
Split Learning Based on Self-supervised
Learning

Shaojie Yang1(B), Hao Chen2, Jianping Huang2, Yong Yan2, Jiewei Chen1,
and Ao Xiong1

1 Beijing University of Posts and Telecommunications, Beijing 100876, China
412121029@qq.com

2 State Grid Zhejiang Electric Power Co., Ltd. Research Institute, Hangzhou, China

Abstract. Vertical federated learning is a type of federated learning which aims
to achieve feature fusion of different participants, and the data possessed at dis-
tinct participants usually contain different features. In vertical federated learning,
distributed deep learning schemes represented by Split learning have received
extensive attention. However, Split learning has problems such as label leakage
due to frequent gradient interactions. Aiming to solving the above problems, and
considering that there are many unused non-overlapping data in the vertical fed-
erated learning participants, we propose Split learning based on Self-supervised
learning (self-split learning).We split the model into presentation layers and infer-
ence layers. The participants first perform self-supervised learning based on the
idea of autoencoder on non-overlapping data. After the training of the presentation
layers is completed, the server aggregates the overlapping data encoded by each
participant, and completes the training of the inference layers independently. By
truncating the gradient propagation between the server and the participants, the
scheme proposed in this paper effectively solves a series of problems caused by
gradient leakage, enables privacy protection. At the same time, our method only
requires participants to upload once, which reduces communication overhead and
alleviates disconnection, etc. question.We conducted experiments on the financial
risk control dataset, and the experiments proved that our algorithm is competitive
in performance with current mainstream vertical federated learning algorithms.

Keywords: Vertical federated learning · Self-supervised learning · Privacy
protection

1 Introduction

The training of high-quality machine learningmodels is inseparable from a large amount
of high-quality data. However, in real scenarios, data often exists in the form of isolated
islands. With the improvement of users’ data privacy awareness and the improvement
of data protection regulations, the traditional method of collecting data to the cloud for
unified training is no longer applicable. Federated learning is based on the idea of “data
does not move and model moves”, which can realize data sharing under the premise of
ensuring the data security of the participants, and has received more and more attention.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Q. Liu et al. (Eds.): CENet 2022, LNEE 961, pp. 95–104, 2022.
https://doi.org/10.1007/978-981-19-6901-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6901-0_11&domain=pdf
https://doi.org/10.1007/978-981-19-6901-0_11

96 S. Yang et al.

Generally speaking, federated learning is divided into three categories: horizontal
federated learning, vertical federated learning, and federated transfer learning. In vertical
federated learning, multiple participants work together to process data from the same
individual set, but each client has only a unique set of features. There are many appli-
cation scenarios of vertical federated learning. For example, financial institutions need
to establish risk control models to conduct risk management or risk control of financial
activities. Financial institutions have financial-related characteristics such as user loan
history and repayment status, and financial institutions can establish risk control models
based on all their data. At the same time, financial institutions can jointly conduct verti-
cal federated learning with e-commerce, and e-commerce has data such as users’ recent
consumption, which may be helpful for the establishment of risk control models. The
vertical federated learning of financial institutions and e-commerce can be regarded as
the expansion of the feature dimension (Fig. 1).

Fig. 1. A scenario of vertical federated learning.

As a branch of machine learning, deep learning has shown great potential. There-
fore, the research on vertical federated learning based on neural network has received
extensive attention. The Split learning architecture is proposed in [1]. The participants
perform hierarchical segmentation on the deep learning model, and complete the joint
deep learning model without sharing sensitive data. Split learning only interacts with
the intermediate calculation results of the split layer between the server side and the par-
ticipants side, and is considered to be a flexible and efficient distributed deep learning
solution. However, like many existing federated learning schemes, this scheme requires
multiple gradient transmissions. Many existing studies have shown that the gradient will
leak the information of the original data. Therefore, this scheme has defects in security.
Specific risks are discussed in Sect. 3.

Vertical federated learning requires encrypted entity alignment, that is, to find the
intersection of the data of each participant, whichwe call overlapping data. The rest of the
data we call non-overlapping data. For non-overlapping data, the corresponding samples
are missing in some participants, and the incomplete data prevents them from partici-
pating in the training of traditional vertical federated learning schemes. In other words,
in vertical federated learning, these data are wasted. Based on the above discussion, we

Split Learning Based on Self-supervised Learning 97

have come up with a simple idea whether we can reasonably use non-overlapping data
to improve the Split learning scheme (Fig. 2).

