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1 Introduction

Android has gained popularity in the year 2011 due to its open-source and number of
free apps in its official play store.1 According to the statistics,2 more than 2.87million
free apps are present in Google Play Store. Working of android apps depends upon
the permissions. At the time of installation, android apps required certain permissions
that are required for its proper functioning. On daily basis, cyber-criminals are taking
advantage of these permissions and develop malware-infected apps for smartphone
users. According to the survey done by Kaspersky Security Network,3, there are
millions of malware-infected apps which are still submitted in Google Play Store
and third-party app stores.

According to the report published by Gartner,4, the growth of smartphone is
increased by 11% in the upcoming year. During pandemic, everyone dependent upon
apps for their jobs. At the time of installation and run-time, android apps demand
certain permissions. Google defined these permissions5 as “normal” or “dangerous.”
Normal permissions donot pay any impact onuser’s privacy. In the reverse, dangerous
permissions paid a great effect on user’s privacy. The fault lies in the underneath
permission model of android apps.

In the literature [12, 14–24], number of authors proposed android malware detec-
tion frameworks using supervised and unsupervised machine learning techniques.

1https://play.google.com/store.
2https://buildfire.com/app-statistics/#.
3https://securelist.com/ksb-2020/.
4https://indianexpress.com/article/technology/tech-news-technology/smartphone-sales-
expected-to-grow-by-11-in-2021-5g-phones-to-play-key-role-7175925/.
5https://developer.android.com/guide/topics/permissions/overview.
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Fig. 1 Phases involved in this research article

The main limitation in their work is that researchers and academicians used limited
datasets. In order to achieve better detection rate, in this research article, we proposed
a framework that is based on the principle of hybrid artificial intelligence techniques
approach of functional link artificial neural network (FLANN) with clonal selection
algorithm (CSA), particle swarm optimization (PSO) and genetic algorithm (GA),
i.e., FLANN-CSA (FCSA), FLANN-PSO (FPSO andMFPSO) and FLANN-genetic
(FGA and AFGA). This study also focuses on the effectiveness of feature selection
techniques, i.e., principal component analysis (PCA) and rough set analysis (RSA),
which are used to reduce the complexity of the proposed model by minimizing the
number of inputs.

The generic steps that are followed in this research paper to identify malware-
infected apps are shown in Fig. 1. Initially in the first step, we collect Android
Application Packages (.apk) files from different repositories. In the second step,
we extracted dynamic features and form the features dataset. Implemented of feature
selection techniques is performed in the third step. Further, features are selected by
implementing feature selection approaches. In the last step,we validate our developed
models by using two performance parameters, i.e., accuracy and F-measure.

The unique and novel contributions of this study are as follows:

• To build efficient and effective malware detection model, in this study more than
five millions android apps are utilized.

• Dynamic analysis was performed on collected android apps, and 1844 unique
features are extracted.

• In this chapter, five different hybrid functional link artificial neural networks are
proposed.

The rest of the chapter is summarized as follows. In Sect. 2, related work is dis-
cussed. Collection of .apk file and formulation of feature dataset is discussed in
Sect. 3. Implemented feature selection techniques are discussed in Sect. 4. Section5
discusses the proposed hybrid machine learning algorithms. Experimental setup to
proposed the framework is discussed in Sect. 6. Outcome of the experiment is dis-
cussed in Sect. 7. At last, chapter is concluded in Sect. 8.
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2 Related Work

Hou et al. [7] proposed a malware detection framework named as “Droiddelver”
based on Application Programming Interface (API) that is extracted from smali
files. Proposed model was build by using 5000 different android apps and a deep
belief network as a machine learning technique. Empirical outcome reveals that the
proposed model was able to detect 96.66% of malware-infected apps. Hou et al. [6]
proposed a malware detection model named as “Deep4MalDroid” developed on the
basis of dynamic analysis approach called component traversal which follows code
routines of particular android apps. Based on the extracted features, they construct
the weighted directed graphs and then applied deep learning as a machine learning
algorithm. An experiment was performed by using 3000 android apps and detect
91.4% malware-infected apps.

