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Abstract Landslides are a widespread geological event with nearly 12% of India’s 
land area being prone to this natural hazard. The development of a reliable regional 
landslide early warning system is an immediate requirement for the country in the 
perspective of proper disaster management. This chapter begins by describing the 
most common morphological, geological, meteorological, and anthropogenic factors 
that may influence slope stability. It then explores the potential future use of Numer-
ical Weather Prediction (NWP) forecast products for the assessment of landslide risk 
and early warning issuance. Related to this, a major discussion is about an objectively 
derived set of 30 daily weather patterns for India, which provide a historical classi-
fication allowing us to relate large-scale circulation at the country level to observed 
rainfall and landslide occurrence at a particular location—therefore providing us 
with a set of high-risk weather patterns which are susceptible to landslide occur-
rence. From a medium-range forecast perspective (out to two weeks), this chapter 
then describes how ensemble members from ensemble prediction systems (such as 
those run by the Indian National Centre for Medium-Range Weather Forecasting 
(NCMRWF)) can be objectively assigned to the closest matching weather pattern in 
order to produce probabilistic forecasts highlighting when the large-scale circulation 
may be susceptible to landslide occurrences. In addition, this chapter conducts a 
review of the local rainfall thresholds liable for triggering landslides, covering both 
intensity and antecedent thresholds. Nilgiri is used as a case study location, for deter-
mining the quantitative temporal probability of landslide initiation, which is essential 
for utilizing short-range forecasts from NWP models in a more efficient way.
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1 General Introduction 

Landslides are the downslope movement of earth’s material under the influence of 
gravity. Landslides are classified generally based on the type of movements (slide, 
fall, topple, spread, and flow) and the material in the slope (rock, earth, and debris) 
as well as other factors contributing the slope failures. The major classification of 
the landslides in terms of the material type and type of movement is originally 
devised by Varnes (1978), for example, rock fall, rock slide, earth flow, etc. (Fig. 1). 
Slide materials are moved along a roughly planar surface in the translational slide 
whereas a coherent movement in a single unit is displayed in the block slide. Falls 
and topples are the abrupt movements of slope materials which are influenced by 
gravity, mechanical weathering, pore water pressure, etc. Lateral spreads are even 
occurring in flat terrain mainly caused by sand liquefaction (transformation from a 
solid into a liquefied state). Debris flows indicate the mobilization of soil or rock 
caused by intense surface-water flow, due to heavy precipitation or rapid snowmelt. 
A detailed review of the landslide classification is by Cruden and Varnes (1996) and 
further modifications to this categorization could be found in Hungr et al.(2013).

Among all the natural hazards, landslides affect nearly 12% of India’s land mass 
hence the development of an advanced landslide forecasting system is a thrust area 
needing focus from the perspective of natural disaster management in India. 

Morphological, geological, meteorological, and anthropogenic factors all influ-
ence slope stability and the resulting landslide risk for a particular area. Morpholog-
ical factors included the tectonic uplift, glacial rebound, and erosion of the hill slope. 
Causes of landslides from a geological perspective include factors such as slope, soil 
thickness, relative relief, drainage, material contrasts, permeability contrasts, and 
sheared, jointed, or fissured materials. Meteorological factors, such as the weather 
conditions over the previous days as well as on the day of any landslide also signifi-
cantly influence the stability of slopes, particularly when significant rainfall or rapid 
thawing of lying snow is involved. Soil texture and structure greatly influence water 
infiltration, permeability, and water-holding capacity. The water-holding capacity of 
a landmass could be reduced through rapid infiltration (volume flux of water entering 
into the soil by rainfall/snowfall) through the pore space within rocks/soils. The infil-
tration rate is higher for coarse-textured soils than for fine-textured soils. The factor 
of safety, Fs, the ratio of shear strength to shear stress in a slope is also depen-
dent on the cohesive nature of the soil, parent material (rock type), soil texture, etc. 
Moreover, the soil moisture retention capacity is dependent on the adhesive nature 
of the soil, which in turn relates to the stability of the hill slope (Kannan 2014). 
Even low soil moisture presence in non-cohesive soil would make it vulnerable to 
landslides. On the other hand, the anthropogenic factors such as the construction of 
roads, infrastructure, blockage of drainage systems deforestation are the major cause 
of landslides.
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Fig. 1 Schematic illustration of major types of landslide movements. Image courtesy is USGS fact 
sheet 2004–3072( https://pubs.usgs.gov/fs/2004/3072/)

