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Preface 

The intermittent nature of renewable energy generation acts as a barrier to renewable 
energy implementation; therefore, renewable energy generation and load prediction 
become a very interesting area of research. This book gathers a wide range of research 
on techniques for renewable energy generation and load forecasting. This book not 
only covers the generation forecasting techniques but also has a separate section 
for load forecasting. It includes systematic elaboration of the concept of intelligent 
techniques for renewable energy and load forecasting. The book reflects the state 
of the art in prediction techniques along with the worldwide perspective and future 
trends in forecasting. It covers theory, algorithms, simulations, error, and uncertainty 
analysis. It offers a valuable resource for students and researchers working in the 
fields of sustainable energy generation and electrical distribution network and predic-
tion techniques. The state-of-the-art techniques in the areas like hybrid techniques, 
machine learning, artificial intelligence, etc., are included in an effort to present 
recent innovations in the prediction techniques for renewable energy generation and 
load forecasting. The research work shared helps the researchers working in the field 
of renewable energy, load forecasting, generation forecasting, power engineering, 
and prediction techniques and learns the technical analysis of the same. 

The book covers two sections: renewable energy generation forecasting and 
load forecasting. In the first chapter “Introduction to Renewable Energy Predic-
tion Methods” deals with the introduction to renewable energy generation predic-
tion. It discusses the renewable energy status across the world and possible ways to 
achieve zero-carbon energy systems and intelligent techniques to achieve efficient 
generation forecasting. In the second chapter “Solar Power Forecasting in Photo-
voltaic Modules Using Machine Learning” includes solar power forecasting using 
ML techniques. It covers different models for the solar power forecasting. In the third 
chapter “Hybrid Techniques for Renewable Energy Prediction” covers the hybrid 
techniques for renewable energy prediction. It includes different hybrid methods for 
hydropower prediction, wind power prediction, and solar power prediction. Deep 
learning technique for renewable energy prediction is discussed in the fourth chapter 
“A Deep Learning-Based Islanding Detection Approach by Considering the Load 
Demand of DGs Under Different Grid Conditions”. It includes deep learning-based
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vi Preface

islanding detection technique. A comparison of PV power estimation methods has 
been discussed in the fifth chapter “Comparison of PV Power Production Estimation 
Methods Under Non-homogeneous Temperature Distribution for CPVT Systems”. 
In the sixth chapter “Renewable Energy Predictions: Worldwide Research Trends 
and Future Perspective” includes worldwide research trends and future perspective 
for renewable energy generation. In the seventh chapter “Models of Load Fore-
casting” provides an overview and elaborates on the concept of load forecasting and 
different models and state-of-the-art techniques for load forecasting. It also discusses 
identified benefits and challenges/barriers to their further development. It includes 
the operational issues and key challenges related to load forecasting integrated with 
local grid. In the eighth chapter “Load Forecasting Using Different Techniques”, the 
future load is predicted with the help of artificial intelligence techniques, namely 
fuzzy logic, ANN, and ANFIS. All three methods are used for the data set consid-
ered, and the results are analyzed. In the ninth chapter “Time Load Forecasting: 
A Smarter Expertise Through Modern Methods” discusses time load forecasting. It 
provides an extensive review on the classical methods as well as modern techniques 
for load forecasting. In the tenth chapter “Deep Learning Techniques for Load Fore-
casting” explains the deep learning techniques for load forecasting from a range of 
perspectives. This chapter includes the load forecasting solutions that can address 
the key challenges. This work shared helps the readers in improving their knowl-
edge in the field of power engineering and state-of-the-art forecasting techniques and 
learns their technical analysis. Each chapter provides a comprehensive review and 
concludes with a case study for better understanding of the reader. By following the 
methods and applications laid out in this book, one can develop the necessary skills 
and expertise to help have a rewarding career as a researcher. 

New Delhi, India 
New Delhi, India 
Lyngby, Denmark 

Anuradha Tomar 
Prerna Gaur 
Xiaolong Jin
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Introduction to Renewable Energy 
Prediction Methods 

Saqib Yousuf, Junaid Hussain Lanker, Insha, Zarka Mirza, Neeraj Gupta, 
Ravi Bhushan, and Anuradha Tomar 

Abstract Renewable energy prediction began in the early years of the twenty-first 
century. As there is so much uncertainty in forecasting the renewable energy, several 
different approaches have been developed. The forecasting methodologies are very 
difficult to label because each model predicts a different set of installed and gen-
eration capabilities, cost of production, demand and supply, etc. There are several 
techniques used to predict renewable energy, including assessing the current situa-
tion or projecting the future while concentrating on a particular target of interest. 
Prediction techniques for renewable energy provide valuable information about the 
potential changes in the energy that will be generated in the near future. This chapter 
provides the various artificial intelligence techniques used for more significant pre-
diction of renewable energy, and also their application is discussed. This includes 
AI for wind prediction methods, AI for solar prediction methods, and other energy 
prediction models such as time series models, unit root test and co-integration mod-
els, ANN models, and expert systems. These techniques are area and time dependent 
based on the idea that weather variables like wind direction and speed, temperature, 
relative humidity and solar irradiance, etc., tend to represent strong relation among 
areas close to one another. Accurate prediction promotes the significance of renew-
able energy by way of improving their reliability and making them economically 
feasible. 
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1 Introduction 

1.1 Renewable Energy Status of the World 

Renewable energy has the potential to make a significant contribution to global energy 
security and carbon reduction. Renewable energy can help to reduce energy imports 
and usage of fossil fuels. Since fossil fuels are constantly depleting, they are becom-
ing increasingly expensive depending on market prices. To overcome these concerns, 
renewable energy resources will be used to replace traditional energy sources. Renew-
able energy comes from natural resources that can be replenished in under a human 
lifetime without depleting the planet’s resources. Sunlight, wind, rain, tides, waves, 
biomass, and thermal energy stored in the Earth’s crust are examples of resources 
that are abundantly available worldwide and it cannot be damaged. Furthermore, 
their impact on the climate or the environment is negligible [1]. Over the last decade, 
renewable energy penetration into the power grid has greatly expanded. However, in 
2020, a minor decline has been observed due to COVID-19 pandemic. The global 
demand for power is increased by nearly 6% and 4% in 2021 and 2022, respectively. 
In absolute terms, it was the highest annual rise ever (over 1500 TW). A quick eco-
nomic recovery, along with more intense weather conditions than in 2020, raised the 
electricity demand worldwide [2]. 

The global electricity energy contribution is depicted in Fig. 1. Figure exhibits that 
low carbon sources (36.7%) contribute to about more than one-third of the global 
electricity and the rest (63.3%) provided by fossil fuels. Under the current climate 
initiatives, decarbonization of the electrical industry is a key component. As per the 
Paris Agreement, one of the essential indicators of climate policy is each country’s 
nationally determined contribution (NDC). Emissions of carbon dioxide from coal 
fired power plants reached a new high of 10.5 gigatonnes (Gt) in 2021 with rise of 0.8 

Fig. 1 Global electricity energy contribution
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Fig. 2 Share of installed mini grids by technology 

Gt as compared in 2020. Despite a surge in coal use, renewable energy and nuclear 
power generated more global electricity in 2021 than coal.By 2050, renewables are 
expected to account for 80–90% of worldwide electricity generation. Renewable 
energy’s share of the power mix is expected to double in the next 15 years. Due to 
falling prices, solar and onshore wind are forecasted to account for the majority of 
renewable energy resources (RES) growth in 2050, accounting for 43% and 26% of 
total generation, respectively [3, 4]. 

Figure 2 indicates the share of installed mini grids by technology worldwide. It is 
observed that the renewable-based mini grids are increasingly being recognized as 
a significant booster of energy access. In March 2020, 87% of the 5,544 mini grids 
operating in energy access set-ups (with a total capacity of 2.37 GW) were renewable 
sources. Solar PV has become the fastest rising mini grid technology, with 55% of 
mini grids consolidated in 2019, up from only 10% in 2009 [3]. 

1.2 Artificial Intelligence in Power System 

A power system is a complex network of generation, distribution, and transmis-
sion lines that are all interrelated. The primary purpose of power system operation 
and control is to provide customers with high-quality electricity at an affordable 
price, while also ensuring the system’s stability and reliability. As the electricity 
system continues to expand and incorporate new technology, it has evolved into a 
complicated unit. There are uncertainties in real power flow due to continual load 
variation and increased penetration of renewable resources. Frequency fluctuations 
in the power system are caused by any imbalance between generated power and load 
demand, or by a mismatch in scheduled power interchange between areas. Artificial 
intelligence (AI) is defined as the intelligence demonstrated by machines and soft-
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Fig. 3 Artificial intelligence in power system 

ware, such as robots and computer programs. The term refers to a project aimed at 
building systems with human-like cognitive processes and traits, such as the ability 
to think, reason, find meaning, generalize, differentiate, learn from past experience, 
and correct mistakes. Artificial intelligence is the intelligence of a computer that can 
successfully complete any intellectual task that a human being can. Artificial intelli-
gence helps in the mitigation of frequency deviations. Power systems are complicated 
and nonlinear, with variable loading and system characteristics that are dependent 
on operating points [5]. Different controlling strategies, such as conventional con-
trollers, have been developed; however due to the presence of nonlinear components, 
they do not produce satisfactory results. To address the problem of nonlinearity, a few 
artificial intelligence techniques as shown in Fig. 3 such as particle swarm optimiza-
tion (PSO), grey wolf optimizer (GWO), genetic algorithm (GA), artificial neural 
network (ANN), and fuzzy logic controller (FLC) have been used to determine pro-
portional, integral, and derivative values [6]. These strategies can be used to optimize 
nonlinear PID controller parameters, resulting in enhanced system performance in 
terms of settling time, overshoot, and undershoot [7]. 

The scale of the power system will continue to grow in future, as will its complex-
ity, which will bring some more difficult factors to deal with, where some artificial 
intelligence currently has their own set of advantages, disadvantages, and limitations. 
Artificial intelligence will improve in terms of maturity and ease of use, allowing it
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to better tackle problems in power systems. In a nutshell, combining a number of 
technologies with artificial intelligence will be a prominent trend in future develop-
ment. 

1.3 AI for Wind Energy Prediction 

With the increase in the consumption of energy and due to depletion of available 
conventional energy resources, it has become imperative to harness the renewable 
sources of energy, one among which is wind energy. As per the precursory statis-
tics published by World Wind Energy Association (WWEA), the capacity of wind 
turbines has reached a record of 975 GW in 2021 in the world market. One of the 
challenges to integrate the wind energy into the grid is the uncertainty, i.e. generation 
is intermittent and uncontrollable. Therefore, to predict future generation from wind 
is important so as to meet the demand as generation varies. The factors to be consid-
ered for a desired output from wind energy include climate change, wind reduction, 
fluctuating weather events, wake turbulence, etc. The evolution of global cumula-
tive and annual installed wind power capacity(GW) during 2001–2021 is depicted 
in Fig. 4. 

Table 1 shows the development of cumulative and annual installed wind power 
capacity in India over the years. The cumulative installed wind power capacity 
increased from 1.46 GW in the year 2001 to 40.07 GW in the year 2022. Also 
the annual installed wind power capacity increased from the year 2001, but there is 
a minor decline in the year 2020 because of COVID-19 pandemic. 

