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Abstract. Materials genetic data engineering is booming, and with it comes the
problem of data islands and other issues faced by the materials genetic database.
While federated learning solves the problem of material genetic data engineering,
it also has the problems of low model accuracy and high delay. In this paper,
an auxiliary offloading optimization method for hierarchical federated learning is
designed. Under the hierarchical federated learning systemmodel based on cloud-
edge-end, the data offloading algorithm under unbalanced data balances the data
volume of each client, reduces the local gradient difference and the model accu-
racy of hierarchical federated learning is improved; under the condition of limited
resources, a low-delay-based hierarchical federated learning offloading strategy is
designed to computing offloading, which reduces the delay of hierarchical feder-
ated learning in the training and updating process. Through experiment analysis,
the auxiliary offload optimization method of hierarchical federated learning pro-
posed in this paper has higher model accuracy and lower delay than traditional
federated learning methods.

Keywords: Federated learning · Edge computing · Computation offloading ·
Delay · Materials genetic data engineering

1 Introduction

As one of the three key research areas of materials genetic data engineering, database
plays an important role and significance in the accelerated design of materials [1]. How-
ever, the data requirements of different enterprises and governments are different, and
the standardized data format requirements are not fully complied with, which is easy to
cause problems such as data islands in the material gene databases of enterprises and
governments. Federated learning, as a distributed machine learning framework, was first
proposed by Google in 2016 [2], which allows data to be kept locally on the client side
without transferring the data to a central location, only the model parameters are kept on
the client and central Shared between servers, while solving the problem of data silos,
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it reduces the huge communication cost incurred by centralized machine learning in the
process of data transmission [3]. However, there are many aspects to be optimized in the
application of federated learning in the material genetic data engineering network. The
first is the model accuracy problem of federated learning. Compared with centralized
machine learning, federated learning allows the client to train its own data set locally,
allowing the same epoch training in the local environment of the client with different
data sizes and different computing conditions, as well as the local model. The parameters
are aggregated and the results are used as the design of global model parameters, which
all have an impact on the model accuracy to a certain extent [4]. The second is the delay
problem. Different clients have different amounts of data, and it is often the case that
the client that needs to be trained needs to wait for a long time for the client that has
not been trained to complete the training before the upper-layer server can aggregate
the updated model parameters [5]. At the same time, in the dynamic environment of
the wireless network where the material genetic data project is located, the status of the
client is constantly changing, and some clients often have unstable problems such as dis-
connection and reconnection, and are prone to resource constraints, such as Insufficient
transmission power, computing power, etc.

For these issues, some scholars have made relevant research work. In terms of model
accuracy, the author of the paper [6] proposes that a set of sharable data can be transmitted
while the trainingmodel is delivered to the client, and it is proved that themodel accuracy
of federated learning can be improved by this. However, the generation of the sharable
data requires manual intervention for optimal sampling of the data, which will increase
the consumption of human resources. In terms of delay, the author of the paper [7]
proposed an asynchronous update framework based on federated learning. All clients
will not wait for untrained clients after their own training is completed, but will directly
train themselves. The model parameters are uploaded to the upper-layer server. For
unstable clients in wireless networks, the paper [8] proposes that the connection with
unstable dynamic clients can be cut off directly. For the problem of limited resources,
the author of the paper [9] proposed a federated learning algorithm capable of client
selection. In each round of training, only some clients are selected for training to improve
the computing power of the client. However, in the process of solving the problems raised
by the papers [6–9], they all made a trade-off for the original client, and did not fully
consider discarding the data contained in the client, which caused the accuracy of the
federated learning model. Certain influence.

In this paper, referring to the existing related work, based on the hierarchical feder-
ated learning system, an auxiliary offload optimization method is designed, which can
realize the dynamic environment of wireless network and face the situation of limited
resources and ensure the optimal performance of hierarchical federated learning. High
model accuracy and low delay. The auxiliary offloading optimization method analyzes
whether to offload computation to a certain client, fully considers the delay problem
of hierarchical federated learning, and limits the total transmission power and the total
computing power of the client to adapt to the resource constraints in the wireless net-
work condition. And by offloading some data on some clients to the edge server, and
arranging for the edge server to use the amount of data offloaded by the client to join
the model training process of federated learning with the client, the training efficiency
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of federated learning is improved and the cost of federated learning is reduced. Time
delay. By balancing the amount of data remaining on the client side and the amount
of data received by the edge server, the problem of differences in the local gradients
of the same epoch during the model update process between the client and the edge
server is reduced, so as to improve the accuracy of the federated learning model. To a
certain extent, the problem that the client cannot upload the local model parameters in a
centralized manner is alleviated. During the parameter aggregation process, the training
time limit of the client is set, so that the dynamic client with timeout and under-time
will not perform model aggregation in this round of update, and the connection with
the dynamic client with continuous timeout and under-time exceeds a certain number of
times will be cut off.

