a need for 
investigating the novel combinations of phototherapy with either chemotherapeutic 
agents or immunomodulatory inhibitors. Investigation of the most effective combina-
tion and performing further toxicological, pharmacokinetic and pharmacodynamic 
studies to confirm the efficacy and safety of CNTs-based nanomedicine for treat-
ment and management of cancer would further help in establishing their therapeutic 
promises and safety. 
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1 Introduction

Anticancer drugs aim to suppress cancer cell proliferation and metastasis. It is often
merged with various other therapies such as surgery and radiation therapy to achieve
the highest advantages [1–3]. Anticancer drugs kill cancer cells via diverse modes
such as cell cycle arrest, oxidative stress, cytoskeleton damage, and DNA damage
[4–6] via initiation of necroptosis, apoptosis, or necrosis that plays a crucial role in
anticancer drugs induced cell death [7, 8]. At the early stages of cancer treatment,
anticancer drugs play an analeptic role; however, in the progression of tumor, it has
a distinct function, where it could be a neoadjuvant modality or palliative modality
in different cancer [9–11]. But in the advanced stage of treatment, intrinsic and
acquired chemoresistance is a major clinical challenge in treating cancer because
chemoresistance induces cancer dissemination, recurrence of disease and death.
Chemoresistance remains one of the major obstacles to the effective management of
cancer therapy. In chemoresistance, cancer cells induce expression of various onco-
gene, altered mitochondrial functions, enhanced DNA repair, autophagy, and also
altered epithelial to mesenchymal transition (EMT), cancer stemness, etc. Therefore,
these molecular signaling pathway alterations may reduce the therapeutic efficacy
of various anticancer drugs [12–14].

The combination of two or more chemotherapeutic agents improves the thera-
peutic response as compared to single therapy because it targets major signaling
pathways in an especially additive or synergistic manner [5, 15–18]. This combi-
nation approach overcomes drug resistance which collectively provides better ther-
apeutic benefits such as suppressed metastasis and reducing growth of the tumor,
reducing cancer stem cells (CSCs) populations, arresting mitotically active cells
and enhancing apoptosis [16, 19]. Despite the improvement of diagnostic tools and
development of chemotherapy and radiotherapy in the last few decades, the overall
survival rate in cancer has not increased more than 5 years [20]. These anticancer
drugs serve as a promising way to manage cancer, but due to lack of selectivity, poor
solubility, low stability, huge side effects, expensive and poor therapeutic benefits
among patients pose a problem to determine as excellent treatment approaches [21–
26]. The extensive use of traditional drugs for cancer therapy causes severe damage
to fast-growing normal cells, and this is especially applied for the treatment of solid
tumors, where most of the cancer cells are invaded slowly. A targeted drug delivery
system (TDDS), which releases the anticancer drugs at a predetermined biosite in a
regulated approach. Carbon-based drug delivery systems are building a major effect
on the treatment of cancer. Some critical benefits of carbon-based drug delivery
systems such as sustained half-life, better biodistribution, excellent circulation time,
sustained and controlled release, the flexibility of route of administration, enhanced
intracellular concentration of the anticancer drugs, etc. [27–30].

In the recent past, carbon-based materials such as carbon dots, fullerenes,
graphenes, and carbon nanotubes (CNTs) seek a wide extent of attention for their
assuring performance in biomedical science such as the delivery of anticancer drugs,
gene transfection, and real-time imaging in animal models [31–38]. Porous carbon
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materials (PCMs) have a huge surface area, hierarchical porosity, photothermal
conversion capacity, ideal compatibility, high adsorption capacity, and theranostic
functions [39–41]. Over the past few decades, porous materials have acquired rapid
expansion and excellent accomplishment due to their good surface area, excellent
pore volume, and tunable pore size could provide better loading of anticancer drugs
[42, 43]. When compared with sp2-based carbon nanomaterials [44–47] and conven-
tional mesoporous silica nanoparticles (MSNs) [48–50], PCMs integrate both the
superiority of mesoporous silica nanoparticles (MSNs) and carbonaceous composi-
tions including (1) extensive surface area and pore volume which are suitable for
loading of anticancer drugs (2) adjustable pore structure permits better control of
release of anticancer drugs (3) freely altered surface could accelerates controlled and
targeted drug delivery to improve the therapeutic efficacy of anticancer drugs and
minimized the side effects; (4) ideal heat conversion capacity in the region of near-
infrared (NIR) could allow alternatives for photothermal therapy; (5) better biocom-
patibility and physicochemical stability; (6) supramolecular p-p stacking allows the
huge amount of anticancer drug-loading potential and sustained anticancer drug
release; (7) novel optical properties and easy fusion with various luminescent chem-
icals induce real-time monitoring. Due to the above merits porous carbon materials
are reviewed as the next-generation platform for enhancing the therapeutic efficacy
of various anticancer drugs and biomedical applications as illustrated in Figs. 1, 2,
and 3.

Fig. 1 Schematic illustration of porous carbon materials (PCMs) based drug delivery system of
anticancer drugs
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Fig. 2 Schematic illustration on porous carbon materials (PCMs)-based drug delivery system for
controlled and targeted drugs

Fig. 3 Schematic illustration of advantages of using PCMs with anticancer drugs

The term immunogenicity or/and antigenicity can be defined as “the ability of a
molecule or substance to provoke an immune response” or “the strength or magni-
tude of an immune response” [51]. The term “immune response” in the above defi-
nition ascribes “an integrated systemic response to an antigen (Ag), especially one
mediated by lymphocytes and involving the recognition of Ags by specific anti-
bodies (Abs) or previously sensitized lymphocytes” [52]. Porous carbon-like delivery
systems provide the following advantages (1) improved stability both in vitro and
in vivo, (2) target-specific delivery of peptides, drugs, and genes, and (3) minimized
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side effects. However, porous carbon materials are often initially accumulated by
phagocytic cells of the human immune network such as macrophages. There may
be nonspecific interaction between various materials such as porous carbon mate-
rials and the human immune system like immunosuppression or immunostimulation.
Thesematerialsmay also enhance autoimmune disorders or inflammation or enhance
the susceptibility of host organisms to various infections as well as cancer [53].

In the present chapter, we summarized the recent development of PCMs-based
delivery of anticancer drugs including sustained drug delivery systems (SDDSs),
immediate drug delivery systems (IDDSs), controlled drug delivery systems (CDDs),
and targeted drug delivery systems (TDDSs). Apart from that we also highlight the
current challenges and outlooks of porous carbonmaterials in the successful delivery
of anticancer drugs.

2 Factors that Help PCMs to Be Effective Drug Delivery
Agents

SurfaceModifications:PCMspossess a carbonaceous frameworkwhich is generally
modeled with the help of hydrothermal treatment or calcination at very high temper-
atures [54, 55]. As the PCMs originally possess a very high hydrophobic nature.
So in order to achieve the hydrophilic surface of PCMs through surface modifica-
tion, oxidation process is a commonly used strategy which is generally achieved by
using strong acids such as sulfuric or hydrochloric acid which in turn improve the
hydrophilic nature and generate different functional groups on the surface of PCMs
[56]. Also, a simple and gentle method is also widely implemented, i.e., oxidation
in the presence of ammonium persulfate in a dilute sulfuric acid (H2SO4) solution
which leads to the generation of a large number of functional groups generally the
carboxyl groups of the surface of PCMs [57, 58]. These PCMs are further modified
on the basis of the needs such as polymer coating, targeting diseases, PEGylation,
diagnostic imaging, and stimuli-responsive grafting.

Drug-loading methods: Loading of drugs in PCMs are generally carried by mainly
three methods such as solvent evaporation, physical adsorption equilibrium, and
melting method. Drug-loading methods generally possess a substantial influence
on the condition of the drug molecules inside the PCMs as well as in vitro disso-
lution. Melting methods generally achieve a higher drug-loading capacity but the
drawbacks with this method are the difficulty of drug molecules to penetrate deeply
into PCMs pores which results in uneven distribution of drug molecules and easily
re-crystallization of drugs such as hydrophobic fenofibrate.Whereas physical adsorp-
tion method, PCMs are generally immersed in drug solution, drug molecules pene-
trate into the pore of PCMs until equilibrium is not achieved after which PCMs can
be easily collected by centrifugation.
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Pore Size: Rate of dissolution of drugs can also be increased by expanding the
pore size which will lead to decrease in diffusion hindrance. Zhao et al. [59] have
already fabricated the fibrous-ordered porous carbon material (FOPCM) for loading
celecoxib which is an insoluble drug which improved its oral bioavailability and
dissolution rate.

3 PCMs in Immediate/Sustained Drug Delivery Systems

Oral delivery of any drug is considered to be the most convenient route for admin-
istering drugs due to its safety, simplicity, and very few chances of infections.
However, the clinical application and administration of hydrophobic drugs were
critically restricted due to their low bioavailability and low solubility and absorption
in the gastrointestinal tract. Lately, numerous kinds of porous/mesoporous, such as
mesoporous metallic oxide, mesoporous carbon, mesoporous silica, have been iden-
tified and used to act as carrier molecules for the low soluble drugs [60, 61]. Out of
these, PCMs have a very high surface area, high adsorption rates, high porosity, less
density as well as excellent drug-loading capacity which is a crucial need for those
drug molecules that require high doses to meet clinical applications needs.

Eu3+/Gd3+-EDTA-doped hollow mesoporous carbon (HMC) has been used for
enhancing the oral bioavailability of carvedilol which is insoluble in nature [62].
This method increased the drug-loading efficiency of the carboxylated hollow meso-
porous carbon up to 73.6%. The drug carvedilol when administered with the above
HMCmanifested a sustained drug release action as compared to the existing capsules
of carvedilol. The oral bioavailability was also greatly improved and the pharmacoki-
netics results also showed that Tmax and area under the curve (AUC)0–48 hours of
carvedilol also increased 6.5 and 2.2 folds, respectively, when orally administered. It
has been also found that PCMs increase the drug-loading capacity of camptothecin up
to 17% due to their aromatic rings framework of mesoporous carbon nanomaterials
[63, 64].

Carboxylated mesoporous carbon nanomaterials (MCNs) have been found to help
in increasing the dissolution as well as solubility rate of hydrophobic carvedilol,
hence enhancing the bioavailability of the drug when administered orally. When
an amorphous state drug is loaded into the nanoscale pores in MCN, it enhances
dissolution rates as well as the equilibrium stability of the drug in comparison to
the crude drug compounds [65, 66]. It has also been found that uniform mesoporous
carbon spheres (UMCS) when used as a carrier, increase the oral bioavailability of
several insoluble clinical drugs such as celecoxib. It has also been found that UMCS
reduces the rate of efflux and enhances the influx of celecoxib [66].

In comparison, with immediate-release PCMs which may cause the peak and
valley drug concentration immediately after they are orally administered, sustained-
release PCMs have been found to possess an extended ability of therapeutic effect.
This extended therapeutic effect is mainly gained by slowly delivering the encap-
sulated drug for an extended period of time which could lead to a decrease in the
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regularity of drug administration, balance the concentration of drug in the blood,
decreased side effects due to immediate release of drugs, achieving preferable patient
compliance.

The sustained drug delivery through PCMs can be mainly achieved by three
methods: (1) Channel length and pore structure—Sustained drug delivery could be
attained by modulating the morphology, constituents, and structure of mesoporous
carbon structures that have a crucial role in the release rate of drug embedded.
(2) Interactive forces between PCMs and drug embedded—Sustained drug delivery
could be accomplished by using high interaction forces such as hydrophobic inter-
actions, supramolecular π–π stacking, and high electrostatic interaction between
loaded drug and PCMs. (3) Hindrance and diffusion effect—PCMs bestow hindrance
in diffusion for the loaded drug release, thus increasing the sustained drug delivery
[56, 67, 68].

PCMswith a diameter (less than 90 nm) have been extensively used for transmem-
brane delivery of many drugs such as doxorubicin [56]. PCMs with a small diameter
manifested a high loading capacity of drug molecules because of their hydrophobic
interactions as well as supramolecularπ–π stacking as in the case of doxorubicin and
PCMs. PCMs loaded with doxorubicin showed a very sustained delivery of doxoru-
bicin under acidic conditions especially in cancer cells due to their high interactions
[43, 69, 70] as shown in Fig. 1. Carbon materials such as hollow mesoporous carbon
nanoparticles loaded doxorubicin have also shown a much-sustained drug delivery
which helps in saving the normal cells by reducing the cytotoxicity of doxorubicin
[67, 68].

Polymer poly dimethyl diallyl ammonium (PDDA) has also shown promising
results in oral SDDSs for insoluble drugs (in water) such as nimodipine, fenofibrate,
and carvedilol [71]. The drug release was sustained for an extended period of time
more than 12 h for the PDDA-coated PCMs because of their gradual increase in
pore size in an aqueous medium, which effectively hinders the actual drug release.
Results effectively demonstrate that sustained drug release was obtained mainly by
the blockage effect from the loading materials once they come in contact with an
aqueous or release medium.

Mesoporous carbon/lipid bilayer nanocomposites (MCLN) have also shown
promising results in sustained drug release for the oral delivery of insoluble drugs
such as nimodipine. MCLN loaded with nimodipine manifested a sustained drug
release in the gastrointestinal (GI) tract/intestinal fluid because of the diffusion
hindrance bestowed by a lipid bilayer. Thus, in vivo bioavailability is increased
when nimodipine was loaded into MCLN and manifested a long period of drug
plasma levels in comparison with immediate-release drug formulations [72].
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4 Porous Carbon Materials in Controlled Drug Delivery
Systems (CDDSs)

Premature or early drug release is a major problem and causes severe side effects and
drug loss. PCMs have been developed for CDDSs to accomplish stimuli-responsive
drug delivery systems (SRDDSs). Such systems are mainly achieved by altering
“gatekeepers” throughphysical adsorption and covalent bonds over the pore entrance,
therefore preventing the loaded drug from escaping out until it comes directly in
contact with particular stimuli such as redox potential, enzymes, temperature, and
pH as shown in Figs. 1 and 2.

Amidst different types of SRDDSs, controlled drug delivery systems are the
most popular choice due to the pH gradient between the diseased tissue and normal
tissue cell [73–77]. It is a well-known fact that cancer tissues possess more acidic
environments than normal tissues [19, 28, 43, 69, 70, 78–83].

CDDSs which are pH-responsive have been developed with ZnO quantum dots
attached to the surface of PCMs. ZnO quantum dots act as gatekeepers through amide
bonds preventing the loss of drugs [84].RhodamineGhas been used as a drug thatwas
loaded into the zinc oxide (ZnO) gated carbon materials with the help of electrostatic
attraction. Rhodamine release profiles from the above systems manifested a strong
association with the pH values of surrounding areas or mediums. As the pH values
drop in the surrounding medium, i.e., less than 5.5, the “gatekeepers” start to open
up leading to the release of the rhodamine. Intriguingly, as the pH decreases more
percentage of drug rhodamine releases. In addition, the PCMs also generate heat
under infrared radiation which will lead to an increase in temperature of the local
area which further eases the release of drug rhodamine as shown in Fig. 1. Adsorptive
interactions between pore cavities of PCMs and rhodamine reduce with an increase
in temperature as well a drop in pH will further decrease the electrostatic repulsion
between the rhodamine and PCMs. Hence, the combinatorial effect of temperature
and pH could result in the controlled and rapid release of rhodamine from the PCMs
when exposed to near-infrared radiation (NIR) at the tumor site [84].

Redox potential is also extensively used as a stimulus for controlled drug delivery
systemswith the help of glutathione concentration between the intracellular (10mM)
and extracellular matrix (2–10 μM) [85–90]. Tumor cells have a high intracellular
GSH, i.e., three times more than the normal cells GSH concentration which is mainly
targeted for intracellular stimuli [91, 92]. Therefore, disulfide bonds are mainly used
in designing controlled drug delivery systems dependent on redox potential as they
are highly unstable in intracellular fluid due to their very high concentration of GSH
in comparison with extracellular fluid where GSH level is low [93].

SRDDSs have been developed with the help of PCMs using the fluorescence
carbon dots which acts as gatekeeper molecules at the pore opening site of PCMs.
In high concentrations of GSH, carbon dots detach from the PCMs because of the
disulfide cleavage at the pore sites leading to the swift release of the encapsulated
doxorubicin as well as carbon dots release lead to the fluorescence which helps in
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visualizing the whole process of drug delivery [94]. Different polymers are also used
to act as a gatekeeper molecule which works as a redox-responsive gatekeeper.

Other carbon-based materials such as hollow mesoporous carbon nanomaterials
(HMCN) conjugated with polyacrylic acid (PAA) have been also used as pH and
redox dual-triggered controlled drug delivery systems. Disulfide bonds were used
to conjugate the PAA on the pore outlet of HMCN. PAA was handpicked due to
its superior biocompatibility, plenty of carboxyl groups to initiate the drug release
which is pH-responsive, blood circulation time, etc. [94].

5 Porous Carbon Materials in Targeted Drug Delivery
Systems (TDDSs)

Conventional chemotherapy anticancer drugs lack specificity causing many side
effects, off-target effects, and inducingmultidrug resistancewhich severely decreases
the therapeutic efficacy [95–100]. Recently, PCMs-based drug delivery systems have
made it possible to deliver drugs at the tumor site with minimal drug leakage during
the drug transportation inside the body. TDDSs decrease the high drug dose demand
which in turn decreases the scarring of neighboring normal cells and tissues as shown
in Fig. 2.

Uniform mesoporous carbon nanomaterial sphere (UMCNS) has been also used
as multifunctional TDDSs. It was used to graft branched polyethylene mine linked
with folic acid (FA) and fluorescein isothiocyanate (FITC) covalently [101]. Pacli-
taxel was packed into the pores of UMCNS with a very high drug-loading efficiency
of 51.37%. FA-functionalized nanoparticles (FA–PEI–UMCNS) loaded with pacli-
taxel were specifically uptaken by the cancer cells having high expression of folic
acid receptor and also manifested encouraging results in terms of anti-tumor activity
in comparison with other paclitaxel formulations due to increased accumulation in
cancer tissue in several animal models. Besides, these PCMs also increased the oral
absorption of paclitaxel which is a biopharmaceutics classification system (BCS)
class IV drug having a bad oral bioavailability [102]. All results directly exhibited
that FA–PEI–UMCNS manifested high cellular uptake through folic acid receptor-
mediated endocytosis in human colorectal adenocarcinoma (Caco-2) cells.Moreover,
FA–PEI–UMCNS remarkably enhanced the endocytosis and permeability of pacli-
taxel across the monolayer of Caco-2 cell as well as they also greatly improved oral
bioavailability of paclitaxel and decreased the gastrointestinal toxicity of paclitaxel.

UMCNS linkedwith hyaluronic acid (HA) is used for TDDSs. It ensured colloidal
stability, stable encapsulation, biocompatibility, controlled drug release, and cell
targeting ability. It was also able to easily target the cancer cells overexpressing the
CD44 receptor. When HA-UMCNS loaded with doxorubicin (DOX) and verapamil
(VER) manifested hyaluronidase-1 and pH dual responsive CDDSs promoting the
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drug release specifically in the tumor microenvironment. Moreover, VER/DOX/HA-
UMCNS manifested an excellent therapeutic effect on xenografted BALB/c nude
mice with human colon cancer HCT-116 cells [103].

6 Limitations of Porous Carbon Materials in Delivery
of Anticancer Drugs

Porous carbon materials (PCMs) have sought attention in drug delivery in the field
of biomedical sciences recently to be used as anticancer drug carriers suitable for
enhancing the therapeutic efficacy of various anticancer drugs. Due to their large
surface area, enhanced cellular internalization, and preferential tumor accumulation,
they allow these PCMs to transport anticancer drugs to tumor sites, thereby reducing
cytotoxicity of anticancer drugs by minimizing side effects. PCMs are considered
as one of the novel inorganic materials for the next-generation drug delivery of anti-
cancer drugs and other biomedical applications. Due to its appropriate combinato-
rial characteristics such as distinct porous structure, carbonaceous compositions, and
excellent biocompatible in nature. However, in several practices like the controlled
release of drugs, PCMs are still at the infant stage. Further refinements are required
to strengthen the effective drug delivery of anticancer drugs by PCMs. Flexible
synthesis protocols with compositional parameters and optimized structure; to date
poor information of standard and controllable methodologies for the synthesis of
porous carbon materials have been reported, especially for hydrophobic spherical
materials and pore size-tunables. Modification of the surface of PCMs still remains
difficult. Modification of the surface is critical for well-ordered catalysts develop-
ment. To deliver anticancer drugs with smart drug delivery, stimuli-responsive and
controlled drug release, which has been rarely applied to PCMs, while widely used
in mesoporous silica and other mesoporous materials. In comparison with distinct
materials, such as mesoporous silica and mesoporous metal oxides, PCMs have
been hardly used in diagnostic imaging and in the biomedical field. But in the near
future, it has been estimated to show excellent efficiency due to its specific structural
composition and physicochemical characteristics. It is immediately needed to assess
its biosafety which directly relies on the methods used in synthesis. In addition,
assessment of biosafety of PCMs should be targeted on a few key parameters such
as excretion, biodistribution, and biodegradation. Whether and how nanomaterials
such as PCMs will influence the reproductive systems, nerve systems, and immune
system have not yet been studied systematically, and therefore, more comprehen-
sive research about the cellular-based and animal models toxicity and distribution
of carbon-based materials is required. An in vivo quantitative assay of PCMs might
be difficult owing to carbonaceous compositions of PCMs that may be influenced
by the presence of carbon in the human system. In this condition, radio-labeling of
PCMs may be promising for the evaluation of biosafety. Although functional modi-
fication on PCMs surface provides a better therapeutic potential for the delivery of
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anticancer drugs, it is still essential to design an economically feasible approach
for broad applications with excellent stability and reliability. Not only the modifica-
tion of surface but also the generation of contamination-free functionalized porous
materials is challenging in the future since PCMs might be contaminated with other
nano-porous materials during synthesis. In the future, porous carbon materials may
be considered as promising drug delivery materials in clinical settings.

7 Conclusions

In the present chapter,we provide a general overviewof PCMsof the current literature
regarding the anticancer drug delivery potential of PCMs. At present, the PCMs are
in their initial stage in the field of cancer biology due to the limitation of synthesis
procedure, surfacemodifications, oxidation, and functionalization time for enhancing
the drug delivery efficiency in the tumor. In the future, for better utilization of PCMs
in the delivery of anticancer drugs the role of pH, oxidation of carbon surface, reaction
time uses of solvents during adsorption, functionalization parameters, and optimal
time in adsorption have been denoted for a better understanding of PCMs. Among
the other allotropes porous carbonmaterials have fascinated escalating consideration
as a notably suitable vehicle for transporting different anticancer drugmolecules into
the cellular system because their unrefined structures andmorphology promotes non-
invasive insertion across the cell membranes. In the near future, researchers should
focus more on the synthesis procedures, surface modification for enhancing the drug
delivery efficacy of anticancer drugs in biomedical science. Various drug delivery
materials designs have beendeveloped to deliver anticancer drugs tomultiple cancers.
Porous carbon materials have provided the most effective results with regard to the
delivery of anticancer drugs.

In conclusion, the functionalized surface characteristics or specific surface asso-
ciation allow PCMs a more favorable drug delivery system for drug delivery. Due
to excellent drug-loading potential, adjusted release kinetics, biocompatibility and
better solubility and with least cytotoxicity are essential in various target-specific
drug delivery systems. Recent applications of PCMs have been investigated in target-
specific cancer therapy. Numerous side effects are associated with PCMs that limit
their extensive acceptance. However, each modification of the surface may check the
immune response of the body that can be confirmed by in vivo assays. Overall, to
establish PCMs in anticancer drug delivery that is compatible with clinical settings
without safety concerns, more comprehensive, and additional animal studies are
required for this recently and rapidly growing field of nanomedicine.
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Chapter 34 
Biocompatible Carbon-Coated Magnetic 
Nanoparticles for Biomedical 
Applications 

V. Vijayakanth, V. Vinodhini, and Krishnamoorthi Chintagumpala 

1 Introduction 

1.1 Magnetic Nanoparticles 

Maghemite (Fe2O3) and magnetite (Fe3O4) are the most extensively used magnetic 
nanoparticles for diverse biomedical applications. For in vivo biomedical applica-
tions, magnetic nanoparticles should be superparamagnetic, small in size, biocom-
patible, and hemocompatible in order to remain in blood circulation and nontoxic. For 
in vitro applications, superparamagnetic nanoparticles (SPNPs) dispersed in solvents 
can be utilized when the size of the particle is not a major criterion [1]. Magnetic 
nanoparticles (MNPs) can be prepared by bottom-up and top-down techniques. The 
widely used bottom-up techniques for MNPs synthesis are coprecipitation, sol–gel, 
solvothermal, hydrothermal, spray pyrolysis, solvothermal reflux, etc. [1]. Among 
them, coprecipitation, sol–gel, solvothermal reflux methods are most widely used 
for MNPs synthesis due to controlled particle size by controlling various synthesis 
parameters. The solvothermal reflux method produces highly crystallized nanopar-
ticles (NPs) due to the potent removal of crystallization exothermic energies by 
naturally occurring gas bubbles formed in reflux growth solvents [2]. MNPs have 
distinctive chemical and physical properties which play an important role in science 
and technology [3]. Hence, the MNPs are used in various fields such as magnetic 
data storage, catalysis, pigment, wastewater treatment, sensors, and biomedical 
fields. Among the biomedical diverse applications, magnetic resonance image (MRI)
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agents, magnetic drug delivery, and magnetic hyperthermia (MHT) were widely 
researched in both in vivo and in vitro modes [4]. MNPs are further utilized in 
different domains including analytical, industrial, and environmental applications 
due to easy synthesis, size controllability, physiochemical property, and superior 
magnetic behavior [3, 5]. To enhance the colloidal dispersion stability and biocom-
patibility of MNPs, nanoparticles’ surface modification with colloidal dispersants is 
necessary [6] due to the aggregation of nanoparticles resulting from the high surface 
energy and magnetic dipole interactions. The colloidal dispersant may be either poly-
meric dispersant or surfactant dispersant, according to the application. Further, MNPs 
without dispersant will undergo oxidation in the biological environment resulting in 
the formation of nonmagnetic or weakly magnetic particles. Colloidal stability of 
magnetic nanoparticles is vital for various biomedical applications and to prevent 
agglomeration. The optical, electrical, catalytic, and magnetic properties of nanocrys-
tals are directly improved by dispersants (surfactants). The importance and influence 
of surface ligands or surface coating of NPs were thoroughly investigated by Boles 
and the co-workers [7]. Generally, the surface of MNPs is encapsulated or capped 
anchored, or ligated with various dispersants, especially with surfactants and poly-
mers. Recently, the carbon-based materials such as fullerenes, graphene oxide (GO), 
carbon dots, and porous carbon shell layers were coated on core MNPs drawn a huge 
attention to improve biocompatibility and enhance functionalization of the surface. 
This chapter presents recent research progress on various biomedical applications 
(for cancer treatment) of different carbon materials-coated MNPs, with and without 
functionalization. 

1.2 Carbon Materials 

In biomedical applications, the following are the most extensively used carbon mate-
rials: fullerenes, carbon dots, graphene, graphene oxide (GO), reduced graphene 
oxide (rGO), carbon nanotubes, porous carbon, etc., compounds. Carbon materials-
coated magnetic NPs are used in several applications such as MRI contrast 
agents, targeted drug delivery system (TDDS), magnetic hyperthermia, fluorescent 
biosensor, biological labeling, catalysis, and optical sensing, because the carbon 
materials-coated MNPs show high saturation magnetization, low toxicity, colloidal 
stability, good biocompatibility, and excellent fluorescent properties [3, 8]. The great 
advantages of carbon materials are lightweight, thermally and chemically stable, 
biocompatible and hemocompatible, hydrophilic, and easy to functionalize to load 
drugs. Graphite-coated MNPs have shown enhanced cytocompatibility and protected 
the surface from oxidation [9]. The first structure, synthesis, and properties of various 
carbon-based materials were briefly described in the following subsections. Later, 
biomedical applications of various carbon material-coated MNPs (MNP core and 
carbon shell) were presented systematically in the following sections. Targeted 
drug delivery, bioimaging, and magnetic hyperthermia applications of the core–shell
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Fig. 1 Various classes of carbon-based materials with structures and dimensions such as 0-
dimensional structure of buckminsterfullerene, 1-dimensional structure of nanotubes, 2-dimensional 
structure of graphene, and 3-dimensional structure of graphite and diamond. Reprinted with 
permission from Terrones et al. [10]. Copyright 2010 Elsevier 

nanoparticles (NPs) were discussed in detail at relevant places. Figure 1 represents 
various classes of carbon materials, structures, and their dimensions. 

2 Synthesis and Biological Properties of Carbon 
Nanomaterials 

2.1 Carbon Dots 

Carbon dots (CDs), also called carbon quantum dots (CQDs), are nanoscopic carbon 
nanoparticles with high specific surface area and quantized energy states. Hence, they 
exhibit particle diameter-dependent optical and electrical properties. The CDs are 
generally prepared by both bottom-up and top-down methods. In top-down methods, 
macroscopic carbon materials were used as a precursor to derive nanoscopic carbon 
dots by laser irradiation, chemical oxidation, electrochemical, etc., techniques. In 
bottom-up methods, organic solvents act as a seed to grow up zero-dimensional (0D) 
carbon dots under certain conditions. Heat, ultrasonic waves, microwave energy-
based techniques are used for molecular structure transition and energy aggregation 
during the synthesis. Heterogeneous carbon sources like citric acid, amino acid, 
sucrose, and even waste food can be taken as precursors [8]. Many researchers
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have used solvothermal, hydrothermal, microwave-assisted heating methods for 
the making of carbon dots. CDs are used in a variety of applications due to 
ease in handling, eco-friendly nature, economical, homogeneity, biocompatibility, 
hydrophilic nature, ability to produce narrow size distributed particles by chemical 
methods [8, 9]. Carbon dots with surface passivation show fascinating properties 
such as photostability, chemical inertness, tunable excitation, and emission ener-
gies, good biocompatibility, low toxicity, and colloidal stability. In addition, carbon 
dots (CDs) have excellent properties such as broad optical absorption and strong 
photoluminescence (PL) absorption. CDs are well suitable for surface passivation 
or modification with diverse organic, inorganic, polymeric, and biological mate-
rials. The surface passivation enhances the physical and fluorescence characteristics 
and was used in biosensing, bioimaging, drug delivery, photothermal therapy, etc., 
applications [9, 10]. 

The majority of the studies have proven that carbon dots (CDs) have outstanding 
biocompatibility. Sun and his co-researchers evaluated the biocompatibility of CDs 
in both in vitro and in vivo modes using human breast cancer cells and reported 
that the CDs are not cytotoxic [11, 12]. Han and the co-workers have prepared 
multifunctional florescent manganese-carbon dots (Mn-CDs) hybrid nanoparticles 
and were paired with anti-HE4 antibody. This conjugate was effectively investi-
gated for ovarian cancer cell targeting by bifunctional MRI and optical imaging. The 
novel manganese-carbon dots with anti-HE4 monoclonal antibody (mAb) exhib-
ited great affinity to HO-8910 ovarian tumor cells. The in vivo and in vitro studies 
have revealed that the probes had superior cell targeting ability, extraordinary fluo-
rescence, good biocompatibility, and efficient excretion through renal clearance 
[13]. Further, Chowdhuri and the research group have reported encapsulation of 
Fe3O4 superparamagnetic nanoparticles (SPNPs) with O-corboxymethyl chitosan 
(Fe3O4@OCMC). Then, a nanoscale metal organic framework (NMOF) was formed 
with a coating of folic acid (FA) on the surface of SPNPs (Fe3O4@OCMC@NMOF-
3/FA). Finally, doxorubicin (DOX) was loaded into the NMOF by physical encapsu-
lation. The Fe3O4@OCMC@NMOF-3/FA nanoparticles exhibited great ability for 
targeted drug delivery and optical imaging [14]. Nitrogen-strengthened carbon dots 
(NCDs) mediated with deoxyribonucleic acid (DNA) nanoparticles were developed. 
The NCDs-DNA nanomaterial exhibited excellent photodynamic and photolumines-
cence response, high cellular uptake, and good biocompatibility. Thus, the material 
is highly effective for anticancer diagnosis and treatment [15]. 

2.2 Fullerenes 

Fullerenes are allotropes of carbon molecules characterized by a closed or partially 
closed hollow structure. Carbon atoms are connected by primary and secondary bonds 
with fused rings of five to seven atoms in the structure. The molecular structure may 
be a hollow sphere, ellipsoid, and tube. The spherical fullerenes are called buckyballs,
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whereas cylindrical ones are known as nanotubes. The C60 is known as buckminster-
fullerene and is widely studied spherical fullerene. Carbon nanotubes (CNTs) are 
cylindrical fullerenes. Carbon-based nanomaterials have enormously contributed to 
the expansion of nanoscience and nanotechnology [16]. The experimental discovery 
of fullerenes was made in 1985, and it marked a great change in chemistry which 
led to a new branch: carbon chemistry [17]. Many studies were done with lower 
homogeneous C60, C70 to higher fullerenes like C240, C540, and C720. Fullerenes 
spontaneously react with free radicals, have an antibacterial property, and were used 
in water treatment. They were further used in therapeutics, diagnostics, hydrogen 
storage, supercapacitor, and drug delivery application due to their structure, biocom-
patibility, electronic configuration, and physiochemical properties. To carry out the 
synthesis of fullerenes, many methods are being used such as laser vaporization of 
carbon, electric arc heating of graphite, resistive arc heating of graphite, and laser 
irradiation of polycyclic hydrocarbons [18]. The C60 has a distinctive structure and 
is suitable for connection with the cellular environment. The fullerene NPs interact 
well with the biological environment and easily pass through the cell membrane, and 
they can also deliver therapeutic molecules [19]. 

Dextran-coated C70 fullerene has shown stable dispersion in water, and extraordi-
nary cytocompatibility with L929 fibroblast cells, and a cell viability value of above 
80% [20]. The C60 fullerene functionalized γ-Fe2O3 MNPs have shown high satura-
tion magnetization of 66.5 emu g−1, and a particle size below 10 nm was achieved 
by the hydrothermal synthesis method. The supreme adsorption capacity of C60-γ-
Fe2O3 nanoparticles (NPs) for nonsteroidal anti-inflammatory drug (flurbiprofen), 
determined from Langmuir isotherm, is 142.9 mg g−1 [21]. 

2.3 Carbon Nanotubes (CNTs) 

Sumio Iijima and his co-workers have discovered carbon nanotubes (CNTs) in 1991 
[22]. CNTs are cylindrical hollow tubes with hexagon carbon rings on the wall and 
are a 1D material. Hence, the CNTs are categorized into two types: single-walled 
carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The 
SWCNTs are formed from a two-dimension (2D) hexagonal carbon lattice rolled up 
along one of the Bravais lattice vectors (BLVs) to build a hollow cylinder. MWCNTs 
contain nested single-walled carbon nanotubes [16]. The atoms are weakly bound by 
the Van der Waals interaction across the walls and are strongly bonded by sp2 orbitals 
electrons within the hexagon lattice. MWCNTs are sometimes referred to the double 
and multiwalled carbon tubes [23]. The carbon nanotubes (CNTs) exhibit several 
characteristic properties such as high conductivity, chemical inertness, high tensile 
strength, ultra-lightweight, and a protein carrier. Due to these fascinating proper-
ties, CNT has played a remarkable role in nanobiotechnology, optics, electronics, 
and various field of material science. They were also used in sensors, water treat-
ment, MRI, drug delivery, anti-fungal, antibacterial, hyperthermia, etc., applications.
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The CNTs are synthesized mainly by the following three methods: chemical vapor 
deposition (CVD), electric arc, laser deposition [24]. 

2.3.1 Single-Walled Carbon Nanotubes 

In early literature, SWCNTs synthesis was mostly carried out by laser ablation and arc 
discharge method. SWCNTs were noticed as a byproduct of an arc discharge method 
for synthesizing endohedral fullerenes and metal nanoparticles. Now, researchers are 
preferred to prepare SWNTs by advanced chemical vapor deposition (CVD), and it 
is a promising route. The CVD method emerged as an efficient method to prepare 
SWCNTs due to its high efficiency, scalable nature, relatively low cost. An appre-
ciable deal of progress has been made during the past two decades. Several review 
articles are being reported in the academic field as well as the industry [25]. SWCNTs 
exhibit excellent optical, mechanical as well as thermal properties. Many types of 
CNTs were synthesized with different electrical characteristics which play a signifi-
cant role in various electronic and optoelectronic applications. The optical properties 
of SWCNTs are structure dependent, and they can be altered to obtain desirable prop-
erties. Low optical absorption and eminent electrical conductivity of the materials 
paved the way for its use in numerous applications such as liquid crystal displays 
(LCDs), photovoltaics, and OLEDs. SWCNTs were also fabricated as electrically 
conductive and optically transparent thin films. At room temperature, SWCNTs are 
produced with eminent thermal property with an unimaginable thermal conduc-
tivity of 6600 Wm−1 K−1. SWCNTs have remarkable mechanical properties such 
as bending strength and stiffness due to the sp2 orbital electron bonding carbon– 
carbon atoms in graphene hexagon rings which lead to the development of many 
nanocomposite materials. SWCNTs are further classified into three types based on 
specific chirality types and are recognized as emerging nanocomposite materials 
due to the growing demand for pre-established CNTs properties and structures in 
numerous applications [26]. The synthesized SWNTs were anchored/ligated with 
mesoporous silica (MS), and then, surface altered by polyethylene glycol (PEG) 
NPs (SWNTs@MS-PEG) exhibits a multi-functioning base tool for imaging guided 
adjuvant therapy of cancer. The SWNTs@MS-PEG NPs loaded with doxorubicin 
(DOX), a chemotherapy drug, deliver efficiently to the target resulting in syner-
gistic cancerous tissue killing with the influence of the photothermal therapy [27]. In 
hyaluronic acid-coated (HA) SWCNTs and loaded with doxorubicin (DOX), DOX is 
associated with HA by bi-sulfide bond (-ss-) which helps the quick release of a drug 
under reducing conditions. The biocompatibility of gadolinium (Gd) SWCNTs-HA-
ss-DOX NPs caused potent tumor cell killing efficiency with IC50 of 0.61 μg/mL at 
48 h. In addition, Gd-SWCNTs-HA-ss-DOX nanoparticles produced good chemo-
photothermal anticancer therapeutic efficiency, redox responsive releasing function, 
MRI imaging, and tumor targeting property [28]. The multifunctional platform-based 
PEG-modified Fe3O4@carbon quantum dots-ligated SWCNTs are synthesized and 
used as a collaborative treatment for cancer. Doxorubicin (DOX) drug was loaded 
into the SWCNTs-PEG-Fe3O4@CDs nanoparticles to produce high efficiency. The
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magnetofluorescent SWNTs-PEG-Fe3O4@CDs have shown a powerful effect on the 
targeted tumor cells, and these nanocarriers can be used as a potential nano-platform 
for adjuvant tumor photodynamic therapy (PDT), photothermal therapy (PTT), and 
chemotherapy (CT) under 808-nm laser radiation. These biocompatible nanocarriers 
are promising for drug loading and drug delivery carriers for lung and cervical cancer 
treatment [29]. 

2.3.2 Multiwalled Carbon Nanotubes 

As mentioned in the previous section, multiwalled carbon nanotubes (MWCNTs) 
have a much concentric cylindrical structure of graphene layers (walls) or SWCNTs. 
The interlayer or walls separated is 3.4 Å. The inner nanotubes are shielded by 
the outer one. To synthesis MWCNTs, a number of synthesis routes have been 
tested. Among many, the following two synthesis methods are commonly used: (1) 
plasma-based methods: (a) arc discharge and (b) laser ablation; (2) thermal-based 
methods: (c) chemical vapor deposition (CVD), (d) plasma-enhanced chemical vapor 
deposition (PECVD). 

Both SWCNTs and MWCNTs have unique thermal conductivity, mechan-
ical strength, and electrical properties. Because of their extraordinary anisotropic 
properties, they showcase various attributes when analyzed under various condi-
tions. MWCNTs are extensively studied for mechanical, thermal, and electrical 
applications which include heat sinks, microelectronics interconnects, and struc-
tural composites. But, SWCNTs and MWCNTs have different physical proper-
ties because of their structure and diameter. The difference between both types of 
carbon nanotubes was summarized in Table 1. The double-walled carbon nanotubes 
(DWCNTs) consist of only two concentric walls; one is nested within another, and 
they have similar morphology and properties of SWCNTs except for high resistance 
for chemicals. The three types of CNTs based on their walls are represented in Fig. 2.

CNTs produce electronic properties which are directly dependent on their helicity 
and diameter. Due to its small diameter and superior aspect ratio, the electrons inside 
CNTs cannot easily scatter during conduction. The CNTs have eminent current-
carrying capacity exceeding the copper value. The thermal property of CNTs depends 
on the size and structure [31]. The thermal conductivity and specific heat of CNTs 
are greater than diamond. They are stable up to high temperatures in the atmosphere 
(750 °C) and vacuum (2800 °C). Due to their good thermal conductive nature, atomic 
bonds have been further strengthened in CNT [31, 32]. The inter-wall coupling in 
MWCNTs and inner wall coupling in SWCNTs leads to low temperature-specific 
heat that reassembles 3D graphite. Since CNT has sp2 bonding between carbon 
atoms because of which they possess significant tensile strength compared to steel 
and Kevlar materials [31, 33]. Because of their significant properties, MWCNTs are 
used in diverse applications such as solar cells, optical antennae, ion sensors, gas 
sensors, nano-electrode-based sensors, hydrogen gas sensors, mechanical devices, 
electrical devices, TEM grids, storage devices, electromechanical devices, heat 
transfer applications, and also broadly used in biomedical fields [31].
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Table 1 Differences between SWCNTs and MWCNTs properties 

S. No. SWCNTs MWCNTs 

1 SWCNTs have a single layer of graphene MWCNTs have multiple layers of 
graphene 

2 SWCNTs have poor mechanical strength Remarkably stronger than SWCNTs 

3 Bulk synthesis of SWCNTs is difficult Bulk material synthesis is easy 

4 The purity of the material is poor The purity of the material is high 

5 Higher loss or oxygen reduction when the 
catalyst is added 

Lower loss or oxygen reduction when the 
catalyst is added than SWCNT 

6 Evaluation and characterization are easy Evaluation and characterization are a little 
difficult 

7 The catalyst is required for the synthesis The catalyst may or may not be essential 

8 The possibility of flaws is more during 
functionalization 

The possibility of flaws is less, but once it 
happens, it is difficult to improve 

Fig. 2 Classification of carbon nanotubes: a SWCNTs, b DWCNTs, and c MWCNTs. Reprinted 
with permission from Rathinavel et al. [30]. Copyright 2021 Elsevier

The most prominent applications for MWCNTs are drug delivery, cell separa-
tion, hyperthermia, gene therapy, electrochemical sensors, magnetic storage medium, 
catalyst, and various industrial applications [31]. There are major advantages in 
using MWCNTs for hyperthermia (HT) in photothermal therapy. MWCNTs limit the 
heating to the specific tumor zone; it has a fine ability to penetrate into cells which 
leads to better hyperthermia results. The MWCNTs have been played a key role in 
cell separation and manipulation. In addition, the greatest property of MWCNTs 
is their ability to assist in hydrogen-triggered (pH) drug release agents [34]. The 
La0.3Zn0.3Co0.1Fe2.3O4 (LZCFO) NPs in MWCNTs matrices were prepared by a 
wet-chemical technique. The prepared LZCFO@MWCNT nanoparticles produced 
effective hyperthermia values at constant alternate magnetic field and frequency
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Fig. 3 Pictorial representation of different types of carbon nanotubes and their biomedical 
applications. Reprinted with permission from Anzar et al. [24]. Copyright 2020 Elsevier 

with less time [35]. The functionalized MWCNTs/MnFe2O4 magnetic nanoparti-
cles along with various functional groups were synthesized by solvothermal method, 
which produced notable hyperthermia values for cancer treatment [36]. Types of 
carbon nanotubes and diverse applications of functionalized CNTs were given in 
Fig. 3. 

2.4 Graphene 

Graphene is a 2D carbon material formed by sp2 carbon–carbon atomic bonding. 
Graphene has been studied for the past many years, due to its remarkable thermal, 
electric, mechanical, optical, magnetic properties, and also to its large specific surface 
area (2630 m2 g−1). The graphene material has a great Young’s modulus of 1.0 TPa, 
intrinsic carrier mobility (2,00,000 cm2 v−1 s−1), optical transmittance (~97.9%), 
thermal conductivity (~5000 Wm−1 K−1), and high electrical conductivity [37]. 
Graphene can retain stability up to 108 A/cm2 current density. Different methods 
were invented to prepare thin graphene film during earlier times. Later, a few layers 
of graphene were fabricated on a single crystal platinum surface through a chemical 
decomposition route. However, in recent years, the preparation of a large surface 
area, superior quality, and efficient graphene is achieved by top-down and bottom-up
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techniques. The top-down approaches include mechanical exfoliation and chem-
ical exfoliation of graphene from bulk graphite crystals. The bottom-up approaches 
include epitaxial growth, pyrolysis, and thermal and plasma-based chemical vapor 
deposition (CVD) methods. Among them, CVD technique is widely used due to its 
high efficiency and high-volume synthesis. The in-depth explanation of graphene 
synthesis methods and their properties were investigated in the literature [37, 38]. 
Chen and the co-researchers have studied that graphene-based nanoparticles such 
as reduced graphene oxide (rGO), graphene oxide (GO) have unique chemical and 
physical properties which make them eminent tools for photothermal therapy-based 
(PTT) hyperthermia for anticancer treatment. Due to the intrinsic absorption of 
near-infrared (NIR) radiation, graphene can be used in PTT and guided imaging 
to use as adjuvant therapy for chemotherapy, immunotherapy, and other therapeutic 
studies [39]. Graphene-based nanomaterials have exhibited notable promise in the 
area of imaging, biosensing, and biomedicine, especially in gene and drug delivery 
for anticancer therapy [40]. The graphene-based magnetic nanoparticles have a 
very strong linkage between the two compounds. Magnetic graphene hybrids have 
attained significant attention and were proven to improve the efficacy in the field of 
magnetic photothermal therapy, controlled drug delivery, imaging, cellular separa-
tion, and isolation [41]. Graphene-based materials produced unique physiochemical 
properties, modifiable active groups, good surface area, strong photothermal effect, 
and promising biocompatibility. They behave as active agents or tunable carriers 
for advanced cancer therapy [42]. Structure, various properties, and biomedical 
applications of graphene, GO, rGO were represented in Fig. 4. 