Mahindru and Singh [25] proposed dynamic analysis-based approach that are
build by using 123 features. An experiment was performed by using 11,000 distinct
android apps and five different machine learning algorithms. The malware detection
model developed by using simple logistic achieved a higher detection rate as com-
pared to others. Hou et al. [8] developed a framework entitled as “HinDroid” based
on the relationships between API calls and developed higher-level semantics that
require more efforts for attackers. An experiment was performed by using two dif-
ferent datasets; i.e., one contains 1834 distinct android apps, and the second contains
30,000 distinct android apps. Proposed malware detection framework was able to
identify 99.01%malware-infected apps. Martín et al. [26] developed a model named
as “MOCDroid,” that is based on the integrity of genetic algorithm. An experiment
was performed by using 17,135 android apps and achieved an accuracy of 94.60%.
Tong and Yan [30] proposed a hybrid approach that works on the combination of
static and dynamic features. Experiment was carry-out by utilizing 2000 different
android apps while considering API calls as a feature. Proposed malware detection
model achieved the detection rate of 90.19%.

Karbab et al. [10] developed malware detection model named as “MalDozer” that
is based on the principle of deep learning techniques. Developed model uses the
behavior of API calls to recognize the behavior of benign and malware apps. The
developed framework was tested on 38K benign apps and 33K malware-infected
apps and achieved an F1-score of 96–99%. Cai et al. [4] proposed a dynamic mal-
ware detection approach that used calls and inter-component communication as fea-
tures. An experiment was performed by using 34,343 android apps and the proposed
framework achieved an accuracy of 97%. Kim et al. [11] developed a malware detec-
tion model on the basis of multimodal deep learning. Features were extracted from
the manifest file, dex file and shared libraries for developing the model. The devel-
oped model was tested with 41,260 android apps and achieved an accuracy of 98%.
Yerima et al. [34] proposed detection model entitled as “DroidFusion,” that is based
on the principle of feature selection techniques and implement multiple machine
learning algorithms. The proposed malware detection model was tested with 55,018
distinct smartphone apps and achieved the detection rate of 97%. Shen et al. [28]
developed amalware detectionmodel that works on the principle of information flow
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analysis. Developed model is based on the structure of information flows to know
the pattern behavior and which helps in distinguishing between benign and malware
app. An experiment was performed by using 8598 android apps and achieved an
accuracy of 82%.

Arora et al. [1] developed malware detection framework work on graphs that con-
struct by utilizing permissions extract from distinct android apps. An experiment was
performed by using 5993 android apps and achieved the detection rate of 95.44%.
Xiao et al. [32] developed a model by using deep learning principles. The proposed
model is built by using system call sequences and long short-term memory as a
machine learning technique. An experiment was performed by using 7103 android
apps and achieved an accuracy of 96.6%. Mahindru and Sangal [14] developed a
malware detection framework entitled as “DeepDroid” by using significant features
selected by feature selection approaches and deep learning as a machine learning
technique. Experimental outcome reveals that the framework build by using prin-
cipal component analysis (PCA) as a feature selection technique achieved a higher
detection rate as compared to other techniques. Kumar et al. [12] build a detection
framework by utilizing three different data sampling approaches, three different fea-
ture selection approaches and seven distinct classifier approaches. Outcome reveals
that the framework developed by using upscale sampling technique and ELM with
polynomial kernel achieved a higher detection rate as compared to others.

Mahindru and Sangal [16] developed a malware detection framework work on
the basis of semi-supervised machine learning techniques. The proposed framework
is developed by using four different feature subset selection approaches and LLGC
as a machine learning algorithm. The empirical result reveals that framework build
using rough set analysis as a feature selection approach achieved the detection rate
of 97.8%. Mahindru and Sangal [17] developed malware detection model entitled as
“GADroid” that is build by using genetic algorithm as a feature selection approach.
Further, selected features are used to build the model by using deep learning as
machine learning technique. Experiment was performed on 560,142 distinct android
apps, and the developed model is able to achieved an accuracy of 98.6%.

Mahindru and Sangal [19] developed the model named as “PARUDroid.” Pro-
posed model is able to detect 98.8% malware-infected apps. Table1 describes the
frameworks developed in the literature. Previous malware detection model has been
proposed with a limited dataset and conquered a higher accuracy with the limited
dataset. On the basis of related work, the following questions have been answered in
this research article:

RQ1. To identify which malware detection model is more effective in detecting
malware from real-world apps?

