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14.1 Introduction

L. A. Zadeh in 1965 [14] set forth the exceptional concept of fuzzy sets, that have
Brobdingnagian applications in several fields of study. In 1986, a generalization
of fuzzy sets was created by Atanassov [2], which is understood as Intuitionistic
fuzzy sets (IFS). In IFS, in addition to one membership grade, there will addition-
ally be another grade called non-membership grade that’s hooked up to every part.
To boot, there’s a restriction that the total of those two grades at most be unity.
A new theory was introduced by Smarandache [12] in 1999, called neutrosophic
sets and logic. Uncertainty describes a lack of knowledge in one’s knowledge but
whereas ambiguity describes the ability to entertain more than in one interpretation.
Thus, Neutrosophic set is used to deal with incomplete, indeterminate, and incon-
sistent information present in the real world. A neutrosophic set (NS) is employed
to tackle uncertainty using the truth membership, indeterminacy membership, and
falsity membership grades which are considered to be independent. The generaliza-
tion of IFS is the neutrosophic sets since there is no restriction between the degree of
truth, indeterminacy, falsity, and these degrees can individually vary within J0~, 17.
Applications of Neutrosophic set can be found in the field of medicine, information
technology, information system, decision support system, etc [8, 9].

From scientific or engineering purpose of reading, the neutrosophic set and set
theory-based operators got to be specific. Hence, Wang et al. in 2005 [13], presented
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an associate case of the neutrosophic set called single valued neutrosophic sets that
were intended from the sensible purpose of reading wherein the degree of truth,
indeterminateness, and falsity takes the value from the unit interval [0, 1]. To capture
the imprecise information in the truth membership degree, indeterminate degree, fal-
sity degree, Deli et al. [7] in 2016 introduced Single Valued Neutrosophic Numbers
(SVNNs) which is a single valued neutrosophic subset of a real line that satisfies nor-
mality, convexity, and upper semicontinuity for truth degree, lower semicontinuity for
indeterminate and falsity degree with bounded support. Several researchers studied
different types of single valued neutrosophic numbers (to cite few [4, 11]). Various
ranking methods were developed for SVNNs to make the optimal decision in real-life
problems involving indeterminate data. Ranking using the value and ambiguity for
the membership grades captures the ill-defined magnitude which underlies any fuzzy
number and using the same ranking of the Single Valued Trapezoidal Neutrosophic
number (SVTrNN) was studied by Biswas et al. [3]. In this paper, we introduce Sin-
gle Valued Linear Octagonal Neutrosophic Numbers (SVLONNs) where the truth
membership, indeterminacy membership, falsity membership functions are exhib-
ited as Linear Octagonal Fuzzy Numbers. Ranking technique on SVLONNS plays
a crucial role in higher cognitive process issues that involve indeterminate data in
ordering and comparing the same.

The remaining paper is structured as follows: The definition of SVLONNS,
(ty,B0,Y0)-cuts of SVLONNSs and arithmetic operations on SVLONNSs are proposed
in Sect. 14.2. Section 14.3 is dedicated to discussing the value and ambiguity indices
of SVLONNS and a ranking technique of SVLONN:Ss is introduced for defuzzification
processes. In Sect. 14.4, we deal with the formulation of a Multi-Attribute Decision-
Making Problem. In Sect. 14.5, a hypothetical problem is conferred for SVLONNS.
In Sect. 14.6, we record closing remarks and some applications of the planned tech-
nique are put forth for future study.

14.2 Single Valued Linear Octagonal Neutrosophic Number

In this section, we define SVLONNS, cuts of SVLONNS, and arithmetic operations
on SVLONN:ES.