Fig. 4 Schematic image depicts various properties, scanning electron microscopy (SEM) struc-
tures, and biomedical applications of graphene, graphene oxide (GO), reduced graphene oxide 
(rGO) [43]
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2.5 Graphene Oxide (GO) and Reduced Graphene Oxide 
(rGO) 

Graphene oxide (GO) can be easily prepared by the oxidation of natural graphite 
powder or flake. GO is easy to synthesis, low cost, and has the ability to convert 
into graphene. The flake graphite (FG) is a natural forming mineral that is cleansed 
by eliminating heteroatomic contamination. Brodie was the first person to scrutinize 
the synthesis of GO by the addition of potassium chlorate (KClO3) to a graphite  
slurry in fuming nitric acid (HNO3) [44, 45]. Later, Staudenmaier extended this 
protocol by adding concentrated sulfuric acid (H2SO4) and fuming nitric acid (HNO3) 
followed by slow addition of chlorate (ClO3

−) to the reacting mixture. These slight 
changes in the procedure proved to be an easy and revised method for preparing 
effectively oxidized GO [45, 46]. Finally, Hummers proposed an alternative route to 
prepare GO by using potassium permanganate (KMNO4), sodium nitrate (NaNO3) 
in concentrated sulfuric acid [45, 47]. The synthesis of GO involves the oxidative 
treatment of graphite by predominant methods invented by Brodie, Staudenmaier, 
and Hummers. Many recent studies have used modified Hummer’s method for the 
initial preparation of graphene oxide. 

Reduced graphene oxide (rGO) is extracted from graphene oxide by the thermal 
reduction of GO [45]. In other words, at high temperatures and under reducing 
conditions, GO will convert to rGO [48]. Till now, very few synthesis methods 
were investigated for reduced graphene oxide (rGO). Most of the researchers have 
followed the hydrazine hydrate method for the synthesis of rGO from GO. Further, 
some other reducing solvents are used for the synthesis of rGO. Pareds and his group 
have studied the effect of various reducing agents on GO. They used potassium 
hydroxide (KOH), ammonia (NH3), pyrogallol (C6H6O3), ascorbic acid (Vitamin-
C) (C6H8O6), hydrazine monohydrate (H6N2O), and sodium borohydride (NaBH4) 
as the reducing agent; among this, ascorbic acid (Vitamin-C) (C6H8O6) is the noble 
substitute for hydrazine for the synthesis of rGO [48, 49]. In general, GO and rGO 
exhibit smaller in size, higher density of functional group and more possibilities to 
interact with bacteria tissues, and also exhibits strong antibacterial property resulting 
in cell deposition. Their physicochemical properties such as size, conductivity, the 
density of functional group can be tailored and hence enhance the potential of appli-
cations or reduce risks [50]. Chwalibog and his co-workers have studied the effect 
of GO and rGO on glioblastoma cells in in vitro and in vivo modes. The in vitro 
results reveal that the graphene oxide and rGO entered glioma cells have a cytotoxic 
effect. Hence, both the types of platelets decreased proliferation and cell viability with 
rising doses, but reduced GO was more toxicity than GO. The volume and mass of the 
cancer cells were diminished after the injection of rGO and GO. The rGO-mediated 
cell death, through the apoptosis pathway, highly recommended the potential suit-
ability of rGO in cancer therapy [51]. The well disperse and biocompatibility of 
folic acid (FA) conjugated with Fe3O4 and encapsulated with nanoscale graphene 
oxide (nGO) and loaded with doxorubicin (DOX) NPs contributed a stable nanocar-
rier system. Notably, nanocomposites are highly effective in in vivo imaging. The
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in vitro biocompatibility and cell viability studies of FA-Fe3O4@nGO-DOX NPs 
indicated their particular uptake by MGC-803 cells. The FA-Fe3O4@nGO-DOX 
nanoparticles-treated mice were extensively active and exhibited reduced weight 
loss than mice treated with Fe3O4@nGO-DOX NPs [52]. Ricci and his research 
group were prepared graphene oxide nanoribbons (GO-NR) for bone regeneration 
which caused potential cytotoxicity, bactericidal effect, and gene expression. The 
GO-NR nanoparticles exhibited no cytotoxicity effect up to 100 μg/mL concentra-
tion, and no gene expression was observed when used in reasonable dose [53]. Lin and 
his co-researchers were successfully investigated multifunctional dopamine-coated 
zerovalent iron (ZVI) NPs and rGO for targeted phototheragnosis in breast tumors. 
The ZVI/rGO@pDA nanoparticles exhibited high sensitivity in imaging compared 
to pure ZVI@pDA even at low concentrations. The combination of ZVI, rGO, 
and pDA showed potential-specific targeting capabilities, cancer phototheragnosis, 
outstanding biocompatibility, and tumor imaging capacity [54]. 

2.6 Porous Carbon 

Porous carbon (PC) materials are classified based on the size of the pore. If the 
porous carbon nanoparticle diameter is <2 nm is called microporous, 2–50 nm 
as mesoporous, and >50 nm as macroporous carbon materials. The PC nanopar-
ticles might have only a single type of porous system or a combination of two or 
all the above three types. Such a group of porous systems is present as an inter-
connected porous system; it could be referred to as hierarchically porous carbon 
material. Porous carbon nanoparticles (PCNPs) are synthesized by two important 
routes: (a) hard template and (b) soft template. The hard templates are used to build 
up the carbon nanostructures and also used for nanocasting route which mainly 
consists of silica and zeolite. The hard template is embedded in the carbon precursor. 
The zeolite template provides microporous carbon (MPC), and the silica template 
provides microporous or mesoporous or macroporous or all three porous systems as 
well [55, 56]. The soft template synthesis route involves the synthesis of PC mate-
rials by the wet-chemical approach. Generally, the sol–gel method is a soft template, 
and a surfactant/polymer along with carbon precursor and polymerization agent is 
used to produce the porous structure. In addition, we can prepare porous carbon 
material by naturally occurring materials such as paddy husk, tea waste, and coconut 
husk which are available at a low cost. The PC material has gained great attention 
due to their large pore volume with modification of pore structure, the suitable func-
tional group including π–π stacking and ease surface modification, large surface area 
(1274 m2/g), high heat conversion capacity, high biocompatibility, great mechanical 
stability, unique optical properties, and high chemical inertness [56, 57]. Zbair and 
his research group were reported a facile synthesis route of porous carbon nanopar-
ticles (PCNPs) by microwave-assisted pyrolysis method. The prepared PCNPs are 
highly efficient adsorbents for antibiotic sulfamethoxazole adsorption [58]. The fluo-
rescent carbon-coated (FC) magnetic nanoparticles (MNPs) core–shell particles were
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synthesized by hydrothermal one-step protocol. The FC-MNPs exhibited superior 
magnetic and inherent fluorescent properties and also an excellent material for neural 
tissue engineering applications. The FC-MNPs have shown potential due to their 
selective affinity toward neuronal tissues, good biocompatibility, and neuronal ther-
apeutics in neuro-engineering applications [59]. The biocompatible porous carbon-
coated magnetite (Fe3O4) nanoparticles (PCCMNPs) were synthesized by a one-pot 
solvothermal route. To achieve targeted therapy, PCCMNPs were surface modified 
with hyaluronic acid (HA). The adjuvant treatment of photothermal therapy (PTT) 
and chemotherapy became a promising tool for cancer treatment. The biocompat-
ible porous carbon-encapsulated MNPs had high drug loading efficacy and intelli-
gent drug release. The in vivo MR imaging (T2-weighted) confirmed the cancer cell 
accumulation of nanocarriers [60]. 

3 Carbon Dots-Coated Magnetic Nanoparticles 
for Biomedical Applications 

3.1 Targeted Drug Delivery 

Several research studies have exploited the biocompatible, small size (≤10 nm), 
and surface functionalization capabilities of carbon quantum dots for targeted drug 
delivery of several anticancer drugs. Carbon dots (CDs) coupled to magnetic nanopar-
ticles (MNPs) via polyglycerol (PG) covalent bonding were researched by Wen 
and his co-workers for platinum-based drug delivery in cancerous cells via external 
magnetic attraction [61]. The in vitro study claimed that no cytotoxicity for CCK8 
assays up to concentrations of 200 μg/mL and increased cellular uptake in HeLa. 
This nanohybrid MNPs-PG-CD was explored further for fluorescence cancer cells 
bioimaging; these malignant cells along with nanohybrid particles showed non-
bleaching, strong fluorescence of different primary colors such as red, green, and blue 
(RGB) under external magnetic attraction. The fluorescence phenomenon persisted 
in spite of irradiation under the lamp (xenon) for 1 h in comparison with dye labeled 
(MNPs-PG-FITC) which exhibited no fluorescence, as shown in Fig. 5 [62].

Core–shell Fe3O4-SiO2-CDs NPs in a study was used for magnetically targeted 
drug delivery for anticancer treatment. The nanohybrid had excellent high drug 
loading concentrations (306.7 mg/g) of gambogic acid as well as drug loading effi-
ciency of 68% at a pH of 5.7 in contrast to 35% at neutral pH. It showed effective 
drug release at an acidic pH environment. The fluorescent nanohybrid had an intense 
toxic effect on VX2 cells (breast cancer cells) with the rate of cell survival being 
<20% of concentration 100 μg/mL. The saline dispersion of gambogic acid-loaded 
Fe3O4@SiO2-CDs core–shell NPs was injected into VX2 tumors in mice and was 
tested for therapeutic efficacy under external magnetic field attraction for around 
2 h. 18-FDG-positron emission tomography/computed tomography imaging analysis 
revealed a decrease in tumor volume with time [63].
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Fig. 5 a Fluorescence imaging of cervical cancer cells incubated with the nanohybrid in the pres-
ence and absence of magnet. b Confocal imaging of HeLa cells individually treated with IO-PG-
FITC and IO-PG-CD after xenon lamp irradiation for a various time duration, where iron oxide 
nanoparticles (IO) are MNPs. Reprinted with permission from Wen et al. [62]. Copyright 2019 
Elsevier

Maghemite nanoparticles coated with carbon dots were also studied have also 
been used for improving anticancer drug efficacy, drug solubility at the cellular level, 
and biocompatibility (toxicity and drug pharmacokinetics). Borhan and his research 
co-workers were designed a unique lipophilic fluorescent nanocomposite synthe-
sized by flash cooling-assisted sol–gel technique. The nanocomposite comprised of 
Fe2O3-CDs NPs was further functionalized with a cost-effective chemotherapeutic 
agent (NHPI) to induce instant tumor destruction. The in vitro cell viable cytotoxi-
city (MTT) test of the drug-free nanocomposite and anticancer drug (mitoxantrone) 
revealed cytotoxic cell death of 37% and 47%, respectively, on human osteosarcoma 
cells after 24 h incubation at 0.01 mg/mL concentration. The drug loading efficiency 
was 98% (w/w) in acidic pH of 7.4 and 97.5% in pH of 5.2. The preliminary drug 
content of the carbon nanoparticles was 3.2% and 3.1% (weight per weight) at pH 
7.4 and 5.2, respectively [64]. 

Magnetic fluorescent CS nanoparticles consisting of Fe3O4 and carbon dots as 
shell and chitosan as functionalized shell material were constructed for 5-fluorouracil 
drug delivery by a unique single-step high gravity process. The pH on drug release 
was estimated and observed that an acidic pH creates an ideal time for faster drug



34 Biocompatible Carbon-Coated Magnetic Nanoparticles … 969

release in contrast with physiological pH. This core–shell system created a supreme 
drug loading ability of 216.1 mg g−1. The presence of –NH from 5-fluorouracil and 
H+ ions in the solution leads to the formation of amino groups (–NH2) which further 
causes faster drug release at low pH. The presence of chitosan, a natural biocom-
patible polymer, and carbon dots helps in the controlled release. The 5-fluorouracil 
drug release kinetics was found to be monitored by Fickian diffusion [65]. 

3.2 Combined MRI Imaging and Drug Delivery 

Carbon quantum dots possess inherently strong fluorescence properties due to their 
quantum size effects, nontoxicity, and photostability because of which they have been 
explored and applied successfully in both MRI imaging and fluorescence imaging 
for cancer tumor diagnosis [66, 67]. Yao and their research group were prepared 
and applied nontoxic, biocompatible Fe3O4-AFn/DOX-CD nanocomposite as ideal 
negative T2 contrast agents and also for doxorubicin drug delivery. Controlled drug 
release at both acidic and physiological pH was achieved, and the intracellular DOX 
drug uptake into breast cancer cells was proven to be time dependent from both fluo-
rescence and bright field microscope images. The drug encapsulated within apofer-
ritin nanocages exhibited high drug encapsulation efficiency, and the drug discharge 
rate was pH dependent (72% at pH 5.2 and 38% at pH 7.4) which is due to the 
unfolding and refolding of the apoferritin. The nanocomposite showed remarkable 
cell viability values of 87.17% after 48 h on MCF-7 cells. As the nanocomposite 
exhibited excellent results for in vitro studies and the study was further extended to 
in vivo mouse models as the nanocomposite showed strong magnetic properties on 
testing. For in vivo testing, the nanocomposite was initially injected into B16-F10 
tumor-bearing C57 mice with a magnet attached to the tumor and studied for different 
time periods 1, 4, and 7 h by 3 T MRI scanner. After 7 h, the tumor signal intensities 
were found to reduce significantly in comparison with other regions of the mice [68]. 

4 Magnetic Nanoparticle-Decorated CNTs for Biomedical 
Applications 

4.1 SWCNT for Targeted Drug Delivery and MRI Imaging 

Single-walled carbon nanotubes (SWCNTs) are being utilized for targeted drug 
delivery due to several fascinating features. Firstly, they bring down the aftermath 
of the drug applied, promote increased drug accumulation in the tumor tissues, and 
improve encapsulation efficiency of the therapeutic drugs because of increased aspect 
ratio and surface area [69]. A great asset in the use of SWCNTs is their shape,
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as they can penetrate cellular components without causing any destruction. PVP-
functionalized SWCNTs tagged with MNPs and further conjugated with CD105 
monoclonal antibodies have been applied for MRI contrast imaging. The apoptosis 
cell death assays, which include TACS, TBARS, and PARP, revealed that the anti-
cancer drug DOX-loaded SWCNTs-MNPS antibody complex induces apoptosis, 
oxidative stress, and damages DNA at a time on 4T1 breast cancer cells in contrast 
with PVP-functionalized SWCNTs. From the MRI imaging, the decrease in T2 values 
with time confirms the magnetic targeting of the SWCNT-MNPs complex using an 
external magnet to the tumor site. From the noninvasive bioluminescence imaging, 
it was observed that reduced bioluminescence from DOX-loaded composite reveals 
decreased tumor size. Also, the ability of the doxorubicin delivery via this magnetic 
targeting method prevented cancer from metastasizing further [70]. 

Analogous to the above research, another investigation was done by the same 
group on PVP-functionalized SWCNTs tagged/decorated with 40% of magnetic 
nanoparticles content and likewise coupled with CD105 mAb for specific active 
targeting to 4T1 cells. The magnetic susceptibility was enhanced which paved the way 
for sensitive noninvasive MRI imaging. The results reveal that high-energy magnet-
based targeting was much more effective than active antibody-based targeting. When 
the magnet is placed over the mice, which bearing the 4T1 metastatic tumor, for a 2-
h duration of post-injection of SWCNTs-based nanocarrier showed better targeting. 
Further, the decrease in T2 values indicates that iron-tagged SWCNTs accumulation 
in the tumor region and an increase in apparent diffusion coefficient (ADC) value 
confirmed the efficient specific magnetic targeting [71]. 

4.2 MWCNTs for Combined Targeted Drug Delivery 
and Magnetic Hyperthermia 

Multiwalled carbon nanotubes (MWCNTs) possess several important features such 
as superior physical and chemical stability, a high surface area, high transmis-
sion ability through cell membranes. Though its only drawback is its inherited 
hydrophobic surface due to which its use is limited in biomedical applications. But, in 
a few cases, hydrophilic polymers such as chitosan, PEG, PEI are added to compro-
mise on its defect [72]. PEG and PEI were added to impart hydrophilicity, and folic 
acid (FA) was conjugated to act as a targeting ligand. Then, γ-Fe2O3 was deposited on 
MWCNTs/PEG-PEI-FA by an atomic layer deposition method. The study concluded, 
the magnetic nanoparticles (γ-Fe2O3) had no impact on drug loading capacity, 
release, and toxicity except in guiding the MWCNTs/PEG-PEI-FA-to the targeted 
site [73]. 

Functionalized carbon nanotubes have the potential to deliver an enormous 
amount of drug at the targeted cancer tumor microenvironment but in a low acidic 
pH state. Magnetic NPs-decorated functionalized CNT is highly suitable for pH-
sensitive drug release. Seyfoori and the research group were the first to report
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MWCNTs decorated with manganese ferrite, containing pH-sensitive nanogel for 
doxorubicin delivery. The hybrid nanocomposite had 92% drug loading efficiency 
in comparison with 71% of the functionalized bare MWCNTs due to drug diffusion 
in the nanogel polymer structure also due to π–π and electrostatic interaction of 
the carbon atoms with the drug molecules. At a pH of 5.3, hybrid nanocomposite 
showed greater cumulative drug release (80%) compared to f-MWCNTs (48%) and 
shows the pH-dependent nature of the nanogel. The report stated two main reasons 
for this phenomenon: (i) the role played by the H+ ions with the decrease in the 
hydrogen bonding between the drug and the carbon nanotubes. (ii) the Van der 
Waals repulsion between the NH2 groups of the hydrophilic polymer. The hybrid 
nanocomposite’s effective drug release was further tested using Presto blue assay, 
and it shows increased death of U87 glioblastoma cancer cells when monitored 
for a period of 7 days [74]. In another report on magnetic hyperthermia perfor-
mance of bare MnFe2O4 NPs, MnFe2O4-decorated PEG-functionalized MWCNTs 
and MnFe2O4-decorated amine-functionalized MWCNTs were studied. Among the 
three, amine-functionalized nanocomposite showed the highest (SAR) value and 
intrinsic loss power (ILP) value. It was found to decrease with the increase of sample 
concentration. The amine-functionalized sample shows SAR of 28.90 W/g (ILP: 5.18 
× 10−4 nHg−1 m2) at 2 mg/0.5 mL in contrast to PEG-functionalized MWCNTs 
sample SAR of 26.42 W/g (ILP: 5.18 × 10−4 nHg−1 m2 [75] 

Some of the present study results on MWCNTs and magnetic nanoparticles 
composites utilized for drug delivery, and MHT applications were shown in Table 
2. Tiwaree and co-workers also reported amine-functionalized MWCNTs/MnFe2O4 

composites which showed superior SAR and ILP values (0.00109 nHg−1 m2) in  
comparison with PEG-based nanocomposite (ILP: 0.00106 nHg−1 m2). The differ-
ence is attributed to the effective increase of anisotropy and diminished aggregation 
of the manganese ferrite nanoparticles adhered to MWCNTs [36].

In another research investigation on magnetic hyperthermia, where low Curie 
temperature (43 °C), Zn0.54Co0.46Cr0.6Fe1.4O4 NPs were decorated on functionalized 
carbon nanotubes and were shown effective self-regulating temperature of 42.7 °C 
under AMF. The samples were tested for self-regulating magnetic hyperthermia at a 
high magnetic field of 400 Oe. An enhanced SAR value of 1372 W/g was recorded 
for material having high dispersibility insolvent compared to standalone magnetic 
nanoparticles. In vitro analysis was carried out on the HaCaT cell line by CCK8 cell 
assay technique proving the nontoxicity of the nanocomposite from concentrations: 
6.25 μg ml−1 up till 100 μg ml−1 [76]. 

MWCNTs have several roles to play in the synthesis of the magnetic luminescent 
nanocomposite. Functionalized MWCNTs were utilized as support materials for the 
growth of iron oxide nanoparticles. These MWCNTs acted as nucleation sites and 
were found to prevent agglomeration of the MNPs synthesized via the coprecipitation 
technique. They were also able to prevent the adsorption of drugs and other biological 
molecules and ward off the decreased fluorescence intensity caused due to changes 
in the biological species [77].
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5 Graphite-Coated Magnetic Nanoparticles for Biomedical 
Applications 

It is reported that graphite-coated magnetic nanoparticles were used for multi-
modal therapeutic applications such as siRNA delivery, magnetic hyperthermia, MRI 
contrast agents, and in vitro Raman analysis. The core–shell nanoparticles synthe-
sized for this purpose had an inner core of iron–cobalt (FeCo) and an outer shell 
consisting of graphite carbon. This research approach had several benefits compared 
to other MNPs such as magnetite, iron–platinum nanoparticles, and maghemite 
which have great Curie temperature, high magnetization, and enhanced magnetic 
anisotropy-based applications. The major advantage is easy tailoring of the prop-
erties of the outer-shell carbon layer, which is ideal for improved Raman signal 
intensity, and the carbon shell layer makes magnetic nanoparticles chemically inert. 
From the MRI imaging, a high T2 relaxivity coefficient of 392 mM−1 s−1 and T2-
weighted high contrast image were obtained compared with that of a well-known 
MRI contrast agent, Resovist (140 mM−1 s−1). In vivo MRI study showed that 
graphene-coated magnetic nanoparticles settled in the liver, spleen, and kidneys, and 
the imaging ability was retained for a period of 10 days. Graphene-coated FeCo 
magnetic nanoparticles did cause any cytotoxicity, from Raman imaging, as they 
were successfully excreted out and well absorbed by the liver and spleen. These 
FeCo/C magnetic nanoparticles have shown a specific absorption value of 69 W/g 
compared to Fe3O4 nanoparticles (19 W/g), and the therapeutic temperature was 
attained much faster (10 times faster) than that of Fe3O4 nanoparticles. For specific 
brain cancer cell (U87) targeting, these magnetic nanoparticles were functionalized 
with epidermal growth factor receptor variant III (EGFRvIII) antibodies, resulting 
in successful cellular uptake, and under alternate magnetic field, adequate tumor 
death was achieved by magnetic hyperthermia in a short duration. For combined 
siRNA delivery and magnetic hyperthermia, functionalized magnetic nanoparticles 
carrying siRNA were treated with U87 cells and subjected to hyperthermia condi-
tions for 5 min. This technique was highly effective in the silencing of the EGFRvIII 
oncogene with fruitful deactivation of PI3K/AKT cell apoptosis pathway and more 
cancer cell death compared to control cells, evidenced from MTS assay [78]. 

Another study on graphitic carbon-coated (SPIONs) was carried out to assess 
dual-purpose MRI agents and MHT applications. Carbon-coated SPIONs diameter 
of 40 nm had greater fluorescence intensity, high quantum yield (8–6%), and fluores-
cence decay lifetime (4.7–4.2 ns) of not less than 1-grade magnitude higher than that 
of 10 nm carbon-coated SPIONs and carbon composite SPIONs. The MRI images 
indicate that the coated SPIONs have higher negative T2 contrast which increases 
with SPIONs concentration; the relaxivity (r2) was also reduced from 177 to 82 with 
an increase of carbon content. The SPIONs with minimum carbon coating had excel-
lent MRI imaging capacity compared with their other counterparts. It is attributed 
to a high number of water molecules adsorbed onto its rough surface. The magnetic 
hyperthermia measurement was conducted on the three different-sized SPIONs for a
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concentration of 2 mg/mL under 30 kA/m alternate magnetic field strength, among 
which 10 nm carbon-coated SPIONs were shown highest SAR of 430 W/g [79]. 

6 Graphene Oxide-Coated Magnetic Nanoparticles 
for Biomedical Applications 

6.1 Targeted Drug Delivery 

Bare magnetic nanoparticles always have very low solubility and less colloidal 
stability in aqueous physiological media due to nanoparticles’ high surface energy 
and magnetic dipole interactions. On surface modification with graphene oxide 
(GO), they are conferred with several advantages such as improved biocompatibility, 
aqueous colloidal stability, and solubility for biological applications. Graphene oxide 
is considered a versatile host for magnetic nanoparticles (MNPs) in nanocompos-
ites formation due to the ionizable and polar functional group’s presence, ease to 
fabricate large scale production, and its unique optical and electronic properties. 
Graphene oxide is generally functionalized with various biocompatible polymers 
such as chitosan, pluronic acid F-127, polyethylene glycol, and its derivatives in 
order to minimize its toxicity for effective drug conjugation. Current reports state 
that the use of graphene as a surface modification or functionalization agent is widely 
applicable in drug delivery, MRI imaging, in vitro, and in vivo magnetic hyperthermia 
applications. As GO surface contains many graphene sheets, it is used effectively as a 
drug loading carrier, and it can also be magnetically guided with the help of magnetic 
materials. These sheets possess a number of organic moieties such as epoxide, 
hydroxide, and carboxylic acid groups. The whole GO exterior can be utilized for 
drug addition and surface modification due to π–π interaction on the basal plane, 
which contains a hydroxyl group and epoxide groups (–O–), and the carboxylic group 
(COO−) which imparts a pH-sensitive (−) charge on its exterior [80][81]. Several 
studies have investigated the use of GO-MNPs hybrids for different biomedical appli-
cations. Mohammad and the research group have successfully prepared a multifunc-
tional hybrid nanocomposite of chitosan-coated Fe3O4/rGO core–shell particles by 
solvothermal method for doxorubicin drug delivery and fluorescence imaging. The 
in vivo zebrafish study proved the nontoxic nature of the nanocomposite, and suffi-
cient doxorubicin drug addition of 0.448 mg/mL was obtained. Reduced GO can 
interact with the drug via π–π bond, while the polymeric nature of the nanocom-
posite backbone aids drug release in neutral pH. Fe3O4 NPs help in guiding the drug 
to the targeted site with the application of an external magnetic field [82]. 

Several other studies report good drug loading efficacy values at the targeted site. 
For example, Gonzalez-Rodriguez and his research group have synthesized GO-
Fe3O4 as a multifunctional biocompatible hybrid nanostructure for coupled fluo-
rescence, MR imaging, and targeted drug delivery. As mentioned earlier, graphene 
possesses a high surface area and improved water solubility and aids in increasing
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doxorubicin drug solubility. Doxorubicin is a therapeutic anticancer drug that is 
noncovalently bound to graphene oxide–Fe3O4 during the drug loading. Its drug 
efficacy is 2.5 times more. The noncovalent functionalization of the drug onto the 
nanocarrier assists in enhanced drug release at the targeted site. It does not disturb the 
optical and electronic properties of the nanocarrier which are required for imaging 
the cancerous cells. Further, the Fe3O4-GO-DOX nanostructure showed good cell 
internalization in HeLa cells in comparison with Fe3O4-GOfor 3-h period [83]. 

Similarly, another research group investigated the role of PEG bis-amine (PEGA) 
and GO-coated MNPs for methotrexate (MTX) drug delivery. The cytotoxic nature 
of the MNPs-GO/PEGA/MTX hybrids was evaluated by MTT colorimetric assay on 
HeLa and MCF-7 cells. On HeLa cells, with an increase of MNPs-GO/PEGA/MTX 
concentration, around 15–40% of the cells were destroyed over a period of time, 
and a similar trend was observed in MCF-7 cells too. The toxic effect of the hybrid 
nanocomposite was proven to increase with concentration and time compared to 
the free MTX drug. Further, an increased MTX drug release rate (100%) was also 
observed at a time period of 60 h under acidic conditions as more drug release is 
obtained at low pH. The nanocomposite carrying the drug was also non-hemolytic 
(<2%) at all reported concentrations and exhibited good biological compatibility. 
It is confirmed from a series of tests such as complement activation, agglutination, 
and coagulation time assay [84]. Another study alike to this but on doxorubicin 
drug delivery, where pluronic F-127-coated GO-based magnetic nanocomposite, 
showed an overall 91% drug loading efficiency. A good hemocompatibility, pH, 
and temperature-sensitive drug release of around 46% at acidic pH were achieved 
under an alternate magnetic field for 30 min. A high intrinsic loss power (ILP) value 
of 2.1–2.7 nH m2 kg−1 was also obtained [85], which is less compared to the value 
reported by Sugumaran and his co-workers [86]. 

6.2 Magnetic Hyperthermia and Cancer Imaging 

Graphene oxide-coated magnetic nanoparticles are also applied for dual-purpose 
cancer imaging and magnetic hyperthermia applications. Manganese ferrite-coupled 
graphene oxide nanocomposites exhibited a significant SAR value of 1588.83 W/g 
at 0.1 mg Fe mL−1 and a high T2 (r2) relaxivity value of 256.2 mM−1 s–1 [87]. 
Magnetic hyperthermia is an experimental therapeutic technique for cancer treat-
ment utilized in conjunction with chemoradiotherapy to improve cancer treatment 
efficacy. In MHT, local tumor temperature is elevated to around 43 °C for a short span 
of time resulting in programmed cell death or apoptosis of the heat susceptible cancer 
cells. A Fe3O4-rGO hybrid nanocomposite synthesized by coprecipitation method 
exhibited high DOX drug loading capacity because of the phi–phi stacking and the 
strong H bond between the hydroxyl or epoxide group of the reduced GO with the 
hydrogen present in the doxorubicin structure. The combined effect of an alternate 
magnetic field-induced (AMF) therapy of Fe3O4-rGO-DOX was also investigated. 
At 37 °C, the nanohybrid (at 2 mg/mL) is induced 50% cell death in the absence of
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AMF due to only drug release at a low pH environment created by the cancer cells. 
When the same cancerous HeLa cells were subjected further to an alternate magnetic 
field for 35 min, around a 90% reduction in cell survival of the cancerous region was 
noted. It is ascribed to electrostatic interaction between the DOX molecules, which 
gets cleaved with the nanohybrid, and frictional force and heat generated under AMF 
in the tumor. The increased DOX release at the target site and diminished aftermaths 
of the chemotherapeutic drug are explained due to the graphene presence which 
is greatly sensitive at low pH [88]. Another study akin to this includes an in vivo 
magnetic hyperthermia effect of the MNPs-GO nanohybrids on 4T1 mouse model. 
Sugumaran and his group have scrutinized the performance of GO-functionalized 
magnetic nanoparticles of various sizes (4, 8, 20, 45, and 250 nm diameter) for 
magnetic hyperthermia application and its aqueous colloidal stability for use in a 
biological environment. Due to the amphiphilic nature of GO, it was able to main-
tain excellent colloidal stability in aqueous solutions even under high magnetic field 
strength. The GO-coated Fe3O4 NPs of 45 nm diameter showed magnificent SAR 
of 5020 W/g in contrast with PVP-Fe3O4 NPs, as shown in Fig. 6, and an unprece-
dented intrinsic loss power value of 12.21 nH m2 kg−1. The functionalized magnetic 
nanoparticles also exhibited exceptional antitumor activity in vivo mouse model and 
were able to achieve an 8 °C increase in less than 50 s [86].

Some of the current research studies on GO and MNP hybrid nanocarrier used for 
targeted drug delivery and magnetic hyperthermia are shown in Table 3. Few magnetic 
nanoparticles possess inherent antibacterial activity; this nature is further enhanced 
in the presence of rGO. The Co/rGO/PEG nanocomposite was applied for magnetic 
hyperthermia and photothermal therapy. The nanocomposite at 100 μg/mL showed 
100% antibacterial activity against E. coli under the influence of AMF for 15 min. 
Bare cobalt nanoparticles which are already possessed a high antibacterial effect 
when combined with rGO had an accelerated deathly effect on the gram-negative 
bacteria because of pointed edges of the graphene sheet which could hamper the 
bacteria’s cytomembrane [89].

7 Porous Carbon-Coated Magnetic Nanoparticles 
for Biomedical Applications 

7.1 Drug Delivery and MRI Imaging 

Like the other carbon nanomaterials, for instance, MWCNTs and graphene oxide, 
porous carbon is also found to have enhanced drug loading ability, biocompatibility, 
high specific surface area, and also adjustable porosity. A study evaluated the effec-
tiveness of solvothermal-synthesized porous carbon-coated (PC) magnetite nanopar-
ticles functionalized with ethylenediamine [(–NH2)2] and then conjugated with 
hyaluronic acid (HA) (PCCMNs–NH2–HA) for magnetic resonance imaging guided 
chemotherapy/photothermal therapy. For cancerous cell targeting, the carboxy group
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Fig. 6 SAR values of 1 mL (3 mM Fe concentration) of a Graphene oxide and b 
Polyvinylpyrrolidone-modified iron oxide nanoparticles with respect to applied field. c Time-
dependent heating outlines of 3 mM Fe of 20 and 45 nm GO- and PVP-functionalized IONPs 
on exposure to 32.5 kA m−1 alternate field strength at 400 kHz. d Particle diameter-dependent 
specific absorption rate and time duration for 8 °C rises in temperature. Reprinted with permission 
from Janani et al. [86]. Copyright 2019 American Chemical Society

on the porous carbon shell was surface modified with ethylenediamine [(–NH2)2] and 
then conjugated with hyaluronic acid, which is a well-known cancer cell targeting 
ligand as shown in Fig. 7. The nanocomposite drug carrier possessed a high doxoru-
bicin loading efficiency of 27.3%. This is an attribute to several interactions such as 
π–π stacking, H bonding, and electrostatic forces between the drug DOX and porous 
carbon-coated magnetite. Porous carbon nanomaterial is ideal for drug encapsulation 
and pH-sensitive drug delivery. The porous carbon-coated magnetite also was found 
to be biocompatible by proving both hemocompatibility and cytocompatibility when 
tested on HeLa and HUVEC cells. The nanocomposite of different iron concentra-
tions also had good T2 in vivo MRI contrasting ability and also shows good drug 
carrier accumulation in the targeted region with r2 value of 81.9 mM−1 s−1. Sufficient 
tumor inhibition in mice was achieved with drug-loaded nanocarrier under 808-nm 
laser wavelength in PTT in contrast with other materials. In the research investiga-
tion, mice which are injected with the drug-loaded PCCMNs–NH2–HA nanocarrier
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Table 3 Recent studies on GO-magnetic nanoparticle hybrid nanocomposites used for different 
biomedical applications 

S. 
No. 

Type of magnetic 
nanoparticle 
functionalized 
with GO/rGO 

Drug 
loading 
efficiency 
(%) 

Concentration 
of magnetic 
nanocomposite 
(mg/mL) and 
frequency 
(kHz) and 
magnetic field 
strength 
(kA m−1) 

Specific 
absorption 
rate (SAR) 
W/g 

Application References 

1 PEG-GO-IONPs – 0.167-mg 
Fe/mL 
400 kHz 
32.5 kA m−1 

5020 W/g Magnetic 
fluid 
hyperthermia 

[85] 

2 Graphene-based 
yolk –shell 
magnetic 
nanoparticles
-PF-127 

91% 1.5 mg/mL 
340 kHz 
21.0 kA m−1 

402-W/g 
Fe−1 

Magnetic 
fluid 
hyperthermia 
and drug 
delivery of 
doxorubicin 

[86] 

3 rGO/Co/PEG 
nanocomposites 

– 0.005 mg/mL 
400 kHz 
24.8 kA m−1 

40 W/g Magnetic 
fluid 
hyperthermia, 
antibacterial 
activity 
against E. coli 

[89] 

4 Fe3O4-rGO 
nanohybrid 

– 2 mg/mL  
265 kHz 
26.7 kA m−1 

20 W/g In vitro 
magnetic 
hyperthermia 

[88] 

5 GO-IONPs 61.42% – – Doxorubicin 
drug delivery 
and in vivo 
MRI imaging 

[83]

exhibited tumor temperature rise when it was exposed to NIR laser radiation had 
excellent photothermal efficiency [60].

To study GSH internal stimuli response, the nanocomposite was placed in PBS 
(at varying pH of 5, 6.8, and 7.4) with differing GSH concentrations. At low concen-
trations of GSH and at pH 5, the drug release was only 18.7%, but at a moderate 
GSH concentration of 10 mM, 63.8% drug release was noted at the same pH due to 
the disulfide bond cleavage of the PGA polymer by GSH. As earlier studies showed 
that the drug release was much slower with the increase of pH, here, GSH concen-
tration played a crucial role in drug release. The pH-dependent drug release occurs 
due to drug hydrophilicity at the acidic pH range and hydroxyl group deprotona-
tion and weakened electrostatic interactions. Further, the nanocomposite possessed 
low hemolytic activity at various concentrations. The three stimuli response drug
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Fig. 7 Diagrammatic representation of the protocol for PCCMNs–NH2–HA/DOX preparation. 
Adjunct photothermal therapy with near-infrared (NIR) wavelength laser and chemotherapy of 
tumor. Reprinted with permission from Wu et al. [60]. Copyright 2019 American Chemical Society

delivery system proved to be highly effective and provided a controlled drug release 
rate. After treating with nanocomposites, in vivo tumor distribution was evaluated 
in HeLa tumor containing in a mouse by MRI imaging at various time periods and 
iron concentrations resulting inadequate tumor targeting as shown in Fig. 8 [90]. 

Fig. 8 a T2-weighted MRI photographs and T2 relaxation rates (r2) in the case MHPCNs-SS-PGA-
FA/DOX at various Fe concentrations. b In vivo T2-weighted MRI photographs of a tumor-bearing 
mouse taken before and after injection of MHPCNs-SS-PGA-FA/DOX (14.26 mg/kg) at various 
time duration (1, 2, 4, 12, and 24 h). The tumor regions are pointed out in a red circle. Reprinted 
with permission from Wu et al. [90]. Copyright 2018 American Chemical Society
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Utilization of porous carbon in multifunctional nanocomposites is also stated in 
earlier reports, wherein, porous carbon and carbon dots were coated on superpara-
magnetic iron oxide nanoparticles (core particle) by him and his co-workers for 
MRI imaging. The team reported a specific T2 relaxivity value of 331.79 mM−1 s−1 

making the nanomaterial highly sensitive for use in cancer tumor diagnosis by T2*-
weighted MRI imaging. The uptake of nanomaterial was also studied in A549 cells 
where the increased sample concentration resulted in high cellular uptake. This is 
due to the reduction in T2* by dephasing the neighboring water spins, where finally a 
darker signal intensity is obtained compared to the control cells. Similarly, in in vivo 
MRI imaging of the DOX-loaded core–shell nanoparticles showed dark T2* image 
signals in the liver in comparison to the control cells and free drug. The accumula-
tion of CS nanoparticles in the liver as an end result indicates that the liver is the 
important region for nanocarrier clearance and metabolism. The average tumor inhi-
bition efficiency was reported to be 64.5% in contrast with free DOX at 16.1% on 
A549 cancer tumor-bearing mice [91]. Likewise, Yang and his research co-workers 
have studied the flower-shaped mesoporous ZnO-capped porous carbon–magnetite 
composite as a suitable drug nanocarrier for pH and microwave-based drug release 
of doxorubicin. This nanocarrier construct consists of Fe3O4 modified onto porous 
carbon nanoparticles, with the outer layer made of porous ZnO, which plays the role 
of sealing agent to stop untimely drug release after drug loading. The drug loading 
efficiency that was achieved was almost 99.1% after 24 h of drug loading. After 
12 h, the drug release from the nanocomposite under various pH values (7.4, 5 and 
3) at 37 °C was found to be 8.2%, 19%, and 56.3%, respectively, due to unique 
attributes of the porous carbon which has a specific surface area of 101 m2/g and 
the mesoporous ZnO. With temperature increased to 42 °C, the drug release rates 
were 12.6%, 27.2%, and 68.9%, respectively. On irradiation with microwave, the 
drug release increased to 39.9% from 8.2% at pH 7.4 again after 12 h. The cell 
viability value of the nanocomposite, when tested on MCF-7 cells, was above 90% 
at a concentration below 200 μg/mL [92]. 

In a study, NIR responsive fluorescent nanocomposite consisting of an inner-
most core of magnetite and an exterior shell of porous carbon and carbon dots was 
studied for image-guided photothermal therapy for cancer and doxorubicin drug 
delivery. The nanocomposite has the potential to transform near-infrared (NIR) light 
into heat energy for successful tumor heating. Under the presence of NIR light, the 
burst exit of the drug was observed because of the thermal effect created by the 
nanocomposite causing the uncoupling of the drug from the nanocarrier system. In 
the adjunct PTT and chemotherapy using DOX-loaded nanocarrier, the tumor size 
decreases to the smallest compared to the control (free doxorubicin) due to the pres-
ence of EPR effect and high anticancer efficacy. EPR effect/enhanced permeation 
effect is a phenomenon initially studied by Matsumura and Maeda in 1986 where 
nanoparticles/liposomes tend to occupy in large amounts in cancer tumor vascula-
ture compared to normal cells. This EPR effect is a highly speculative and selective 
concept based on the size distribution of the nanoparticles. As the tumors have a very 
leaky vascular nature and a defective lymphatic drain system, nanoparticles of size 
<500 or drugs of high molecular weight tend to accumulate in the tumor cells. The
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abnormal cancerous tissue retains the nanoparticles exhibiting enhanced permeation 
of drug or nanoparticles [93]. 

Carbon-coated magnetic nanoparticles provide a large surface area for high 
capacity drug loading due to the presence of pores on the surface. The large surface 
area and the porous nature of carbon-coated magnetic nanocarrier make them highly 
efficient drug carriers. Porous carbon-coated Fe3O4 exhibited good therapeutic effi-
ciency with an increase in surface area and pore size of about 3 nm even after 
hyaluronic acid incorporation [94]. During drug delivery, carbon-coated magnetic 
nanoparticles are used as nanocarriers. When they get into our human body, our body 
generates an immediate immune response to these foreign entities called immune 
response also known as immunogenic response. Immunogenicity is an important 
parameter affecting the therapeutic efficiency of the drug-loaded magnetic nanocar-
rier. Immunogenicity, in general, refers to the evading of various foreign substances 
which enter our body by triggering an adaptive cellular or humoral immune response 
which is long-lasting. The accumulation and retention of carbon-coated magnetic 
nanoparticles in tissues and organs can trigger an immediate inflammatory immune 
response, and it can affect the therapeutic efficiency, so carbon-coated magnetic 
nanoparticles have to be a low immunogenic response. Carbon-coated magnetic 
nanoparticles have issues in controlled cancer drug delivery and in nanocarrier 
internalization which is either by endocytosis, receptor-mediated entry, or by cell 
membrane penetration. There are several other issues such as sustained and controlled 
drug release under certain local conditions such as acidity/GSH levels at the target 
location and under further external stimuli such as heat wave, X-ray signal, and light 
pulse. For example, in hydrophobic nanocarriers such as graphene/graphene oxide 
nanocarrier partially dissolve the cellular membrane interrupting its tightness [95]. 
All these carbon-based materials have been successfully incorporated into magnetic 
nanocomposites for improving various biological properties required for applica-
tions. Though a few pitfalls do exist in the design of such nanocomposites, they can 
be further addressed in-depth in future research reports. 

8 Conclusion 

The major goal of this chapter is to depict the immense importance of numerous 
carbon-encapsulated magnetic nanocomposites which are presently employed in 
various biomedical fields such as targeted drug delivery, in vitro and in vivo magnetic 
hyperthermia, and MRI imaging. Various research studies on these carbon-based 
materials for encapsulation or coating magnetic nanoparticles/nanocomposites have 
proven highly advantageous due to their tunable surface chemistry, biocompat-
ible nature, and their extraordinary physical, optical, and electronic properties. The 
carbonaceous material-encapsulated/coated magnetic nanocomposites will continue 
to hold great prospects after considerable surface engineering and advanced inten-
sive studies for multifaceted use in the research field and more discretely explored 
in several areas of nanoscience and nanotechnology.
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Chapter 35 
Noscapinoids: A Family 
of Microtubule-Targeted Anticancer 
Agent 

Shruti Gamya Dash, Harish Chandra Joshi, and Pradeep Kumar Naik 

1 Introduction 

Cancer is generally an unusual and uncontrolled population cell, which at a later 
stage can invade tissues and metastasize to distant sites within the body. The normal 
cells convert into cancerous cells due to some mutations and the resultant changes 
in protein structure/function or the altered gene expression patterns that perturb 
cell proliferation or cell death. Although more prevalent at advanced ages, cancer 
can affect people of any age including the fetus and is currently one of the major 
causes of death. Moreover, the incidence of different types of cancer increases with 
increasing age worldwide according to the latest GLOBOCAN database. Although 
substantial advances in the treatment have successfully managed the severity and the 
advancement of this devastating disease, the complete cure is still largely elusive. 

Cancer is the world’s second most prevalent disease with the highest mortality 
rate of around 0.3 million deaths per year. According to a 2020 Indian report [1], 
tobacco-related cancers are estimated to account for 3.7 lakhs (27.1%) of the total 
cancer burden [2]. Breast cancers are anticipated to reach 2.0 lakhs (14.8%) among 
women, and cervix cancer is reported to make a significant contribution of 0.75 lakhs 
(5.4%), whereas gastrointestinal tract cancers are estimated to contribute 2.7 lakhs 
(19.7%) of the total cancer incidence both for men and women (The national cancer 
registry program, India, 2020). Based on the cancer data compiled by ICMR from 
2004 to 2010, the number of males, females, and total cancer patients were 390,809,
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Fig. 1 Worldwide percentage distribution of cancer types. The incidence of lung cancer was found 
to be highest in number (20%) 

428,545, and 819,354, respectively. It was depicted that the number of most cases 
of cancers has gradually improved over time. Among these, the cancers of the lung, 
the esophagus, belly, and mouth are the most common in men, whereas in women, 
these were mostly of the cervix and breast in India (Fig. 1). 