Fig. 2. Overlapping data and non-overlapping data.

Split learning needs to upload the calculation results of the cutting layer to the server.
These intermediate calculation results can be regarded as a mapping of the original
data of the participants. Therefore, it is necessary to find an effective mapping method
that can retain the original data information. In light of the above considerations, we
explored training data mapping methods on non-overlapping datasets. Non-overlapping
datasets of various parties can be viewed as unlabeled data, and our method is based
on self-supervised learning. Self-supervised learning uses artificially defined tasks on
unlabeled datasets, hoping to learn a general feature expression that can be used for
downstream tasks. Participants can flexibly define self-supervised training tasks. After
each participant completes the self-supervised training task on non-overlapping data, the
mapping method is determined. On overlapping datasets, each participant completes the
mapping of the data they own, and aggregates the mapped data on the server side. We
believe that these mapped data will not reveal the information of the original data. The
server side performs inference layer training based on the aggregated data, and converts
the feature expressions of each participant into the final output.

Our contributions are as follows: 1. Based on the idea of autoencoder, we propose
a split learning scheme based on self-supervised learning, which truncates the back-
propagation process between the server and the participant, effectively avoiding gradi-
ent leakage, is a safer distributed deep learning scheme. 2. We design a self-supervised
learning task to complete the training of the representation layers, and train robust repre-
sentation layers by restoring the original data with noise, and its output can retain most
of the information of the original data. 3. We have verified our algorithm on the finan-
cial risk control dataset. The experiment proves that our algorithm is still comparable
to the current mainstream vertical federated learning algorithm in performance while
improving the security.

98 S. Yang et al.

2 Related Work

2.1 Vertical Federated Learning

[3] proposed an efficient and secure SVM algorithm for vertically partitioned data. [4]
designed a linear regression algorithm for vertically partitioned datasets. But the designs
in [3, 4] are all linear algorithms. [5] proposed a boosted tree algorithm SecureBoost
under the federated learning setting based on vertically partitioned datasets. SecureBoost
provides the same level of accuracy as non-privacy-preservingmethods,while not reveal-
ing the information of each private data provider. With the rise of deep learning, more
research on neural network models in vertically federated learning has emerged. In [1],
a distributed deep learning scheme, Split learning, is proposed, and several settings of
Split learning are pointed out, which can allow healthy entities to collaboratively train
deep learning models without sharing sensitive raw data. [6] pointed out that most of the
non-overlapping data in the traditional vertical federated learning algorithms are not fully
utilized, and proposed a semi-supervised learning algorithm to predict the pseudo-labels
of unlabeled samples to expand the training set.

2.2 Self-supervised Learning

Self-supervised learning can avoid extensive labeling of datasets, use self-defined
pseudo-labels as training signals, and then use the learned representations for down-
stream tasks.Autoencoder is a type of self-supervised learning that aims to learn to recon-
struct input observations with the lowest possible error, creating a useful and meaningful
latent representation. The concept of autoencoder was first proposed in [7]. After that,
many improved autoencoder models have been proposed, including denoising autoen-
coder proposed in [8] and the variational autoencoder proposed in [9]. These improved
autoencoder models are designed to make the hidden layer expression more meaning-
ful. Nowadays, self-supervised learning has received extensive attention in computer
vision, natural language processing and other fields. [10] used self-supervised learning
for model pre-training, enabling the BERT model to achieve huge improvements on a
range of NLP tasks. In the field of computer vision, the MoCo model in [11] and the
SimCLR model in [12] both show strong competitiveness.

3 Split Learning Based on Self-Supervised Learning

Consider the participants set M = {1, 2...M}, the participants’ overlap dataset Du,
whose size is Nu, the data {xu,n}Nu

n=1 ∈ Rd is scattered among the participants, and each
participant holds a part of the data. For example, the participant m holds the feature
xu,n,m, n = 1, 2...Nu, xu,n,m is a part of xu,n = [xu,n,1, xu,n,2...xu,n,M] in the participant
m. {yu,n}Nu

n=1 ∈ {0, 1} stored on the server side.
The data set of participant m is Dm ∈ Rdm , Dm includes Du,m and Dl,m, xu,n,m ∈

Du,m, Dl,m represents non-overlapping data belonging to participant m, for any pair of
participants m1,m2 in M , the counts of Du,m1 and Du,m2 are equal, but the counts of
Dl,m1 and Dl,m2 are not necessarily equal.

