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Abstract. Lithium batteries have become the main power source for many elec-
tronic devices, and its accurate life expectancy is of great significance to ensure
the reliability of electronic devices. Due to the limited computing power of the ter-
minal, the real-time performance of cloud data transmission is not strong. In order
to prevent the sudden failure of lithium batteries, this paper proposes a lithium
battery life prediction based on edge computing and deep learning. By using the
temporal pattern of the original data and the pre-relevance of cross-data, terminal
voltage, current and battery temperature, etc., the prediction model is established
to predict the life of lithium batteries faster and more accurately. It has better
real-time performance and more accurate prediction ability for online and rapid
prediction of lithium battery life.
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1 Introduction

In recent years, high-energy-density lithium-ion battery is playing an increasingly impor-
tant role in electric vehicles, energy storage systems, and information technology sys-
tems. The environmental energy collection and doubling of the demand for electric
vehicles make lithium-ion battery market more prosper [1]. However, the instability of
lithium-ion batteries is widely considered to be a significant obstacle [2]. For exam-
ple, energy storage systems are often connected to the energy grid for forming GWh
level energy storage, but there is without preventive protection. In such a system, an
unexpected lithium-ion battery failure may ignite the entire ESS, which will lead to a
catastrophic explosion.

In order to ensure reliable prediction of the operation and protection of lithium-ion
batteries, the prediction of remaining useful life (RUL) of lithium-ion batteries are pro-
posed in recent years. The studies are mainly divided into two types. The one is based
on the physical model, which mainly predicts RUL from the perspective of the physical
characteristics of the battery. And it is based on physical models of several degradation
mechanisms: Loss of Lithium Inventory (LLI), Loss of Active Material (LAM), and
increase in internal resistance [3]. As in reference [4], the Solid Electrolyte Interface
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(SEI) physical model was used to estimate Lithium Inventory and internal resistance.
The they applied structural cracking and chemical degradation model to evaluate Loss of
Active Material. These mechanisms and chemical models have successfully in predic-
tions, but their results are sensitive to the operating conditions of the battery. The other is
an emerging research field of data-driven RUL prediction. It applied statistical analysis
and machine learning with a large amount of data. Instead of a complex physical model,
they try to find a prediction between the electric measurements of the battery charge
and discharge cycle and RUL [5]. And these require a large amount of data to make
predictions of chemical unknowns and no-operation conditions. The most common is
the combination of exponential empirical model and advanced filtering methods, such as
particle filtering or Kalman filtering. Other work uses machine learning methods to pre-
dict capacity degradation, such as Box-Cox transform [6], Relevance Vector Machines
(RVM) [7], Gaussian Process Regression (GPR) [8].

Recently, many studies have used deep learning algorithm tomake better predictions.
Theseworks appliedRecurrentNeuralNetwork (RNN) [9] or improvedLongShort Term
Memory (LSTM) [10] to make prediction of time sequential capacity degradation. In
order to overcome the problems of over fitting, the reference [11] combined RNN and
CNN in a hybrid model. However, from the abstract mode of charge-discharge cycles
to a single discharge capacity value, it can make a rough degradation with capacity
degradation curve c. It is known that the difference in discharge capacity of lithium-
ion battery in the initial state can be ignored, so the technology based on degradation
curve requires more than 25% of target battery charge-discharge data to make accurate
prediction.

Reference [12] uses ground penetrating radar (GPR) to predict remaining useful life
from artificially defined features. The breakthrough study shows that when the evolution
of discharge voltage curve is in a cycling, the elastic network can predict RUL using
only data of the first 100 cycles (about 12.5% of the entire life cycle). It is also a
research direction to predict RUL by extracting the fluctuation of voltage, temperature
and current, with Support Vector Regression (SVR). It builds deep neural net-works to
make predictions by more complex timing related features during charge and discharge.

In order to predict the RULmore effective, we need to solve two following problems.

(1) The complexity and high coupling nonlinearity of degradation mode in lithium-ion
batteries. Due to this complex situation, the degradation of lithium-ion batteries will
not be directly reflected in the capacity attenuation. The performance degradation
of lithium-ion battery is reflected in its working mode. The complexity of operation
modemakes it difficult for human to analyze them in a suitable rule-based algorithm.