2 Modalities of Treatment for Cancer 

The modalities of treatment of cancer depend on their advancement, loca-
tion and progression stage. Surgery, radiation-based therapy, chemotherapy, and 
combinations thereof are some of the most traditional and widely used thera-
peutic interventions. The modalities of treatment include hormone-based therapy, 
immunotherapy, anti-angiogenic modalities, DNA integrity/metabolism, tubulin-
binding drugs, combination therapy, and even stem cell therapy in some blood cancers 
(Fig. 2) [3–6].

Traditionally chemotherapy, the use of chemicals to kill cancer cells is considered 
to be the most common in clinics. The chemical agents execute this through different 
mechanisms such as interference with the metabolism of DNA, the division of the 
cell, signal transduction, and cytotoxicity [7]. However, most of the chemothera-
peutics also target normally growing blood cells in the bone marrow, lining of the 
gastrointestinal tract, hair cells within the hair follicles, thereby resulting in adverse 
effects such as leukocytopenia, immunocompromise, nausea, vomiting, diarrhea, 
hair loss, etc. [8]. These immunocompromised patients may thus acquire secondary 
complications due to sometimes lethal infections. A total of 132 cytotoxic chemother-
apeutic drugs have been approved by the FDA. These drugs through a variety of their 
cytotoxic mechanisms often induce cell death (apoptosis or necrosis) in tumor cells 
[8, 9].
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Fig. 2 Distributions of various mechanisms/drugs available currently in the management of cancer 
therapy

Among the microtubule-targeting chemotherapeutics in clinics, the most common 
are taxanes and several vinca alkaloids for the treatment of a wide range of human 
cancers. Taxanes are the most important class of anticancer agents. Paclitaxel 
(Taxol), derived from bark extracts of the pacific yew tree, Taxus brevifolia, or its 
derivative, is administered to patients with breast, ovarian, lung, head and neck, 
oesophageal, prostate, and bladder cancers [9]. Similarly, vinca alkaloids are prob-
ably the most frequently utilized microtubule agents in the clinic. These alkaloids 
have been isolated from Catharanthus roseus. Two major vinca alkaloids, vincristine 
and vinblastine, and a few structural variants such as vinorelbine, vindesine, and 
vinflunine, are commonly used in the clinic to diagnose various forms of cancer 
[10]. 

3 Microtubules: A Robust Target for Chemotherapy 

3.1 Biology of Microtubule 

Microtubules (MTs) are intracellular tubular structures that, together with actin and 
microfilaments, comprise the dynamic cytoskeleton of nearly all cell types. They 
continually arrange to form certain specialized super assemblies such as the mitotic 
apparatus for partitioning duplicated chromosomes during the cell division and then 
rearrange into normal interphase arrangements [9–12]. Thus, they are not only crit-
ical for cell proliferation, but also are required for subcellular trafficking, signaling, 
and migration. Microtubules assemble from tubulin, which itself is a dimer of α- and 
β-tubulin subunits each of a molecular weight ~50,000 Da. Both tubulin subunits 
comprise a chain of approximately 450 amino acids compacted into complex struc-
tures: a center of two β-sheets enveloped by α-helices and a bound guanine nucleotide
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Fig. 3 Organization of microtubules 

that is non-exchangeable when attached to the α-subunit and is freely exchangeable 
with the externally added guanine nucleotide when bound to the β-subunit (E-site) 
[13]. 

The unique functions of microtubules, as well as the mode of action of antimi-
crotubule agents, depend upon the dynamic equilibrium between α- and β-tubulin 
subunits and the microtubule polymer. Every monomer is asymmetric with approx-
imate dimensions of 46 × 40 × 65 Å (width, height, and depth, respectively). Each 
tubulin subunit is split into three domains: the amino-terminal domain containing 
the nucleotide-binding region, the intermediate domain, and the carboxyl-terminal 
domain that coordinates drug interactions such as vinblastine and colchicine. The 
tightly bound α- and β-subunits form a single tubulin heterodimer. Tubulin dimers 
assemble head to tail to initiate assembly of a tubulin protofilament, 13 of which then 
associate sideways to form a microtubule cylinder that can elongate or shorten at the 
ends (Fig. 3). 

The rates of polymerization/depolymerization and the threshold concentration of 
tubulin required for polymerization at either end of a microtubule varies. One end, 
called the “plus end,” has faster kinetics and a lower critical concentration than the 
other “minus end.” Thus, under some conditions, the plus end can elongate by adding 
new tubulin dimers, and at the same time, the minus end can shorten by losing tubulin 
dimers. If the rate of the growth and shortening is the same, the tubulin subunits can 
simply flux (or “treadmill”) from the plus end toward the minus end of a fixed length 
microtubule lattice). This type of dynamic behavior of a microtubule is referred to as 
treadmilling. Also, within a population of slowly growing microtubules with a partic-
ular “growth rate,” certain individual microtubules can transition catastrophically to 
depolymerization at a certain “catastrophe frequency” to a “shortening rate” until 
they disappear, or be “rescued” at a certain “rescue frequency” and “pause” before 
resuming growth. This type of dynamic behavior is termed “dynamic instability.” All
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these parameters of the dynamic instability, i.e., growth rate, catastrophe-frequency, 
rescue frequency, pause, and shortening rate can be measured. 

Both types of microtubule dynamics described above require the hydrolysis of 
GTP at the exchangeable E-site of the beta-tubulin subunit [14, 15]. Magnesium ions 
(Mg2+) are also required for assembly because GTP binds as an Mg-GTP complex 
[16]. 

The heterodimers of α- and β- tubulin arrange one above the other to form a 
polymer of protofilament and 13 of these protofilaments arranged sidewise to form a 
microtubule. The heterodimers polymerize at one end called (+) end and at the same 
time depolymerizes from another end, called as (-) end. The process of polymerization 
and depolymerization takes place simultaneously that gives dynamic structure to 
microtubule (a behavior called “treadmilling”). 

Within the cellular interior, these intrinsic dynamic behaviors of microtubules also 
depend upon the expression of many other microtubule stabilizing and destabilizing 
proteins. There are many microtubule-linked proteins (MAPs: tau, MAP1, MAP2, 
MAP4, XMAP215), regulatory proteins responsible for microtubule destabilization 
(stathmin, XKCM1, XKIF2, katanin) [17, 18]. The composition of cellular tubulin 
itself varies among different cell types due to the variable expression patterns of 
different tubulin isotypes and their post-translational modifications. Thus, the distinct 
tubulin pool of different cell types also differs in microtubule dynamics both directly 
due to the intrinsic assembly property of unique tubulin composition as well as indi-
rectly via its differential interactions with various microtubule interacting proteins. 
This relevance of tubulin assembly and disassembly can also be hindered by different 
chemical agents that bind to a particular site in the β-tubulin subunit of the alpha-
tubulin subunit or at their binding interfaces. Because cell division requires the most 
exquisite control of microtubule dynamics, these tubulin-binding agents often arrest 
cells in mitosis, ultimately resulting in cell death, through apoptosis and necroptosis. 

3.2 Tubulin-Interacting Antimitotic Agents 

The antimitotic agents act by binding specific sites on various structural domains of 
the tubulin heterodimer either on its unassembled or assembled forms. Three drug-
binding sites have been outlined, the colchicine-binding site, the binding site of vinca 
alkaloids (α-tubulin) and that of the taxanes (β-tubulin) [19]. Colchicine primarily 
binds to β-tubulin near its α/β tubulin interface and modulates the peripheral protofil-
ament interaction by inhibiting microtubule polymerization [20]. Vinca alkaloids 
prevent microtubule assembly by cross-linking the interdimer interactions, thereby 
sterically deforming the protofilament and inducing the formation of alternative 
polymers of tubulin [14, 21]. 

Although the microtubule-targeted drugs are successfully used in the treatment 
of a large spectrum of different cancers, some of these drugs sometimes also cause 
peripheral neuropathy, myeloid toxicity and neutropenia. Moreover, patients often 
develop drug resistance to a limited number of available and effective microtubule
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drugs. Therefore, there is still an urgent need for expanding this series of effective 
drugs with the discovery of new bioavailable microtubule agents with minimal side 
effects that can overcome drug resistance. In a quest of finding such compounds, 
we explored naturally available alkaloids, in particular the opium alkaloids family. 
Opium alkaloids are widely used in clinics as analgesics, antimalarials, antispas-
modics, etc. There are at least 25 active chemicals that can be derived from opium, 
called opiates. One of the alkaloids, noscapine, is being used as a safe antitussive 
drug [22] in the clinic for several decades and has recently been screened to have 
anticancer activity through tubulin binding [23]. 

3.3 Noscapine and Its Analogs: A Microtubule Modulating 
Agent 

Noscapine (C22H23NO7), (413.43 Da), a benzylisoquinoline alkaloid consisting 
of carbon, was initially described by Professor Pierre-Jean Robiquet in the year 
1817 [24] from the opium plant (Papaver somniferum) (Fig. 4). From opium (P. 
somniferum), he identified two major compounds: codeine and noscapine [24, 25]. 
One of the most predominant opium alkaloids is noscapine (21%); other notable 
alkaloids include morphine (42%), codeine (12%), papaverine (18%), and thebaine 
(6.5%) tubocurarine, berberine, and sanguinarine. Since then, substantial progress 
has been accomplished in the development of complete synthetic methods. Never-
theless, the existence of noscapine’s availability from natural sources is may be 
more cost-effective than synthetic alternatives. It was found that noscapine binds 
stoichiometrically to tubulin (one noscapine molecule for each αβ-tubulin dimer), 
modifies tubulin compliance, and arrests mammalian cells at the mitosis phase 
[23, 26]. Unlike vinca alkaloids and taxols, however, it does not induce over-
polymerization, depolymerization, or any change in the general interphase MT orga-
nization. Because of its relatively low impact on the kinetic properties of dynamic 
instability of MTs, noscapine inhibits mitosis at prometaphase and arrests dividing 
cancer cells and normal cells in mitosis. Cancer cells, perhaps due to their muta-
tions that compromise cell cycle checkpoints, often do not sustain arrested mitoses 
for a long time and undergo apoptosis while the arrested normal cells can resume 
mitosis after drug removal due to metabolic clearance [27]. It is reported previ-
ously that different diverse mechanisms were discovered to emerge the pathways of 
apoptosis in cancerous cells administered with noscapine and its congeners. These 
pathways involve the induction of stress-activated jun N-terminal kinase, mitochon-
drial depolarization, downward regulation of cell survival cascades, and upward 
regulation of pro-apoptotic signals, and eventually, all converging into caspase 3/7 
activation. In comparison to the other MT interacting agents such as taxanes and 
vinca alkaloids, in treatment of cancer, noscapine has a number of advantages: (a) 
Noscapine induces apoptosis in a range of mammalian cancer cells, including drug-
resistant varieties, by arresting them in mitosis [22, 28, 29]; (b) it is an insufficient
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Fig. 4 Structure of opium poppy and the lead molecule, noscapine 

target for drug efflux (poly glycoproteins and MDR-related proteins), which are a 
primary source of drug resistance [22]; (c) it suppresses the development of murine 
melanoma, lymphoma, glioblastoma, and human breast tumors transplanted in nude 
mice without causing harm to the rapidly proliferating cells of post-mitotic cells 
such neurons; (d) noscapine does not hinder primary humoral and cellular responses 
in mice [30]; (e) noscapine does not cause measurable immunological and neuro-
logical toxicity in mice, (f) noscapine is orally administered as opposed to other 
anti-MT drugs that require peritoneal injections or intravenous infusions with a risk 
of anaphylactic reactions and infection at the site of injection causing pain, blood 
vessel thrombosis or embolism; (g) noscapine has a mean bioavailability of ~30–32% 
over a dose range of 10–300 mg/kg in mice [29]. 

To further improve its efficacy, efforts were based on rational drug design 
and synthesis of new generations of noscapine derivatives for better therapeutic 
outcomes. Nevertheless, noscapine faces some difficulty as its two ring systems, 
i.e., the isoquinoline and the isobenzo-furanone are connected by a single rotating 
c–c bond between two chiral centers. Thus, ordinary chemical reactions necessarily 
lead to a racemic mixture of 4-stereoisomers of noscapine. Out of these, only one 
stereoisomer, the RS form, is biologically active [23, 27]. The antimitotic anti-
cancer effect of noscapine was discovered back in 1998 [23, 27]. This was achieved 
through a structurally based justification for screening a modest library of natu-
rally obtained molecules that shared structural similarities with highly cytotoxic 
MT depolymerizing drugs such as podophyllotoxin, MTC [2-methoxy-5-(2,3,4-
trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one] TKB [2,3,4-trimethoxy-4'-acetyl-
1,1'-biphenyl], and colchicine. However, noscapine (6) has two chiral centers and 
four possible stereoisomers.
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3.4 Noscapine is a Safe Cough Suppressant 

The antitussive property of noscapine was suggested initially in the year 1930, and 
it was further comprehensively studied in 1954 [31]. Many researchers have already 
proven its antitussive activity and the relief it gives to bronchial asthma patients [32– 
35]. Noscapine has been commonly used as an antitussive drug in Europe, Japan, 
North and South America, and South Africa since the early 1960s. It is documented 
in several countries’ pharmacopeias, including Europe, Japan, and the USA. It is 
administered orally in the form of tablets, lozenges, or syrup, or a rectal suppository 
form. 

3.5 Noscapine’s Potential Against Cancer 

Antimicrotubule drugs interfere with the formation and proper function of micro-
tubule assemblies such as the mitotic spindle, thereby preventing cell division. 
Exquisite regulation of coordinated microtubule growth, shortening, and treadmilling 
are all required for the mitotic function. Therefore, antimicrotubule drugs that either 
alter assembly or disassembly both interfere with cell division. 

Noscapine has shown tremendous potential effectivity in vitro and in vivo against 
breast cancerous cells. By inducing apoptosis, it was demonstrated to suppress the 
development of murine and human breast tumors injected in mice. Noscapine’s ability 
to prevent the growth of human MCF-7 breast cancerous cells, which are estrogen-
positive receptors, was analyzed using in vitro proliferation assays. Noscapine brings 
about an 80% regression of human breast tumors grafted in athymic mice in vivo. 
Noscapine is also effective against hormone-insensitive, triple-negative breast cancer 
cells and in MDAMB-231 xenografts in nude mice. Noscapine-loaded estrone-
conjugated gelatin nanoparticles (Nos-ES-GN) were designed to target estrogen 
receptor-positive breast cancer MCF-7 cells to overcome noscapine’s short biolog-
ical half-life, poor absorption, low aqueous solubility, and significant first-pass 
metabolism. The IC50 value of Nos-ES-GN seemed to be approximately 50% lower 
than that of the free drug. The same study found that estrogen receptor-positive (MCF-
7) cells accumulated more estrone-conjugated noscapine-loaded gelatin nanoparti-
cles than estrogen receptor-negative MDAMB-231 cells, indicating that estrone-
conjugated nanoparticles have the potential to target estrogen receptor-positive breast 
cancer cells. 

Consequently, experiments were carried out to assess the efficacy of noscapine 
against other cancer types. It includes ovarian cancer [36], malignant melanoma 
[37], bladder cancer [23], and glioblastoma [38]. Besides interfering with mitosis, it 
turns out that noscapine has several other metabolic effects that may explain its full 
repertoire of anticancer mechanisms. To determine the exact mechanisms by which 
noscapine prevents cancer growth, comprehensive experiments were performed by 
Dr. Joshi and his team and published in numerous medical journals [36, 39].
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3.6 Anti-Angiogenic Effects of Noscapine 

According to Newcomb et al. [40] noscapine inhibited the hypoxia-inducible factor-
1α (HIF-1α) pathway in hypoxic human glioma cells and human umbilical vein 
endothelial cells. HIF-1α is a transcription factor that promotes the formulation of 
vascular endothelial growth factor (VEGF), a potent angiogenesis promoter. As a 
result of its inhibition of HIF-1α, noscapine has been shown to inhibit VEGF produc-
tion, thereby identifying its anti-angiogenic properties, another possible mechanism 
for the anticancer effect. Also, noscapine increased the radiation sensitivity of GL261 
glioma tumors delaying tumor growth via an anti-angiogenic mechanism. 

3.7 Advancement of Noscapine Analogs as a Promising Drug 
Candidate 

To improve noscapine’s cytotoxicity activity, various analogs have been formulated 
and chemically synthesized (known as noscapinoids). A series of noscapinoid were 
synthesized by functionalizing the natural α-noscapine units of both isoquinoline 
and isobenzofuranone ring systems. Some of these derivatives have far better lists of 
treatments and better pharmacological profiles than the parent compound. Currently, 
more than three generations of noscapinoid have been developed, chemically synthe-
sized, and their activities have been studied against cancer cells and normal cells 
[38, 41–44]. The first-generation noscapinoids include nitro, azido, amino, and halo-
genated (fluoro, chloro, bromo, and iodine) as analogs of α-noscapine by chemical 
functionalization of the 9th position of noscapine structural system, which is most 
widely explored by multiple groups [45]. The other two positions of modifications 
include the 6th and the 1st position of noscapine (Fig. 5). These three generations of 
noscapinoids [43, 44] represent chemical modifications of the functional groups of 
noscapine that have been demonstrated to drastically reduce its biological activity 
[46, 47] (Fig. 5).

3.8 9'-Halogenated Noscapine Analogs 

These first-generation noscapine analogs developed by substitution of halogen groups 
at 9th position demonstrated better therapeutic effect compared to noscapine. For 
example, 9'-bromonoscapine (9'-Br-Nosc) and reduced 9'-bromonoscapine (Rd 9'-
Br-Nosc) were able to bind more effectively to tubulin and were able to prevent 
mitosis at a much lower effective dose (ED50) than the parent compound noscapine. 
In certain cell lines, they showed as high as 20 to 40 times more potency than 
noscapine [42, 43].
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Fig. 5 Noscapine scaffold and sites of modification

A large spectrum of biological activity was also demonstrated by these 
compounds. Among the groups of noscapinoids, halogenated noscapinoids are imple-
mented for their impact on the proliferation of cancer cells, antitumor potency, and 
associated risks [41]. The halogenated noscapine compounds, which are synthesized 
by chemical modifications, are outlined in Fig. 6. These compounds arrested mitosis 
at G2 and M phase much more efficiently than noscapine, leading to selective cancer 
cell apoptosis [48]. The computational blind docking approaches revealed a binding 
site at the interdimer region of the alpha (α) and beta (β) tubulin, overlapping with 
the colchicine-binding site for the noscapine and its derivatives with tubulin [43]. A 
cyclic ether derivative of 9'-fluoronoscapine (Fig. 7) was found to be an even more 
promising antibreast cancer agent [49]. This cyclic ether derivative of noscapine 
was chemically synthesized by the reduction of noscapine in the presence of boron 
trifluoride dietherate, and subsequent dropwise addition of a solution of sodium 
borohydride in dry THF at 0 °C.

3.9 Nitro-noscapine 

The nitro-derivative (Fig. 8) of noscapine was developed by adding a nitro-group at 
the diversity point of the 9th position to the noscapine scaffold. It inhibits the growth 
of ovarian cancer cells of paclitaxel-resistant mutant cells, human lymphoblastoid 
cells, and their vinblastine- and teniposide-resistant variants [41]. Further, it also 
inhibits the cell cycle kinetics and induces apoptosis in cancerous cells. Surprisingly, 
there was no substantial inhibition of the growth of normal human fibroblast cells, 
demonstrating a specific effect for cancer cells [41, 50].
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Fig. 6 Halogenated derivatives noscapine 

Fig. 7 Cyclic ether halogenated derivatives of noscapine (viz. Rd-9-F-nos; Rd-9-Cl-nos; Rd-9-Br-
nos; Rd-9-I-nos
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Fig. 8 Nitro-derivatives of noscapine 

3.10 Azido Noscapine 

An even more efficacious analog of noscapine is azido noscapine (Fig. 9). This 
noscapine derivative was created by converting noscapine to bromo-noscapine and 
afterward allowed to treat with sodium azide and sodium iodide. It was also more 
potent than other drugs at killing human acute lymphoblastic leukemia cells [42]. 

Fig. 9 Azido noscapine
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3.11 Amino Derivative of Noscapine 

The amino derivatives of noscapine were developed depending on the binding free 
energies of several noscapinoid, estimated in combination with a surface generalized 
Born (SGB) continuum solvation model using the linear interaction energy (LIE) 
method [43]. The assessment of the binding free energy revealed that the amino 
derivative of noscapine binds tubulin more strongly than the lead molecule. It inhib-
ited the proliferation of cancer cells of different types more effectively compared 
to noscapine [43]. However, it did not directly influence the extent of polymer-
ization/depolymerization of tubulin subunits [51, 52]. The amino derivatives of 
noscapine show promising anticancer activity in combination with docetaxel. 

4 N-Substituted Derivatives of Noscapine 

We proposed to add modifications as part of our efforts to design new noscapine 
derivatives at diversity point of 6’ position (Fig. 5) by functionalization of “N” in 
isoquinoline unit of natural noscapine (named them as third-generation-noscapine 
analogs) which are anticipated to enhance biological activity. According to the earlier 
reports on functionalization at “N” mostly through urea-type linkages, and very few 
of these noscapinoids have been analyzed for their biological efficacy. We believe 
that urea-type linkage is not the right approach because it will cause delocalization 
of the electron density at isoquinoline N (Fig. 10). 

Fig. 10 N-substituated derivatives of noscapine
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The third-generation noscapine congeners 3a-j, which vary in the side chain 
attached to isoquinoline “N” of natural α-noscapine, are described here as well. 
Depending upon the reasonable predictive mode, in silico molecular modeling, 
studies of these derivatives with tubulin complex have been used to evaluate their 
binding affinity as well as show prominent results in the cellular study. 

4.1 Biaryl-Type Derivatives of Noscapine 

As per the earlier literature, natural α-noscapine has biaryl-binding sites, which shows 
close similarity to colchicine. Colchicine’s use as an anticancer agent is strictly 
limited because of its toxic side effects. Only a few natural products with biaryl 
architectural design are potent antimitotic agents that affect the tubulin-microtubule 
steady state [53] (Fig. 11). 

Inspired by this, we propose to formulate novel biaryl type α-noscapine congeners 
by implementing a biaryl ring structure into the natural α-noscapine skeleton and 
testing them as chemotherapeutics agents. It is revealed that all of the newly devel-
oped biaryl noscapine derivatives (Fig. 12) bind tubulin with a higher affinity than 
that of the parent molecule and that the modification tends to affect their therapeutic 
efficacy for a variety of cancer types [46].

Fig. 11 Biaryl pharmacophore is a major defining component of natural and synthesized 
microtubule-targeting agents 
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Fig. 12 Biaryl derivatives of noscapine 

4.2 9-(4-vinylphenyl) Noscapine 

Efforts have been focused on rational designing and synthesis of the new generation 
of noscapine derivatives. Noscapine docks onto b-tubulin near the interface between 
its dimerization partner, a-tubulin [54]. This is supported by the earlier finding of 
1:1 stoichiometry of tubulin binding [23]. A closer look at the binding site revealed 
side chains surrounding the predicted binding pocket and the presence of empty 
space around position 9 of noscapine. In response to the in-silico findings, we have 
rationally coupled a bulky 4-vinyl phenyl functional group at the C-9 position of the 
noscapine scaffold in the context of improving a more potent derivative of noscapine 
(Fig. 13) [55, 56]. The inhibition of proliferative activity was significantly enhanced 
when the VPN, used for treatment in comparison to the parent noscapine. Also, this 
derivative of noscapine shows much efficacy in combinations with other cytotoxins 
and targeted agents to design preclinical studies [56].

4.3 Bromo-Trimethoxy Benzyl Noscapine 

The C–C bond between isoquinoline and isobenzofuranone ring components of 
noscapine is labile to treatments with strong acids and bases. Therefore, it is often 
difficult and time-consuming to synthesize the novel TMB-Nos possessing 3,4,5-
trimethoxybenzyl group appended at the 7th position on the lower isobenzofuran unit 
of noscapine. However, for the amalgamation of Br-OH-Nos and N-methyl pyrroli-
done as starting material, we have optimized the reaction conditions without affecting
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a b  

Fig. 13 Molecular structures of a noscapine b rationally designed derivative, 9-(4-vinylphenyl)-
noscapine (VPN)

the sensitive C–C bond. These derivatives display superior anticancer efficiency than 
noscapine (Fig. 14) [57]. Furthermore, the newly synthesized TMB noscapine also 
found to have much potent and promising anticancer activity in combination with 
docetaxel [58, 59].

5 Current Status, Challenges, and Future Prospects 

Since the discovery of noscapine’s antimitotic and anticancer effects in 1998, much 
progress has been made in the development of its derivatives as effective anticancer 
drugs. It has always been widely recognized that, in addition to treating cough, 
noscapine has a wide range of other potential applications that can effectively 
help a wide spectrum of patients, particularly those with cancer. Despite its high 
tumor suppressive dose (300 mg/kg), noscapine seems still safer than other antim-
itotic therapeutic agents. Noscapine also has another powerful property of syner-
gizing with other anticancer treatments. . The ability to synthesize novel derivatives 
with improved efficacy against numerous cancer cell lines demonstrates noscapine’s 
adaptability to further enhance the potential armory of anticancer drugs. Noscapine 
and its derivatives subtly modulate microtubule dynamicity, making them gentler 
than other microtubule-targeting anticancer drugs currently on the market [60–62]. 
Thus, a combination of sophisticated new methods in computational biology, bioin-
formatics, pharmacogenomics, engineering, and/or nanotechnology will continue to 
inspire the synthesis of new more effective analogs.



35 Noscapinoids: A Family of Microtubule-Targeted Anticancer Agent 1003

Fig. 14 Synthetic scheme of Br-TMB-noscapine
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Chapter 36 
Recent Advances in Designing Porous 
Carbon Nanomaterial Based 
for Electrochemical Biosensing Prostate 
Cancer 

Stephen Rathinaraj Benjamin and Eli José Miranda Ribeiro Júnior 

1 Introduction 

Over the last several decades, non-communicable chronic disorders have surpassed 
infectious diseases as the leading cause of mortality and disability in the global 
population. According to the results of epidemiological research, the second biggest 
cause of death is cancer, behind only cardiovascular disorders insignificance. A 
large rise in the number of individuals diagnosed with cancer has been recorded in 
both developed and developing nations, with developed countries seeing the greatest 
increase. Cancer risk is gradually growing as a consequence of population aging and 
globalization of unhealthy lifestyles, and it does not cease even during a pandemic. 
Prostate cancer (PCa) is a malignant tumor that most often originates in the outermost 
region of the prostate. It is produced by a number of epigenetic changes that result in 
proliferation and migration, differentiation, and invasion of adjacent tissues. Prostate 
cancer is a silent assailant due to the presence of asymptomatic tumor development. 
According to the International Agency for Research on Cancer (IARC), PCa will be 
the second most often diagnosed and fifth most fatal disease in men by 2020 [1]. The 
capacity to diagnose cancer in its early stage is essential to the survival of cancer 
patients. It involves implementing effective screening systems that deliver important 
information with little discomfort and danger. Prostate-specific antigen (PSA), a 
serine protease, is the biomarker of choice for early detection of prostate cancer
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[2]. Furthermore, a serological test detecting PSA in tandem with a digital rectal 
examination (DRE) of the prostate is utilized as a risk indication for PCa. However, 
further tissue biopsy is performed if the results indicate a high risk. Despite its 
adequate clinical sensitivity, the screening test has a low level of clinical specificity. 

Several antibody-based approaches have been used to detect this biomarker in 
the past [3], including radioimmunoassay [4], surface plasmon resonance (SPR) 
immunoassay [5], enzyme-linked immunosorbent assay (ELISA) [6], and fluores-
cence immunoassay [7]. The main drawbacks of these approaches are their high cost, 
sophisticated technology, laboratory test limits, absence of portable equipment, and 
the influence of interfering variables. Although biosensors are less costly to design 
and manufacture, they can identify analytes with high specificity and sensitivity [8]. 

However, the majority of antigen–antibody interactions are inadequate to produce 
a very sensitive signal for direct impedance measurement. For the purpose of 
enhancing the generated signal, two ways may be utilized. One strategy is the use of 
an effective immobilization technique that maximizes the loading of functional anti-
bodies or antigens. The second possibility is to modify the electrodes with conductive 
materials to induce signal amplification. 

Porous carbon is a porous separation material having a well-developed high 
porosity, higher specific surface area, good biocompatibility, rapid regeneration, and 
several other characteristics. Furthermore, it has the potential to be used for energy 
storage and conversion in addition to environmental restoration and catalytic applica-
tions [9, 10]. Due to the abundance of electric double-layer capacitors, porous carbon 
materials may be employed as a significant component of the electrode materials for 
supercapacitors [11, 12]. On this account, the rational procurement and exploitation 
of porous carbon material is critical for the improvement of electrodes materials 
in the future. Porous carbon materials include heteroatoms of nitrogen and sulfur, 
which may provide increased pseudo capacitance, compared to carbon materials 
with fewer heteroatoms. The growing need for improved electrochemical perfor-
mances from porous carbon materials has increased interest in heteroatom doping 
carbon materials [13]. The emergence of mesoporous or macroporous carbon mate-
rials may also give various applications such as massive organic molecule absorp-
tion and electrochemical double-layer capacitor [13, 14]. Porous carbon nanoparti-
cles (PCN) are a suitable alternative for fabrications for sensors, due to their great 
features such as structural stability, porosity, and readily modifiable surface [15]. 
This review focuses on recent breakthroughs in the early detection of PCa using 
porous carbon nanomaterials of distinctive types. We propose to present a detailed 
review of the challenges in establishing high sensitivity, selectivity, and repeatability 
for PCa biomarker identification, particularly prostate-specific antigen. This study 
focuses on recent developments in the early diagnosis of PCa using porous carbon 
nanomaterials of various types. Even though porous carbon nanomaterials are widely 
employed in electrochemical detection, we have focused on the use of metal–organic 
frameworks (MOFs) and covalent organic frameworks (COFs) for electrochemical 
biosensors (Fig. 1).
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Fig. 1 Schematic 
representation of porous 
carbon materials in clinical 
safety applications 

2 Cancer Biomarkers 

Biomarkers are biological chemicals found in excretory products such as urine, feces, 
or body fluids including blood, serum, or tissues that may be used to examine normal 
biological and pathogenic processes, as well as pharmacological response to any 
therapy. Antibodies, proteins, peptides, and nucleic acids are only a few types of 
biomarkers. A major biomarker is proteins, which may show diagnosis through 
varying levels of their concentration in different physiological fluids (blood, serum, 
saliva, and tissue). Biomarkers of cancer may be detected using electrochemical 
biosensors because of their sensitivity, selectivity, and low cost [16]. In analytic 
techniques, the precise and reasonable correlation between the concentrations of the 
analyte (for example, the biomarker) and the intensity of the analyte signals allows 
us to make an effective assessment of the analyte concentration. Furthermore, the 
ability of a method to accurately and selectively record (and develop) strong and 
effective analytical signals are determined by its record (and construct) of precise 
and effective analytical signals [17]. 

3 Prostate Cancer (PCa) 

Prostate cancer is expected to be the second most prevalent cancer in men and the 
fifth major diagnosed cancer globally by 2020, with 1.4 million cases with 375,000 
mortality [1]. The most sensitive blood test for PCa is a prostate-specific antigen, a
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serine protease. PSA is a 33–34 kDa single-chain glycoprotein that is secreted by 
the prostate gland [18]. In recent years, researchers have identified that it may be 
a potential identification of prostate cancer biomarkers. PSA values greater than or 
equal to 10 ng mL−1 indicate significant chances of obtaining prostate cancer [19]. 
The PSA reading above 4 ng mL−1is generally regarded as positive. A PSA level 
between 4 and 10 ng mL−1 indicates the necessity for a biopsy in 30% of men who 
have already been diagnosed with prostate cancer [20]. Men with prostate cancer 
had higher total PSA levels and lower free PSA levels (fPSA). 

Apart from prostate cancer, a range of benign (non-cancerous) disorders can 
induce an increase in PSA levels. On the other hand, PSA is not cancer-specific, 
and numerous non-malignant conditions, including benign prostatic hyperplasia and 
prostatitis, can produce an increase in PSA levels [21]. Both prostatitis (a prostate 
inflammatory condition) and benign prostate hyperplasia (enlarged prostate position) 
are the two most frequent benign prostate disorders that are associated with a rise 
in PSA values. Other disorders, such as prostatic hyperplasia -BPH or cystitis, may 
induce a rise in PSA levels. Due to PSA poor diagnostic capabilities, researchers 
are searching for new biomarkers that may accurately diagnose PCa. This type 
II transmembrane glycoprotein, PSMA prostate-specific membrane antigen, is a 
potential for prostate cancer biomarker diagnosis and a viable alternative to PSA 
[22]. Biomarkers for prostate cancer include PCA3, Engrailed-2 protein, sarcosine, 
alpha-methyl acyl-CoA racemase (AMACR), micro-RNA, microseminoprotein-beta 
(MSMB), and TMPRSS2: ERG transcripts. Prostate cancer is currently diagnosed 
by biopsy and medical imaging; however, it has spread to many other regions of 
the body. Many techniques, including electrochemiluminescence-ECL [23], surface 
plasmon resonance, SPR biosensors [24], microfluidic ELISA [25], and electrochem-
ical biosensors [26, 27], have been implemented to enhance the PSA detection sensi-
tivity. In general, ELISA has traditionally served as the gold conventional method 
for PSA detection; nevertheless, this method inherited several drawbacks, including 
a time-consuming process, high cost, and labor-intensive nature, which restricts its 
full usage. 

Diagnostic imaging studies (CT or MRI) are required in the case of an increased 
PSA level [28]. It is commonly accepted that tissue biopsy is the only treatment 
that can accurately diagnose and treat cancer. Currently, PSA has a false-positive 
rate of 75%. Unnecessary biopsies and over-the-top therapy are the results of this 
high risk of error A novel diagnostic biomarker for prostate cancer is therefore 
urgently required [29]. Additionally, it necessitates the development of a complex 
and compact biological diagnostic system that provides high sensitivity, selec-
tivity, and stability. Recently, biosensors have gained acquired popularity because 
of their excellent sensitivity and selectivity in detecting a wide range of biomarkers. 
Nevertheless, a biosensor for prostate cancer detection may present a tremendous 
potential to build low-cost, ultrasensitive POCT for prostate cancer at the point of 
care. Additionally, this would considerably minimize the requirement for sample 
transportation to central labs that would contribute to the establishment of a new 
healthcare economic model. Electrochemical sensors have a number of advantages 
over other technologies, such as a fast reaction and inexpensive cost. In clinical
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diagnostics and biochemical testing, an electrochemical immunosensor based on 
precise correlations between antigen and antibody has shown excellent sensitivity 
and selectivity [30, 31]. Various techniques like voltammetry, impedimetric, and 
potentiometry may be used to explain electrochemical biosensors. Voltammetric 
assays for prostate-specific antigen include the development of cyclic voltammetry-
CV, differential pulse voltammetry-DPV, square wave voltammetry-SWV, electrical 
impedance spectroscopy-EIS, and chronoamperometry-CA. The extensive review 
of electrochemical biosensors developed for prostate cancer biomarkers detection 
in real samples will be provided in the next section. Each biomarker’s potential 
will be discussed in detail before functionalization and subsequent analytical perfor-
mance of produced biosensors are discussed. Recent and future issues in the use of 
electrochemical sensors in point-of-care diagnostics (POC) are discussed. 

4 Electrochemical Biosensors: Basic Principles 

Electrochemical (EC) biosensors have several advantages from a point-of-care stand-
point, including portability, simplicity, ease of use, cost-effectiveness, and the fact 
that they are typically disposable [32, 33]. Electrochemical biosensors depend on 
electrochemical reactions on the electrode surface to work effectively, resulting 
in changes in electrical signals. In most cases, the electrochemical signal is the 
consequence of an electrode being applied with potential, current, or frequency. 

The design of a biosensor requires three integrated components: (a) connection 
exists between the sample and the bio-recognition component; (b) by interacting 
with specific proteins, the transducer produces a detectable signal, and (c) a comput-
erized system for collecting and organizing biosensor data [34]. The function of the 
biosensor device is influenced in part by the detection molecules high specificity 
and sensitivity. The detection of biomarkers has made use of a variety of molecular 
recognition elements [35]. The antibody, enzyme, and synthesized specific molec-
ular elements, including DNA molecules, peptides, and aptamers, are most typi-
cally used for recognizing a molecule. Affinity materials for analyte interaction 
and particular detection have been utilized in their development. There are four 
kinds of immunosensors: aptasensors, enzymatic, and geosensors. Aptasensors use 
biorecognition molecules that are designed specifically for them (nucleic acid biosen-
sors). Additionally, electrochemical biosensors include a transducer, which turns 
the binding interactions that occur involving biomarkers and other molecules into 
detectable electrochemical signals. Amperometric, potentiometric, conductometric, 
and impedimetric transducers are examples of electrochemical transducers [36, 37]. 
However, amperometric and potentiometric transducers are also often utilized for 
the rapid identification of electrochemical biomarkers.
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5 Electrochemical Biosensors Based on Immunoassays 

Antibody contact with antigen causes an electrochemical response on the elec-
trode surface in an electrochemical immunoassay [38]. As illustrated in Fig. 2, the  
electrochemical immunoassay may be designed using two distinct strategies: (a) a 
simple (label-free) antibody–antigen (Ab–Ag) interaction; and (b) a sandwich-type 
antibody–antigen interaction [39]. 

5.1 Simple Antibody–Antigen Interaction (Label-Free) 

The (label-free) approach starts with the application of an immobilized antibody (Ab), 
the surface of the electrode, followed by incorporation of antigen (Ag) and completion 
of the immunoassay. The concentration of Ag is determined using this method in a 
solution containing one redox pair, including, Ferric-Ferro cyanide ([Fe(CN)6]3−/4−) 
solution. This electrochemical reaction is induced by the existence of redox pairs in 
the occurrence of different concentrations of Ag. The biosensor surface’s electrical 
characteristics are altered as a consequence of the coupling of Ab and Ag. Conse-
quently, the surface conductivity of the biosensor impacts the Ag concentrations on 
the surface of the electrodes [40]. Figure 2 depicts the basic Ab–Ag contact and 
electrochemical reaction. 

5.2 Sandwich Antigen–Antibody Interaction 

Furthermore, the response signals could not be amplified by the initial forms of 
label-free electrochemical biosensors. Consequently, the sensitivity and detection 
limit of these immunosensors were unsuitable for analytical purposes, and a better 
design approach was required. The sandwich-type of Ab1–Ag–Ab2 interactions was

Fig. 2 Schematic representations of a a simple (label-free) antibody–antigen (Ab–Ag) interaction; 
and b a sandwich-type antibody–antigen interaction 
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made in order to maximize the selectivity and sensitivity in the detection of different 
biomarkers. The secondary antibody amplifies the electrochemical signal provided 
by sandwich-type immunosensors (Ab2). Consequently, as the result of this design, 
the target Ag is first incubated with the electrode, which has the primary Ab (Ab1) 
adsorbed on its surface. The electrode surface is exposed to labeled Ab2, which has 
been placed there after the immunoassay has been created. Selective interaction of 
labeled Abs with Ag results in an electrochemical signal being enhanced by the label 
applied [41]. 

6 The Role of Porous Carbon Nanomaterials 
on Electrochemical Sensing 

Porous carbon nanomaterials (PCNs) relate to carbon nanomaterials with distinct 
pore structures. They can be classified into three types according to the dimension 
of the pores: microporous (pores < 2 nm), mesoporous (2–50 nm), and macroporous 
(> 50 nm). In order to fulfill the needs of a certain practical application, its pore 
size can be adjusted. In general, materials featuring lower pore sizes have a greater 
surface area than those with larger pore sizes. The capacity of most porous carbon 
materials will vary depending on the pore structure of the substance. PCNs have been 
constantly developed during the last several decades. PCNs have been synthesized 
or generated from a variety of various materials, including MOFs [42], COFs [43], 
and biomasses [44], to provide a diverse range of properties. PCNs are utilized 
in a variety of diverse applications, including sample preparation, catalysis [45], 
electrochemistry [46], and biology [47], since the presence of large surface and 
porous structure nature, adjustable porous morphology, increased number of active 
areas, high electrical conductivity, and chemical resistance. 

7 Porous Carbon Nanomaterials Fabrication 

PCNs can be fabricated in a number of various techniques, including via the use of 
a template, activation, or calcination technique. In order to fabricate porous carbon 
materials, a number of approaches were developed, including activation of the chem-
ical/physical method, the wet-chemical method, template replication method, and 
chemical vapor deposition (CVD) [48, 49]. CVD is a popular technique for depositing 
carbon consisting of carbon nanowalls, carbon nanotubes, and other carbon-based 
nanostructured materials, among others [50, 51]. However, most carbon nanostruc-
tured materials need high temperatures for processing and catalysis for production, 
restricting their application on low-melting-temperature materials like polymers or 
paper.
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The hard-template technique and the soft-template technique are both common 
preparation methods for porous carbon compounds. The nanocasting technology’s 
hard-template path includes the following steps: Construction of the adjustable meso-
porous matrix (i) an appropriate precursor is incorporated via solution impregnation 
or CVD into the aforementioned matrix template; (ii) polymerization of the carbon 
precursor results in the formation of an organic–inorganic composite; (iii) carboniza-
tion occurs as a result of the organic–inorganic combination; (iv) to make porous 
carbon materials, an appropriate removal reagent removes the template; (v) as a 
consequence, the porous carbon materials are designed to replicate the characteris-
tics of the design; a wide range of materials, including zeolite, Al2O3, MgO, ice, 
salt, and others, have been quickly developing as templates for the “hard template” 
approach in recent years [52]. 

Since porous carbon materials can be synthesized directly using the “soft-
template” procedure rather than the “hard template” method, this method is frequently 
employed for designing and fabricating porous carbon materials. The processes 
of the soft-template method are typically depicted as follows: (i) preparation of a 
supramolecular alignment of appropriate molecules, (ii) high-temperature polymer-
ization produces a highly crosslinked composite, (iii) removal of the carbonization of 
the composite template, (iv) “soft-template” approach must depend on supramolec-
ular self-assembly for template generation rather than template aggregation like the 
“hard-template” approach. In another crucial aspect, calcination in an inert gas can 
be used to easily remove the template [53]. Many porous carbon materials with 
large pore distributions, such as micropores, mesopores, and macropores, have been 
synthesized by supramolecular self-assembly. 

Porous carbon materials derived from biomass typically contain heteroatoms 
of nitrogen and sulfur that provide additional pseudo capacitance and show a 
greater capacitance than carbon materials with a restricted number of heteroatoms. 
Recently, heteroatom-doped carbon materials have raised the interest of attention 
due to the increased need for porous carbon materials with superior electrochem-
ical performance. Porous carbon nanomaterials may also be doped with heteroatoms 
including nitrogen and boron, oxygen, sulfur, phosphorus, among other components 
[54]. Recently, porous carbon materials enriched with the atom N were produced 
using hard or soft-template techniques [55]. In recent years, carbon-based materials 
including such coating of amorphous carbon materials, type of graphene foams, 
graphene sponges, graphene nanotubes, fibers, and walls made of carbon have been 
recognized as potential prospects for surfaces of superhydrophobic owing to minimal 
surface charge and adjustable topological nanostructured materials [56, 57]. This 
study discussed the categorization of porous carbon nanomaterials and their applica-
tion in the implementation of the effective electrochemical method forprostate cancer 
detection. Table 1 summarizes electrochemical biosensors and their performance in 
detecting prostate cancer biomarkers.
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8 Covalent Organic Frameworks 

Covalent organic frameworks (COFs), a novel form of crystalline organic polymers, 
have considerable potential for applications in adsorption, electrochemistry, and other 
fields [77–80]. They feature a higher surface area, orderly channels, high degree of 
porosity, adjustable structure via pre-selection of building blocks, simple functional-
ization, and excellent thermal and chemical stability. COFs have found widespread 
use in electrochemical sensing due to their special properties, which have the poten-
tial to increase the sensitivities of the electrochemical sensors. In addition, certain 
magnetic covalent organic framework-based biosensors for the detection of prostate-
specific antigens were developed. Liang’s team has designed a comparable electro-
chemical sensor that uses magnetic COFs to measure prostate-specific antigens in 
both buffer and blood samples. The sandwich immunosensor was designed to immo-
bilize primary antibodies on the gold nanoparticles-phosphorene nanocomposite 
substrate. Methylene blue (MB) and secondary antibody-functionalized AuNP-
loaded magnetic COFs generated the electrochemical signal. The study developed an 
assay for the detection of PSA in the concentration range of 100 fg/mL to 10 ng/mL, 
by using DPV an optimal combination of black phosphorene (BPene) improved elec-
tron transfer, MB efficient enrichment in the COF, and Fe3O4 molecules outstanding 
catalytic activity [74]. 

In recent years, cyclodextrin (CDs)-derived MOFs increased significant attention 
with various unique structures and capabilities as a distinctive kind of porous mate-
rial. In theory, CDs may have a significant number of coordination active sites for 
metal chelation because of the many glycosidic oxygens in the structure. Hongmin 
and colleagues prepared Ag@Pb(II)—CD was used as a substrate material in the 
construction of a new type of ECL immunosensor for the label-free approach of PSA 
detection. The specificity of antibodies toward antigens was exploited in the detec-
tion approach. One step of the approach was to use Ag@Pb(II)—CD’s adsorption 
capacity toward proteins to bind PSA’s antibody on its surface. In the presence of 
silver nanoparticles, it is easy to immobilize the PSA-capturing PSA antibody. The 
reduction in ECL signals is caused by the specific attachment of PSA to the surface of 
the electrode. After optimizing the experimental conditions, a linear range between 
0.001 and 50 ng/mL was found LOD value of 0.34 pg/mL [81]. 

