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Abstract Knee is the most intricate joints in the body. This joint faces immense 
reaction forces during daily routine work that may vary around three to seven times 
of the body weight. These high reaction forces may convert small malfunctioning into 
severe conditions and can be avoided by early detection of knee health conditions. 
Vibroarthrography (VAG) is the most emerging tool to detect knee joint abnormal-
ities. In this paper, an application of the empirical mode decomposition (EMD) is 
presented to discriminate between normal and abnormal knee joint VAG signals. 
EMD is employed to decompose VAG signals into several intrinsic mode functions 
(IMFs). Twelve different nonlinear, entropy, and shape-based features are elicited 
from each IMF provided by EMD. Kruskal–Wallis (K–W) test is employed to iden-
tify the best suitable features to discriminate between normal and knee joint affected 
VAG signals. The simulation results with the publicly available VAG database are 
included to show the effectiveness of the presented work. 

Keywords Knee abnormalities · Vibroarthrography · Empirical mode 
decomposition · Kruskal–Wallis test 

1 Introduction 

Knee joint is one of the most commonly injured and complex joints in the human body. 
It joins the thigh bone (known as femur) and lower leg bone (known as tibia). The knee 
joint is a sort of hinge joint that allows bending and straightening movements. This
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joint has to face an enormous reaction force that is nearly equal to the weight of the 
human body [1]. The degradation of these joints is being common in elderly people 
[2]. Osteoarthritis is the most common knee joint complication caused by articular 
cartilage degeneration. According to the WHO statics, symptomatic osteoarthritis 
affects 9.6% of males and 18.0% of women in the world [2]. In case of severe knee 
complications, the patient needs to go for a knee replacement, which is an invasive 
technique that includes the removal of dented and worn out surface of knee joint [2]. In 
the knee replacement technique, a surgeon has to remove and replace the damaged and 
worn out part with components made up of plastic and metals. This procedure sounds 
expensive and complex too. Therefore, an easier and more economical approach is 
required for the timely detection of knee joint abnormalities. Various traditional 
techniques like computer tomography (CT), X-ray imaging, and magnetic resonance 
imaging (MRI) are available for the screening of knee-related abnormalities, but these 
traditional techniques are unable to identify the minute changes that come in the early 
stage [3]. Computer-aided diagnosis is the need of the hours [4, 5]. Vibroarthrography 
(VAG) is the most emerging tool to diagnose various knee-related disorders [3]. VAG 
signals are generated from the movements of the femur and tibia and can capture the 
knee joint abnormalities in a better way [6]. VAG signals are generated around the 
mid-patella region and measured using an accelerometer when the leg is moving. 
The nature of VAG signal is nonlinear and non-stationary, and cannot be examined 
with the help of a naive signal processing technique. Some of the salient features of 
the VAG signal are listed below: [7]. 

1. VAG signals are non-stationary in nature because the quality of joint surfaces in 
contact may vary from one angular position (point in time) to a next during joint 
articulation. 

2. Normal and aberrant VAG signals have varied amplitude and frequency-based 
properties. 

3. The friction between the femoral condyle and the layer above the patella causes 
an aggregation of many vibrations as the leg moves, the potential of the VAG 
signal becoming a multi-component signal is also high. 

4. The noise may be introduced to the signal during data recording, a priori 
assessment of the signal-to-noise ratio (SNR) of VAG signals is difficult. 

In the literature, various researchers proposed different computer-aided discrimi-
nation systems to distinguish between normal and knee-joint affected VAG signals. 
For example, authors in [8] utilized the wavelet decomposition method to decompose 
VAG signals into several wavelet coefficients. For the categorization of normal and 
pathological VAG signals, Ranggayyan and Wu [9] derived several entropy-based 
characteristics. In another study, the same group [10] extracted fractal dimension-
based features from the VAG signals. Time–frequency distribution (TFD) of input 
VAG signal has been scrutinized using double-density dual-tree complex wavelet 
transform (DTCWT) by Sharma et al. [2]. The short-time fourier transform (STFT) 
approach has been employed to fetch statistical characteristic features from VAG 
signals by Mrunal et al. [11]. For reliable identification of knee joint pathologies
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with minimal time, a new approach is introduced in [12]. TQWT has been intro-
duced to deconstruct the VAG signals into sub-band signals, and entropy informa-
tion is retrieved from each sub-band by Mascarenhas et al. in [13]. Various other 
machine learning-based approaches are described in the literature. The selection 
of more appropriate features for a machine learning classifier is difficult and time-
consuming. Therefore, this study presents automated discrimination of normal and 
knee joint affected VAG signals by utilizing empirical mode decomposition (EMD) 
and Kruskal–Wallis (KW) test. EMD is applied to disintegrate VAG signals into 
several intrinsic mode functions (IMFs). Twelve different nonlinear, entropy, and 
shape-based features are elicited from the IMFs. Kruskal–Wallis (K–W) test is used 
to discriminate the best suitable features to identify normal and knee joint affected 
VAG signals. This remainder of this article is assemble as follows: Sect. 2 presents 
the information about the dataset, decomposition technique, and features extraction. 
Sect. 3 contains the findings of this study along with a brief discussion. Sect. 4 depicts 
the conclusion of the work. 

