
Chapter 4 
In-Situ Heating TEM 

Shijian Zheng and Longbing He 

4.1 A Brief History of In-Situ Heating TEM 

In the past, people could only obtain static information from the sample, but 
advancing science and technology make it possible to apply in-situ stimuli and 
observe the real-time response. Microheaters allow samples to be thermally stimu-
lated and research on dynamic properties (such as phase transitions, materials growth, 
sublimation, and catalysis) to rise. 

The first likely dynamic STEM observation of the motion of atoms on the surface 
of thin substrates was reported by Crewe in 1979 [1]. The movement of clusters/atoms 
and the nucleation process have been observed over periods of several hours. This 
phenomenon was ascribed to thermal effects and inspired further development of 
technology to improve the contrast and resolution. Soon after, the first in-situ HRTEM 
imaging of dislocation formation, motion, interaction, and annihilation in gold due 
to electron beam irradiation was carried out using a TV system by Hashimoto et al. 
[2]. A more convincing example of atomic movement caused by heating from an 
incident electron beam was reported by Sinclair et al. [3]. They captured moving 
species within the crystal structure of the parent material (CdTe) rather than single 
atomic jumps and the motion rate became higher with longer exposure (Fig. 4.1). 
When the beam current density was reduced, the response of the motion rate was slow, 
which implied that this motion did not result from direct electron-atom collisions or
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Fig. 4.1 Atomic motion induced by electron beam heating. Four panels are images captured several 
minutes apart (reproduced with permission from Ref. [3], Copyright 1981, Springer Nature) 

ionization effects but presumably arose due to heating dissipation from the active 
area. 

Increasing demand for controllable elevated temperatures during in-situ observa-
tion in TEM stimulated Parker’s introduction of commercial heating holders in 1986 
[4]. The holders exhibited acceptable mechanical and thermal stability to allow high-
resolution imaging during the heating process. Besides, a video-rate recording was 
also realized to follow the dynamic behavior over long periods of time. To demon-
strate the technique, Parker et al. observed silicon re-growth at temperatures between 
500 and 800 °C. A silicon thin film with a thickness of 300 nm had been deposited on a 
sapphire substrate and treated by dual ion-implant and annealing. The corresponding 
TEM specimens were made using a standard cross-section technique. Heating was 
implemented with a commercial holder (model number PW 6592), where a platinum 
pad was heated by an electrical feed-through thus the 3-mm disk sample on it was 
thermally stimulated. There was a thermocouple attached to the pad to measure the 
temperature and the reading should be fairly close to the actual temperature due to the 
high thermal conductivities of sapphire and silicon. Reproducible imaging conditions 
were carefully controlled to keep any beam heating or other effects at a systematic



4 In-Situ Heating TEM 85

error level. In their study, they have found that crystallization and defect reactions 
in silicon are analogous to their predictions that atoms would rearrange at around 
600 °C and this phenomenon is similar to that observed in CdTe by electron beam 
heating [3]. At this point, it is reasonable to expect an atomic-level investigation of 
structural transformation in many materials during in-situ heating using a similar 
strategy. 

4.2 Current In-Situ Heating TEM Technologies 

4.2.1 Operation Mode 

TEM can provide extraordinary imaging capability (sub-angstrom spatial resolution) 
and acquire diffraction and spectroscopy. It generally operates under either TEM 
mode or STEM mode. TEM mode corresponds to the application of a parallel electron 
beam while STEM mode uses a focused, small probe scanning over the sample. 
In TEM mode, HRTEM images are formed by interference between transmitted 
and diffracted electron beams (phase contrast), but owing to lens aberrations and 
sample thickness effects, the interpretation of HRTEM images is complicated. In 
comparison, the interpretation of the image contrast at STEM mode with a high-angle 
annular dark-field (HAADF) detector is more straightforward, because it is nearly 
proportional to Z2 where Z stands for the atomic number. Z-contrast of HAADF-
STEM allows visualization of cation mixing at the atomic scale. Furthermore, the 
combination of STEM and energy-dispersive x-ray spectroscopy (EDX) or electron 
energy loss spectroscopy (EELS) can obtain chemical information, such as elemental 
distribution and oxidation state of the materials simultaneously with capture images 
[5–7]. However, since the low scanning rates may limit the acquisition of instant 
change of materials, the majority of in-situ observation during heating is operated 
under TEM mode rather than STEM mode [8]. 