Though the landslide susceptible areas have been identified by the Geological 
Survey of India (GSI), the factors deforestation, urbanization as well as encroach-
ments often change the susceptibility conditions. With advancements in computa-
tional and numerical modeling capabilities, the Indian Meteorological Department 
(IMD) is able to provide reliable meteorological input to localized regions from a 
high-resolution numerical weather prediction (NWP) model. One use of this forecast 
output is to provide guidance for forecaster-issued warnings of severe weather, such

https://pubs.usgs.gov/fs/2004/3072/
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as thunderstorms, strong winds, heavy snowfall, and heat waves. However, opportu-
nities still exist to exploit this forecast information further in applications of weather 
impacts. In this context, a recent international research collaboration between Indian, 
Italian, and UK research institutes has been working on designing a new framework 
for the better use of forecast products within forecasts of rainfall-induced landslides. 
This monitoring system may help in the Early warning of landslides especially debris 
flows, shallow slides, etc. 

The major discussion of this chapter is about the potential future use of meteoro-
logical data or forecast products for landslide forecasts. The chapter is arranged with 
the following major sections: A discussion of how large-scale weather patterns over 
India can be related to the occurrence of meteorological-induced hazards such as 
landslides; Review of the local rainfall thresholds for triggering landslides, specifi-
cally focusing on Nilgiri, where the Western and Eastern Ghat meet. The final section 
discusses a methodological way of using NWP models from the National Centre for 
Medium-Range Weather Forecasts (NCMRWF) within future landslide warnings. 

2 Relating Weather Patterns to an Increased Likelihood 
of Landslide Occurrences 

A weather pattern can be described as one of many circulation types over a defined 
region (e.g. the Indian subcontinent), which differs in its characteristics from other 
weather patterns over the same region and varies on a daily basis. The term ‘weather 
regimes’ can also be used to describe a defined circulation type. Weather regimes 
are typically larger in scale, fewer in number, and persist for more days than weather 
patterns. However, to a certain extent, the two terms can be used interchangeably. This 
section describes recent research led by the UK Met Office and with support from 
the NCMWRF among others (as part of the international collaboration described 
in Sect. 1) to objectively define large-scale circulation patterns over India, which 
can be used in forecasting applications for weather impacts. Examples from the UK 
include relating weather patterns to coastal flooding (Neal et al. 2018), meteorological 
drought (Richardson et al. 2018), flooding (Richardson et al. 2020), temperature-
related excess mortality (Huang et al. 2020) and landslide occurrences (Robbins 
et al. 2018). The weather pattern for landslides will also be one of the first fore-
casting applications is being used in India, where recent research investigated the 
ability of weather pattern forecasts to identify periods more susceptible to landslide 
occurrences. 

The weather over the Indian subcontinent is highly modulated by the transition 
of the prevailing easterly trade winds in winter to the westerly trade winds during 
the summer monsoon. It is possible to identify circulation pattern variability within 
this seasonality as the weather in India is highly influenced by the Himalayas in the 
north, the Bay of Bengal to the East, and the Arabian Sea to the west. In addition, 
along with the variability of the low-level jet of oceanic origin, a mid-latitude origin
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western disturbance is a major factor controlling both the summer and winter seasons 
over India. 

Research led by the UK Met Office has developed an objectively derived weather 
pattern classification for India using long historical meteorological data, providing 
a set of plausible weather pattern definitions throughout the year, with a catalog of 
observed patterns available over the last 40+ years (Neal et al. 2020). These pattern 
definitions were generated using cluster analysis. Specifically, a non-hierarchical 
k-means clustering algorithm was applied to daily gridded reanalysis fields from 
ERA-Interim (Dee et al. 2011) covering the period from 1979 to 2016. Other studies 
to generate circulation patterns using cluster analysis include Fereday et al. (2008) 
who generated a set of 10 weather regimes for each two-month period throughout 
the year over Europe, Ferranti et al. (2015) who generated a set of four large-scale 
weather regimes over Europe and Neal et al. (2016) who generated a set of 30 weather 
patterns over the UK and surrounding European area. Few similar studies exist over 
India—at least for weather patterns relevant for the whole of India and representative 
of circulation variability over the full year. 