(2) The rapid RUL prediction. That is, in manufacturing and operation, only a small
number of data cycles of the target can be used for RUL prediction before new
possible prediction protection methods. Without such predictive protection, battery
manufacturers needed to minimize the risk of sudden battery death and ensure the
safety of new batteries by numbers of charge-discharge cycles. The rapid prediction
of RUL can reliably detect abnormal units in a short time, thus greatly reduce the
production costs. The method can also rapid diagnose the lithium-ion battery and
minimize the probability of accidental failure in advance.
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However, the amount of data in deep learning is large. Due to the limited data trans-
mission in network, there are large number of lithium battery RUL data collected from
the mobile terminal need to be processed and analyzed by centralized cloud computing
structure with heavy data transmission. Edge computing distributes the computing tasks
from the centralized data center to the edge unit which is closed to the Internet of things
devices. It can greatly reduce the data transmitted through preprocessing procedures.
Edge computing has better performance when the input data is more than intermediate.
It is feasible for deep learning to divert learning layers at the edge and the centralized
cloud server can receive the simplified intermediate data.

Privacy protection of intermediate data transmission is another advantage of deep
learning in edge computing [13]. The source data always has different semantics from
intermediate data produced by deep learning. For example, features of source info are
very difficult to understand in the convolutional neural network (CNN) [14].

Therefore, we applied deep learning on edge computing environment for improving
learning performance and reduce network traffic in this paper. We establish a elastic
deep learning models. We proposed an edge computing and deep learning framework
to predict the RUL of lithium-ion batteries with terminal voltage, current and battery
temperature directly from the time series of battery operation to solve the unbalanced cost
of intermediate data processing and preprocessing overhead of prediction. This paper
attempts to extract all aspects of features like feature-based RUL prediction, but these
features are automatically extracted through the deep learning model in the framework
of this paper. we automatically extracted as much as possible features for feature-based
RUL prediction through the deep learning model and adopt deep learning model with
edge computing to increase the real-time prediction. The features for RUL prediction
extracted by the end-to-end deep learning model have a good performance.

2 The RUL Prediction Model of Lithium-ion Battery

2.1 The Overall Architecture of the Model

In this paper, we applied edge computing andDeep Learning onRUL prediction problem
of lithium-ion batteries. Edge computing is the computing way that computing task is
transferred to closest node rather than centralized cloud servers. There are two major
improvements in edge computing. First, edge nodes can preprocess lots of nearby data
before transmitting to the central cloud. Second, edge nodes can optimize cloud resources
with computing power.

Deep learning model training needs to collect a wide number of training data. How-
ever, it is still possible to make arbitrary decisions that may lead to serious failures
in industrial applications. Moreover, the deep learning model is large, and the training
model in the mobile terminal will occupy a lot of device resources, which will have
varying degrees of impact on the normal use of the device by users. It is very important
to propose the method for rapid prediction of lithium-ion batteries.

In this paper, we use time series data of terminal voltage, current and battery temper-
ature in the battery management system to train neural network for directly predicting
RUL of the target lithium-ion battery. We train the deep neural networks to analyze the
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original data and automatically capture the complex association and features in volt-
age, current and temperature, rather than artificially abstracting features. It makes RUL
prediction faster andmore accurate. Figure 1 illustrates the overall prediction framework.

Fig. 1. The overall framework

The size of the intermediate data generated by the upper layer is usually less than
by the lower layer in the process of deep learning. It can reduce more network traffic by
deployingmore layers on edge servers.However, comparedwith cloud servers, the server
capacity of edge server is limited. And an edge server is impossible to handle infinite
tasks. Each layer of deep learning network would impose additional computational
overhead on the server. We deploy part of the deep learning network to edge servers.

The collected data will be sent toto the first layer of the edge servers. The edge server
loads intermediate data processed by the lower layer and then transmits the result to the
cloud server as the input data for the upper layer. We first deploy in the gateway, process
the intermediate data and then send it to the cloud for final prediction and evaluation.
The deep learning network model is shown in Fig. 2.

Fig. 2. The network model

2.2 Data Preprocessing

In this paper, we make a comprehensive analysis of lithium-ion battery from the per-
spective of temperature, current and voltage, and considers the problem from the overall
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perspective, but there are different dimensions and orders of magnitude between differ-
ent characteristic parameters. Therefore, data preprocessing is necessary before training.
And synthesize the different index information of the battery life so as to facilitate the
overall evaluation.