The rest of the paper is arranged as follows: the second part presents the system
model of the hierarchical federated learning system; the third part analyzes and designs
the auxiliary offloading optimization method; the fourth part designs the experimental
content and analyzes the experimental results; The fifth part is the summary and outlook.

2 System Model

2.1 The Hierarchical Federated Learning System Model Based
on Cloud-Edge-End

As far as the reality is concerned, each terminal device, with its own storage capacity and
computing power, is often unable to perform a large number of computing tasks on its
own, while edge servers often have strong computing power and lack data resources for
training. In order to make full use of the idle computing resources of edge servers, this
paper designs a layered federated learning system based on cloud-edge-end architecture.
It is divided into three layers of “cloud-edge-end” in the model architecture, and it is
divided into two processes during the operation process. A training update process is
performed to address insufficient storage and computing power of end devices. The
architecture diagram of the hierarchical federated learning system is shown in Fig. 1.

Fig. 1. Hierarchical federated learning system architecture diagram
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For the “cloud-edge-end” three-layer structure of the hierarchical federated learning
system, “cloud” is the cloud layer; “edge” is the edge server layer, assuming that the set
of edge servers it owns is A

′
, there are total A edge servers and each server is represented

by the symbol a. “end” is the terminal layer, assuming that there are a total of K clients,
each client is represented by the symbol k, and its set is K, and the local data set stored
by each client is set as Da

k , the client’s local dataset size represented by Da
k . Then for

each edge server a, there are Ka clients, with the set Ka. The size of the total local data
set of the client corresponding to each edge server a isDa = ∑

k∈Ka
Da
k , with the set Da.

Terminal layer: It consists of mobile phones, computers, wearable devices and other
wireless network edge intelligent terminals,which are collectively referred to as clients in
this article. These clients are enabled by the integration of advanced sensors with higher
computing power and widespread internet availability, generating massive amounts of
data every day.

Edge server layer: consists of edge servers. The edge server layer runs on the terminal
layer and is connected to the cloud platform. Participate in the computation offloading
process and the training update process in a hierarchical federated learning system.

Cloud layer: consists of cloud platforms. The cloud platformdoes not directly contact
the client at the terminal layer, but can indirectly contact the client connected to it through
the edge server. However, the cloud platform will not participate in the computation
offloadinging process of the hierarchical federated learning system, nor can it obtain the
local data of the client and the offloading data of the edge server. It can only collect the
local model parameters uploaded by the edge server during the training and updating
process, and aggregate them into The global model parameters are delivered to the edge
server.

2.2 Computation Offloading Process of Hierarchical Federated Learning System

In the computation offloadinging process of the hierarchical federated learning system
proposed in this paper, the client k uploads its own data size and other information Da

k
to the corresponding edge server a, and the edge server a performs a calculation of
the offload information, including the need for Calculate the set of uninstalled clients
K+
a and the specific amount of data Ua

k to be uninstalled by the client k, and send it
to each client. After the client k receives the uninstallation information from the edge
server a, unload the data volume ofUa

k to the edge server a to complete the computation
offloadinging process of the hierarchical federation system. At this time, the offload data
set received by the edge server is Ua = ⋃

k∈Ka
Ua
k , and its size is Ua = ∑

k∈Ka
Ua
k .

In the process of computing offloading, whether each client needs to perform data
offloading, and the amount of data that should be offloaded, this paper will analyze
in Chapter 3, and summarize it as an auxiliary offloading optimization method for
hierarchical federated learning.

2.3 Training and Updating Process of Hierarchical Federated Learning System

After the client k receives the federated learning training task initialization phase and
completes the computation offloadinging process, the client k will use the data left in the
local area after offloading to train the local model, and the edge server a will also use it



150 Y. Qiu et al.

in the computation offloadinging process. The data unloaded Ua
k by the client k is used

for edge model training. After the local training is completed, the client k will upload the
trained model parameters ωa

k to the edge server within the transmission time limit, and
the edge server a will also complete the training of the edge model parameters ωe

a, and
will upload the local model parameters. Aggregate with edgemodel parameters to obtain
local model parameters ωa, and upload them to the cloud platform; after receiving the
local model parameters of all edge servers, the cloud platform performs a global model
aggregation operation, and finally aggregates the global model. The model parameters
ω are downloaded to the edge server a, and then sent to the corresponding client k by
the edge server a.