Large-scale weather regimes over India follow a relatively predictable evolution 
throughout the course of the year, driven predominantly by the onset and retreat 
of the Asian summer monsoon (Rao et al. 2005). However, the objectively derived 
weather pattern definitions derived by the UK Met Office open up opportunities 
for future research and forecasting applications over India. Firstly, the new weather 
pattern definitions may help understand the synoptic-scale driving forces behind the 
occurrence of high-impact weather (e.g. intense thunderstorms) or the occurrence 
of specific meteorologically driven hazards (e.g. landslides). Secondly, they could 
be used within the probabilistic medium- to long-range weather pattern forecasting 
tools, where daily weather pattern forecast probabilities are derived by assigning 
multiple forecast scenarios (ensemble members) from global ensemble prediction 
systems (such as the one run by the NCMWRF) to the closest matching weather 
pattern definition. This application is similar to what is already done operationally 
in Europe; e.g., Ferranti and Corti (2011) and Neal et al. (2016). 

Results from the recent research led by the UK Met Office suggest that 30 weather 
patterns are enough to sufficiently represent variability within different phases of the 
Indian climate (Neal et al. 2020), where weather patterns are generated by clustering 
daily wind fields around 1.5 km above sea level. Each of the 30 weather patterns can 
be categorized into one of seven broad-scale regimes, called (1) winter dry period, (2) 
western disturbances, (3) pre/post-summer monsoon, (4) monsoon onset, (5) active 
monsoon (Fig. 2 left image), (6) break monsoon and (7) retreating monsoon (Fig. 2 
right image). The dominant precipitation patterns can be shown to vary between 
these seven regimes as well as between the sub-patterns within each regime. This 
is important for identifying the most prone landslide periods within a large-scale 
regime.

Once the weather patterns have been defined, the daily historical weather pattern 
catalog introduced earlier in this section can then be used to relate observed weather 
patterns to past occurrences of landslides. This helps build up a picture of the
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Fig. 2 An example of two contrasting Indian weather patterns. Left: An example of an active 
monsoon weather pattern (under south-west monsoon period) showing the prevailing westerly 
winds and heavy rain across western, central and north-eastern parts of India. Right: An example 
of a retreating monsoon (under north-east monsoon period) weather pattern, showing the prevailing 
north-easterly winds and rainfall affecting the southern tip on India

overall synoptic-scale driving mechanisms behind meteorologically induced land-
slides. Then, a high confidence forecast for a particular weather pattern allows clima-
tological assumptions to be made about where in India may see an increased likeli-
hood of landslides. This approach should work best for medium to long-range forecast 
periods (one week onwards) when high-resolution NWP forecasts of rainfall have 
less skill. 

3 Rainfall Thresholds for Landslide Occurrences 

A landslide rainfall threshold is defined as the minimum intensity or duration of 
rainfall needed to trigger a landslide (Varnes 1978) and a similar threshold value is 
estimated for other meteorological and hydrological parameters such as soil mois-
ture, pore pressure, etc. The paper by Kanungo and Sharma (2014) documents the 
thresholds analyzed for landslide occurrences. Both empirical and physical models 
are used as a methodology for landslide occurrence using antecedent and triggering 
rainfall. Xiaohui et al. (2018) used both empirical and physical models, in that the 
former is based on the type of rainfall measurements (e.g., intensity and duration of 
the rainfall event), whereas the latter one is making a relationship between safety
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factors, Fs, of the slope with the rainfall depth (in terms of the daily or hourly rain-
fall amount). A detailed description of one of the physical models can be found 
in Montrasio and Valentino (2008). A process-based model is a model combining 
both meteorological and geotechnical parameters by incorporating a link between 
the slope stability condition to the rainfall pattern and infiltration (e.g. Iverson 2000). 
Empirical rainfall thresholds are broadly classified based on the following rainfall 
measurements; (a) rainfall events, (b) antecedent conditions, and (c) hydrological 
conditions (Reichenbach et al. 1998). Furthermore, threshold analysis based on the 
rainfall events is segregated into intensity–duration thresholds, thresholds based on 
the total event rainfall, rainfall event–duration thresholds, and rainfall event–inten-
sity thresholds (Guzzetti et al. 2007). Area-specific threshold analysis is broadly 
subdivided into global, regional, or local thresholds depending on the geographical 
extent and scale effect of meteorological and hydrological conditions. 