We use the Z-Sore for standardization, which is known as standard deviation stan-
dardization and it gives the mean and standard deviation of the data for data standardiza-
tion. We uniformly calculate the Z-score values of voltage, current and temperature to
ensure the comparability between the data. The processed data conforms to the standard
normal distribution, that is, the mean value is 0 and the standard deviation is 1. The
transformation function is as follows:

x∗ = (x − μ)/σ (1)

x represents the real value of the detected data, μ is the mean value of all sample
data and σ representsthe standard deviation of all samples. Through the above formula,
we can convert different data to the same magnitude and realize standardization.

2.3 The Neural Network Architecture for RUL Prediction Based on Edge
Computing

Liu et al. [15] first introducing deep learning into edge computing environment. They
adopt the service infrastructure based on edge computing and propose a food recogni-
tion application based on deep learning. As shown in their work, edge computing can
improve the performance of deep learning task by reducing response time and resource
consumption. In this paper, we use mobile phones as the edge nodes. Since we focus on
the battery life, we deploy edge servers on gateways that are capable to execute deep
learning algorithms.

The capacity of lithium-ion batteries decreases as it is used. Unfortunately, the degra-
dation curves of the same type of lithium-ion battery may also differ from each other
because of deviations in the manufacturing process and operating conditions. It makes
the prediction of RUL particularly difficult. Generally, the lithium-ion batteries are con-
sidered to have reached their end when they degrade to 80% of their initial capacity. The
RUL of lithium-ion battery can be defined as follows:

RUL = CEOL − CM (2)

The CEOL represents the service life, and CM represents the number of cycles used
at the end of the measurement.

In this paper, we use convolutional neural network to predict the RUL of battery.
In order to analyze the aging of lithium-ion battery in cycle using, this paper takes the
data of more than one charge and discharge cycle as the input. The fully charge and
discharge of a battery may take hundreds of seconds or more. There are many variants
of RNN and Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are
most popular. These architectures provide the most advanced performance for various of
sequential tasks which are applied in language modeling, sentiment analysis and speech
recognition. However, it is limited for them to capture long-term relationships. And it is
difficult for them to achieve good results with limited edge computing capabilities.
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On the other hand, the atrous convolution has been proved to be able to capture
the long-term relationship in time series data. An amplified CNN can generate natural
human voices at the original audio level, which requires understanding thousands of
steps in time series data. The atrous convolution is applied to the input signals with a
certain gap in kernel level.

Figure 3 shows that we design an atrous convolution to get the long-term relationship
in the input data. The receptive field of atrous convolution grows exponentially with the
number of layers, compared with traditional CNN which grows linearly. As can be seen
from Fig. 2, the exponentially growing size provides a broad acceptance domain for
CNNs. In this paper, we meticulously optimize the kernel and dilation size to build a
neural network that is most suitable for RUL tasks.

Fig. 3. The explanation of Dilation convolution operation.

The main component of our neural network architecture is atrous convolution. Tem-
poral patterns of multivariable input sequences are used in the first five layers of atrous
convolution. We doubled the expansion size of each layer to create receptive field for
RUL prediction in this paper. The normalized convolution output generated by each
layer will be loaded the next layer. Normalization makes the training process faster and
more stable because of each layer of the neural network has the similar input domain.
And we adopted Rectified linear unit (ReLU) as the activation function.

In this paper, we maintain the size of each output sequence generated by atrous
convolution and meanwhile increase channel of temporal information. Then, we obtain
the basic characteristics by compress the output data of the final atrous convolution
layer with one-dimensional CNN. Finally, we use three layers of fully connected neural
network to obtain the nonlinear mapping of extracted features for RUL prediction.

