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Abstract. In situ visualization is becoming an essential method used for
high-performance computing. For effective in situ visualization, a view-
point should be placed close to a key spot or volume-of-interest (VOI). In
order to track unpredictable motions of VOI in simulations, we propose
to introduce agent-based modeling to the in-situ visualization, in which
agents are autonomous cameras, and their environment is the simulation.
As a demonstration experiment of the agent-based in situ visualization,
we put a camera agent to 3D cellular automata. The camera agent suc-
cessfully tracks a VOI of cells in highly complex time development.
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1 Introduction

In situ visualization is becoming an important research topic in high-performance
computing (HPC), because it enables the analysis of simulation data without
reducing the spatiotemporal resolution [7]. One challenge with in situ visualiza-
tion is the method used to identify a local critical region in the whole simulation
space, or volume of interest (VOI), where intensive visualizations are to be applied.
In large-scale computer simulations of complex phenomena, however, it is almost
impossible to know in advance when and where essential phenomena will occur.

In 2014, we proposed an in situ visualization approach that enables inter-
active analysis of VOI after simulation [14]. The key idea is to apply multiple
in situ visualizations from fixed viewpoints at once before applying the inter-
active exploration of video dataset on PCs. (We focus on 3D simulations with
time development.) The visualization cameras for recording of the video dataset
were assumed to be primarily placed on 2D surfaces such as a sphere. Similar
approach based on images to in situ visualization is Cinema [1,20].

By generalizing our video-based method, we proposed “4D Street View” [12,
13], where we placed omnidirectional cameras using a full (=4π steradians) field
of view. The omnidirectional cameras are placed in various forms in the simula-
tion region such as on curves (1D), on surfaces (2D), or in the whole simulation
region (3D). The viewpoint and viewing direction can be interactively changed
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afterward as in the Google street view [2] using an application program for PC,
called 4D street viewer.

This study proposes another complementary approach to in situ visualiza-
tions to focus on VOI. It enables automatic tracking of the unpredictable behav-
ior of VOI, such as sudden emergence/disappearance and random motion. This
is achieved by integrating the agent-based model (ABM) into in situ visualiza-
tions. In this agent-based in situ visualization, agents are visualization cameras,
and they autonomously identify and track VOI by following prescribed rules and
applying in situ visualizations.

Our long-term goal is to implement the agent-based in situ visualization as
a set of visualization cameras or “camera swarm”. Toward the goal, this study
presents a single camera as an element of the autonomous camera agent.

2 Related Work

Multiple in situ visualization approaches for HPC have been proposed. Temporal
caching [9] is to temporarily store simulation outputs in a fast storage system for
later events triggered based on the stored data. The particle data approach [15]
saves view-independent particle data for the later application of particle-based
rendering [21]. Proxy image [26,27,32] is a method that uses the intermediate
representation of data.

Several libraries and frameworks for in situ HPC visualization have been
developed, including ParaView Catalyst [3], VisIt libsim [30], ISAAC [17],
Embree [29], OSPray [28], and VISMO [18,19]. ADIOS [16] is an adaptable
data I/O framework, enabling asynchronous communication between simulation
and visualization. SENSEI [4] is a generic in situ interface, providing a portable
interface for other in situ infrastructures such as Catalyst, libsim, and OSPray.

The application of ABM to information visualization in general was proposed
by [11]. They coined the term agent-based visualization (ABV). The agent-based
in situ visualization proposed in this study is an application of ABV to in situ
visualization for HPC.

In computer graphics, the automatic setting of camera path is an impor-
tant topic having a long history [8,10,25]. Here, a relatively simple algorithm
for the camera agent motion is used because the camera agent is required to
autonomously respond to ever-changing simulation data.

3 Camera Agent

In general, an ABM consists of two components; environment and autonomous
entities called agents [31]. Each agent interacts with the environment and other
agents, following simple rules. For our proposed agent-based visualization, an
agent is a visualization camera that autonomously changes its position and
viewing direction. Unlike the omnidirectional cameras scattered in the 4D street
view, the agent camera is directional one with a smaller field-of-view than 4π
steradians. The environment is the simulation space and the physical variables
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distributed there. The camera is designed to track VOI and visualize the phe-
nomena therein. Here we focus on the behavior of a single agent.