4.2.2 Type of Heating Holders 

The temperature of the specimen can be elevated by using two kinds of heating 
holders (Fig. 4.2): a furnace-type heating holder (left) that is designed to use stan-
dard TEM grids, or a microfabricated-heater-based holder where a localized area is 
heated through Joule heating [9]. The furnace-based heating holder has long been 
commercialized and it enables the sample to be heated up to 1300 °C [10, 11]. Unlike 
the in-situ mechanical experiments in TEM, achieving the sample heating inside 
a TEM is much easier. For example, Luo et al. investigated the thermal stability 
of Ni-based superalloy [12], and Liu et al. successfully attached monodisperse Cu 
nanoparticles onto carbon nanotubes during in-situ heating in a TEM equipped with
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Fig. 4.2 Schematics show two types of heating devices: Furnace heating (left) and MEMS device 
(right) (reproduced with permission from Ref. [9], Copyright 2018, American Chemical Society) 

a Gatan 652 double-tilt heating holder [13]. Nevertheless, the thermal expansion of 
the stage leads to a non-ignorable image shift during an increase in temperature so 
it is hard to realize the atomic resolution observation while heating. Especially at 
temperatures higher than 500 °C, the use of recirculating cooling water to protect the 
heating unit may also bring vibrations and thereby reduce the imaging stability and 
resolution. It is challenging to do tests on low-dimensional materials because their 
morphologies and structures are more sensitive to thermal stimulation. In contrast, 
the recently developed MEMS-based heating holders only go through negligible 
mechanical vibrations since heating is localized in a specific small area in the chip 
and thus allow atomic resolution imaging [14, 15]. For instance, Janish et al. studied 
nucleation in Ta and captured high-resolution images of nucleating crystallites [16]. 
In general, the advantage of using furnace-type of holders is that sample preparation 
is much easier, but the microchip-based holders have better performance regarding 
temperature control and mitigation of sample drift. 

4.2.3 Microheaters 

Microheaters are the core of heating holders. The heating zone is usually the region 
of interest and is placed at the center of the heater since the temperature there is 
relatively homogeneous. Generally, a microheater includes a silicon substrate or 
sometimes gallium arsenide and thermally insulating dielectric thin film layers on 
top [17]. There is an electrically conducting thin film between the substrate and the 
top insulating layer, where heat is produced by passing electric current provided by 
the voltage of the current source (This process is called Joule heating). The elec-
trically conducting film can be metal, ceramic or doped polysilicon. Metal is the 
most frequently used material in microheaters. There are three main reasons. First, 
since metal has excellent ductility and conductivity, it enables flexible geometrical 
design and fast response to exerted voltages. Second, due to the near-linear rela-
tionship between temperature and resistance, precise temperature control through
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resistance measurements can be achieved through a four-point probe. Third, the 
biggest drawback of metal (i.e. high reaction activity in the environment) can be 
simply overcome by covering a passivation layer. Ceramic is chemically inert and 
has high-temperature resistance hence it can be used in tough environments. Doped 
polysilicon can be easily integrated into standard CMOS processes since it does not 
limit the following steps as is the issue with metallization [18, 19]. 

The performance of a microheater is evaluated based on parameters falling 
into two categories. First, mechanical robustness and stability include mechanical 
stress, thermal stress, stress distribution, and spatial sample drift. Second, temper-
ature and heat include range and lifetime, homogeneity, accuracy, stability, power 
consumption, and response time [19]. 