Definition 14.1 A Single Valued Linear Octagonal Neutrosophic Number

(SVLONN) A denoted by (p1, p2, p3, Pa, Ps, Pes P7+ Ps: 415 425 43+ 44, 455 G6>
q7,q8; 71,12, 13, 74, I's, T, 17, r'g; k) where py < pp <+ < pg; q1 <q2 <--- < qs;
ri < rp < ... <rgare real numbers, its truth membership function 73 " indetermi-
nacy membership function 7 , falsity membership function Fj; = are defined as
follows: For0 < k < 1,
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X <4q1;

q1 =X =4q2;
qy < x <q3:
q3 =x =q4;
q4 =X =45;

45 =X =46

Remark 14.1 The diagrammatic representation of SVLONNSs for different values
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Remark 14.2 When k =0 and k= 1, SVLONN reduces to the Single Valued Trape-
zoidal Neutrosophic number (SVTrNN) denoted < p3. p4, ps. pe: 1. g2, 97, q8: 11, 12, 17, 18 >
and < p1, p2. p7. P8 3. 94, 95, 46: 13, T4, T's, T > respectively (Figs. 14.4 and 14.5).
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Definition 14.2 An («,,8,,Y,)-cut set of SVLONN Ay is given as
ANt oy = 101 Ti () Z @0, 13, (X) < oy Fi, () < Vo) = (ANays (AN)g,s (AN)y,)

where

A L A R
A — (AL - G ] = L ANE)1L (AN for a, € [0,K]
(A0 = HANYa ANV ] =) (AL )0, (A sl for ap € (ko 1]
(AN 1 (ANE L. for Bo € 0. 4]
(AN )2, (A )2l for By € (k. 1]

(A1 (ANl for vo €10, k]
[(AN)])2. (A2l for yo € k.11

(A, = LAN)G, (AN T =

(An)y, = AL (AR 1=

Computing the (ANN)amﬂo-Vn of AN in Definition 14.1, we have
[ANED (AE T = [p1 + L (P2 — p1). ps — G2 (ps — pD)]

[(AME 2 (AE )21 = [p3 + %E (ps — p3). pe — % (p6 — ps5)]
[(ANE )1 (AE 1T = [a3 — B (s — q3). g5 + B2 (g6 — 95)]

(A5 )2, (A)E o] = a1 — Bt (2 — q1). a7 + B (as — qn)]
(AL )1 (AN BT = [r3 — Lt (rg = r3), 75 + 2206 — 15)]

(AL )2 (AN R )2l = [r1 = %5 (ra — 1), 17 + 25 (g — 19)]

We introduce arithmetic operation on SVLONNS as follows:

l?eﬁnition 14.3 Let AN =(p1, P2y, P8 q1,92, ---+q8; 1,2, ...,rg) and
By = (X1, %2, -+, X85 V1, Y2, -+ - V85 215 22, - - -, Z8) be two SVLONNs and let s be

any real number, then addition and scalar multiplication by («,,8,,Y,)-cut approach
are given by:
1. Addition:

(A~N)a,,,ﬂ,,,y,, + (B'N)a,,‘ﬂ,,,y,, =
(AL (ANE T+ TBAE . BAE 1 1ANG, . (AN 1+ [(BADG, - (BAOK :
[AN)L (AR T+ LB (BAOS 1] (14.1)
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where

AADEDL + BANEI L (AADE DT+ (BAOE 1
for ag €[0,k]

LANDE2 + (BADE 2. (AANE 1o + (BANE )21
for ap € (k, 1]

(AN AAE 1 +1BAE, . BAOE1 =

[p1+>1+°"’<pz*p1+y2*V1> pg+yr— F (PS*P7+V8*)’7)] for ap €10,k]
[p3+y3 —p5+Y6—y5)] for ap € (k1]

i((/imgon +<<BN)§u>1, AN 1+ BanE 1
for Bo €10,k]

(AANG, )2+ (BADE 2 (BADE 12+ (BADE 2)
for Bo € (k. 1)

(AN)ﬂ (AN)ﬂD (BN)/g (BN)ﬂo

- I[ql+z1

MG, GAnR1+1BAE, . B R 1=

/3,

5+ 2;’ (a6 — a5+ 76 —is)] For o € [0.k]
ql+’2m1) q7 tz7+ —z7)] for Bo € (k, 1]

(IR +(<iw>§0)1, AAED 1+ (BB
for yo €[0,k]

(AN 2 + (BAOE 2, (AADR )2 + (BAOE 21
for vo € (k, 1]