This question helps in identifying the malware detection model which is more
effective in detecting malware from real-world apps. To answer this question, in
this study distinct malware detection models are developed and compared with two
different performance parameters, i.e., F-measure and accuracy.

RQ2. Is the proposed malware detection framework able to identify malware from
android devices or not?
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Table 1 Malware detection frameworks that are availables in the literature

Framework Machine learning algorithm implemented Dataset used

Droiddelver [7] Deep neural network 6000

Deep4MalDroid [6] Deep neural network 3000

HinDroid [8] Heterogeneous information network 31,834

MalDozer [10] Deep neural network 71K

DeepDroid [14] Deep neural network 120,000

GADroid [17] Deep neural network 560,142

PARUDroid [19] Deep neural network, decision tree Adaboost,
Naïve Bayes and random forest

560,142

DLDroid [15] Deep neural network 11,000

PerbDroid [20] SVM, Naïve Bayes, random forest, multiple
layer perceptron, logistic regression, Bayesian
network, Adaboost, decision tree, KNN and
deep neural network

200,000

MLDroid [18] SVM, Naïve Bayes, random forest, logistic
regression, multiple layer perceptron, k-nearest
neighbors, Adaboost, self-organizing map,
Bayesian network, deep neural network,
decision tree, K-mean, density-based
clustering, filtered clustering, farthest first
clustering, MLP + YATSI, J48 + YATSI, SMO
+ YATSI, best training ensemble approach,
majority voting ensemble approach and
nonlinear ensemble decision tree forest
approach

SemiDroid [21] Farthest first clustering, K-mean,
self-organizing map, filtered clustering,
density-based clustering,

550,000

SOMDroid [22] Self-organizing map 500,000

FSDroid [23] LSSVM with linear polynomial and radial
kernel

200,000

HybriDroid [24] Best training ensemble majority voting
ensemble and nonlinear ensemble decision tree
forest

194,659 benign apps and
67,538 malware apps

To examine this question, in this study, proposed framework is compared with
existing malware detection models presented in the literature.

RQ3.While selected features using feature selection approaches paid any impact on
malware detection models or not?

To answer this question, developed using in this research article model developed
using all extracted features compared with the models developed by using feature
selection techniques.
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3 Collection of .apk Files and Formulation of Features
Dataset

Collection of five million distinct android apps is performed to use in this research
article. Benign .apk files are collected from, i.e., slideme,6 mumayi,7 hiapk,8

appchina,9 Google’s play store,10 Android,11 gfan,12 and pandaapp,13 and malware-
infected apps are collected fromAndroidMalwareGenome project [35], 1929, botnet
samples were collected from [9] and from AndroMalShare14 along with their pack-
age names. Table2 represents the distinct categories of android apps with respect to
its numbers. Dynamic analysis was performed by using the principle mentioned in
[19]. After that, we divided the extracted features into different categories to which
they belong. Formulation of feature dataset is mentioned in Table3.

4 Feature Selection Techniques

Relevant features paid an important role while developing the malware detection
models in case of effectiveness and efficiency. In this research article, to select rele-
vant features two different feature selection approaches are considered, i.e., principal
component analysis (PCA) and rough set theory.

4.1 Principal Component Analysis (PCA)

To carry-out a data space, low dimension PCA is considered as feature selection.
Figure2demonstrates the steps that are consideredwhile selecting features usingPCA.

6 http://slideme.org/.
7 http://www.mumayi.com/.
8 http://apk.hiapk.com/.
9 http://www.appchina.com/.
10 https://play.google.com/store?hl=en.
11 http://android.d.cn/.
12 http://apk.gfan.com/.
13 http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU.
14 http://202.117.54.231:8080/.

http://slideme.org/
http://www.mumayi.com/
http://apk.hiapk.com/
http://www.appchina.com/
https://play.google.com/store?hl=en
http://android.d.cn/
http://apk.gfan.com/
http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU
http://202.117.54.231:8080/
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Table 2 Collected android application packages (.apk)
ID Category Normal Trojan Backdoor Worms Botnet Spyware

DS1 Arcade and action
(AA)

15,291 13,300 5000 1004 3300 5000

DS2 Books and reference
(BR)