4.2.4 Synergy with Heating 

In addition to single thermal excitation, a combination of heating and other stimuli 
has shown great potential for research on the dynamic properties of materials in a 
complicated environment. For example, Karki et al. investigated thermal degrada-
tion of overcharged Li0.1NCA in different atmospheres using an environmental TEM 
(ETEM) [20]. Oxidizing, neutral, or reducing environments were created by injecting 
O2, He and H2 gas into the sample area inside the ETEM. They found that surface 
oxygen loss and structural evolution were inhibited with the oxidizing environment 
while greatly enhanced under reductive conditions. Moreover, the understanding 
thermo-electrical performance of materials is also critical to better manipulate and 
optimize them for practical applications. For instance, it is crucial to monitor struc-
tural changes of ReRAM materials while both heating and biasing are applied to 
improve their stability for the fabrication of future non-volatile memory devices. 
Hence, Garza et al. [21] present the design of a system for in-situ biasing and heating 
called Lightning System as shown in Fig. 4.3. The left panel shows the structure of 
the nanochips for heating and biasing at the same time. There are eight electrical 
contacts and half of them are used for heating while the other four are used for 
biasing. This design ensures 4-point probe measurements for accurate control of the 
temperature and voltage/current which further guarantees a reproducible response. 
Then, this nanochip is attached to a customized holder (Right panel in Fig. 4.3), where 
contact needles are used to provide stimuli from outside of the holder. The system 
can supply voltage up to 100 V and temperature up to 800 °C while it also enables 
double-tilt during observation. In-situ simultaneous biasing and heating can carve a 
new path for a comprehensive understanding of materials and advance the develop-
ment of nano-electronics. Another typical example has been reported by Wang et al., 
who utilizes the mechanical tests system during increasing the temperature aiming to 
select the appropriate alloys for aero-engines [22]. Their work also implies that the 
cooperation among microscopists, physicists, chemists, and engineers is essential 
for developing next-generation smart materials.
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Fig. 4.3 Configuration of nanochip (left) and customized holder with mounted nanochip (right) 
(reproduced with permission from Ref. [21], Copyright 2016, John Wiley and Sons) 

4.3 Research Based on In-Situ Heating TEM 

4.3.1 Material Growth 

Controllable growth of functional nanomaterials is the starting point for their appli-
cation in multitudinous devices. Therefore, to explore optimal crystal structures and 
morphologies, it is necessary to develop methods that can help deeply understand the 
actual mechanisms behind their growth. The growth of one-dimensional (1D) nanos-
tructures is usually elucidated via a vapor–liquid-solid (VLS) theory. According to 
the VLS process, the liquid phase dissolves atoms from a solid matrix. When it is 
supersaturated, growth arises at the surface of the droplet [23]. As the nanostructure 
is extremely small, a method with a high spatial resolution is crucial to systemat-
ically investigate the growth process. The conventional ex-situ observations using 
microscopy can only analyze the static nanoscale structural information, however, 
they are incapable of following their forming process [24–26]. By comparison, the 
in-situ methods enable direct observation of structural transformation occurring at the 
nanoscale or even atomic scale [27]. For instance, by equipping a heating component, 
modern TEM can be employed not only for improving resolution but also for making 
it possible to track dynamic processes during nanowire growth [28, 29], as shown 
in Fig. 4.4a. During crystal growth, especially in a VLS process, the motion of a 
semiconductor–metal molten zone is generally motivated by a temperature gradient. 
Yet, the temperature gradient fields have not been completely understood in earlier 
ex-situ characterization [30, 31]. Hence, the real-time evidence acquired via in-situ 
methods provides an opportunity to accurately track liquid zone motion inside the 
solid [32–34].
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Fig. 4.4 a TEM images showing the growth of Cu nanowires during heating (reproduced with 
permission from Ref. [29], Copyright 2018, American Chemical Society) b TEM images exhibiting 
the motion of Au/Ge alloy during heating (reproduced with permission from Ref. [35], Copyright 
2015, American Chemical Society) 

Figure 4.4b illustrates an Au particle initially liquifies at the Ge nanowire tip, then 
creating an Au/Ge alloy liquid area which subsequently moves inside the Ge nanowire 
[35]. It should be clear that the motion direction and position of the Au/Ge liquid 
can be manipulated by the applied bias; upon removal of the bias, the Ge nanowire 
is detached from the Au tip and the liquid Au/Ge alloy quickly hardens. These 
results resolve the growth kinetics of nanowires, and also inspire more explorations 
of the growth process of nanoparticles and nanosheets. However, sample handling 
of them is more complicated. It is expected that a deep investigation of physical and 
chemical evolutions during material growth at such high resolutions would drive the 
development of surface and interface engineering. 