2 Material and Method 

The layered diagram of the presented system is shown in Fig. 1. 

Fig. 1 Layered diagram of 
the presented system
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Fig. 2 Typical VAG signals 
of a abnormal b Normal 
subject 

2.1 Dataset 

A publicly available VAG data set is used to validate this study. The data set is 
obtained from 51 normal and 38 abnormal volunteers [14]. To record the VAG signal 
each volunteer was said to sit on a bench, and an accelerometer setup was utilized to 
acquire VAG signals. The volunteers were told to swing their leg from extension to 
flexion and back to an extension, which means from zero degrees to one hundred forty 
degrees and back to zero degrees again, such that the movement process completes 
in 4 sec  [15]. The dataset is recorded with a sampling frequency of 2 kHz. Before 
digitizing the signal, it was filtered and amplified. This process had been done in the 
laboratory of the University of Calgary, Canada. The details of the data can be found 
in [14]. VAG signals of normal and unhealthy subjects are represented in Fig. 2. 

2.2 Emperical Mode Decomposition (EMD) 

EMD is a data-dependable and adaptable approach. The EMD method does not 
involve any prerequisites about the signal’s stationarity or linearity. The essence 
of the EMD is to decompose nonlinear and non-stationary VAG signals z(t) into  
various intrinsic mode functions (IMFs) [16, 17]. Each IMFs must have to satisfy the 
following criteria: (1) the total of maxima (max) or minima (min) and the number 
of zero crossings should be the same or differ by no more than one. (2) the average 
scores of the envelope formed by the local maxima and the envelope provided by the 
local minima is zero at any moment in time. 

The EMD procedure for an input VAG signal z(t) can be summed up as follows 
[16]: 

1. Identify max and min of the input VAG signal z(t).
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2. With the help of cubic line interpolation connect the local max and localmin to 
obtain upper and lower envelope Vu(t) and Vl(t), respectively. 

3. Estimate the local mean as me(t) 

m(t) = [Vu(t) + Vl (t)]/2 (1)  

4. Extracts the details. 

h1(t) = z(t) − me(t) (2) 

5. Decide whether h1(t) belongs to IMF, with the help of previously discussed two 
conditions. 

6. Repeat the process from 1 to 4 until the first IMF is obtained. 

As first IMF is extracted, interpret p1(t) = h1(t), is the lower temporal scale in 
z(t). To obtain the remaining IMFs, produce residue r1(t) = z(t) − p1(t), which is 
processed as a new signal. Repeat all the steps over the new signal until the final 
residue is obtained in the form of nearly constant or from which no more IMFs 
can be evoked. The input VAG signal z(t) can be symbolize as at the end of the 
decomposition. 

Z (t) = 
N	∑

n=1 

pn(t) + resN (t) (3) 

where N represents the total generated IMFs, pn(t) represents the nth IMF, and resN (t) 
denotes the residue term. Each IMF obtained from Eq. (3) is posses of consequential 
local frequency, different IMFs never possess the same frequency at the same time. 
The IMFs obtained from decomposition of normal and problematic VAG signals are 
shown in Fig. 3.

2.3 Features Extraction 

To analyze the graphical variation of each IMF, and to discriminate between normal 
and abnormal VAG signals. We have extracted twelve different features, defined as 
follows [18, 19]: 

– Mean (M): The mean is the average value of dataset. Computed as 

Mean = 1 
n

	∑
xi (4) 

– Root Mean Square (RMS): It is also known as quadratic mean and is termed as 
the square root of the mean square. It is expressed as,
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RMS = 
||||1 

n 

n	∑

i=1 

x2 i (5) 

– Standard Deviation (σ ): It is the estimation of variations of a set values. Higher 
the value of σ indicates values spread over a wider range and value close to mean 
for lower value of σ . This is expressed as, 

σ =
|||| n 

n − 1 × 
n	∑

i=1 

(xi − xm)2 (6) 

– Shanon Entropy (ShanEn): It is the average amount of information in x. It is  
given as 

HShanEn(x) = −  
N−1	∑

i=1 

X (pi (x))2(log2(pi(x)))2 (7) 

– Log Energy Entropy (LogEn): The expression of LogEn is given as, 

HLogEn(x) = −  
N−1	∑

i=1 

X (log2(pi (x)))2 (8) 

The more regularity in the VAG signal will result in a lesser value of entropy. 
– Threshold Entropy (TE): Entropy thresholding is a method of selecting an 

optimal threshold value for a signal by selecting the data intensity from a signal 
histogram that has the highest entropy of the total signal. 

– Sure Entropy (SE): SE is depends on the Stein’s unbiased risk estimator. It’s a 
technique for measuring aspects of information in order to accurately describe a 
signal. 