16,235 8000 6500 4060 5650 1600

DS3 Brain and puzzle (BP) 13,928 10,820 204 2008 5010 5010

DS4 Business (BU) 18,208 1420 1150 3250 1842 1602

DS5 Cards and casino (CC) 12,786 7610 6520 8002 5010 4220

DS6 Casual (CA) 16,000 8270 8080 6052 7840 5840

DS7 Comics (CO) 20,967 6050 9950 9900 9900 6100

DS8 Communication
(COM)

76,309 8503 5007 8904 8791 8020

DS9 Education (ED) 38,764 8610 8121 8980 8219 8021

DS10 Entertainment (EN) 23,988 8100 8100 7000 1870 5397

DS11 Finance (FI) 23,099 8990 7609 9199 6985 9012

DS12 Health and fitness (HF) 18,661 9181 6852 4825 1840 1940

DS13 Libraries and demo
(LD)

13,755 1479 1989 1300 6291 6900

DS14 Lifestyle (LS) 19,650 1855 9805 1808 1093 5082

DS15 Media and video (MV) 18,119 7807 7023 8662 2450 6971

DS16 Medical (ME) 36,000 1128 1983 2344 2884 4805

Ds17 Music and audio (MA) 27,057 6935 5900 6125 1165 2665

DS18 News and magazines
(NM)

28,164 4500 3100 2100 1100 1032

DS19 Personalization (PE) 14,334 1580 1042 2590 4280 2170

DS20 Photography (PH) 19,033 3109 4190 2850 9161 5200

DS21 Productivity (PR) 19,750 3600 8903 4350 3290 2972

DS22 Racing (RA) 23,766 1458 3109 4219 8190 2189

DS23 Shopping (SH) 14,673 3120 1950 3120 3150 1959

DS24 Social (SO) 36,159 3190 4550 1210 5159 7159

DS25 Sports (SP) 32,669 6100 7249 9180 4490 8022

DS26 Sports games (SG) 31,889 9200 8045 8125 8250 9198

DS27 Tools (TO) 25,646 9720 8844 7259 9205 4763

DS28 Transportation (TR) 23,796 3102 4200 9100 8002 4120

DS29 Travel and local (TL) 38,180 9508 8220 7050 1248 8100

DS30 Weather (WR) 20,841 7190 2323 9790 3950 2925

4.2 Rough Set Theory

Rough set theory used to eliminate irrelevant features by using approximation,
reduced attributes and information method. Steps that are followed in rough set
theory are shown in Fig. 3.
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Table 3 Formulation of feature datasets

Set number Description Set number Description

FS1 Contain info. Associated to
rating and downloads

FS2 Associated to SMS_MMS

FS3 Associated to IMAGE FS4 Associated to
HARDWARE_CONTROLS

FS5 Associated to READ FS6 Associated to
BROWSER_INFORMATION

FS7 Associated to WIDGET FS8 Associated to
SYSTEM_SETTINGS

FS9 Associated to
CONTACT_INFORMATION

FS10 Associated to
FILE_INFORMATION

FS11 Associated to default group FS12 Associated to
LOCATION_INFORMATION

FS13 Associated to BUNDLE FS14 Associated to CALEN-
DAR_INFORMATION

FS15 Associated to
SYNCHRONIZATION _DATA

FS16 Associated to
DATABASE_INFORMATION

FS17 Associated to
READ_AND_WRITE

FS18 Associated to
UNIQUE_IDENTIFIER

FS19 Associated to LOG_FILE FS20 Associated to
ACCOUNT_SETTINGS

FS21 Associated to PHONE_CALLS FS22 Associated to
ACCESS_ACTION R

FS23 Associated to SER-
VICES_THAT_COST_YOU_
MONEY

FS24 Associated to
SYSTEM_TOOLS

FS25 Associated to
YOUR_ACCOUNTS

FS26 Associated to
NETWORK_INFORMATION
and BLUE-
TOOTH_INFORMATION

FS27 Associated to AUDIO and
VIDEO

FS28 Associated to PHONE_STATE
and PHONE_CONNECTION

FS29 Contain info. Associated to
API calls

FS30 Associated to
STORAGE_FILE

5 Proposed Hybrid Machine Learning Techniques

In this section, we discuss various machine learning algorithms that are developed
by using genetic algorithm, clonal selection and particle swarm optimization for
detection malware from android apps.
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Fig. 2 Framework of PCA calculation

5.1 Functional Link Artificial Neural Network (FLANN)

In this research article, FLANN is implemented to detect malware from android apps.
FLANN is worked on the architecture of single layered of artificial neural network
(ANN), that is responsible to perform complex decision. The computational cost of
ANN is very high, but in the case of FLANN it is very less due to not present of
hidden layers. Figure 4 demonstrate the basis architecture of FLANN.