Fig. 4 Development of global cumulative and annual installed wind power capacity during 2001– 
2021
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Table 1 Development of cumulative and annual installed wind power capacity (GW) in India 
during 2001–2021 

Year India cumulative (GW) India annual (GW) 

2001 1.46 0.289 

2002 1.7 0.246 

2003 2.13 0.423 

2004 3 0.875 

2005 4.43 1.43 

2006 6.27 1.84 

2007 7.85 1.575 

2008 9.66 1.81 

2009 10.93 1.271 

2010 13.07 2.139 

2011 16.08 3.019 

2012 18.42 2.337 

2013 20.15 1.729 

2014 22.47 2.315 

2015 25.09 2.623 

2016 28.7 3.612 

2017 32.85 4.15 

2018 35.13 2.28 

2019 37.51 2.38 

2020 38.63 1.12 

2021 40.07 1.44 

Technologies like artificial intelligence and machine learning are turning out to 
be effective way to predict the wind energy and can predict the wind speed in a short 
period of time. 

Artificial intelligence is a branch of computer science in which intelligent devices 
or artefacts are created and educated to behave like humans by obeying particular 
directions in computer programming systems. It handles huge input data and can build 
effective representations. AI-based forecasting models speed up decision-making, 
data mining, and clustering challenges. Furthermore, they can perform difficult tasks 
in a reasonable amount of time and without being explicitly coded [8]. Depending 
upon the geographical conditions, viz. wind speed, wind direction, air pressure etc., 
the AI-based wind prediction basic model developed is shown in Fig. 5. 

Time series is analysing data collected over an interval of time and uses historical 
information to produce mathematical model, estimating the values and validating 
simulation results. A set of observation is taken at set forth time preferably at same 
intervals. The future values are based on the previously observed values, and the data 
is analysed using artificial intelligence. They may, however, fail to offer appropriate 
prediction results, particularly when the time series happen to be non-stationary [9].
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Fig. 5 AI-based wind prediction model 

Deep learning program works as a function based on MLP training algorithm. 
Data collection is done on hourly basis during a period of 24 h taking factors like 
wind direction, air pressure, and the speed of wind into consideration. To produce 
the expected output, the data is fed to algorithm for its training purpose [10]. 

Artificial neural network-based AI plays a vital role in wind farm optimization and 
works like a human brain consisting of a big network of interconnected neurons, and 
this structure is replicated to get the desired results as of brain. ANN can be trained 
to work in turbulent conditions, and the network can be used for accurate results. 
Wind farm can be considered as a number of clusters with each group of turbines 
having identical behaviour for specific leading weather regimes. In [11], conjugate 
gradient descent has been used to optimize the artificial neural network model to 
develop conjugate gradient neural network (CGNN). While doing experiments on 
various scale data sets, it has been observed that the performance of CGNN increases 
significantly, with average iterations dropping by over 90% without compromising 
the accuracy of prediction. Long-term and mid-term power predictions of wind output 
are both well served by CGNN. The CGNN uses significantly less training time 
than the steepest gradient neural network (SGNN), racial basis function (RBF), and 
extreme learning machine (ELM). 

Hybrid methods: Various methods of AI can be combined for improving overall 
efficiency and accuracy. Multiple algorithms are used to develop diverse predictive 
models [9]. When compared to single forecasting modelling methodologies, hybrid 
forecasting, such as autoregressive integrated moving average (ARIMA) and artificial 
neural network, is seen to be a potentially beneficial alternative [12].
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In order to enhance wind power forecasting, a two-stage technique is also used. 
After decomposing wind time series with wavelet decomposition, an adaptive wavelet 
neural network (AWNN) technique is utilized to predict wind speed by regressing 
each decomposed signal hours ahead of time. A feed-forward neural network is then 
used to construct a mapping between wind speed and wind power output. The latter 
permits expected wind speed to be converted into predicted wind power. The AWNN 
technique provides the best approximation and training capacity when compared to 
a feed-forward neural network. 

In [10], Bayesian optimization (BO) is used to fine-tune hyper-parameters of 
Gaussian process regression (GPR), support vector regression (SVR) with multiple 
kernels, and ensemble learning (ES) models (i.e. boosted trees and bagged trees) to 
improve predicting performance. In addition to this, in order to improve the forecast-
ing performance of the analysed models, dynamic information has been added into 
their development. 

The study uses the input as wind speed data and the output as wind power data, 
both obtained at ten-minute intervals over an eleven-month period. In order to pre-
dict the wind power, artificial intelligence approaches such as artificial neural net-
works and genetic algorithms are applied. In artificial neural networks, the genetic 
algorithm (GA) and back propagation algorithm (BPA) are utilized as learning algo-
rithms. In order to obtain the finest architecture, several parameters such as learning 
rate, momentum coefficient and epochs are changed in back propagation algorithm. 
Likewise in the genetic algorithm learning approach, the crossover proportion and 
elite count are changed together along with various variables to pick the optimal 
model. 

1.4 Energy Prediction Models 

Techniques for forecasting can be used to augment decision-maker’s management 
and common sense abilities. The most effective forecaster can combine a skillful 
combination of quantitative forecasting approaches with sound judgement avoiding 
total reliance of one or the other. A capital-intensive industry delivers energy with a 
significant lead time. The goal was to develop and make accessible to government 
agencies simple prediction models that catch the most important characteristics of 
data patterns that can be simply comprehended, applied, and have significant output 
potential. The various energy prediction models are as follows: 

• Time series models 
• Unit root test and co-integration models 
• Regression models 
• Genetic algorithm/fuzzy logic 
• Econometric models 
• Grey prediction 
• Decomposition models
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• Input–output (IPO) models 
• ARIMA models 
• ANN models and expert systems. 

1.4.1 Time Series Models 

The time series models use trend analysis of time series to extrapolate energy demands 
for the future. Time series means an ordered series of values for a variable at equal 
intervals of time. Traditional energy demand forecasting methods define correla-
tions between observable factors and the desired parameter. Average temperature, 
total count of clients, days with high temperatures, total units of residence, price of 
fuels, population, per capital income of a person, manufacturing value added, index 
of various indicators like cost of labour in commercial activities, average price of 
electricity, and per cent rural population were all factored into these models. India’s 
electricity demand is projected using time series models [13]. Time series analysis 
was utilized by Himanshu and Lester [14] to forecast electricity demand in Sri Lanka. 

1.4.2 Unit Root Test and Co-integration Models 

Vector error correction method (VECM) and co-integration approach are frequently 
used as the key research tools to explore the long-term relation between macroe-
conomic factors like refined petroleum, crude oil, liquefied petroleum gas, etc., the 
majority of which do not remain stationary. These two strategies were chosen for 
two reasons, for starters the traditional econometric techniques are plagued by false 
regression issues and the other reason being that the majority of economic variables 
utilized in the equation for energy import demand like industrial output, price, etc., 
are likely to be endogenous, hence predicting energy demand with a single equation 
may result in simultaneous bias leading to inaccurate conclusions. With the help 
of the VECM, both difficulties can be solved. China’s energy imports are quickly 
increasing due to its large energy consumption, and the energy import demands of 
China have been forecasted using co-integration and vector error correction (VEC) 
models [15]. 

1.4.3 Regression Models 

Energy prediction is crucial in the development of energy and environmental poli-
cies. Both short-term and long-term electric load forecasts are accomplished using 
regression models. In these models, the measure of connection between the average 
value of one variable (e.g. output) and the value that corresponds to other variables is 
used (e.g. cost and time). Economic aspects have been studied in relation to annual 
power consumption in North Cyprus using regression [16].
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1.4.4 Genetic Algorithm/Fuzzy Logic 

In recent years, soft computing technologies have been applied in energy demand 
forecasting. GA is the method of optimization inspired by Darwinian natural selection 
and evolutionary genetics that uses repeated search procedures. Fuzzy logic is a kind 
of variable processing that allows many true values to be processed utilizing the same 
variable. Fuzzy logic was utilized to forecast short-term electric power demand. The 
fuzzy logic methodology was used to predict Turkey’s short-term annual power 
demand [17]. 

1.4.5 Econometric Models 

Energy consumption is linked to other macroeconomic issues in econometric models. 
Econometrics is the quantitative application of mathematical and statistical models to 
data in order to develop theories or test hypothesis in economics and to forecast future 
trends based on historical data. Total energy demand for the province of Quebec 
was computed as a function of previous year’s energy price, real income, energy 
consumption, and heating day [18]. 

1.4.6 Grey Prediction 

Due to its ease of use and capacity to identify unknown systems with only a few 
data points, grey prediction has gained popularity in recent years. Energy demand 
forecasting is a grey system problem as a few characteristics like population, GDP, 
and income have an impact on energy demand, although the exact nature of that 
impact is unknown. Grey prediction is based on a theoretical examination of the 
original data and the production of grey models of the data in order to uncover and 
regulate the development laws of the system of interest so that scientific quantitative 
predictions about the system’s future can be made. A grey prediction model with a 
genetic algorithm was used to forecast China’s energy consumption [19]. 

1.4.7 Decomposition Models 

Two typical methodologies for decomposition are energy intensity (EI) and energy 
consumption (EC). Structural change in production, change in sectoral energy inten-
sities, and change in aggregate production level are the main defined effects that 
impact the EC approach, but only the first two effects are covered in the energy inten-
sity approach. Its research covers period vs time series decomposition, the importance 
of different levels of sector disaggregation, result interpretation, and method selec-
tion. In 15 European Union nations, decomposition approach has been utilized to 
estimate aggregate energy usage [20].
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1.4.8 Input–Output (IPO) Models 

IPO framework is a functional graph that represents the processing tasks, outputs and 
inputs which are required to convert inputs into outputs. During the procedure, any 
storage that takes place is occasionally included in the model. The inputs indicate 
the flow of materials and data entering the process from outside sources. An input– 
output model was integrated with a growth model to explore the effects of economic 
expansion on energy usage in Brazil [21]. 

1.4.9 ARIMA Models 

In energy demand forecasting, autoregressive integrated moving average (ARIMA) 
models are often utilized. Autoregression basically refers to a statistical model that 
predicts future values based on past values. It is a form of statistical analysis that 
employs time series data to better comprehend the data or forecast future trends. 
Regression models that used the seasonal latent variables generated the best results. 
It employed three models to estimate power demand: regression model, ARIMA, 
and seasonal ARIMA [22]. 

1.4.10 ANN Models and Expert Systems 

Previously, neural networks and expert systems were extensively utilized to forecast 
electrical load. They have also been used to anticipate long-term energy demands 
using macroeconomic data in recent years. An expert system is AI software that 
solves problems that would ordinarily need a human expert utilizing knowledge 
stored in a knowledge base preserving the expertise of a human expert. A type of 
neural network is artificial neural networks (ANN), and it is essentially a computer 
simulation. It is based on the structures and functions of biological brain networks. 
Neural network changes are dependent on input and output because the structure of 
the ANN is modified by information flow [23]. 

1.5 AI for Solar Prediction 

Carbon emissions from monetary mobility are continuing to rise, with India now 
ranking third among individual countries in terms of carbon emissions. Renewable 
energy is the way forward, and policy and technical solutions should be used to 
eliminate the barriers to its collection. The fundamental issue with most renewable 
energy supplies is that they are subject to the whims and vagaries of nature, making 
them a volatile and unpredictable source of energy. The system’s operation is defined 
and determined by predicting the power from these variable power sources. This 
chapter presents a PV generation forecast model based on ANN and ANFIS.
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Energy is essential to a country’s monetary success and human prosperity since it 
allows living things to evolve, expand, and exist. Energy has evolved into a critical 
product, and any uncertainty about its source can stymie economic activities, par-
ticularly in emerging countries. In this regard, energy security is critical for India’s 
economic success as well as its social progress goals of poverty reduction, job cre-
ation, and achieving the Millennium Development Goals [24]. Due to its present 
level of energy consumption, India is increasingly shifting its focus to sources of 
renewable energy. The Jawaharlal Nehru National Solar Mission (JNNSM), India’s 
solar enterprise, was inaugurated to much fanfare. People who submit requests and 
show interest in the part will be eligible for a number of incentives from the gov-
ernment. The solar photovoltaic market in India grew by 75% in 2010 and half in 
2011. India might become a major player in the global solar market with the correct 
policy support from the Indian government. Among the mission’s main goals is to 
make India the world leader in solar energy generation by 2022, with a deployment 
target of 20 GW. 