Yo—k .
Vo= (ry —r3 +24 - 83), 75 + 85+ L2 (6 — 15+ 86 — 85)1  for yo €10, 4]

_ f73+g37
=11+ — 817+ 87 + B g —r7 + 23 — &)l for vo € (k1]

[rp +g1 -

2. Scalar Multiplication:

G [(rAN)% <vAN>a,,] [(mmﬁ (rAN),S LIsANIE, . GANDE,T fors =0
s = ~
Neo-Porvo = | (A, Anoky T 16ANDK  (sAN0E 1 [<sAN>y,,,<sAN>§{,] fors<0

(14.2)

where, for s > 0

[(sCAND @)1+ (A(AN)a,,h] ao € [0,k]

WsANDE,  CANE 1=
Ny AN, [[(A(A/\/)ao)z GANIE ] w0 k1]

[spy + %2 (wz —sp1),spg — J(ng —sp7)l for ap €[0,k]
[sp3 + & (5174 —$p3),spe — (spe —sp3)l  for ap € (k1]

) ) (A5 1 GANIE 1T o c10.8)
(B saprk 1= | OB 1 AN g T o
[(S(AN)ﬂo)z- (J<AN)ﬁ0)2] Po € (k, 1]

_ { lsq3 — 827K (sqy — sq3). 545 + //270(”16 —s45)]  for fo € [0.k]

[sqy — 5= (sq2 = sq1). 597 + (sqg —sq7)]  for o € (k, 1]

[<s<AN)§0>1.<s<AN>§O>1] Yo €10,K]
[(A‘(/;,/\/))I;o)z, AN ek

[sr3 —
B [sr] —

(ANDT, GANDS,1 = [

X (srq = sr3). 575+ Y2 (sr6 —sr5)] for vo € [0.K)
}/0 (rrg —srp)] for yo € (k, 1]

(er —sry),sr7+
and fors < 0

SANIEN S <v(AN)aa>1J ap €[0.k]

7 R 7 L
(ANIE sANE 1=
Naor $EN a0 [[(s(Am )2 GANIED] w0 € (1]

[spg — *(éﬂg —spp)spy + 92 (3172 *Spl)] for ap €[0,k]
[spe — (Spa —sps).sp3 + 9 (sp4 —sp3)]  for ap € (k1]
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B B (AN E ) GANIE DT o €10,K]
[(SAN);_? 4(5AN)/% 1= _N [li{o 1 ~./\/ iﬂ 1 o

o o (AN 2. GANIE D21 Po € k1]

{ lsqs + ‘Zk” (sa6 — 5q5). 503 — P4 (sqy —sq301  for o €10.k1

[sq7 + 5= (sqs $q7),5q1 — ’S,k (sqp —sq1)1  for o € (k, 1]

[(SCANY )1 AN Yo €10,k]

7 R e L
(AR Aok =] 16@ A
Nvor SEN o [[(s<AN>§0)2,(x(AN)ﬁ,)zJ Yo € k11

lsrs + L2 (srﬁ srs)sr3 — 2Ky el for yo € 10,K]
[sr7 + Va -2 (srg —§r7), 5] — 7kl (srp —s71)] for yo € (k, 1]

Definition 14.4 Let AN =(P1,P2s-+-> P8 1,92, ---+q8; 1,2, ...,Fg) and

By = (X1, X2,y ..., X5} Vi, Y2y e+, V8 21, 225 - - - » 28) be two SVLONNs and let s
be any real number, then the coordinatewise addition and scalar multiplication are
defined as follows:

l. ANV® By =(p1+X1, ... Ps+X85q1 + Y1y qs + Y5571+ 21,0, T3 + 28)
(14.3)

(Sp1,...,5p8;8q1,...,5q8;sr1,...,sr3) for s >0

(SP8y « ., SP1; Sq8, - - -, Sq1; S8, ..., 8r1) for s <0
(14.4)

2. sAN =

Theorem 14.1 The («,,B,,V,)-cut approach and coordinate approach of the addi-
tion and scalar multiplication of SVLONNS s yields the same SVLONN.

