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Abstract. With the development of genetic data engineering and edge intelli-
gence, more and more intelligent applications and services are trained in the edge
side. However, the centralized training mode has the problems of high transmis-
sion delay and user privacy disclosure, while federated learning (FL) can protect
the privacy of users, and reduce data transmission costs by distributing the training
work. Existing FL schemes often ignore the impact of low-quality training nodes
and the security issues in the data transmission process. To improve the accuracy
of the FL model, we design a node selection algorithm based on deep reinforce-
ment learning (DRL). In addition, we use blockchain for model transmission to
complete the global aggregation of FL to enhance the security and reliability of
model parameters. We design a blockchain empowered FL framework and further
propose a two-layer consensus algorithm based on PBFT to improve consensus
efficiency, reduce consensus delay and reduce communication resource consump-
tion. Simulation results show that the proposed node selection algorithm outper-
forms other compared algorithms, and can well improve the accuracy of the model
and reduce the loss function. The proposed consensus algorithm can balance the
consensus efficiency and communication resource consumption.
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1 Introduction

Mobile terminals constantly generate a large number of different types of data, including
genetic data, material information andmultimedia data. These data are often used for the
training of services models. However, the traditional centralized training mode requires
users to upload all data, which will lead to the problem of privacy disclosure. At the
same time, the central server in the centralized training mode needs to obtain a large
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amount of terminal data, which may lead to server overload or congestion due to too
much network traffic [1].

Because of the huge scale of the genetic engineering, the information of terminals is
easy to be tracked,which leads to the disclosure of users’ security andprivacy. FLcanwell
solve the problem of privacy disclosure. It enables different data owners to collaborate
without exchanging data by designing a virtual model. However, the security problem
in the data transmission process have not been solved.

Blockchain has tamper-proof, anonymity, and traceability functions. It does not rely
on additional third-party management agencies, and works with no central control. Each
blockchain node realizes self-verification, transmission and management of information
through distributed accounting and storage. Using blockchain for model transmission
enables secure data sharing in the terminal edge network.

Introducing blockchain into the aggregation process can prevent the models from
attacks and malicious tampering [2]. Several schemes [3–5] use blockchain for model
aggregation and update tasks, avoiding the problem of a single point of failure caused
by central server storage. [6] proposed a novel blockchain to solve the critical message
propagation problem inVANET, improvingnode trustworthiness andmessage reliability.
Lu [7] proposed a data sharing scheme based on blockchain and FL, using blockchain
to ensure trusted sharing and FL to protect user privacy, which ensures the accuracy
and security of the model. However, the above schemes ignore the delay incurred in the
blockchain consensus process.

To solve the above problems, a DRL and blockchain empowered FL framework
is designed for genetic data engineering. We first optimize the node selection, solving
the problem of low model accuracy caused by malicious nodes. Then, we divide nodes
into primary network layer nodes generating blocks and secondary network layer nodes
uploading models, so the institution node with a higher trust value can obtain the billing
right more easily, which improves the security and credibility of data in genetic engi-
neering. Since the consensus processes of secondary network layer and primary network
layer are asynchronous, the consensus efficiency is improved.

2 System Model

2.1 Network Architecture

As shown in the figure, we propose a blockchain empowered FL framework for genetic
data engineering. Considering that the system includes multiple terminals and multiple
institutions, the terminals are distributed in the mobile layer and train the local models
with their own data, while institutions are distributed as edge nodes in the edge layer
and aggregate models, with MEC servers deployed on them.

To prevent attacks and malicious tampering of models trained by a single institution,
we store local models in blocks and make all institutions work together to aggregate
global models by using blockchain technology. Multiple institutions collect and aggre-
gate theirmodels simultaneously, anddecentralizemodel updates and storage through the
blockchain’s consensus mechanism and public storage. The blockchain records glob-
ally aggregated model parameters, model accuracy, sender identity information, data
signatures, and data sharing events between institutions (Fig. 1).
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Fig. 1. The DRL and blockchain empowered FL framework for genetic data engineering

2.2 Consensus Delay

The block propagation delay of miner i is set to:

ξ
p
lock = Hdatatblock

R
+ 2dn

c
(1)

where, tblock is the number of transactions within the block, Hdata is the amount of one-
transaction data, R is the data transmission rate, dn is the distance between nodes and c
is the speed of light [8].