3 Experiments

3.1 Experimental Data

In this paper,weuse the open lithium-ionbattery dataset (available online) from reference
[16] to evaluate our framework. The open datasetwas generated by 124 commercial high-
power units with a nominal capacity of 1.1AH and a nominal voltage of 3.3V. With the
same discharge capacity, we use various battery cycle charging schemes to maintain the
EOL in the controlled environment about 30 °C. Lithium-ion batteries use one of 72
different strategies with charging states ranging from 0% to 80%. The charging time of
0%~80% SOC is 9~13.3 min, and they collect temperature, voltage and current every
second.
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The edge computing framework proposed in this paper uses truth label of RUL and
the continuous original charge-discharge data of voltage, current and temperature. In
general, the larger the size and diversity of datasets, the better the performance and
robustness of deep learning. Therefore, we expand the data with overlapping window
slices. Firstly, we get obtain the lifetime time series data by connecting the continuous
cycle data of a single battery to obtain the lifetime time series data of terminal voltage,
current and battery temperature. Then, we split the lifetime data L into the window size
which loaded by the neural network and S is sliding size. Finally, we marked each slice
sample with the number of cycles remaining through its whole life. Because the model
requires more than three cycles of sequence data to make better prediction, we set the
parameters of L = 2500 and S = 500.

The dataset consists of three batches of battery measurement. Different batches of
products use different cycle ranges. There is a problem of inductive bias that machine
learning model will have large bias in prediction with different distribution of training
data and test data. In this paper, we created a training dataset by extracting specific
parts of batteries from batches to minimize the influence of induction bias. We use the
same strategy to create validation datasets and test datasets, so that datasets can cover
the whole cycle. About 70% of the data is used for the deep learning training and the
remaining data is used as the verification dataset and test dataset.

3.2 Experimental Results and Conclusions

We evaluate the RUL prediction performance of various deep learning models and arti-
ficial feature-based baseline models. And the results are shown in this section. The
deep learning model uses data of 2500 s corresponding to about 3 charge and discharge
cycles as model input. The previous baseline model uses the data of 100 cycles as the
input. In this paper, because of the superior performance in many time series tasks, we
choose Multilayer Perceptron (MLP), CNN and CNN-LSTM as the control group of
deep learning models. This paper designs the neural network structures and hyperpa-
rameters of choosed models, such as kernel size and channel size. And we fine-tune the
hyperparameters based on experience from conventional rules in previous works.

The framework of this paper is designed to predict RUL, which does not consider
the time point of the data received from the whole battery cycle. The Fig. 4 and Fig. 5
show the training loss and test error in different periods.

Fig. 4. The variation of training loss without considering position.
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Fig. 5. The test error without considering position.

In this paper, we also evaluate the ability of the model to predict RUL at 2500 s of
data at any location in a given life cycle and marked the setting as “Complete”. We set
the shallow MLP model with the same number of parameters in CNN model and MLP
models. However, our model architecture has lower error rates than both shallow MLP
model and deep MLP model. They show better performance because CNN and LSTM
are designed to be more suitable for time series prediction. Nevertheless, the dilated
CNN still has the best performance in error rate. Figure 6 and Fig. 7 show the training
error and test error of the "Complete" mode respectively.

In the “Complete” setting, the performance difference is more obvious. Due to the
nonlinear and complex degradation behavior of lithium-ion battery, the RUL prediction
algorithm using early data may be very different from that using later data. The neural
network with the “complete” setting should be able to detect data location and predict
the RUL related to the phase with different algorithms. Due to the difficulty of the
“completely” setup, the shallow MLP and MLP models failed in solving the task. The
model proposed in this paper is obviously superior to other algorithms and the error rate
is about 10%.

Fig. 6. The variation of training loss in “Complete” mode
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Fig. 7. The test error in “Complete” mode

4 Conclusion

In this paper, we applied deep learning with edge computing environment to optimize
the network load and protect the privacy of users uploaded data. The edge computing
reduces the network and computing load from IOT devices to cloud servers because
edge nodes preprocess input data instead of sending the origin data.

We proposed a lithium battery prediction model based on deep learning with edge
computing. The model solved the challenge of predicting the remaining battery life
and reduced the detection time. The proposed framework significantly improves the
prediction of remaining useful life by predicting the target battery with less than 4 data
cycles, while the previous model requires 100 data cycles. Among various deep learning
models, the dilated CNN error rate of the lithium battery life detection based on edge
calculation and deep learning proposed in this paper is 10.6% lower than 14.6% of
the previous models. This paper also introduced a deep learning training algorithm and
metrics to quantify the uncertainty in neural network predictions which have prediction
errors or new features found in the training dataset. Finally, we make a in-depth analysis
with neural networks in this paper and reveals the possibility of analyzing lithium-ion
battery data using deep learning methods of edge computing for battery related tasks.
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