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3.1 Introduction

Optical Flow estimation is one of the most challenging problems in computer vision.
Optical flow is defined as the per-pixel motion between two consecutive digital
images. Optical flow has many applications, such as video post-production, particle
velocimetry, video compression, control of autonomous vehicles, and many others.
In Fig. 3.1, we show an example of these applications. A transparent plastic model
full of water containing black plastic tracers is used to estimate the fluid’s velocity.

In Fig. 3.1, we show velocity estimation inside a process showing an oxygen inlet
and small black plastic tracers. Oxygen is injected from the left side of the plastic
model, causing the fluid to move. Tracer particles move at the same velocity as the
fluid. This application aims to determine the location where maximum velocity is
reached to predict erosion of internal walls.

In Fig. 3.2, we show the second application of the optical flow. We show two
consecutive images. In these images, we show a person riding a bike that moves to
the left. We estimated the optical flow between the two images; with this optical flow,
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Fig. 3.1 Velocity fluid estimation inside a plastic model of a flow dynamic process. Optical flow
is represented with blue arrows in these two consecutive images

(a) (b) (c)

Fig. 3.2 Creation of an image in between. a Current image. b Next image. c Image in between
created based on optical estimation

we know the displacement for each pixel, so an image in between can be created.
We show in Fig. 3.2c an interpolation of two images using optical flow.

3.1.1 Related Works

Since the seminalwork of [1],many contributions have beenmade in order to improve
the optical flow estimation. In that work, the authors proposed a variational model
to estimate the optical flow. The proposal is an energy model to estimate the optical
flow estimation error, and the argument that minimizes that energy is the optical flow
of the sequence of images. The proposal is a model that uses a quadratic error, and
it means that the model is susceptible to outliers and the presence of noise. Zach et
al. [2] proposed another model based on the absolute value of the error. All those
models in an iterative way minimize the energy error model. In each iteration, some
of them filter the optical estimation to eliminate noise or outliers, avoiding noise and
outliers propagating across the iterations.
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Bidimensional Empirical Mode Decomposition (BEMD) presented in [3] is a
method to decompose a 2D signal in its frequency modes. This work was applied
to texture extraction and also 2D signal filtering. Their algorithm consists of the
extraction of features at multiple scales or spatial frequencies. These features, called
intrinsic mode functions, are extracted by sifting. The author performs this sifting
using morphological operators to detect regional maxima and radial basis functions
for surface interpolation. The author demonstrates the efficiency of their proposal
with synthetic and natural images.

3.1.2 Optical Flow Filtering

In [4], the authors integrated aMedian filter in the optical flowmodel. Their proposal
formalizes the Median filter with a new model that integrates OF estimation over
a local neighborhood. In [5], the Median filter of size 3 × 3 is used to eliminate
irregularities of the optical flow and also noisy estimation. In [6], to enhance the OF
estimation, a bilateral filter is used. In that work, the authors replaced the anisotropic
diffusion of their proposed model with a novel multi-cue-driven bilateral filter that
considers the estimated occlusion.

Dérian et al. [7] utilizes another approach, where an optical flow model based
on wavelet analysis is presented. The multi-resolution approach used in the optical
flow estimation is similar to the multi-resolution used in wavelets analysis. The
authors constructed a scale-space representation of the optical flow; furthermore,
they provide a mechanism to locally approach the optical flow using high-order
polynomials by trunking wavelets at fine scales. This methodology was not evaluated
in a contemporaneous dataset but evaluated video sequences of moving fluids.

Motivation

In [8] an optical flow study is presented. This study consider the optical flow estima-
tion using image pyramid and also considers a theoretical analysis of warping, but
this study does not consider the study of intermediate filters. The study in [9] varies
the number of warpings, the image pyramid levels, and the influence of parameters
but does not take into account the intermediate filters. Those facts motivate us to
compare the optical flow estimation performance considering different intermediate
filters.

3.1.3 Contribution of this Work

In this study, we use the optical flow estimation model proposed in [5]. The used
model is based on the absolute value of the optical flow estimation error (T V − L1)
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and, thanks to other components, is robust to illumination changes and medium
displacements. We present, in this work, the following contributions:

• (a) Evaluation of the OF performance estimation considering four intermediate
filters: bilateral filter,medianfilter,weightedmedianfilter, and abalancedweighted
median filter.

• (b)We proposed an adaptive or weighted sum of the bilateral and the median filter.
• (c) We performed final evaluation in the complete MPI-Sintel test dataset and
submitted the results to the MPI-Sintel benchmark web page [10].