9 Porous Graphitic Carbon Nitride (C3N4) 

Mesoporous graphite (MPG)-like carbon nitride (C3N4) exhibited multiple active 
sites for incorporating gold nanoparticles and luminol, in addition to its higher surface 
area and large porosity. Recently, Ma and coworkers designed a luminol-H2O2-based 
ECL immunosensor for PSA detection using MPG-C3N4, and AuNPs. In this case, 
the Au–NH2 link between the nanocomposite and the Ab1 (main Ab) would increase 
sensitivity and improve the catalytic effect. The ECL immunosensor developed had
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demonstrated sensitivity to detect PSA in a wide range of 0.001 and 15 ng/mL, LOD 
was determined as 0.927 pg/mL [82]. Moreover, the immunosensor developed had 
outstanding stability as well as reproducibility. The sandwich-type immunosensor 
for the detection of prostate-specific antigen was developed by Feng et al. using 
AuNPs and thionine-functionalized GO. Additionally, rGO/graphitic carbon nitride 
was loaded with bimetallic PtCu NPs and used as labels for the combination of Ab2 
and signal amplification. Antibody-based immunosensor for detection of PSA has a 
wide range of 50–40 ng/mL and LOD value of 16.6 fg/mL [83]. 

PSA immunosensors have been accomplished by utilizing SnS2@mesoporous 
composed of graphite-like materials with carbon nitride nanocomposite on the 
surface of indium tin oxide. It was found that the nanocomposite had a greater 
photocurrent output than either SnS2 or mpg-C3N4 alone, because of the lower charge 
recombination of photoexcited electron–hole pairs. The reduction in photocurrent 
caused by an increase in steric hindrance on the nanocomposite surface indicated the 
existence of PSA [84]. 

10 Aptamer-Based Electrochemical Biosensors 

In the past few decades, antibodies have been found as biorecognition molecules 
employed in biosensing assay development. In recent studies, researchers have 
revealed that aptamers, which are nucleotide sequences with specific binding capa-
bilities, have high-affinity sites toward their targets. SELEX technique, which uses 
systematic evolution of ligands to enrich aptamers, may be used to find new aptamers. 
Additionally, aptamers, like synthetic antibodies, offer a number of benefits over 
antibodies. 

Aptamers are single-strand DNA or RNA molecules that may efficiently and robust 
connection with a wide range of receptors in molecular levels, from smaller molecules 
to proteins and whole cells. Antibodies are slower to synthesize and more diffi-
cult to regulate chemically. There are several advantages to using aptamers instead 
of peptides, including speed and ease of manipulation in the lab; long durability; 
and their capacity to tolerate denaturation. This research used a single-strand DNA 
aptamer (ssDNA1, 5'-HS-(CH2)6-ATTAAAGCTCGCCATCAAATAGC-3') since it 
was specific to PSA. 

Furthermore, Liu et al. developed aptamers based on the electrochemical 
nanobiosensor method employing graphite mesoporous NPs covered with AuNPs 
to enhance prostate cancer detection with the LOD value of 0.25 ng/mL. DPV 
was utilized to detect PSA in blood samples using an affinity approach using 
biotin-conjugated aptamers on AuNPs embedded in graphitized mesoporous carbon 
[65]. 

Argoubi et al. produced the label-free electrochemical aptasensor by coating gold 
electrodes with silica thin films to enhance the sensor’s surface area. Interfacial or 
electrical modifications induced by the development of aptamer antigen compounds 
may be utilized to demonstrate the influence of these modifications on label-free
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tumor marker detection techniques. The development of a label-free electrochemical 
aptasensor system contributes to the prevention of diffusion of the Fe(CN)3/4 6 reactive 
site through the nanostructure of the mesoporous material. The researchers observed 
that using the aptasensor for PSA concentrations between 1 and 300 ng/mL could be 
detected down to 280 pg/mL. Electrochemical biosensors were used in their studies 
because they are low cost and provide an analytical response in a shorter amount 
of time with high sensitivity [66]. Mesoporous silica thin films (MSFs), commonly 
used as transducing materials and catalyst support in electrochemical biosensors, 
were also used. Additionally, MSF is widely used in DNA-based electrochemical 
sensors because of the regular pores’ structure, uniform size, and ease of modifica-
tion. According to Wu et al., an innovative sandwich-type immunoassay was gener-
ated by using nanoporous gold (NPG) material with primary anti-PSA antibody to 
immobilize through an amine-Au binding process, followed by the attachment of 
a secondary anti-PSA antibody. In order to designate the secondary anti-PSA anti-
body (Ab2), hollowed mesoporous silica microspheres (HSMs) were conjugated to 
the antibody. The researchers observed a linearity range of 0.01–10 ng/ml andLOD 
obtained 6.0 pg/ml, with high stability and reproducibility respectively [85]. 

Porous graphene is employed to address the issue of excessively permeable 
detecting surface areas for high antibody loadings, resulting in an exceptionally 
sensitive immunoassay. Due to the PDA-PG (polydopamine functionalized—porous 
graphene) abundance of functional groups, particularly the catechol groups, it was 
shown to be potential targets for potent antibody linkers. The PDA polymer coating 
exhibited outstanding biocompatibility and adhesive characters, and it dynamically 
polymerized on graphene, demonstrating its potential as a biomaterial. Cu3(BTC)2 
(BTC = benzene-1,3,5-tricarboxylic acid) is a very interesting copper-based metal– 
organic framework due to its vast surface area, great chemical durability, and elec-
trical characteristics. Remarkably, Cu3(BTC)2 has unoccupied coordination and 
catalytic sites on the Cu(II) centers. Cu3(BTC)2 may be a potential electrocatalytic 
label for immunosensors because of these properties. Cu3(BTC)2 strong electrocat-
alytic activity toward H2O2 as a label generates and amplifies electrochemical signals 
with great sensitivity. The PSA biomarker has recently been detected using a very 
sensitive electrochemical immunosensor based on Cu3(BTC)2 linked Ab2 on a PDA-
porous graphene sensing substrate. It is clear that the PDA layer has strong adhesion, 
which makes it possible to load a significant quantity of Ab1 onto the Ab2 labeled 
with Cu3(BTC)2 and excellent ability to perform electrocatalysis on H2O2. The PSA 
immunosensing assay has a linear response range of 0.1–10 ng/mL, a LOD value of 
0.025 ng/mL, sufficient recovery for the assessment of specific biological real blood 
samples that have great reproducibility and selectivity. There are a number of non-
enzymatic MOF-based labels that might be used in point-of-care (POC) diagnostic 
techniques due to the obvious large variety of MOF materials [59]. 

Fluorescent nanoparticles are highly valued in imaging and sensing. Organic 
fluorophores have weak photo-stability, limiting their use in long-term bioimaging. 
In this sense, semiconductor quantum dots (semi-QDs) are a prospective alterna-
tive to organic fluorophores due to their size-dependent emission color variation. 
However, QDs limited water solubility and toxicity restrict their use in bioimaging.
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Carbon quantum dots (CQDs) are a novel type of luminous nanomaterials from the 
nanocarbon group. Carbon dots-based fluorescence detection methods have attracted 
gained prominence in bioanalytical applications owing to their remarkable optical 
properties, strong photostability, improved water absorption, high biocompatibility, 
and low toxicity. These characteristics make compounds ideal donors for FRET 
systems used to detect a broad variety of biomolecules in biomedical and bioimaging 
applications [86]. 

He et al. [87] designed a simple fluorescence-based technique for sensitive PSA 
detection using CDs/GO FRET and the CHA circuit. On the detecting platform, three 
hairpin DNA sequences were engineered to self-assemble (Y-shaped dsDN product). 
This method improved sensitivity and specificity. This confirmed its universal detec-
tion technique potential for clinical diagnostics and biological research investiga-
tions. CQD/g-C3N4 heterostructures were used to construct a photoelectrochemical 
immunoassay for PSA detection with great sensitivity. The combination of CQDs and 
g-C3N4 (graphitic carbon nitride) was shown to be beneficial for photogenerated elec-
trons, and the photocurrents of the nanoheterostructures were significantly increased. 
The proposed nanoheterostructures showed strong photocurrent responses for PSA 
detection with a wide range from 0.02–100 ng/mL and a LOD value of 5.0 pg/mL 
[88]. 

The use of fluorescence-based techniques in bioanalytical research has opened 
the door to new quantitative methods for identifying biological processes. Fluores-
cent resonance energy transfer (FRET) has generated a lot of interest in sectors 
like biology and biomedical research [89, 90]. The key characteristics of FRET 
are its high sensitivity, specificity, distance dependence, rapid response, simplicity, 
and the fact that it is a homogenous assay [91]. FRET benefits include spatial and 
temporal dispersion of fluorescent compounds and real-time signals [92]. FRET 
has been proven to be a non-abundant fluorescent subsiding mechanism in that the 
energy transfer from an excited source to a fluorescence receptor proceeds in a func-
tionally acceptable manner despite the fact that the donor is excited. The FRET 
depressurization method was used to develop the PSA biosensor. Recently, Kavosi 
and colleagues have developed the accurate and simple aptasensor PSA detection 
premised on FRET technique from CdTe QDs modified to AuNps with poly amido 
amine (PAMAM) composite. The developed system used Ab-modified CdTe QDs as 
a donated donor and aptamer-adorned PAMAM-AuNPs as contributed the acceptor. 
The antigen detection was accomplished by measuring the immunocomplex formed 
by PSA and an aptamer. This simple, quick and highly selective aptasensor had a 
linear range of 0.01–100 ng/mL, and the LOD value was determined as 1 pg/mL. 
Lastly, PAMAM dendrimers are adsorbed onto the surface in order to maximize 
their effectiveness. Dendrimers with different functional groups, including QDs, can 
be used to increase the sensitivity of PSA measurements and can also be used in 
FRET-based biosensors to detect a variety of other analyses, such as PSA detection. 
Furthermore, due to its very high specificity and sensitivity, the presented approach 
has the prospective can be used in the identification of many cancer diagnoses [93].
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11 Metal–Organic Frameworks (MOFs) 

MOFs have lately developed as a novel type of porous, crystalline inorganic–organic 
composite materials [94]. MOFs are porous coordination polymers with a three-
dimensional (3D) structure generated by the coupling of organic and inorganic 
compounds with ligands [95]. The wide range of applications, which include gas 
storage [96], chemical sensing [97, 98], catalysis [99], and drug delivery [100, 101]. 
MOFs are supramolecular complexes that exhibit a number of distinguishing charac-
teristics, including porous structure, a large surface to volume area ratio (500–8000 
m2/g), and outstanding mechanical (thermal) durability. Furthermore, most MOFs 
with a high crystalline structure can be synthesized at ambient temperature or using 
a solvothermal synthesis method [102]. MOFs have been suggested as labels in 
electrochemical sensing because of their electrochemical efficiency and larger avail-
ability of surface-active areas with better enzyme-like functional capabilities [103]. 
Taking these benefits into account, an abundance of MOF-based sensing applications 
using intrinsic MOF characteristics and composites has been described recently, with 
multiple extensive evaluations [104]. Metal–organic frames (MOFs) have the advan-
tage over standard porous materials in that the coordination number of metal centers 
may be adjusted to change the geometry of crystal pores and hence the size of organic 
ligands. Moreover, due to various high electrical conductivity and catalytic activity, 
MOFs are often used in electrochemically oriented immunosensors [105]. 

Recently, the electrochemical-based immunosensor for PSA detection was 
constructed including a new redox mediator, Pd/NH2-ZIF-67 Additionally, the elec-
troactive lamellar frameworks of ZIF-67 were shown to be an effective vehicle 
for PdNPs and a synergistically mediator for H2O2 degradation, while the PdNPs 
demonstrated great biocompatibility and enhanced catalytic activity. A low LOD of 
0.03 pg mL−1 was exhibited broad linearity of 100 fg mL−1 to 50 ng mL−1 using 
the amperometric technique, and the immunosensor was utilized to quantify PSA 
[60]. Cu-MOF doped with tetracyano quinodimethane (TCNQ) was synthesized to 
improve the sensor electronic conductivity in the conductometric immunosensing 
method. For the first time, MOFs with a conducting thin film were proposed for the 
physical adsorption of antibodies as a novel aspect of this work. The introduction 
of TCNQ as a dopant has also improved the MOF platform’s electrical conductivity. 
However, it has developed a hydrophobic surface that can be used to attach anti-PSA 
antibodies. The composite provided as a new building block for the biosensor used for 
PSA detection from spiked in serum samples. The presence of TCNQ-Cu3(BTC)2-
constructed aptasensor for PSA detection achieved a LODof 0.06 ng mL−1 in the 
stable linearity of 0.1–100 ng mL−1 and showed acceptable specificity with a rapid 
response time (2 min) for PSA in the existence of other proteins; accordingly, this 
sensor demonstrated effectiveness with spiked serum samples [58].
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12 DPV-Based Prostate Cancer Biomarker Detection 

A number of studies have demonstrated experience in developing sensitive biosen-
sors for prostate cancer biomarkers using the DPV approach. Zheng et al. designed 
sandwich antibody electrochemical assays employing PDA-coated BCN substrates, 
MnO2-COF enrichment of MB, and probe material as signal amplification platforms 
and amplification. In this technique, synergistic effects between the nanoparticles 
of manganese dioxide and COF have been found to effectively prevent COF from 
aggregating during use and hence boost the composite’s long-term stability. MnO2 

has been demonstrated to be highly catalytic in the reduction of MB. COF pores 
contain benzene ring ligands that may be coupled with MB. Moreover, the combi-
nation of COF and MnO2 can be used in MB signal amplification. Additionally, the 
probe material contains Au@Pt metallic nanoparticles (Au@Pt NPs) that have the 
potential to enhance electrochemical signals. The biosensor exhibiting demonstrated 
a low LOD value (16.7 fg/mL), linear range (0.00005–10 ng/mL), by using DPV 
technique with high specificity, great stability, and may be utilized to detect PSA 
in the diagnosis and analysis of PCa [63]. Yang et al. employed gold mesoporous 
carbon (CMK-3) nanocomposites to detect PSA electrochemically and reached a 
detection value of 3 pg/mL in buffer solutions. PSA detection using nanocomposite 
nanocarriers to immobilize MB and secondary antibody (Ab2) for detection of PSA 
[71]. 

The use of porous materials used in the manufacturing of labels/carriers is effec-
tive in increasing the number of signal molecules since porous materials possess a 
high specific surface area ratio. Also, nanocomposite materials have gained popu-
larity for their ability to combine the benefits of individual components with the 
enhanced attributes of the final nanocomposite. Graphene’s strong electrical conduc-
tivity makes it a great choice for reducing electrode impedance and as a sensing mate-
rial in clinical diagnostics. According to recent research, Pothipor and colleagues 
have designed a detection of biosensor for prostate cancer that uses electrodes modi-
fied with graphene poly(3, 3-aminobenzoic acid) and porous hollow silver-gold 
nanoparticle labeling to detect the presence of disease. In addition, the modified 
biosensor detection limit (0.13 pg/mL) is larger than the clinically significant level 
in serum samples. This sensor has shown promise in detecting prostate cancer and 
other medical purposes [72]. 

Mesoporous silica nanoparticles (MSNs) recently attracted the attention of 
researchers worldwide since their synthesis utilizes cationic quaternary ammonium 
surfactants as templates [106]. The use of MSNs in adsorption and drug adminis-
tration and enzyme immobilization has become more popular because of their large 
surface area, variable average pore range, and homogenous structure. MSNs have 
also been proposed as a potential material for electrochemical sensors, particularly as 
a sensing component [69, 107]. Electrochemical immunosensors for the PSA detec-
tion method based on AuNps and PdPtCu nanospheres were developed by Li et al. 
Bimetallic nanoparticles have shown several benefits over single nanoparticles due 
to their synergistic impact. The sulfonic acid group-functionalized carbon nanotubes
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(SWCNTs-SO3H) were employed as a supporting layer to expand the surface area and 
increase the conductance of glassy carbon electrodes. The amperometric response 
approach detected prostate-specific antigens from 10 fg/mL to 50 ng/mL, and gold 
nanoparticles were used to boost the loading efficiency of the capture antibody as 
well as electron transfer velocity. Graphene-based immunosensor with mesoporous 
core–shell Pd@Pt nanoparticles has demonstrated a LOD of 3.3 fg/mL and excel-
lent stability for measuring PSA. The immunosensor’s catalytic activity in reducing 
H2O2 is improved by M-Pd@Pt/NH2-GS which is used as the signal labels, and this 
amplifies the current signal efficiently [17]. 

Electroactive material leakage and signal instability are common problems with 
conventional electrochemical immunosensors. The electrochemical immunosensors 
for PSA sensitive detection were proposed in this work to address the issue [65]. It 
utilizes on MOF-235 adsorption aggregation signal amplification approach. Cationic 
dye MB exhibits redox characteristics. It possesses excellent electron transfer rates, 
electrochemical reversibility, and strong biocompatibility. Consequently, it is often 
used in electrochemical immunosensors as an electroactive agent. However, due to 
MB’s lack of specificity and instability, diagnostic findings will be distorted, and its 
usefulness would be restricted as a consequence. These studies employed MOF-235, 
a fluffy metal porous MOF with higher specific surface area and biocompatibility 
due to its two carboxyl groups. MOF-235, a MOF material with excellent adsorption 
characteristics, was synthesized and its surface area exceeds 835 m2/g. Methyl blue 
signal leakage during testing might be successfully prevented with this technology 
MOF-235 has the ability to regulate the reunification of MB after it has been adsorbed, 
which is advantageous for electron transmission. MB’s amino groups are connected 
to the MOF material by electrostatic attraction, which helps to avoid signal leaks. It 
can also hold methylene blue securely in place on the MOF material, ensuring that 
MB does not leak its signal throughout the test. Methyl bromide is adsorbed and then 
re-adsorbed, which accelerates electron transport. There is high reproducibility and 
stability in the electrochemical immunosensor developed. The analyte concentration 
determines the electrical signal. The suggested immunosensor has a wide range value 
of 10–1200 pg/mL with a LOD of 3 pg/mL under optimal circumstances. 

The combination of MOFs with DNA has been extensively explored since it 
enables novel modes of interaction with the environment or among the MOF crys-
tals, as well as applications such as gene transfer and biosensing [108]. The photo-
electrochemical (PEC) test, a novel, and promising analytical approach has attracted 
researchers attention owing to its ideal qualities of low signal background, excellent 
sensitivity, and exceptional stability. The PEC immunoassay devoid of enzymes was 
created for ultrasensitive prostate cancer detection using DNA-mediated nanoscale 
zirconium-porphyrin MOFs. In this research, a DNA-tagged anti-PSA antibody was 
used as a PSA signaling probe in conjunction with the Zr6 nodes of a nanoscale 
Zr-porphyrin- MOF. The presence of porphyrin MOF produced a cathodic photocur-
rent in the presence of PSA by a photoelectrochemical process in which the PSA 
concentrations were proportional to the photocurrent obtained. The immunosensor 
recognized PSA in specimens linear range of 1 pg/mL to 10 ng/mL, LOD value of 
(0.2 ng/mL) with sensitivity and selectivity.
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13 SWV-Based Prostate Cancer Biomarker Detection 

According to, Feng et al. created the sandwich electrochemical immunosensor 
premised on Fe-MOF, an immunoprobe with high catalytic activity. The ampero-
metric immunosensor can be constructed using H2O2 as well as Fe-MOF, which can 
degrade the Au-rGO-coated MB on the substrate and the amperometric response 
of 0.18 V (vs. Ag/AgCl) was generated using a redox-active component, modified 
on a glass carbon electrode. Fe-MOF may represent the reaction of Fenton, which 
reduces MB coated with Au-rGO on a surface. The oxidation of the electrode surface 
residual MB results in the generation of a current signal. SWV was used to study 
the electrochemical measurements of PSA. The sensor has a wide linearity value of 
(0.001–100 ng/mL) and a LOD of (0.13 pg/mL) [61]. 

A family of porous materials known as MOFs or porous coordination polymers 
(PCPs) is produced by the easy hydrothermal or solvothermal interactions of metal 
ions with bridging organic ligands, both of which occur at very low temperatures. 
Chen and coworkers reported the electrochemical immunosensor for PSA the Cu-
MOF nanowire arrays were employed as a redox signal transducer. Antibody binding 
to PSA antigen results in decreased current signal due to antigen’s electrical insulating 
properties. The increase in PSA concentration is inversely related to the decrease in 
current. This work highlighted the attachment of the antibody from the amino group 
through the carboxyl functional group exposed in Cu(1,4-NDC). The immunosensor 
has a LOD of (4.39 fg/mL) and a wider linear range of 0.1 pg/mL to 20 ng/mL by 
using the SWV method, respectively [62]. 

13.1 Creatinine 

Creatinine is a marker of renal failure and obstruction to urine. Late-stage prostate 
cancer is identified by elevated levels of creatinine. Prostate cancer fatalities may be 
reduced by early and effective creatinine diagnosis [109]. Prostate cancer biomarkers 
include changes in serum creatinine levels, which may be used to predict the prog-
nosis of the disease. Estimating PSA levels is a better way to diagnose prostate 
cancer than using a specialized and sensitive test. Apart from PSA, other indicators 
are examined in a subgroup of prostate cancer patients with normal PSA levels. The 
ratio of sarcosine to creatinine, as well as the phase of metastatic prostate cancer 
or tumor, may be utilized to determine diagnostic features. Prostate cancer in the 
advanced stages may be identified by elevated levels of creatinine [110]. 

Recently, Jamil and colleagues have developed nitrogen-doped porous carbon 
antimony nanomaterials for use in the fabrication of a non-enzymatic biosensor. 
Owing to its high electrical conductivity, potential redox action, and ease of synthesis, 
Sb/NPC is an ideal research topic for this study. In addition, the rod-like structure 
offers additional active areas on the surface. The electrodes are coated with a Sb/NPC 
nanocomposites to allow non-enzymatic detection of creatinine in phosphate buffer
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and prostate cancer patients’ blood samples. The biosensor has a linearity of 0.5– 
200 M, LOD value of 0.083 M [75]. 

13.2 Sarcosine 

Sarcosine (SAR), also termed as N-methylglycine, or N-methyl derivative of glycine, 
an amino acid, is produced by glycine-N-methyltransferase (GNMT). Researchers 
hypothesize that GNMT may have a function in the methylation process and the 
development of prostate cancer. Sarcosine’s role as a prostate cancer biomarker has 
been revived as a result of this discovery [111]. Previous research on sarcosine 
as a prostate cancer biomarker has shown inconsistent findings, with some studies 
showing an increased risk and others a lower risk [112]. 

SAR detection was accomplished by the development of the electrochemical 
sensor based on Fe3O4 included MOFs with molecularly imprinted polymer-MIP 
in this research. The magnetic Fe3O4 nanoparticles implanted in the zeolitic imida-
zolate framework-8 (ZIF-8) were employed as the support for the MIP. The authors 
Tang et al. explored the electrochemical sensor sensing unit made of super-magnetic 
Fe3O4@ZIF-8@MIP produced in a magnetic field. Electrochemical behavior was 
monitored using cyclic voltammetry, and the interaction of SAR led to a decline in 
the current that was observed. The present study demonstrated a dynamic range for 
residual SAR measurement of 1–100 pM and an exceptionally LOD of 0.4 pM, and 
it showed high selectivity, sensitivity, repeatability, and robustness respectively [76]. 

Ren et al. proposed a homogenous electrochemical immunoassay technique for 
simple PSA biomarker detection. A mesoporous silica nanoprobe (MSN) was used 
in conjunction with target-induced proximity hybridization to develop an electro-
chemical “DNA biogate” for use in the very sensitive homogenous electrochem-
ical immunoassay. This technique allows recently designed proximity hybridization 
controlled “DNA-biogate” in conjunction with using an in situ enzymatic recycling 
coupling of the proximal complexes; this technique allows for the attainment of 
the highest possible sensitivity and selectivity with using a low volume of DNA 
sample. The proposed result demonstrates a dynamic linear range between 0.002 
and 100 ng/mL, LOD value obtained 1.3 pg/mL [113]. 

Xu and colleagues developed a gold nanoparticles/molybdenum disul-
fide (MoS2)/graphene aerogels (Gas) nanocomposite-based electrochemical 
immunosensor (label-free) for the detection of PSA biomarkers. The porous nature 
of MoS2-graphene aerogels nanocomposite allows for a large surface area immobi-
lized with AuNPs, increasing PSA antibody (PSA-Ab) loading. The conductivity and 
biocompatibility of AuNPs/MoS2-GAs increased the rate of electron transport at the 
interface of the electrode, further proving their utility as an electrode. Additionally, 
its signal-amplification capabilities have increased the assay sensitivity. The electro-
chemical immunosensor had linearity of 0.00001–50 ng/mL, LOD of 0.003 pg/mL. 
The novel immunosensor was evaluated to analyze real blood samples; the results 
showed that it had high recovery rates for prostate-specific antigen [64].
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14 Conclusion and Future Perspectives 

Analytical techniques for prostate cancer early diagnosis should benefit significantly 
from the high probe loading capacity and resistance to probe degradation of EC 
biosensors constructed on MOF or MOF nanostructured composite materials. These 
characteristics have the potential to dramatically improve the detection for biosensors 
sensitivity. miRNAs, cancer markers, and cancer cells may be detected with great 
specificity using MOFs-based EC biosensors using a variety of sensing approaches. 
Furthermore, the distinctive structural characteristics of MOFs, such as homoge-
neous pores, varied composition, permeability, and extremely large surface area, 
make them particularly attractive as EC biosensors for the detection of PCa. The 
porous structure and vast surface area enable the anchoring of additional electroac-
tive species, aptamers, enzymes, and metal nanoparticles, considerably magnifying 
the electrochemical impulses and enhancing the detection limit of targets. Addition-
ally, the MOFs connected pore structure and the surface can facilitate efficient mass 
transfer and other functional materials to improve sensing properties. These new 
structures enable the fabrication of MOF-based composite materials with enhanced 
sensing capabilities. 

The development of MOF-based hybrid materials, in addition to providing novel 
active sites for reaction and other functional materials, is enabled by these inno-
vative concepts. Due to their remarkable EC biosensing properties, the new MOF 
structures will be employed in cancer diagnostics in conjunction with EC sensors. 
Consequently, pure MOFs are difficult to use in electrochemical sensors due to their 
inability to conduct electrons efficiently. Since monometallic MOFs have very low 
EC activities and monotonous characteristics, they have been difficult to include 
in biosensors used to detect biomarkers or live cells. Researchers have shown that 
combining noble/metal nanostructures with carbon-based conductors and conductive 
polymers, fabricating two-dimensional (2D) MOFs, and pyrolyzing MOF oxides into 
metallic oxides may overcome these barriers and improve the performance of their 
instruments for analyzing live cells or biomarkers. Due to their superior conductivity 
and nanoscale thickness, 2D MOFs, in particular, may make excellent catalysts. MOF 
ligands may also be modified to include additional materials, including COFs, MOFs, 
and enzymes. ECL biosensors are used to detect a wide range of analytes utilizing 
fluorescent materials like cyclodextrin and other fluorescent materials that enhance 
the ECL signals of MOFs with high conductivity and intrinsic EC luminescence. 

In addition, the EC MOF biosensors, MOF composites, and heterostructures 
of distinct MOFs can both detect and identify the presence or absence of cancer 
biomarkers and cancer cells. These MOF-based nanomaterials exhibit excellent elec-
trochemical activity, excellent fluorescence performance, compact size, and great 
biocompatibility. High sensing, cell endocytosis, and spectacular imaging are all 
made possible by these inherent features of the linked materials. Consequently, it is 
extremely desired to produce more MOF materials for constructing enhanced tumor 
tissue detection biosensors. However, MOFs mixed with other EC-active components
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are a viable technique to increase the EC efficiency of MOF-based sensors; neverthe-
less, the composites’ manufacturing processes, high cost, and convoluted structure 
prevent their widespread usage in biosensing and medical applications. Furthermore, 
the utilization of heterostructures as a suitable platform for EC biosensors can be 
a useful technique for MOFs-based biosensor manufacturing. The “dual-potential” 
ratiometric ECL immunosensor is capable of significantly reducing the likelihood of 
false positives in biomolecule detection while simultaneously increasing the exac-
titude of assessment. The sensor’s performance characterization and real sample 
analysis demonstrate that it has exceptional performance and has a great deal of 
promise in clinical detection in the future. 
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Chapter 37 
Role of Nanosystems for Electrochemical 
Mapping Using Diverse Carbon-Based 
Nanomaterials 

Mansi Gandhi and Settu Ramki 

1 Introduction and Background 

The escalating world populace of growing demands has led to a state where the topic 
of environmental protection and safety is quite a vital aspect for forthcoming advance-
ment of industrial and agricultural processes that helps in meeting the sustainable 
development goals. Nanotechnology has become the most exciting forefront fields 
which is described as “creation of functional materials, devise and systems through 
control of matter in the scale of 1–100 nm.” Nanotechnology offers a lot of promise 
in areas of pollution, sensing and prevention via exploitation of novel properties of 
nanosized objects. Because of size, nanosensors, nanoprobes and nanosystems are 
revolutionizing the field of environment and life of humans, particularly designing 
novel mapping systems with enhancing performance of sensors. As Clarke quoted 
“Any sufficiently advanced technology is indistinguishable for magic.” This concept 
has become true making the detection limits lower and lower reaching zeptomolar 
scale. The synthesis, characterization and utilization have become an emerging and 
rapidly growing field owing to the magic of it. 

Electrochemistry is a multidisciplinary science applied to a variety of applica-
tions. As quoted by Bard and Murray, “The introduction of flexible electrochem-
ical equipment based on non-ubiquitous amplifier, unleashed an accelerated evolu-
tion of different ways to manipulate currents and potential” [1]. This led to evolu-
tion/development of various different techniques evoked from stationary electrode
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polarography to single triangular wave potential scan to cyclic voltammetry and so 
on and so forth. This enchanting bonanza of information provoked the wide research 
circle for the present and future with multitude set of objectives. With the time, 
encountered mathematical equations, serious impediment from two-electrode to 
three-electrode set-up, digital simulation and commercial programs became available 
to tune/boost the scope of study. 

The analysis via electrochemistry is a simple and profitable technique that helps 
in quantitative and qualitative levels of determination for electro-active species in a 
solution. Innumerable advantages of electro-analytical systems are offered over other 
classical/routine detection methods such as; chromatography, luminescence, spec-
troscopy, low-cost/economical set-up, ease of usage by semi-skilled workers, relia-
bility of data, accuracy without pre-concentration steps involved and so on. Variety 
of techniques are available in the field of electro-analytical branch to understand the 
process incurred. 

With arrival of nanotechnology, came the capability of manipulation of atomic 
level with benefit of synthesizing uniquely organized molecular structures. Nano-
materials (NMs) have become the focal point of inquisitive research mainly due to 
noteworthy mechanical and electronic attributes coupled to their chemical inertness 
and heat conduction characteristics. Carbon is an element with atomic number 6 and 
belonging to group 14 of periodic table. It has various forms, one of them is the 
hardest and an insulator, i.e., diamond, while the other is the softest, i.e., graphite 
and is conducting. The electronic characteristics for carbon lineage are quite excep-
tional, because of their occasional atomic structure with mechanical deformations 
for progress of miniaturized sensors, sensitive to various environments (chemical, 
mechanical and physical) [2–7]. 

Nanotechnologic advancement has unlocked arenas for human understanding of 
world [8, 9]. This innovative and high-tech domain wherein the atoms are controlled 
at nanoscale level, in order to attain detailed product manufacturing cum refining 
with optimized tailoring of their characteristics for studying of specific material. 
The world of nanomaterials (NMs) is the understanding of materials that at least 
1D of their 3D space lies within the range nanosize. These exhibit various exclu-
sive mechanical, catalytic, optical and electrical qualities due to their cumulative 
surface effects, macroscopic quantum tunneling and small size effects. These NMs 
offer broad scenarios for the development of the most “promising materials” for 
the twenty-first century [10]. Their rise has opened the doors for expansion of bio-
electro-analytical chemistry, particularly for the basis of mapping platforms [11, 
12]. Noteworthy, their special characteristics (especially compatibility, structural, 
strong adsorption, orientation patterns, their novel approach) can effectively help 
in immobilizing the biomolecules and labeling systems that promote the electron 
transfer abilities to facilitate their electrochemical signals such as amplification of 
bio-electrochemical sensors [13]. In particular, the above-mentioned ability has led 
to remarkable approach in the field of electrochemistry [14, 15].
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2 Role of Nanomaterials in Electrochemistry 

Numerable techniques in electrochemistry can be accounted via cyclic voltammetry, 
chronoamperometry, linear sweep voltammetry, rotating disk electrode techniques, 
etc. Procedure in electro-analysis depends upon the material aspects (chemical and 
physical attributes of the electrode matrix and transducer with adsorption, effects of 
potential, number of layers coated on electrode, etc.). Basically, the nanomaterials 
as projected in Fig. 1 and Table 1 are extensively employed in the fabrication set-
ups due to their chemical inertness, suitability, adhesion features, low background 
current, electron transfer characteristics, wider potential windows and compatibility. 
This particular review target to showcase the light on use of carbon nanoforms in 
the field of electro-analytical domain with encouraging their implications in multiple 
fields of sensors [16–19], catalyst scaffolds, energy storage and conversion [19–21], 
electronic devices [16, 22, 23], pollutant analysis [24] and gas-based sensors [25]. As 
suggested by Ndamanisha and Guo, reduced potential bars and lifetimes are crucial 
for efficient mapping of bioanalytes [26].

3 Amalgamation of Electrochemistry with Choice 
of Carbon Nanoparticles 

An electrochemical sensor is a set-up of an electrolytic cell consisting of minimum 
two electrodes with a closed electrical circuit and a transducer wherein charge trans-
port is established. The transportation/movement of charges in the analyte is either 
electronic in nature or ionic or a mixture of both. The electronic features exist as a 
compilation of charge transportation in an analyte, consequently of nanomaterials 
particularly involving carbon or metal-based systems. The rich π-cloud is due to elec-
tron cloud distortion of carbon nanoforms helping it to be electrochemically active 
[48–50]. While initiating the doping (e.g., NH3, NO2, O2) in the carbon nanotubes 
with electron withdrawing and donating properties that can in turn boost the charge 
carriers or holes, further expanding and condensing their conductance, respectively 
[51]. 

Bio-electrochemical sensor systems are a special kind of device consisting of 
a superior recognition ability employing use of target biological macromolecules 
(enzymes, receptors, antibodies, recognition elements) [52, 53]. Owing with specific 
recognition and rapid catalysis, that can meet the of modern analysis process with 
their characteristics of specificity, rapidity, instantaneous and readily accessible 
detection methods to complete the void of research and development lacuna. The 
subbranches of sensors functions based on the specific recognition between the 
transducer and analyte [54]. This inbuilt feature of specific recognition and further 
amplification of signal output led to remarkable achievements in respective domains 
[55, 56]. These sensors can be described as electrochemical, optical, calorimetric, 
piezoelectric, etc. among which the most extensive class is electrochemical-based
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Fig. 1 Pictorial representation of few nanomaterials with their characteristics

integrated devices. Thus, development and popularization of sensors are based on 
signals varying due to current, potential, conductance and impedance. Redox-based 
sensors are used to amplify and detect the mismatches and complementary target 
systems. These can be applied in diverse systems of clinical inspection [57], food 
and environmental monitoring [58, 59], health point-of-care systems [60], energy 
generation, diodes and storage systems [61, 62], capacitors [51], etc. wherein their 
irreplaceable roles are highly significant. This has directed to the production of 
several commercialized products and pipeline innovations [63]. Table 2 constitutes 
few carbons modified sensing platforms in the fields of various application spheres.

In this review, the principle behind use of nanomaterials after suitable tailoring, 
expansion and new fabrications for the progress of electro-analytical platforms based 
on various types of indicators is explained/explored in detail. The source/mindset 
behind the significance of different nanosystems for refining electrochemical perfor-
mance is the prima facie of this article. Thus, this review helps in summarizing past 
literature studies of nanosystem-based electro-biochemical sensor which support
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Table 2 Accounts various carbon modified electrochemical platforms in the field of different 
applications 

S. No. Element Morphologies Use in field References 

1 Carbon 
nanodots/quantum dots 

Spherical Metal ion sensing [64] 

2 Polypyrrole film Thin film Pesticide 
detection 

[65] 

3 Carbon nanofiber + 
Polyaniline 

Fibers of nanometer 
thickness 

Supercapacitor 
application 

[66] 

4 MWCNT + Pt NPs Nanotubes Methanol fuel 
cells 

[67] 

5 Carbon felt + boron 
doped diamond + 
carbon nanotubes 

BDD coated felt seed 
for CNT growth 

Field emission 
applications 

[68]

their coordinated expansion across distinct research and technological fields that in 
turn helps in expanding their realistic applications. 

4 Role of Electrodeposition, Nanopatterning and Its 
Relevance 

Another lookout for the combined field of nano cum electrochemical discipline 
wherein rapid development of nanotechnology involving use of nanoscaled systems 
portraying excellent performance is having a broader display place for creation of 
high-performance analytical sensors. Few of the electrodeposited materials are gold, 
metal oxides, layered double hydroxides (LDHs), polymers, etc. Technique of elec-
trochemical deposition allows synthesis of nanostructures with defined and opti-
mized morphologies, even without involvement of add ons (such as template) and 
flexible size options simply by controlling the experimental synthesis conditions. 
Various constraints especially current density, time duration and applied potential 
(constant, pulsed, ramped) play a significant part in defining shape and size of 
resulting nanostructures. The realization of modified electrodes has been a pivotal 
point/interface which is quite essential for the growth of new generation electro-
analytical devices with improved responsiveness since the modifiers confer stimu-
lating features, thereby leading to the precise recognition and pre-concentration of 
the bio-systems. The vital/ultimate studies on these chemically modified platforms 
are being studied inside the films for accomplishment of a relatively better command 
on characteristics for the nature of charge transfer with charge transport. The critical 
and appealing properties of nanomaterials depend on the synthetic procedure, growth 
and morphology. Electrochemical deposition is an efficient procedure for the prepara-
tion of nanoparticles (NPs) which is less utilized compared to wet chemical methods. 
This approach includes equal limitations as their dimensions in addition to allowed
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morphologies. In continuation, the procedure of electrochemical deposition provides 
advantages for rapid synthesis without need of chemical oxidants and undesired by 
products [69]. Example, the modifier films are deposited on the electrode for better 
adhesion. The technique of electrodeposition is being extensively explored via cyclic 
voltammetry, potential step and double pulse deposition [70]. Table 3 accounts the 
electrodeposition via various methodologies. This helps in enabling the control of 
particle size by regulating of current density, applied potential, time duration, elec-
trolysis time, number of cycles scanning potential bar, etc. In addition, templates 
can be employed to achieve distinct three-dimensional structures like honeycomb-
mesoporous silica. Later, introduction of colloidal silica, geometrical shapes like star, 
rhombus, square, triangle, etc. star silica, sponge and core shell-type morphologies 
has been synthesized via altering dimensions and shapes of silica additives. Thus, 
this paper accounts for recent applications of nanomaterials for the electrochemical 
supports being obtained via electrosynthesis, inorganics and organic modifications. 

Nanopatterning incorporates peculiar chemical and physical properties that are 
extremely suitable as electrochemical sensors that display reduced over-potentials 
towards electro-active response reactions and further helps to enroute into reversible 
systems that are irreversible at classic electrodes. Nanopatterning is important for 
nanostructuration which further creates a choice for alteration of oxide layer via 
square wave perturbing potential (SWV) via anodizing the gold platform versus 
saturated hydrogen electrode at 2.44 V potential. In continuation, the formed oxide 
layer is let for electroreduction under a slow potential sweep in the 0.5 M H2SO4

Table 3 Electrodeposition of various different morphologies obtained via electrochemical tech-
nique 

S. No. Element Morphologies Electrochemical 
technique 

References 

1 Au nanocrystals Crystals LSW [71] 

2 Ni, Al LDH LDH CV [72] 

3 Au microstructure Flower-like Amp i–t [73] 

4 NiS/Acetylene Black, 
NiS/Vulcan Carbon, 
NiS/MWCNT 

Spherical and film CV [74] 

5 Ionic liquids Star, snow-flake, 
nanothorn 

AC/DC/pulse 
parameters 

[75] 

6 CNT Quasi-spherical and 
nanotubular carbon 

CV [76] 

7 Au Star Applied potential [77] 

8 Silicon-carbon films Compact grains – [78] 

9 Ag–Au nanoalloy Grain Anodic 
polarization 

[79] 

10 Co–Al LDH LDH Cathodic 
reduction 

[80] 
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Fig. 2 a and b Chemically modified electrochemical system fabricated after nanopatterning, 
Reprinted with permission Punetha et al. [7], Copyright 2013 Progress in Polymer Science 

solution [81]. The mapping of arsenic (III) and selenium (IV) has been reported 
on GCE modified with Au nanoparticles by potential cycling via anodic stripping 
voltammetry technique in the window of −0.4 V to +1.1 V [82]. Similarly, different 
carbon systems can be modified with various carbon nanomaterial nanopatterning as 
in Fig. 2 which is the reprint [7] with copyright permission. 

5 Versatility of Nanoparticles 

The use of nanoparticles is termed as “labeled systems” that helps in establishing 
better signal amplification compared to other nanomaterials with probability of 
secondary amplification for detection response improving its cofactors significantly. 
Thus, nanomaterial composites were used in combination to these systems for 
better platform fabrication. Simple example being MoS2–Au composite film which 
displayed well-catalytic activity for H2O2 and later glucose oxidase and secondary 
antibody integration modified AgNPs to obtain AgNPs–Ab2–GOx composite. Other 
nanoalternative metals include copper, nickel, palladium, platinum and other metals, 
etc. have been incorporated for fabrication of other platforms that enhance the detec-
tion sensitivity [40–42]. This encourages enhanced sensitivity, good reproducibility 
and defined stability for both detection modes suitable for use. Carbon is the most 
abundant element in living species; carbon nanosystems have effectively promoted 
the rapid expansion of nanoscience. Carbon-based nanosized systems have good elec-
trical conductivity, biocompatibility thereby improving active sites of electrochem-
ical reactions. They account for large specific surface area that allows enhancement 
in immobilization of transducers and enzymes. The attribute of surface-to-volume 
ratio increases with deceasing feature size, and for nearly meagre sizes, characteris-
tics are no longer dominated by the bulk of the system by rather by surface atoms.
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Based on coordination, one can differentiate between three types of surface atoms 
which, in the order of decreasing coordination, are terrace atoms, step edge atoms 
and kink sites. Simple geometrical reflections disclose that in case of curved surfaces, 
having high surface area is controlled by undercoordinated step edge and kink site 
surface atoms. It is indeed the undercoordination which gives rise to new properties 
such as stability, surface stress, tensile strain, physical and chemical detailing based 
on its electronic charge transfer. In addition to above, surface engineering is one 
such complete topic in this approach for tuning of surface-to-volume ratios. They 
are further subdivided as follows. 

5.1 Carbon-Based Allotropic Forms 

Carbon nanoforms, such as graphene, CNTs, diamond-like carbon, graphite 
nanoforms, fullerenes, diamond, portray extraordinary characteristics with wider 
scope of applications (Fig. 3a is the reprint from [16] with copyright permission). 
The potential range is unquestionable in sensing applications due to their larger 
surface-to-volume ratio, high conductivity and mobility at room temperature that 
has led to new arenas of exploration. The 1D carbon-based nanosized materials, 
i.e., CNTs, have special structures (radius 2–20 nm) with high surface area. These 
account for an extensive series of delocalized bonds having substantial conjugation 
properties leading to substantial conductivity. Due to its exceptional and excellent 
characteristics, CNTs have a wide range of usages in the domain of electrochemical 
sensing especially for the stability issues, labeling of markers and for modification 
of substrates, etc. Rustling and his coworkers studied the in-depth properties and 
found that intermolecular electron transfer properties are enhanced when linked to 
horse radish peroxidase enzyme (HRP) [83]. They are a perfect system for adsorption 
with specific surface area (enhanced many folds) and reflect the synergetic effects. 
CNTs have significant potential for various applications as protein immobilization, 
maintaining their inherent activity, ability to facilitate electron transfer at the inter-
face and with species in solution [19–21]. They have demonstrated a better behavior 
than traditional electrode interfaces with good conductivity and better stability. The 
transducing element exploits CNTs as substrate materials offering better performance 
and improved signal-to-noise ratio counterparts. Different types of carbon nanotubes 
and their derivative-based transducers amplify the bio-electro-catalytic reactions 
providing an alternative option for multiple enzyme tags. These carbon alignments 
as “forests” acts corresponding to molecular wires, establishing the required elec-
tron transfer between the redox probes. As resistivity is directly proportional to 
the electron carriers, probable accessibility of electron holes in the carbon-graphite 
can lead to free movement of π bonding between graphitic molecules and quasi-
1D shapes. The defined circumference of carbon tubes restricts the potential electron 
states but helps in establishing a uniformity of transitions, as a consequence of which, 
opening of band gap at Fermi energy level. And this potential bandgap decreases as 
the spacing between the graphene layers decreases. Therefore, the electron transfer
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can occur without scattering over relatively large distances of several micrometers 
depending on mechanical quality of nanotubes [84–86]. The transfer of electron in a 
CNT is chiefly due to variable conducting states that provides a quantum conduction 
through transportation of 1 spin up and 1 down electron/hole. Though substantial 
reflections at carbon nanotube contact interface occurs, resultants of bottlenecks for 
retrieving various electronic states due to their condensed numbers and particular 
conformations are a major constraint. The transmitted e−(s) or holes vary based 
on the existing states that leads to fall in voltage conducted through CNTs but not 
sideways the tube itself [86, 87]. Furthermore, when conjugated with non-scattering 
“ballistic” electron transfer, the CNTs mechanical robustness lets them to survive 
current density up to 3–4 times higher than most metals [88–90]. In continuation, a 
potent substitute for silicon-based circuits is quite a promising system in the domain 
of nano-electro-mechanical system [3, 91–95]. Separate tubes have exceptional char-
acteristic (being metallic and semiconducting) of being utilized to construct transis-
tors and necessary contacts between integrated circuits [96, 97]. It is quite a valuable 
and fast approaching pathway for miniaturization of traditional MOx (metal oxide) 
semiconductors and silicon transistors [97]. Vishnu and Annamalai Senthil Kumar 
has reported MWCNT modified system for the interconversion of electro-inactive 
benzene to respective electro-active quinones in pH 2 HCl-KCl solution with added 
H2O2 [98] while Mansi and her colleagues reported an electro-inactive benzene 
derivative as a redox-active chemically modified hydroquinone on a multiwalled 
carbon nanotube [24]. Another such report in which Michael and his coworkers 
reported Flavin group at GCE/SWCNT/glucose oxidase/Nafion modified sensor pH 
7 [99].