Antecedent thresholds are based on the amount of the antecedent rainfall prior 
to the slope failure or landslides. Accumulated rainfall controls soil saturation level 
and infiltration through the rock and increases the pore-water pressure. The different 
criteria under the period of consideration for the antecedent threshold analysis in 
the Himalayan region are reviewed in the paper by Kaungo and Sharma (2014). The 
result from their study shows a minimum 10-day antecedent rainfall of 55 mm and 
a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides 
over the Chamoli-Joshimath region of the Garhwal Himalayas. Dikshit and Satyam 
(2018) introduced a two-dimensional probabilistic thresholds by applying a statistical 
method of Bayesian analysis using a combination of intensity, duration, and event 
rainfall. The use of a probabilistic approach over deterministic methods is a better 
approach to employing an early warning system for landslide-affected areas and can 
be used as the first line of action. 

There are many studies documented about the rainfall triggering analysis over 
the Himalayan region, but a systematic study is lagging at the rainfall threshold 
analysis over Nilgiri and Tamil Nadu, which are locations prone to massive landslides 
during the north-east monsoon period. Sujatha and Suribabu (2017) discussed that 
the landslides at Coonoor may be triggered by high pore-water pressures generated 
during the prolonged and intense rainfall. They report that the landslides over this 
location may happen when a heavy rainfall spell is followed by a period of continuous 
rainfall. 

Under the FSP projects on the development of a landslide early warning system in 
Nilgiris, GSI provided data on landslide dates, latitude, and longitude and observed 
daily rainfall from 24 rain gauges in the Nilgiri district of Tamil Nadu State. 
Nilgiri receives maximum rainfall during retreating monsoon periods and withdrawal 
periods of the summer monsoon (Sujatha and Suribabu 2017). Hence this section 
is more focused on establishing the relationship between the intensity of rainfall 
versus antecedent rainfall prior to landslide events in Nilgiri, whereas the season-
ality in the rainfall measured among two monsoon periods is not considered here. 
Figure 3 shows the location map of observed rain gauges and landslide incidents 
reported by GSI. Both landslide catalog and rainfall measurement data are available 
from 1987 to 2017. The rain gauges and observed landslides are located between
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11°14′ and 11°26′ North latitude and between 76°40′ and 76°53′ East longitude. 
The 24 rain gauges are located at places like valleys, tea estates, and villages in the 
Nilgiri district, namely Adderley, Benhope, Burliyar, Carolina, Coonoor, Glendale, 
Hillgrove, Indco, Kairabetta, Kallar, Kattabettu, Katteri, Ketty, Singara (lower, upper 
divisions), Moutere, Mullur, Ooty, Runnymede, Selvaganpathy, Simspark, Tigerhill, 
Tuttapallam, and Upasi, and their locations are marked in Fig. 3. There are three hill 
stations in the Nilgiri district, namely Ooty, Coonoor, and Kotagiri. 