Solar power is abundant in India, its average annual temperature varies from 250 to 
27.50 ◦C because its placement between the Cancer Tropic and the Equator India, as 
a tropical country, has a huge potential for PV power generation. India has a lot of PV 
power generation potential because it is a tropical country. India has an average annual 
solar radiation intensity of 200 MW/km2 and 250–300 bright days [25]. India receives 
5000 trillion kWh per year, according to government estimates, with 4–7 kWh per 
square metre every day for the majority of the country. The International Electricity 
Agency estimates that India would require 327 GW of energy generation capacity by 
2020. Energy departments need to be able to predict the production of these renewable 
sources since it allows them to change dispatching arrangements in real time, boost 
reliability, and minimize generation system spinning reserve capacity. Solar power 
forecasting has received a lot of attention. Physical and statistical methods are the 
two types of short-term power forecasting methods for solar power plants. One of 
the physical strategies is to develop a physical equation for calculating solar power 
production methods and system attributes, as well as expected meteorological data. 
Statistical approaches aim to summarize intrinsic laws in order to forecast solar 
power using historical data. Although each of the above systems has its own set of 
advantages such as non-stationary state characteristics, the output of solar power has 
a significant impact on their characteristics and convergence [26]. Due to the Earth’s 
rotation and revolution, solar plant output power data has a one-day periodicity from 
the time when solar irradiance at a place on the Earth’s surface has periodicity and 
non-stationary features. The output power is presently increasing before noon and 
decreasing later. 

If an appropriate solution to minimize non-stationary state features of solar output 
power is not applied, traditional solar power prediction methods cannot ensure the 
accuracy of projected outcomes or even the system’s convergence. Artificial intelli-
gence algorithms have been lauded as a viable method of forecasting solar energy 
production. Artificial intelligence-based systems are adaptive by nature and can han-
dle nonlinearity. They do not require any prior modelling knowledge, and the working
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algorithms automatically classify the input data and match it to the proper output 
values. They are ‘black box’ gadgets that do not always agree on how to retain data 
regarding model constituents’ physical relationships [26]. 

1.5.1 Determination of Input Variables for the Power Forecasting 
Model 

Accurate data on solar irradiance is usually included in a computation to predict 
expected output power. Weather estimates are intrinsically linked to the forecasting 
of renewable energy generation. A variety of environmental factors must be taken 
into account in order to predict the amount of solar irradiance or power generated, 
including solar irradiance, cloud cover, atmospheric pressure, and temperature, as 
well as PV panel conversion efficiency, installation angles, dust on a PV panel, and 
other random factors. All of these factors have an impact on the output of a PV sys-
tem. As a result, while choosing input variables for a prediction model, deterministic 
elements that are significantly related to power generation should be considered. 
Furthermore, because time series data on PV power generation is substantially auto-
correlated, this historical data should be employed as an input to the forecasting 
model [27]. 

In order to build a precise and consistent output power forecast model, it is required 
to analyse the effect variables for solar power plant output. The worldwide sun 
irradiation measured on the ground has a direct impact on the voltage impact of solar 
cells. A non-deterministic relationship’s direction and quality can be determined 
using the Pearson product-moment correlation coefficient or PPMCC estimation 
ranges from − 1 to + 1, with 1 denoting a positive aggregate relationship, 0 denoting 
no correlation, and 1 denoting a negative aggregate link. Under normal weather 
circumstances, Table 2 shows the Pearson product-moment correlation coefficient 
between PV production and environmental variables. 

Solar irradiance and solar power output have a correlation coefficient greater than 
0.8, indicating that the two variables are highly correlated, whereas solar power 
output and temperature have a correlation coefficient greater than 0.3, indicating 
that the two variables are positively and low-level correlated. A weak but negative 
association is seen by the humidity correlation coefficient. The link between solar 
energy production and wind speed is shaky [28]. 

1.5.2 Description of the Proposed Forecasting System 

ANN and ANFIS forecast models are used to anticipate the power of a solar power 
plant based on past data. Inputs–outputs, network topology, and weighed node con-
nections make up an artificial neural network. The properties of the problem are pre-
cisely reproduced by input features. Network topology selection is another important 
aspect of ANN design. This is done again to expand the number of hidden layers 
and nodes accessible for forecasting and training. The variables that were investi-
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Table 2 Pearson product—moment correlation coefficient 

Weather 
condition 

Irradiance Temperature Humidity Wind speed 

Clear 0.966 0.322 −0.527 −0.229 

Cloudy 0.891 0.441 −0.511 −0.025 

Overcast 0.987 0.409 −0.478 0.125 

Rainy 0.923 0.410 0.039 −0.178 

gated were global horizontal irradiance, ambient temperature, global diffuse irradi-
ance, wind speed precipitation, sunshine duration, air pressure, relative humidity, 
and surface temperature. To establish a new network, the global horizontal irradi-
ance, ambient temperature, global diffuse irradiance, and surface temperature are all 
used. The neural network is fed using the forward back propagation (FBP) technique. 
TRAINLM and LEARNGDM are functions that are used to train and tune the neural 
network. 

The mean square error is used to determine the performance measure. The first 
layer of the neural network includes nine neurons and calculates the output using 
the TANSIG transfer function. The adaptive neuro-fuzzy inference system (ANFIS) 
combines the best features of an ANN with the flexibility of a fuzzy system. The 
parameters of a Sugeno-type fuzzy inference system are identified using a hybrid 
learning technique. The least squares approach and the back propagation gradient 
descent method are used to learn FIS membership function parameters to mimic a 
given training data set. An ANFIS identifies and tunes the parameters and structure 
of a fuzzy inference system (FIS) using neural learning rules. 

The ANFIS possesses a number of characteristics that enable it to excel in a wide 
range of scientific applications. Easy of use, rapid and accurate learning, excellent 
generalization abilities, superior explanation capabilities via fuzzy rules, and the abil-
ity to solve issues using both verbal and mathematical information are all appealing 
features of an ANFIS. The neuro-fuzzy method proposes using a neural network to 
build the fuzzy system, with the goal of defining, adapting, and refining the topol-
ogy and parameters of the linked neuro-fuzzy network to establish the structure and 
parameters of the fuzzy rule base. The network can be viewed as both a linguistically 
meaningful connectionist architecture and an adaptive fuzzy inference system that 
can learn fuzzy rules from input [29]. 

1.5.3 AI for Other Renewable Sources of Prediction 

Biomass Energy 
Organic biomass is manufactured from substances obtained from living organisms. 
Wood, garbage, and plants are the most frequently used biomass substances utilized 
in order to derive energy. These creature’s energy can be changed to useable energy



Introduction to Renewable Energy Prediction Methods 15

in two ways, i.e. indirect and direct. Biomass is burned either directly to provide heat 
which then is turned into electricity or indirectly by converting into biofuel. 

The adaptive neuro-fuzzy inference systems ANN is used to estimate transmem-
brane pressure when biohydrogen is being manufactured in anaerobic membrane 
bioreactor for bio-energy manufacturing in biochemical conversion technology pro-
duction. Dielectric spectroscopy is used for the purpose of determining growth rate 
and also the substrate consumption in the process of fermentation. Chromatography 
Internet of things (IoT) is used for the purpose of monitoring the composition of 
biogas. ANN-GA-based combined strategy is used for controlling and analysing the 
influence of fermentation time. ANN-GA is used to evaluate the effect of the asso-
ciated fermentative variables on the production of bioethanol. ANN-MLR is used 
to asses most favourable design variables of MFCs for improving performance. In 
thermochemical conversion technology for bio-energy production, Taguchi method 
is used to search for the the highest possible yield of sludge pyrolytic oil. Raman 
spectroscopy with deep learning is used for rapid differentiation of porous biocar-
bon. The bio-oil heating and the product distribution estimation of biomass rapid 
pyrolysis are forecasted using an ANN support vector machine (SVM). The syngas 
constitution for downdraft biomass gasification is forecasted using SVM multi-class 
random forests. Multi-gene genetic programming is used to forecast lower heating 
estimate and syngas composition for municipal solid waste gasification. ASPEN plus 
simulation is used for optimization of the process variables and the economic evalu-
ation of manufacturing of butanol. Fuzzy model particle swarm optimization is used 
to make better the gasification rate and conversion of biomass gasification. 

In the strategic decision-making process, it is critical to determine the resources 
of biomass that could be utilized successfully in manufacturing of bio-energy and 
assessing the potential of energy that could be derived from their wastes. For the 
productiveness of the said plan, it is required to take benefit from the past data. Taking 
into consideration this view point, quantitative information regarding land utilized for 
agricultural manufacturing, agricultural production amount, the aggregate of poultry 
and agricultural production yield has been used to solve the problem. 

The aggregate of animal and agricultural wastes that could be acquired in coming 
time has been anticipated utilizing an AI-based prediction method called support 
vector regression (SVR) that takes into consideration the rate of rise in agricultural 
production yield to make long-term judgments. Vapnik and his coworkers proposed 
SVR which is actually a supervised learning approach for forecasting and modelling 
built from the support vector machines algorithm in the year 1996. The approach was 
born because of the need to distinguish between different data kinds. This method 
identifies the end points of two or more sets of data known as support vectors and 
regression line that runs through the middle of these vectors which represent the data 
sets. Data sets are not always distinguishable in a linear fashion. As a result, the 
nonlinear problem is cast into a high-dimensional space, and the problem’s optimal 
function is resoluted and linearly stated using kernel functions. Kernel functions are 
radial based of linear form, quadratic form, and cubic form [30]. 

Geographic Information System (GIS) was used to determine the spatial distri-
bution of biomass energy resources and cultivable lands. Under different scenarios,
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the energy that could be acquired from agricultural wastes as a result of different 
agricultural items being planted on idle but cultivable areas has been assessed. Users 
can acquire, manage, and analyse spatial and geographical data using a Geographic 
Information System. GIS allows you to examine and integrate disparate data spatially 
by displaying it in a layered structure. GIS allows distinct raster data and vector to 
be indicated on same plane allowing varied analyses. With the progress in computer 
technology, spatial analysis has grown increasingly crucial in the design and man-
agement of biomass supply networks. The Geographic Information System (GIS) 
has been utilized to assess transportation network accessibility, biomass raw mate-
rial availability, distribution, and population. It is also commonly used in bio-energy 
supply chains to display the results in order to decide plant locations, distribute 
sources, and construct transportation systems. 

By using a scenario approach, the suggested method incorporates the uncertainties 
that are present in the decision-making process. The biomass potential was forecasted 
utilizing Geographic Information Systems (GIS), artificial intelligence, and statistical 
data in a novel integrated manner that has never been put forward before. This study, 
which is distinctive in this regard, could be adapted to many areas and countries and 
utilized as decision support system in various processes of decision-making. First, 
yearly crop output and poultry figures were predicted using the SVR technique for 
animal/plant raw substance resources which are commonly available/grown in area 
and have a significant bio-energy potential that can be extracted from their waste. The 
level of garbage and bio-energy potentials were determined in the next stage. Then 
using GIS, multiple layers were created, the region’s arable lands were assessed, and 
their number is fixed on. Finally, the bio-energy potentials that may be obtained by 
adopting various agricultural scenarios were discovered. 