Later, Cheng et al. found that the growth processes of PbSe nanocrystals (NCs) 
can be controlled by changing temperature [36]. The NCs begin to grow under 
the oriented attachment growth mode by attaching dot-shaped NCs along a certain 
crystal orientation, and sequentially switch to growth with grain-boundary migration
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by absorption of smaller NCs by neighboring larger ones through interfacial atom 
reconstruction. 

4.3.2 Sublimation and Surface Energy 

Besides crystal growth, sublimation is another important phase transition during 
which the chemical bonds within the solids break-down resulting in gasification. 
The in-situ experiment in TEM is a direct technique to investigate the sublimation 
mode at the atomic scale and it should also shed light on a better understanding of 
the inverted growth process. Additionally, sublimation is strongly linked to material 
stability, and the research on sublimation of NCs would reveal the critical factors 
influencing the stability. For example, though the surface free energies of the major 
crystal planes follow (111) < (100) < (110) in face-centered cubic (FCC) structures 
[37, 38], the thermally stable surface of FCC metals at elevated temperatures has been 
under debate for a long period because high-temperature-induced relaxation of crystal 
planes strongly depends on crystal index [39–41]. Hence the observation of the stable 
facets of FCC metals at high temperatures has significant importance for clarifying 
this debate. Ding et al. [42] and He et al. [43] studied the sublimation scenarios of Ag 
NCs via in-situ heating TEM. The featured shapes and surfaces during sublimation 
provide direct information for revealing the close linkage between surface free energy 
and stability (Fig. 4.5). Benefiting from the low drift of the microchip during heating, 
the dynamic sublimation process of the Ag NC at the very initial can be effectively 
captured, showing an overwhelming superiority comparing with the furnace-type 
heating holder.

Aside from this temperature-related surface stability, in fact, the surface energy 
of a NC itself is still under fierce debate when taking into account the size effect. 
Theories and simulations from the thermodynamic view suggest a decreasing trend 
of surface energy with decreasing particle size [44–46], while another view which 
considers the size-dependent lattice parameters proposes a rather contrary conclusion 
[47, 48]. On this issue, the in-situ heating TEM becomes the only effective tool for 
performing investigations from the experimental end. Sambles et al. probed into the 
surface energies of Au and Ag NCs by fitting the sublimation curves with Kelvin equa-
tion [49, 50]. Later, investigations using similar in-situ heating approach achieved 
more results for understanding the size effect in surface energy [51]. Although the 
current in-situ heating TEM still cannot clarify all the inconsistencies remained, 
the development of more delicate microchips with high controllability and accu-
racy can provide opportunities for modifying/calibrating the physical parameters of 
nanomaterials. 

In addition to the surface energy, the particle size and defects are also of great 
importance, which further affects the stability of the nanostructure. Cheng et al. 
discussed the sublimation process of PbSe nanocrystals at the atomic scale and 
corresponding size, surface, and interface effects [52]. Because of the interplay 
between the electron beam and surface organic ligands, the sizes of nanocrystals
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Fig. 4.5 TEM image sequences showing the surface evolution of a cubic Ag NC with a carbon 
shell (reproduced with permission from Ref. [43], Copyright 2017, John Wiley and Sons)

are successfully manipulated via the introduction of the electron beam at different 
growth periods, which allows real-time observation of the size dependence of subli-
mation. As shown in Fig. 4.6, the nanoparticles with a size less than 10 nm exhibit 
directional orientational sublimation, and those of larger size sublimate uniformly.