– Norm Entropy (NE): It is evaluated as

	∑N 
i, j=1|t(i, j )|p 

N 
(9) 

where p indicates the power and it must reside in the range of 1 to 2. 
– Permutation Entropy (PE): Permutation entropy is an adaptable time series 

technique that gives a quantifiable quantification of the complexity of a dynamic 
system. 

– Skewness (Sk): The skewness deals with the symmetry of distribution heaviness 
of the distribution of the tail. Expression for the evaluation of Sk is given by 

Sk = (Mean − Mode)/Standard Deviation (10)
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– Kurtosis (K): Kurtosis gives facts about the flatness of the curve. The expression 
of kurtosis is given as 

β2 = μ4 

μ2 
2 

(11) 

where β2 belongs to Kurtosis, μ4 belongs to the fourth central moment, and μ2 

belongs to the second central moment of distribution. 
– Simple squared integral (SSI): It expresses the energy contain of VAG signals. 

It is given as, 

SSI = 
i=N−1	∑

i=1 

x2 i (12) 

2.4 Kruskal–Walis (K–W) Test 

The K-W test is a more generalized form of the two-class Wilcoxon rank test and 
one-way analysis of variance (ANOVA) test. ANOVA is a parametric test that can 
be applied to a normally distributed continuous variable. Whereas, KW is a non-
parametric statistical test, that compares the contretemps between two or more distin-
guishable sampled classes on a single, infrequently dispersed continuous variable. 
K-W test is a generalized form of a two-class Wilcoxon rank test and a one-way 
analysis of variance (ANOVA) test [19, 20]. 

3 Results and Discussion 

The selection of most suitable feature to discriminate between normal and abnormal 
VAG signals is a time-consuming task. Therefore, in this work input VAG signal 
is disintegrated into several IMFs by applying EMD algorithm. Twelve different 
entropy-based and statistical features are evaluated from each IMF. KW test is used 
to discriminate the most suitable feature. The probabilistic values for entropy-based 
features are depicted in Table 1. It is obvious from the Table 1, all entropy-based 
features are suitable for IMF-1. NE, TE, and SrE are suitable for IMF-2. Only TE is 
suitable for IMF-3. Only PE is suitable for IMF-4. PE and TE are suitable for IMF-5. 
No any entropy-based features are appropriate for the rest of the IMFs.

The probabilistic values for statistical-based features are mentioned in Table 2. It  
can be noted from Table 2, RMS, STD, SSI, and IVAG are suitable for IMF-1.

RMS, STD, and IVAG are suitable for IMF-2. Mean is suitable for IMF-8. No any 
statistical-based features are suitable for the rest of the IMFs. This work has been
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Table 1 Probabilistic values for entropy-based features 

Imf No ShanEn LogEn NE TE PE SrE 

Imf-1 0.0065 2 × 10−5 0.0002 0.0002 0.0449 1.28 × 10−5 

Imf-2 0.0573 0.0472 0.0377 0.0001 0.7553 0.0407 

Imf-3 0.868 0.2531 0.7084 0.0039 0.4001 0.2531 

Imf-4 0.4298 0.5061 0.3136 0.4703 0.0018 0.3943 

Imf-5 0.4671 0.2707 0.3237 0.0428 0.0016 0.1735 

Imf-6 0.9255 0.8926 0.9503 0.3448 0.2619 0.9255 

Imf-7 0.7711 0.868 0.9669 0.8762 0.7474 0.9388 

Imf-8 0.9751 0.5962 0.8031 0.589 0.7632 0.8926

Table 2 Probabilistic values for statistical-based features 

Imf No M RMS STD Sk K SSI 

Imf-1 0.28 0.0034 0.0034 0.4735 0.1941 0.004 

Imf-2 0.5962 0.0496 0.0496 0.6327 0.3829 0.0521 

Imf-3 0.1096 0.0981 0.0891 0.693 0.2619 0.9917 

Imf-4 0.4059 0.4059 0.4059 0.5061 0.1836 0.3885 

Imf-5 0.1941 0.4545 0.4482 0.0097 0.0865 0.442 

Imf-6 0.6551 0.9586 0.9669 0.4735 0.6035 0.9751 

Imf-7 0.3186 0.8598 0.8762 0.7791 0.6254 0.8031 

Imf-8 0.0276 0.8597 0.8598 0.884 0.1487 0.868

simulated on the system having Intel processor, 16 GB RAM, and 1 TB hard drive, 
with the help of MATLAB software. 

4 Conclusion 

In this study, an application of EMD is explored to disintegrate between knee joint 
affected and healthy control VAG signals. EMD is a non-stationary signal processing 
technique that has been used for decomposing VAG signals into multiple IMFs. 
Twelve different features are elicited from each IMF. In order to find the most rele-
vant features, a non-parametric K-W test is applied. It is concluded from this work 
entropy-based features are most suitable to distinguish between normal and knee 
joint affected VAG signals. The results suggested EMD and KW test-based algo-
rithm can be utilized to design an automated screening system for identifying knee 
joint diseases in a clinic. In the future, a suitable machine learning algorithm will be 
employed for automated classification of VAG signals.
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