Split Learning Based on Self-supervised Learning 99

Without loss of generality, we consider that vertical federated learning has two par-
ticipantsA andB, which can be easily extended tomultiple participants. In the traditional
vertical federated learning methods, after completing the data alignment, vertical feder-
ated training is performed on the overlapping dataset Du, the data in Du is fully utilized,
but it can be seen thatDl,A andDl,B do not participate in the process of federated training,
that is, non-overlapping data is wasted.

The Split learning architecture is proposed in [1], where each participant trains only a
part of the “split layer” of the entire deep neural network. However, this architecture still
suffers from the above-mentioned problem, that is, the non-overlapping data is not fully
utilized. Drawing on the ideas in [1], we believe that the encoded data will not reveal
the participants’ private information, and we use non-overlapping data to complete the
training of the representation layers to realize the utilization of non-overlapping data.
The representation layers can implement the encoding of the participant’s raw input. On
overlapping datasets, participants can use the already trained representation layers to
complete the encoding task, and send the encoded output to the server. Our scheme is
very flexible. On the one hand, it is reflected in the fact that the form of the original data is
not limited, which can be vectors, pictures, texts, etc. On the other hand, in the process of
self-supervised learning, participants can flexibly set up self-supervised learning tasks.

3.1 Representation Layers Training

The representation layer implements the encoding of the original input of the partic-
ipant. According to the original input data form of the participant, it can be a neural
network, a convolutional neural network, a recurrent neural network, or other structures.
Considering participant A, x ∈ DA, the representation layers model of participant A is
expressed as fA(.), then the encoding result of x is

xenc = fA(x) (1)

We use self-supervised learning for the training of representation layers based on
the idea of autoencoder.

The autoencoder mainly includes an encoder and a decoder. The encoder compresses
the original data, and the decoder decompresses the encoded data, and strives to make
the decompressed data as close to the original input data as possible. The hidden layer
usually has the least number of neurons. The encoder can extract data that has repre-
sentative information in the original data. When self-supervised training is performed
on the participant, the presentation layers act as the encoder part, and the decoder part
is as symmetrical as possible to the encoder part. We use the data in Dn,A to train the
autoencoder. For xl,n,A ∈ Dl,A, let the decoder model of participant A be expressed as
hA(.), then the output of the original data of participant A through the autoencoder is

x
′ = hA(fA(xl,n,A)) (2)

During self-supervised training, the training objective to minimize is

|x′ − xl,n,A|2 (3)

100 S. Yang et al.

The representation layer learned by the self-supervised learning scheme based on the
above autoencoder is sensitive to outliers, lacks robustness, and the extracted features
are not effective for downstream tasks. Therefore, we consider optimizing the self-
supervised learning task (Fig. 3).

Fig. 3. Self-supervised training process.

For a random sample xl,n,A ∈ Dl,A, we generate a random mask mn,A for it, mn,A ∈
{0, 1}dA . Based on xl,n,A and mn,A we produce corrupted data x

′
l,n,A, we use the encoder

model to encode x
′
l,n,A, get the encoded data f (x

′
l,n,A), then take f (x

′
l,n,A) as input, use

the data recovery model and the mask recovery model to restore the original data xl,n,A
and the mask mn,A. The encoder model, the data recovery model and the mask recovery
model are all neural networks. The loss function includes two parts, the mean square
error ld of the restored data and the original data, and the relative entropy lm of the
restored mask and the random mask, the total loss can be expressed as

(1 − α) ∗ lm(mn,A,mn,A) + α ∗ ld (xl,n,A, xl,n,A) (4)

where α represents the weight parameter, which adjusts the weight of the data recovery
error and the mask recovery error.

The training of the encoder model, data recovery model and mask recovery model is
performed according to the back-propagation of the training error defined in (4). After
training, the encoder model will be used in downstream tasks.