Proof 1t is enough to show that

(AN)anaﬂ()’yn + (EN)ans/So«Vn = (A~N + BN)O‘(M/SG-VH ands(A‘“N)amﬂmVo = (SAN)ao«ﬁt)aV<)'
From Definition 14.3 and Definition 14.4,we observe that

RHS of equation (14.1)=(Axr + Bxr)a, g,.,, and RHS of equation (14.2)=(s Axr)a, 4,7,
respectively. U

14.3 Value and Ambiguity Index-Based Ranking
for SVLONNSs

In this section, we define Value and Ambiguity of SVLONNSs. And by using the
same, we define value and ambiguity index of SVLONNS.

Definition 14.5 Let A A be a SVLONN, then the value of the truth [V, (A A1, inde-

terminacy [V; (A A ] and falsity [Vg (A A7)] membership grade of A N arerespectively
defined using the weighting function f(«,), g(8,) and h(y,) as
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~ k ~ ~ 1 ~ ~
Vr(Ax) = fo [ANED + (ANENf (@o)de, + /k [(AN)E )2 + (AN )21 f (o) der,

(14.5)
~ k ~ ~ 1 ~ ~
Vi(An) = /0 [((AN) g1 + (An)f D118(Bo)dBo + /}; [(An)g,)2 + (A § )218(Bo)dBo
(14.6)
~ k ~ ~ ] ~ ~
Ve(Ay) = /0 [AMI1L+ (A 1R (o) yo + /k LA )2 + (A S )21k (vo)d o
(14.7)

Remark 14.3 1. The decision maker can set the Weighting functions according to
the nature of the problems in real situations.

2. For example the choice of the functions f(«,) =«,, g(8,) =1— B, and
h(y,) =1 —y, where «,, B,, ¥, € [0, 1], give rise to different weights to ele-
ments in different «,-cut, B,-cut, y,-cut sets and make less the contribution of the
lower «,-cut sets, reduce the contribution of higher §,-cut, y,-cut sets. These are
acceptable as the cut sets arising from values of T; " (x), I; " (x), and Fj " (x)
deals with a considerable amount of uncertainty.

3. Vr(An), Vi(An), and Vi(An) synthetically reflects the information on every
membership degree, indeterminacy degree, and falsity degree respectively.

4. Vr(A A, Vo (A A),and Vg (A A7) may be considered as a central value that repre-
sents the membership function, indeterminacy function, and falsity function.
Substituting f(a,) = &,, g(B,) =1— B, and h(y,) =1 —y, in Egs. (14.5),

(14.6) and (14.7) respectively, we compute the values of truth membership func-

tion, indeterminacy membership function, and falsity membership function using

MathCad 14 and are given by

. K2 k—1
Vr(An) = 3 (P1+2p2 +2p7 + ps) + T(2kp3 + kpa + kps + 2kpe + p3 + 2pa +2ps + pe)

k2 (k

- k 1)?
Vi(An) = 5(% + g4+ g5 +q6) — (Zqz +q4 + g5 +296) + (g1 + 292 + 297 + g3)

(k — 1)

- k k?
Vi(AN) = 3 (r3+rq+rs+re) — Z(2r3 +r4+rs+2r6) + (r1 +2r2 +2r7 +13)

Definition 14.6 Let A 5 be a SVLONN. Then the ambiguity of the truth [Ar (A A1,
indeterminacy [A; (A A)]and falsity [Ap (A A)] membership grade of A A arerespec-
tively defined using the functions f(«,), g(B,) and h(y,) as

Ar(An) = fo k[((fimc’;)l — (AN)EN]S (o)dey + /k 1[((AJ\/’)§0)2 — (ANE )21 f (o)der,
(14.8)

A(Ay) = fo k[((/im,’;,n = (AN 112(Bo)d By + fk 1[(<AN>,§,>1 — (An)§,)212(Bo)dBo
(14.9)

Ar(An) = fo k[((/SN);i)l — (AME N1k (vo)dyo + fk l[((/imfn)z — (A )21k (vo)d Yo
(14.10)
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Remark 14.4 In the above definition, we observe that ((A NEY = ((A MNEDj
(AN ); = (ANE) 1 ((AN)R ) j — ((An)E) for j=1,2 express the length of the
intervals of (Ax)a, , (Anr)g,» (An),, tespectively. Thus Az (Ax), A;(An), Ar(Ay)
can be viewed as the global spreads of the truth membership function, indeterminacy
membership function, and falsity membership function respectively. The vagueness
of Ay is determined using the ambiguity of these three functions.