CNT modified systems have showcased the ability of alleviating the surface-
fouling features that arise due to high overpotential during analyte oxidations. The 
involvement of surfactants to disrupt the strong van der Waal forces between the 
CNTs helps in improving their stability while preserving their structure and providing 
better alternative for covalent modification [101]. CNT-based tips (Fig. 3b is the  
reprint from [100], copyright permission) account for small intrinsic diameters, with 
high aspect ratios allowing them to probe deep cervices and trench with profound 
capability to fasten elasticity and reduces deformation to samples, while creating 
functional probes [102, 103]. The functionalized CNTs (f -MWCNT) in the field of 
atomic force microscope (AFM) have led to gateways for studying of chemical and 
biological subsects in domains of molecular recognition and chemically sensitive 
imaging. Their capabilities can be investigated using optimization for more chal-
lenging samples with smaller tips to enhance peak force. An interesting example is 
the use of SWCNT-based tips which enhance the current voltage maps for multiple 
measurements with high bias atomic force microscopic applications. The function-
alization of CNTs can help in improvement of performance and sensitivity along 
with utility of nanomaterials for various applications. These include (1) the activa-
tion of the carbon nanotubes by generating reactive species such as hydroxyl groups, 
amine groups, and carboxylic groups; and (2) the direct covalent attachment of the 
desired functionalities using radical addition, cycloaddition, and electrophilic and 
nucleophilic addition reactions. Moreover, via the sidewalls and ends/defects are two
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Fig. 3 a Cartoonist illustration for the gas adsorption mechanism where NH3 molecules act as 
electron donors, Reprinted with permission Akbari et al. [16], Copyright 2014 Sensors. b Dopamine 
detection using hydrogenated carbon tip conical electrode, Reprinted with permission Chandra et al. 
[100], Copyright 2014 Analytical Chemistry

subcategories for covalent functionalization of CNTs. In addition to above, heating 
of CNTs under strongly acidic and oxidative conditions results could enhance the 
oxygen-containing functionalities. 

5.2 Diamond 

Carbon can crystalline in either form of hybridization (sp2, i.e., graphite and sp3, i.e., 
diamond) that are chemically inert. They can interact with liquids and gases due to 
influence of sliding contacts, especially due to influence of interfacial terminating 
bonds. Amorphous diamond-like carbon films are a non-crystalline carbon having 
characteristics and desirable properties of enhanced modulus, semi-conducting prop-
erties, inertness, mechanical hardness, low surface roughness, and band gap of 1–4 eV 
[104]. These sensors improved the signal response by 100-fold. When working in 
conjugation with target and its derivative, the detection of bioanalyte has been attained 
by monitoring the variation of impedance/conductance owing to the displacement 
reaction. 

The potential of diamond as an electrochemical transducer has remarkable interest 
due to its chemical stability, wider potential window, low background current and 
biocompatibility compared to silicon, silicon dioxide, tin dioxide, gold and glassy 
carbon [105–110]. The diamond interface has distinct properties with optimized 
termination by either oxygen, hydrogen and hydroxide groups making it hydrophilic
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and hydrophobic [100, 111, 112]. Diamond has other attributes of DNA binding 
stability, biocompatibility, chemical inertness and their applications for chemical and 
electronic sensors. A nontoxic nanoscale diamond carrier for simultaneous trans-
fection of cells and spatiotemporal imaging of DNA with any labeling technique 
has been reported which is established on fluorescent nanodiamond particles coated 
polyethyenimine to form reversible complexes with DNA via electrostatic interaction 
[113]. 

5.3 Graphene and Its Oxide 

Graphene displays exclusive properties, a monolitithic structure with enhanced 
conductivity, no toxicity complications and high specific area with good electron 
mobility, hence widely extended in the fields of sensing and biosensing. Graphene-
based systems consist of high-density defects on its surface and establishes predomi-
nantly constructive electrochemical properties. Extension of graphene has been illus-
trated by combining them with a diverse section of inorganic and organic electro-
active composites, as a promising new carbon substrate in the field of electrochemical 
analysis. The advancement of graphene materials had led many researchers to intro-
duce functional groups on their surface as graphene derivatives (especially GO and 
rGO) [32]. The 3D interfaces have defined reaction sites for redox-systems, strength-
ening electron transfer ability between transducer element and the electrode, thereby 
amplifying the detection limit and sensitivity. Pencil graphite electrodes are another 
broader area of research interest with prominent exploitation of a cheap electrode 
without any complications. A pencil-based graphite electrode was used for the deter-
mination of fish freshness using differential pulse voltammetry in pH 7 buffer in a 
small potential window via analysis of the three important protein metabolites [114]. 
Further, a 6B-pencil-based system has been a prominent platform for the efficient 
sensing of tea quality via a simplistic approach within a time span of 45 s [115]. 
A simple schematic illustration is provided in Fig. 4 which is the reprint from [43], 
copyright permission portraying PGE for guanine oxidation.

5.4 Metal Nanoparticles 

Semiconductor nanomaterials principally involve silica and quantum dots, exhibiting 
impressive characteristics especially high surface area, adhesion, reaction, and 
adsorption capacity providing a new route for biomedical research. The surface coor-
dination characteristic especially for nano-SiO2 particles present with large number 
of unsaturated residues and different bonds with hydroxyl groups allows materials to 
be readily surface functionalized. Furthermore, researchers have explored a pathway 
of incorporating the ionic liquid for the modification of sensors onto a porous sphere
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Fig. 4 a–e Cartoonist illustration of DNA wrapped CNT modified PGE for guanine oxidation, 
Reprinted with permission Ozkan et al. [43], Copyright 2017 Talanta

for biomolecular immobilization. Another report involved different semiconduc-
tors nanomaterials (namely zinc sulfide, cadmium sulfide, lead sulfide, and copper 
sulfide) is employed for labeling of various proteins (namely microalbumin, IgG, 
C-reactive protein, bovine serum albumin) which have been used with carbon-based 
matrices. The positioning of the redox/electro-active peak and its current using strip-
ping voltammetry, immobilization of enzymes were incorporated for mapping of 
proteins. 

Metal nanoparticles have expanded wide consideration for expansion of non-
enzymatic H2O2 sensors due to their high stability on comparison of enzymatic 
sensors [116]. A major drawback is assemblage of Au-NP which bounds their perfor-
mance in terms of detection limit. To overcome such problems, electrochemical 
sensor of electrodeposited gold nanoparticles on an ITO support with cobalt and 
manganese-based layer double hydroxide is quite sensitive for H2O2 detection at − 
0.55 V versus Ag/AgCl [117]. An illustration using MWCNT with click magnetic 
nanohybrids is supported in Fig. 5 reprint from [7, 118] with copyright permission.

Porous noble nanostructures are essential alternates for sensing which are equally 
appealing with enhanced surface area having porous structures that facilitates both 
electron and mass transfers allowing fabrication of sensors with high sensitivities 
using carbon integrated electrodes [119]. The three-dimensional nanoporous gold 
films comprising of interlinked filaments and pores which can be easily obtained via 
de-alloying method.
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Fig. 5 a Synthetic procedure for click magnetic nanohybrids, Reprinted with permission Punetha 
et al. [7], Copyright 2017 Progress in Polymer Science. b Fabrication of disposable electrochemical 
sensor of cancer antigen 153 detection, Reprinted with permission Ge et al. [7, 118], Copyright 
2014 Sensors and Actuators B

Layered double hydroxides or LDHs were first reported by Indira and Kamath 
in early 1994 for containing Co(II) and Ni(II) with Al(III) via cathodic reduction of 
nitrate ions and water for their preparation using polarization techniques [80, 120]. 
These films provide controlled thickness, homogenously coating the surface. Ni LDH 
are quite popular for alcohol oxidation, polyhydric compound and amine oxida-
tion wherein the modified electrodes exploit the electrocatalytic oxidation process 
occurring in the anodic potential range [72, 121].
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Transition metal nanoparticles such as Fe, Cu, Co, Ni, Mg make a prominent mark 
in the sensor domain, and a special comprehensive review has been published recently 
[122]. Extensively Cu-based metal oxide nanostructures with different morphologies 
on various electrodes enhance the charge transfer and device performance for oxida-
tion of glucose in alkaline solution that helps to explore Cu as an redox mediator 
[123–125]. The size control can be achieved via electrolytic bath in presence of 
ethylene diamine from size range of 50–1000 nm [126]. 

5.5 Polymeric Films 

Electrosynthesis of conductive polymers are also carried out via oxidation of a suit-
able monomer and can be referred to as “nanopolymers.” Especially, polythiophenes, 
polypyrroles and polyanilines belong to this approach. The induction of polymer-
ization starts with anodic potential to form a radical cation followed by coupling 
of cations and proton elimination. The important/essential point is that higher the 
repetitive units, lower the oxidation potential will be. Further the soluble oligomers 
are generated in the diffusion layer owing to dimerization reactions. They precipitate 
on surface of electrode via nucleation and growth process. Later, the polymerization 
process can be performed via manipulating the potentiostatic and potentiodynamic 
approach. Characteristic cauliflower-like morphology is linked to electrosynthesis 
of conductive polymers [127]. 

Nanocauliflowers, nanovesicles, nanorods, and nanotubes are achieved by control-
ling the finely stated electrochemical constraints. Intriguing approach of using 
conducting polymer nanotubes in electronic circuits was stated in a report for 
template-free electrodeposition of Si with of L-camphosulfonic acid via template-
free technique [128]. Their interface was exploited in terms of Schottky junction to 
detect m-hydroxybenzene due to variation in electrical conductivity. The nanonet-
works can be achieved by manipulating natural oxygen evolution at anodic potentials. 
A report for the fabrication of methanol gas sensor using nanopolypyrrole film on 
the interdigital electrodes, in presence of perchlorate dopant has been published by 
Babaei and Alizadeh [129]. 

Molecularly imprinted polymers are another class that outperform biological 
receptors in terms of economic value, robustness and chemical inertness. They 
involve signal transduction through surface plasmon resonance with conjugation 
to quartz microbalance. A successful example is SnO2 nanocrystal functionalized 
NM chemoresistive sensor for sensing of CH4 gas with a least limit of 10 ppm with 
sensitivity of trace analytes. The reversible relative resistance was linked to extend of 
SiO2 functionalization as no response was observed in case of unfunctionalized NM 
on multiwalled carbon nanotube platform [47]. A carbon nanotube-based electronic 
and nanodiamond SAM has been portrayed in Fig. 6 reprint from [43, 108] copyright 
permission.
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Fig. 6 a Imperceptible carbon nanotube macroelectronics, Reprinted with permission Cao et al. 
[96], Copyright 2016 ACS Nano. b Systematic functionalization of nanodiamonds to the SAM 
substrate and its template fabrication, Reprinted with permission Liu et al. [108], Copyright 2010 
Nanoscale Research Letters 

6 Domains of Application 

Nanotechnology is one of the fundamentals of twenty-first century offering numerous 
benefits in development of various diagnostics and therapeutic systems that helps in 
welfare of mankind, including use of nanomaterials sized complying with many 
biological mechanisms in human body enabling nanoparticles to cross the biological 
barriers and enter the organs, tissues, and cells. Significant contributions of nanotech-
nology to clinic therapeutics are possible with nanoscale drug carriers. They offer 
efficient and safer delivery of drugs, providing longer circulation half-life, improved 
pharmacokinetics, increased drug exposure to target cells and reduced undesired side 
effects. Nanotechnology has offered preparation of nanomaterials especially trace 
minerals improving digestive efficiency, immunity, and performance for livestock 
and poultry [130, 131]. Due to brevity of the topic with reference to electrochemical 
nanomaterials applications, detailed information is tabulated to make it concise and 
crisp. The versatilities of few carbon nanomaterials with their arenas of exploration 
have been tabulated in Table 4.
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Table 4 Accounts various nanoparticles with their domain and use in accordance to its specificities 

S. 
No. 

Electrochemical 
nanomaterial platform 

Domain 
application 

Properties 
exhibited 

Relevance of their 
system 

References 

1 PANI@GO Food additive 
sensing 
(Clenbuterol 
hydrochloride) 

Label-free 
sensing 

Portable strip testing 
of food safety 

[132] 

2 MWCNT@PhOCH3-Redox Environmental 
sensor (water 
testing) 

Safe, speedy Environmental toxic 
chromium (VI) 
sensing 

[12] 

3 MWCNT@H2Q Energy based 
(ascorbic acid) 

Green, 
efficient 

Fuel cell 
applications 

[11] 

4 CB@Ses-Qn Immunosensor Label free, 
no false 
positive 
response 

Disposable 
immunosensor 
(Penaeid 
Shrimp-Aquaculture 
Industry) 

[133] 

5 Pencil graphite electrode Food quality 
testing 

Microfluidic 
and 
multiplexed 
analysis 

Tea quality testing, 
nanoquantity of 
sample 

[115] 

6.1 Protein Biomarker Detection 

The development of nanotechnology for scaling up of novel nanostructured systems 
having exceptional presentation has been advanced, thereby provided that inclusive 
stage for expansion of enhanced performance output of biosensor with durability 
and obtaining reliable and reproducible signals [134]. They are preferably involved 
as: (i) a device suitable for direct attachment/bonding of biological moiety to accel-
erate the load concentration, thereby promoting its reactivity; (ii) as a protein or 
antibody/antigen biomarker deprived of impairing biomolecule activity. The target 
analyte concentration is based on the electro-analytical sensing of nanoscale systems 
and later employ amplification markers which can significantly enhance/increase the 
output signal to yield for redox-based immunosensor especially for ultrasensitive 
processes [135]. 

Use of nanoparticles has been a prominent approach in fields of biomedical and 
environmental research for recognition of pollutants, microorganisms (virus and 
bacteria), genetic diseases, etc. Potential applications for micro and nanotextured 
crystalline diamond surfaces for cochlear implant array electrodes have been reported 
by Cai [45]. They concluded that exclusive properties, i.e., antibacterial and electrical 
properties of nanocrystalline diamond, patterned surfaces are produced for gener-
ation of independent electrical simulation signals in cochlear implants for neural 
population [45]. Bulk gold is good conductor while the nanogold exhibits strong 
adsorption and prominent biocompatibility that can be extended for immobilization 
of biomolecules that helps in supplying a defined atmosphere that effectively main-
tains activity of enzyme and other biological proteins. The carbon nanomaterials
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are used in conjugation with other nanometals (AuNPs [33, 34], Au nanorods [35, 
136], Au nanowires [36]) and so on portraying fascinating characteristics, owed to 
their advantage of simplicity, rapidity and defined stability [37, 137]. A low noise 
immunosensor is one of the important aspects targeted by medical technicians and 
one such system has been attempted involving indirect determination for reduction of 
p-nitrophenol to subsequent electro-active p-aminophenol using AuNPs-labeled 2° 
antibodies [138]. Another interesting report for AuNPs-MWCNT was used for anti-
body labeling for fabrication of a sandwich immunoassay. The report involved the 
cycling reaction phenomena for 4-nitrophenol, NaBH4 and later thionine catalyzed 
system thereby allowing better detection limit and sensitivity with enhanced stability 
of electrode [38]. In continuation, p-methylmercaptobenzene (cross-linking agent) in 
conjugation of nanoporous gold was reported having high conductivity with larger 
surface area prepared by layer-by-layer self-assembly of gold and silver NPs on 
GCE surface. The base was well suitable for adsorption of thio-based molecules as 
Au–S is a strong bond due to electrostatic interaction that further enhances sensi-
tivity of fabricated sensor on carbon electrode [139]. Chen and his group has worked 
on the storage stability of the fabricated sensor using a 3D-ordered Au nanoclusters 
using electrodeposition technique with spatial obstruction/direction of polycarbonate 
membrane as a sensor for detecting picloram [39]. Carbon NPs have interesting size 
and shape dependent physiological properties (inert material, vivid chemical reac-
tivity which increases as a function of physical parameters like crystallinity, shape, 
size, dispersion, composition and morphology). Different chemical methods have 
been proposed for controlled size and shape of AuNPs. The electrochemical approach 
for nanometer scale preparation has some limitations and morphologies that can be 
realized and concerned. Electrochemical depositions are anchored to surface quite 
swiftly, without any expensive protocol involving chemical and binding agents, and 
are environmentally sustainable compared to ones produced via chemicals. There-
fore, effective electrochemical methods are preferable for their deposition. Studies 
involved mechanisms of nucleation and crystal growth mechanisms of metal phase 
on conductive matrix such as GCE. 

CNTs having conjugated systems and nucleobases are ideal for ribonucleic acid 
(RNA) and deoxyribonucleic acid (DNA) detection. They amplify the DNA/RNA 
ensuring signals due to their inherent conductivity and methods of amplification via 
addition of NPs and enzymes to strengthen the signal platform. Li and Lee reported 
improved detection limit value i.e., twice the DL limits for DNA mapping with 
reduction in fabrication times after incorporating f -MWNT [43] and reducing the use 
of mediator and extra experimental steps/layers. While Zhang described a simplistic 
and methodological construction using CNT-Fe3O4 as a supporting probe for substate 
for label-free impedimetric genosensor [44]. The need of gas sensing in industrial, 
environmental, and medical analysis both quantitatively and qualitatively is achieved 
by bulky instrumentation. But with the advent of CNTs, small-scale sensors which 
are less expensive have been accepted with established analytical instrumentations 
offering an interface with distinct advantages of sensitivity and reproducibility. Dhall 
and Jaggi established a CNT-hybrid composite for H2 gas detection. They compared 
NiO2-Pt decorated MWCNTs to be more sensitive compared to Cu2O-Pt decorated
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MWCNT hybrid composite systems [46]. Another report in the field of fuel cells for 
methanol generation has reported non-enzymatic graphitized mesoporous carbon-
based system in pH 7 PBS for efficient incorporation of transducer complexes [13]. 
In addition to above, Yang and his colleagues equated the electrochemical properties 
to their biosensing performance for nanodiamond derived carbon nano-onions with 
three different carbon-based systems, i.e., MWCNT, graphene, and GCE. Overall, the 
nanodiamond derived nano-onions displayed interesting electrocatalytic activities 
including facile electron transfer kinetics and large oxidant current densities thus 
accommodating a set of potential for mapping redox-active molecules for preferable 
sensitivity at the material level [140]. 

Biosensors are an important research field with metal NP being largely used partic-
ularly when assisted on conductive materials [141]. These nanoconstituents behave 
as electrical wires display to establish a direct communication among the biocata-
lyst or the transducing element and the electrode via a thick insulating protein shell 
surrounding enzyme active sites. The major advancement can be accounted due to 
direct electron transfer or DET that have been initiated a wild fire among the research 
community. An example is cholesterol biosensor wherein AuNP was deposited on 
carbon electrodes (nanosystems) by tailoring its variables. Cholesterol oxidase was 
immobilized on the electrode for determination of cholesterol via us of efficient redox 
transducers, contributing high sensitivity and selectivity [119]. 3D macroporous Au 
was developed as an innovative tag-free biosensor using electrochemical impedance 
spectroscopy for mapping of C-reactive protein. The interconnected NPs exhibited 15 
times larger surface compared to Au bulk electrodes and parallelly attributing linear 
increase in impedance values with C-protein concentration. Square wave voltametric-
based sensor was reported for the sensing of promyelocytic leukemia/retinoic acid 
receptor fusion genes using methylene blue as a probe [142]. 

7 Downside of Using These Carbon Systems 

The choice of nanoparticles depends on the physicochemical characteristics, stability, 
labeling, study duration, analysis type, sample type, detailing, etc. All these attributes 
need careful planning and controls. Any misread information or assumptions can lead 
to wrong detailing or conclusion. Despite all the glaring prospects, they have a few 
bottlenecks and downside. Even this shortcoming has been conceived in their indus-
trial scale production. The most common nanomaterial is graphene oxide which was 
initiated back in 1898 and has been considered as the most common resource itself and 
further its derivatives for numerous applications prospects. But its commercialization 
has been a challenge for scale-up processing. 

Many different carbon nanomaterials are being processed together with other 
materials due to open demand. The other aspects of accessibility, costs, accu-
racy, resolution, complexity, toxicity, and procedure duration need special attention 
during the course of experimentation. The major constraint is the portability, reli-
ability, reproducibility, and duplicability for nanodevices, as the sensing systems
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are affected by the orientation, chirality, and minute properties. Hence, more appro-
priate estimates are required before potential commercialization. One of the signif-
icant concerns relating to NMs that cannot be overlooked is its pathogenicity and 
toxicity constraints, which is still poorly understood, and is a vital concern for envi-
ronment, domestic, and industrial usage. The exact degree of cellular pathogenicity 
is unclear. There is a complete lacuna of knowledge in regard to this topic and 
hence needs efforts from the scientific community to bridge the gap between rapid 
development and in-vivo aftereffects. A proper and systematic understanding for the 
complete interaction with cells, tissues, and proteins is critical for the safe design 
and commercialization of nanotechnology. 

Yet the positive points far exceed its downside, making it one of the ideal materials. 
Nevertheless, the exact potentials and its role could be further harnessed in the near 
future. New arenas for studying of electron transfer in biological systems, interfacial 
biology, and circuit technology can help in development of advanced portable devices 
for both mankind and environmental holistically. 

8 Conclusion 

This review gives a complete compilation of strategies based on electrochemical 
involvement of carbon-based nanosystems. The preceding sections account the 
special attention provided to nanomaterials, specifically carbon nanomaterials and its 
derivatives that can be justified by the enormous magnitude of publications describing 
their indistinct properties that could be tailored for precise applications. Carbon 
nanoparticles have undoubted uniqueness which is unmatched over conventional 
nanosystems. The impact of their usage is coupled with their electrochemical ability 
with enhanced surface area and antifouling capability. Adding to above, tunable 
methodologies for synthesis and functionalization that authors envision will conse-
quence in increasing the count of electro-analytical implications uplifting multiple 
fields of interest especially for rapidity and sensitivity in medical and environmental 
analysis. Carbon nanomaterials give add on advantages such as wider potential 
window, exclusiveness, minimally invasive options, reversible redox systems and 
help in continuous monitoring of molecules without periodical cleaning. 

Many advanced applications of using carbon nanomaterials in point-of-care 
systems have come up especially for improved HIV drug therapies, self-heatable 
devices, DNA-based single-electron fabricated set-ups, light-seeking synthetic 
nanorobots, brain-inspired artificial intelligence devices, super-powered bionic plant 
and many more. These support the futuristic vision of global scientific community. 
This review is a gist of the role of carbon nanoparticles that has attracted the atten-
tion of scientific domain from different walks of life. They have drawn remarkable 
attention of engineering, medical, science, condensed matter physics, drug discovery 
including both from academia and industry. Thus, emphasizing the focus on carbon 
nanomaterials including graphene, nanotubes, carbon black, nanopowder, meso-
porous carbon, activated charcoal, nanofibers, etc., thereby undoubtedly promoting
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the science of nanotechnology in an inestimable variety from domains of elec-
tronics, media, energy storage, optics, and health care. Their uniqueness is unri-
valled by any other know material as compared in this review. Both innovative and 
improved carbon probes have displayed improved analytical performance over non-
nanostructured point-of-care-based electrochemical counterparts. Electro-analytical 
biosensing materials as a promising platform to real-life analytical detection using 
CNTs and diamonds for a myriad of analytes. Many authors have anticipated that 
huge proportion of future will emphasize on discovery of bio-inspired novel hybrid 
chemical sensors that can be processed on flexible substrates. 
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Chapter 38 
Carbon Nanomaterial-Based Biosensors: 
A Forthcoming Future for Clinical 
Diagnostics 
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Anjali A. Kulkarni, Jang Ah Kim, Taesung Kim, and Atul Kulkarni 

1 Introduction 

Biosensors are becoming ubiquitous in today’s rapidly growing concept of non-
invasive, early, ultrasensitive diagnosis, and evolution of robust sensing platforms 
[10, 89]. Sensors are the analytical devices which converts the physical, chemical, or 
biological fluctuations into a measurable signal [65]. Assisted with the specific recog-
nition element (it responds for the respective analytes in any given samples, reducing 
the hindrance from unwanted components), transducer/detector for signal produc-
tion and occasionally, a signal processor to collect and amplify displays the readable 
signals [65]. Biosensors are the sensors with a combination of bioreceptor component 
(biorecognition element; BRE) and transducer element to detect and quantify target 
analytes. The enhanced sensitivity of biosensors is furnished by selective binding of 
BRE such as bio-enzymes, tissues, cells, immunoglobulins, deoxy ribonucleic acid 
(DNA) and ribonucleic acid (RNA), aptamers. Signals are generated in the form
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of change in heat, light, mass change, pH change, after interaction between biore-
ceptor and target analyte and are termed as biorecognition. The growing reliability, 
repeatability, specificity, and sensitivity of biosensors can be exploited in a substan-
tial capacity to provide direct, minimally invasive, and precise detection of various 
diseases [10, 89]. Although the biosensors is quite naïve domain, the genesis of 
biosensors dates back to “1906 by Max Cremer”. Cremer was the first to establish 
the direct proportionality between acid concentration in a liquid and electric poten-
tial arising between parts of the fluid located on opposite sides of a glass membrane. 
However, “Leland L. Clark Jr.” was the first to invent a “biosensor” to gauge oxygen 
levels in blood by combining the enzyme glucose oxidase with an amperometric 
oxygen electrode [29] in 1956. The original “Clark’s Electrode” is still the most 
effective and widely used electrode for glucose monitoring even in contemporary 
times. 

Nanotechnology has been extensively applied in sensor development and diver-
sification. Reduction in size of biosensors (miniaturization) to micro- or nanoscale 
leads to better signal-to-noise ratio, increases active sensing area ratio, requires less 
sample volume, thereby reducing assay cost considerably. Incorporation of nanoma-
terials also reduces non-specific binding and increases binding efficiency towards 
target biomarkers, making possible detection of single-molecules, thus acting as 
molecular enrichers [80]. The development of nanoprobes has perhaps revolution-
ized the field of biosensors in the last few decades [80]. The emergence of carbon 
nanomaterials (CNMs) such as graphene, graphene oxide, quantum dots (QDs), 
single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes 
(MWCNTs), carbon nanowires, fullerene has opened new frontiers in the field of 
biosensors. Carbon-based nanoprobes exhibit exceptional opto-electric and optical 
properties, making them extremely suitable and effectual in biosensor [54]. In this 
chapter, we will review the sensing properties of different forms of CNMs-based elec-
trochemical (EC) and optical biosensors. We will also summarize the applications, 
limitations, and advantages of CNMs in various hybridization and dimensional forms 
and their emerging applicability in the clinical diagnostics, biosensor innovations, 
and future prospects. 

2 Fundamentals of Biosensors 

Quantification of biochemical and physiological fluctuations is the foremost step for 
early diagnosis of human ailments. Analysis of these changes requires some type 
of sensors either chemical or biological. Thus, biosensors are the analytical devices 
which convert these changes into digital or readable signals [29]. Various analysis 
methods are utilized for detection of the analytes; however, in this chapter, our main 
emphasis will be on two main transduction methods, i.e. electrochemical and optical. 
Electrochemical (EC) biosensors are the chemical sensors which combine the high 
sensitivity of EC transducers or electro-analytical methods and inherently high speci-
ficity of biological recognition elements (BRE). Binding of BRE with the analytes
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produces the signal that in turn is recognized by transducer. These electric signals 
produced are directly proportional to the amount/concentration of analyte present in 
the sample [65], while the optical biosensors provide the benefit of non-contact diag-
nosis and are non-invasive. The need of hour is to develop reliable, economic, and 
sensitive biosensors for early diagnosis of various deadly diseases such as cancer, 
cardiovascular disease. These tools should be effective at ultra-low concentration 
detection of disease biomarker/analyte [53]. 

2.1 Components of Biosensors 

The biosensor devices have four elements which are essential for quantification, anal-
ysis, and conversion of signals to readable form. However, two principal components 
of biosensors are bioreceptor and transducers [43]. It includes: bioreceptor/BRE, 
transducer, amplifier/electric element, and display. A typical biosensors’ structural 
components are illustrated in Fig. 1. These components are individually described 
in the following sub-sections. 

2.1.1 Bioreceptor/Biorecognition Elements (BRE) 

Specific sequestration of target analyte is the main focus of biosensors. Biomolecules 
which specifically recognize the target analytes are frequently used as biorecep-
tors. Till date, enzymes and antibodies are the most substantially used bioreceptor 
molecules. However, other natural and synthetic bioreceptors are also available. 
Synthetic receptors mimic the functionality of natural bioreceptors and provide 
improved affinity. The biorecognition element (BRE) is the core of a biosensor 
for exclusively targeting the capture of the analyte. The inherent complementarity 
between functional groups of the bioreceptor and analyte is the key attribute to 
consider when selecting a BRE [52]. Being an integral part of the biosensor devices, 
BRE and its types will be discussed in a separate upcoming section of this chapter.

Fig. 1 Components of a typical biosensor 
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2.1.2 Transducer 

A transducer is the second most important component of a biosensor. The conversion 
of energy and unreadable signals to readable signal is the main function of the 
transducer. The biochemical signal generated upon reaction between the analyte 
and BRE is converted into quantifiable optical, electrochemical, or piezo-electrical 
signal by a transducer [10]. Optical transducers convert biochemical signals into 
visible readouts, while EC transducers are based on detection of electrochemical 
changes such as redox conc. of ions. The signals generated can be easily correlated 
to the analyte concentration in the system. The key factors for choosing a transducer 
are its range of detection and reaction time. 

2.1.3 Amplifier 

The electronic component of the biosensor that interprets the transduced signal and 
prepares it for display is called an amplifier. It captures the signal generated by the 
transducer, amplifies it, and transmits it to the display unit. 

2.1.4 Display 

It is a combination of hardware and software, user-friendly interface that generates 
the results of the biosensor and displays them over a screen, e.g. Computer monitor, 
smart-phone, etc. 

2.2 Bioreceptor/Biorecognition Elements (BRE) 

BRE is an integral part of biosensors for exclusively capturing the analyte. The 
inherent complementarity between functional groups of the bioreceptor and analyte is 
the key attribute to consider when selecting a BRE [52]. Several classes of BREs exist, 
such as natural, pseudo-natural, and synthetic [52]. This diversified classification of 
BREs provides a plethora of different structures and complementary functional group 
assortment while selecting a BRE specific for the analyte. BRE can be classified in 
the following categories [9, 52]. 

2.2.1 Natural BREs 

It includes enzymes, antibodies, nucleic acids, etc. 
Enzymes are bio-catalysts that accelerate biological and biochemical reactions, 

mostly protein molecules with 3D structures that bind to substrate molecules and 
convert them into smaller molecules called products. Enzymes bind their substrates
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by a typical “lock and key”’ binding mechanism using hydrogen bonding, electro-
static binding, and other non-covalent interactions [90]. Enzymes exhibit structural 
as well as chemical specificity towards their target analyte, and this makes them very 
popular BRE. Nanoenzymes or nanozymes are often embedded within the surface 
structures of the biosensors, allowing the formation of short diffusion pathways for 
target recognition and transduction [27]. Enzymatic sensors are thus simple, sensitive, 
low LOD, and cost-effective. 

Antibodies or immunoglobulins are protein molecules that bind to the target anti-
gens and are an integral part of the immune system. It has a Y-shaped 3D conformation 
with heavy and light chains responsible for the recognition and capture of pathogens. 
Antibody BREs are typically affinity based, and the event of biorecognition is trig-
gered by antigen–antibody binding and formation of Ag-Ab immunocomplex [17]. 
Although antibodies show specificity, they may still experience cross-reactivity with 
antigens of the same class, exhibiting similar surface functionalities [50]. To over-
come this hitch, monoclonal antibodies may be used. Monoclonal Abs are yet another 
class of antibodies that are synthesized to recognize a single epitope or a very specific 
biomarker of the target. Their storage is expensive limiting it use. However, due to 
their ultrasensitive recognition capabilities, they are still a very popular choice as a 
BRE. 

Another natural BRE is nucleic acid (NA), and the sensor having NA as BRE is 
called as genosensors. The complementary binding motifs of DNA recognize target 
analytes and can be bio-engineered for specific targets [44]. Nucleic acid BREs 
also include locked nucleic acids (LNAs) and peptide nucleic acids (PNAs) [25]. 
LNA and PNA are synthetic oligonucleotides, which recognize highly charged target 
molecules. The signal responses generated by their binding are free of noise and are 
greatly used in spectroscopic analysis, making them ideal as BRE [76]. 

2.2.2 Pseudo-Natural or Semi-Synthetic BREs: Aptamers 

Aptamers are small, single-stranded oligonucleotides (< 100 bases), non-traditional, 
pseudo-natural BRE famous for its wide target selection range such as metal ions, 
environmental pollutants, pathogens, small targets, proteins, and even whole cells 
[89]. Aptamers may be classified as oligonucleotide (ssDNA and RNA) aptamers 
and peptide aptamers [19]. Aptamers have great potential for use as novel antibodies 
in cancer theranostics, bioimaging, and biomedical research. 

2.2.3 Synthetic BREs: Molecularly Imprinted Polymers 

BRE with high selectivity and long-term stability is highly desirable for sensor devel-
opments. These sensory materials are able to enrich and rapidly detect pathogens by 
using a synthetic recognition element. Molecularly imprinted polymers (MIPs) are 
frequently used as alternative to natural receptors in sensors due to their low cost, 
robustness, and reproducibility [59].
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2.3 Optical Techniques 

In this chapter, we are focusing on two major optical techniques for biosensor 
applications. These are. 

2.3.1 Surface Plasmon Resonance (SPR) 

SPR is the electromagnetic property due to collective oscillations of the free elec-
trons in metal-dielectric interfaces under the electromagnetic field. The changes in 
refractive indices are monitored in SPR optical spectroscopy [26]. These changes 
are either in form of a shift in the resonant wavelength or in resonance angle of the 
incident light [10, 40]. SPR-based sensors work on the detection of this change in 
either the angle or the shift in the resonant wavelength. Both these principles are 
widely applied because of the ease of detection and their cost-effectivity [58]. The 
graphical representation of SPR as a surface sensing tool is illustrated in Fig. 2. 

Most metals exhibit SPR in the visible region [58]. Although the sensing profile 
of metals is quite impressive, a major limitation to metal nanolayers is not being 
able to provide the desired sensitivity and optical enhancement properties [66]. In 
recent years, carbon nanostructures are emerging as the most extensively used class 
of nanoparticles in optical biosensing technique [30]. The variable nature of carbon 
structures bestows them unique electrical and thermal conductivities and exceptional 
optical properties, making them very attractive as biosensing materials [31].

Fig. 2 Graphical illustration of surface plasmon resonance (SPR) technique 



38 Carbon Nanomaterial-Based Biosensors: A Forthcoming Future … 1073

2.3.2 Surface-Enhanced Raman Spectroscopy/scattering (SERS) 

SERS is a derivative of the Raman scattering effect. When light hits certain materials, 
some photon packets get transmitted, some reflected, and some get scattered. When 
there is change in energy and direction of scattered photons, it is called Raman scat-
tering. Raman spectroscopy is based on the measurement of Raman scattering [68]. It 
is a powerful tool in chemistry and solid-state physics and plays an important role in 
the surface characterization of novel nanoparticles [87]. SERS is a surface-sensitive 
phenomenon that enhances Raman scattering effect of the molecular adsorption on 
rough metal surfaces or nanomaterials, such as magnetic nanomaterials, CNTs [85]. 
CNMs have garnered significant interest as highly active SERS materials. The 2D 
and 3D CNMs have been in conjugation with noble metal nanoparticles such as gold 
nanoparticles to be used as enhanced nanoprobes to detect certain bio-analyte. Shape 
and size of the nanoparticles have a substantial effect on the signal strength, absorp-
tion ratio, and enhancement factor in SERS [60]. Such techniques have tremendous 
application potential in the fields of biosensors, theranostics, point-of-care (POC) 
device development, etc. [5, 39]. 

2.4 Electrochemical Analysis 

Electrochemical analysis includes the techniques in which analysis of the chem-
ical reactivity of the solution/compound, i.e. rate of oxidation and reduction and is 
performed under the applied electrical stimulation via electrodes in a standard elec-
trolyte. Alongside, being a surface technology electrochemistry has many advan-
tages in biosensor field. Numerous electrochemical analyses methods are used for 
the biosensor’s application. Electrochemical analysis is usually done on the basis of 
three main measurement methods (current/I, potential/V, impedance/Z). Our primary 
focus is based on the mode of transduction/measurement technique of I and V because 
it is the most commonly used techniques; such methods are [65] described as follows. 

2.4.1 Amperometry 

In this method, a constant V is applied to working electrode (WE) and the I produced 
due to electrolysis is measured, similar to voltammetry [29, 77]. The only difference 
from voltammetry is absence of scanning potential range, and V is directly stepped 
(or kept constant) to desired value. The current measured is proportional to the 
concentration of electroactive analyte in the solution. Amperometric analysis is done 
with bio-catalytic and affinity sensors, due to its uncomplex nature and low LOD 
[65].
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2.4.2 Voltammetry 

In this method, a potential range (V) is applied to WE and the current produced due 
to electrolysis/redox of electrolyte is measured [29] which in turn is limited by mass 
transport rate of the ions to WE. The current height is usually a peak which is directly 
proportional to the concentration of the analyte in the solution, but is temperature-
dependent. Voltammetry is of multiple types varying from wide dynamic ranges and 
used for quantification of low concentrations [65]. Certain commonly used voltam-
metric techniques are: linear sweep voltammetry (LSV), cyclic voltammetry (CV), 
differential pulse voltammetry (DPV), square-wave voltammetry (SWV), stripping 
voltammetry, etc. 

2.4.3 Potentiometry 

In this method, V of EC cell is measured at negligible current [77]. It uses EC cell 
with two reference electrodes, to measure potential difference [65]. 

2.4.4 Impedimetry 

In 1975, Lorenz and Schulze described EIS, where they measured the resistance 
(R) and capacitance current of the sample material upon fluctuations by potential 
of usually 2–10 mV and varied frequency range to get impedance spectrum. (in-
phase current for resistance and out-phase for capacitance). The electron transfer 
R changes when the analyte binds the BRE and directly observable in label-free 
detection of Ag–Ab response [65]. EIS is a strong analysis as it measures electron 
transfer at high mass transfer and at low frequency. Thus, EIS-based sensors are 
good as affinity biosensors and are stable with environmental fluctuations. However, 
non-specific binding must be avoided using CNMs especially CNTs in EIS-based 
sensors as it has high surface area, electric conductivity, etc. [65]. 

2.4.5 Conductometry 

It measures changes in electrical conductivity of the sample during the course of 
chemical reactions [77]. It uses enzymes which increase the conductivity by making 
ionic products in the solution [65]. 

3 Biosensors in Clinical Diagnostics: Overview 

Biosensors are the advanced analytical tool for quantification of bio-
analytes/biomarkers. These are quick, economic, easy to handle, and could detect
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multianalyte at a time, i.e. multi-array biosensors [23] for cancer and certain 
other diseases; Alzheimer disease, diabetes are few examples [28]. Considering the 
World Health Organization (WHO) report, to reduce premature mortality from non-
communicable diseases (NCDs) and to achieve target no. 3.4 of UN-SDGs 2030, the 
comprehensive control of NCDs must be implemented and executed in an efficient 
manner, by improving accessibility to prompt early diagnosis and effective treat-
ments for cancer. Various evidences have also shown that timely diagnosis holds 
the key for effective treatment [1, 2, 23, 61]. Patients receiving therapy in the early 
stages of cancer have more and longer survival chance and better quality of life in 
comparison to those receiving late treatment [32]. As conventional tools are bulky, 
time-consuming, expensive, and complex, thus, more simple tools, POC settings, 
economic devices are needed, for resource limited areas. A lot of research is going 
on in this area; however, new molecular tools having high specificity and non-invasive 
nature would be a path-breaking achievement in oncology [23]. 

WHO characterized the features of a diagnostic tool calling it ASSURED. Elec-
trochemical biosensors basically unite the advantages of various electro-analytical 
processes; like high accuracy, sensitivity and precise selectivity, ease of handling and 
miniaturized form [65]. The EC biosensors have been promoted as one of the most 
promising next-generation of biosensors due to their excellent performance, very low 
and precise LOD [28], and quick diagnosis as POC device [23]. Alongside, multi-
plexing improves the accuracy of diagnosis; thus, multiplexed analytes/biomarkers 
show new paths towards personalized early detection and prognosis [65]. Multi-
plexed sensors are effective at ultra-low concentration detection [53]. Multiplexing 
of biomarkers for molecular screening and for simultaneous analysis will be a great 
advancement in biosensing field [47 53]. The quantitative and qualitative detection 
of cancer biomarkers could be of great help in clinical analysis as it leads to detec-
tion of cancer at primary stages, cancer classifications, prognosis, and therapeutic 
guidelines [65]. An ideal screening test must have 100% specificity and 100% sensi-
tivity, with no false negative diagnosis, but there is no ideal screening test yet present 
[53]. Thus, biosensors are in high demand and an urgent need in clinical routine 
practice. The combination of immunotherapeutic-based on biomarkers will lead to 
better management of cancer and enhanced survival [71]. One of the conductometric 
EC biosensor, e.g. tyrosinase biosensor to measure level of food herbicides, atrazine, 
etc., food pathogen like Enterohemorrhagic (Escherichia coli), Salmonella, etc., an 
immunosensors, and potentiometric sensor, e.g. pH electrode coated with penicilli-
nase to detect penicillin indirectly by pH changes due to H+ ion concentration have 
been experimented to develop for clinical purposes [65]. 

4 Carbon Nanomaterials (CNMs) in Biosensors 

In the last few decades, nanotechnology is no longer just a buzzword, but a rather 
tangible and attractive reality in the field of material sciences. Since Norio Taniguchi 
coined the term “nano” in 1974, the field has rapidly achieved a lot of attention
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Fig. 3 Multi-factorial role of CNMs in clinical applications 

from the research community [75]. CNMs are the most widely explored NPs in 
the field of nanotechnology due to its cost-effectiveness as a result of economy 
of scale (i.e. mass production), multi-functional surface functionalization and low 
intrinsic toxicity [38]. Due to the contributions by material engineers, physicists, and 
chemists, a large number of complex carbon nanostructures can be grouped under 
the term “carbon-based nanomaterials”. In this section, we will take into account the 
different CNMs and their general applications in biosensors. Various applications 
of CNMs have been illustrated in Fig. 3 indicating its multi-factorial role in clinical 
applications. CNMs have been classified into three classes based on the dimensions 
in nanoscale and are described below. 

4.1 Carbon Nanomaterials (0-D) 

All dimensions are within nanoscale (dimensionless): graphene quantum dots, carbon 
quantum dots, quantum dots, fullerenes. 

4.1.1 Carbon Quantum Dots (CQDs) and Carbon Nanodots (CNDs) 

CQDs or CNDs are quasi-spherical to spherical nanoparticles (NPs) of carbon having 
a size < 10 nm. They were first discovered accidentally during the gel electrophoretic 
purification of SWCNTs. Surface functionality of CDs (carbon dots) is highly depen-
dent on the synthesis process used and functional moieties attached on the surface 
[85]. Due to its huge surface to volume ratio and good biocompatibility, CDs are used 
as novel nanocarriers and nanoprobe. CDs are used to monitor Cu ions in rat brain 
microdialysate and to measure dopamine [78]. Easily tuneable properties of fluores-
cent CQDs make it easier to control their physicochemical properties based on the 
application [21, 46]. Properties such as high stability, low toxicity, environmentally
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friendly make them highly operational in the fields of biomedicine, imaging, and 
DDS [64]. 

4.1.2 Graphene Quantum Dots (GQDs) 

GQDs are CNMs with 1 atom-thick graphite sheets (< 2 nm in thickness) and 
extremely minute transverse dimensions (< 10 nm in general) [4]. The photolumi-
nescence (PL) property of GQDs can be easily tuned by adjusting their dimensions, 
morphology, and dopant [20] and allow it to be used extensively in bioimaging and 
biosensing [15]. The GQDs possess oxygen-rich moieties at the edges that contribute 
highly to their water solubility and biocompatibility. This facilitates the detection of 
various ions and charged biomarkers and diagnosis of various diseases [35]. In a 
study conducted by Xi et al. [81], a pH-responsive fluorescent sulphur-nitrogen-
doped GQD probe (pRF-GQDs) was fabricated and clinically tested to distinguish 
tumour tissues from normal tissues [81]. This biosensor is based on the difference 
in pH of healthy tissues from tumour tissues [8]. GQDs are also soluble in aqueous 
medium and biocompatible with minimum cytotoxicity. All these properties make 
them excellent biosensing molecules [11]. 