After the client k completes the local model training, upload the local model param-
eters to the upstream communication stage of the edge server a. Considering that in the
dynamic environment of the wireless network, the client is in an unstable state that is
prone to disconnection and reconnection. This paper sets a transmission time limit to
limit the time-out and out-of-time clients to participate in the training update process
of hierarchical federated learning. Assuming that the total number of communication
rounds of hierarchical federated learning is N , In the n round of communication, use ln
to indicate the start time of the uplink communication phase, l

′
n to indicate the end of

the uplink communication phase, and ltk to indicate the time when the client k completes
the local model training. Set the transfer time limit to:

ln < ltk < l
′
n (1)

In each round of communication, it is determined whether the client k has completed
the uplink communication phase within the transmission time limit.

At the same time, set the maximum number of consecutive times that the client is
allowed to be out of the transmission time limit to be L. If the number of consecutive
times that the client is not within the transmission time limit after a certain round of
communication is over L, it will be regarded as an invalid client andwill never participate
in this Any process of hierarchical federated learning training.

In the aggregation stage, the local model parameters under the edge server a are
defined as:

ωa =
∑

k∈Ka
(Da

k − Ua
k )ωa

k + Uaω
e
a

Da
(2)

whereDa = ∑
k∈Ka

Da
k is the size of the local data set of all clients under the edge server

a.
After the local model parameter aggregation of the edge servers is completed, it

is necessary to perform a global aggregation of the edge model parameters of all edge
servers on the cloud platform to obtain a globalmodel and broadcast it to all edge servers.
The edge servers broadcast to their corresponding client. Global model parameters can
be defined as:

ω =
∑

a∈A′ Daωa
∑

a∈A Da
(3)
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3 Auxiliray Offloading Optimiaztion Method

3.1 Data Offloading Algorithm Under Unbalanced Data

At the beginning of hierarchical federated learning, all clients have the same model
parameters and model structure. With the progress of the hierarchical federated learning
training, the client generates newmodel parameters after the training is completed,which
are the local model parameters of the client. The local model parameters are uploaded to
the edge server and aggregated into local model parameters. In this process, the model
parameters have changed, that is, there is a weight divergence phenomenon between
the local model parameters and the local model parameters. The main reason for this
is the difference in the probability distance between the data distribution on the client
and the actual distribution of the entire data set. Different clients have different resource
conditions, such as computing hardware, dataset size, etc. If all clients perform the same
epoch on the local model with their local datasets of different sizes, the local gradients
will differ significantly.

Therefore, under the assumption that the client computing hardware and other con-
ditions are the same, we control the amount of data offloading during the calculation and
offloading process of the client, so that the client k corresponding to the edge server a
can be calculated and unloaded after the offloading. The size of the data volume on the
cilent Da

k −Ua
k is basically the same as the total size of the offload data Ua received by

the edge server. Define K+
a as the set of clients that need to be offloaded under the edge

server a, there are K+
a clients, K−

a is the set of clients that need to be offloaded under
the edge server a, there are K−

a client, there is:

Ua =
∑

k∈K+
a
Da
k

K+
a + 1

(4)

Therefore, for the client k corresponding to the edge server a, the amount of
offloading is:

(5)

3.2 Low-Delay-Based Hierarchical Federated Learning Offloading Strategy

In this section, the goal of minimizing the delay is to determine the offloading threshold
θak of the hierarchical federated learning under the condition of limited resources, and
summarize it as a low-delay-based hierarchical federated learning offloading strategy.
As shown in Fig. 2, the delay of hierarchical federated learning consists of several parts.
Assuming that the delay in each round of training update process is similar, simply use
Tu to represent the offloading delay in the calculation of the offloading process, and use
Tm, Te, Tg represent the model training delay in one round of training update process,
the delay of local model parameter aggregation and the delay of global model parameter
aggregation.
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Fig. 2. Delay of hierarchical federated learning system

By limiting the global parameter aggregation delay Tg to a fixed duration, the edge
part delay expression corresponding to each edge server a in the hierarchical federated
learning process can be deduced as:

