
Alternative Approach to Rounding Issues
in Precision Computing with Accumulators,
with Less Memory Consumption: A Proposal

for Implementation

Roy P. Gulla(B)

555 Highland Dr, Mesquite, NV 89027, USA
rgullape@gmail.com

Abstract. Recent development efforts with the newest version of Unum format-
ting, posits, have coincided with the continued progress of the new P1788 standard
which includes dot products as one of the five fundamental arithmetic operations.
These trends have led to increased interest in large scale implementation of accu-
mulators for numerical computation [10], and the creation of encoding and decod-
ing schemes between IEEE float types and posits [5]. Here an alternative in light
of these new developments is presented in a way to incorporate the minposis set of
Gustafson’s Posits formatting, which implements an alternative weighted circuit
for fractional bits in his system, capitalizing on inherent memory latency in newer
hardware circuitry. A model program template is also touched upon in the new
expanded outline of this formatting introduced in [6], proposing the incorporation
of fine-grained parallelism, at instruction level.

Keywords: Number representations · Roundoff error · Complex instruction set
computer (CISC) · Instruction level parallelism · Fine grained parallelism

1 Introduction to the Approach

1.1 Introduction

Low level hardware designs are rapidly undergoing a major sea level change in response
to the new emerging technology surrounding quantum computing. In order to control
for some of the inherent volatility in these new products, new formatting for precision
computing is taking shape with several performance constraints enacted in order to limit
the nearly unlimited bounds for memory consumption in these new devices.

Newer models of hardware and system architectures are paving the way to new
models of memory management, which in turn have lead to multilayered computational
pathways in hardware circuits. And even given the current trend towards offloading of
memory in these newer heterogeneous architectures, in the case of commonly stored
precise scientific constants, it is the loading and storing of these large constants which
can prove expensive on processor performance.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Ao et al. (Eds.): IMECS 2021, Transactions on Engineering Technologies, pp. 116–121, 2023.
https://doi.org/10.1007/978-981-19-7138-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-7138-9_10&domain=pdf
https://doi.org/10.1007/978-981-19-7138-9_10

Alternative Approach to Rounding Issues in Precision Computing 117

Very recently, John Gustafson’s POSIT formatting has found some implementations
in a square root and divide circuit described in [3], and a new standard creation is
underway to directly implement the direct dot product as a fifth arithmetic operation.

In the first of these developments, power consumption is highlighted as a primary
concern. And among the differences of the posits formatting than that of the floating
point type, the one which might be most attractive to memory management is that of
the optional fractional bitfield. So while the IEEE float type can spend the majority of
time in determining the right exponent range for a scientific constant, the posits option to
exclude the fractional bitfield allows for somemore efficient pathways in a high precision
computing circuit, so long as the traditional encoding of the floating point standard is
abandoned.

In the first portion of the paper the author will describe this proposed arithmetic
circuit in light of the new quantum dot cellular automata application implementation
with one-bit full adders described in [1], in a way that the instruction set is not in any
way bloated with extraneous operands (i.e. store and/or load) (Fig. 1).

Fig. 1. A parallel to serial QCA w/ majority gate design, which is implemented in [1].

In the final section of this paper a model prototype with minimally accessible
instruction sets for global registers will be introduced for implementation as a complex
instruction set computer architecture.

1.2 The Problem of Rounding with Variable and Large Word Sizes

The proposed alternative to the typical fractional bitfields of floating point types in the
proposed formatting bypasses the issue of loading and storing of intermediate values
in memory, which largely contribute to both precision and performance issues in the
rounding stages of floating point computation. These are costly operands for comparisons
which result in an intermediate difference term for each comparison performed, and it is
this comparison difference term which amazingly can require a higher level of precision
than the final representation of the number [5].

A simple example of a fundamental issue with binary numbering systems shows
how memory constraints can seriously impede pursuits of high precision levels. In the
floating point representation of .1, by the tenth subunitary bit, the represented number is
still .0008 away from the desired value. And eight bits later, it has overshot this number.

118 R. P. Gulla

One common example of a non-exactly representable number is presented here in
order to introduce the proposed formatting approach of this paper intended to correct for
this unpredictable behavior in floating types. In the formatting representation, a repeating
minposis, or subunitary, term used in the calculation of the fraction is weighted with
integer values. (In the final portion of this paper these weights are encoded as repeated
read and shift instructions.)

Decimal Value .076923076923..(1/13)
Alternate Expanded form 1/13 = (1/16)(1+3/13)

=(1/16)(1+3(1/16) (1+3/13))
=(1/16) (1+3(1/16)(1+3(1/16) (1+3/13))) 
etc.