4.1.3 Fullerene 

Fullerene (C60) is a synthetic carbon allotrope having 60-sp2-hybridized carbon 
atoms linked in a hollow sphere with 0D assembly [20] and are commonly known as 
the buckyball. Fullerenes display fascinating levels of heat resistance, superconduc-
tivity, and superaromaticity (no delocalization of electrons over the surface) [82]. 
Their variable structural conformations enable them to act as elastic meshes with 
substitutable sites available for binding of other elements making them versatile 
nanoparticles. These attributes make fullerene a good candidate for drug delivery 
systems (DDSs), high contrast bioimaging, tumour treatment, and highly sensitive 
biosensing molecules [85]. Fullerene (C60) has been used as a mediator for electron 
transfer in amperometric glucose sensor, with higher sensitivity and selectivity for 
glucose [78]. 

4.2 Carbon Nanomaterials (1D) 

These CNMs have one dimension in the nanoscale. It includes CNTs and graphene 
nanoribbons.
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4.2.1 Carbon Nanotubes 

CNTs can be defined as cylindrical tubes with undetermined carbon walls in which 
sp2 carbon is linked in a honeycomb like structures and diameters > 100 nm, i.e. 
basically a rolled up graphene (GR) sheet. CNTs have outstanding mechanical, elec-
trical, thermal, and optical properties and are proving to be excellent semi-conductors 
in biosensing applications [24]. It was discovered by Sumo Iijima in 1991. Two 
main types of CNTs are used in clinical applications because of its composition and 
structural heterogeneity. These are single-walled carbon nanotubes (SWCNTs) and 
multi-walled carbon nanotubes (MWCNTs) [78]. 

Their photo-physical properties (capacity to emit in near-IR region), photosta-
bility, fluorescence, and easily tuneable surface properties make them promising 
nanoprobes in biosensing and as high contract optical probes for non-invasive 
bioimaging. CNTs show the capacity to promote electron transfer between heterolo-
gous phases, which render the presence of ion-to-electron transfer promoter unnec-
essary [16]. Just like GR, CNTs are also used as nanoprobe and nanocarriers [78]. 
DNA biosensor based on electrocatalysis of MWCNTs for G/A bases of ssDNA 
was made [37]. Also, chitosan-grafted MWCNTs have been used for H2O2 amper-
ometric sensors and also in EC immunosensors as CNTs resist unspecific antibody 
(Ab) binding, thus are highly specific [78]. Another CNT-based EC biosensor is a 
glucose sensor which is made of “Rubianes and Rivas-modified CNT Paste Electrode 
(CNTPE)” coated with glucose oxidase and no mediator [43]. A protease biosensor 
with peptide/SWCNT/gold nanoparticle-modified electrode which was made had 
higher sensitivity due to SWCNT [78]. 

4.3 Carbon Nanomaterials (2-D) 

These CNMs have two dimensions in the nanoscale. It includes: graphene. 

4.3.1 Graphene (GR) 

GR is single-atom thick sheet of sp2 hybridized carbons arranged in honeycomb 
structure. However, due to its small size and hydrophobicity, GR is usually function-
alized as graphene oxide (GO) to increase hydrophilicity but reduced conductivity. 
Thus, GO is again reduced to enhance the conductivity, and reduced GO (rGO) is 
made. GO is used as a label in thrombin EC sensor. GR is also used as a nanocarrier 
and nanoprobe [78]. Graphene was first isolated by A. K. Geim and K. S. Novoselov 
at the University of Manchester in 2004 [74]. The lattice structure of graphene is 
comparable to that of CNTs and partially to that of fullerenes and glassy carbon 
[30]. The versatile surface charge and electronic properties due to presence of the 
π-electrons facilitates the binding of aromatic compounds via π–π stacking [70] and 
incites its usage in various field. GR exhibits unique optical property of absorbing
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light from visible to infrared region (IR) because of the low energy, stable monolayer 
structure with monodispersed electrons [11]. In glucose biosensor, reduced carboxyl 
GR is used. Alongside, it provides larger surface to immobilize double enzymes 
(Oxidase and catalase) in cholesterol sensors and help to detect multiple analytes in 
glucose and urea-combined sensor [78]. 

5 Optical Biosensors 

The field of biosensor development has witnessed great strides since the amalgama-
tion of nanotechnology with sensing techniques [18]. Optical biosensors are a highly 
recommended for biomedical applications, especially in no-contact and non-invasive 
detection. 

5.1 CNMs-Based SPR Biosensors 

SPR is a well-established technology within the field of optical biosensing and has 
been validated as a powerful and accurate tool due to their wide range of sample 
analytes, ease of handling, portability, and fast detection [48]. The first practical 
sensing application of SPR sensors for biomolecular detection was reported by Lied-
berg and Nylander in 1983 for the gas detection and biosensing applications [56]. 
Since then, SPR biosensors have been utilized for qualitative as well as quantita-
tive analysis. Noble metal NPs (Ag and Au) have been used for plasmon support 
because of its desired surface characteristics for SPR [41, 66]. However, they show 
poor biomolecular absorptivity and high thermal conductivity, which may prove 
to be detrimental to biological analytes causing protein denaturation. To overcome 
this issue, hybrid biosensors were made, combining CNMs with metal NMs, to 
provide optimum study conditions [86]. Kulkarni et al. developed a simple graphene-
deposited fibre optic SPR sensor for detection of biotinylated double crossover DNA 
(DXB) lattice and Streptavidin (SA) proteins. Thus, graphene can be a better mate-
rial for biomolecular detection by SPR sensors due to its highly tuneable surface 
properties, low heat transfer, and extremely low toxicity [41]. 

Localized SPR (LSPR) is a phenomenon in which the electron charge oscillations 
induced by light excitation are confined to the surface of metal nanoparticles (Au, Ag). 
Each NP is acting as a nanoscale plasmonic resonator and creating sharp LSPR bands, 
in the visible region, facilitating naked eye detection [49]. Thus has potential for 
application in biosensing and bioimaging and targeted drug delivery [72]. To prevent 
high thermal emission properties and low stability of metal NPs, several transition 
metal oxides (TMOs) have been explored [45]. SPR spectroscopy is a versatile tool 
that can be used for the micro to nanolevel detection of trace elemental pollutants from 
environmental matrices [66]. A novel chitosan-graphene oxide/cadmium sulphide 
quantum dots (CdS QDs) decorated gold coupled with cobalt ion (Co2+) detection
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has been effectively formulated and monitored. This type of sensors can also be used 
for the detection of metal ion toxicity from serum and blood samples [35]. 

GO and rGO are highly stable, biocompatible, and can be functionalized easily. 
The functionalization provides attachment sites to various biomolecules. Thus are 
good candidate for bioimaging, phototherapy, drug delivery, etc. [83]. The high 
surface area of GO and rGO films contributes highly to the SPR phenomenon 
and provides effective signal enhancement [33]. GR-based CNMs have the ability 
to detect even slight changes in temperature (thermo-resistance). The recent 
concept of wearable, flexible temperature and pressure sensors is largely based on 
thermo-sensitive properties of CNMs [13]. 

5.2 CNMs-Based SERS Biosensors 

SERS is an effective tool for vibrational spectroscopy by virtue of its higher sensi-
tivity than spontaneous Raman scattering. Metal NPs cause heat-induced protein 
denaturation. However, biosensors should be durable, sensitive, and reproducible 
[9, 69]. Reliability of SERS substrate is the key to extracting useful data from the 
substrate, interpretation of the data, and reaching a plausible conclusion while under-
taking biomedical studies [38]. The current trend in SERS substrate development is 
use of non-conventional, semiconducting NMs such as graphene, GO, rGO, CQDs, 
nanodiamonds, CNTs and carbon nanowires, fullerenes [42]. Signal enhancement in 
CNMs originates from structural and charge transfer resonance [85]. 

SERS could be a good platform as POC diagnostics because of its quick and 
sensitive nature [62]. The CNMs have higher stability and reusability, thus better 
suitable for SERS biosensors. Ju et al. in 2017, used silver NPs decorated with 
nitrogen-doped GQD for fabrication of real-time evaluation of glucose in mouse 
blood samples [36]. The Ag NP@N-GQD was much more stable for more than 
30 days than pure Ag NP substrate that lost stability after 10 days. Thus, GQD is 
highly cost-effective substrate for SERS biosensor [3]. 

6 Electrochemical Biosensors 

As per the definition of International Union of Pure and Applied Chemistry (IUPAC), 
an EC biosensor is a self-contained quantitative/semi-quantitative device, which 
provides information using BRE which is in direct spatial contact with a trans-
ducer [77]. EC biosensors are classified in two major classes as described in the 
sub-sections below.
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6.1 CNMs-Based EC Biosensors 

CNMs on nanoscale comprise of amazing properties like electric conductivity and 
high surface area, ease of functionalization which enhances the specificity and sensi-
tivity of sensors, thus are suitable fabrication materials for EC biosensors. Nowadays, 
different CNMs from 0 to 3D are being utilized in EC biosensors for clinical diag-
nostics due to its chemical inertness and economic price [78]. Various EC biosensors 
based on the nature of BRE with CNMs are classified into various categories which 
are described below in brief. 

6.1.1 Bio-Catalytic Sensors 

It has enzymes, cells, or tissue as the BRE to detect the analytes [34]. Due to high 
bio-catalytic activity and specificity, it is used for clinical or industrial purposes, e.g. 
enzymatic electrodes for glucose, xanthine, and lactose detection [65]. 

6.1.2 Affinity Sensors 

It selectively and strongly binds the analytes using BRE made of Ab, nucleic acid, or 
receptors, etc., e.g. immunosensors and DNA hybridization biosensors. The recogni-
tion and binding is based on the complementary size and shape of the binding site to 
the analyte. Most famous commercially available immunosensors based on affinity 
binding are pregnancy test kits [65]. 

Immunosensors are highly sensitive and require small sample, e.g. detection of 
methamphetamine in human urine via conductometry [65]. GR-based voltammetric 
immunosensors are used for measuring okadaic acid (OA) in shellfish by carboxy-
phenyl-modified GR electrode, and another EC immunosensor that has been used 
was vascular endothelial growth factor receptor 2 (VEGFR2) [78]. 

Another major type of affinity sensor is aptasensors; aptamers (single-stranded 
bio-engineered oligonucleotide) are quite conventional BRE providing synergistic 
detection of various biomarkers. Thus, aptasensors are excellent diagnostics for 
cancer biomarkers due to its quick, economic, POC, and highly sensitive nature. 
But various conditions need to be optimized like pH, temperature, ionic concentra-
tion, etc. However, till now no such biosensor is available that can be used in clinical 
practices. 

6.2 Pre-Clinically Assessed EC Biosensors 

Based on transducer, the wearable sensors are mainly EC or optical. However, EC 
biosensors have additional advantage of miniaturized, high sensitivity, etc. The use
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of body fluids other than blood such as saliva, tears, urine provides a non-invasive 
diagnosis, necessary for continuous health monitoring [84]. These analytes which are 
derived from a living organism are called as “bio-analytes” and are listed in Fig. 4; as  
they do not require any invasive tool for extraction. Thus cause no pain to the patient. 
Amperometric sensors are used for detection of glucose and norepinephrine in tear. 
These sensors had shown good sensitivity and quick response. However, on-body 
real-time monitoring/sensing has still not established [7]. CNT-based amperometric 
EC sensors have been used for non-enzymatic glucose sensing [6, 12]. 

For non-enzymatic oxidation and detection of glucose, SWCNTs have shown high 
sensitivity. Alongside, GR and carbon nanofibre (CNF) also possess great sensitivity 
for glucose [67]. A non-invasive, wearable EC sensor for continuous monitoring of 
body homeostasis [55] via calcium ion and pH detection has also been reported. Also, 
CNT coated with gold nanosheets were reported to have sensitivity for calcium ions 
and pH changes [57]. Some pre-clinically tested EC biosensors are listed in Table 1; 
with their dynamic response range, LOD, and transduction analysis method.

Fig. 4 Biological samples 
as a source of bio-analyte for 
non-invasive diagnosis 
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Table 1 List of electrochemical biosensors and their transduction analysis 

Biosensor Method LOD Dynamic response 
range 

References 

Aptasensors Voltammetry 50 nM 1.5 µM Zhao et al. [88] 

Immunoassay – 0.13 nM and 
2.75 ng/ml 

104–107 cells/ml 

Sandwich 
aptasensors 

DPV 0.62 ppb 1–12 ppb Taleat et al. [73] 

Nano-aptasensors DPV 0.95 ng/ml – 

Nanogold-based 
aptasensing 

– 2.2 nM 8.8–353.3 nM 

Nanobiosensor Amperometric 8 cells/ml 15 to 1 × 106 
cells/ml 

Mir et al. [51] 

7 Advantages and Limitations of CNMs-Based Biosensors 

7.1 Advantages 

In the contemporary times, the non-invasive diagnostic and therapy options are in 
demand. Multiple commercial options are although available in the market in the form 
of flexible and wearable device. Most of these devices are based on electrochemical 
and optical biosensing tools, due to their intrinsic property of being miniaturized. 
Alongside, the CNMs add the additional advantage of making them more sensitive 
and on chips. The biosensors are highly miniaturized, LOC and provide the POC 
diagnosis without the need of patient visiting the clinical set ups. 

Biosensors are highly efficient to diagnose cellular changes at very early stage 
and in ultra-low amount within broad ranges fg/ml to ng/ml. Thus can detect cancer 
biomarkers which are secreted even before the onset of disease but in ultra-low 
amount and require no sample preparations/pre-treatment. This early detection can 
provide timely treatment, better management, and high survival chance of cancer 
patients [23, 53]. LOC can improve analysis tools with integration of more economic, 
portable, miniature, and disposable device, using samples like blood, urine, and 
saliva, etc. [22]. Current techniques like ELISA and advanced multiplex assays inte-
grating with label-free optical sensors could provide an economic and simple LOC 
detection platform [22]. Alongside, high sensitivity, selectivity, response time (i.e. 
the time between addition of the analyte and sensor response to reach 95% of its 
final value), ease of use, and portability make the biosensors a better future candi-
date in the field of clinical diagnosis and therapeutics [65]. And due to dynamic 
nature, biosensors are also useful in multi-step analysis and on-line/filed monitoring. 
EC biosensors when combined with NMs provide a good cancer diagnostic. NMs 
provide high surface area, higher signal-to-noise ratio and thus accelerates elec-
tron transfer, leading to signal amplification. Thus, use of NMs in biosensors would 
further enhance their sensitivity [23] and lead to its ultra-low LOD. However, no
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cancer biosensor is commercially fully developed [23]. Attributes such as minimal 
or no sample pre-treatment, high stability, ultrasensitivity, and label-free detection 
make biosensors ideal for diverse applications in fields of diagnostics, POC moni-
toring [10, 89]. In recent times, EC biosensors are one of the most sensitive devices 
to detect biomarkers for cancer and other diseases [14, 63, 79]. Consequently, early 
diagnosis provides better therapy options and prognosis. 

7.2 Limitations 

Biosensors are quite expensive sometimes, due to high extraction and isolation costs 
of disease biomarkers, and its time-consuming nature [23, 53]. Even after being 
the trendsetter in the current field of diagnostics, EC biosensors do have certain 
limitations like cross-reactivity, electrode fouling issues, and EC hindrance, etc. 
[22]. These limitations of EC biosensors could be overpass using optical transducer. 
Optical biosensors based on fluorescence, Raman effect, SPR effect, etc. could be 
used to integrate in LOC, while some optical biosensors needs no label and are called 
label-free biosensors. However, to enhance the sensitivity, the interaction between 
light beam and surface target molecules should be maximum in optical biosensors. 
Despite its advantages, many challenges need to be overcome before its clinical 
implementation of optical sensors, such as bio-compatibility, reproducibility, detec-
tion limit, sensitivity. If all these drawbacks are tackled, label-free optical biosensors 
might be a reality of near future [22]. Binding with the transducer needs to follow 
stringent conditions in biosensing, making it ideal for one time use [23].  Thus, it is  
non-regenerable and does not provide continuous monitoring, etc. Alongside, sensi-
tivity of BREs is subject to conditions such as pH, temperature, and stirring which 
also limits the potential of biosensors. However, implementation of stable NMs might 
improve their sensitivity and stability. 

8 Conclusion and Future Prospects 

Rapid and timely diagnosis of human ailments brings out the best clinical outcomes 
and effective disease management. Conventional diagnostics requires technical 
experts, proper laboratories, time-taking and are quite expensive. However, being 
POC and LOC technology biosensors does not require any special training and is 
quite simple to use. In the past few years, multiple biosensors were developed and 
proposed for early diagnosis of human ailments based on biomarkers. The primary 
results indicated their good sensitivity, specificity, rapid and quick nature in low 
cost, requiring no manpower. Alongside, with the growth in nanotechnology, CNMs 
have gained peculiar attention in the field of biosensors especially for clinical diag-
nostics. Carbon atoms have chemically inert, stable nature and shows an exclusive 
property of self-catenation, which allows it to form various stable allotropic forms,
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with the major breakthroughs from the past two years. Due to its biocompatibility, 
conductivity, optical and electrical properties, and higher surface-to-volume ratio, 
CNMs have been frequently used in the biosensor developments. Application of 
CNMs provides high sensitivity, specificity, and diversifies interface for analytes, 
thus, helping in efficient signal transduction and amplification. However, the labora-
tory working sensors, when applied to the real fields faces multiple challenges such 
as interferences due to unwanted analytes, environmental fluctuations, physiological 
changes (in living samples). Since full-fledged sensor devices must be able to produce 
repeatable results and need to be stable. To achieve this target and successful devel-
opment of real-time sensor on field, various combinations of CNMs and biological 
elements need to be tested. Thus, biosensors could be of great importance in socially 
backward and resource limited area for cancer and other clinical diagnosis with the 
help of biomarkers, as these are secreted at very early stage of disease progres-
sion. In this chapter, we have reviewed and stated few examples of CNMs-based 
EC and optical biosensors for clinical diagnosis. These NMs have been used for 
multiple applications in biosensors developments and fabrications and contributed 
to the higher sensitivity and specificity of sensor devices. Alongside, the advan-
tage and limitations of these fabricated biosensor and their future scope in sensing 
technology have also been discussed. 
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1 Introduction 

Cancer is the leading cause of death in most first-world countries with expected 
number of cases of up to 29.5 million, of which there may be 16.4 million deaths to
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be expected by the year 2040. The WHO reports the most common cancers being 
that of lung (2.09 million), breast (2.09 million), colorectal (1.80 million), prostate 
(1.28 million), skin non-melanoma (1.04 million), and lastly stomach (1.03 million) 
worldwide. In each case, there may be deaths in the range of 0.5–1.8 million deaths 
worldwide. Cancer emerges from the transformation of a benign cell into a tumorous 
one which comprises of a multi-stage mechanism of a pre-cancerous lesion devel-
oping into a malignant tumor. Population aging and growth as well as an increased 
adherence to cancer-inducing lifestyle choices like smoking, drinking, physical inac-
tivity, and fast-food-centric diets are the primary reasons for the burden of cancer 
in developed countries [1, 2]. The biggest challenge is in translating the preventive 
measures from the confines of a safety chart to being implemented in our daily lives. 
The added burden is to find more long-term cures with minimal time needed to 
return to normalcy as an alternative to chemotherapy, radiotherapy, tumor surgery, 
and hormonal therapy that are used in the present narrative. The priorities of health 
and palliative care are paramount but we also must have a more streamlined health-
care with emphasis on people-centric measures. The current COVID-19 pandemic 
raises issues like the vulnerability of cancer-treated patients with suppressed immune 
systems to COVID. Does that mean the patient must risk COVID infection in order 
to treat his/her cancer? 

Oncologists would have to continue balancing the chances of mortality and 
morbidity from COVID-19 against the advantages of cancer therapy during the 
pandemic [3, 4]. Doctors face the herculean task of extending immediate and effec-
tive care to COVID patients while balancing the usual care given to non-COVID 
patients [5]. The patients with weakened immune systems are particularly suscep-
tible [6], with an elevated risk to COVID-19 in cases of patients undergoing chemo 
or radiotherapy or suffering from blood or bone marrow tumors [3]. The absence of 
selectivity for tumor cells is the primary downside to these therapies and necessitates 
the advent of more effective approaches [7]. 

Theranostics is a recently proposed concept combining therapeutics and diag-
nostics aimed at personalizing medicine and real-time monitoring of the therapeutic 
process. The word “theranostics” was coined to create precise and individualized 
therapies for different pathologies and to bring about a union of diagnostic and ther-
apeutic applications into a single agent. This forms a model involving diagnosis, 
drug delivery, and therapy response tracking. Use of nanotechnology-based solu-
tions leads to targeted killing of tumor cells with minimal collateral damage. This 
can also be utilized as a preventive measure to kill cancerous cells before they turn 
into tumors. Furthermore, nanotechnology serves to improve accuracy in the surgical 
excision of tumors. This technology provides the opportunity to manipulate macro-
molecules in real time and at the earlier stages of cancer progression. Owing to their 
unique physicochemical properties [8, 9], nanomaterials have been used as medical 
agents that can be engineered to acquire highly integrated multiple functions in a 
single system and also to give the control of drug release which is promising for the 
next generation cancer theranostics [7, 10]. 

Graphene has attracted a significant interest in the area of biomedicine in recent 
years [11–13]. Graphene is composed of single-layered carbon atoms packed into a



39 Emerging Graphene-Based Nanomaterials for Cancer Nanotheranostics 1093

two-dimensional (2D) honeycomb lattice [14]. It can be enriched in functional groups 
like carboxyl and hydroxyl groups which facilitate its surface modifications [15–17]. 
Graphene and graphene oxide (GO) have an ultra-high surface area enabling a greater 
amount of interaction with biomolecules in a variety of applications like biosensors, 
drug delivery, and gene transfection [17, 18]. Biocompatibility is a primary concern 
in this case [18]. High NIR absorbance range of graphene and associated materials 
enable their use as a photothermal agent for in vivo cancer treatment [11–13]. The 
toxic effects of graphene can be a positive point with respect to cancer cells and find 
use as inhibitors of cancer cell metastasis [19, 20]. So, the purpose of this chapter 
is to broaden the knowledge of graphene and derived materials as biomedicine for 
cancer treatment and diagnosis. 

2 Surface Chemistry of Graphene to Formulate 
Biomedicine 

Graphene-based materials have piqued interest in biological applications for some 
time, owing to its large surface area, chemical stability, conductivity, and, most 
critically, biocompatibility [21–23]. Graphene has a 2D planar structure composed 
of single layer of carbon atoms with sp2-hybridization, arranged in a hexagonal 
crystal lattice [24]. Its structure opens up new avenues of application such as a new 
generation of nanocarriers, biosensors, bioimaging, cell culture, tissue engineering, 
theranostics [25, 26]. An important point of note that cripples such applications 
is their limited solubility in aqueous solutions. Graphene oxide (GO) on the other 
hand has abundant oxygen-containing functional groups (hydroxyl, carboxyl, and 
epoxide) which impart improved water solubility and π–π interactions, hydrophobic 
or hydrogen bonds which endow a greater drug loading potential [27–29]. Hence, it 
is quite evident that these materials need a variety of surface modifications in order 
to have any utility. Additionally, the chosen method of synthesis can also lead to 
impurities like sulfates, peroxides, residues from permanganate, hydrazine, borohy-
drate surfactants which may enhance toxicity levels [30]. The surface modifications 
impart a number of properties which are more suitable towards the development of 
successful theranostic tools.
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2.1 Functionalization of Graphene (Covalent 
and Non-Covalent) 

2.1.1 Covalent Modifications 

A strong and irreversible bonding was observed between GO nanosheets and 
histidine-proline-rich glycoprotein peptides to form a hybrid structure [31]. It cari-
caturist the anti-angiogenic domain of HPRG protein and serves to induce toxicity 
in prostate cancer cells as well as blocks cell migration and prostaglandin arbi-
trated inflammatory process in PC-3 (prostate cancer cell line) and human retinal 
endothelial cells (HREC). Cisplatin is a broad-spectrum anti-cancerous remedy but 
persuades chemoresistance in a lot of cancer cells. GO as a nanomaterial which aggra-
vates autophagy in CT26 colon cancer cells as well as confers antitumor effects. Lin 
et al. attempted to evaluate the combinatorial effect of these two in order to overcome 
chemoresistance in cancer cells [32] (Fig. 1). 

Chitosan functionalized magnetic graphene (CMG) nanoparticle was used as a 
platform for parallel gene–drug (doxorubicin) and superparamagnetic iron oxide 
SPIO (contrast agent) delivery to tumor cells [34]. Most polymers like chitosan 
directly functionalize GO via COOH groups but these groups are limited on the edge 
of GO. So, GO is chemically reduced with chloroacetic acid, thereby preventing 
aggregation of graphene sheets. The chitosan further increases the solubility without 
affecting cell viability [35, 36]. Gold nanoparticles (AuNPs), quantum dots, silica 
nanoparticles, and metal nanomaterials have all been used extensively as delivery 
vehicles as well as for cancer diagnostics and treatment [37]. Functionalized GO 
with folic acid (FA)/polyethylene glycol (PEG) to synchronously deliver histone 
deacetylase (HDAC1) and K-Ras siRNA specifically targeted for anti-pancreatic

Fig. 1 Synthesis of graphene oxide-CDDP conjugate [33] [CC. BY. 4.0] 
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cancer therapy. RNAi has gathered affection due to its specificity in knocking down 
targeted genes. However; it suffers from natural instability and low uptake efficiency 
of  siRNA in vivo [38, 39]. Using the solvothermal technique, Wang et al. [40] created 
hydrophilic GO sheets with covalent attachment to allyl-amines. The advantage here 
is that allyl-amines and their derivatives like poly-allyl amine hydrochloride (PAH) 
give an overall positive character to the polymer which enhances the electrostatic 
interaction and thereby increases the possibility of penetrating the nucleus. 

Graphene oxide–iron oxide nanocomposites (GFNCs) have been synthesized 
by an electrochemical, sonochemical–ultrasonication, and lastly co-precipitation 
method [41]. Co-precipitating iron salts onto graphene oxide nanosheets lead to 
variety of structures where intercalation of GO within iron oxide nanoparticles helps 
in its biocompatibility and stability [42]. A supermagnetic nanoparticle may be used 
for magnetic hyperthermia therapy [43, 44] where magnetic material proves to be 
a heating source while being injected into tissue. After absorbing radio frequency 
power through an oscillating magnetic field, heat is produced [45]. The heat produced 
destroys tumor cells without affecting neighboring cells [46, 47]. 

Polyethylene glycol (PEG) is hydrophilic polymer that makes graphene or 
other such nanoparticles more palatable to the biological system. It improves bio-
tolerance, reduces non-specific adsorption, and thereby results in better targeting 
of tumor components. Dai and coworkers [48] have bonded PEG to GO for drug 
delivery applications. The produced composites demonstrated high aqua-stability, 
as previously demonstrated [48]. Wang et al. [49] successfully prepared a polyami-
doamine (PAMAM) and PEG functionalized nanographene oxide (NGO) conjugate 
(NGO-PEG-dendrimer) to act as a gene carrier to deliver exogenous antimir-21 
oligonucleotides into cells to inhibit miR against cancer. 

2.1.2 Non-Covalent Modifications 

Addition of PEG enhances the solubility and loading potential for drugs like doxoru-
bicin (DOX) and camptothecin. This can be attributed to π–π stacking [15, 50]. GO 
nanosheets can be coated with polyethylimine (PEI), thereby improving the electro-
static interactions with DNA and allowing effective gene delivery for acting against 
HeLa cells with minimum cytotoxicity [51, 52]. Positively charged Fe3O4 can be 
integrated to negatively charged GO sheets via electrostatic interaction. This serves 
as an alternative cure in the form of magnetic hypothermia therapy [53–55]. Sol–gel 
techniques used in this method of synthesis lead to increased degree of defects in GO 
sheets due to thermal annealing. The preference of non-covalent functionalization 
of graphene-based particles is due to the fact that such modification doesn’t alter the 
structure. The addition of new chemical groups can elaborate the number of poten-
tial ligands but it doesn’t alter the electrically conductive properties of the material 
[56]. Several laboratories [57–59] exhibited a chain of pyrene-ended polymers to 
functionalize R-GO via π–π stacking interaction. Repeated aromatic polymer can 
strongly bind graphene monolayers as a complete unit resulting in increased thermal, 
mechanical, and conductive properties [60, 61]. Conversely, non-aromatic polymers
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have also been reinforced with graphene oxide (GO) or reduced graphene oxide 
(rGO) nanosheets. A prime example would be the use of cetyltrimethylammonium 
bromide (cTAB) surfactant to disperse off GO or rGO into natural rubber. It results in 
a polymer composite with enhanced properties [62]. Similarly, surfactant function-
alized rGO has also been used to disperse into aqua-soluble polyurethane. The ionic 
forces between sulfonate of polyurethane and tertiary amine groups of surfactants 
are the primary force behind homogenized dispersion [63]. 

Some biomolecules like heparin are favored by rGO due to hydrophobic backbone 
of the former and the rGO surface. The repulsion between charged surfaces of this 
nanomaterial keeps it stable in a hydrophilic environment [64]. Hydrophobic inter-
actions are also crucial in fixing of horseradish peroxidase onto rGO surface [65]. 
Aromatic biomolecules can interact with graphene through π–π interactions with a 
classic example being that of glucose oxidase on graphene [66]. Electrodes covered in 
graphene have been shown to display the ability to differentiate between dopamine 
and ascorbic acid displaying a characteristic use in bioimaging in the absence of 
direct interaction with graphene surface [67]. Graphene-based materials have piqued 
interest in biological applications for some time, owing to its large surface area, 
chemical stability, conductivity, and, most critically, biocompatibility. These may be 
put to use as biosensors against characteristic nucleotides of a variety of diseases and 
genetic disorders [68, 69]. 

2.2 Incorporation of Nanoparticles onto the Graphene 
Surface 

Fe nanoparticles were restricted to an interlamination of graphite employed as a cata-
lyst, and graphene was synthesized into an interconnected 3D carbon nanotubule 
(CNT) web using in-situ chemical vapor deposition (CVD). This web may be 
seeded with dissociated cortical cells which can grow across the carbon nanotubule 
web and henceforth simulate the 3D trajectory and velocity distribution of cancer 
cell invasion [70]. Hong et al. used nanographene to target tumor cells in animal 
cancer model. Nano-GO sheets with covalently linked PEG chains were conju-
gated to NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid for Ga66-labeling) and 
TRC105(antibody specific to CD105) to target tumor cells in mice. This was done to 
elucidate the pharmacokinetics and targeting efficacy via positron emission tomog-
raphy (PET) [71]. Similar experiment was performed with rGO instead of GO to 
study vasculature in breast cancer tissue with Cu64 as the imaging agent [72]. 

Gadolinium (Gd) nanoparticles were incorporated onto graphene oxide and then 
functionalized by polyethylene glycol (PEG); with further attachment to folic acid 
(FA), a tumor-targeting molecule. Doxorubicin was loaded onto this conjugate to 
form a targeted drug delivery system [73]. A novel phototheranostic nano-agent with 
enhanced photoacoustic (PA) and photothermal treatment (PTT) effects for cancer 
theranostics was created using indocyanine green-loaded polydopamine-reduced
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graphene oxide nanocomposites (ICG-PDA-rGO). According to the data, the combi-
nation exhibits bigger PTT effects and higher PA contrast patterns than pure GO and 
PDA-rGO [74]. 

Chen et al. [75] demonstrated a novel theranostic platform for SERS imaging 
and chemo-photothermal therapy based on GO and AuNP (gold nanoparticle) core 
polyaniline shell (GO-Au@PANI) nanocomposites. PANI is a novel PTT agent with 
significant NIR absorption that is dispersed onto AuNPs using one-pot oxidative 
polymerization followed by stacking and electrostatic forces to connect AU@PANI 
core–shell NPs to GO sheet. MUC1 aptamer-NAS-24 aptamer-graphene oxide and 
MUC1 aptamer-Cytochrome C aptamer-GO were designed by Bahreyni et al. to 
trigger apoptosis in MDA-MB-231 and MCF-7 cells (breast cancer cell lines) [4]. 
Another study reports an approach to fabricate Tamoxifen citrate modified rGO with 
increased stability with lower toxicity. The composite was used to ablate breast cancer 
cells in vivo by way of stimulation of nano-rGO to produce the photothermal effect 
[76]. A nanocomposite was developed containing chemically formed rGO combined 
with manganese-doped zinc sulfide quantum dots and functionalized with folic acid 
(FA-rGO/ZnS:Mn). This was used as a drug delivery system for doxorubicin as a 
treatment for cancer [77]. Aqueous soluble graphene quantum dots (GQDs) made 
from cow milk were utilized to image and administer medication to cancer cells. 
The GQDs@Cys-BHC combination was created by using Cysteamine hydrochloride 
(Cys) to bind an anti-cancer medicine, berberine hydrochloride (BHC), to the N-
doped and oxygen-rich GQDs. On a range of cancer cell lines, including HeLa cells 
and MDA-MB-231 breast cancer cells, the combination was found to have a potent 
cytotoxic effect [78]. 

3 Aspect of Drug and Gene Delivery of Graphene 

Graphene oxide is constituted of a number of oxygen-containing functional groups, 
namely hydroxyl, carboxyl, epoxide group, etc., which enables GO to exhibit excel-
lent hydrophilic properties and makes it a highly functional substrate with abundant 
anchoring sites. There has been a spike in the development of nanotechnology-based 
drug and gene delivery systems [79]. The graphene-derived family of nanomaterials 
had first been isolated through the process of exfoliation. But ever since then it has 
shown its potential towards biomedical application and therapeutics delivery such as 
drugs, genetic material, and biopharmaceutical. The significance of graphene relies 
on the high surface-to-volume ratio and polyaromatic structure that makes it effective 
and flexible enough for cargo loading, transport, and earmarking tissues [80]. This 
material binds to drugs by a combination of π–π stacking interaction, hydrogen bond, 
and hydrophobic interactions [81]. Gene therapy is a much more attractive solution 
by the use of gene to protect DNA from nuclease degradation along with high trans-
fection efficiency [82, 83]. Graphene derivatives should be modified into polymers 
such as chitosan, polyethylimine (Table 1) on account of the cationic surface charge
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Table 1 Gene delivery through different types of nano-composite 

Components Applications References 

PEI-conjugated GO Low toxicity along with high 
transfection efficacy 

[16, 84] 

Lactosylated chitosan oligosaccharide 
(LCO)-functionalized graphene oxides 

Gene sequences delivery to hepatic 
carcinoma cells 

[85] 

Folate-conjugated trimethyl chitosan 
(FTMC)/GO nanocomplexes (FG NCs) 

Through electrostatic interaction, 
delivery of plasmid DNA 

[86] 

properties which enable binding with anionic oligonucleotide through electrostatic 
interaction. This helps us in decreasing the cytotoxicity of graphene within system. 

3.1 Anticancer 

Cancer can be summarized as a sequential progression of events starting with 
uncontrolled cell division, aberrant gene function and results in altered patterns of 
gene expression. It silently spreads across neighboring junctions and creeps into 
surrounding tissue which themselves are trying to prevent malignancy [103, 104]. 
The current health care does place chemotherapy as an important solution but in 
essence it is inadequate. The primary reason is the intolerable toxicity in conjunction 
with acquired drug resistance. The complex of multi-therapeutic agents and their 
molecular targets show up to impede the process of cancer adaptation and activate 
immunity for higher therapeutic efficacy and target selectivity [34]. A newer approach 
is to integrate gene delivery with chemotherapy. An entire new set of challenges arise 
in safe and efficient delivery of this nanomaterial inside the body [30, 105]. Graphene 
is much more palatable to the human physiology owing to the binding affinity to a 
number of functional groups [106]. Graphene is more bioactive in its interaction with 
the cell membranes and on approaching cell it undergoes endocytosis [27, 107]. The 
drug carrier must depart the endosomal compartment and release medicines into the 
cytosolic compartments for targeted drug delivery to the cell nucleus. This method 
involves a scheme to overcome drug resistance to cancer in DOX-sensitive MCF-
7/ADR cells by filling DOX through physical mixing on the graphene oxide surface. 
In vitro, high pH-dependent relaxation was observed for drug content with DOX. In 
MCF-7/ADR cells, GO improved DOX sediments, leading to increased cytotoxicity 
compared to free DOX [108]. The cancer micro-environment like the intracellular 
lysosomes and endosomes has been established to be acidic in nature. In targeted 
drug delivery, regulated activation of DOX and CPT led to significant sensitivity in 
MCF-7 conditions treated to GO-loaded DOX or CPT exclusively. Therefore, in the 
development of drugs, MRI, and bioimaging, graphene and GO-modified magnetic 
nanoparticles lead to different biomedical applications [109] (Table 2).

Iron oxide along with graphene and its derivatives are considered superparamag-
netic amongst biomaterials and significant for drug delivery. The resulting magnetic
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hybrids are distributed evenly before and after DOX loading in aqueous phase. 
Depending on the pH and magnetic hybrid property of nanomaterials, GO-Fe3O4 

plays a role in drug delivery [15, 27, 110, 111]. 
Bone morphogenic protein-2(BMP-2) being enclosed by the layers of positive 

and negative charged graphene oxide nanosheets alternatively, maintain bioactivity. 
Ti-coated GO surfaces transporting BMP-2 are supplemented with proliferation and 
differentiation of MSCs in comparison with Ti surfaces coated with BMP-2 alone. 
In vivo mouse tests often showed robust new bone formation with Ti-GO-BMP2 
implants, thereby introducing the composite as a very successful transporter of 
anticancer drugs [112]. 

Cisplatin (CDDP) is a cancer-fighting medication; however, chemoresistance 
prevents it from being widely used in cancer treatment. Autophagy is a physio-
logical process in which damaged organelles and misfolded proteins are removed 
from the cytoplasm during biogenesis. In CT26 colon cancer cells, graphene oxide 
(GO) is a nanomaterial that promotes autophagy and has anticancer characteristics. 
Chemoresistance in cancer cells is eliminated by the GO/CDDP complex, which also 
elucidates the mechanism behind it. GO/CDDP kills not only CT26 cells, but also 
ovarian, cervical, and prostate cancer cells [113, 114]. CT26 and Skov-3 cells had 
71.5% and 66.4% vitality in the MTT experiment, respectively, after which both cell 
lines developed gradual chemoresistance to CDPP. GO/CDDP, on the other hand, 
reduced viability to 36.5 and 37.7%, indicating that GO chemo-sensitized CT26 and 
Skov-3 cells to CDDP. Though CDDP alone is unable of killing HeLa and Tramp-
C1lin, the combination of GO and CDDP enhances the deadly effect. After treatment 
with GO, CDDP, and GO/CDDP, only A549 cells show high vitality [32]. 

Genetically inherited disorders like cystic fibrosis, sickle cell anemia, cancer, 
Parkinson and Huntington diseases are caused by mutation of one or more gene. For 
critical disorders, an effective gene vector is used as a protection for DNA against 
nuclease degradation and high transfection efficiency of DNA uptake [13]. Since 
2012, graphene and its composites along with other components such as chitosan-GO 
complex and polyethylene imine have spread out into gene and drug–gene delivery. 
As a non-viral gene vector, polyethylene imine has exhibited strong electrostatic 
interactions with negatively charged RNA and DNA, resulting in less cytotoxi-
city, increased transfection efficiency, and increased cell sensitivity [115]. Chitosan-
graphene oxide transforms into a stable nano-sized complex using parental plasmid 
DNA in gene and drug delivery [35]. 

3.2 Anti-Tumor 

Angio arising from the Greek word “angeion” implies vessel and genesis refers to 
synthesis or creation. Hence, angiogenesis is the physiological process of the forma-
tion of new blood vessels for the delivery of oxygen and nutrients to tissues. It is one 
of the fundamental needs for tumor growth and further metastasis, in the absence of
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which cells have to face a hypoxic environment and thereby cellular death. There-
fore, it is important to target angiogenic markers using the delivery of nanomaterials 
without invasive options. Nanotechnology has been previously cited for therapy and 
diagnosis of cancer [90, 116]. Case in point is when nano-graphene oxide along 
with monoclonal antibody is introduced against follicle stimulating receptor (FSH) 
while treating breast cancer in murine model. The FSH receptor is a highly specific 
tumor vasculature marker found in both primary and metastasized cancers [117, 
118]. FSHR is a G protein-coupled receptor and acts as a standard marker for the 
detection of various cancers and conjugates safely with nanomaterials with enhanced 
specificity and stability. One of the classical drug carriers in case of breast cancer 
is NOTA-GO-FSHR-mAB [90]. In leukemia patients, monocytes are malignant and 
primarily responsible for necrosis. Mononuclear cells from peripheral blood of the 
patient were treated with few-layered graphene using CD4+ biomarker and its cyto-
toxicity was analyzed. The viability of the monocytes was found to be decreased 
but T, B, natural killer and dendritic cells remained unchanged. Graphene has show-
cased potential in control and improvement of necrosis in monocytoid cancer cells of 
patients suffering from symptomatic myeloid and chronic myelomonocytic leukemia 
[119]. Melanoma is a well-established skin disorder which involves secretion of 
excess melanin from melanocytes and change in skin pigmentation. Non-covalently 
conjugated graphene oxide and functionalized protein bio-coating are prepared by 
matrix-assisted pulsed laser evaporation (MAPLE) and used as a chassis in targeting 
carcinomas. Another example is when Dabrafenib (DAB) and Trichostatin A (TSA) 
inhibitors are integrated with hybrid GON-BSA nanocoatings. This is done for cells 
carrying a BRAFV600E pathway-triggering mutation and is mounted on adherent 
cells using the MAPLE technique. We can configure the GON-BSA systems by 
checking the inhibition of cellular BRAF expression and suppressed activity of 
histone deacetylases, respectively [92]. The diminishing ERK phosphorylation in 
primary melanoma cells (SKmelBRAFV600E cell line) proved DAB involvement. 
The TSA effect is established by the accumulation of acetylated histones in nuclei 
(SKmel23 BRAF WT cell line). It must be noted that the overall viability of melanoma 
cells has not been decreased but laser immobilization of anti-cancer drugs onto GON-
BSA plays a role in inhibition of the mutation causing genes BRAF and HDAC. 
The dose-dependent effect on target expression and activity lies in conjunction 
with exposure to GON-BSA materials with a compositional gradient of inhibitors 
[92]. The aforementioned bio-platforms serve as better examples of cell–biomaterial 
interaction engineering to be practiced. 

4 Graphene as Phototherapeutic Agent Against Cancer 

An approach to cancer treatment with minimal side effects is the need of the hour. 
Graphene is a multifunctional carbon nanomaterial that has the potential to be 
exploited to build cancer-treatment technologies. The physiochemical properties of
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Fig. 2 Action of PDT mechanism [121] [CC. BY. 4.0] 

graphene can be used to promote photodynamic and photothermal therapy for the 
treatment of superficial or deep tissue cancers [120]. 

Photodynamic therapy (PDT): This is a treatment intended for the breakdown of 
cancerous cell and pre-cancerous cell triggered by activation of light. It is a two-step 
process which integrates the energy of light with the drug (photosensitizer) for the 
cancer treatments. Photosensitizers are triggered using distinct wavelength of light, 
and more commonly lasers are being used for this purpose [121]. In recent years, 
photosensitizers are widely used to treat varied diseases, which include skin, lung, 
bladder, acne, head, and neck. In addition, PDT is used to treat viral, fungal, and 
bacterial infections too. Technological improvements have allowed PDT to integrate 
with anti-cancer treatment (Fig. 2). 

Photothermal therapy (PTT): Photothermal effect is characterized by material 
photoexcitation, resulting in the production of thermal energy. In medical terms, this 
process is called hyperthermia. Photothermal effect is used for treatment in cases 
of laser hair removal, laser surgery, blood vessel lesions. PTT is minimally inva-
sive while not sacrificing its therapeutic potential. PTT uses near-infrared (NIR) 
spectrum to generate heat by thermal ablation for further use [121] (Fig. 3).
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Fig. 3 Action of PTT mechanism [121] [CC. BY. 4.0] 

4.1 Photodynamic Therapy by Graphene 

4.1.1 Breast Cancer 

Breast cancer is the most common disease in the USA, with an estimated 333,000 
diagnoses and 41,000 deaths in 2018 [122]. The field of nanotechnology has now 
become a promising instrument via the synthesis and development of nanomate-
rials used in the treatment, diagnosis, and the identification of cancer. Clinics have 
approved PDT as a minimally invasive treatment with provisions for selective toxi-
city. The potential uses of carbon nanomaterials as therapeutic agents, judiciously 
handled drug release systems and contrast agents for tumor diagnosis and location 
are demonstrated by recent scientific evidence [123]. Due to the presence of carbon 
nanomaterials in the PDT, cancer cells accumulate photosensitive molecules which 
absorb infrared radiation and turn it into heat in the presence of oxygen. There are 
many reported cases of the use of PDT carbon nanomaterials, and these are therefore 
used as a standard method for the treatment of breast cancer [123] (Figs. 4 and 5).