Output is computed by using following equations:

ẑ =
n∑

i=1

Wiai (1)
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Fig. 3 Rough set theory framework

Fig. 4 Architecture of FLANN

where z and ẑ are the estimated and actual values, ai is the function block and W is
the weight vector that is defined by using

A = [1, a1, sin πa1, cosπa1, a2, sin πa2, cosπa2, . . .] (2)
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The revised weight is updated as:

Wi (k + 1) = Wi (k) + αei (k)ai (k) (3)

where ei is the error value and α is the learning rate that is determined as:

ei = zi − ẑi (4)

5.2 FLANN-Genetic (FGA) Technique

This technique is very effective at the time of learning, and it is utilized mostly there
for upgrading the weight. A function link neural network with a form of ‘a − x’ is
deemed as estimation; i.e., the network contains l number of input neurons and x
number of output neurons.

Weights are calculated using the following equation:

Wa =
{

− yad+2∗10d−2+yad+3∗10d−3+···+y(a+1)d

10d−2 if 0 ≤ yad+1 < 5
yad+2∗10d−2+yad+3∗10d−3+···+y(a+1)d

10d−2 if 5 ≤ yad+1 ≤ 9

5.3 Adaptive FLANN-Genetic (AFGA) Technique

This approach, paid an impact on two different parameters for its advancement, i.e.,
probability for mutation (Pm) and probability for cross over (Pc). Updated values of
(Pm)k+1 and (Pc)k+1 is calculated by using the following equations:

(Pm)k+1 = (Pm)i − C2 ∗ n

5
(5)

(Pc)k+1 = (Pc)i − C1 ∗ n

5
(6)

5.4 FLANN Particle Swarm Optimization (FPSO) Technique

It is based on the principle of particle swarm optimization and Function link neural
network. PSO is utilized to update the weight at learning phase. Figure5 represents
the execution of PSO. Formula to calculate the fitness value is:
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Fig. 5 Flowchart representing PSO execution

Fi = 1/Ei (7)

V i
k+1 = V i

k + C1 ∗ R1 ∗ (Pbest ik − Xi
k) + C2 ∗ R2 ∗ (Gbestnk − Xi

k) (8)

Xi
k+1 = Xi

k + V i
k+1 (9)

where X is the position of particles and V is the velocity.

5.5 FLANN-Clonal Selection Algorithm (FCSA) Approach

FCSA is a hybrid approach using clonal selection algorithm and functional link
neural network [13].

5.6 Modified-FLANN Particle Swarm Optimization
(MFPSO) Technique

The main difference between PSO and MFPSO approach is that in case of MFPSO
mutation stage is included just the completion of first stage. The following equation
is required to calculate the update value of mutation.
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(Pm)k+1 = (Pm)i − C ∗ n

10
(10)

where Pm is the first state of mutation and n is the generation number.

6 Experimental Setup

In this section of the chapter, we discuss the experimental setup done to find that
developedmalware detectionmodel is effective or not. Six different hybrid functional
link artificial neural network machine learning algorithms are implemented in this
chapter. In Fig. 6, representation of proposed framework is demonstrated. In the first
phase, feature selection techniques are implemented, i.e., PCA and rough set theory
to select significant features. In the second phase, to normalize the features min-max
approach is implemented. Distinct malware detections are developed by using six
different machine learning techniques. After that, confusion matrix is developed by
using the technique mentioned in [23, 24]. By comparing the malware detection
model, best suitable model is selected and compared with the existing framework
mentioned in the literature. If the detection rate is high after comparing the models
with the existing framework, then proposed framework is useful or vice versa.

Fig. 6 Proposed framework, i.e., ANNDroid
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(a) PCA (b) RSA

Fig. 7 Feature selected using PCA and rough set analysis

7 Outcomes

In this section, the outcomes are gained by performing feature selection approaches
and machine learning algorithms.