Fig. 1. (a) The agent is pulled or pushed as per the distance to its (fixed) focal point.
(b) The agent moves following the mass-spring-damper model. (c) The focal point in
the next time step is re-calculated from local environment around it (local box).

Figure 1 shows the rules for camera-agent motion: (i) First, the agent calcu-
lates the center of VOI called focal point from the environment [the red points
in (a)]; (ii) If the distance to the focal point is larger than a reference length �0,
the camera agent is then pulled to the focal point; (iii) Otherwise, the agent is
pushed away from the focal point.

To implement rules (ii) and (iii), we adopt a simple mass-spring-damper
model with dual time stepping. The camera agent follows an equation of motion
with its intrinsic time τ , which is independent from simulation’s time t. Assuming
that the mass of the agent m = 1, we adopt the equation of motion for the
position vector of the camera agent xc as follows [Fig. 1(b)]:

d2xc

dτ2
= k(� − �0) ê − μ

dxc

dτ
, (1)

where k and μ are spring constant and friction coefficient; � is the distance
between the focal point xf and the camera agent, or � = |xf −xc|; and ê is unit
vector ê = (xf − xc)/�. We numerically integrate Eq. (1) for τ , assuming that
the focal point xf is fixed during the integration. In other words, time t stops
during the τ ’s integration. On the other hand, the focal point moves according
to the environmental change, or the development of the simulation in t, while
the motion of the agent by Eq. (1) is suspended. We alternately apply the dual
time integrations. We set �0, a free parameter in this method, as �0 = 30, with
the unit length being the cell size.

The camera agent assumes a part (or sometimes all) of the simulation region
called local box, which is defined around the focal point [Fig. 1(c)]. As the envi-
ronment changes (or as the simulation progresses in time t), the local box range,
and accordingly its central focal point, moves. According to the above procedure,
the camera agent smoothly tracks the motion of VOI, almost always keeping the
appropriate distance �0 [Fig. 1(c)]. The VOI tracked by the camera agent depends
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on the initial position of the agent. This uncertainty of VOI will be resolved if
we introduce multiple agents in future.

4 Application Tests

Agent-based in situ visualization is a general idea that can be applied to var-
ious kinds of complex simulations, such as fluid turbulence simulations. Here
we choose 3D cellular automata (CA) as test target simulations because they
potentially exhibit unpredictable behavior.

4.1 3-D Cellular Automata

We consider 3D cartesian lattice cells with discrete (integer) states and a simple
ruleset to change the states in the next time step. The rules are local, i.e., the
next state of a cell is determined by its state and that of its neighbors. CA is
known to mimic complex phenomena observed in nature [24]. The complex time
evolution of 3D CA described below makes them suitable applications of the
proposed agent-based in situ visualization method.

In the following, we call a cell empty, when its state = 0, and alive when its
state = 1. The total number of possible states is n: The state of a cell is one of
{0, 1, 2, . . . , n − 1}. The total number of alive cells in neighbors is m.

We adopt the Rule [α/β/n/γ] notation to specify a CA rule set, where α is
an integer or a set of integers for m to make an empty cell alive (born); β is
an integer or a set of integers for m to keep an alive cell being alive; and γ is
either N (Neumann neighbor) or M (Moore neighbor). When m does not match
α (when the cell is empty) or β (when the cell is alive), or the cell is neither
alive nor empty (state > 1), 1 is added to the state integer modulo n. We will
present the situ visualizations of Rule [4/4/5/M ] and Rule [5/4, 5/2/M ] below.

We developed a 3D CA code in C++ and incorporated the in situ visual-
ization function using a single camera agent in the code. Our simulation code
executes any CA model described by the Rule[α/β/n/γ] with periodic boundary
conditions in all three (x, y, and z) directions. The program is assumed to be
executed on a supercomputer system as a batch job. Although the code is not
parallelized, it will be done soon.

We place spheres at non-empty cells and the sphere color depends on the state
integer of the cell. Kyoto Visualization System (KVS) [22], which is a visualiza-
tion development framework for C++, was employed for the in-situ rendering
of the spheres on π-computer system of Kobe University, comprising 16 nodes
of AMD APYC CPU (512 cores in total). Results of the in situ visualization or
the output of KVS are stored as a sequence of image files on the hard disk drive
system. These images are then combined into a video file playable on PCs.