3.2 Inference Layers Training

After each participant has completed the training of the representation layers on the
non-overlapping datasets. For xu,n,A ∈ Du,A, xu,n,B ∈ Du,B, we use the trained rep-
resentation layers fA(.), fB(.) to encode. The encoded data connection is used as the
encoded representation of a sample, and the representation incorporates the features of
the corresponding samples at client A and client B.

xu,n,A,enc = fA(xu,n,A) (5)

Split Learning Based on Self-supervised Learning 101

xu,n,B,enc = fB(xu,n,B) (6)

xu,n,enc = concat(xu,n,A,enc, xu,n,B,enc) (7)

The inference layers are trained using the fused encoded representation, and the
inference layers implement the transformation of the fused encoding into the final output.
Denote the inference layer model as g(.), then for xu,n,A, xu,n,B, the inference layers
output result y

′
u,n is

y
′
u,n = g(xu,n,enc) (8)

We set lInfer as the loss function of y
′
u,n and yu,n which depends on our goals. The

training objective of the inference layers to minimize is

lInfer(y
′
u,n, yu,n) (9)

Fig. 4. Split learning based on self-supervised learning.

Without loss of generality, the loss in (9) uses the mean squared error. In [2], it
is pointed out that the confidence of the model in judging a positive example as a
positive example is often less than the confidence in judging a negative example as
a negative example. That is, for a positive sample y+, the model predicts y

′
+ for it,

and a negative example y− and the model predicts y
′
−,

∣
∣
∣y+ − y

′
+
∣
∣
∣ is often greater than

|y′
− − y_|. Regardless of whether the sample is positive or negative, ||∇ag(a)|a=f (x)|2 is

often very close, because ||∇ag(a)|a=f (x)|2 has nothing to do with y. According to the
chain derivation rule, the output gradient of the model error to the representation layers

is ||∇ag(a)|a=f (x)|2*
∣
∣
∣y+ − y

′
+
∣
∣
∣ or ||∇ag(a)|a=f (x)|2*|y

′
_ − y_|. Therefore, for positive

and negative examples, if the gradient is sent back to the participant, the gradient values
of the positive and negative samples are often quite different. The participant can deduce
the sample label accordingly although the participant may not have permission to see
it. At the same time, in the process of gradient backhaul, considering the insecurity of

102 S. Yang et al.

the link, the backhauled gradient may be at risk of being stolen or tampered with. In
some real-world scenarios, such label leakage is unacceptable. Therefore, we consider
truncating the gradient return at the participant side, and the server side independently
completes the training of the inference layers to avoid label leakage and potential risk of
gradient leakage. At the same time, traditional federated learning faces the challenge of
device heterogeneity, which leads to different computing times on the participant side
or even disconnection. The server-side independently completes the inference layers
training to avoid frequent transmission of gradients, effectively avoiding the negative
impact of device heterogeneity. Although the representation layers and inference layers
are trained on different datasets in the scheme proposed in this paper, we improve the
robustness of the representation layers by reasonably setting the task of self-supervised
learning, so that the output encoding retains most information of original data which
will not cause a decline in the overall model performance (Fig. 4 and Table 1).

Table 1. The flow of our proposed algorithm.

Split learning based on Self-supervised learning
Input:
Client A, client B and Server;
Datasets of A, Datasets of B, set of labels in Server
Class probability threshold , the epoch number of Presentation layer training the
epoch number of Inference layer training
Output:
Model of Presentation layers and model of Inference layers
For e = 1,2,…, do

Select a mini batch and
Learn through and

End for
A send to Server
B send to Server
For = 1,2,… do

Select a mini batch and
Learn through and

End for

4 Experiment

We verify our proposed algorithm on the financial risk control dataset. The financial risk
control dataset includesmore than 800,000 loan default data of financial risk control, loan
records from a credit platform, each data contains 47 columns of variable information,
including loan amount, loan term, loan interest rate, year income and other information,
we design a model to predict whether the loan defaults. We first split the data set, with
70% of the data as the training set and 30% of the data as the validation set. Following

Split Learning Based on Self-supervised Learning 103

the setting of vertical federated learning, we divided the dataset by variables, randomly
selected half of the variables to be placed in participant A, and the other half of the
variables were placed in participant B. Set the overlapping data of participant A and
participant B to be 10% of the training set. In the remaining 90% of the training set
data, half of the data is used as the non-overlapping data of participant A, and half of the
non-overlapping data of participant B. A and B’s non-overlapping data samples do not
overlap. We contrast the algorithm with vertical logistic regression methods and split
learning methods (Fig. 5).