1.5.4 Summary 

This chapter discusses the recent applications of artificial intelligence in renewable 
energy systems, such as artificial neural networks, genetic algorithm, particle swarm 
optimization, expert systems, and fuzzy theory. These applications have the poten-
tial to considerably increase power system efficiency, reduce human and material 
resource input, and play a key role in power system security. The scale of the renew-
able energy in power system will continue to grow in future, as will its complexity, 
which will bring some more difficult factors to deal with, in which some artificial 
intelligence currently has their own set of advantages, disadvantages, and limitations, 
as well as a lack of a power system applied to the effective hybrid intelligent, i.e. seek 
a more suitable method for artificial intelligence processing problems in the power 
system that combines the advantages of AI. It is believed that in future, as research 
advances, AI will become more mature and easier to use, allowing it to better handle 
operation of the power systems. In a nutshell, combining a number of technologies 
with artificial intelligence will be a prominent trend in future development.
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Solar Power Forecasting in Photovoltaic 
Modules Using Machine Learning 

Bhavya Dhingra, Anuradha Tomar, and Neeraj Gupta 

Abstract As fossil fuels become increasingly scarce, the globe seeks a dependable, 
clean, and pollution-free energy source, thus solar power is gaining traction. This 
makes the analysis of solar power to be generated highly important. This chapter 
analyses various time series methods like seasonal auto-regressive integrated moving 
average with exogenous factors (SARIMAX), auto-regressive integrated moving 
average (ARIMA), Holt-Winters and auto-regression (AR) to forecast solar power 
generated in household solar panels in order to determine which method can estimate 
the value of photovoltaic power accurately. After applying various pre-processing 
techniques, it is determined that Holt-Winters method for time series forecasting in 
additive mode predicts the values closest to the actual values of the solar power with 
a root mean squared error (RMSE) score of 5.3949. 

Keywords Solar power forecasting · Photovoltaic modules · Machine learning 
Time-series analysis 

1 Introduction 

Solar power is a highly efficient, pollution-free, reliable and dependable source of 
energy. All these characteristics make solar power an ideal source of power for both 
domestic and industrial applications although solar power is available in abundance 
in nature. It is essential to forecast solar energy predicted from the photovoltaic 
(PV) modules for effective management of the generated power, and this process of 
predicting solar power is known as solar power forecasting [1]. The easiest and fastest 
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way to forecast solar power is by using machine learning to learn from the past data 
and generate new values based on the previous trends. A number of researches are 
going on in this sector to find the most efficient learning algorithm which can forecast 
accurate values for solar power under the given conditions. One such study is given 
by Wan et al. [2] which evaluates the performance of various statistical techniques 
for the purpose of solar power forecasting in smart grid. Huang et al. proposed a 
dendritic neural model (DNM)-based ultra-short-term hybrid PV power forecasting 
approach. This study used improved biogeography-based optimization (IBBO) to 
train the model, which is a strategy that integrates a domestication operation to 
improve the performance of traditional biogeography-based optimization (BBO) [3]. 
Panamtash et al. used quantile regression on top of time series models to provide 
probabilistic forecasts. A reconciliation was done using a copula-based bottom-up 
technique or a proportion-based top-down method, taking into account the coherency 
among numerous PV sites [4]. 

This chapter aims to contribute to the ever-growing field of solar power forecasting 
in PV cells by using various pre-processing techniques like exponentially weighed 
moving average, exponential smoothing, etc., and a number of time series techniques 
like AR, ARIMA, SARIMAX and Holt-Winters to forecast solar power efficiently. 

2 Methodology 

This section provides a brief description of the dataset used to train and evaluate the 
model, the pre-processing techniques used to improve the model’s learning abilities 
and finally a number of time series models to forecast solar power produced per day. 

Figure 1 represents the architecture used for this chapter, highlighting various 
time series models used to forecast the solar power produced. Initially, the raw data 
is converted into processed form by applying a number of pre-processing techniques. 
This processed dataset is later on split into two parts, for training the models and 
testing their performance, and finally, models like AR, ARIMA, SARIMAX and 
Holt-Winters are applied to determine which one is most efficient for this task. 

Fig. 1 Model architecture
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Fig. 2 Pre-processing pipeline 

2.1 Dataset 

This chapter is based on “Daily Power Production of Solar Panels” dataset which is an 
open-source dataset available on Kaggle website. In this data, 24 photovoltaic (PV) 
panels having a rated power of 210 W are placed at an inclination of 45 ◦C. These 
panels are made up of polycrystalline silicon. The data consists of 3304 rows and 
four features, which contains data, cumulative solar power consumption, daily power 
consumption and gas used per day. Among the 3304 rows, 2600 rows were used to 
train the model, whereas the rest of them were used to test the models efficiency. 
This dataset does not contain any null values, thus data cleaning is not required. 

2.2 Data Pre-processing 

In this section, various pre-processing techniques are discussed which are used in 
order to minimize the error obtained by the forecasting models. 

Figure 2 shows the various pre-processing techniques like feature engineering, 
seasonal decomposition, exponential moving average and various types of expo-
nential smoothing used before applying the time series models for the purpose of 
enhancing the efficiency of the models as well as generating insights from the data. 
These techniques are used before experimenting with the models as they add new 
features inside the data which are essential for the time series models to learn the 
trends properly. 

2.2.1 Feature Engineering 

Firstly, three features named day, month and year are created using date to determine 
the frequency and the time period of the data. After this, the cumulative values of 
electricity consumption and gas consumption are calculated and are added as features. 
Cumulative sum is estimated as follows: 

g(x) = 
j⎲

i=0 

xi (1)
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In Eq. (1), xi represents the i th  row of the feature whose cumulative sum is to be 
calculated. Since only cumulative values of solar energy produced were given in the 
data, solar energy produced by day is also calculated and used as the target variable 
for the predictions. 

2.2.2 Seasonal Decomposition 

A time series can be considered as a combination of trend, level, seasonality and noise 
components. In this PV energy data, series is an additive model, which is defined as 
follows: 

y(t) = x(t) + g(t) + s(t) + ε (2) 

Equation (2) represents a linear function which is given as y(t). Variables x(t), g(t) 
and s(t) represent level, trend and seasonality of the time series, respectively. ε is 
the noise present in the time series. 

Figure 3 represents the seasonal decomposition of cumulative solar power. Since 
cumulative solar power is the sum of solar power produced per day, the seasonal 
decomposition was performed in additive mode. From this figure, it can be interpreted 
that cumulative solar power follows a uniform trend for seasonality and has some 
noise in the form of residue. 

Fig. 3 Seasonal decomposition of cumulative solar power
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Fig. 4 Exponentially weighted moving average of solar power 

2.2.3 Exponentially Weighted Moving Average 

Exponentially weighted moving average (EWMA) is a statistical measure used to 
analyse the data points of a time series by exponentially weighting them, i.e. the 
weight of the older data points will fall exponentially [6]. Mathematically, this can 
be described as follows: 

EMWAt = α ∗ rt + (1 − α) ∗ EMWAt−1 (3) 

Equation (3) defines a recursive function EWMA, where α is the weight used to 
decay the older values and rt is current value of the time series. The effect of EWMA 
is seen in Fig. 4. 

2.2.4 Exponential Smoothing 

Exponential smoothing is a method used in univariate time series forecasting to pro-
vide support to seasonality and to handle straightforward trends in the data. EWMA 
and exponential smoothing are similar in some regard except that this model employs 
exponentially diminishing weight for prior observations, and it calculated a weighted 
sum of past observations [7]. Exponential smoothing is of three types: 

1. Simple exponential smoothing (SES) 
2. Double exponential smoothing (DES) 
3. Triple exponential smoothing (TES) 

SES uses a single parameter which is known as its smoothing factor (α). α is the 
measure of how quickly the effect of previous observations decays exponentially. 
SES is mathematically represented as follows: 

lt = αyt + α(1 − α)yt−1 + α(1 − α)2 yt−2 + · +  α(1 − α)t y0 (4)
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In (4), lt denotes the level of the series at a time t and the terms yi are the data 
point of the time series. α usually ranges in between 0 and 1. When the values of 
α are closer to 1, it indicates that the model focuses on the most recent historical 
observations, while when the values of α are closer to 0, it indicates that the model 
considers more of the history when generating the values of PV power. 

An extra smoothing factor (β) is used in DES to manage the decay of the impact 
of the trend shift. This provides a support for trends in time series. Based upon the 
type of trends, exponential smoothing can be classified as follows: 

1. DES with linear trend (additive trend) 
2. DES with exponential trend (multiplicative trend) 

The trend equation can be represented as follows: 

bt = β(lt − lt−1) + (1 − β)bt−1 (5) 

In (5), bt is the trend equation and lt is the level equation at time t . 
Holt-Winters seasonality method also known as TES adds another smoothing 

factor (γ ) to manage the impact of seasonality in data. Triple exponential smoothing 
equation can be represented as follows: 

st = γ (yt − lt−1 − bt−1) + (1 − γ )st−m (6) 

In (6), (yt − lt−1 − bt−1) represents the current seasonal index and the seasonal 
equation is used to find the weighted average of past seasonal index of m years ago 
and current seasonal index. 

Since the data used in the chapter has trend as well as seasonality, triple exponential 
smoothing gives closest values to the data as shown in Fig. 5. 

Figure 5 shows the effect EWMA, SES, DES and TES on the data, and from this, 
it can be inferred that TES has very close values to the actual values. 

Fig. 5 Exponential smoothing for solar power
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2.3 Holt-Winters Method 

The Holt-Winters approach is a time series forecasting method that employs all of the 
level, trend, and seasonality equations. This approach has two versions depending 
on the nature of seasonality. When seasonality in the time series is constant, the first 
variant is the additive technique. The second version is the multiplicative technique, 
which is employed when seasonality changes proportionally to the time series level. 
Holt-Winter additive method is created using (4), (5) and (6) and is denoted as 
follows: 

ŷt+1 = lt + hbt + st+h−m(k+1) (7) 

Holt-Winter multiplicative method is expressed mathematically as follows: 

ŷt+1 = (lt + hbt )st+h−m(k+1) (8) 

In (7) and (8), k is an integer part of (h − 1)/m. Seasonality of this dataset is constant. 
Therefore, Holt-Winter additive method is used to forecast solar energy produced 
per day. 

2.4 Auto-Regression Method 

AR method is another method to make time series-based predictions. This method 
uses previous values of the solar power produced to make the predictions for newer 
ones. Since it is a regressive model, it tries to fit the data in a linear manner. The 
general equation for this method is given as follows: 

X (t + 1) = b0 + b1 ∗ X (t) + b2 ∗ X (t − 1) (9) 

In (9), X (t) is the value of solar power at a time of t seconds. AR method makes an 
assumption that the previous values of the data are correlation with the future values. 
Thus if the values are not correlated, AR method will not be able to produce good 
results. 

2.5 ARIMA 

Another model for time series forecasting which is used for the purpose of PV power 
prediction is ARIMA; it forms a regressive analysis using autocorrelation in data [5]. 
Auto-regressive (AR), integrated (I) and moving average (MA) are the three hyper-
parameters used to handle trend in ARIMA model. The ARIMA’s auto-regressive 
component is identical to the AR model described in the preceding section. The
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moving average component of the model’s output is similar to the EMWA described 
previously in that it is linearly reliant on the present and different previous observa-
tions of a stochastic factor. Finally, the differencing step to construct stationary time 
series data, i.e. eliminating the seasonal and trend components, is referred to as inte-
grated. ARIMA model is useful if the data is non-stationary and is often represented 
by (p, d, q), where p refers to the lag in the AR model, d refers to integration order 
or differencing, and q is the MA lags. 

2.6 SARIMAX 

SARIMAX is an extension to the ARIMA model and is used to handle the seasonality 
of the data by adding seasonality parameters to ARIMA model and can handle 
external effects as well. The model is useful if the data is non-stationary and is 
affected by the seasonality as some time series data gets affected with the effect of 
seasons, and this model is able to handle such data with ease. In addition to these 
exogenous regressors present in this model, these variables are not affected by any 
other variable present, i.e. they have zero correlation with other variables. 