We derive the ambiguity of truth membership function, indeterminacy member-
ship function, and falsity membership function using MathCad 14 for f(«,) = «,,
g(B,) =1— B, and h(y,) =1 — y, in Eqgs. (14.8), (14.9) and (14.10) respectively
yield:

- k—1 k2
Ar(AN) = T(2kp3 +kpa — kps — 2kpe + p3 +2ps — 2ps — pe) + g(Zm —2p2+ps —p1)

- 1)? (k)?
z (g1 + 292 — 297 — q8) + T(Z% +4q4 — g5 — q6)

~ k (k
Ar(AN) = 3 (95 —q4 — 93 + q6) —

_ 1)2 (k)Z
(r1+2ry—2r7 —r3) + T(2r3 +rq4 —r5—7r6)

N k (k
Ap(AN) = 3 (rs —r4 —r3+re) —

By using the value and ambiguity of truth membership function, indeterminacy mem-
bership function, falsity membership function computed in Remarks 14.3, 14.4, the
value and ambiguity index of SVLONNSs are defined as follows:

Definition 14.7 For a SVLONN A, the value index and ambiguity index are
given by
Ve =¥Vr +nVi+¢VE (14.11)

Ay =VAT +nAr + L AF (14.12)

where the co-efficient V¥, n, ¢ appearing in Egs. (14.11) and (14.12) expresses respec-
tively the preference value of the decision maker such that ¥ +n+¢ = 1.

Remark 14.5 For ¢ € [0, %] and n+¢ € [%, 1], a decision maker makes a pes-
simistic decision in an uncertain environment. On the other hand, the decision maker
may desire to make an optimistic decision in an uncertain environment for vy € [%, 1]
andn + ¢ € [0, %]. Also, if a decision maker chooses y = n =¢ = é, then there is
an equal importance to truth, indeterminacy, and falsity. Therefore, the value index
and ambiguity index reflect the attitude of the decision maker for SVLONN.

Theorem 14.2 Let ANI and AMbe two SVLONNSs. Then for ¥, n, ¢ € [0, 1] and
¢ eR,

Ve (Any + Ang) = Vi (Any) + Ve (Ans) (14.13)
Ve (@AN) = ¢V (Any) (14.14)

Proof We prove this theorem by using the Definitions 14.4 and 14.7.
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Vine (Ani + Axe) = Vr(An, + Ax) + nVi(Ax; + Ane) + ¢ Vi(Ax;, + Ax)

k2
= %[g ((p1 +x1) +2(p2 + x2) +2(p7 + x7) + (ps + x3))

k—1
+ T(2k(p3 + x3) + k(pa + x4)) + k(ps + xs)
+ 2k(ps + X6) + (3 + X3) + 2(ps + x4) + 2(ps + Xs5) + (p6 + X6) ]

Nk

+ 3[5((% + ¥3) + (g4 + y4) + (g5 + ¥5) + (g6 + Y6))
k2

- g(2(q3 + y3) + (g4 + y4) + (g5 + ¥5)

k —1)?

6
x ((q1 + y1) +2(q2 4+ ¥2) + 2(q7 + ¥7) + (g5 + ¥3))]
¢
6
kZ
- E(Z(Fs +23) + (ra + z4) + (r5 + 25) + 2(r6 + 26))

(k —1)?
6

+2(q6 + y6)) +

k
+ [5((r3 +23) 4 (ra + 24) + (rs + 25) + (r6 + 26))

+

((r1 +z1) +2(r2 +22) +2(r7 + 27)

k2
+ (rs +28))] — 3(2(7’3 +23) + (ra + z4)