4.3.3 Failure Analysis 

In in-situ heating TEM, Joule heating is not only used to create a heating region 
serving as the substrate, but also it is frequently exerted directly in the sample to create 
synergistic effects. The combination of heat and electromagnetic field frequently 
leads to unique behaviors in nanomaterials [53]. For example, by controlling the stim-
ulus of atom migration with an appropriate current (i.e. to create a certain temperature 
and electron-wind force), the mass transport of nano-objects can be implemented at 
the atomic scale [54–57]. This provides a fantastic method to modulate the nanos-
tructures to enable diverse nanodevices and applications including mass sensors 
and resonators [58, 59], archival memory [60], oscillators [61], and nano-welding 
[62]. Aside from these electromigration-based mass transportation phenomena, the
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Fig. 4.6 Series of TEM images showing sublimation of a small PbSe nanocube is controlled by its 
facets (reproduced with permission from Ref. [52], Copyright 2020, Elsevier)

combination of thermal heating with electrical stimuli can also enable ion trans-
port [63–66] and solid-state reactions [67–71].  Mei et al.  [72] investigated the solid 
state reaction/alloying process between nanometer-sized Cu and Al metallic tips. It 
was found that hetero-joining could be implemented by the coupling of heating and 
electromigration. 

Group III–V nanowires prepared by metal-catalyzed chemical vapor deposition 
have recently attracted an explosion of interest [73], driven by the inspiring opto-
electronic properties, the high crystallinity, and the potential of integrating them 
with silicon. Recent research on Si nanowires suggests that when the nanowire 
diameter is below around 150 nm, the thermal conductivity is weakened because of 
phonon surface scattering [74]. Thermal breakdown in Joule-heated GaN nanowires 
is studied by in-situ TEM experiment [75]. The thermal conductivity of the nanowires
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is reckoned to be below the bulk GaN value. Breakdown in a single nanowire is 
observed to happen at a maximum temperature of about 1000 K, and nanowire 
morphology adjacent to the breakdown region suggests that failure happens via 
thermal decomposition, which is proved by in-situ TEM images captured at the 
failure stage. 

4.3.4 Annealing and Phase Transitions 

In-situ annealing provides more dynamic information of sample’s structure evolution 
than the ex-situ approaches. This enables an easy combination between the treating 
temperatures and the intermediate structures. For example, the FeCrAl alloys are 
thought to be promising materials of fuel claddings in nuclear reactors. To deeply 
understand the transformation of helium bubbles and dislocation loops during the 
annealing process, He+-irradiated TEM specimens were annealed and characterized 
by in-situ TEM [76]. The dislocation density reduced with the rise of temperature, 
but the loop size presented a different behavior. When the temperature was raised 
to 1072 K, the bubbles grew quickly while the density reduced. Moreover, in-situ 
thermal annealing of PtCu3/C in TEM has also been studied, which reveals essential 
transformations for achieving highly-active oxygen reduction [77]. 

Phase transitions are a well-known temperature-dependent process in materials, 
in-situ techniques in TEM allow direct observation of these processes [78]. For 
example, polymorphs of Ga2O3 [79] are potential candidates for ultra-wide bandgap 
semiconductors and are widely studied because of the newly developed growth tech-
nologies. The temperature-dependent phase transformation of κ-Ga2O3 layers grown 
on sapphire was investigated by high-resolution TEM [80]. Annealing procedures up 
to 1000 °C were performed in situ in TEM. This enabled the reveal of the mechanisms 
of κ-to-β phase transition and corresponding atomic rearrangement. 

Likewise, the complex phase diagram of Pr1−xCaxMnO3 (PCMO) leads to possi-
bilities of tuning the physical properties for various applications. Significantly, as 
a result of strong correlation effects, electronic and lattice degrees of freedom are 
strongly coupled. Therefore, it is arguable whether the bulk phase diagrams can be 
directly transferred to strained thin films. Beche et al. explored phase transitions at 
high temperatures in PCMO (x = 0.1) deposited as a 400 nm film on a SrTiO3 (STO) 
substrate [81]. Combination with TEM, individual domains of the nano-twinned films 
can be resolved compared with macroscopic X-ray or neutron diffraction studies [82]. 