3 Results 

In order to forecast solar power generated from these PV modules AR, ARIMA, 
SARIMAX and Holt-Winters models were trained on 78% of the data and the remain-
ing 38% of the data was used for evaluating the models performance. R squared, mean 
absolute error (MAE), mean squared error (MSE) and RMSE are the metrics used 
to evaluate these models. 

R squared or coefficient of determination gives a statistical measure of how close 
the forecasted values of solar power are to the actual values of the solar power 
generated by estimating sum squared regression (SSR) and total sum of squares 
(SST). SSR is given as follows: 

SSR =
⎲

(yi − ŷi )
2 (10) 

And SST is given as follows: 

SST =
⎲

(yi − ȳi )2 (11) 

From (10) and (11), R squared can be mathematically represented as follows: 

R2 = 1 − 
SSR 

SST 
(12)
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Table 1 Time series models performance comparison 

Model R squared MAE MSE RMSE 

Holt-Winters 0.606 4.126 29.105 5.394 

AR model −0.049 7.194 77.590 8.808 

ARIMA −1.791 11.471 206.442 14.368 

SARIMAX −1.601 10.907 192.361 13.869 

The MAE is the average of the amount of error in values of predicted solar power 
and actual solar power values. Mathematically, it is defined as follows: 

MAE = 
1 

N 

N⎲

i=1 

|yi − ŷ| (13) 

The MSE is the squared root of the average of the squared difference between 
projected and actual solar power levels. MSE is defined mathematically as follows: 

MSE = 
1 

N 

N⎲

i=1 

(yi − ŷ)2 (14) 

RMSE is nothing but the squared root of (14) and is represented as follows: 

RMSE = 

⌜||⎷ 1 

N 

N⎲

i=1 

(yi − ŷ)2 (15) 

In (12), (13), (14) and (15), N represents the number of rows in the dataset, yi 

represents the actual values of the solar power, ȳi ) is the mean value of actual values 
of the solar power, and ŷ represents the forecasted values of the solar power. 

Table 1 represents R squares, MAE, MSE and RMSE errors of the proposed mod-
els. From this, it can be inferred that Holt-Winters method is performing best in 
additive mode which is possibly due to the addition of exponential smoothing fea-
tures within the data. 

4 Conclusion 

Power forecasting in PV cells is the process of estimating how much energy can be 
generated from the solar radiations. This chapter supports this task of solar PV power 
forecasting by applying various pre-processing techniques and machine learning 
models over a daily solar power forecasting dataset to find which model is best
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when pre-processing techniques like feature engineering, EWMA and exponential 
smoothing are applied to the dataset. This chapter concludes that Holt-Winter method 
for time series forecasting produces the most efficient results having a MAE score 
of 4.126, MSE score of 29.105 and an R squared score of 0.606. 
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Hybrid Techniques for Renewable 
Energy Prediction 

Guilherme Santos Martins and Mateus Giesbrecht 

Abstract Due to the urgent climate change challenge and the increase in elec-
tric energy demand caused by the electrification of the transport system, renewable 
sources of power, such as hydro, wind, and solar, are becoming more important 
each day. Those sources are intermittent, and it is necessary to predict its future 
generation capacity to guarantee effective planning for the power system operation. 
The generation prediction is a time series forecasting problem, which can be solved 
using classical statistical methods or machine learning (ML) algorithms. Each tech-
nique presents its strengths and limitations. One can be more advantageous than 
the other, depending on the problem characteristics, such as the prediction hori-
zon, the necessity to estimate the confidence level of each prediction, etc. Recently, 
many hybrid techniques, mixing different tools from statistical methods and ML 
have been developed, benefiting from the main strengths of each field to perform 
renewable power generation prediction. This chapter will present a detailed bibli-
ographic review of these techniques, highlighting the recent advances in this field. 
An overview of hybrid techniques applied to predict time series will be presented, 
highlighting the most recent methods published in the literature. The following three 
sections will be devoted to detail the hybrid techniques already applied to predict the 
hydropower generation, which can be considered as one of the first renewable power 
sources used massively, the wind and solar power. Finally, a section containing the 
conclusions about the state of the art in renewable energy prediction and the future 
perspectives will be presented. 

Keywords Renewable energy ·Hydropower generation ·Wind power generation ·
Solar power Generation · Generation forecasting · Time series forecasting 
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1 An Overview About Hybrid Techniques for Time Series 
Prediction 

Power generation prediction is an application of the most general problem known as 
time series prediction or time series forecasting. To handle this problem, there are 
many approaches, which are generally classified in three major categories: statistical, 
ML and hybrid methods. 

The methods from the first category are based on statistical principles, such as 
random variables, cumulative probability functions, statistical densities, Bayes rule, 
among others. Roughly speaking, the derivation of time series models based on 
statistical methods start from a parametric model, that has its unknown parameters 
estimated from data with an optimization process, which is either a minimization 
of error or a maximization of likelihood function. The parametric model structures 
include auto-regressive (AR), auto-regressive with moving average (ARMA) and 
auto-regressive integrated moving average (ARIMA) models, where the time series 
is predicted based on its past values. In some cases, exogenous variables can be con-
sidered resulting into AR with exogenous variables (ARX), ARMA with exogenous 
variables (ARMAX) and ARIMA with exogenous variables (ARIMAX) models. 
Another structures commonly applied include seasonal effects, resulting into sea-
sonal ARIMA (SARIMA) and seasonal ARIMAX (SARIMAX) models. 

The main advantages of statistical methods are that the models are relatively easy 
to interpret and the computational burden to estimate its parameters is relatively 
small. On the other hand, since the methods are based on statistical concepts, many 
of them arise from assumptions such as linearity, stationarity, ergodicity, Gaussian 
nature of data, etc., which in many cases are not perfectly valid. Some relevant 
textbooks describing those methods are [1–3], and more recent techniques involving 
state space models for time series analysis can be found in [4, 5]. 

The ML time series prediction techniques are based on methods such as mul-
tilayer perceptron (MLP) neural networks (NN), radial base function (RBF) NN, 
support vector machines (SVM), artificial neural fuzzy inference systems (ANFIS), 
decision trees (DT), random forests (RF), heuristic optimization methods, k-nearest 
neighbours (k-NN), among others. Due to the recurrent nature of the problem, it also 
is common to find methods based on recurrent NNs (RNN) like Elman recurrent 
neural networks (ERNN), Jordan recurrent neural networks (JRNN), and networks 
based gated recurrent units (GRU) or long short term memory units (LSTM). Ref-
erence [6] provides an excellent introduction to these methods, while in [7] a more  
advanced discussion is provided. Many of the ML methods were initially developed 
for classification, but the regression problem can also be addressed adapting those 
tools. 

The main advantage of ML techniques is a natural capacity to deal with non-
linear and nonstationary data. On the other hand, the computational burden and 
the interpretability of the models resultant from those methods are issues that still 
being discussed by the forecasting community. Furthermore, for practical cases, it
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was proven that in many situations those methods are not as accurate as statistical 
methods [8]. 

Hybrid techniques are interesting alternatives to pure statistical or ML time series 
prediction methods. Those approaches combine the advantages of statistical and ML 
algorithms to deal with cases where hypothesis such as linearity and stationarity are 
not present, and in many cases result in interpretable models with a relatively small 
computational effort if compared to pure ML methods. The idea of mixing different 
methods is present since the first forecasting competitions, such as M1, M2 and M3, 
where combinations of statistical techniques presented more accurate results than 
pure methods, indicating that the forecasting performance can be improved if more 
than one method is considered [9]. In M4 competition, ended on May 2018, a hybrid 
approach based on statistical and ML methods produced the most accurate forecasts 
[10]. In the most recent M competition, ML methods presented better results than 
hybrid methods [11, 12], but the second are still well accepted by the renewable 
energy prediction community. 

Given the advantages of hybrid techniques, many methods were already proposed 
and applied to the most diverse time series prediction problems. Most of the hybrid 
techniques can be categorized in one of the following classes: 

1. Model ensemble 
The most natural hybrid approach to forecast a time series is based on a combi-
nation of results of different methods [13]. There are two subclasses of model 
ensembles. The first one is the parallel model ensemble, where the input variables 
are given independently to different models and the final result is the combina-
tion of the outputs of each model. This combination varies from a simple mean 
to weighted means, with weights calibrated by optimization algorithms. 
The second class is known as serial model ensemble. In this category, input data 
is given to the first algorithm and the residuals are calculated by subtracting the 
results of this algorithm from the real data. Then, the following model is fitted 
using the residuals as inputs. This is repeated for all models considered in the 
ensemble. Generally, this kind of ensemble has two models, the first one is com-
monly a statistical method that predicts the linear behaviour of the time series, 
and the second one is a ML learning method, used to predict the non-linear 
components of the time series. 

2. Parameters determination based on meta-heuristic methods 
Another class of hybrid methods uses metaheuristic optimization algorithms 
to estimate parameters of parametric models [14, 15]. In system identification 
problem, which is related to the time series forecasting, a similar procedure 
can be classified as grey box identification, since it is between the white box 
identification, where the system structure and the parameters are known, and 
the black box identification, where neither system structure nor the parameters 
are known [16]. The hybrid aspect in those methods is due to the mixture of 
a known structure, given by classical time series analysis, for example, with 
a heuristic optimization algorithm used to calibrate the parameters. Moreover, 
besides the determination of parameters in classical models, heuristic methods
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can be used to estimate a set of parameters for more complex structures, such as 
NNs, adaptive ANFIS, among others. 

3. Time series decomposition 
A third approach consists on decomposing the original time series into simpler 
components using either structural time series theory [3], or decompositions 
methods such as wavelets transform (WT) [17], empirical mode decomposi-
tion (EMD) [18], singular spectrum analysis (SSA) [19], among others. After 
the decomposition, there are two possible approaches. In the first one, a single 
model with multiple inputs is trained with the different time series components. 
In the second one, each component of the time series is predicted using a differ-
ent model, of the same nature or not, and the final prediction is the combination 
of the forecasts for each component [20–23]. 
There are many works where meta-heuristic methods are used to estimate the 
parameters of models obtained from different time series components. In this 
chapter, those references will be considered in this class, because the authors 
understand that the most relevant characteristic of these methods is the decom-
position algorithm. 

4. Other hybrid methods 
Besides the three main categories identified above, there are other manners to 
hybridize forecasting algorithms. An example is the combination of different 
NNs. Another example is based on the mixture between forecasting methods 
and similarity-based ML methods, such as the k-NN or clustering algorithms. 
In that cases, the similarity methods are used to find a past moment similar to 
the one just before the instants to be predicted [24, 25], and then the prediction 
algorithm is applied based only on that part of the time series. Other works 
are based on combination of genetical programming (GP) and other techniques, 
such as variable selection methods. Since these categories are not present in all 
power sources analysed in this paper, these works will be categorized as other 
hybrid methods. 

A recent review about the application of hybrid approaches for renewable power 
prediction can be found in [26]. In this chapter, a complementary bibliographic review 
will be provided, focusing on more recent articles about hydro, wind and solar power 
prediction and classifying the references in the categories listed above. 

2 Hybrid Techniques for Hydropower Prediction 

Hydropower generation capacity is related to river flow. This relates the hydropower 
prediction algorithms to hydrology models, that were developed since XIXth century. 
The first hydrology models were developed based on relations between rainfall and 
run-off, as detailed in a recent review [27]. Then, other models were developed to 
forecast precipitation, stream-flow, sediment, groundwater, among other variables 
[28].
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With advances in computational capacity, data-driven methods arose. The most 
simple are the statistical ones, but in the current century, ML methods were deeply 
studied [29]. More recently, hybrid methods gained attention in hydrology forecasting 
community. In this section, recent hybrid techniques for hydropower prediction will 
be discussed, following the categories introduced in Sect. 1. 