Minposis Fractional Bits Binary Representation 00010

Fig. 2. It is worth noting here that the repeating digits in the lower table’s rows hint at a costly
string representation, which is avoided here. But the use of weighted bits is important in the
sections to follow.

1.3 The Number Rings of These Non-exactly Representable Numbers

Here we intend to introduce a formatting which more efficiently deals with these frac-
tional bit fields that vary in width for each implementation. Particularly, those num-
bers which can be represented in the following geometric series form fit the proposed
formatting:

The approach taken with the these numbers here hopes to present one of the very
pronounced differences between the posit’s minposis bitfield and the subunitary digits
of IEEE floating point types, namely the optional fractional bitfield, and to expand on a
possible implementation of these bits.

With a repeating bit pattern as that shown in the above Fig. 2, the floating point
fractional bits are both a source of memory and precision issues. The issue is that the
repeating remainder in the binary numbering scheme cannot be transformed into binary
form, so an iterative expansion approach is taken as shown in Fig. 2 above and Table 1
below, utilizing a feedback adder circuit such as the one in Fig. 3.

1.4 A Common Floating Point Constant with a Weighted Bit Representation

An alternative representation of the natural log base is demonstrated here as a final
example for the proposed alternative formatting, incorporating aweighted representation
of bits to calculate its value in the accumulator, as opposed to the traditional and costly
approach of loading its stored value. A simple description of the iterative scheme used
in the computation of its value in real time is given here:

Alternative Approach to Rounding Issues in Precision Computing 119

Fig. 3. The design of the serial full adder circuit architecture. In this paper Ai and Bi represent
the same bit operand

• Iterate through the subunitary bits, and,
• Repeat the adding of the current bit until the value overshoots, at which point discard
the previous summand, and continue the iteration.

Thisweighted bit representation of the natural log base is shown inTable 1 tomachine
level precision, and includes the extra 49th, 52nd, and 54th subunitary bits, which can
more easily be implemented when no fractional bits are included in the format.

Table 1. The natural log base, with the weighted bit formatting

SET SIGNIFICAND BITS 2,4,5,7,8,9,10,11,12,17,20,21,22,23, 24,25,26,27,29,30,31,32,33,34,35,3
6,37,38,39,40,42,43,44,45,46,47,49, 52,54

CORRESPONDING
BIT WEIGHTS

2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,4,4,2,2,2,2,4,2,2,2,8,4,4,8,8,8,4,4,4,2,2,2,2,1

SUPERUNITARY BIT 1

2 Proposal for Implementation of the Approach

In [5], the difficult case of a non-exactly representable number in a formatting system
with large storage constraints is clearly demonstrated. Summarizing the point here, these
constraints place limitations on allocating enough memory for both wide exponent bit
fields and wide fractional bit fields. The solution proposed here is to sidestep the wide
(and in Gustafson’s system, optional) fractional bit field by utilizing a single set bit in a
QCA feedback loop to compute our minposis values.

Implementing these feedback loops,much as feedback loops are in [11], the intention
is to wrap pipelined arithmetic circuits into posit decoders/encoders, particularly for
those numbers where the fractional portion of the posits number is a significant enough
part of the representation. Since this portion of the posit number could be computed

120 R. P. Gulla

<-Regime Bit 7 6 5 4 0

Exponent m - mmmm

m-mmmm (fractional bits alternate encoding):

0- 0010:

0- 0010:

0- 0010:

0- 0010:

Fig. 4. An illustration of copies of the proposed alternative to the fractional bitfield (with a word
size of one half byte) necessary for our offloaded compute instructions is shown. Note the size of
the exponent or the regime fields is not dealt with here, as the format is proposed to be implemented
in a vector processor. Here the weight value for our arithmetic circuit is 4. The multilayered QCA
architecture could implement each copy.

simultaneously with the regime and/or the exponent in the QCA architecture described
in [11], no additional performance costs would be incurred with this alternative to the
posits’ fractional field. And a suggested implementation of these arithmetic circuits
utilized in place of the fractional bits would be with a complex instruction set as that of
the arm neon processor.

As implementations of these numerical types go through layers of architecture to
higher levels, what once was a double type can become mixed with integer and decimal
types, and precision suffers under these race conditions. And when these global (general
purpose) registers are implemented in high performance compute nodes being shared
on a large cluster of systems, either data corruption, or performance fall-off becomes an
issue.