Recently, Tang et al. [83] investigated the phase evolution of CuAg alloy NCs 
by in-situ heating TEM. They found that the transition from a solid solution phase 
to a Janus-type separated phase leads to the formation of different interfaces related 
to nanoparticle size. Small nanoparticles tend to form a Cu(100)/Ag(100) interface, 
while the large ones tend to form a Cu(111)/Ag(111) interface. Ni et al. [84] demon-
strates that in-situ annealing also helps fine-tune the phase of Au–Ag nanorods to 
optimize their plasmonic properties. It is interesting that the microchip can also be 
used as a calibrator to estimate the beam heating effect inside the TEM. In this way,
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Fig. 4.7 Different morphologies, structures, and phases of PbBi nanoparticles during evolution 
under in-situ heating treatments (reproduced with permission from Ref. [85] Copyright 2022, 
American Chemical Society) 

the electron beam can be used as an ultra-fast heating source to explore those transient 
phases that are hardly revealed by conventional methods. Shi et al. [85] used this  
technique approach to probe into the phase segregation process of PbBi nano-alloy. 
They have uncovered several metastable phases which haven’t been reported before 
(Fig. 4.7). 

4.3.5 Catalysis and Battery 

Ordered intermetallic nanoparticles have shown electrocatalysis with improved 
activity and durability for the oxygen reduction reaction (ORR) [86–88]. Using 
in-situ heating electron microscopy, morphological evolution and the creation of 
fully and partially ordered nanocrystals have been observed at the atomic scale [89]. 
This comprehensive study will have a long-lasting influence on the development of 
ordered intermetallic electrocatalysts for real-world applications. 

Temperature is one of the key factors limiting the application of batteries, thus 
in-situ heating can be employed to investigate the structural and chemical transforma-
tion of battery materials at elevated temperatures. Determining the rational working
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Fig. 4.8 HRTEM images of overcharged nanoparticles: a before heating b heating at 100 °C c 
heating at 200 °C and d heating at 300 °C (reproduced with permission from Ref. [93], Copyright 
2013, John Wiley and Sons) 

temperature ranges of certain battery materials is critical for developing high-
performance batteries to be used in extreme conditons [90–92]. Thermal stability of 
anode materials may lead to safety issues, so different approaches are demanded to 
prevent thermal runaway and burning. Nam et al. [93] employed in-situ technologies 
in TEM to study the thermal stability of overcharged cathode materials, as illustrated 
in Fig. 4.8. Their work is practically significant since the working temperature is 
usually changeable rather than constant. 

4.3.6 Solid-State Amorphization and Crystallization 

One of the most fascinating findings in the 1980s is the formation of amorphous 
phases by the interplay of two metals at their interfaces [94]. As semiconductor– 
metal interfaces are vital structures in integrated circuits, Holloway et al. focused on 
Ti-Si multilayers and discovered that there is also a solid-state amorphization reaction 
between the interfaces [95]. Additionally, during the early periods of silicidation, an 
amorphous barrier is formed at the crystalline interface, leading to a high Schottky 
barrier height [96].
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In contrast to amorphization, there is unexpected crystallization observed in some 
eutectic systems (Al–Si or Ag–Si). In-situ high-resolution TEM reveals that rather 
than a metastable phase or liquid formation, the initial amorphous phase could be 
crystallized during adjusting the temperature [97]. Further investigation showed that 
this crystallization occurred by semiconductor elements diffusing into the metal, then 
precipitation of the semiconductor would happen after supersaturation [98]. A more 
thorough research of crystallization in a promising high-k dielectric tantalum oxide 
enabled a typical Avrami (Kolmogorov– Johnson–Mehl–Avrami) examination of the 
in-situ experiment. During the observation, the reaction was all the way tracked, thus 
the nucleation and the growth stages were simply separated for detailed analysis [99]. 