Fig. 5. Experimental results.

We verify the algorithms on the validation set, and use AUC andKS as the evaluation
metrics of the algorithms.We find that Split learning and the proposed algorithm perform
better on AUC and KS than the logistic regression algorithm. We believe this is because
Split learning and the algorithm proposed in this paper are based on neural network
models, and the nonlinearity of neural network models improves the performance of
the models. Compared with split learning, the algorithm proposed in this paper has no
obvious advantages in AUC and KS, but the algorithm proposed in this paper is a safer
version of split learning. The presentation layers retain the important information of the
original data while encoding, so the algorithm proposed in this paper has no obvious
performance loss compared to Split learning.

5 Conclusion

In this paper, we propose split learning based on self-supervised learning. The client
completes the training of the presentation layer on the non-overlapping data set through
self-supervised learning, and the presentation layers can encode the non-overlapping
data of the participants. In order to reduce the risk of privacy data leakage caused by
gradient transmission between the participant and the server, the participant can encode
the original data of the overlapping data part through the presentation layer, send the
encoded data to the server, and the server collects all participant data. After the encoded
data is sent, the data is aggregated and the presentation layers are trained independently.
It should be emphasized that our algorithm is very flexible. Our framework does not limit

104 S. Yang et al.

the data type of the client. Different participants can even hold different data types to
achieve a multi-modal vertical federated learning. At the same time, the participants can
set self-supervised learning tasks flexibly. At the same time, we do not limit the model
structure on the server side. We design a self-supervised learning task that restores
the original data with added noise and trains a high-quality representation layer model
to ensure that the encoded data retains the important information of the original data.
We conducted experiments on the algorithm proposed in this paper on the financial
risk control dataset. The experiments show that our algorithm can achieve performance
comparable to the current mainstream vertical federated learning algorithms.

Acknowledgement. This work was supported by State Grid Corporation of China Science and
Technology Project “Research and application of industry chain finance key technology based on
blockchain” (5211DS21NOOU).

References

1. Praneeth Vepakomma, et al.: Split learning for health: Distributed deep learning without
sharing raw patient data (2018). arXiv: Learning:n.pag

2. Li, O., et al.: Label leakage and protection in two-party split learning (2021). arXiv:
Learning:n.pag

3. Yu, H., et al.: Privacy-preserving SVM classification on vertically partitioned data. In: Pro-
ceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, vol.
3918, pp. 647–656 (2011)

4. Kikuchi, H., et al.: Privacy-preserving multiple linear regression of vertically partitioned real
medical datasets. J. Inf. Process. 26, 638–647 (2018)

5. Cheng, K., et al.: SecureBoost: a lossless federated learning framework (2019).
abs/1901.08755

6. Kang, Y., Liu, Y., Chen, T.: Fedmvt: semi-supervised vertical federated learning with
multiview training (2020). arXiv preprint arXiv:2008.10838

7. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323(6088), 533–536 (1986)

8. Vincent, P., Larochelle, H., Lajoie, I., et al.: Stacked denoising autoencoders: learning useful
representations in a deep networkwith a local denoising criterion. J.Mach. Learn. Res. 11(12)
(2010)

9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013). arXiv preprint arXiv:
1312.6114

10. Devlin, J., et al.: Bert: Pre-training of deep bidirectional transformers for language under-
standing (2018). arXiv preprint arXiv:1810.04805

11. He, K., et al.: Momentum contrast for unsupervised visual representation learning. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020)

12. Chen, T., et al.: A simple framework for contrastive learning of visual representations. In:
Proceedings of the International Conference on Machine Learning, PMLR (2020)

http://arxiv.org/abs/2008.10838
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1810.04805

	Split Learning Based on Self-supervised Learning
	1 Introduction
	2 Related Work
	2.1 Vertical Federated Learning
	2.2 Self-supervised Learning

	3 Split Learning Based on Self-Supervised Learning
	3.1 Representation Layers Training
	3.2 Inference Layers Training

	4 Experiment
	5 Conclusion
	References