This study has chosen the nearest rain gauge (within 1.5 km distance) from the 
landslide locations that gives a maximum rainfall intensity (filtered-out rain gauge 
with a lower rainfall intensity than 5 mm) on the day of each landslide event. Figure 4 
is representing the relationship between antecedent rainfall prior to the landslide 
(cumulative rainfall calculated from the past 1, 3, 7, 10, 15, 20, and 30 days before 
the landslide event date) and the intensity of rainfall observed on the day of the 
landslide event reported at Nilgiri. GSI has identified 509 landslide events which

Fig. 3 Location map of observed rain gauges and landslide incidents at Nilgiri district in the Tamil 
Nadu State, reported by GSI 
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were caused by 116 rainfall events. In Fig. 4, all panels (a–f) are divided into two 
halves by the diagonal line in order to distinguish between the scattering bias of 
rainfall intensity (y-axis) and antecedent rainfall (x-axis). The diagonal divider itself 
indicates that the daily rainfall on the day of the landslide and the antecedent rainfall 
prior to the landslide is the same.

As observed from Fig. 4 a-f, the majority of landslide events are biased towards 
the antecedent rainfall prior to the landslide in comparison to the daily rainfall on 
landslides of different time durations (3, 7, 10, 15, 20, and 30 days). Figure 4a is  
illustrating the 3-day antecedent rainfall prior to a landslide event (x-axis) against 
the daily rainfall intensity on a landslide event (y-axis). From the scattered diagram, 
48.1% of the total landslide events (i.e. 245 landslides out of a total of 509 were 
caused by 68 rainfall events) are biased towards the daily rainfall intensity and the 
rest of 51.9% of landslide events (i.e. rest of 264 landslides were caused by 48 rainfall 
events) are biased towards 3-day antecedent rainfall prior to landslide events. When 
it is analyzed for another cumulative period, the ratio of biases towards daily rain-
fall intensity and antecedent rainfall is estimated as 35.8:64.2, 16.9:83.1, 14.3:85.7, 
12.4:87.6 and 4.7:95.3 for the case of 7-day, 10-day, 15-day, 20-day and 30-day 
antecedent rainfall respectively (Fig. 4b–f). Hence, it may be stated that a maximum 
of 95.3% of the landslide events (i.e. 485 landslides caused by 95 rainfall events) 
occurred under the influence of 30-day antecedent rainfall prior to landslide events, 
and the effect of increasing chances of landslide is dominated by cumulative rainfall 
over the intensity of rainfall on the day of landslide incidents when duration increases 
prior to the event.

The general conclusion on the basis of 3-day antecedent rainfall and intensity 
rainfall on the day of landslide events occurred at Nilgiri district is that both might 
be contributing equally, and Fig. 4a gives only the bias difference of 3.7% towards 
antecedent rainfall, whereas 7-day to 30-day antecedent rainfall are having more 
biased towards duration increments compared to the intensity of rainfall on the day 
of landslide events (Fig. 4b–f). 

4 Meteorological Forecast Data Used for Early Warning 

NCMRWF operates state-of-the-art numerical weather prediction (NWP) models– 
with both global and regional configurations with forecasts covering time scales from 
a few days to a few weeks in advance over India. Recent advances in this capability 
are in the use of the Unified Model, which is a collaborative model developed with 
the UK Met Office. The NCMWRF version is called the NCMRWF Unified model 
(NCUM). Different configurations of the NCUM are given in Table 2 by Rajagopal 
et al. (2019). This section of the chapter mainly focuses on the potential use of 
seamless forecast products in generating a framework for landslide predictions.
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Fig. 4 Relationship between antecedent rainfall prior to failure (3, 7, 10, 15, 20 and 30 days shown 
at panels from a-f respectively) and daily rainfall at failure for 509 landslide occurrences caused by 
116 rainfall events at Nilgiri district in Tamil Nadu
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Fig. 5 A debris flow occurred on 14th June, 2018 at Chettiyampara colony in Kurumbilangod 
Village in Malappuram District of Kerala and is triggered by three days of antecedent rainfall. 
Image courtesy is GSI Field Season: 2018–19 (Item No.: M4SI/NC/SR/SU-KRL/2018/21108)

The current NCMRWF global ensemble prediction system has among the highest 
horizontal resolution (~12 km) in the world. There are 23 ensemble members 
(22 perturbed and 1 control), among that 11 members and control members are 
initialized at 00UTC of the present day and the remaining 11 members are from 12 
UTC of the previous day (Mamgain et al. 2018). This ensemble system provides 
up to 10-day global forecasts, whereby forecast scenarios (ensemble members) can
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be objectively assigned to the closest matching weather pattern definition, such as 
those introduced in Sect. 2. The probabilities for each weather pattern occurring 
at each forecast lead time from the ensemble members are evaluated based on the 
observed training parameters used in the clustered analysis. Statistics referred to in 
Neal et al. (2016), such as the mean area weighted distance between members and 
their assigned weather patterns and the mean spatial correlation between members 
and their assigned weather patterns, can be used to match ensemble members 
to weather patterns. These probabilistic weather pattern forecasts provide useful 
guidance within the medium-to-long-range forecast periods (week one onwards). 