2.1 Model Ensemble 

An extensive study about hydrological time series was presented in [30]. In that 
article, the authors performed one-step ahead predictions for a massive set of 90-year-
long river flow time series from stations in North America and Europe, resulting in 
599 time series. The forecasting was performed using five base methods, which were 
the Naive, the simple exponential smoothing, chosen for its good performance in M3-
competition, the complex exponential smoothing, which was part of a competitive 
ensemble in M4-competition, the automatic autoregressive fractionally integrated 
moving average (ARFIMA) and the Facebook’s Prophet. The model ensembles were 
all 26 possible combinations (per two, per three, per for or per five) of the base 
methods, and the forecast was calculated as the median of the involved methods. As 
a result, the authors observed that the model ensemble improved the one-step ahead 
performance more than any other method alone. It must be noticed that the methods 
used for comparison were really competitive in other scenarios, demonstrating that 
the model ensemble is a good strategy to deal with hydrological time-series. 

Another recent work that dealt with model ensemble to predict hydrological time 
series was [31]. Differently from [30], where the model combination was based on the 
median of the results from different methods to estimate one-step ahead predictions, 
the authors of [31] proposed a three-phase methodology to combine the ARIMA and 
the Bidirectional LSTM (bi-LSTM) for long term predictions. In phase I, the authors 
performed a seasonal trend decomposition using loess (STL) [32] and calculated the 
forecast using a hybrid method based on an ensemble of ARIMA and bi-LSTM. 
In phase II the authors split the data to create different models for each season, 
decomposed the data from each season using the STL decomposition and then used 
again ARIMA and bi-LSTM to forecast the data for each season. In phase III an 
average of the two first phases was made and a final ensemble model was obtained. 
The authors tested the methodology both for hydro and wind power prediction data 
and the conclusions were that the model improved the accuracy, the uniformity and 
the diversity of the solutions. 

In [33], different kinds of unorganized machines were used to predict streamflow 
from hydro power plants in Brazil. The methods were the extreme learning machine 
(ELM), which is a NN with random weights in its single hidden layer and output layer 
weights calculated with the least squares method, and echo state network, which is a 
NN that resembles a state space model, with a dynamic reservoir layer that represents 
the non-linear state transition and an output layer that consists on a linear combination 
of the states. Besides the networks, ensembles combining theses models and simpler
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ones, such as AR and ARMA were tested. Differently from the ensembles in the 
former references, different combiners were tested: average, median, MLP and RBF. 
The methods were tested to predict the streamflow for five different power plants 
and the ensembles were the most accurate models for one-step ahead predictions. 
For longer horizons, the ELM was the most accurate method. 

2.2 Parameters Determination Based on Meta-Heuristic 
Methods 

The forecasting methods described in this section to predict hydropower related 
variables are based on models with unknown parameters, which are determined by 
meta-heuristic methods. In Sect. 2.3, some of the works described also use meta-
heuristic methods to calibrate model parameters. The main difference between the 
papers described in these sections is that the following section covers articles where 
some kind of time series decomposition method is applied before using the model, 
while the methods discussed in this section do not use any kind of decomposition. 

In [34], a conceptual rainfall-run-off model, based on the physical relations 
between hydraulic phenomena such as precipitation, evaporation, run-off and stream-
flow, was used to predict the streamflow. The model had 16 parameters and its deter-
mination was considered a challenging task, due to the high dimensionality of the 
search space. To solve the problem, the authors used the multi-objective particle 
swarm optimization (MOPSO) to find a Pareto front of possible optimal solutions in 
the parameters space. The results were a well spread set of solutions, with greater 
diversity if compared to other calibration methods. 

In [35], the cooperation search algorithm (CSA), which is a heuristic optimization 
method, was used to calculate the connection weighs and biases for neurons in hidden 
and output layers of an ANN trained to forecast river flow time series. The reason for 
applying the heuristic optimization algorithm, instead of most usual algorithms such 
as the back-propagation (BP) or gradient-based learning, was to avoid problems such 
as local convergence and slow learning rate. Many ANN structures with different 
combinations of inputs were tested and compared to other methods such as ELM, 
SVM and ANN trained with classical methods. The conclusions are that the ANN 
trained with the CSA algorithm outperformed the other methods with a smaller root-
mean-square error (RMSE). 

The Grey Wolf Optimization (GWO)  was used in [36] to calibrate the parameters 
of membership functions in an ANFIS model to forecast the hydropower genera-
tion in a dam in Iran. The model inputs were the precipitation, the inflow and the 
hydropower generation in former months. The strategy was compared to the clas-
sical ANFIS. As a result, the classical ANFIS failed to produce accurate forecasts 
for some combinations of input parameters while the ANFIS trained with GWO was 
successful in all cases studied.
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A similar idea was used in [37], where three heuristic methods—the particle 
swarm optimization (PSO), the genetic algorithm (GA) and the differential evolution 
(DE) were used to tune the parameters of an ANFIS to forecast the rainfall time 
series, which is related to flows and, consequently, to the hydro power generation 
capacity. The heuristic strategies were chosen due to the fact that classical parameters 
optimization methods may be stuck in local minima. The ANFIS with parameters 
calibrated with the heuristic algorithms presented better performance indicators than 
the classical ANFIS for models with different combinations of regressors. 

Following the same idea presented in former references, [38] proposed to cal-
culate the weighs of a classical ANN with recent physics-inspired meta-heuristics, 
which were the Equilibrium Optimization (EO), Henry Gases Solubility Optimiza-
tion (HGSO) an Nuclear Reaction Optimization (NRO). The NNs were trained to 
predict the streamflow in Nile river. The accuracies of the resultant models were 
compared to accuracies obtained with ANN trained with classical algorithms and 
hybrid NNs trained with other well known meta-heuristics. As a result, the NNs 
trained with physics-inspired meta-heuristics outperformed the results obtained with 
the other methods tested. 

2.3 Time Series Decomposition 

Many hydrological time series prediction methods are based on decomposition meth-
ods. Generally, the first step consists on decomposing the time series into its compo-
nents, then using a forecasting method to predict the future steps of the time series. 
As pointed out in the introduction either a single model with multiple inputs can be 
used to forecast the series or a different model can be used to forecast each compo-
nent, and then, the results are combined to produce the final forecast. Both strategies 
are discussed here, with the ones using single models being discussed firstly. 

A common method involves the time series decomposition using WT and the 
forecasting using some kind of ANN. The basic idea is to train the ANN with the 
sub-components as inputs and future samples of the time series as outputs. The idea 
was applied to groundwater level forecasting in [39] and to forecast hydrological 
time series in many posterior references, such as [40], where the classical ANN was 
used. 

The ELM was combined with WT in [41]. In that work, the river flow time series 
was decomposed into a finite number of components using the WT and the past data 
from each component was used to train the ELM. The results were compared to the 
direct application of the ELM on the original time series and, as a conclusion, the 
hybrid method proposed reduced drastically the RMSE and the mean absolute error 
(MAE). The same principles were used in [42], with results better than the ones 
obtained with the original time series data. 

Another variation associated WT with ANFIS to train rainfall-runoff models [43]. 
In fact, the association between the WT and ML models, such as the ones discussed 
above, gained attention from the hydro-climatology community since 2004, when
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one of the first papers combining WT and ML was published [44]. After that, many 
hybrid approaches following this paradigm were proposed to describe precipitation, 
flow, rainfall-runoff and sediment models, as pointed out in the review [45]. 

An idea similar to the one proposed in previous references was also explored in 
[46], where instead of WT, STL and SSA were used to decompose the streamflow 
time series. After each decomposition, three different NNs were used to forecast the 
time series using the components and other related series as inputs. The NNs were the 
convolutional neural network (CNN), the LSTM and the classical NN. As a result, six 
hybrid methods were developed, based on the combination of each decomposition 
method with each NN. Besides the streamflow time series components, the authors 
also used other series such as precipitation, relative humidity and temperature as 
potential model inputs and, in order to decide which inputs should be used in the 
model, the Gini index method was applied, resulting in other six hybrid methods, 
similar to the first ones, but with this additional feature selection step. The results of 
each hybrid method were compared to the NNs alone and the conclusion was that 
the data decomposition increased the accuracy of the forecasts. From the methods 
proposed, the best performance was obtained with the combination of SSA and the 
ANN. 

For hydro forecasting, few authors proposed hybrid methods including decompo-
sition techniques in which model is trained for each component. Some examples of 
that approach are discussed below. 

In [47], the decomposition method was the relatively recent variational mode 
decomposition (VMD) [48]. Then each sub-series was predicted using an ensemble 
of four ML methods, which were combined using weights calibrated by solving a 
multi-objective optimization problem with the multi-objective grey wolf optimizer 
(MOGWO). Finally, the components were combined to produce the final forecast. 

In [49], the runnoff data series from two stations in China was decomposed 
using the EMD. Then, each component was predicted using the least-squares SVM 
(LSSVM), which is a variation of the SVM to decrease the computational burden. 
To optimize the LSSVM metaparameters, a swarm intelligence method known as 
gravitational search algorithm (GSA) was used. Then, the results of the prediction 
of each component were combined and the final forecast was created. The method 
proposed by the authors was compared to the SVM and the ANN alone and the results 
showed that the hybrid method presented a substantial improvement in the root-mean 
squared error, demonstrating the advantages of decomposing the time series before 
applying the forecasting method. 

2.4 Other Hybrid Methods 

In [50], a hybrid method composed of three stages was proposed to forecast stream-
flow. The first stage was the input selection, using the least absolute shrinkage and 
selection operator (LASSO). The candidate input considered included many clima-
tological indexes related to global atmospheric oscillations, sea surface temperature
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and rainfall. The second stage was the classification of the samples in three flow 
regimes: low, medium and high. The motivation for this stage was to separate data 
that follow three distinct patterns in order to simplify the modelling stage. Two differ-
ent approaches were adopted in this stage, which were a single-variable one, in which 
the classes were defined based on a rainfall threshold, and a multi-variable fuzzy C-
means (FCM) approach. Then, in the third stage, a different model was trained for 
each class. Two models were tested: a traditional ANN and a deep belief network 
(DBN). For the majority of the cases studied, the combination between FCM and 
DBN was the one that resulted in the best accuracy. The results were also better than 
the observed for forecasting without input selection or classification, demonstrating 
that the hybrid approach was relevant to enhance the models performances. 

In [51], a combination between the multi-stage genetic program (MSGP) and the 
LASSO was used to produce relatively simple and accurate models to forecast the 
one-step ahead streamflow based on its past values. The idea was to use the MSGP to 
estimate functions between the variable to be predicted and its past values and then, 
to use LASSO to select the functions that were most relevant to produce accurate 
results. Two variants of the method were proposed. In the first one, only the functions 
obtained with the MSGP are considered as candidates in the LASSO procedure. In 
the second one, functions and some past values of the time series were considered. 
To compare the models both in accuracy and complexity, the Akaike Information 
Criterion (AIC) was used as a performance metric. The methods proposed were 
compared to classic GP and many SARIMA models. The results showed that the 
hybrid algorithm performed better considering both RMSE and AIC. 

3 Hybrid Techniques for Wind Power Prediction 

Wind power is a fundamental source to achieve the net zero emissions target by 2050. 
For this reason, the installed capacity is growing each year, with 93 GW installed in 
2020 and 88 GW in 2021. Although the tremendous increase of this source penetration 
in electric power generation, the world needs that the installed capacity of this source 
grows at least 180 GW per year to achieve the emissions target by 2050 [52]. 