4.2 CA of Rule [4/4/5/M ]

First, we demonstrate the results of in situ visualization of CA with Rule
[
4/

4/5/M
]
, which leads to highly complicated dynamics of cells. We could not find
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literatures describing this CA. We recommend a YouTube video [23] to com-
prehend the brilliant and impressive developments of cells. The Rule [4/4/5/M ]
appears at the beginning of the video.

Fig. 2. (a) Snapshots of a 3-D CA. Two clusters collide after 210 time steps and highly
complicated structures are then observed. Observe that a camera agent (schematically
shown by the blue glyph) tracks a bar-like object (enclosed by a magenta curve). (b),
(c), and (d) are images of in the situ visualization by the camera agent. (Color figure
online)

Figure 2(a) shows a sequence of snapshots of the CA from 210–330 steps. The
cell lattice size is 100 × 100 × 100. At 210 steps, two clusters of non-empty cells
are observed (magnified view in the blue box). They collide later and break in
multiple fragments at 230 steps. Then, the scattered fragments undergo addi-
tional mutual collisions from 250 steps and above. At the 310th step, we observe
an emergence of rod-like structures (enclosed by the magenta-dashed line).

Here we define VOI as the center of gravity of alive cells in the local box.
When there is no alive cell in the local box, the camera agent does not move,
waiting for a change. When a cluster of cells goes into the local box, the camera
agent notices its entrance and starts tracking (green glyph in Fig. 2(a)). The
viewing direction is toward the center of gravity. In spite of its simplicity, the
rule enables the camera agent to follow a bar-like object, as shown in Figs. 2(b),
(c), and (d).
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4.3 CA of Rule [5/4, 5/2/M ]

The second example of CA to which the agent-based in situ visualization is
applied is Rule [5/4, 5/2/M ]. This CA is one of the extensions of Conway’s game
of life in 3-D [5,6], which enables a “glider,” an oscillating structure of a relatively
few cells, to translate in the space. In this CA calculation, we intentionally
set an initial condition, such that a single glider exists, to confirm the agent’s
trackability in the event of a sudden change of VOI. The glider goes through a
boundary plane and re-appears from the opposite plane because of the periodic
boundary conditions. These kinds of abrupt appearances and disappearances
should be tracked by a camera agent in complex simulations.

Fig. 3. Agent-based in situ visualization of 3D game of life. (a)–(d): A glider moves
in the simulation region under the periodic boundary condition and a camera agent
(green glyph) tracks the glider. (e)–(h): Images taken by the camera agent. The cell
size is 70 × 80 × 90. (Color figure online)

Figures 3(a)–(d) show the glider’s translation (a group of purple cells). The
blue arrow denotes the glider trajectory. The green glyph shows the position of
the camera agent. (The blue arrow and green glyph are shown for the explanation,
they do not appear in the CA computation.) The agent notices the disappearance
and appearance of the glider after (b) and before (c), respectively. The successful
tracking of the glider’s “teleportations” subsequently continues after (d).

Figures 3(e)–(h) show images obtained by the camera agent’s in situ visual-
ization at designated time steps corresponding (a)–(d). The glider is recorded at
the center of the images, as shown in these figures.

5 Summary

We propose agent-based in situ visualization for effective in situ visualization of
HPC. Toward the full capacity of agent-based modeling of visualization cameras,
we developed a single camera agent in this paper. We have shown that the camera



Toward Agent-Based In Situ Visualization 9

agent autonomously tracks VOI in 3D CA, applying in situ visualizations of the
VOI during a batch job simulation on an HPC system. Based on the single agent
proposed in this paper, we will study multiple agents in the future, expecting
the emergence of collective order as observed in general ABMs.

The agent-based in situ visualization is complementary to the omnidirectional
stationary cameras in the 4D street view. For the effective analysis of HPC
data, we will combine autonomous camera agents and omnidirectional stationary
cameras in the future studies.
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(KAKENHI) 17H02998. We thank Dr. Naohisa Sakamoto for valuable technical advice
and for fruitful discussions.
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