Therefore the design choice for the implementation here is to avoid altogether the use
of global general purpose registers, and in particular to avoid the implementation of the
proposed instruction sets in any higher level language wrappers, and instead pursue the
course of instruction level parallelism. This both enables the avoidance of global general
purpose registers, and implements more local and effective usage of memory, making
global memory registers unnecessary. And as architectures trendmore andmore towards
multithreaded ones, the larger blocks of instructions which are mapped into ISBs should
be grouped together at the earliest point in the control flow graph anyhow (i.e. in the
closest sequential proximity to each other in the code block). In the case of dataflow
architectures where token matching is a crucial part of the compilation process, this
can prove vital to processor performance. Therefore we attempt not to branch anywhere
outside our current block of compute instructions.

In order to do so, we suggest a code design already in place in some legacy and
most newer arm neon processors, with recursive C macro calls to generate the product
of sums circuitry.

Alternative Approach to Rounding Issues in Precision Computing 121

3 Suggestions for Further Development of the Model

However fine grained we design our proposed parallelism for the arithmetic circuits
used in these computations, and restrict our memory space consumption, this limiting
of memory consumption will in no way damper our QCA architecture’s performance.

For the purpose of ease in the testing of themodel,we suggest aword in our vectorized
system with one set bit (as shown in Fig. 2 and Fig. 4) in the initialization stages.
Following this line of thought, in-wire processing described in [11] is a suggested way
of incorporating one bit blocks of data in the circuits, with multiple fetch cycles (by
means of a feedback circuit as described in [11]) being used to “weight” the bits.

Complex instruction set computers such as those produced by Intel have shown
how instruction level parallelism can be successfully implemented to maximize the
performance of their supercomputing architectures. As branching is already an available
mechanism engineered into modern arithmetic circuits, the proposal is to implement
such instruction level parallelism at the most localized level, by means of the branching
mechanism alluded to in Sect. 2 above.

References

1. Angizi, S.F.: A structured ultra dense QCA one-bit full adder cell. Quantum Matter 4, 1–6
(2015)

2. Bian, T.D.: Context aware quantum simulation of a matrix stored in quantum memory.
Quantum Inf. Process. 18(12), 1–12 (2019)

3. Cheng, S.L.: Posit arithmetic hardware implementations with the minimum cost divider and
square root. Electronics 2020(9), 1622 (2020)

4. Enbody, R.J.: Performance monitoring in advanced computing architecture. In: WCAE 1998:
Proceedings of the 1998 Workshop on Computer Architecture Education, Barcelona, pp. 17-
es. ACM, 1998 June

5. Florent de Dinechin, L.F.-M.: Posits: the good, the bad and the ugly. hal-01959581v3 (2019)
6. Gulla, R.P.: Two alternative approaches to rounding issues in precision computing with

accumulators, with less memory consumption. In: Lecture Notes in Engineering and Com-
puter Science: Proceedings of The InternationalMultiConference of Engineers and Computer
Scientists 2021, 20–22 October 2021, Hong Kong, pp. 240–243 (2021)

7. Gustafson, J.: The End of Error: Unum Computing. CRC Press, Boca Raton (2015)
8. Hittinger, J.L.: Universal coding of the reals: alternatives to IEEE float. In: CoNGA 2018:

Proceedings of the Conference for Next Generation Arithmetic: March 2018, Singapore,
pp. 1–14. ACM (2018)

9. Johnson, J.: Rethinking Floating Point for Deep Learning. arXiv:1811.01721 (2018)
10. Koenig, J.: A hardware accelerator for computing an exact dot product. In: 2017 ARITH

Symposium on Computer Arithmetic, London, pp. 114–121. IEEE (2017)
11. Kogge, P.N.: Exploring and exploiting wire-level pipelining in emerging technologies. In:

ACM SIGARCH Computer Architecture News. ACM SIGARCH Computer Architecture
News, pp. 166–177 (2001)

12. Kumar, R.P.: A new compiler for space-time scheduling of ILP processors. Int. J. Comput.
Electr. Eng. 4(3), 536–543 (2011)

http://arxiv.org/abs/1811.01721

	Alternative Approach to Rounding Issues in Precision Computing with Accumulators, with Less Memory Consumption: A Proposal for Implementation
	1 Introduction to the Approach
	1.1 Introduction
	1.2 The Problem of Rounding with Variable and Large Word Sizes
	1.3 The Number Rings of These Non-exactly Representable Numbers
	1.4 A Common Floating Point Constant with a Weighted Bit Representation

	2 Proposal for Implementation of the Approach
	3 Suggestions for Further Development of the Model
	References