The main drawback of the wind power generation is the intermittence of wind. 
Differently from the hydropower, where the potential energy of water is stored in 
dams, there is no technical method to store the wind power directly, and indirect 
methods must be used, such as reversible power plants, batteries or other advanced 
energy storage techniques. For this reason, it is crucial to predict the winds in wind 
farms to plan the power dispatch. 

This section describes the hybrid techniques for time series related to wind power 
prediction, such as the wind power itself, wind speed, wind direction, among others. 
As mentioned previously, the authors identified several classes of hybrid methods. 
In this context, the main current techniques are discussed. 

Some reviews were made about wind power prediction. In [53], the status of hybrid 
methods for wind forecasting was described. The authors classified the hybrid meth-
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ods into four fields: data preprocessing-based approaches, where some algorithm 
is used to decompose the time series into components easier to predict, parameter 
optimization-based approaches, where the parameters of a given model are optimized 
using some optimization algorithm, and post processing-based approaches, where 
the residuals of a first method are analysed using another method. In the literature 
review presented, several models were shown, including statistical, ML and hybrid 
models. The classes used by the authors of [53] are similar to the ones identified in 
this text, unless for parallel model ensembles, which were not explicitly classified in 
that work. 

3.1 Model Ensemble 

As for hydro power prediction, many authors explored model ensemble methods to 
predict wind power generation. From the many works existent in literature, some of 
the most recent are discussed in this section. 

In [54], a meta learning-based hybrid ensemble approach for short-term wind 
speed forecasting was proposed. The ensemble prediction model was divided into 
two parts: meta-learning and individual predictor. The first part was based on a NN 
and the second one consists of three pre-trained individual predictors which are 
BP NN, LSTM and GRU respectively. The proposed model outperformed accuracy, 
stability and data correlation results when compared to other models such as SVM. 
The approach also outperformed the LSTM and NN used alone, demonstrating the 
advantages of model ensembles. 

The authors in [55] introduced a hybrid neuro-fuzzy bootstrap prediction sys-
tem for wind power generation. The bootstrap bagging technique was used to create 
smaller datasets from the original dataset. Each one of the smaller datasets has statis-
tical properties similar to the ones observed in the original set. Then, a neuro-fuzzy 
model was trained for each smaller dataset. To forecast wind power generation, 
the outputs of each neuro-fuzzy model are combined by calculating the average of 
the results, in a parallel ensemble. The method was compared to a single neuro-
fuzzy model trained with the whole original dataset and the results showed that the 
proposed hybrid neuro-fuzzy bootstrap method presented smaller percentage and 
average errors. 

The authors in [56] proposed a novel ensemble model for long-term forecast-
ing of wind and hydro power generation. The proposed model was composed of 
three phases. In the first phase, a hybrid model combining ARIMA and Bi-LSTM 
predictions was developed. The inputs to this model were the seasonal and trend 
components of the time series obtained using STL. The second phase is an ARIMA 
model with inputs defined by a Diligent Search Algorithm (DSA). This algorithm 
was used in order to identify hidden seasonalities of the time series. In step three, 
phases one and two are merged to build the final ensemble model. The method pre-
sented more accurate results than other ML and statistical methods both for hydro 
and wind power prediction.



Hybrid Techniques for Renewable Energy Prediction 39

In [57], hybrid serial model ensembles were developed to forecast electric power 
generation in a small wind turbine. The first model used in the ensemble, defined as 
physical model, outputs energy production using as inputs wind speed forecasts gen-
erated with a Numerical Weather Prediction (NWP) model. The second model used 
as inputs the outputs from the first one and other exogenous correlated variables. 
Many strategies were used to determine the best structure for the second model, 
involving naive, naive smoothing, multiple linear regression (LR), k-NN, SVM and 
MLP. Parallel ensembles involving those models were also considered, using differ-
ent methods to combine each one of the models, such as average, weighted average, 
average without extreme forecasts, where the minimum and the maximum results are 
ignored, and ANN. As a conclusion, the most accurate method was a parallel ensem-
ble of three methods, combined using the average without extreme forecasts. The 
results of this work corroborates the conclusion that a well chosen model ensemble 
can be more accurate than any method used alone. 

In [58] a serial ensemble hybrid model composed of linear and nonlinear parts 
was proposed to forecast wind speed. The ensemble EMD (EEMD) decomposition 
technique was used to eliminate noise and reconstruct the series. Then, the ARIMA 
model captured the linear patterns hidden in the time series, while the BPNN model, 
optimized by the Cuckoo Search Optimization (CSO) algorithm, was used to forecast 
the residuals. The proposed model outperformed other tested methods such as ARMA 
alone, BPNN alone, among others. 

Eight different hybrid schemes were proposed in [59] to forecast wind speed. 
The first step to build the ensembles consisted of input variables selection, which 
was made either by auto-correlation analysis or Phase Space Reconstruction (PSR). 
Then, the selected inputs were given to a GP or a SVM algorithm. In some of the 
schemes, the outputs of these algorithms were the final results. In other schemes, 
the residuals from the first algorithm were fed into a second model, which could be 
either a GP or a SVM, and then the final result was the sum of the results of the 
first and the second algorithms. These schemes are serial model ensembles. All four 
possible combinations between SVM and GP were tested as first and second models, 
and the other schemes were obtained by using SVM and GP alone, with each one of 
the two input selection algorithms. The most accurate results were provided by the 
combination of PSR input selection method, followed by a SVM to model the main 
series and the GP to model the residuals. 

In [60], a hybrid ensemble approach, including statistical and ML methods, and 
combining series and parallel ensembles, was proposed. The first step was to pre-
process data with the Kalman filter, in order to obtain a trend and a residual. The 
trend and the original data were given as inputs to an ARIMAX and a MLP model. 
The residual was treated by fuzzy-ARIMAX (FARIMAX) and fuzzy MLP. Then, 
the results of the two methods used to treat the trend, the two methods used to 
treat the residual and the Kalman filter outputs were combined to produce the final 
forecast. The hybrid approach outperformed other models tested by the authors, 
which basically consisted of parts of the whole structure used alone. In this way, the 
authors demonstrate that the hybrid approach used was valid.
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3.2 Parameters Determination Based on Meta-Heuristic 
Methods 

Many works were developed to forecast wind power or related variables using meta-
heuristic methods to determine parameters of a given parametric model. Recently, 
the review [61] was published, covering the application of meta-heuristic algorithms 
to estimate the optimal parameters of wind power prediction models. The authors 
identified three layers. The first one was named as auxiliary and is responsible for 
decomposing the dataset into stationary subseries. The second layer was named as 
forecasting base, and consists of the actual forecasting model, which can be either a 
ML algorithm or a NN, in many of its possible configurations. Then, the third layer, 
named as core, is the meta-heuristic algorithm used to calibrate the parameters of the 
forecasting model. This framework was identified in many of the 2195 publications 
about wind forecasting collected by the review authors from 2011 to 2020. 

In fact, the vast majority of the works related to wind power prediction that 
use meta-heuristic methods also use time series decomposition techniques as a 
pre-processing step. To maintain the classification adopted for the other renewable 
sources discussed in this work, all methods that include time series decomposition 
techniques will be discussed in Sect. 3.3. In this section, the only reference using 
meta-heuristic methods without decomposition for wind speed forecasting that was 
found is discussed in the sequel. 

In [62], some wind speed forecasting techniques were proposed. In that paper, 
three hybrid methods were presented. The first combined Wavelet Neural Network 
(WNN) with Improved Clonal Selection Algorithm (ICSA), the second was a com-
bination of WNN and PSO and lastly, the third model tested was an ELM. The series 
was not decomposed, as in other papers discussed. The WNN-ICSA hybrid method 
obtained better results in terms of accuracy. 

3.3 Time Series Decomposition 

One of the classes found in time series forecasting literature is based on time series 
decomposition. In this case, the series are decomposed into components and then, 
generally two different approaches are adopted: In the first one, components are 
used as different inputs of a single model. In the second approach, each one of the 
components is predicted by and individual model and the final result is a combination 
of the prediction results for each component. In this section, the works following the 
first approach will be discussed firstly, followed by references that adopt the second 
approach. In many cases, heuristic algorithms are used to calibrate parameters of the 
model used. Since the authors understand that the main feature of those works is the 
time series decomposition, they are discussed in this section, and not in the previous 
one.
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In [63], the authors implemented a hybrid method using VMD, Multi-Kernel 
Regularized Pseudo Inverse NN (MKRPINN) and a meta-heuristic algorithm named 
vaporization and precipitation water cycle algorithm (VAPWCA). The VMD was 
used to decompose the non-linear and non-stationary time series into components, 
that were used as inputs to a single MKRPINN. The MKRPINN parameters were 
optimized using the VAPWCA. The results outperformed other models tested, which 
used EMD instead of VMD and other NN instead of the MKRPINN. 

The authors [64] presented a wind power forecasting using a new and robust 
hybrid metaheuristic approach: a case study of multiple locations. This paper was 
developed combining Radial Motion Optimization (RMO) and PSO models. The 
proposed hybrid model was compared with other existing models in the literature. 
The results showed that the hybrid model design was more accurate than other tested 
models. 

In [65], the decomposition method used to split the subseries was the EEMD, 
the forecasting model was the LSTM Enhanced Forget Gate network (LSTM-EFG) 
and the meta-heuristic algorithm used to calibrate the parameters was the CSO. The 
proposed model showed better results in terms of accuracy compared to statistical, 
ML and hybrids methods such as ARMA, LSTM, BPNN, EEMD-CSO-SVM and 
others. 

In [66] a combination between WT and LSTM was proposed to forecast wind 
power. The WT decomposes the non-stationary time series into stationary compo-
nents. Then, the components series were used as inputs of a LSTM model. The 
hybrid method outperformed traditional methods found in the literature, such as 
SVR, LSTM, WD-SVR and others. 

The authors in [67] proposed a hybrid deep learning architecture for wind power 
prediction using as inputs the wind power and the wind speed. The data pre-
processing stage was done using the EEMD. Then, the components of wind power and 
wind speed series, and other information related to wind direction, were processed 
by a bi-attention mechanism, to enhance the weights of the most significant inputs. 
The inputs were used to train a residual GRU, which consisted of the series associ-
ation of a residual network and a GRU. Initially, the prediction model was trained 
using the Adam optimizer, but then a crisscross optimization algorithm (CCSO) was 
used to retrain the model, in order to obtain more accurate results. The proposed 
hybrid model outperformed in terms of accuracy and forecast stability compared to 
other existing models in the literature, such as persistence model, EMD-CNN-LSTM, 
VMD-LSTM-ELM, and others. 

The authors in [68] proposed a hybrid model based on maximal wavelet decom-
position (MWD), FCM, LSSVM and Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) for short-term wind power forecasting. The MWD was used to separate 
the different components of the series. Then, the components were classified into 
three groups of similar signals using the C-means. Each group was used to train a 
LSSVM using the NSGA-II as optimization algorithm. The results for the proposed 
hybrid model outperformed other hybrid models tested such as EMD-LSSVM and 
WD-LSSVM, which were simple combinations of decomposition methods and the 
LSSVM.
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In [69], a wind speed multistep forecasting model using a hybrid decomposition 
technique to split the time series under study into its components was proposed. 
Then, a deep NN (DNN) was trained using the selfish herd optimizer. The results 
outperformed the other models tested, which were combinations of different decom-
position methods and DNNs tuned with other meta-heuristic optimization algorithms. 
In addition, the proposed model was suitable for wind speed prediction in several 
stages. 

The authors in [70] implemented a short-term wind power forecasting method 
using the Improved Variational Mode Decomposition (IVMD) to decompose the time 
series and Correntropy LSTM as forecasting model. The proposed model was able to 
decompose the original series data, reconstruct the subseries and make wind power 
prediction. Differently from other methods, the LSTM parameters were optimized 
using non-linear analytic optimization techniques to minimize a criterion based on 
Correntropy loss, and not on MSE. This gives a proper treatment to outliers, that usu-
ally are present in wind speed time series. The results outperformed other traditional 
hybrid methods found in the literature. 