4.3.7 Degradation of Perovskite Solar Cells 

One of the most serious problems limiting the practical application of perovskite solar 
cells is the lack of thermal stability. Different possible degradation pathways exist 
in this material system, especially hybrid composites. Therefore, it is inevitable to 
examine the response of perovskite materials at elevated temperatures. Divitini et al. 
monitored morphology, structural and chemical changes when heating the prototypes 
of perovskite solar cells. They present element diffusion and structure break-down 
and discovered distinct degradation modes in vacuum or air [15]. 

4.4 Conclusions and Outlook 

In summary, in-situ heating TEM plays an increasingly important role in advancing 
the development of materials for precise structural design and accurate performance 
control to adapt them to practical applications. In-situ heating offers unique direct 
information that is not available by other ex-situ methods [100, 101]. In-situ experi-
ments are usually carried out in “TEM mode” to achieve both high spatial resolution 
and fast recording while “STEM mode” allows more detailed analysis of chemical 
and electronic information of materials when combined with spectroscopic methods. 

However, there are still some issues about in-situ heating in TEM. First, whether 
the observations are representative of the corresponding bulk materials. Second, the 
recording rate may still limit the capture of thermally activated processes. Third, data 
storage and processing capability may affect the in-depth analysis. Fourth, tempera-
ture measurement at the microscale remains challenging. Five, it still lacks research 
on complicated or composite systems, and current studies mainly focus on simple 
model material systems and reactions. 

In the future, in-situ heating TEM should get the following items improved.
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Measurement of electron beam effects and their mitigation. High energy elec-
tron beam possibly causes destructive changes to the TEM sample and leaves arti-
facts affecting the objective analysis. Therefore, electron dose, the energy of elec-
trons, vacuum conditions, and nature of materials that determine interaction with the 
electron beam should be paid careful attention to [102]. 

High spatial resolution and temporal resolution. Based on more electron-
sensitive complementary metal oxide semiconductor, higher special and temporal 
resolution can be realized, which is crucial for revealing the ultra-fast physical and 
chemical changes and also for investigating the e-beam irradiation sensitive mate-
rials [103]. Scanning rates of probe aberration-corrected STEMs are becoming much 
faster, so HAADF-STEM in-situ observation is expected to play increasingly vital 
roles in tracking temperature-dependent processes at the atomic scale. Together with 
EELS and EDS analysis, local changes in chemical composition and valence states 
of the elements can be monitored during the increasing/decreasing of the temperature 
[104]. 

Rapid data recording and processing. Recently developed faster-recording 
devices will promote the rate/speed at which changes induced by temperature eleva-
tion can be tracked, which will result in an enormous increase in data accumulation. 
The in-situ experiments at nano-second rates by laser pulsing the electron source will 
also demand much higher data processing power and artificial intelligence should be 
one of the feasible solutions [105]. 

Precise temperature measurement down to microscale or even nanoscale. 
Although estimation of temperature has been achieved via resistivity measurements 
[106], more accurate local temperature readouts remain challenging. 

Multifunctional holders for simultaneous application of different stimuli. 
Advancement of versatile in-situ TEM approaches that can offer coupled external 
stimuli. The structural transformation under multiple external stimuli such as 
mechanical loading, thermal activation, and electric field, or even in a gas atmo-
sphere [107], liquid environments [108], laser illumination [109, 110], magnetic 
fields [111, 112] etc., have also been observed nowadays. It is expected that future 
TEM technologies could incorporate multiple fields that simulate the real working 
environments for the materials. 

Expanding material systems where in-situ heating is employed. It is expected 
that in-situ heating TEM would continue motivating intriguing discoveries in mate-
rials science and further promote industrial development. With the development of 
advanced unique heating holders combined with the ongoing improvement of the 
transmission electron microscope, the scope of corresponding in-situ heating studies 
is only limited by the imagination and innovation of the researcher. It should be 
believed that much fundamental understanding of material properties will be obtained 
with an increased resolution both spatially and temporally.
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