Since transaction verification consumes a fixed amount of computing power, assume
that authentication time and verification time has a linear relationship with the number
of transactions in the block, denoted as:

ξ vblock = l · tblock + k · tblock (2)

where l is a parameter determined by the network size and the average verification speed
of blockchain nodes. Therefore, the sum of propagation time, authentication time and
validation time of a block with tblock transactions are:

ξblock = Hdatatblock
R

+ 2dn
c

+ (k + l) · tblock (3)

2.3 Communication Resource Model

The concept of communication resource consumption in the consensus process is mod-
eled using the communication count F . Assuming that there are M nodes in the network
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participating in the master node selection phase, the formula for calculating the number
of node communications in the network is:

Ta = N − 1 (4)

Tb = (N − 1)2 (5)

Tc = N (N − 1) (6)

F = Ta + Tb + Tc (7)

where Ta is the number of communications from the previous primary node sending the
current state, Tb is the number of communications from each node initiating a vote, and
Tc is the number of communications receiving confirmation from most candidate nodes
in the current round.

3 FL Framework

3.1 Training Node Selection Algorithm

Terminal devices have different computing power and data sets, which will affect the
accuracy of the local model and training delay. Therefore, we need to select a group
of appropriate terminals as training nodes to make the training results optimal and the
training delay controlled within a certain range.

We consider summing the loss functions to represent the training performance of
training nodes in FL. We propose an optimization problem to maximize the accuracy of
the global model by optimizing the vehicle selection decision. Then, the node selection
problem can be expressed as:

min L(xtest, ytest : ω)

s.t C1 : ai = {0, 1},∀i ∈ n

C2 : ttraining ≤ σ

(8)

where constraint C1 ensures that the terminal selection decision is valid, and constraint
C2 ensures that the training delay is not higher than a threshold.We use DRL to solve the
optimization problem. We consider the available resources of the terminals as the state
space, the selection decision of the terminals as the action space, and the optimization
objective as the reward function.

3.2 The Hierarchical Node Consensus Mechanism

In the hierarchical node consensus mechanism, blockchain nodes have three roles.
Among them, one institution node acts as the master node to package the messages
of the master network layer into blocks, and the other institution nodes act as the mas-
ter network layer nodes to participate in the consensus process of the master network
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layer with the master node. As the secondary network layer node, the terminal node is
responsible for sending the local model parameters.

We structure the consensus mechanism into two layers. The secondary network
layer transmits data to the master network layer nodes through an optimized PBFT
consensus between the secondary and master network layer nodes, and the primary
network layer selects the nodes that generate blocks through a reputation value-based
master node selection mechanis. Since the two-layer consensus is asynchronous, the
two-layer structure can improve the consensus efficiency.

3.3 The Global Model Update Process

The global model update process in this paper mainly consists of three steps.
Local model (secondary layer) submission stage: When terminals complete local

model training, these terminal nodes submit model parameters and timestamps to the
institution nodes in the area and send summary information to other terminal nodes
in the secondary network layer. The institution node packages the model parameters
submitted by terminal nodes received over a period of time into a collection. In order to
achieve reliable model updates, institution is required to identify and delete low-quality
local model updates using reliable shared data sets that are updated regularly to ensure
that the accuracy of models participating in the aggregation reaches a certain threshold.
After some time, the institution collects a set of qualified terminal local model updates
and sends a response containing the collection information to each terminal node. After
verification of terminal nodes, institution and each terminal node reached a consensus
similar to PBFT.

Master network layer consensus stage: in the master node selection stage, the voting
mechanism, heartbeat mechanism, and trust mechanism based on FLmodel contribution
are combined. Each main network layer node broadcasts the model parameter set. The
main node collects and sorts the message set received within a period of time, and
reaches a consensus with each master network layer node. Finally, the master node
saves all model parameters into the block, digitally signs the block, and broadcasts the
block to other master network layer nodes for verification.

Global model training: Since each institution can directly retrieve the latest block
data from its own blockchain ledger and calculate the weighted average of local model
updates as the new global model, their final aggregation results are also the same. In
FL, the latest global model is directly downloaded from the blockchain for all terminals
participating in the next round of global aggregation as the initialized model for the next
round of global model training iterations.

3.4 Primary Node Selection Mechanism Based on Trust Value

(1) Voting mechanism
All institution nodes record the term number of the leader node. When each node
receives an election request, the term stored by the node is automatically incre-
mented by one, and then a voting election is held. Within a term, each node can
only cast one vote and is specified to vote for the first voting request node it receives,
where a node can only vote for the node whose term number is greater than or equal
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to its stored current term number. When a leader node finds that the term number of
a new leader node is greater than its own term number, it will automatically become
a child of the new leader node [9].

(2) Heartbeat mechanism
The leader node needs to periodically send a heartbeat signal to other nodes, which
contains the current term number of the successfully elected leader node. Other
nodes need to verify whether the current term number in the received heartbeat
signal is greater than or equal to its own stored term number. If this condition is
satisfied, for a period of time, then the node will identify this leader and submit
a subsequent request message to the leader. In addition, when a node does not
receive a heartbeat signal from the leader for a period of time or verifies that the
corresponding information is incorrect, it will send an election request to other child
nodes. Other child nodes hash this message and compare it with the last received
summary information, and if it is verified to be correct, a new round of election is
opened.