4.1.2 Cervical Cancer 

Cervical cancer is the eighth most common cancer worldwide, and the fourth most 
in case of women, according to the World Health Organization (WHO). The in vitro 
phototoxicity research (laser radiation 670 nm, 1.8 J/square cm) of HA–GO/Ce6 
nanohybrids towards human cervical carcinoma HeLa cells revealed a photodynamic 
efficacy 10 times more than free Ce6 (IC50 changed from 1 to 0.1 gm/ml) [125]. The
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Fig. 4 Schematic representation of the current PDT applications for graphene and MXene-based 
cancer theranostics. Panel on the left: representation of graphene and MXene. Middle panel: 
combined PDT applications, types of conjugated molecules (for PTT), types of imaging, and 
examples of conjugated medications (for drug delivery). Right panel: cancer types were that were 
examined in vitro and in vivo [121] [CC. BY. 4.0] 

Fig. 5 During photodynamic diagnosis, elementary chronological events. a Patients with cancer 
receive intravenous photosensitizer (PS) administration. b Irradiation and activation of photosensi-
tizer, located at the site of cancer [124] [CC. BY. 4.0]

results demonstrated that in the presence of an external magnetic field, magnetic 
GO-Fe3O4 nanocomposites can be used as a tumor-targeted PS delivery technique, 
as well as a photosensitive PDT agent capable of creating 1O2 at 671 nm in the 
presence of laser irradiation.
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Fig. 6 a In vivo real-time MRI images at 1 h after injection of GQD-PDA-Mn3O4 nanoparticles 
(2.5 mg/kg) in nude mice, b tumor volume in mice treated with saline, GQD (2.5 mg/kg) and 
GQD-PDA-Mn3O4 nanoparticles (2.5 mg/kg) for 16 days [126] [CC. BY. 4.0] 

4.1.3 Lung Cancer 

Image-guided therapy is a critical component in addressing the inadequacies of tradi-
tional cancer treatments. A multipurpose probe was devised to serve as a thera-
peutic and imaging agent, respectively, in order to correctly pinpoint tumor cells and 
prevent side effects. In a human lung cancer xenograft model, these nanoparticles 
also allowed for good T1-weighted MRI and were effectively used for combined 
visible red-imaging guided PDT and T1-weighted MRI [125]. A549 tumor-bearing 
mice were exposed to graphene quantum dots, saline, and graphene quantum dot-
polydopamine-manganese oxide (GQD-PDA-Mn3O4) for two days, with a two-hour 
interval between each exposure. The tumor cells in the GQD-PDA-Mn3O4-treated 
mice were significantly smaller. As a result, GQD-PDA-Mn3O4 nanoparticles could 
be useful for imaging as well as increasing the therapeutic potency of PDT in cancer 
therapy [125]. 

4.1.4 Colon Cancer 

See the Fig. 6. 
As a method of treatment for colon treatment, PDT is being explored. It has been 

shown that PDT becomes excited when exposed to light source of some specific 
wavelength and releases a type of oxygen that harms the cancer cell [127] (Fig. 7).

4.1.5 Skin Cancer 

Melanoma with its increased prevalence along with its poor prognosis in its advanced 
stages is the most dangerous form of skin cancer [128]. The biocompatibility, in vivo
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Fig. 7 Cancer treatment using photodynamic therapy. PDT begins with the injection of a photo-
sensitizer into a patient, followed by bloodstream transport of the photosensitizer to the tumor site 
and uptake of the PS by tumor cells. After the PS has been located in the tumor cells, laser light is 
administered to the area, penetrating the skin and excitating the PS. The PS then undergoes a type I 
or type II photoreaction, which produces reactive oxygen species or singlet oxygen, both of which 
can cause cell death [127] [CC. BY. 4.0]

biodistribution, and PDT performance of TAG were investigated using B16F1 tumor 
xenograft-bearing mice. The above study showed excellent PDT potency under simu-
lated solar irradiation. Compared to TA, TG, and Tt, TAG displayed the most signif-
icant in vivo PDT effect. TAG is an effective SSR-mediated PDT agent which has 
excellent biocompatibility. 

4.1.6 Prostate Cancer 

Ge et al. presented a PDT agent focused on graphene quantum dots (GQDs) which 
can generate 1O2 through multistate sensitization process. GQD has a wide absorbing 
range which spans from UV, visible up to far red emission. The findings have ushered 
in a new era of carbon-based nanomaterial PDT agents that outperform traditional 
agents in terms of pH stability, water dispersibility, and 1O2 quantum yield for 
pancreatic tumors [129]. 

4.1.7 Brain Cancer 

Glioblastoma is a particularly aggressive type of brain cancer. The cytotoxic action 
of PDT requires the influx of oxygen, and hence, we need multisession treatment. 
The figure below shows the schematic for PDT of glioblastoma [130]. PDT uses
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Fig. 8 A simplified energy diagram of the oxygen-dependent photodynamic response is shown in 
this diagram of PDT for the treatment of glioblastoma. The photosensitizer in the ground state (0PS) 
is stimulated to one of two states, the first excited singlet state (1PS) or the second excited singlet 
state (2PS), by light stimulation at the proper wavelength and power (2PS). Intersystem crossover 
can then transform the 1PS to the excited triplet state (3PS). The 3PS may perform Type I or Type 
II redox reactions in the presence of molecular oxygen, resulting in reactive oxygen species that 
cause tumor cell death [130] [CC. BY. 4.0] 

the wavelength window of 600–800 nm and excitation wavelength can be applied 
continuously or in pulsed mode, taking into account that pulsed delivery can facilitate 
the reoxygenation of the tumor among pulses [130] (Fig. 8). 

4.2 Photothermal Therapy by Graphene 

4.2.1 Graphene Photothermal Therapy Breast Cancer 

The launch of nanosystems as contrast agents actually improves the quality of “mag-
netic resonance imaging” (MRI) resolution and imaging, “X-ray computed tomog-
raphy” (X-CT), “positron emission computed tomography” (PET), “fluorescent 
imaging” (FI) [131]. 

4.2.2 Graphene Photothermal Therapy Lung Cancer 

A novel class of reduced photothermal therapeutics based on graphene oxide for 
the ablation of lung cancer cells (A549) has been shown by Wang et al. [132]. The 
prepared reduced graphene oxide (RGO) was studied as a photothermal therapeutic 
agent for ablation of lung cancer (A549). Further, the generated results could show
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Fig. 9 Optical microscopy images of a HT29 and b SW48. a-1 and b-1: control samples. a-2 and 
b-2: after 15 min NIR ablation. a-3 and b-3: after 10 min NIR ablation to rGO [134] [CC. BY. 4.0] 

a path for the design of PTT agents, which would respond to the stimulus from the 
environment. 

4.2.3 Graphene Photothermal Therapy Colon Cancer 

For the treatment of HT29 and SW48 colon cancer, green tea-reduced graphene 
oxide (GT-rGO) sheet has been used for its high absorption at or near-infrared 
spectrum. New investigations have shown positive results in destroying cancer cells 
using polyethylene glycol (PEG) layered graphene. In recent times, [133] used nano-
sized PEG layered rGO for cancer PTT using a very low concentration of graphene 
compared to previous reports for the destruction of cancer cell. Abdolahad et al. in 
his work involving biocompatible reduction of GO and used GT-rGO applied GT for 
cancer cell PTT. The attachment of GT-rGO sheets to the surface of cancer cells was 
illustrated by granularity research of the cells in flow cytometry tests [134]. It was 
observed that there was an improvement in the efficiency of the photothermal cancer 
cell therapy by the order of two by magnitude (Fig. 9). 

4.2.4 Graphene Photothermal Therapy Pancreatic Cancer 

In a recent study, researchers looked into the therapeutic effects of reduced graphene 
oxide combined with a near-infrared laser in animals with pancreatic cancer. The 
rGO showed a strong absorption of wavelength between 600 and 1100 nm. The 
experimental results indicated that the improvement in the photothermal conversion 
effect of rGO relies on two factors, namely light dosage and GO concentration.
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a 
b 

Fig. 10 Therapeutic effects of rGO on tumors under laser irradiation by a 980-nm laser. Diameter 
(A) and weight (B) of tumors 10 days after indicated treatment (n ¼ 5; *p < 0.05) [135] [CC. BY. 
4.0] 

Combining the GO with 980 nm laser irradiation against mice pancreatic cancer 
cells achieves an ideal quantum of lethality [135] (Fig. 10). 

4.2.5 Graphene Photothermal Therapy Skin Cancer 

Non-melanoma skin cancer (NMSC) is characterized by its high lethality. In recent 
years, PTT has become a very powerful technique to treat cancer. The goal of research 
was to develop a graphene-based PTT agent that could be used to treat NMSC 
using low-power NIR-induced laser hyperthermia therapy [136]. A lethal impact was 
seen when NIR radiation was combined with reduced graphene oxide nanoparticle-
polyethylene glycol (rGON-PEG) in concentrations greater than 100 g · mL-1. The 
findings also support the adoption of a straightforward approach to generate func-
tionalized rGON as a promising photo absorption agent for use in non-melanoma 
skin care therapy using PTT [136]. 

4.2.6 Graphene Photothermal Therapy Prostate Cancer 

In Western European men, prostate cancer is the second largest cause of death. Thapa 
et al. describe the development of a PEGylated liquid crystalline nanoparticle (LCN) 
wrapped in GO and loaded with docetaxel (DTX) for chemo-photothermal treat-
ment of metastatic prostate cancer cells [137]. For in vitro cell research, the DU145 
prostate cancer cell line was used, but this cell line is highly metastatic and could 
develop DTX resistance. The findings of Thapa et al. investigation’s suggested that 
the PEG-GO/LCN/DTX complex could be used to treat prostate cancer [137]. The 
augmentation of nanoparticles in combination with PTT generated by GO suggests 
that it could be employed to prevent DTX resistance as well as prostate cancer spread 
(Fig. 11).
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Fig. 11 PEG-GO/LCN/DTX stands for graphene oxide-wrapped PEGylated liquid crystalline 
nanoparticles loaded with docetaxel (PEG-GO/LCN/DTX); PEG stands for polyethylene glycol; 
GO stands for graphene oxide; LCN stands for liquid crystalline nanoparticle; DTX is for docetaxel 
[137] [CC. BY. 4.0] 

4.2.7 Graphene Photothermal Therapy Brain Cancer 

Biocompatible porphyrin functionalized graphene oxide (PGO) was synthesized as 
a photothermal platform which has an absorbance at 800 nm for the brain cancer 
therapy. “Most importantly, the efficiency of photothermal conversion of PGO is 
increased by 89% and 33% compared to GO and rGO with 808 nm laser irradiation, 
causing large number of brain cancer cells ablation in vitro” [127] (Fig. 12). 

Fig. 12 Fluorescence microscope images (20 ×) of U87-MG after irradiation by 808 nm NIR a 
without PGO, and with PGO for b 0 min,  c 4 min,  d 6 min,  e 8 min, and  f 10 min [127] [CC. BY. 
4.0]
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4.2.8 Graphene Photothermal Therapy Gastric Cancer 

Gastric cancer is the second highest cause of malignant growth-related death in China 
with 5-year stability of less than 24%. Hence, it is important to perceive, monitor, 
or execute early gastric disease cells [127]. SN38 has been used as a graphene oxide 
coating agent in recent investigations (GO). When compared to earlier data, SN38-
rGO NPs showed a significant improvement. The MTT assay was used to assess the 
photothermal efficiency and cytotoxicity of the SN38-rGO. The findings suggested 
that reduced graphene oxide coated with SN-38 could be employed in gastric cancer 
PTT [127]. 

4.2.9 Graphene Photothermal Therapy Glioma Cancer 

Glioma is a deep-seated brain tumor that demands the delivery of a photothermal 
agent through the skull into the diseased tissue using near-infrared (NIR) radiation. 
The effectiveness of this approach has been demonstrated in studies using orthotopic 
mouse glioma models and 808 nm NIR lasers to accomplish successful photothermal 
excision of cancer cells. One of the standard ways of treatment to glioma is through 
Chemotherapy, on its own or combined with radiotherapy. This approach comes 
with a number of problems like insufficient dosage to affected regions and sustained 
damage or side effects to the neighboring tissues. The results of cytotoxicity tests and 
IP modification resulted in an excellent drug delivery system. Because of its advanced 
chemo-photothermal (synergistic) targeted therapy and strong drug release charac-
teristics, GSPID was found to be useful in glioma combination therapy, reducing 
frequent and intrusive dosing and improving patient compliance [131] (Fig. 13).

4.2.10 Graphene Combinational Therapy Breast Cancer 

PDT and PTT in combination have been thoroughly researched. It includes a 
historical investigation that demonstrates the anticancer and biosafety of graphene 
oxide-polyethylene glycol (GO-PEG). Under the 980 nm wavelength, a PEGylated 
graphene oxide of nanosize is co-loaded with photosensitizer and two photon chem-
icals for cascading TP-PDT and PTT against breast cancer [138]. The combined 
therapy dramatically slowed tumor growth. This combinational therapy has a lot of 
potential as a new cancer theranostics technique (Fig. 14).
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Fig. 13 GSPID is developed as a multifunctional drug delivery system for chemo-photothermal 
targeted therapy [131] [CC. BY. 4.0]

4.3 Graphene Combinatorial Therapy 

4.3.1 Cervical Cancer 

Cervical cancer is a type of gynaecological cancer that has shown significant impacts 
on cell proliferation, cytotoxicity, and apoptosis when Cis and rGO-AgNPs were 
combined. The study’s major goal was to see how Cis and a reduced graphene 
oxide–silver nanoparticle nanocomposite worked together in human cervical carci-
noma (HeLa) (rGO-AgNPs) [125]. The researchers discovered that combining Cis 
and rGO-AgNPs had a greater direct impact on apoptotic and autophagy gene expres-
sion, as well as a significant increase in the accumulation of autophagosomes and 
autophagolysosomes associated with reactive oxygen species formation [125]. 

4.3.2 Lung Cancer 

GO toxicity encompasses cytotoxicity, genotoxicity, and in vivo toxicity. The studies 
have demonstrated that GO can cause lung cancer and apoptosis. Because it is a non-
invasive treatment with several major benefits such as spatiotemporal selectivity, 
remote controllability, and repeatability without cumulative toxicity, phototherapy 
(PT) is considered a potential cancer therapy as a non-operative medical treatment, 
including PDT and PTT [129]. One of the effective and safe methods for selective 
eradication of cancer cells while avoiding side effects on healthy tissues are PTT and 
PDT.
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a 

b 

Fig. 14 a Percentage of manuscripts based on the applications against cancer, b Venn diagram based 
on the main applications (drug delivery, photothermal therapy, photodynamic therapy, imaging). In 
the red round the theranostics studies [138] [CC. BY. 4.0]
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4.3.3 Colon Cancer 

During comparison to irinotecan, the results demonstrated a 2–3 order of magnitude 
increase in chemotherapeutic drug feasibility in colon cancer HCT-116 cell line. The 
use of graphene-based formulations as a multifunctional platform for colon cancer 
therapies has a lot of promise [120]. 

4.3.4 Pancreatic Cancer 

Pancreatic cancer incidence increased in China from 12.80/100000 in 2004 to 
15.66/100000 in 2009. The median duration to survival was only 3.9 months, and 
the 5-year survival rate was only 4.1%. The researchers used a strong laser dose 
(0.75 W/cm2) in their research [139]. Under varied light intensities, a same volume 
of rGO solution (50 g/mL) was able to achieve fluctuating degrees of temperature 
development. 

4.3.5 Skin Cancer 

With an ultralow-intensity near-infrared (NIR) light source, a synchronously acti-
vated “Chemo/PTT/PDT” nanoplatform has been constructed [140]. The nanoplat-
form is constituted of three parts, namely upconversion core (UC) which is highly 
emissive, doxorubicin hydrochloride which is an anticancer drug and chlorine e6 
(Ce6) photosensitizer. On the one hand, the 808 nm wavelength with ultralow intensity 
(0.25 W cm2) seems to be the max permeable exposure for the skin. The modest PGO 
hyperpyrexia caused irreversible cancer cell death for PTT and significantly increased 
medication release for improved treatment. The upconverted 660 nm light from UC, 
on the other hand, was utilized to activate Ce6 and form reactive oxygen species for 
PDT, while the upconverted 540 nm light from UC could be used to visualize the 
treatment process [140]. In vivo and in vitro anticancer investigations revealed that 
ultralow-intensity Near-infrared light synchronously activated “PDT/chemo/PTT” 
nanoplatforms had a remarkable therapeutic effectiveness while causing very little 
photo-damage. 

4.3.6 Prostate Cancer 

Prostate cancer is a well-known cancer which has been known for a thousand years 
[141]. For the targeted capture of accurate diagnosis, combined therapeutic action of 
prostate cancer and prostate CTCs, theranostics graphene oxide (GO) with magnetic 
nanoparticles was evolved. The data resulted from the Chaya et al. showed that the 
indocyanine green (ICG)-bound A9-aptamer-attached GO is very capable to drive
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photodynamic and photothermal treatment at 785 nm for prostate cancer. The exper-
imental result also showed that theranostics GO can also have extensive potential for 
its real-life applications [141]. 

4.3.7 Brain Cancer 

Due to side effects and limited transport through the blood–brain barrier, current 
medications for malignant glioma treatment have a low therapeutic efficiency (BBB). 
On combining the photothermal and chemotherapy resulted in overcoming this issue 
(Table 3), it was found that transferrin-conjugated PEGylated nanoscale graphene 
oxide (TPGD) performs dual function in photothermal therapy and chemotherapy. It 
was observed that combinational TPGD therapy resulted in higher rates of glioma cell 
death. For combination glioma therapy, a possible nanoscale drug delivery system 
has been designed that can effectively reduce side effects and improve treatment 
outcomes [142] (Fig. 15).

Future Prospectives 

Research in the field of nanomaterials is exponentially increasing following the 
discovery of graphene and derived materials. Nanosystems made using bioac-
tive nanomaterials have displayed capability in tumor diagnosis and therapy. 
Nanographene and its derivatives have outperformed other formulations as carriers 
due to their high loading capacity for therapeutic agents, genes, and siRNAs. This 
also makes economic sense due to ease of manufacture and replicability. Nonethe-
less, these properties can further be improved by surface functionalization which may 
lead to their band (atomic energy) alignment and additional functions to their prop-
erty. This also increases biocompatibility and decreases toxicity. Further grafting 
with stress-responsive organic/inorganic materials imparts another use of detec-
tion/monitoring along with treatment. But we must be careful in the aforementioned 
applications as is evident in the following observations. Covalent functionalization 
may influence the electrical and structural properties of these materials by affecting 
the binding strength between transition metal and chalcogen atoms. Similarly, non-
covalent functionalization can cause functionalized molecules to desorb and degrade 
during operations. As a result, we must encourage a proper understanding and anal-
ysis of the impact of such functionalization on the structure and electrical character-
istics of graphene-based materials. When it comes to clinical contexts, the impact of 
surface charge, size/shape, functionalization on biocompatibility, safety, and stability 
must be considered. It is also necessary to investigate the nature of the interfacial 
contact between graphene-associated systems and functionalized molecules. Insuf-
ficient charge transfer may come from a weak contact, resulting in reduced perfor-
mance. The adsorption of organic molecules in media is limited by the surface charge 
and hydrophilic character of most graphene-related materials. So, it is important to 
layer such surface in order to make them hydrophobic and thereby facilitate maximal
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a b c 

Fig. 15 Overview of graphene-based PDT theranostics. Percentages of manuscripts (19 papers) 
on the basis of a type of applications combined with PDT, b model used for the study (in vivo or 
in vitro), c type of cancer studied [121] [CC. BY. 4.0]

adsorption. Finally, the cooperative effects of nanomaterials and its conjugates should 
be scrutinized thoroughly to fully exploit their potential, which can widen their 
applicability in the future. 
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Chapter 40 
Synthesis of Carbon Nanotubes 
with Merocyanine Dyes Decorated 
Carbon Nanotubes for Biomedical 
Imaging Devices 

S. Ranjitha, R. Lavanya Dhevi, C. Sudhakar, and Rajakumar Govindasamy 

1 Introduction 

Carbon nanotubes (CNTs) have become a primary source of industry applications 
since its first discovery in 1990 [1]. The main demand of CNTs was used as 
nanocomposite materials, optoelectronics, waste conversion management, biomed-
ical industry in addition as well as in the area of medicine and nanotechnology. A 
different kind of CNT-based bio-imaging technology with different optical conver-
sion process has been discussed by various groups for identification of various 
biological molecules and their properties like drug delivery mechanism with CNTs. 
In recent decades, several research articles and review papers have been reported 
based on the growth of using SWCNTs in biomedical applications. Tasis et al. [2] 
published an outstanding study on the structure of CNT, in which they discussed the 
three alternative ways to molecular chemical structural variation of CNT. Wu and 
his colleagues discovered that multiple surface modification procedures of function-
alised SWCNTs could be obtained for biomedical use, and their findings assessed 
the benefits and obstacles of employing CNTs in biomedicine [3, 4]. 1D diffusion-
ordered spectroscopy, DOSY, was used for the first time in the analysis of CNT
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derivatives by Marega et al. They synthesised selected CNT derivatives and investi-
gated them using a 1D DOSY experiment with high magnetic field gradients up to 
42.6 G cm−1. TGA-DTA, TEM, SEM and AFM techniques were also used to char-
acterise and functionalise carbon nanotubes. The identification covalently modified 
CNT derivatives which was easily found by effective method of diffusion-based 
NMR spectroscopy. The authors also mentioned that NMR-DOSY can be used to 
distinguish linking PEG functional groups conjugated and non-conjugated gener-
ated by precipitation with oxidised SWCNT. This potential NMR-DOSY analytical 
approach can be used to analyse biopolymer conjugated ox-SWCNTs [5, 6] 

Marega et al. described dispersed form of CNT by condensation of COOH func-
tional groups attached to the network of carbon with primary amine moieties bound 
in the simply developing self-associating biopolymer hyaluronan in another study. 
Various model pharmaceuticals such as ibuprofen and methotrexate can be covalently 
modified using the produced hyaluronic acid-CNT derivatives [7]. Hua Gong et al. 
noted that this model has made tremendous progress in recent times in utilisation of 
CNT as multifunctional nano-probes for biological imaging. 

CNTs can be employed in photoacoustic imaging techniques because of their 
great NIR absorbance, and their photoacoustic wave pattern can be amplified by 
adding cyanine and organic dyes or covering with nanostructured gold shells. As a 
result, CNTs were examined as novel bio-imaging probes with tremendous potential 
in molecular imaging terminology [8–10]. 

The current chapter may provide a relevant update in biomedical imaging. Because 

of the photon scattering in the NIR-II region examined with the visible (4000–7000 Ǻ) 

and traditional NIR-I region (7000–9000 Ǻ), fluorescence medical imaging in the 
NIR-II biological transparent opening with SWCNTs opens the door to in vivo optical 
imaging with deep tissue penetration and high spatial resolution [6, 10–12]. There is 
huge possibility of chemical alterations of carbon nanotubes with photo and electro-
active chemicals or polymers [13–15]. 

Although SWCNT with NIR dyes-based biomedical imaging research has shown 
considerable promise in biomedical tools device applications diagnosis, there are 
still substantial obstacles in using such nanomaterials for true in vivo clinical appli-
cations. Velocity can vary the networks’ electrical and optical properties. Further-
more, researchers have demonstrated that surface coatings, such as CTA film and 
PEG, have no evident toxicity in vitro and in vivo and can be excretion pathways, 
resulting in linear growth of the networks. Dip-coating CTA film with dye/SWCNT 
is a simple, repeatable process that can be scaled up for mass manufacturing [16– 
18]. As an outcome of its growing popularity, several applications that employ 
SWCNT networks are likely to rise. In the future, dip-coating method of constructing 
SWCNT networks with dye-coating technique was applied widely by resolving chal-
lenges around SWCNT networks, such as corrosion resistance and adhesion nature 
of substrate on SWCNT.
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2 Role of Carbon Nanotubes in Bio-Imaging Technique 

Individual tubes or short bundles of functionalised SWCNTs with size of one to two 
nm and lengths of above 50 nm are commonly employed in biomedicine (Fig. 1a). 
SWCNTs are being one variety of optical characteristics that are relevant in biological 
scanning technique. The variety of darkest materials SWCNT had significant optical 
absorption over the ultraviolet to NIR wavelength range (Fig. 1b). Photothermal 
therapy and photoacoustic imaging can both benefit from the light. SWCNTs’ 
nature of high peak SERS enables tracking, detection and picturing in vitro and 
in vivo. SWCNTs with semiconducting oxides with energy gaps of the range of 
1.1 eV exhibit fluorescence in the near IR to normal IR which spans the substance 
transparent window and is thus appropriate for tomography in biological systems 
(Fig. 1d). Positron emission tomography (PET) imaging is using the SWCNT due 
to their intrinsic physicochemical features. SWCNT within the nanowires samples 
or gadolinium attached CNT is being used in MRI. The materials analysis shows 
the uniqueness, potential and limitations of SWCNT-based bio-imaging in this 
paper, which summarises recent achievements in employing SWCNTs in various 
biomedical imaging applications. 
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Fig. 1 CNTs in different biomedical imaging techniques
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2.1 Fluorescence Imaging 

Fluorescence imaging with near-infrared dyes is an important part of scientific study 
in the medical sector of diagnosis applications. The depth of light penetration in 
fluorescence imaging will become a critical issue in the development of future appli-
cations. The scientists and industrial researchers have been creating and applying 
fluorescent probes with high-energy transfer and emission of wavelengths that fall 
within the biologically crystalline nature of NIR window to overcome complication 
[19–22]. In the biomedical imaging application, nature of the low quantum yield is 
a major barrier for further approach. Several recent studies focused on developing a 
simple sol–gel separation process to enhance intrinsic semiconducting and SCWNTs 
with unique resonance absorption and emission at 800 and 1200 nm. To generate 
even ‘brighter’ fluorescence, further advancement in this approach requires improved 
SWCNT specimens with high quantum yield [24–27]. The research is needed for 
imaging with various and emission wavelengths. Williams first described cyanine 
dyes in 1856, when he used olefinic bonds to join two nitrogen-contained heterocy-
cles, resulting in a complicated conjugated system with region. Until now, cyanine 
derivatives have been widely used in laser dyes, photographic sensitisers and fluores-
cent probes. The fluorescence emission of the majority of the observed cyanine dyes 
was in the long-wavelength region 550–767 nm with CY3 to CY7. Those dyes were 
great platforms for fluorescent probes design due to low damage to biosamples from 
deep penetration on tissues. Furthermore, the water solubility of the ammonium salt 
moiety was adequate for bio-studies. Fluorescein dyes (FITC or FLUO) and cyanine 
dyes (Cy3 (indocarbocyanine) and Cy5 (indodicarbocyanine) are often employed. 
Cy3 (excited at 550 nm and emitting at 570 nm) absorbs green light and emits red 
light, whereas Cy5 (excited at 650 nm and emitting at 670 nm) absorbs red light 
and emits infrared light. Although fluorescent microscope filters for detecting Cy5-
labelled probes are available, cells hybridised with such probes are difficult to spot. 
As a result, Cy5-labelled probes should only be used if the hybridised biomass is 
inspected using a confocal laser scanning microscope (CLSM) with suitable lasers. 
Fluorescent probes generating green light (exciting at 592 nm, emitting at 520 nm) 
are frequently employed in conjunction with Cy3-labelled probes because they are 
easy to identify using fluorescence microscopy. Bioproteins, anti-agents, peptides, 
RNA probes and other polysaccharides are labelled with cyanine dyes and employed 
in different detection techniques of fluorescence imaging [28, 29]. 

2.2 Raman Imaging Analysis 

The inelastic scattering of photons is a phenomenon that involves the ejection of 
photons with shifting of wavelength under light radiation. Without the use of an 
amplification mechanism like SERS, the natural Raman effect signals of molecules 
are quite weak in normal conditions. In resonance Raman scattering, the scattering
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efficiency increases were matched with the energy required for the free electron 
shift from the ground state to excited bands, Raman spectra of SWCNT are exam-
ined, and those with excitation resonance exhibit strong resonant. Helleret al. used 
SWCNTs’ intrinsic Raman characteristics for live cell imaging for the first time in 
2005 [30, 31]. For live cell tracking research, DNA oligonucleotide wrapped with 
CNT was used as markers. SWCNTs exhibit a small G-band peak with FWHM of 
2 nm, permitting higher multiple wavelength and excitation wavelength of 785 nm, 

and scattered photons within range of 8920–8970 Ǻ are both in the NIR transparent 
opening in Raman imaging, which has minimum space tissue absorption and back-
ground of spontaneous fluorescence emission. For single peak intensity mapping, 
scan wavelength of five was captured at once by only one laser stimulation for 
analysis of five separate objects. SWCNT Raman peak intensity tags outperform 
frequently applied cyanine organic dyes and rhodamine derivatives extensively. As 
a sequence of the Stokes shift of SWCNT, photoluminescence and Raman scat-
tering spectra enable for mapping the biological sample auto-fluorescence, which 
fluctuates in spot over biological samples [32, 33]. Furthermore, under imaging 
conditions, the Raman signals of SWCNTs are highly robust without quenching or 
washout. Using chirality/diameter-separated SWCNTs could potentially yield even 
more Raman hues. SWCNTs SERS techniques were boosting the Raman signals 
even more, boosting sensitivity detection and cutting imaging time [34, 35]. 

2.3 Photoacoustic (PA) Imaging 

The laser beam can be absorbed by biological sample due to molecules, causing 
transitory thermal expansion and ultrasonic emission, which was captured by an 
ultrasound microphone and used to create two- and three-dimensional images. By 
removing the phenomenon of absorption and emission of light by fluorescence 
imaging, PA imaging identifies the sound alternatively by light, demonstrates better 
tissue penetration and enhances resolutions in a better way. In PA imaging, several 
nanomaterials with significant absorbance in the NIR range are suitable brightening 
agents [36–38]. Because of their significant NIR absorbance, both MWNTs and 
SWCNTs have been used as photothermal agents. Nanotubes, on the other hand, are 
good contrast agents for photoacoustic imaging due to their great NIR absorption. A 
thin gold layer and few organic molecules with absorbance of NIR were connected 
with SWCNTs to boost their absorbance in the NIR region, further increasing the 
light sensitivity of the SWCNTs photoacoustic signal. To improve the intrinsic PA 
signals of SWCNTs, Zharov and colleagues generated a new methodology [36, 37, 
39, 40]. The researchers used a small layer of gold encapsulated on the surface of 
SWCNTs to boost their optical density in the near-infrared range and then coupled 
the GNTs with antibodies that precisely target the endothelium of murine lymphatic 
arteries. Using extremely low laser fluency levels of a few mJ/cm2, the obtained GNTs
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are provided. The lymphatic endothelia receptor was also mapped using antibody-
conjugated GNTs. In both cases, the photoacoustic and photothermal signals in the 
antibody-conjugated group outperformed the endogenous background and were pref-
erentially located in the wall of lymphatic vessels, whereas the GNTs without anti-
body conjugation produced only random signals and no signals in the lymphatic wall 
of vessels. GNTs were later used to detect circulating tumour cells (CTCs) under PA 
imaging in a later study by the same group. Folate conjugated CNTs were employed as 
the PA contrast agent to photograph CTCs in vivo after being collected by an external 
magnetic field, taking advantage of GNTs’ high PA signals. Loaded indocyanine 
green (ICG) molecules on PEGylated SWCNTs using indocyanine green (SWCNT– 
ICG) in particular demonstrated robust and distinct absorbance spectra, allowing 
and enabling sensitive multicolour PA imaging in vivo. As a result, CNTs with high 
NIR merocyanine dye absorption are attractive photoacoustic imaging reagents. In 
addition to their intrinsic optical absorbance, CNTs could be used as a versatile nano-
platform for improved or multiplexed photoacoustic imaging by linking them with 
other light-absorbing nanostructures or molecules, although SWCNTs are used in 
the majority of already published CNT-based photoacoustic imaging probes. 

2.4 Magnetic Resonance Imaging Technology 

Magnetic resonance imaging (MR imaging) is clinically relevant than optical-based 
imaging techniques because it allows for complete body imaging including depth 
limit. T1 (positive) and T2 (negative) contrast agents are used in MRI (negative). 
During the synthesis of CNTs, metal catalysts (e.g. Fe, Co) are frequently utilised. 
Faraj et al. examined the biodistribution of SWCNTs by detecting MR signals in vivo, 
taking use of the iron impurities included in SWCNT [42, 43]. Faraj et al. used 
in vivo MR imaging to analyse the biodistribution of SWCNTs in animals using the 
ferromagnetic properties of metal impurity containing SWCNT samples. The pres-
ence of SWCNTs was shown to be closely related to the MR contrasts introduced 
by metal nanoparticle contaminants in numerous organs. Another recent investiga-
tion by other groups found that increased iron oxide nanoparticle concentrations in 
SWCNT samples did not always result in a better T2-shortening impact. T1 contrast 
agents made of carbon nanotubes can also be employed in MR imaging [41]. In 
magnetic resonance (MR) imaging of SWCNT-labelled merocyanine, metallic cata-
lyst nanoparticles connected to nanotubes can be used as a T2 contrast agent [44]. 
SWCNTs with proper surface functionalisation could be used as multifunctional 
nano-probes for stem cell labelling and multi-modal in vivo tracking, according to 
this research [45–47].
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2.5 Nuclear Imaging 

The same group also developed an alternative method for tracking the long-term 
biodistribution of MWNTs that used 14C instead of 125I [48]. Several groups have 
also reported in vivo tumour imaging in mice models using radionuclide labelled 
SWCNTs [49, 50]. This was possible due to the particular anti-CD20 antibody was 
conjugated with 111 in labelled SWCNTs and applied to focus on human Burkitt 
lymphoma in addition to RGD peptide. Radioisotopes could be introduced into 
nanotubes for radiolabelling instead of using standard chelation chemistry to create 
radiolabelled CNTs [51, 52]. They can be efficiently triggered by light and cause 
target cell death. Cyanine dyes trigger cell death predominantly therapy since it 
minimises an overabundance of inflammation. The dyes can be further changed, for 
example, by introducing organic or other groups, to alleviate the difficulty of low 
water solubility. Sensitisation of cyanine dyes by increasing their toxicity in an acidic 
environment, which is typical of cancer fluid, can improve cancer tissue. Merocya-
nines are also noteworthy for their unique immunological regulatory features, partic-
ularly their capacity to interact with lymphocytes. Merocyanines are now being tested 
in preclinical research for the treatment of leukaemia. Current research involving a 
variety of cyanine dyes suggests that they may help to replenish the permanently 
used pool of agents in PDT. 

3 Merocyanine Dye in Biomedical Imaging 

Merocyanine dyes have a bright future in optical devices, dye sensitised solar cell 
and hydrogen fuel energy, dye laser technology and quantum dots [53]. They have 
been used in a variety of scientific and technological fields. Their potential to be 
used as light sensitisers in PDT and as photoradiation sensitisers in different tumour 
treatment has been investigated completely. Merocyanine dyes show promising as 
activity in cancer photodynamic medical treatment (PDT) sensitisers. In particular, 
it can inactivate neoplastic cells in leukaemia, lymphoma and harmful viruses in 
bone marrow and blood fractions. Merocyanines (I) are naturally unsymmetrical 
polymethine dyes that are made up of two fragments: a N2as donor and an O2 

acceptor linked together by an ethylene or polyethylene chain. The deep colour is 
caused by the transfer of energy from donor to acceptor along the polyethylene chain, 
which is dependent on chain length as well as the type of the donor and acceptor 
groups, which are commonly carbo- or heterocycles (II) [52, 54]. 

Merocyanines, also known as photomerocyanines, are produced when spiropyrans 
are exposed to UV light or heated. They have been proposed for memory devices 
and optical switches, extraction of metal ions, photo-controlled ferromagnetics, and 
biological things due to their photo- and thermochromic characteristics [55–57]. 

Several dyes have been reported for use in cancer treatment. Merocyanines showed 
remarkable selectivity for cancer cells, giving hope for low-invasive lymphoma and



1134 S. Ranjitha et al.

leukaemia [58–60]. The chemicals are currently being tested in preclinical research as 
a leukaemia therapy. The MC540 dye’s extraordinary permeability to leukemic leuko-
cytes and immature haemopoietic precursors prompted substantial research. There 
are two disadvantages of the group due to maximum light absorbance beyond NIR 
(556 nm) limit and particularly oxidation of phospholipids in the plasma membrane 
[61]. 

Merocyanines are still being studied as a possible treatment for haematological 
cancers. In vitro testing of a merocyanine rhodamine complex on K562 leukaemia 
cells demonstrated a decrease in cancer cell viability. Merocyanines are being tested 
as an antibacterial therapy against Staphylococcus aureus in addition to cancer 
treatment. 

Despite their importance, the current research is limited to traditional dyes of 
general structure II. Brooker and colleagues created merocyanines with a variety of 
terminal groups, resulting in dyes with intrinsic polarities ranging from low polar 
molecules to strongly polar molecules. As the solvent polarity increased, the solvent 
effect can be utilised to create a dye solution with a specific wavelength and strength 
of absorption. Merocyanines’ solvatochromic characteristics have been extensively 
researched. 

Merocyanines are ideal model compounds for developing notions on the elec-
tronic structure of conjugated systems and evaluating the potentials of contemporary 
quantum chemical computations as donor–acceptor polyenes. The donor (D)–spacer 
(S)–acceptor (A) design of an organic sensitiser allows intramolecular charge transfer 
(ICT) following light excitation. To collect photons primarily in the UV–visible and 
NIR ranges, approaches to high efficiency organic dyes made by double bonds were 
added to key chromophores to increase the π conjugation length and to extend the 
absorption zone in the red shift region. The one with anthraquinone backbone has 
gained greater attention among the examined sensitisers since it has a remarkable 
solar–to–energy conversion efficiency because it has conjugation to red shift the 
absorption spectra [62] 

Würthner and Yao produced and investigated the effects of imide functional 
groups on hydrogen bonding to melamine receptors in various merocyanine colours. 
They showed that the ditopic melamine’s triple hydrogen-bonding coordination helps 
dissolve the extremely dipolar dye even in nonpolar solvents like methylcyclohexane. 
Colloidal assemblies are generated via supramolecular polymerisation via hydrogen 
bonding to melamines and dipolar aggregation between the dyes, according to the 
optical characteristics of the resultant solutions. The temperature dependency of the 
electronic spectra of merocyanines has also been discovered in practical applications. 
In thermal printing and other thermographic procedures, certain thermochromes were 
utilised to safeguard securities (Fig. 2).

In this study, researchers used merocyanine dyes doped with SWCNT, each 
with a distinct combination of donor and acceptor functional groups, to investi-
gate the orbital structure–performance relationship and identification of the colours 
that perform best for various biomedical imaging applications. The formation of 
different synthetic dye agents and dye chemistry breakthroughs has substantially 
increased the possibility for the manufacture of innovative pharmaceuticals based
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Fig. 2 Donor–acceptor transformation of CNT with merocyanine

on dyes and dye-containing substances with medical applications. The controlling 
system multi-neuronal activity in central nervous system has been analysed by using 
a number of high-voltage-sensitive cyanine dyes and merocyanines with various 
techniques [131]. It must be proposed to employ a simple in vitro approach to screen 
photoelectric dyes for use in retinal prosthetics. 

4 Cellulose Acetate Films Properties 

The most important cellulose ester is cellulose acetate (CA). It is a durable, simple-
to-work-with thermoplastic with outstanding clarity and gloss. It has a low haze 
rating, a high moisture vapour transmission rating, but a low water permeability 
rating, and is easy to cut and tear. It can also withstand organic and inorganic weak 
acids, hydrocarbons, vegetable oils and other chemicals. Cellulose esters are mixed 
more to promote elasticity such as butyrate–acetate and propionate–acetate that are 
generated, which have improved flexibility, hardness and corrosion resistance. Cotton 
linters are the most prevalent source of cellulose. The fibres are combined and treated 
with glacial. The hydroxyl groups of cellulose are converted to acetyl groups during 
acetylation, resulting in a far more soluble product. Water is introduced in the next 
stage to stop the reaction and partially hydrolyse the triacetate [63]
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With a degree of acetylation (degree of replacement of hydroxyl groups) of 
roughly 2.4 and 2.9, cellulose acetate can be divided into two types: cellulose diac-
etate (CDA) and cellulose triacetate (CTA). The physical and mechanical properties 
of the two forms of CA differ. The permeability to gas and moisture reduces as the 
acetyl concentration rises, whereas chemical resistance, glass transition tempera-
ture and modulus rise. The most common cellulose mixed ester is cellulose acetate– 
butyrate (CAB). This resin improves the flexibility, toughness and moisture resistance 
of films. CAB films feature excellent clarity, scratch resistance and UV resistance, 
as well as strong dimensional stability. 

5 Materials and Methods 

Merocyanine dye of CY 334 (C12H17N3OS) and CTA film were purchased from 
sigma Aldrich chemical [check correct or not] with purity of 100%, and methanol 
was used as solvent for the cellulose triacetate (CTA) film preparation. SWCNT was 
purchased from Shilpent chemicals with purity100%, with diameter 5–20 nm and 
length of the tube 10 μm. 

5.1 Preparation of Carbon Nanotubes 

It is required to prepare a well-distributed SWCNT colloidal solution in order to 
manufacture consistent SWCNT networks. For purification and dispersion, we used 
the following procedure. SWCNTs (Iljin Nanotech’s ASP-100F) were sonicated in 
nitric acid at 50 °C for 30 min to purify and exfoliate from bundles [10, 11]. The 
SWCNTs were then neutralised with deionised (DI) water and captured using a 
vacuum filtration process on a membrane filter (millipore, 0.2 mm pore size, 47 mm 
diameter). The prepared SWCNTs were sonicated in ethanol for 10 h to solubilise 
them. 

5.2 Preparation of Cellulose Triacetate Film (CTA) 

Hundred grams of cellulose triacetate in a one litre wide mouth glass stopper bottle is 
added [slowly?] with a 500 ml of solvent mixture (methylene chloride and methanol 
by 9:1 ratio). In a one litre wide mouth glass stopper bottle, weigh 100 g of cellulose 
triacetate and add 500 ml of solvent combination (methylene chloride and methanol 
in a 9:1 ratio). A stopper is used to close the bottle’s mouth. When the material has 
thickened, place the bottle on a tumbling style shaker and shake until the solution 
is complete. The obtained viscous solution was then cast on an Au-coated glass 
plate and dried at room temperature, yielding clear cellulose triacetate (CTA) films.
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Merocyanine dye solution was dip-coated onto cellulose triacetate (CTA) films. The 
obtained films will be referred to as merocyanine dye films from now on. 

5.3 Film Coating on CTA Film 

The following processes were utilised to make CTA film using. The glass substrate 
is dropped in the SWCNT gel solution in the beaker at a particular space, be pulled 
out of the solution at a constant withdrawal velocity. As illustrated in Fig. 3, a  
motor was added on the spin coater to allow movement of the platform different 
direction and control its pace. During the process, SWCNT molecular nanostructures 
were generated on the plate. To create asymmetrical cyanine dyes/CNT nanohybrids, 
estimated amounts of dyes and CNTs were sonicated in an ice bucket, followed by 
ultracentrifugation at high speed to remove undispersed CNTs. 

CNT/asymmetrical cyanine dye nanohybrids are fabricated by the following ideal 
parameters: a dispersal solution of 0.5 mL was made with 0.1 mg/mL CNTs and 30 M 
asymmetrical cyanine dyes. The solution was sonicated for 30 min with a microprobe 
(Q Sonica, Q700), with 2 s of on and 5 s of in ice pulses. The supernatant, which is 
the dark CNT-coloured dispersion, was removed into a clean tube, and it was labelled 
as CNT/dye dispersion after being ultra-centrifuged at 14,000 rpm for 10 min. The 
sample was put into a Microcon centrifugal filter device and spun at 14,000 rpm 
until the filtrate volume was decreased to roughly 50 mL in order to eliminate the 
unbound dye molecules. The solution that remained in the filter device was extracted 
and diluted with water to 400 mL.

Fig. 3 Preparation of SWCNT/merocyanine film in dip-coating technlogy 
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6 Results and Discussion 

6.1 Optical Analysis of UV–Visible and Fluorescence 
Spectral Analysis 

Figure 2 shows the change in the electronic structure of dye molecules after attaching 
to CNTs using UV–visible spectroscopy. In this wavelength range, are there any 
merocyanine dye/SWCNT * 0.05 M dye/SWCNT (0.010 M) dispersions that are 
compensated for CNT absorbance? While the unbound dye has the highest intensity, 
when the dye is bound to SWCNTs, the intensity of the absorbance drops. The 
molar extinction coefficient was modified due to covalent interaction between CNTs 
and merocyanine dye because the dye concentrations were equal. The interactions 
between dye and SWCNT are thought to be stronger because the dye/SWCNT has 
the biggest modification in molar extinction coefficient of dye [64, 65]. 

Figure 4a shows the UV–visible and fluorescence spectra of merocyanine dye-
coated carbon nanotube surface in 400–700 nm. It is observed that the bands were 
shifted hypsochromic which corresponds to the first electron transition. The absorp-
tion spectra for merocyanine dye-coated carbon nanotube surface show that the 
absorption takes place at the range of 500–600 nm corresponding to π –π*electron 
transition from lower state (s0) to the first singlet high excited (s1)state [23].

The optical transition from the ground state to lower one excitation states gives 
rise to a stronger absorption band for higher concentration of merocyanine dye-
coated carbon nanotube surface compared to lower concentration [3]. The transition 
is allowed only between the ground state and the lowest one-exciton states, resulting 
a sharp, intense absorption band with broadening of dye molecules. The increase 
in the amplitude of the peak in the absorbance spectrum formed by increase in the 
concentration of the dye which is the requirement for optical device applications is 
observed [66]. 

As the concentration grew, the absorbance increased; however, values over 
0.10 M [results precipitation] resulted in precipitation in the aqueous dispersion. 
The creation of H-aggregates or sandwich-like configurations of the dye molecules 
within SWCNT nanorods was linked to the hypsochromic shift in the absorption 
spectra of merocyanine. The emergence of a new strong red-shifted band at 590 nm 
was observed in the film. This new red-shifted peak indicated the production of J-
aggregates within the needle-like nanostructures. The absorption spectra’s broadness 
over the visible spectrum and into the near-infrared might be considered particularly 
crucial for their use as photosensitisers in biomedical imaging systems [67, 68]. 

Because of intermolecular quenching or surplus molecules that act as filters, aggre-
gation of dyes utilised as sensitisers in DSSCs might result in lower conversion effi-
ciency. To improve resolution, the ability to reduce or manage aggregation is critical 
[20, 69–75].
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Fig. 4 a Absorption spectra for merocyanine dye coated on carbon nanotube surface, b fluorescence 
emission wavelength spectra of peak intensity for merocyanine dye coated on carbon nanotube 
surface

6.2 Photoluminescence Spectrum (PL) 

The PL spectral analysis of the interaction of merocyanine dye with carbon nanotube 
is shown in Fig. 5. The results show that the excitation–emission with x-axis repre-
sents the emission wavelength and y-axis of wavelength for merocyanine dye and 
merocyanine dye-coated carbon nanotube surface [76–78]. The PL emission peaks
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are measured from within range of 500–800 nm. The new emission band is centred 
at 550 nm. The intensities of the emission band increase because of the formation of 
a nanostructured complex of the dye. The intensity of the peaks is used to monitor 
the amount of dye associated with carbon nanotubes. 

