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Abstract. In computer vision, data-driven convolutional neural networks could
learn increasingly rich semantic features of images. However, manual annotation
of images is an expensive and time-consuming task that hinders development. As a
branch of unsupervised learning, self-supervised learning does not rely on labels,
avoiding the work of labeling the data. This paper provides a comprehensive
discussion of the development of self-supervised learning in computer vision.
First, we briefly describes the motivation for proposing self-supervised learning
and related concepts, introduces the self-supervised learning paradigm from three
aspects, describes the applications of self-supervised learning in computer vision,
and finally provides a summary and an outlook on its future development.
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1 Introduction

Computer vision tasks require the extraction of image features before proceeding to the
next processing step. Initially, traditional feature extraction methods could only extract
simple low-level features [1, 2]. The advent of deep learning brought new approaches to
feature extraction, and it gradually became mainstream to use labeled data to train con-
volutional neural networks to extract image features [3]. We refer to such deep learning
driven by labeled data as supervised learning. However, with continuous development,
supervised learning reveals some drawbacks: poor feature generalization, vulnerability
to attacks, etc., and manually labeled data is the main reason limiting its development.
Therefore, unlabelled data has become a possible way to break the bottleneck. As the
name implies, self-supervised learning is ‘supervised by itself’. As a subclass of unsu-
pervised learning, it uses the image’s information as supervision for training to learn
an effective feature representation. The diagram illustrates the training process, using
only images for training in the pretext task and then transferring the ConvNets to the
downstream task for fine-tuning using labeled data. Our paper summarises and presents
the recent developments and applications of self-supervised learning in computer vision
and provides an outlook on its future development.
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2 Background

2.1 Visual Feature Learning

Based on the data labels, we can classify visual feature learning into four modes: super-
vised, semi-supervised, weakly supervised, and unsupervised. The most common one
in computer vision is supervised learning. Each image X has a corresponding label Y,
and the training goal is to narrow the gap between the prediction result and the ground
truth. The dataset for semi-supervised learning contains a small amount of labeled data
and a large amount of unlabeled data. Each image has a corresponding label in weakly
supervised learning, but the label contains noise or is incorrectly labeled. All photos
in the dataset are unlabeled for unsupervised learning. The self-supervised learning we
present in this paper is a subclass of unsupervised learning and differs from unsupervised
learning in that self-supervised learning provides pseudo-labeled supervised training by
designing the pretext task.

2.2 Self-supervised Learning

Self-supervised learning is divided into two phases: pretext task and downstream task.
In the pre-training, the pretext task is designed according to the downstream task. Using
pseudo-labeled supervised training, ConvNets learn to extract image features; then, Con-
vNets transfer to the downstream task and the model is fine-tuned using a small amount
of labeled data. Self-supervised learning is achieved because ConvNets learn the feature
representation needed for downstream task by solving the pretext task. The usual flow
of self-supervised learning is shown in Fig. 1.
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Fig. 1. Self-supervised learning flow chart.
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3 Self-supervised Learning Paradigm

The pretext task teaches ConvNets to extract features. ConvNets are trained by mini-
mizing the error between the pseudo label and the predicted value. We classify the self-
supervised learning paradigms into three categories: context-based, generation-based,
and contrast learning, depending on the type of pre-task.

3.1 Context-Based Image Feature Learning

Context-based pretext tasks are usually designed based on the semantic feature asso-
ciations between each image part. After pre-training, the model can learn semantic
information about the different objects and between objects in the image.

Clustering is a commonly used method in unsupervised learning to classify images
by extracting semantic features [4]. The distance between image features in the same
cluster in the feature space is as small as possible. The feature space distance between
images in different clusters is as large as possible.

Learning feature representations by identifying the rotation angle of an image was
proposed by et al. [5]. To recognize the rotation angle of the image, the model needs
to understand the feature information in the image that describes the subject, such as
position, category, etc. In the pretext task, the authors applied four rotation angles -
0,90,180,270 - to the original input image as pseudo-labels. After the transformation,
the image was passed through ConvNets to predict the rotation angle. However, the
method has limitations in learning images with rotational invariance. Feng et al. [6]
proposed an improved method that considers rotationally invariant images to address
this limitation. In the pretext task, the authors add a branch. For images with rotation
invariance, their features are mapped onto the feature space, and the image feature
representation is learned by computing the distance between feature vectors.