(3) Trust mechanism
An institution may obtain conflicting ratings for certain results, using weighted
aggregation on these ratings to obtain an offset of the trust value. Offsets between
− 1 and + 1 are positively correlated with the positive rating ratio of this message
[10]. The trust offset of institution j in this region can be calculated as follows:

τ kj = κ1 · m − κ2 · n
m + n

(9)

wherem and n are the number of positive ratings and the number of negative ratings
with weights κ1 and κ2, respectively. κ1 and κ2 are calculated using the following
equations.

κ1 = F(m)

F(m) + F(n)
(10)

κ2 = F(n)

F(m) + F(n)
(11)

where F(.) controls the sensitivity to the minority rating group. Finally, τ kj is placed
into the offset set Oj of institution j and the sum of the absolute values of its trust
bias is calculated as follows:

Sj = min(
∑

τ ij ∈Oj

∣∣∣τ kj
∣∣∣, Smax) (12)

where Smax is the upper limit of Sj.
If a node is found to be malicious, or the model state provided by an institution
node is found to be out of date, the node will be penalized by subtracting a warning
value from the node’s trust value and will be prevented from participating in the
next round of voting.

Therefore, the trust value of a node for a limited time is defined as:

P = min(α · votej + β · Sj,Pmax) (13)
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where, votej is the number of votes received by this node, Sj is the trust value
of this node, and a and b are the relevant parameters set. Within a certain period of
time, the node with the largest trust value is selected as the leader node among all
nodes initiated by selection.

Algorithm 1: Transaction submission verification and Reputation mechanism.

Initialization: 
A leader node and a set of child nodes
A series of transactions transList
Iteration: 

1.    Package Signature, timestamp, transList to node 
2.    Calculate Hash value ℎ according to transaction 
3.    For each nineighborNode do
4.        Record ℎ and corresponding nodes
5.    End
6.    If (Return value obtained ≠ ℎ ) || (No heartbeat signal from the master node 

for a while) then
7.        For each ninneighborNode do  
8.           reputationValue ← + + warningValue 
9.       End
10.    If reputationValue > then
11.       For each ninneighborNode do
12.          Select the new node
13.          =  ∑
14.       End
15.    End
16. End

Output: 
Reputation value of each node
leader node

(4) Candidate block validation mechanism
The process of candidate block validation includes the following steps:
Preparation stage: Secondary nodes generate verification results for block data.

If they pass the verification, they send the verification results together with their
own digital signature (summary information) to other secondary nodes for mutual
confirmation. The preparation phase is completed when the miner receives at least
2f verification results as block data.

Submission phase: Each secondary node compares its own validation results
with those received from other secondary nodes and replies with a confirmation
message containing its digital signature to all other miners to indicate whether
it agrees with the validation results. Over a period, if a secondary node receives
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more than 2f + 1 verified messages, secondary node sends the submission result
and digital signature to the master node to prove that most miners agree on the
authenticity of the block data.

Reply stage: When the master node receives m + 1 responses with the same
results fromdifferent secondary nodes, that is, verify themessage and checkwhether
more than 2/3 secondary nodes have reached the same conclusions about the block
data. If so, the block data is recorded into the blockchain (Fig. 2).

Fig. 2. Consensus process

4 Simulation Results and Analysis

We simulated the algorithm using TensorFlow 2.0 on a Python 3.8-based simulator. We
conducted multiple experiments and averaged the experimental results. To verify the
performance of the proposed node selection algorithm, the following algorithms are
used for comparison.

1) Proposed: The algorithm selects a group of terminals as model training nodes and
participates in global aggregation;

2) Local CNN:The FLmechanism is not used, and themodel training is only performed
on the local device;

3) FL-All: The algorithm selects all devices for global aggregation.

To verify the performance of the proposed consensus algorithm, the following
algorithms are used for comparison.

1) Proposed: This consensus mechanism uses a two-layer structure to improve the
efficiency of consensus. Combined with the trust degree, a voting mechanism is
adopted to select the master node;

2) PBFT: This consensus mechanism can work in an asynchronous environment, but
the communication complexity is too high and the scalability is relatively low;
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3) Optimized PBFT [11]: Use the polling bookkeeping method of each node in the
blockchain, and sets the number of consensuses restarts to be no more than M
rounds, which is used to improve the efficiency of consensus reaching among all
nodes.

It can be seen from the figure that the proposed has the highest accuracy and con-
verge faster. This is because the proposed algorithm aggregates high-quality models by
selecting proper training nodes. FL-All is greatly affected by malicious nodes, so the
global model has low accuracy. And, Local CNN has the lowest accuracy because it
obtains the locally optimal solutions.