In Sect. 3.2, we explain the principal strategies used to estimate the optical flow. We
will briefly explain the linearization of the optical flow constraint, warping an image,
and image pyramid. We explain these strategies in order to make our manuscript
self-contained. In Sect. 3.3, we explain the filters considered in this work. In section
3.4, we explain experiments and used dataset. In Sect. 3.5, we present our obtained
results and a brief discussion about other methodologies and our results. Finally, in
Sect. 3.6 we present our conclusions and future work.

3.2 Preliminary

In order to state a model of the optical flow estimation, we consider two consecutive
color images I0 (reference image) and I1 (target image), where I0, I1 : Ω → R

3

and Ω a rectangular image domain; let u : Ω → R
2 be the optical flow between

these two consecutive images (reference and target) where u(x) = (u1(x), u2(x))
has two components, that is to say, u1, u2 : Ω → R. Optical flow estimation aims to
determine a motion field u(x) such that I0(x) and I1(x + u(x)) are measures of the
same pixel x, i.e.:

I0(x) − I1(x + u(x)) = 0. (3.1)

Equation3.1 in the literature is called the color constancy constraint. Equation3.1
is highly non-linear and a linearization is applied around a known optical flow u0(x).

3.2.1 Linearized Color Constancy Constraint

Considering a known value u0(x) of the optical flow, a Taylor expansion is valid:

I0(x) − I1(x + u0(x)) − 〈∇ I1(x + u0(x)),u(x) − u0(x)〉 = 0, (3.2)

with 〈, 〉 being the scalar product, I1(x + u0(x)) thewarped image (I1(x)) by a known
optical flow u0(x), and ∇ I1(x + u0(x)) a gradient vector of I1(x + u0(x)).
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Fig. 3.3 Warping performed in a picture extracted from [11]. a Original image I (x). b Graphic
representation of the optical flow using orange arrows u0(x). c Optical flow superimposed over the
original image. d Warped image by the optical flow or compensated image I (x + u0(x))

3.2.2 Image Warping

Image warping is a process of image manipulation such that it distorts any shape
contained in the image. Given an image I (x) and an optical flow u0(x), we can warp
the image I (x) to obtain I (x + u0(x)) as we show in Fig. 3.3.

3.2.3 Image Pyramid

In large displacements, the Taylor approximation does not hold, and we use a coarse-
to-fine strategy. This strategy constructs a multi-scale pyramid down-sampling
images with a factor of 2. In Fig. 3.4, a scheme is shown of the image pyramid,
considering four levels.

Figure3.4 begins with the coarsest scale, and each of them doubles the image
dimension in the previous one. At each level, the optical flow is filtered with an
intermediate filter to eliminate noise and outliers.
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Fig. 3.4 Image pyramid using an image of the sequence bandage. At the top, we have the coarsest
image and the finest at the bottom level. The computed optical flow in each level is used as an initial
condition for the optical flow estimation in the consecutive finer level

3.3 Intermediate Filters

Traditionally, OF methods perform the computation in an image pyramid. In each
resolution, intermediate filter processing was applied to the analysis to eliminate esti-
mation irregularities and noisy estimation.We explain the scheme using pseudo-code
in algorithm 1 where Nlevels are the level numbers in the pyramid and Nwarpings is the
warping number in each scale once the optical flow u(x) is computed. Intermediate
filtering is applied in every iteration of warping Algorithm1.

Input : Two consecutive frames I0, I1
Output: Optical flow u
down-scaled images (image pyramidal) I s0 , I s1 for s = 1, . . . , Nlevels;
Initialize uNlevels ;
for s ← Nlevels to 1 do

for w ← 1 to Nwarpings do
Warp Image I s1 (x + u(x));
Compute gradient ∇ I s1 (x + u(x));
Compute Optical flow us ;
Intermediate filtering;

end
If s > 1 then up-sampling us to us−1;

end
u = u1

Algorithm 1: Pseudo-code for a traditional optical flow.