(b)

Fig. 2. The visualization of the Jigsaw Image Puzzle.

In 2015, Doersch et al. [7] divided images into nine patches of equal size, randomly
selected two of them, and predicted the relative positions. The method provides ideas
for designing pretext tasks using image spatial contextual relationships, and researchers
proposed a series of tasks related to the spatial location of image patches [8—10]. Noroozi
et al. [8] proposed a nine-patch sorting task between image patches, as shown in Fig. 2.
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Figure 2(a) represents the selection of nine patches from an image, Fig. 2(b) shows
the disordered order of the to-be-sorted patches, and Fig. 2(c) shows the image after
reordering. In addition, the creation of subsets of permutations needs to be carefully
considered—the number of permutations increases, especially when only two patches
differ between the two ordering methods. Therefore, the authors used the Hemming
distance to filter the ranking subsets to obtain an appropriate ranking subset.

3.2 Generation-Based Image Feature Learning

For learning the feature representation, generative-based pretext tasks are often built on
Generative Adversarial Networks (GAN) [11] and Autoencoders. In such pretext tasks,
the original image is usually pre-trained as a pseudo-labeled supervised model.

GAN has two main components: the generator(G) and the discriminator(D). The G
tries to “trick” the D by generating images based on latent vectors similar to the true
values. The D training goal is to distinguish the true images from latent vectors generated
by true vectors. Mathematically, the game between the generator and the discriminator
is defined as:

minmax By, o0 [log ] + Bemp. ) [log1-DG )] M

The Autoencoder is an unsupervised learning model. The training process consists of
encoding and decoding, with the input image X being encoded to obtain latent vectors
and the reconstructed image X’ being obtained through the decoding process. The model
is trained on the original image X to learn the mapping relationships. MSE Loss is usually
used as the objective function.

As shown in Fig. 3, Pathak et al. [12] propose to learn the feature representation of
an image by repairing the missing part of the image. The middle region of the image
is masked to obtain Fig. 3(a), which is subsequently fed into an auto-encoder-like -
contextual encoder proposed by the authors to repair the masked region by learning
features from the remaining part of the image. The image to be repaired is fed into the
encoder to obtain semantic features, and then the decoder generates the repaired image
based on the learned features. The context encoder needs to understand the entire image

(c)

Fig. 3. (a) is the masked image, (b) is the use of reconstruction loss, and (c) is the use of
reconstruction loss + adversarial loss.
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to succeed in this task. Also, the authors found that adding an adversarial loss to the
pixel-level reconstruction loss yields better restoration performance, and the adversarial
loss optimizes the model to generate a more realistic image, as shown in Fig. 3(b) and
(c). After experiments, the rich semantic features can be learned by restoring the image
in the pretext task.

The coloring pretext task is the process of generating a color image from a grey-
scale image [13—15]. In the pretext task, Zhang et al. [15] train a model to learn the
semantic features of the image to recognize different objects, assigning a color value to
each pixel in the image. The authors treat the problem as a classification task, generating
color channels based on grey-scale images and using class rebalancing during training
to increase the diversity of colors in the results.

For the feasibility of the pretext task, the authors used the “coloring Turing test” to
assess it. Participants were asked to choose between the generated image and ground
truth. After testing, the images generated by this method successfully deceived 32% of
humans, which is significantly higher than previous methods.

Like the coloring task, Zhang et al. [16] propose a pretext task for cross-channel
predicting. At the same time, the authors propose that the coloring task suffers from
unequal treatment of the different channel features of the image, learning only from the
grey-scale image, while the color image is only used to calculate the loss. Therefore, the
authors attempt to utilize the full input information during cross-channel coding, allowing
different channels to predict each other. The authors split the conventional Autoencoder
into two sub-networks connected but not intersecting. The two sub-networks predict
other subsets of the input channels between each other. For example, for the coloring
task, one sub-network predicts the color channel (channels a and b) based on the L
channel, and the other sub-network implements the opposite task (with channels a and
b predicting the L channel). The two sub-networks work together to learn the feature
representation from the input image.