The following figure depicts that the consensus delay of Proposed is lower than the
scheme of PBFT and Optimized PBFT. The reason for this is that the propagation delay
of this scheme is lower than that of PBFT and Optimized PBFT because of the closer
distance between the terminals and institution nodes in the same region. In addition,
although this scheme improves the accuracy of the model by modifying the reputation
value, the consensus latency of this scheme and the schemeofOptimized PBFTgradually
approaches as the number of blockchain nodes increases. However, since Optimized
PBFT uses the polling bookkeeping method, its communication resource consumption
is smaller than the master node selection method used in this scheme; therefore, the
accuracy rate is inversely proportional to the communication resource consumption, and
more communication resources are required to achieve a higher accuracy rate. With the
increase in the number of nodes running the blockchain, the communication load and
computational overhead need to be increased (Fig. 3, Fig. 4 and Fig. 5).

Fig. 3. Accuracy Fig. 4. Consensus delay Fig. 5. Communication
resource consumption

5 Conclusion

In order to solve the data security problem in themodel training process of intelligent ser-
vices, we propose a blockchain empowered FL framework in genetic data engineering.
We introduce FL to protect data privacy and reduce communication costs, design node
selection algorithm, and use blockchain to store model information to further ensure
data security. In addition, we divide blockchain nodes into primary network layer nodes
which are responsible for generating blocks and secondary network layer nodes which
are responsible for uploading models. Then, we design a two-layer consensus algorithm
based on PBFT to improve consensus efficiency. Simulation results show that the pro-
posed algorithms significantly improve the accuracy of the global model, consensus
efficiency, and communication resource consumption.



274 Y. Zhong et al.

Acknowledgment. This work was supported by the National Natural Science Foundation of
China (62071070), and theMajor Science and Technology Special Project of Science and Technol-
ogy Department of Yunnan Province (202002AB080001-8). Yuxuan Zhong is the corresponding
author with email: xxuan@bupt.edu.cn.

References

1. Wu, W., He, L., Lin, W., Mao, R.: Accelerating federated learning over reliability-agnostic
clients in mobile edge computing systems. IEEE Trans. Parallel Distrib. Syst. 32(7), 1539–
1551 (2021)

2. Liu, H., et al.: Blockchain and federated learning for collaborative intrusion detection in
vehicular edge computing. IEEE Trans. Veh. Technol. 70(6), 6073–6084 (2021)

3. Korkmaz,C., et al.: Decentralized federatedmachine learning via blockchain. In: 2020Second
International Conference on Blockchain Computing and Applications (BCCA), pp. 140–146.
Antalya, Turkey (2020)

4. Ramanan, P., Nakayama, K.: BAFFLE: Blockchain based aggregator free federated learning.
In: 2020 IEEE International Conference on Blockchain (Blockchain), pp. 72–81. Rhodes
(2020)

5. Majeed,U.,Hong,C.S.: FLchain: FederatedLearning viaMEC-enabledBlockchainNetwork.
In: 2019 20th Asia-Pacific Network Operations and Management Symposium (APNOMS),
pp. 1–4. Matsue, Japan (2019)

6. Shrestha, R., Bajracharya, R., Shrestha, A., Nam, S.Y.: A new-type of blockchain for secure
message exchange in VANET. Digit. Commun. Netw. 6, 177–186 (2019)

7. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for
privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186
(2020)

8. Guo, S., Dai, Y., Guo, S., Qiu, X., Qi, F.: Blockchainmeets edge computing: stackelberg game
and double auction based task offloading for mobile blockchain. IEEE Trans. Veh. Technol.
69(5), 5549–5561 (2020)

9. Li, Y., Qiao, L., Lv, Z.: An optimized byzantine fault tolerance algorithm for consortium
blockchain. Peer-to-Peer Netw. Appl. 14(5), 2826–2839 (2021)

10. Yang, Z., Yang, K., Lei, L., Zheng, K., Leung, V.C.M.: Blockchain-based decentralized trust
management in vehicular networks. IEEE Internet Things J. 6(2), 1495–1505 (2019)

11. Guo, S., Xing, H., Zhou, Z.,Wang, X., Qi, F., Gao, L.: Trust access authentication in vehicular
networkbasedonBlockchain.ChinaCommun.16(6), 18–30 (2019). https://doi.org/10.23919/
JCC.2019.06.002

mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
mailto:xxuan@bupt.edu.cn
https://doi.org/10.23919/JCC.2019.06.002

	DRL and Blockchain Empowered Federated Learning Framework for Genetic Data Engineering
	1 Introduction
	2 System Model
	2.1 Network Architecture
	2.2 Consensus Delay
	2.3 Communication Resource Model

	3 FL Framework
	3.1 Training Node Selection Algorithm
	3.2 The Hierarchical Node Consensus Mechanism
	3.3 The Global Model Update Process
	3.4 Primary Node Selection Mechanism Based on Trust Value

	4 Simulation Results and Analysis
	5 Conclusion
	References