Ta = max
k∈Ka

Ua
k

Blog2(1 + pauk gak )
+ N {max

⎧
⎪⎪⎨

⎪⎪⎩

max
k∈Ka

τC
(
Da
k − Ua

k

)

√
pamk
ςa
k

,
τCUa

ha

⎫
⎪⎪⎬

⎪⎪⎭

+ tae + Tg}

(6)

where pauk is the transmission power allocated to the client k under the edge server a,
B is the bandwidth of the link, , N0 is the variance of the
complex Gaussian white channel noise, is the channel gain of the client k under the
edge server a, v is the loss parameter of the large-scale fading path, and rak is the edge
server a under the client k and the client under the data offload period. A constant channel
response is assumed. τ is the number of epochs per round of training, C is the number
of CPU cycles required to train 1 bit of data, pamk and ςa

k are the computing power and
effective capacitance coefficient of the client k under the edge server a, ha is the edge
CPU frequency of the server a. tae is the aggregation delay of local model parameters of
the edge server a.∑

k∈Ka
pauk and

∑
k∈Ka

pamk are both limited within the total power Pa, which means,∑
k∈Ka

pauk ≤ Pa,
∑

k∈Ka
pamk ≤ Pa. We use Lagrangian function and KKT condition

to solve it, and get the offloading threshold θak of the client k under the edge server a.
Therefore, we can set the algorithm of the computing offloading part of the hierarchical
federated learning.
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4 Experiment and Result Analysis

4.1 Experiment Setup

In this section, experiments are carried out to verify the improvement of the model accu-
racy and delay of the hierarchical federated learning system AOHF using the auxiliary
offload optimization method proposed in this paper. The dataset used in the experiment
is the MINST dataset of the National Institute of Standards and Technology, which
contains handwritten Arabic numerals 0–9, and performs the image classification task
of numerals 0–9. Among them, 60,000 training samples and 10,000 test samples were
obtained from 250 different high school students and Census Bureau staff in a 1:1 ratio.
The experiment is based on the open source python machine learning library PyTorch.
When simulating AOHF, the total number of edge servers is set as A = 5, and the total
number of clients is K = 200. At the same time, in terms of experimental conditions,
some resources are limited, and the offline time of the client is randomly set to sim-
ulate the dynamic environment under the wireless network. Set the power constraint
of the system to Pa = 1 W, the number of CPU cycles required to train 1-bit data is
C = 1000, and the CPU frequency of each edge server during the training update pro-
cess is set to ha = 1011 times/s, The effective capacitance coefficient of each client is
set to ςa

k = 10−18, the bandwidth is set to B = 10 Hz, and the transmission time limit is

set to ln = 0.1 s < ltk < l
′
n = 2 s. The maximum number of consecutive times that the

terminal is not within the transmission time limit is L = 3.

4.2 Model Accuracy

Fig. 3. Comparison of accuracy between AOHF and FL

The model accuracy of federated learning is reflected in the accuracy rate. As shown
in Fig. 3, compared with traditional federated learning, AOHF has a certain improve-
ment in accuracy. Compared with the first subsection of the third part of this paper,
the judgment made when analyzing and discussing the data offloading algorithm under
unbalanced data is: Consistently, the client-owned dataset size is one reason why local
gradients will vary significantly during training and updating.
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4.3 Delay

Fig. 4. Comparison of total delay between AOHF and FL

Figure 4 shows the delay comparison betweenAOHF and traditional federated learn-
ing. It canbe seen from thefigure that, on theonehand, the delays ofAOHFand traditional
federated learning gradually increase with the total number of communication rounds,
and basically show a linear relationship. It shows that the delay of each communication
round is basically the same; on the other hand, it can also be clearly seen that the delay
of AOHF is lower than that of traditional federated learning, which is consistent with
the analysis result of determining the AOHF offloading threshold.

5 Conclusion

In this paper, an auxiliary offloading optimization method for hierarchical federated
learning is designed, which can solve the data island problem of the material gene
database to a certain extent in the dynamic environment of the resource-constrained
wireless network in which the material gene data project is located, and at the same
time guarantees The continuity of hierarchical federated learning, and through the data
offloading algorithm under unbalanced data and the low-delay-based hierarchical feder-
ated learning offloading strategy, the model accuracy of hierarchical federated learning
is improved, the delay is reduced, and the material gene is improved. Data engineering
data learning and training efficiency.
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