= Vye (Any) + Vyopc (Ans)

and

Vg @AND) = VVT @AND + VI @AN) +EVE@ANT)

vk

k-1
= E[ i (pp1 +20p2 +2¢p7 + dpg) + 5 (2kép3 +kopy + képs + 2kpe + ép3 +20p4 + 20p5
0k K2 (k—1)2
+¢pe)] + 5[5 (6q3 + ba4 + das + dag) — & (2003 + $a4 + das + 204) + ——— (a1 + 2402
¢k K2
+20q7 + bqg)] + H [E (pr3 + dry + ¢r5 + ¢re) — 5 (263 + ry + ¢rs + 2¢r6)
k=12
+ e @ry 202 + 2017 + ¢rg)]
=¢Vy 0. (An)
which completes the proof. (]

Theorem 14.3 Let Ay, and A, be two SVLONNs. Then for yr, 1, ¢ € [0, 1] and
¢ €R,

Ay (Any + Any) = Ay (Any) + Ve (Ans) (14.15)
Ay (DAN) = dAy . (An) (14.16)
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Proof We prove this theorem by using the Definitions 14.4 and 14.7. The proof of
this theorem is as that of theorem (14.2). [l

Definition 14.8 We compare two SVLONNs A N, and A N, by using value and ambi-
guity indices as follows:

1. IfAM =< ANZ then an;(AM) < V¢M(AN2)

2. If Ay, > Ay, then V., ;(AM) > Vyon, é‘(A_/\/’z)

3. If Ve (A ND = Ve (A ;). then by using ambiguity index we compare them
in the following ways:

8. Tf Ay (Any) = Ay e(Ays) then Ay, = Ay,
b If Ay c (Any) < Ay (Aps) then Ay, < Ay,
c. I Ay, (An) = Ay, (Ap,) then Ay, ~ Ay,

14.4 Formulation of a Multi-attribute Decision-Making
Problem

In this section, we consider an Multi-Attribute Decision Making (MADM)
problem where the attributes are given by SVLONNSs. Let us assume that for
an MADM problem, U = {U;, U,, ..., U;} be the set of t alternatives, and
E ={E, E,, ..., E,} be the set of v attributes and the weight vector provided by
the decision maker for the attributes be W = (w;, wa, ..., w,)’, where w; € [0, 1],
> i_ywj =1 and w; is the degree of importance for the attribute E;. There-
fore, we express the alternatives U; over the attributes E; by SVLONN d;; =

1 2 3 4 5 6 7 8. 1 2 3 4 5 6 7 8.1 .2 .3 4
(pija pl‘j7 pl‘ja pl'ja pl'j’ pl‘j7 pl‘jv pl‘js ql‘j9 ql‘j’ ql‘ja ql'ja ql'ja ql'ja ql'ja qija rij’ rij’ rij’ rij7

rl.j,rfj,rij,rij) where pfj,q{‘j,rf‘j,eRfori=1,2,3,...,t;j=
1,2,3,...,vand k=1,2,3,...,8 and the neutrosophic decision matrix
D = (dij)mxn, where

E, E, ... E,

. U, 62116212--~6£1v
(dij)mxn = Uydy dy ...dy,

Uy dyy dp ... dy

fori =1,2,...,tand j =1, 2,...,v. Here we apply Value and ambiguity indices
of SVLONNS to solve MADM problem.
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1. Normalization of SVLONN based on decision matrix
In order to eliminate the effect of different physical dimensions during the process
of final decision-making, the decision matrix (&,- )ixv is normalized into (7;;);x,
by using the linear normalization technique.

2. Aggregation of the weighted values of alternatives

The aggregated weighted values of the alternatives U; (i = 1,2, ..., t) is deter-
mined by
S = ijfij (14.17)
j=1
respectively. Here the aggregated weighted values S;(i =1,2,...,1)are defined
using SVLONN .

3. Ranking of all alternatives
Ranking of all alternatives of all alternatives is determined by using the value and
ambiguity indices of SVLONN using S;.