3.3.1 Bilateral Filter

The Bilateral filter can be represented as

ui f (x) = 1
∑

y∈N (x) w(x, y)

∑

y∈N (x)

w(x, y)ui (y), (3.3)
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with N (x) a neighborhood around x, w(x, y) are the exponential weights, and ui
(with i = 1, 2) are the vertical and horizontal components of the optical flow:

w(x, y) = φS(x − y)φI (I0(x) − I0(y)), (3.4)

where φS is the spatial distance between x and y, and φI is the photo-metric distance
between the pixels in I0(x) and I0(y). φS and φI are Gaussian kernels given by

φS(x) = e
− ‖x‖2

2σ2S and, φI (I0(x)) = e
− ‖I0(x)‖2

2σ2I where σS > 0, σI > 0, and I0(x) is the
reference image.

3.3.2 Median Filter

The Median filter is a non-linear filter, which is used to remove noise and outliers
from the optical flow estimation. Given a neighborhood around x (let’s say N (x)),

ui f (x) = mediany∈N (x)ui (y). (3.5)

We considered square geometries to implement the Median filter, i.e., we filter a
3 × 3 square around each x point. Each component of the optical flow is filtered with
this filter.

3.3.3 Weighted Median Filter

The Weighted median filter is a non-linear filter applied to a bidimensional distribu-
tion ofweights and pixel intensities. Each pixel in a neighborhoodN (x) has aweight.
The goal is to sort the pixel intensity values, given the distribution of weights. In this
case, for each pixel x, we use bilateral weights. The following expression represents
weights in each neighborhood:

w(x, y) = φS(x − y)φI (I0(x) − I0(y)). (3.6)

We sorted both the weights w and also the values in u(x). The auxiliary variables
are sw and su , representing weight values and optical flow values, respectively. We
found in the array sw positions p∗ that hold

p∗∑

i

sw(i) <
1

2

N∑

i

sw(i). (3.7)
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Finally, using the position p∗, we assign the weighted median filtered values of u:

uw f (x) = su(p
∗). (3.8)

3.3.4 Balanced Median Filter

Our proposal is a weighted combination of the bilateral and the median. This lin-
ear combination has an adaptive weight α(x). This adaptive weight balances the
contribution of the bilateral and the median filter in the intermediate filtering.

Let ubl(x) and um(x) be the filtered estimated optical flow by the bilateral filter
and the median filter, respectively. Following the ideas in [12], we constructed a
balance weight:

α(x) = 1

1 + e(Dbl (x)−Dm (x))
, (3.9)

where Dbl(x) is given as

Dbl(x) = |I0(x) − I1(x + ubl(x))|, (3.10)

and Dm(x) is given as

Dm(x) = |I0(x) − I1(x + um(x))|. (3.11)

These two terms, Dbl(x) and Dm(x), represent the error of the OF in the point x
when the bilateral filter or the median filter are applied, respectively. The convex
combination gives the combined optical flow:

u(x) = (1 − α(x))um(x) + α(x)ubl(x). (3.12)

Depending on the values of αi (x), the flow can be more confident in the median filter
or the bilateral filter. Equation3.9 shows that when Dbl >> Dm , αi value is almost
0 and when Dbl << Dm , α is almost 1.

3.4 Dataset and Experiments

This section presents the performed experiments and the dataset used to evaluate
optical flow estimation performance.
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Fig. 3.5 Examples of the MPI-Sintel video dataset. a frame_0001 and b frame_0002 of video
sequence ambush_2. c Arrow representation of the ground truth OF of the video. d OF color-coded
representation. e frame_0001 and f frame_0002 images of the video sequence cave_4. g available
ground truth optical flow of two consecutive images. h Color-coded ground truth optical flow. i
Used optical flow color code

3.4.1 Dataset

The dataset contains different video sequences that present blur, fog, different illumi-
nation, and many scenes with large displacement and fast displacements. The dataset
is divided into two subsets. One set is a training set, and the second one is a validation
set. The training set is also divided into two subsets, one called clean and the other
called final. The final stage considers the effects mentioned above. This set is more
challenging than the clean one; therefore, we performed the experiments in this set.
Figure3.5 shows examples of video sequences in the MPI-Sintel dataset, and we
offer the available ground truth optical flow with arrows and also using color code.
We show the used color code in Fig. 3.5i.
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Table 3.1 The number of images in each image sequence in MPI-Sintel training set
Sequence Alley Ambush Bamboo Bandage Cave Market Mountain Shaman Sleeping Temple

# of images 100 174 100 100 100 140 50 100 100 100

In Table3.1, we show a numerical description of each sequence of the final MPI-
Sintel training set. In theMPI-Sintel dataset, the optical flow ground truth is available
as shown in Fig. 3.5. Thus, this ground truth let us compute end-point-error (EPE)
and angular-average-error (AAE); these errors are giving by the following expres-
sions:

EPE = 1
n

n∑

i=1

√
(g1i − u1i )2 + (g2i − u2i )2

AAE = 1
n

n∑

i=1
cos−1

(
1+g1i u1i+g2i u2i√

1+g21i+g22i

√
1+u21i+u22i

)

.