3.3 Contrastive Learning

Contrastive learning is the most common and most important in self-supervised learning.
Initially contrastive learning maximises the estimation of mutual information between
different views of an image [17-19]. In subsequent studies, e.g., SImCLR [20], MoCo
[21, 22], etc., requires the construction of positive and negative two samples, for image
X and a series of data enhancement operations T. We randomly apply two data enhance-
ment operations t, t» ~ T. The resulting images # (X1) and t>(X>) is positive samples.
In contrast, in contrastive learning, the similarity between feature vectors is usually mea-
sured using the cosine similarity measure by calculating the cosine angle between the
two vectors, as shown below:

A.B

cosﬁsim(A, B) = m

2
The objective function of the contrastive learning approach uses a loss representation
called InfoNCE:

exp(sim(q, k4+)/7)
exp((sim(q, k+))/7) + (g exp(sim(q. ki) /7)

3)

Linfonce = —log
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where q is the original sample, k. is the positive sample, and k; is the negative sample.
T is the temperature coefficient. The sim(-) function calculates the similarity between
two eigenvectors, usually using the cosine similarity introduced in Eq. 2.

SimCLR uses many batches to store negative samples and a training approach similar
to a self-distillation model. In contrast, MoCo employs a queue and a moving-averaged
encoder to generate a dynamic lookup dictionary.

The presence of negative samples in the original contrastive learning model was crit-
ical in preventing the model from collapsing to a trivial solution. Still, the requirement
to compare with many negative samples each time increased the difficulty of train-
ing while also placing a significant demand on computational resources. As a result,
academics have begun to investigate new contrastive learning algorithms to discover
new approaches to avoid model collapse and increase model stability without negative
samples.

A new contrastive learning algorithm, BYOL [23], was proposed by Grill et al. using
only positive samples. The authors constructed asymmetric networks, i.e., an online and
a target network. To prevent learning a trivial solution, the authors give a fixed random
initialization of the target network, use a stop-gradient for the target network during
training, and update the target network with a moving average used by the online network
continuous iterations. BYOL is one of the first new contrastive learning algorithms to
eschew negative samples and achieves SOTA performance. The authors demonstrate
that negative samples are not necessary to prevent model collapse and that the network
can be more stable without using negative samples.

From an implementation point of view, BYOL is MoCo without the use of negative
pairs. In contrast, the SimSiam proposed by Chen et al. [24] is based on a simpler
Siamese network implementation. Instead of using negative samples and momentum
encoding in the implementation, the authors use the stop-gradient to prevent the creation
of collapsing solutions. Siamese network was also a basis for the success of contrastive
learning utilizing only positive samples in an experiment. Because invariant induction
bias is introduced during the training process of twin networks, two improved views of
the same image should generate the same output. This conclusion offers new directions
for future contrastive learning research.

4 Application of Self-supervised Learning in Computer Vision

After pre-training with self-supervised learning, the model is transferred to different
downstream tasks using a small amount of labeled data for fine-tuning. This section
presents dense representation learning and image aesthetic assessment. At the same
time, as a recent research hotspot in computer vision, we present the application of
Transformer in combination with self-supervised learning.

4.1 Dense Representation Learning

Various paradigms of self-supervised learning show good performance on instance-
level image processing tasks. However, the feature representations learned, which are
sufficient for tasks such as image classification [25-28], are based on the image globally
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and ignore the focus on pixel-level features. Still, many other computer vision tasks are
related to dense representation, such as image segmentation, target detection, etc. In
these tasks, models need to learn more detailed pixel-level features.

Pinheiroetal. [25] propose View-Agnostic Dense Representation (VADeR), an inten-
sive representation learning based on self-supervised learning. To learn pixel-level fea-
tures of an image, the authors train the model to recognize different views of the same
part of the image, for example, the recognition of the eye region of a dog. The authors
modified NCE to accommodate pixel-level contrastive learning in the form of a cosine
similarity measure of pixel-level similarity. The VADeR-trained model has good results
in target detection, keypoint detection, and instance segmentation.