For short-range forecasts and warnings of landslides, threshold analysis from the 
high-resolution model forecast based on the intensity and antecedent rainfall is used. 
The previous section discussed multiple rainfall parameters which can be used as a 
landslide-triggering threshold for the Nilgiri location in the Western Ghats. Power 
law distribution of the rainfall conditions such as rainfall duration and intensity 
resulting in landslides is written as the equation as I = α D β , where I is the rainfall 
intensity, D is the duration, α and β are the empirically derived parameters (e.g., 
Kanungo and Sharma 2014). Thresholds for the landslide occurrence with respect 
to rainfall intensity, and duration generated from power-law will be tested in the 
real-time for the selected pilot region from the model forecast. These combinations 
of parameters from the observed training sets will be compared with the regression 
values for the aforementioned parameters from the forecasted fields. We suggest 
that the power–law relationship between rainfall level and landslide occurrence can 
be used to estimate the probability of various levels of landslide activity during a 
rainfall event as a guide for making decisions related to emergency preparedness. 
This combination of parameters may be appropriate for shallow landslides but for 
complex failure types we may need a modified algorithm. For example, a Bayesian 
approach may be employed by combining observed rainfall data with the rainfall 
amount from the forecasted string to obtain antecedent rainfall. 

For example, a landslide in Malappuram, Idukki, and Wayanad districts during 
June 14, 2018, lead to debris flow over a number of houses associated with a heavy 
spell of rain. Figure 5 is an image of one of those sites located in Malappuram 
where the landslide caused severe impacts. The site was marked with heavy rainfall 
that lasted for three days preceding the event leading to the build-up of an excess 
pore water pressure. Figure 6 (panel 3) shows the skill of the NCMRWF ensemble 
model in predicting antecedent high rainfall during the date of 9–13 June prior to 
slope failure in the Malappuram district on 14th June 2018 (Fig. 5). Other panels 
are the surface atmospheric parameters modulating the safety factor of the slope 
location through soil saturation level and pore water pressure. Hence predicting 
most of these variables from the models in 10-day advance (that is current maximum 
lead time forecast available) will show the robustness of the model in picking the 
closest matching weather regimes and threshold analysis for initiating the landslide 
occurrence (e.g., Neal et al. 2022).
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Fig. 6 A 10 day forecast of surface temperature, surface humidity, 10-m wind, rain, and MSLP 
from NCMRWF ensemble forecast based on an initial condition of 00UTC 04 June 2018 

Under the international collaboration project introduced in Sect. 1, an experi-
mental prototype of a regional landslide early warning system (EWS) is being set 
up for two pilot regions:- by GSI over Darjeeling in West Bengal and Nilgiri in 
Tamil Nadu. Following this project, EWS for other landslide-prone areas is being 
taken up beginning with the Rudraprayag district, in Uttarakhand with a joint effort 
of GSI, National Remote Sensing Centre, Indian Space Research Organisation
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(ISRO), Disaster Mitigation and Management Center (DMMC) and NCMRWF. 
Effective use of the new parameters such as pore pressure, soil type, and moisture 
holding capacity will be considered for the development of the EWS system. In 
future, the NWP model used in the landslide EWS will be upgraded to employ a 
30 m resolution ISRO land use land cover (LuLc) over the Indian region along with 
Cartosat 30 m digital elevation map orography. ISRO LuLc provides recent and 
updated information about the vegetative and non-vegetative model tiles over the 
Indian region, where soil moisture/temperature forecasts play a critical role in the 
slope failure predictability within the landslide EW system. 
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