(3.13)

3.4.2 Experiments

In the following, we explain experiments performed using the MPI-Sintel dataset.

(i) Evaluation using median filter
We evaluated the complete MPI-Sintel training set in the final version using the
median filter of size 3 × 3 as an intermediate filter.

(ii) Evaluation using weighted median filter, median filter, and balanced median
filter
We evaluated the complete MPI-Sintel training set in the final version using the
weighted median filter considering σI = 200 and σs = 200.

(iii) Evaluation using Balanced weighted median filter also evaluated our proposed
combined filter, which combines a weighted median filter and a bilateral filter.

(iv) Evaluation using a bilateral filter.

3.5 Results and Discussion

Wehave evaluated the filters in sequences that containmedium displacements, which
are the sequences: market, mountain, shaman, sleeping, and temple. In these evalua-
tion sets, we assessed EPE and AAE for these intermediate filters. In these experi-
ments, we computed OF in the training set, which is around 490 images. We present
in Table3.2 second and third columns, the obtained numerical results. As a resume,
we obtained an EPE = 4.47 and AAE = 9.22 and finally EPE + AAE = 13.69
by the Median filter. In Table3.2 in the fourth and fifth column, we show results
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Table 3.2 Results were obtained by different proposed filters, EPE and AAE. The second and third
columns show results obtained by the Median filter. In the fourth and fifth columns, results were
obtained by the weighted Median filter, and in the sixth and seventh columns, results by Balanced
weighted median filter

Sequence
Name

Median Filter Weighted Median
filter

Balanced Median
filter

Bilateral Filter

EPE AAE EPE AAE EPE AAE EPE AAE

Market 8.50 13.07 8.50 13.08 8.43 12.83 10.25 15.51

Mountain 0.95 10.15 0.95 10.16 0.95 9.88 1.32 11.24

Shaman 0.37 7.11 0.37 7.10 0.35 6.58 0.40 6.99

Sleeping 0.11 1.79 0.11 1.78 0.10 1.73 0.13 2.05

Temple 9.06 12.90 9.04 12.96 9.04 12.86 11.82 16.22

Total
EPE

4.47 9.22 4.47 9.23 4.44 8.99 5.56 10.71

EPE +
AAE

13.69 13.70 13.44 16.27

obtained in the MPI-Sintel data set using the Weighted Median filter. We obtained
EPE = 4.47 and AAE = 9.23 and also EPE + AAE = 13.70. These results are
worser than the results obtained by the Median filter.

In Table3.2 sixth and seventh columns, that the EPE + AAE = 13.44. Com-
paring results obtained by the Median filter (EPE + AAE = 13.69) and Weighted
Median (EPE + AAE = 13.70), andBalancedfilter,we see that the obtained results
are very similar. There are differences of 0.26 between the Weighted Median filter
and the balanced median filter. We observe a small difference in the AAE between
the Median filter and balanced median filter. The Balanced median filter performs
better than the median filter (AAE = 8.99). This result indicates that the estimated
optical flow is better aligned w.r.t. the ground truth.

3.5.1 Comparison with Other Methods

We submitted the obtained results in the MPI-Sintel to the MPI-Sintel webpage.
Those results were ranked in a benchmark that compares different OFmethod results.
Figure3.6 shows the obtained performance. In Fig. 3.6, we show the performance of
our proposal.Ourmodel using the combination of bilateral filter andweightedmedian
filter (called TVL1_BWMFilter) outperforms classic methods like Horn-Schunck
[1]. Our proposal presents an EPE = 9.034 outperforming the T V − L1 classic
formulation [13] and the non-local optical flow in Classic+NL [4]. Our proposal
performs similar to Motion Detail Preserving Optical [12] flow, which considers
additional correspondences, giving hints to guide the OF estimation. Figure3.7 is
shown with some examples of obtained results by our method.
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Fig. 3.6 Obtained results by our proposal in MPI-Sintel benchmark

)c()b()a(

)f()e()d(

Fig. 3.7 Examples of flow estimation in MPI-Sintel test set. a frame_0024 and b frame_0025 of
sequencePERTURBED_shaman_1.cestimatedopticalflowforsequencePERTURBED_shaman_1.
d image frame_0041 of sequence tiger1. e image frame_0042 of sequence tiger1. f estimated optical
flow for sequence tiger_1

In Fig. 3.7c and f is shown obtained OF for images of the sequence PER-
TURBED_shaman_1 and tiger1 of the MPI-Sintel test dataset. In these two images
of the sequence PERTURBED_shaman_1, we obtained a EPE = 1.648 (Fig. 3.7a
and b), and in the two images of sequence tiger1 (Fig. 3.7d and e) we obtained
EPE = 1.678.