14.5 Illustration of MADM Problem

Consider the following situation experienced by a Principal of a College in selecting
a candidate for the post of Assistant Professor in the college. Suppose three candi-
dates say Uj, U, Uz has been shortlisted after a written test to be appointed as an
assistant professor based on the criteria such as educational qualification (E), past
experience (E3), and research publications (E3). The assessment of the recruiter for
each candidate based on the information corresponding to the attributes are expressed
as SVLONNSs using the linguistic terms:

Extremely Low-(0.0, 0.0, 0.0, 0.0, 0.0, 0.05, 0.1, 0.15;0.3);

Low-(0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4;0.3);

Neither low nor medium-(0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55;0.3);
Medium-(0.35, 0.40, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7;0.3);

Neither medium nor high-(0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85;0.3);

High-(0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95;0.3);

Extremely High-(0.75, 0.8, 0.85, 0.9, 0.92, 0.96, 0.98, 1.0;0.3). The assigned weight
vectors of three attributes are w = {0.31, 0.34, 0.35}. The complete perception of
the Principal about the individual is modeled as SVLONNSs and the decision matrix
is given by Table 14.1 where E; represents the attributes, U;, U, Uj are alternatives
and d;; are SVLONNs.
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Table 14.1 SVLONNSs-based decision matrix
Ey E; Ej3

(dijysa=
Uy dyy diy di3
Us day dyy dp3
Us d31 d3 d33

Based on the individual U, ’s educational qualification, we have

di1= ( extremely high; medium; extremely low)
=(0.75,0.80 ,0.85, 0.90, 0.92, 0.96, 0.98, 1.00;0.35, 0.40, 0.45, 0.50, 0.550.60, 0.65, 0.70;0.00, 0.00, 0.00, 0.00, 0.05,
0.1,0.15, 0.20;0.3)

similarly for Uy ’s past experience, we have
dj= (medium; low; extremely low)
=(0.35, 0.40, 0.45 ,0.50 ,0.55 ,0.60 ,0.65 ,0.70;0.05 ,0.10 ,0.15 ,0.20 ,0.25 ,0.30 ,0.35 ,0.40;0.00 ,0.00 ,0.00 ,0.00 ,0.05
,0.10,0.15,0.20;0.3)

and for Uy ’s research publications, we have
dy3=(neither low nor medium; low; neither medium nor high)
=(0.20,0.25,0.30,0.35 ,0.40 ,0.45 ,0.50 ,0.55;0.05 ,0.10 ,0.15 ,0.20 ,0.25 ,0.30 ,0.35 ,0.40;0.50 ,0.55 ,0.60 ,0.65, 0.70,
0.75, 0.80, 0.85;0.3)

Based on the individual U;’s educational qualification, we have
dy=(neither low nor medium; high; neither medium nor high)
=(0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55;0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95;0.50, 0.55, 0.60, 0.65, 070,
0.75, 0.80, 0.85;0.3)

for Uy ’s past experience, we have
dyy=(high; medium; extremely low)
= (0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95;0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70;0.00, 0.00, 0.00, 0.00, 0.05,
0.10, 0.15, 0.20;0.3)

and for U’s research publications, we have
dy3=(high; medium; extremely low)
=(0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95;0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70;0.00, 0.00, 0.00, 0.00, 0.05,
0.10, 0.15, 0.20;0.3)

Based on the individual U3’s educational qualification, we have
d31=(extremely low; neither low nor medium; high )
=(0.00, 0.00, 0.00, 0.00, 0.05, 0.10, 0.15, 0.20;0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55;0.60, 0.65, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95;0.3)

for Usz’s past experience, we have
d3p=(neither low nor medium; high; extremely high)
=(0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55;0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95;0.75, 0.80, 0.85, 0.90, 0.92,
0.96, 0.98, 1.00;0.3)

and for U3’s research publications, we have
d33=( extremely high; neither low nor medium; low)
=0.75, 0.80, 0.85, 0.90, 0.92, 0.96, 0.98, 1.00;0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55;0.05, 0.10, 0.05, 0.20, 0.25,
0.30, 0.35, 0.40;0.3)