7.1 Feature Selection Approaches

Relevant features are selected using PCA whose eigenvalue is greater than 1, and
features selected using rough set analysis are basis on heuristic search. Features
selected using PCA and rough set analysis are demonstrated in Fig. 7.

7.2 Machine Learning Approaches

Tables4 and 5 represent the measured value of accuracy and F-measure using PCA
and rough set analysis using the equations mentioned in the literature [18, 19]. From
tables, it may be inferred that:

• Highest detection rate is represented by bold value.
• It is observed from tables thatmodels developedusing features selection techniques
achieved higher detection rate as compared to all extracted feature set.

• Model developed using FLANN-genetic accomplished higher detection rate as
resembled to FLANN-PSO and FLANN-CSA.

In order to search, developedmalware detectionmodel is effective or not, box-plot
diagrams of the individual developed model is constructed. Figures8 and 9 demon-
strate the box-plot diagrams for accuracy and F-measure using feature selection
approaches. From figures, it can be concluded that:

• Based on Figs. 8 and 9, model developed by using RSA as feature selection tech-
nique achieve higher detection rate.
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(a) Accuracy (b) F-Measure

Fig. 8 Box-plot diagram of accuracy and F-measure using PCA

(a) Accuracy (b) F-Measure

Fig. 9 Box-plot diagram of accuracy and F-measure using RSA

• On the basis of Fig. 9, it is seen that model developed by using FLANN-genetic is
having higher median value and few outliers. Model build by using RSA achieved
higher detection rate as compared to PCA.

7.3 Comparison with Existing Developed Frameworks

In order to find out developed malware detection model is effective in detecting
malware or not, in this chapter comparison is done by using existing frameworks
present in the literature. To perform this experiment, freely available dataset; i.e.,
Drebin [2] is considered. Table6 represent the comparison with existing approaches
or frameworks presented in the literature.

7.3.1 Experimental Findings

In this chapter, a framework is developed by using android apps and by utilizing
hybrid artificial neural network. Based on the outcome, this study is able to answer
the questions discussed in Sect. 2.
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Table 6 Comparison of developed model with available frameworks present in the literature

Framework/
approach

Purpose Approach Deployment Data set Accuracy

Paranoid
Android [27]

Detection Dynamic and
behavioral

Off-device Limited –

Crowdroid [3] Detection Dynamic,
system
call/API and
behavioral

Distributed Very-limited High

Aurasium [33] Detection Dynamic and
behavioral

Off-device Limited High

CopperDroid
[29]

Analysis and
detection

Dynamic,
system/API
and VMI

Off-device Limited Moderate

TaintDroid [5] Detection Run-time
system
call/API and
behavioral

Off-device Very-limited Moderate

HinDroid [8] Detection Dynamic and
API

Off-device Limited Moderate

Mahindru and
Singh [25]

Detection Run-time Off-device Limited Moderate

MalDozer
[10]

Detection Run-time Off-device Limited Moderate

DroidDet[36] Detection Static Off-device Limited Moderate

Wei Wang[31] Detection Run-time Off-device Limited Moderate

DeepDroid
[14]

Detection Run-time Off-device Limited Moderate

PerbDroid
[20]

Detection Run-time Off-device Limited High

Mahindru and
Sangal [16]

Detection Run-time Off-device Limited High

ANNDroid
(our proposed
framework)

Detection Run-time,
permissions,
API calls,
user-rating
and number of
user download
app

Off-device Unlimited Higher
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RQ1: In the present study, implementation of six different machine learning tech-
niques is used to develop malware detection model. Based on Tables4 and 5, it can
be implicit that model build using FLANN-genetic is more effective in detecting
malware-infected from android.

RQ2: Yes, proposed detection model is effective in identifying malware-infected
apps when compared to existing frameworks present in the literature.

RQ3: From Tables4 and 5, it can be concluded that feature selection techniques
have a significant role in building the malware detection model. Models developed
using feature selection techniques are very effective when compared to the model
developed using all extracted features.

8 Conclusion

This chapter paid a significant role while developing the malware detection models
by using distinct android apps. In addition to that, it is observed that feature selection
approach also paid an significant role while selecting the relevant features from
all extracted features. Moreover, model developed using hybrid approach is more
capable in detecting malware as compared to previously developed frameworks.
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