At greater concentrations of the dye in the mixes, the merocyanine showed promi-
nent peaks of aggregates with PL at EM = 595 and 635 nm (bands) in the range of 
EM = 670,770 nm. The strength of the bands is extremely low in the wide range 
of EX in the PLE maps, falling below the limit for signal restoration, and the peaks 
begin to fade several hours after mixing. The peaks may be distinguished adequately 
at short-wavelength excitation due to the modest contribution of the dye merocya-
nine PL in the spectra, as illustrated above for the PL peak at EM = 595 and 635 nm 
with merocyanine with SWCNT (0.05 M and 0.10 M) [79–81]. Low-intensity long-
wavelength PL features could represent the entire contribution of unstable particles. 
We found non-permanent short-lived PL shoulders (bands) in the range of EM = 
670–770 nm (Fig. 5) at greater concentrations of the dye in the mixtures, in addition 
to prominent peaks of aggregates with PL at EM= 595 and 635 nm (from Fig. 5). Due 
to the modest contribution of the merocyanine, the peaks may be identified properly 
at shorter wavelength excitation. The more the quantity of nanotubes, the higher the 
concentration of CNT with merocyanine in the mixture. Nanotubes in the shape of 
needles have small bended components. The first is at Emax = 595 nm, with a minor

Fig. 5 a Photoluminescence spectra of peak intensity for merocyanine dye coated on carbon 
nanotube surface 
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red shift in comparison with monomer emission forms right after mixing. Further-
more, the SWCNT’s PL peaks are quenched in the presence of cyanine chirality 
at EX = 650 nm and EM = 690 nm in Fig. 5, implying that the dye molecules 
alter the SWCNT’s intrinsic qualities. The inclusion of surfactant at the premicellar 
concentration caused the aggregates to generate red-shifted wavelength photolumi-
nescence peaks at 596, 636 and 695 nm. The aggregation of dye cyanine molecules 
has no effect on the energy transfer from the dye to the nanotubes, which amplifies 
near-infrared photoluminescence from the nanotubes [82, 83]. 

6.3 Raman Spectroscopy Analysis on Film 

Among the different optical spectroscopic measurement, the most impressive strategy 
to acquire data about essential properties of the carbon nanotubes and dyes is Raman 
spectroscopy. Raman estimations were performed utilising a helium–neon laser 
working at a frequency of 632.8 nm (1.96 eV) and info force of ~ 300 μW at  
surface of merocyanine with SWCNT between the forces. The proportion between 
the D and G groups is normally utilised for assessing the defectivity of the carbon 
organisation. The sharp bands at 1300, 1592 and 2600 cm−1 compare to the D-band 
(imperfection), G-band and G'-band, separately. The D-band is an after-effect of a 
photon-imperfection cooperation. The G-band is expected to be the longitudinal and 
less significantly the circumferential. The G'-band originates from a photon–second 
photon association [84–86]. 

The band around 3392.79 cm−1 is recruited to N–H extending vibrations [6, 11], 
while the solid groups at 1548.84 and 1224.8 cm−1 are endowed to C = N extending 
vibrations and C–N symmetric twisting. The groups at 1668.43 and 1099.43 cm−1 

are chosen for C = C stretching and C–N stretching vibrations [87–89]. The C–N 
symmetric extending vibrations are engaged to the groups at 1384.89 cm−1. The band 
at 929.69 cm−1 is assigned to N–C–H symmetric bending vibrations. The presence of 
cyanine vibrational peak intensity at 2231 cm−1 for Fig. 6 and at 2216 cm − 1 due to 
the formation of the nanoconjugate-shaped structure. Besides, the presence of another 
trademark groups in merocyanine at 1200–1096 cm−1 confirms the appearance of 
merocyanine atoms in nanotubes [90].

6.4 AFM Analysis of Morphology 

The thin-film surface morphologies were studied using AFM measurements. The 
top texture of dye/SWCNT on CTA thin films made using dip-coating method is 
examined using an AFM instrument. Figure 7 shows the following images: the 
surface morphology of the thin films was roughest, and the pattern of particle 
alignment became compact as the MWCNT concentration in the MWCNT/TiO2
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Fig. 6 Raman spectra of peak intensity for merocyanine dye coated on carbon nanotube surface

sample increased. (a) Merocyanine dye, (b) 0.05 g, (c) 0.10 mg (7a, 7b), demon-
strates that the texture of the thin films became rougher, and the particle arrange-
ment became compact as the MWCNT aggregation in the MWCNT/TiO2 sample 
increased. Figure 3c depicts an AFM image of a dye-SWCNT network after transfer 
to the CTA film, where the dye clumps dominate the larger-scale surface morphology. 
CNTs are graphite tubes with a tubular form. The tubes were at least two layers thick, 
and typically many more, with an outside diameter of 35–25 nm. The roughness 
rises as more MWCNT is applied, with wavelengths of 17 nm for 0.05 mg, 23 nm 
for 0.05 mg and 26 nm for 0.10 mg. The AFM topography reveals an extremely 
compact and rough surface; all films have rms values in the 10–25 nm range. AFM 
was used to examine the topography and upper surface of the CNT/dye thin film. 
The dye dispersed tubes are more isolated and exhibit signs of a considerable surface 
coating than the raw tubes, which are grouped together [91].

7 Analysis of Surface Morphology Using SEM and TEM 

Surface morphologies of nanoporous CNT/merocyanine films are seen by SEM and 
TEM [6]. The films were made with a diluted ethanol solution that served as both a 
solvent and a soft template. The CNT/merocyanine nanoparticles interact well thanks 
to this method of production. Pore development within the nanocomposite thin films 
is also improved by the diluted ethanol. Furthermore, owing the significant chemical
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Fig. 7 a and b AFM morphology of merocyanine dye coated on carbon nanotube surface

absorption, the acid-catalysed modification approach aids in the creation of contacts 
between CNT and dye nanoparticles [92] (Fig. 8). 

Although this method of production reduces the nanocomposite’s crystalline 
development, it nonetheless improves dye absorption for biomedical imaging appli-
cations. The dye and CNT nanoparticles in all of the annealed samples were irreg-
ularly organised and shaped. The thin-film nanoparticles were attached to a non-
crack surface at random. We also discovered that the morphological structures of the 
films were altered by temperature changes. The dispersion of the CNT/merocyanine 
nanoparticles was aided by the addition of diluted ethanol figure title. In turn, highly 
dispersed films aided electron transit within the films. Huge particles of roughly 
10 nm to 20 nm were produced by annealing the films at high temperatures, resulting 
in large surface areas with high porosities inside the films for dye absorption (Fig. 9).

Fig. 8 SEM morphology of a merocyanine dye, b SWCNT with dye 0.05 M and c SWCNT with 
dye 0.10 M 
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Fig. 9 TEM morphology of a merocyanine dye, b SWCNT with dye 0.05 M and c SWCNT with 
dye 0.10 M 

7.1 Nonlinear Optical Property 

Many organic compounds have recently been created, and their nonlinear optical 
(NLO) properties have been explored for future optical signal processing and optical 
computer applications. A collection of compounds having interfacial molecular 
electro-optical transfer (CT) interactions, which include donor on one side of a 
molecule and acceptor on the other, has been found to have significant molecular 
hyperpolarisabilities [93, 94]. We should explore two alternative chemical designs 
to achieve strong charge transfer interactions in atoms to utilise materials with 
major changes NLO: strong electron donor–acceptor pairs and efficient molecular 
π-conjugated chain structures. Since many compounds with aromatic rings as conju-
gated chains were produced due to their chemical stability, method of synthesis at 
room temperature acts as NLO compounds with ethylenic double bonds. The ICT 
nature of two kinds of molecular structures acts as a key impact in the peak shifts in 
absorption spectrum and the HOMO–LUMO energy levels, according to both elec-
trochemical and UV–visible spectra studies. The novel cyanine dyes were discov-
ered to have high water solubility, and these new functional compounds surprisingly 
maintained the features of the natural cyanine dye extending their wavelength by
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absorption at NIR range. In recent years, many organic dyes (NLO) materials have 
sparked a lot of attention by absorbing nature in near-infrared (NIR) range because 
of their promise in critical applications such as optical power limitation, two-photon 
microscopic imaging, optical data storage and photodynamic therapy. Porphyrins, 
fullerenes and organometallic compounds are examples of oil-soluble materials that 
have been studied previously. The limited water solubility of these organic nonlinear 
conjugate compounds, however, limits their biological applicability. Merocyanine 
dyes have attracted a lot of attention because of its prospective advantages, such as 
high molar extinction coefficients, higher-order polarisabilities, superior solubility 
in water and tunable optical properties. The C–C and C–N double bonds are similarly 
effective as conjugated chains for NLO materials; however, the C–C triple molecular 
hyperpolarisabilities are higher. Sheng et al. demonstrated that one of the benefi-
cial ways for improving the NLO characteristics of porphyrins is to develop good 
p-electronic complexes [38]. It was discovered that changing the relative acceptor 
monomers of these dimers can improve their NLO characteristics. Based on the 
aforementioned phenomenon, these experimental results and prior papers have led 
us to believe that strong electron-removal phenomenon and π conjugation length 
can alter NLO characteristics. The optical characteristics of related compounds were 
clearly varied, implying that various NLO properties will be reported. However, 
there are many issues with NIR absorbing range functional cyanine dyes, such as 
limited fabricated products, difficulty in synthesising process and so on. As a result, 
today’s research in this subject is focused on how to broaden the scope of cyanine 
dyes maximum and improve their application performance. For biological detection 
reporters, the ionised cyanine dye gave high water solubility. This enables the dye 
molecules to function as effective nonlinear optical molecules in the near-infrared 
range, which are predicted to be utilised in biological applications in the future. 
The effect of cyanine dyes on the electro-optical waveguides, phase modulation and 
photorefractive index properties of a composite composed of CTA and closed single-
walled carbon nanotubes was investigated in this article (SWCNTs). This allows for 
charge carrier photogeneration, and photosensitivity in the NIR range up to 2000 nm 
and made changes inherent property of SWCNT acts as third-order nonlinear optical 
chromophores. 

8 Conclusion 

The synthesis of a new type of NIR absorbing nanomaterials, anionic merocyanine-
based SWCNTs nanostructure prepared by dip-coating method and analysed by UV– 
visible analyses (TGA), FT-Raman spectroscopy, fluorescence spectrum analysis, 
atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed 
the covalent attachment of the merocyanine moiety to the carbon nanotubes. Further-
more, using Raman and UV–visible NIR spectroscopes, the electronic properties of 
the nanoconjugates were examined, confirming the covalent bond between the elec-
trochemical active species. The new hybrid conjugated nanomaterials have a pleasing
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absorbance in the near-infrared region, paving the path for future optoelectronic and 
biological imaging applications. Fluorescence imaging technology is being used 
in more research to assess early stages of cancer. As a result, a promising novel 
method for detecting the initial stages of different cancer and other diseases using 
the chemical presented has been established. 
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Chapter 41 
Role of Carbon Nanostructures 
as Nano-Theranostics Against Breast 
and Brain Cancer 
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Sang-Hyun Moh, and Anjali A. Kulkarni 

1 Introduction 

Cancer is caused due to agglomeration of genetic and epigenetic mutations that 
result in altered translation (protein synthesis) or post-translational modifications. 
Consequently, the number of proteins synthesized will increase, decrease, or perform 
faulty functions. It leads to the secretion of certain molecules which are either varying 
in amount or not present in normal individuals. These molecules which indicate 
the fluctuated bodily metabolism, biochemical reactions, and physiology are the 
molecular biomarkers. These include cDNA, mRNA, altered proteins, and other 
metabolites [25, 70, 77]. Hypothesis-driven as well as technology-driven approaches 
can be utilized for biomarkers discovery [70]. Nanomaterial-based biosensors could 
be of great help in cancer biology as these are highly accurate and quick in cancer 
detection, even before the appearance of symptoms and will not only save many 
lives but also greatly reduce the financial burden of cancer treatment. Cancer is 
one of the major drivers of deaths in developed countries and is fast becoming a 
cause of concern in developing countries as well. The contemporary therapies carry 
multiple side effects and higher chances of cancer recurrence. Therefore, oncologists 
are focusing on developing procedures with bare minimum side effects. Utilizing
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nanomaterial-based systems can be a step in that direction. In the present review, 
we would like to concentrate on the high potential of nanomaterials in biomedical 
applications, especially carbon nanomaterials (CNMs) with special reference to drug 
delivery. 

1.1 Breast Cancer 

Breast cancer continues to haunt the women across the globe. Year 2020 alone 
contributed 2.3 million new cancer cases with 6,85,000 deaths globally (Fig. 1) [82]. 
It attained the status of the most prevalent cancer by December 2020 with 7.8 million 
existing breast cancer patients’ during the last 5 years [101]. Broadly, breast cancer 
is clinically divided into two groups [48, 59]: 

(a) Hormone-Responsive (HR+) phenotypes- Luminal A: ER/PR (HR+) & ERBB2 
(−), Luminal B: ER/PR (HR+) & ERBB2 (+) 

(b) Hormone Irresponsive (HR−) phenotypes- ERBB2 enriched: ER/PR (HR−) &  
ERBB2 (+) and triple-negative breast cancer (TNBC): ER/PR (HR−) & ERBB2 
(−) 

Hormones are biochemical messengers in human body. Female hormones 
estrogen and progesterone are required for development of female sexual charac-
teristics, regulation of female menstrual cycle and pregnancy. These hormones also 
promote growth of hormone-sensitive breast cancer [67]. About 65–75% of breast

Fig. 1 Estimated number of incident cancer cases and deaths globally for both the sexes and all age 
groups in 2020. Breast cancer continues to be the most prevalent one followed by lung, colorectum, 
and prostate cancers. The yellow bar represents number of incident cancer cases while the gray bar 
represents number of deaths (Data Source GLOBOCAN 2020, Global Cancer Observatory: http:// 
gco.iarc.fr/) 

http://gco.iarc.fr/
http://gco.iarc.fr/
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cancer patients are estrogen/progesterone receptors (ER/PR) positive at diagnosis 
[37, 48]. The hormone-responsive breast cancer cells contain hormone receptor 
proteins. These receptors get activated upon binding with hormones and lead to 
specific gene expression that promotes cancer cell growth [50]. The second most 
prevalent breast cancer cases are ERBB2 (+) type, that was previously known as 
HER2 (+) breast cancer. ERBB2 (avian erythroblastic leukemia viral oncogene 
homolog 2) gene translates a receptor tyrosine protein kinase ERB-2 from epidermal 
growth receptor family and is found to be amplified in approximately 20% of the 
breast cancer cases [92]. Different from this league, triple-negative breast cancer 
lacks receptors which are found in other breast cancer types. It is found in approx-
imately 15% of the patients, has been poorly understood, and is associated with 
destitute prognosis [21]. It carries a very high risk of relapse during first 5 years 
from diagnosis [28]. Four stages have been defined for breast cancer. Stage I has 
been characterized with solid tumor lesser than 2 cm while stage IV with metastasis. 
Stage I HR (+) and ERBB2 (+) breast cancer patients have approximately 99% and 
94% 5-year survival rates, respectively, while triple-negative breast cancer patients 
have approximately 85% 5-year survival rate. Notably stage IV HR (+), ERBB2 
(+) breast cancer patients have overall median survival rate of 5 years while TNBC 
patients have approximately 1 year [9, 83]. 

1.2 Brain Cancer 

Nervous system (NS) cancers account for just 3% of all cancers worldwide, but still 
impose a greater risk on the life of patients, being the most dangerous form; due 
to drug delivery challenges posed by the presence of blood–brain barrier (BBB), 
cerebrospinal fluid (CSF) barrier, different morphological subgroups with different 
behavioral patterns and are the toughest to treat [13, 16]. 

According to WHO report, to achieve the comprehensive control of cancer, acces-
sibility to prompt early diagnosis and effective treatments for cancer need to be 
improved [80]. 

Glioblastoma (GBM) is the most prevalent malignant brain cancer in adults and 
12–15% of all intracranial tumors and approximately 50% of the astrocytic tumors 
belong to this class. Despite the most advanced present therapeutic regimens, signif-
icant number of patients suffer relapse due to the GBM tumor heterogeneity [84]. 
The incidence of brain cancer is rising drastically in India. According to a Globocan 
2020 report, presented by ‘International Association of Cancer Registries’(IARC) 
associated with WHO, around 28,142 new cases of brain tumor are reported annu-
ally in India and the death toll is approximately around 24,003 per annum. It affects 
almost all age ranges between 7 and 78 years (~ 42.38 year’s average). Worldwide, 
out of all cancer cases, 1% cases are of brain cancer, i.e., approximately 3 lakhs [82]. 
In India, brain tumors were the 10th most common tumors in 2018, making up ~ 
10% of all cancer cases [15]. Brain tumor could be cancerous (malignant/metastatic) 
or non-cancerous (Benign) [25, 104]. Benign can become malignant in some cases.
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If brain tumor starts from the brain and does not move to other organs, it is called 
as primary brain tumor (BT, while if it starts from other organs and then migrates to 
brain, it is called as secondary brain tumor. Secondary BT is more common and may 
originate from cancers of breast, lung, kidney, colon, and skin. (www.webmd.com). 

According to a Globocon 2018 report, incidences of brain and NS cancers in high 
Human Development Index (HDI) countries were 4% (females) and 5% (males) 
while for low HDI countries, it was 1.7% (females) and 2.4% (males). The mortality 
rate for high HDI countries was 2.8% (females) and 2.4% (males) while for low HDI 
countries, it was 1.4% (females) and 2.2% (males). Thus, higher incidences of brain 
cancers were seen in males than in females, in both low and high HDI countries [15]. 

Gene profiling was the first high-end technological tool applied for human cancers 
[40]. Recent genomic advancements led to more precise GBM classifications, conse-
quently enhancing patient’s stratification, targeted therapeutics, etc. It also became 
clear that isocitrate dehydrogenase (IDH) mutated GBM is distinct from non-IDH 
mutated GBM [2, 40]. IDH 1/2 mutations at early-stage indicate grades 2 and 3 
glioma while GBM grade 4 (the deadliest form) originates without IDH mutation. 
Thus, genetic tools proved useful to classify various subtypes of brain cancers [40]. 
In 2016, central nervous system (CNS) tumors classification got an update, where for 
the first time, molecular biomarkers along with histology were used as classification 
criteria, indicating huge differences in glioma and medulloblastoma classes [4]. 

GBMs which develop from preexisting gliomas are less common and are known 
as secondary GBMs. The primary GBMs affect elderly (TERT, PTEN, EGFR muta-
tions) while the secondary GBMs are more common among younger people (IDH 
1/2, TP53, ATRX, PDGFRA, EGFR and EGFRvIII, NF1, MGMT, hTERT and BRAF 
mutations) [2]. 

1.3 Nano-Theranostics 

The major hurdle for commercial use of nanomedicine is the receptor-mediated, 
targeted, and sustained delivery of nanoparticles and the cargo drug inside the cells. 
Owing to their unique physical and biochemical properties, nanoscale materials have 
immense potential in cancer ‘theranostics’, improving both treatment specificity 
(therapy) and diagnosis accuracy. Such theranostic nanomaterials can be porous, 
hollow, or solid structures [79, 94] (Fig.  2).

As compared to other metal or non-metal derived nanomaterials, nanomaterials 
derived from carbon have gained immense popularity in recent years; the major 
reason being, the presence of carbon in a large number of biomolecules and hence 
the implicit biocompatibility. Additionally, they have demonstrated improved and 
prolonged blood circulation time, enhanced drug solubility as well as therapeutic 
efficacy and reduced side effects. On the diagnosis side, CNMs can be a potential 
fluorescence imaging agent for vital cells [94]. 

These CNMs can be functionalized as per the target site to enhance their 
specificity, thus making them a suitable drug delivery vehicle [78]. Targeted

http://www.webmd.com
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Fig. 2 An illustration of role of CNMs in cancer theranostics with 2nd and 3rd quadrants 
representing therapy and 1st and 4th quadrants representing diagnostics

delivery is required as the most effective treatment of metastatic cancer. In general, 
chemotherapy is untargeted and causes huge impact on surrounding tissues [61] 
and many cancer types are resistant to many drugs resulting into multidrug-resistant 
(MDR) cancers [30]. Considering huge potential of nanomedicines, oncologists are 
utilizing them to reduce the side effects on surrounding cells [7]. These nanostructures 
have the ability to concentrate in the tumor targets because of enhanced permeability 
and retention (EPR) effect of cancer cells as the capillaries draining the cancer cells 
are more permeable than healthy cells. This provides high drug concentration and 
more drug efficacy specifically in the tumors [34]. 

2 Contemporary Therapy and Diagnostics Tools 

2.1 Therapy 

2.1.1 Chemotherapy 

Chemotherapy is the conventional cancer drug treatment that uses a single anti-
cancer drug or a combination of anticancer drugs to kill or prohibit fast-growing
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cancer cells in the human body. These drugs belong to specific classes, for example 
alkylating agents, biological response modifiers, antimetabolites, histone deacetylase 
inhibitors, monoclonal antibodies, hormonal agents, topoisomerase inhibitors, alka-
loids, taxanes, and other miscellaneous drugs [22]. Although numerous side effects 
have been reported due to chemotherapy drugs [3], researchers across the globe have 
been consistently making efforts to develop tumor-specific targeted drugs [6, 29]. 

2.1.2 Radiotherapy 

Radiotherapy or radiation therapy is a part of cancer treatment that uses ionizing 
radiation [63]. One of the first reports of effective radiotherapy treatment was 
reported by Thor Stenbeck when he cured a skin cancer patient with radiotherapy 
in 1900 [12]. Since then, radiotherapy has seen many advancements. Between 
1950 and 1960s, radiotherapy was done with the help of cobalt therapy machines 
that could kill deeper tumor cells [12] with subsequent use of linear accelerator, 
computerized tomography (2-D and 3-D), integrated computerized image therapy 
(IMRT & IGRT). Normally, radiotherapy can be classified into teletherapy (radia-
tion through external therapy), brachytherapy (radiation through internal therapy), 
and radioisotopes-assisted systemic therapy [63]. 

2.1.3 Surgery 

Cancer surgery is the oldest form of cancer treatment and is done by the removal of 
solid tumors and nearby cancerous cells. These solid tumors are often localized. There 
are multiple types of cancer surgeries which include debulking (removal of a portion 
of the cancerous tumor), curative surgery (localized tumor removal, considered as 
primary treatment), preventive surgery (removal of susceptible tissues which are 
likely to be cancerous), diagnostic surgery (removal of a tissue sample for testing 
and evaluation), staging surgery (removal or viewing of tissue sample to ascertain 
the extent of cancer), palliative surgery (performed in advanced stages of cancer to 
relieve discomfort), and reconstructive surgery (the surgery performed to repair the 
damage due to cancer, e.g., breast reconstruction surgery) [17, 69]. 

2.2 Diagnostic Tools 

Imaging tools recognize disease at a very advanced stage and ignore smaller details, 
thus failing the early diagnosis and timely treatment in most of the cases [70]. 
In current times, biomarkers are in great demand, either as diagnostic tools or to 
complement imaging tools.
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2.2.1 Genomics Tools 

They help in analysis and monitoring of genetic level alterations which are caused by 
environmental issues and include high throughput assay methods, which can amplify 
DNA, RNA with suboptimal/negligible secretion in sample. 

· DNA Microarrays (or Oligonucleotide-based/Gene Chip): These are based on the 
principle of binding of complementary sequences [1]. The technique compares 
DNA, RNA from normal cells with the affected cells, simultaneously in thou-
sands, thus providing gene expression comparisons under various biological 
conditions [70]. But they give only relative information of nucleotide levels and 
not quantitative information of mRNA levels. 

· PCR-Based Assays: Real-Time Polymerase Chain Reaction (RT-PCR) provides 
quantitative analysis of mRNA levels and its amplification [1]. It can study 
multiple samples simultaneously. Multiple reports suggest RT-PCR as a strong 
multiplexing assay and are useful in screening genetic disorders associated with 
cancer [70]. 

· Fluorescence In-situ Hybridization (FISH): It determines content of nucleic acids 
(DNA, RNA) in circulating cells. With the help of cDNA and RNA probes, genetic 
mutations such as amplifications, deletions, fusions, translocations of nucleic 
acids/chromosomes in the cancer cells can be understood, e.g., used for EGFR 
and ERBB2 genes to check amplification of copies [1]. 

· Sanger Sequencing Method: It examines DNA and RNA and checks mutations, 
by the method of selective incorporation of dideoxynucleotides (dDNA) which 
act as terminators in an in vitro DNA synthesis process [1]. 

2.2.2 Proteomics Tools 

Proteomics of cancer cells include study of altered protein levels as well as post-
translational fluctuations in body fluids. It provides separation and identification of 
proteins and peptides, along with structural and functional analysis of proteins, and 
may also include immune-based assays [68]. Most clinical cancer biomarkers are 
antibody (Ab)-based tests in serum. e.g., CA-125 (cancer antigen) of ovarian cancer. 

· Two-Dimensional Electrophoresis (2-DE) and Liquid Chromatography: Proteins 
from healthy control and cancerous cells are separated on polyacrylamide gels in 
two perpendicular dimensions and then compared. But the technique is not highly 
reproducible, has low resolution, and needs large volumes of samples [70]. 

· Mass Spectrometry (MS): Cellular proteins separated by electrophoresis are iden-
tified by MS. Isotope-labeled proteins are used for comparative analysis of the 
number of peptides. It is low throughput and quite expensive [70]. 

· Protein Arrays: These are made up of recombinant proteins or immunoglobulins 
and are akin to DNA microarrays. They are based on immunoassay principles and 
detect multiple cancer antigens (Ag) in a single assay. Specific Ag-Ab interaction
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helps in accurate diagnosis of cancer. This is a portable and good screening tool 
[70]. 

· Surface-Enhanced Laser Desorption/Ionization Time-of-Flight MS (SELDI-TOF 
MS): It is one of the most widely used proteomic tools and can be a useful clinical 
device. Samples are spotted on chromatographic paper which binds selectively 
to proteins (protein chip arrays). Sample loaded chips are further ionized and 
analyzed by TOF MS, e.g., the identification of α- haptoglobin (HP) in case of 
ovarian cancer. The data can also be used for making patterns in pattern recognition 
algorithms. Other techniques like matrix-associated (MALDI) TOF MS could also 
be used [70]. However, interfering proteins in sample, diet changes, inflammation, 
sample quality, etc., affect intensity of protein levels and pose some limitations 
to proteomics as an effective diagnostic tool. 

· Enzyme-linked Immunosorbent Assay (ELISA): It measures proteins, antigens, and 
antibodies in the sample. It produces highly reproducible and quantitative results. 
But antibody quality and detection of single molecule at a time are some of the 
limitations [23]. 

2.2.3 Metabolomics Tools 

These analyze various metabolites present in the body fluids. Smaller number of 
signature metabolites is an advantage as it reduces the interference in detection. 
Molecular level changes are identified at various stages like transcription, translation, 
and post-translation. Some of the techniques are: 

· Nuclear Magnetic Resonance Spectroscopy (NMR). 
· High-Performance Liquid Chromatography (HPLC). 
· Gas–Liquid Chromatography (GLC). 
· Mass Spectrometry (MS). 

2.2.4 Multiplex Approaches 

These consist of more than one pair of primers to amplify multiple genes in a single 
PCR reaction [20]. Technologies like quantitative multiplex-methylation-specific 
PCR (QM-MSP), invader assays, lab-on-chip technology with 2100 Bioanalyzer 
can analyze DNA, RNA, proteins, and metabolites in a single sample, thus reducing 
the preparation and the analysis time [70]. But the main issue arises out of dynamic 
ranges for various molecules in a particular sample [23]. 

3 Carbon Nanomaterials (CNMs) 

Carbon is one of the multifaceted elements and can exist in various dimensions 
(from 0-D to 3-D, Fig. 3) with different hybridization states of sp2 and/or sp3 [87].
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Fig. 3 Types of carbon 
allotropes (from 0-D to 3-D) 

CNMs are used for advanced tumor therapy as therapeutics, carriers, and diag-
nostic or theranostic systems such as carbon nanotubes (CNTs). CNT is utilized in 
gene therapy or chemotherapies [97] and in tumor photothermal ablation, producing 
thermal cytotoxicity in tumors [81]. 

Porous carbon nanomaterials (PCNMs) have attracted attention of material scien-
tists owing to properties such as flexible pore structure, high porosity, and surface 
area, better stability and surface modification ability, e.g., carbon black, glassy 
carbon, activated carbon, graphite, graphene, diamonds, onions, fullerenes, carbon 
nanotubes, carbon nanofibers, carbon dots, carbon-based hybrids, and other porous 
carbon-based materials [94]. 

3.1 Zero-Dimensional (0-D) CNMs 

Zero-dimensional nanomaterials are the materials having all the dimensions in 
nanoscale range (all dimensions < 100 nm). These materials have radically small 
sizes, substantial surface-to-volume ratio and demonstrate improved novel properties 
such as photoluminescence and chemiluminescence [99]. They include fullerenes, 
nanodiamonds, graphene quantum dots, and carbon quantum dots. 

3.1.1 Quantum Dots (QDs) 

QDs are ultra-small particles in 2–10 nm diameter range with unique optical, elec-
trical, and fluorescence properties such as high photochemical stability, improved
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quantum yield, narrow emission spectra [111]. These properties along with ultra-
small size and high surface-to-volume ratio shape them to be an ideal candidate as 
biosensors [43, 44], drug delivery [65], and cancer therapeutic agent [53, 103]. 

3.1.2 Carbon Nanoparticles (CNPs) 

CNPs have huge potential because of greater solubility in water, biocompatibility, 
good cellular permeability, smaller size, and high photostability [8]. CNPs are 
good theranostic molecules for safe drug delivery and biomedical imaging. Carbon 
nanodots (CNDs), graphene quantum dots (GQDs), single-walled carbon nanohorns 
(SWNHs) have structures akin to SWCNTs, where a single graphene sheet is rolled 
into a cone-like structure [112]. The 80–100 nm size range of SWNH clusters is suit-
able for EPR effect and favors their accumulation into the tumor site with reduced 
cytotoxicity and easily gets endocytosed [18]. Reduced graphene oxide nanomesh 
(RGONM) with 55–65 nm diameter range and an average thickness of 0.9 nm, and 
with pore size of approximately 8 nm is highly suitable for photothermal therapy 
[100]. 

3.1.3 Fullerenes 

Fullerenes have a cage-like structure and are electron deficient. This leads to fasci-
nating properties and had attracted the attention of researchers across the globe. The 
most known fullerene, C60, is well within the realm of nanotechnology [89]. It has 
relatively inert cage interior and facilitates the binding of ionic, atomic, and small 
molecules [73]. 

3.1.4 Nanodiamonds (NDs) 

NDs seem to have substantial potential because of their shape and small size, large 
surface area and a satisfactory proportion of sp2/sp3 hybridized bonds. As drug 
delivery systems (DDSs), NDs demonstrate better capability for oncological appli-
cations [109]. The advantage is that the NDs have the highest biocompatibility, highly 
targeted delivery with maximal drug bioavailability. 

3.2 One-Dimensional (1-D) CNMs 

One-dimensional (1-D) nanomaterial has two dimensions in nanoscale range and one 
dimension outside the nanoscale range. It includes nanotubes (CNTs), nanowires, 
nanorods, nanofibers, and nanofilaments [10].
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3.2.1 Carbon Nanotubes (CNTs) 

CNTs discovered by Sumo Iijima in 1991 are novel materials with significant hollow 
and cylindrical structures. Graphene layer arrangements could be classified as single-
walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), 
triple-walled carbon nanotubes (TWCNTs), or multiple-walled carbon nanotubes 
(MWCNTs) [39] with multiple layers of cylinders having an interlayer spacing range 
between 0.30 and 0.40 nm [76]. Functionally modified SWCNTs have been utilized 
in mice for tumor-targeted accumulation with high biocompatibility, and minute 
toxicity [55]. 

3.3 Two-Dimensional (2-D) CNMs 

In general, 2-D nanomaterials (e.g., graphene) have sheet-like structures with length 
greater than 100 nm and thickness less than 5 nm [36]. 

3.3.1 Graphene 

Graphene is highly conductive, has large surface area, and is biocompatible [95], thus 
having high potential for biomedical applications, e.g., biosensors [93], DDSs [109], 
and NIR fluorescence imaging techniques [18]. However, graphene oxide (GO), a 
0-D nanomaterial, is used in biomedical imaging, biomarkers detection in biosensors 
[60], as it is water-soluble and is cheaper as compared to CNTs. 

3.4 Functionalization of CNMs 

For providing the specific targeting property, enhancing the non-toxicity, and phar-
macokinetics profile, the CNMs or graphene are functionalized via chemical modi-
fications [34]. Additionally, graphene is made soluble and dispersible to enhance its 
biomedical potentials by functionalization. For example, PEGylation is a common 
technique [14] used to enhance biological properties such as stability, biocompat-
ibility, high drug storage capacity, high photothermal conversion [27], colloidal 
stability in water and for better circulation and lower accumulation into retic-
uloendothelial system (RES) [41]. Also, immune stimulation via activation of 
cytokines can be enhanced [14]. These immunologically modified functionalized 
CNMs are synthesized by using the immune-adjuvant glycated chitosan (GC) [14]. 
The synergistically combined immune stimulation with the thermal laser irradiation 
produces anti-tumor effect at metastatic tumors. Stabilization of magnetic nanopar-
ticles via carbon encapsulation is done via functionalization using polyvinyl-alcohol 
(PVA) [34]. Nitrogen-doped gold quantum dots (N-GQDs) carrying anticancer drug
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methotrexate (MTX), appeared to be an excellent drug delivery vehicle [45]. To 
resolve the issues of insolubility of CNTs in various organic solvents, supramolec-
ular complexes are fabricated via chemical modifications. Functionalization of CNTs 
at their conjugated sp2 hybridized carbon enables their biomedical applications, such 
as better bio-absorption and ease of dispersion [33]. 

4 Role of CNMs 

Carbon has the ability to exist in various dimensionalities (from zero to three dimen-
sions). It demonstrates NIR photoluminescence [55, 62], great flexibility in surface 
chemical modification [58, 90], excellent biocompatibility [56], transportability in 
biological fluids, water solubility and permeability to cell membrane [56]. With so 
many unique properties, CNMS are excellent candidates for biomedical applications. 

4.1 For Targeted Drug Delivery 

CNT-based nano-vectors, particularly functionalized CNTs, demonstrate better 
performance as therapeutic drug delivery system. Functionalized CNTs are good 
nanocarriers for anticancer drugs [34], such as doxorubicin (DOX), methotrexate 
(MTX), betulinic acid (BA), paclitaxel (PTX), camptothecin (CPT). Scientists formu-
lated BA drug composite with MWCNTs with more dispersibility, lesser cytotoxicity, 
and enhanced cytotoxicity against lung cancer cell line. The studies showed that the 
composite was more efficient than the free drug [86]. The PLGA [poly (lactic-co-
glycolic]-coated CNTs had higher loading percentage for PTX and better cytotox-
icity against prostate cancer cell line. A targeted delivery vehicle with SWCNTs 
and DOX displayed enhanced therapeutic efficacy of nanodrug delivery systems for 
in vivo mice models than free drugs alone [61]. Various other CNMs also exhib-
ited great potential for anticancer therapy. Green synthesized CNPs have multiple 
biomedical applications such as DOX delivery. They also delivered fluorescence dye 
Fura-2 in human cervical cancer cell line efficiently across a cell membrane. Thus, 
mesoporous carbon nanoparticles have huge potential of becoming new generation 
of nanodevices as targeted delivery applications [31]. 

Functionalization of MWCNTs or GO by polyvinyl alcohol (PVA) was reported 
for drug loading and delivery of CPT [75]. These composites showed higher cyto-
toxicity than free CPT. Thus, GO is a promising CNM for drug delivery due to 
the enormity of available surfaces for drugs on all sides. CNT drug delivery shows 
high efficacy in cancer treatment, that too with lesser drug dose. In another study, 
in vivo drug delivery with SWCNT for tumor inhibition in mice was done. PTX with 
polyethylene glycol (PEG) was conjugated with SWCNTs. This hydrophilic conju-
gate had improved efficacy in tumor inhibition than Taxol alone in a breast cancer 
mice model, owing to enhanced PTX uptake in tumor by SWCNT [55].
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Nanoparticles have higher retention times in tumors as compared to healthy cells 
providing EPR effect of tumors [42]. EPR effect is an exclusive property of solid 
tumors, showing hypervascularity (high vascular density) due to angiogenesis. Tumor 
tissue angiogenic blood vessels have spaces unlike normal tissues (600–800 nm). 
Such defective vascularization induces the EPR effect, [24] leading to the preferential 
nanocarrier accumulation in tumors [42]. Physical characteristics such as size, surface 
features, and degree of angiogenesis affect the degree of nanoparticles’ accumulation 
in tumors [42]. Such CNMs have also been used for targeted delivery of biomacro-
molecules, e.g., cancer-specific proteins and peptides [32]. Villa et al. [91] delivered 
peptide antigen in vivo with SWCNTs for improved immune responses to tumor-
linked antigen. These nanostructures were also internalized into antigen-presenting 
cells rapidly [91]. Also, there are numerous reports available about delivery of genes 
and nucleic acids by carbon nanomaterials. [108] modified SWCNTs with siRNA 
to silence tumor proteins and mRNA in vivo [108]. Branched polyethyleneimine 
(BPEI)-GO composite had an improved nucleic acid binding and transfection effi-
ciency [46]. Another research group reported folate-conjugated trimethyl chitosan-
GO (FTMC-GO) conjugate for plasmid DNA delivery to cancer cell line with no 
cytotoxicity due to FTMC-GO conjugate [35]. These reports suggest that CNMs are 
an efficient drug delivery system. 

4.2 For Imaging 

Owing to unique optical, fluorescent, and electrical properties, their dynamic interac-
tion with the probes and signal transduction toward the target molecules, CNMs are 
perfect bioimaging candidates [62]. Due to large surface-to-volume ratio, graphene 
conductivity changes with a fractional concentration change in the target molecule 
[66, 85]. Liu et al. [57] reported the use of graphene oxide silver nitrate composite as 
an extremely sensitive optical probe for faster SERS imaging in vitro[57]. Lee et al. 
[52] used graphene-based hybrid electronic device in a multifunctional endoscope 
system to detect colon cancer [52]. Another research group used bio-conjugated 
graphene oxide to probe breast cancer cells in vitro and provided a window for label-
free Raman assay for improved diagnostic sensitivity of cancer cell lines [5]. Many 
early-stage cancer biomarkers have been identified using CNT-based electrochemical 
biosensors [98]. 

4.3 As Immunogens/Immunomodulatory 

Studies in the past also suggest immunomodulatory effect of CNMs. Kinaret 
et al. [47] reported macrophage polarization as a result of 48 h exposure to 
graphene nanofibers (GNFs) and CNTs. They further reported that acute phase



1164 N. Saini et al.

pro-inflammatory tumor necrosis factor (TNF) and cytokine Interleukin 1 beta (IL-
1β) were expressed in GNF exposed cells along with anti-inflammatory cytokine: 
Interleukin 10 (IL-10) [47]. CNTs have been used as physical adsorption plat-
forms for anti-CD3 molecules which stimulate T-cell proliferation [11].  Fadel et al.  
[26] reported that engineered CNTs can efficiently present major histocompatibility 
complex class-1 (MHC-1) for T-cell stimulation [26]. Yue et al. [107] reported that 
graphene induces release of cytokines and manages inflammatory response [107]. 
Chen et al. [19] reported that GO induces toll-like receptors and subsequent inflam-
matory response [19, 49]. Meng et al. [64] reported that CNTs can enhance host 
immune activity in mice with solid tumors [64]. 

5 Interaction of CNMs with Cancer Cells 

5.1 In Vitro Studies 

In order to demonstrate enhanced drug loading and drug release ability of CNTs, Lay 
et al. [51] grafted poly (ethylene glycol) (PEG) over single and multi-walled CNTs 
(PEG-CNTs) and physically loaded them with anticancer drug paclitaxel (PTX). The 
faster release of PTX was observed but in a sustained manner, where considerably 
less PTX was released over 40 days at neutral pH [51]. Another group demon-
strated successful loading of doxorubicin on CNTs in vitro [38]. Wang et al [96] also  
loaded anticancer drug doxorubicin over graphene coated with phospholipid mono-
layer [62, 96]. Zheng et al. reported anticancer drug doxorubicin delivery to cancer 
cells overexpressing ERBB2 by reduced graphene oxide (rGO) functionalized with 
antibodies or receptors [110]. Another group reported the ability of Fe3O4-PEG-
GO nanocomposite for magnetic imaging as well as for anticancer drug delivery 
[95]. With strong NIR absorption capability, these materials also act as near-perfect 
contrast agents for photoacoustic imaging. Photoacoustic imaging technique offers 
improved spatial resolution and deep tissue imaging as compared to other optical 
imaging methods. The enhancement during real time photoacoustic imaging invitro 
[102]. Another class of carbon nanomaterials, i.e., zero-dimensional carbon dots, 
demonstrated promising biosensing and imaging capability due to tunable photo-
luminescence (PL) and electrochemiluminescence (ECL) activity, biocompatibility 
and safety to healthy cells. 

5.2 In Vivo Studies 

Liu et al. functionalized biocompatible CNTs with PEG and used them as vehicle to 
deliver anticancer drug doxorubicin to the mice tumor [56]. Another group fabricated 
graphene oxide/chitosan oligosaccharide/γ-polyglutamic acid composite and used it
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for doxorubicin delivery to the tumor site in a controlled fashion [54]. Pei et al. [71] 
reported the development of dual drug (cisplatin and doxorubicin) delivery system 
with PEGylated nano-graphene oxide (pGO). The group reported effective delivery 
of the drugs to the tumor cells, and the dual drug system’s tumor inhibition efficacy 
was substantially higher than the individual free drugs. The spectroscopic features 
of CNTs provide a unique feature to track the real-time status of drug delivery, 
pharmacodynamics behavior, and disease status [88]. Photostability, fluorescence 
and at tunable emission spectra allow CNMs to demonstrate remarkable optical 
features in vivo [74, 105, 106]. Pramanik et al. reported sixfold signal enhancement 
with CNTs as compared to control during photoacoustic tomography (PAT) [72]. 
Similarly, carbon dots demonstrated strong fluorescence in vivo [105]. 

6 Advantages and Limitations of CNMs 

6.1 Advantages 

Unique properties such as NIR photoluminescence, optical tunability, high surface-
to-volume ratio, ease of surface modification provides CNMs an edge over others 
in biomedical application. CNTs, particularly SWNTs hold a great promise in 
biomedicine. CNTs have only carbon as a component, while metal nanomaterials 
(e.g., quantum dots) contain more precarious elements including heavy metals. The 
tunable length and distinguishable 1-D structure of CNTs provide a lot of opportu-
nity to explore size and shape effects in mice models. Moreover, SWCNTs properties 
such as NIR absorption, Raman scattering, photo and chemiluminescence provide 
unique detection and imaging ability unlike organic drug carriers [62]. Overall CNTs 
hold a lot of biomedical potential particularly in cancer therapy and imaging [56]. 

6.2 Limitations 

Chemical inertness of CNMs poses a big hurdle for their smooth bio-clearance 
(even if they are exposed for extended period in vivo) despite good biocompati-
bility. The bio-clearance becomes further difficult for amorphous and bigger-sized 
CNMs (greater than 8 nm). These materials are expelled from the body with liver and 
spleen playing an important role in their excretion instead of biodegradation [56]. 
Also, a majority of mesoporous CNMs-based drug delivery systems suffer due to 
substantial synthesis costs, bigger particles, shape irregularity, and difficulty in scala-
bility. Multiple reports suggest that functionalized CNMs are safe in vitro and in vivo 
at various concentrations of selected tested doses. But further regulatory authorities 
approved preclinical as well as clinical trials will be required on a larger scale.
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7 Conclusion and Future Prospects 

The cancer cases are on the rise globally. Even with the advancement of contempo-
rary treatment and diagnostic methods, the unwanted side effects of the drugs are 
also on the rise. Focusing on the reduction of these side effects, new methods of 
theranostics and targeted drug delivery are in demand, promising more efficacy and 
lesser invasive therapy. In this regard, CNMs, due to their prolonged stay in blood 
circulation, are being extensively used in oncology for targeted and controlled drug 
release, early diagnosis, etc. Functionalizations of CNMs can help to enhance their 
biocompatibility, dispersity, hydrophilicity and can reduce their toxicity. CNMs have 
an added advantage of passive movements across the cell membrane over other nano-
materials, targeted delivery, and higher efficacy with EPR effect at tumor sites. Thus, 
CNMs would be the most potent tool in upcoming decade for cancer theranostics. 
Functionalization of CNMs for crossing across plasma-membrane (PM) and blood– 
brain barrier (BBB) has been achieved. It is done via opening of the tight junctions, 
leading to the treatment of difficult ailments such as brain tumors. 

Numerous anticancer functionalized nanomedicines have been clinically 
approved by regulatory authorities. Most of these nanomedicines are based upon 
PEGylation and entrapment technique to enhance the efficacy of the anticancer 
drugs. Thus, combination of advanced techniques such as drug entrapment, specific 
targeting, and surface functionalization leads to a triple targeting approach and has 
the potential to reach the patients. This, combined with improved manufacture level 
scale-up of NPs production as a commercially viable system would truly lead to the 
delivery of next-generation nanomedicines into the clinic. 
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