We rank the alternatives U;, U,, U3 by examining the value index and the ambi-
guity index of each alternative for different values of ¥, n, ¢ € [0, 1] as tabulated in
Table 14.2 (using MathCad 14).
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Table 14.2 Ranking results for alternatives
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Alternative | Value of ¥, n, ¢ Value index | Ambiguity index Ranking order
Ui 0.30 0.11
Us ¥ =0.10,7 =0.40,¢ =0.50 | 0.38 0.10 Us > U > U
Us 0.48 0.09
U, 0.10 0.09
U, ,/,:%n:%;:% 0.15 0.09 Us > Uy > U
Us 0.25 0.08
U, -0.22 0.07
U, ¥ =0.70n=0.20¢ =0.10 -0.21 0.07 Us > U > U
U; -0.10 0.06

For this choice of valuesof ¥, n, ¢ € [0, 1], theranking of alternatives are obtained
as follows: Us > U, > U,.

Remark 14.6 When the problem is carried for the value k = 0, the ranking is
obtained as follows (Table 14.3):

Table 14.3 Ranking results for alternatives

Alternatives

Value of ¥, n, ¢

Value Index

Ambiguity index

Ranking order

Uy 029 0.17
v, ¥ =0.10,7=040,c =050 | 037 0.17 Us > Us > U
Us 047 0.12
Uy 0.06 022
U ¢=%n=%§=% 0.11 0.25 Us > Uz > Uy
Us 023 0.10
Uy 0.8 030
v, ¥ =0707=020£ =010 | -0.29 037 Us > Us > U
Us 015 0.06

Remark 14.7 For a different choice of weighting functions, f(«,) =1 — «,,
g(B,) = B, and h(y,) = y, we have the problem worked out along line and the
outcome is tabulated in Table 14.4.
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Table 14.4 Ranking results for alternatives
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Alternatives Value of ¥, n, ¢ Value index | Ambiguity index Ranking order
U 0.39 0.16
Us ¥ =0.10,7 =0.40,¢ =0.50 | 0.49 0.15 Us > U > U
Us 0.55 0.14
U, 0.45 0.14
U, ,/,:%n:%;:% 0.54 0.14 Uy >Us > U
Us 0.52 0.12
Uy 0.53 0.12
U, ¥ =0.70n=0.20¢ =0.10 0.61 0.12 Uy > U >U;
U; 0.48 0.16

Remark 14.8 When the problem is carried for the value k = 0, the ranking is
obtained as follows:

Comparing Tables 14.2 and 14.4 we note that the variations in «,, 8, and y,
affect the ranking system. So depending on the importance given to the various
criteria considered there will be variation in the ranking also. Thus the choice of the
candidate will differ from recruiter to recruiter. This is one recruiter’s perception for
two patterns.

Table 14.5 Ranking results for alternatives

Alternative | Value of ¥/, n, ¢ Value index | Ambiguity index Ranking order
U 0.38 0.15

U, ¥ =0.10,y = 0.40, ¢ =0.50 | 0.48 0.14 Us > Us > Uy
Uj 0.54 0.13

U, 0.44 0.13

U, np:%n:%;:% 0.53 0.12 Uy > Us > U
Us 0.51 0.11

U, 0.52 0.09

Us ¥ =070 =020¢=0.10 | 0.61 0.09 Us > Uy > Us
Us 0.47 0.07

From Tables 14.2, 14.3, 14.4, 14.5 we observe that for better ranking, SVLONNs

are used.

14.6 Conclusion

In this paper, we introduced and studied the idea of SVLONN. Value index and
Ambiguity index of SVLONNSs are discussed. With the help of the same, a ranking
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method for SVLONNSs is developed and applied to a MADM problem. Depending on
the need of the person making choices with respect to «,, B, ¥,, ¥, 11, ¢ there will be
variation in the output. Based on the need one can choose truth value, indeterminacy
value, falsity value, coefficients of value, and ambiguity indices which cause variation
in the ranking. In a similar type of setup in any other field, this model can be used (to
cite a few medical diagnosis, pattern recognition, personal selection). Further, value
index and ambiguity index can be used in transportation problem.

Acknowledgements We thank DST (FIST 2006) MATCAD 14 which is used for computational
purpose.
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