Pixel-level contrastive learning can compensate for the deficiencies in spatial sen-
sitivity of features learned by self-supervised learning and Xie et al. [26] propose new
contrastive learning, PixPro. Unlike VADeR, PixPro does not use negative samples in
the training process. The authors input two channels with different views of a local fea-
ture of the image. The difference between the two channels compared is that one of the
channels has an additional Pixel Propagation Module (PPM), which acts as a smoothing-
like function. The objective function calculates the pixel differences and consists of two
parts: 1) neither is subjected to PPM, and 2) one is subjected to PPM.

4.2 Image Aesthetic Assessment

Image aesthetic evaluation is a branch of computational aesthetics. With the prolifera-
tion of mobile filming devices, simple reliance on manual screening is no longer suffi-
cient for the exponential growth of images on internet platforms. As a result, computer-
assisted human assessment of the aesthetic quality of images has emerged [29]. The
aesthetic evaluation of images by humans is somewhat subjective. When undertaking
manual annotation, many evaluations from evaluators with various backgrounds must be
collected to produce assessments that represent the aesthetics of the general population.

Sheng et al. [30] were the first to propose a self-supervised image aesthetic assess-
ment, providing a new paradigm. The authors propose to design a predicate task using
the relationship between some degradation operations and the aesthetic quality of an
image. Compared to self-supervised learning methods and supervised image aesthetic
evaluation methods, the authors learn the aesthetic features by predicting the class of
operations with degradation intensity and eventually achieving good performance on
image aesthetic benchmark datasets - AVA, AADB, and CUHK-PQ. Building on the
research of using degradation operations, Pirsf et al. propose an innovation [31]. They
classified the degradation operations into three categories, enriching the variety of aes-
thetic quality degradation operations. Also, as the degree of aesthetic quality degradation
resulting from images under the same degradation operation with different parameters
applied varies, the authors added relative aesthetic quality ranking to the predicate task.
The method showed the best performance for aesthetic assessment on both the AVA
and TID2013 datasets. Ching et al. [32] designed the pretext task based on saliency and
composition features. Inspired by [7], images masked with specific regions are repaired
by a generator and then discriminated using a discriminator in the pretext task. When the
discriminator is transferred to the downstream task, it automatically focuses on specific
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regions of the image. After experiments, the authors found that masking the intersection
region of Rule-of-Third achieved better results in the downstream task.

4.3 Work with Transformer

Originally widely used in NLP, Transformer was introduced to computer vision by Doso-
vitskiy et al. [33] in 2020. It was applied to image classification tasks and showed better
classification results than CNNs. As two research directions that have recently received
much attention in computer vision, researchers have combined self-supervised learning
with the Vision Transformer in vision tasks to bring about performance innovations. At
the same time, since Vision Transformer can only achieve performance beyond that of
CNNs when using large-scale datasets (14M-300M), such as ImageNet-21k, JFT-300M,
this imposes a manual labeling burden. Therefore, self-supervised learning with Vision
Transformer makes it possible to train using large-scale datasets while avoiding manual
labeling.

MoCo v3 [34] was proposed by replacing the backbone with Transformer based on
the previous method. Meanwhile, Chen et al. found that instability is an important reason
affecting the model’s performance and proposed a thought about improving the stability
of the model. The authors argue that whether the patch projection layer is involved in
training greatly impacts the stability of the model. They find that using a random patch
projection layer can effectively retain the information in patches.

To investigate whether self-supervised learning fuels Vision Transformer to extract
richer image features, Caron et al. proposed a simple self-distillation model called DINO
[35]. The student model was optimized by minimizing the cross-entropy loss between the
predictions of the teacher-student model, which was derived from the student model in
previous training rounds. The final experimental results show that the Vision Transformer
can learn clear semantic segmentation of images under self-supervised learning, which
is not available with the supervised Vision Transformer and CNNs.

5 Conclusion and Future

In this paper, we provide a general summary of the application of self-supervised learning
in computer vision. From the emergence of self-supervised learning to the development
of different paradigms of self-supervised learning and their applications in computer
vision, Yann Lecun’s talk at AAAI 2020 presented the difficulties that deep learning is
currently facing and that the widespread use of self-supervised learning is an inevitable
choice for the development of deep learning. Training with large-scale datasets brings
stunning results and a huge manual labeling task. Therefore, we need to pay attention
to and explore the potential of self-supervised learning. It is hoped that self-supervised
learning can drive the continuous development of the field of computer vision in future
research.
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