3.5.2 Bidimensional Empirical Mode Decomposition

We have filtered the estimated optical flow using Bidimensional Empirical Mode
Decomposition (BEMD) as a proof of concept.We used aMATLAB implementation
available on the web. In Fig. 3.8, we show a video sequence where a dragon runs
following a chicken. We estimated the optical flow, and we extracted the BEMD.

We observe in Fig. 3.8d the edges of estimated optical flow in (c), and in Figure (f)
intermediate spatial frequencies are shown. In Fig. 3.8, low frequencies are shown,
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Fig. 3.8 Bidimensional EmpiricalModeDecomposition. a and b two images of the video sequence
market_6. In c, we show the color-coded estimated optical flow.d and f BEMDshowing highest spa-
tial frequencies and intermediate-high frequencies, respectively. eBEMD showing low frequencies.
g lowest spatial frequencies

but the edges were not preserved, i.e., the EMD performs as an anisotropic filter.
Finally, in (f), we observe the continuum component of the flow, which is very
blurred and does not preserve shapes.

The MATLAB implementation of the BEMD decomposition method runs four
iterations in 1435 seconds, which is not suitable for real time.

3.5.3 Processing Time

We measured the total processing time at each scale, which depended on the image
size. That is, at different scales, we have different processing times. The measure
was performed on a Laptop MSi-i7, running on a single core (please see Table3.3).

3.5.4 Discussion

Regarding the BEMD method, we observe in Fig. 3.8f that the method performs
similar to the Gaussian filter, i.e., it blurs the image. Edge preserving in optical flow
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Table 3.3 Processing time at each scale—Balanced filter

Image size Time processing

256 × 109 0.005186 s

512 × 218 0.016479 s

1024 × 436 0.101669 s

estimation is an essential feature that a method should have. We think that a minor
modification of BEMD decomposition is possible in order to preserve edges. As a
future work, we will consider modifying the BEMD method to consider anisotropic
morphological operators. And then evaluate its effect on the optical flow estimation.

Concerning another approach to optical flow estimation as in [7], the author didn’t
evaluate their proposal in the standard dataset such as MPI-Sintel [10] or [11]. Also,
there is no available code in order to compare our results with their proposal. Con-
sidering implementing the proposal in [7], as future work, we will consider assessing
this proposal with ours in a standard dataset such as MPI-Sintel.

Concerning the obtained results, we were comparing the columns in Table3.2
associatedwith theMedianfilter andBalancedmedianfilter.Weobserve for sequence
shaman that the average angular error dropped from 7.11 to 6.58, which is 0.43
degrees, and EPE dropped from 0.37 to 0.35 with 0.02 pixels. We observe that the
most significant reduction was in the angular error, which means that the optical
flow is better aligned with the ground truth for this sequence. We highlight these
results because some of these sequences contain large displacement or minimal
displacements, and shaman contains medium displacements. The proposal is better
suited for small and medium displacements.

3.6 Conclusions

To perform our intermediate filter study, we have used a robust model for illumina-
tion changes and can handle large displacements. With this model, we assessed the
performance of these filters: Median, Weighted Median, Balanced Median filter, and
bilateral filter.We evaluated the performance in theMPI-Sintel dataset and submitted
our results to a benchmark webpage. We obtained that the Balanced Median filter
outperforms the other three filters; thus, we process theMPI-Sintel test. The obtained
results show that our proposal outperforms the classical Horn-Schunck method and
TV-L1 model and other models, robust to large displacements (LDOF) or non-local
methods (Classic+NL). It also outperforms current methods such as GeoFlow [14]
and CPNFlow [15]. In future work, we can investigate the uses of the BEMD decom-
position method. However, with an anisotropic consideration to preserve edges and
shapes and as future work, we will consider implementing the wavelet optical flow
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to assess this proposal and our proposal in a standard dataset such as MPI-Sintel to
compare performance.
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