The authors of [71] presented a hybrid model composed of complete EEMD with 
adaptive noise (CEEMDAN), Local Mean Decomposition (LMD), Hurst and BP NN. 
The hybrid model can decompose the wind speed time series through the CEEM-
DAN technique. Thus, the components obtained are submitted to Hurst analysis in 
order to be transformed into a series of micro, meso and macro scale. Finally, the 
model was applied to the prediction algorithm. The results obtained showed that the 
proposed model had better accuracy compared to other hybrid forecasting methods 
such as EEMD-Empirical WT (EWT)-BP, CEEMDAN-BP, CEEMDAN-LMD-BP 
and others. 

The authors in [72] proposed a model based on multivariate data secondary decom-
position and deep learning algorithm with an attention mechanism. The SSA tech-
nique was applied in order to reduce the noise of the original multivariate series. The 
multivariate EMD (MEMD) was applied in order to decompose the series without 
noise. The proposed hybrid model combined CNN and Bi-LSTM to extract spa-
tiotemporal correlation features from the subseries resultant from the EMD. The 
results proposed model outperformed other models in precision and effectiveness. 

In [73], a model to forecast wind power output using a hybrid neuroevolutionary 
method was proposed. The proposed method consists of three steps. In step one, the 
k-means model and an autoencoder are used for noise detection and filtering. In the 
second step, the VMD model and two heuristics called Nelder-Mead greedy search 
algorithm (GNM) and adaptive random local search (ARLS) are used to decompose 
the time series data. In the third step, a self-adaptive differential evolution (SaDE) 
algorithm was used to tune the parameters of a LSTM. The prediction results for the 
proposed hybrid model outperformed other hybrid models found in the literature, 
such as Bi-LSTM, DE-LSTM and others. 

The authors in [74] proposed a method for one-day ahead wind speed forecasting. 
In that paper, a hybrid model for wind speed prediction was presented, consisting of 
an Adaptive GWO (AGWO), SSA and the hybrid Encoder-Decoder-Convolutional-
Neural-Network-GRU Model (ED-CNNGRU). The GWO was used to tune the meta-
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parameters of the SSA to split the series into its different components. Then, the 
components passed through a normalization and through the enconder-decoder net-
work, which gave the final results after a denormalization step. The proposed model 
outperformed other tested models, which were a simple CNN, a simple GRU and 
the CNNGRU, without the ED part. 

Differently from the works discussed above, in some cases a different model is 
trained for each component of the time series and then the results are combined. The 
papers where this kind of framework is adopted are discussed below: 

In [75], a multi-step wind speed forecasting based on a hybrid decomposition 
technique and an improved BP NN was introduced. In that paper, the hybrid model 
was based on a hybrid decomposition based on CEEMDAN and EWT. Then, each 
component was predicted by a BP-NN with parameters determined with the Flower-
Pollination Algorithm. The results obtained outperformed individual ML methods 
and other hybrid methods existing in the literature such as ELM, EEMD-GA–BP 
and others. 

In [76], a wind speed forecasting based on WT and Recurrent WNN (RWNN) was 
proposed. In that paper, the proposed hybrid model was developed in two phases: in 
the first phase, the WT technique was used to decompose the wind speed data, and in 
the second phase, a RWNN was trained for each one of the subseries resultant from 
the first phase. The proposed model outperformed the conventional RNN model in 
accuracy. 

A decomposition algorithm is one of the key features of [77]. In that paper, a new 
hybrid model for wind speed forecasting combining LSTM, decomposition methods 
and GWO was proposed. The dataset used in that work presented some missing 
data due to sensors malfunctions. For this reason, the first step of the algorithm 
was to fill missing data using the Weighted Moving Average method. Then, the 
same technique was used to smooth the data, which was normalized considering its 
mean and standard deviation. In the following stage, the time series was decomposed 
using the Improved Complementary Ensemble Empirical Mode Decomposition with 
Adaptive Noise (ICEEMDAN) method. Each component was fed to a different LSTM 
and the results were combined using a moving average with weights determined by 
GWO. The method outperformed in accuracy other individual and hybrid methods. 

In [78], several decomposition techniques such as WT, EMD, Empirical Set Mode 
Decomposition (ESMD) and EWT were used in order to decompose the time series 
into high and low frequency signals and also for noise reduction. A LSTM model 
was used to predict each component of the series and then the results of each LSTM 
were summed to reconstruct the forecast for the original time series. The proposed 
hybrid model with skip connections showed better accuracy and stability compared 
to other individual and hybrid models tested. 

In [79], a hybrid model was introduced, which was based on combining the discrete 
WT (DWT) with ANN for wind speed prediction. The DWT filter was used to pre-
process the time series data in order to improve the prediction accuracy. Then, an 
ANN was trained to predict each component of the series, and the final forecast was 
the combination of the ones obtained for each component. A comparison was made
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with popular state of the art wavelet-based algorithms and it was demonstrated that 
the proposed model yields better predictions results. 

The authors in [80] also proposed a hybrid ML model for short-term wind speed 
prediction using a similar framework. The first step was to decompose the wind 
speed time series into several subseries using the fast EEMD (FEEMD) and PSR. 
For each one of the subseries, an improved whale optimization algorithm (WOA) 
was used in order to calibrate the parameters of an ELM. Finally, the predictions 
were obtained combining the predictions for each subseries. The proposed model 
presented the advantage of capturing nonlinear characteristics of the time series and 
outperformed in terms of accuracy other hybrid methods found in the literature. 

Following the same framework, a parametric model and an optimization algorithm 
were adopted in [81] for short-term wind speed forecasting. In that paper, the time 
series decomposition was done using VMD, and each component was an input to a 
Kernel ELM (KELM), which had its weights calibrated using an improved Seagull 
Optimization Algorithm (SOA). 

The authors in [82] proposed a method for short-term wind power forecasting. The 
prediction consists of three steps: wind direction prediction, wind speed prediction 
and wind power prediction. For each one of the steps, the algorithm detects outliers, 
decomposes the time series using the WT technique, normalizes the time series 
components and predicts the decomposed time series using the MLP algorithm. 
The inputs used in MLP algorithms include the time series components and other 
variables obtained from NWP models. Then, to reduce the number of inputs into 
the MLP, the NSGA-II was used to select the most relevant features. The proposed 
method outperformed other hybrid models tested. 

Although the vast majority of wind speed or power forecasting is based on NN 
models, some few references use other prediction models such as ANFIS or statistical 
methods combined with time series decomposition. Those methods are discussed in 
the sequel. 

In [83], a wind speed forecasting method based on SSA and ANFIS was presented. 
A hybrid model named SSA-ANFIS- FCM was proposed for wind speed prediction. 
The SSA was used to decompose the time series into periodic subseries. Then, the 
ANFIS model was used for wind speed prediction. The results showed that the 
proposed hybrid model obtained significantly reduced forecast errors compared to 
other models for the one-step-ahead and one-step-ahead wind prediction of 10 min. 

The same first author of the previous work and other colleagues presented in 
[84] a new approach combining two decomposition techniques for wind speed time 
series decomposition: The VMD and the SSA. The decomposition techniques were 
combined with the ARIMA models, trained to forecast each component of the series. 
The proposed hybrid model was compared to pure ARIMA and presented better 
accuracy, precision, and stability results. 

The authors in [85] introduced a hybrid approach based on DWT to forecast 
wind speed. This paper used physical, statistical, and artificial intelligence models 
for wind power prediction. The hybrid models proposed in that paper combined the 
time series decomposition technique, using the DWT, with statistical models, such as 
the ARIMA and Generalized Autoregressive Scoring (GAS). The proposed hybrid
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model provided better results in accuracy and complexity and it outperformed in 
most cases compared with existing statistical models. 

In [86] a novel hybrid model based on Bernstein polynomial with a mixture of 
Gaussians for wind power forecasting was proposed. First, the EMD technique was 
used to decompose the time series and then the hybrid Bernstein polynomial-with 
gaussian mixing model was constructed. In order to optimize the parameters of the 
hybrid model, a multi-objective state transition algorithm was used. The results for 
the proposed hybrid model outperformed other tested hybrid models in accuracy 
and stability. 

3.4 Other Hybrid Methods 

Other hybrid methods include the combinations of statistical and ML techniques. 
Differently from the references discussed in other sections, neither decomposition 
techniques nor meta-heuristic methods were used in those papers to forecast variables 
related to wind power generation. 

The authors in [87] proposed an approach to forecast wind power using deep 
learning with TensorFlow framework and PCA. The proposed model was presented 
to obtain the wind data hidden patterns, enhancing the wind power prediction per-
formance. The PCA was used to extract and select the most significant features 
for the model. For wind power prediction, a deep learning model optimized with a 
TensorFlow framework was trained using the most significant input data. The pro-
posed model outperformed other traditional methods found in the literature such as 
BPNN, SVM, CNN and others. No time series decomposition nor training using 
meta-heuristic algorithms were adopted. 

In [88] a hybrid nonlinear forecasting method was proposed for short-term wind 
speed. The method combined Gaussian process and unscented Kalman Filter (UKF). 
The Gaussian process model was considered as a nonlinear transition function of a 
state-space model that had its states estimated using the UKF. The proposed hybrid 
model outperformed other tested models, such as persistence model, AR model, 
Gaussian process alone and some combinations of those methods, demonstrating the 
advantages of the hybridization adopted. 

The authors in [89] implemented a short-term wind power prediction of wind 
farms based on the LSTM-NARX neural network. The LSTM was used to predict 
the wind speed based on past meteorological information. Then, the wind speed 
prediction was given as input to a NARX model to forecast the wind power. The 
results showed that the proposed hybrid model outperformed the tested methods 
such as NARX and WAVELET-BP. 

In [90], an adaptive deep learning scheme was proposed to forecast wind speed. 
The idea was to use a series scheme to firstly model the data and then model the 
residual. To model the data, a linear approach was adopted and a search method was 
proposed to determine the optimal set of inputs. To model the residual, the same idea
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was used with a non linear method: the LSTM. Results showed that the proposed 
model outperformed other tested models such as statistical, ML and hybrid models. 

In [91], a comparison was performed between a physical model, a NN and a 
hybrid model including both methods to forecast the wind power. The physical model 
adopted consists of the turbine power curve, which receives as input the wind speed 
predicted by a NWP model. The NN used many meteorological data as inputs and its 
outputs were the predicted wind power. The hybrid method consisted of a NN with 
the same inputs as the first one, plus the power predicted by the physical method. 
Comparisons were also made with other simpler methods, such as persistence and 
naive ones. As a result, the hybrid method presented better performance in almost 
all metrics used to perform the comparison. 

4 Hybrid Techniques for Solar Power Prediction 

Solar power is a fundamental source to achieve the net-zero emissions. For this 
reason, the global installed capacity is growing each year, with 621 GW installed in 
2019 and with about 760 GW in 2020 [92]. 

Forecasting the electric power production capacity from this renewable source 
is a challenging task. This occurs because the associated atmospheric phenomena 
provide a probabilistic nature to solar power generation. In this context, nowadays, 
research studies about solar radiation forecasting attract many scholars and managers, 
and several models are being developed to solve that problem. These models can be 
classified as physical, statistical and artificial intelligence (AI). More recently, hybrid 
methods gained attention in the solar forecasting community. 

One of the first reviews about hybrid techniques to forecast solar radiation was 
presented recently in [93]. The authors identified 6 categories for hybrid methods, 
being the first one similar to the parallel model ensemble category described in this 
work, the second one based on similarity, the following two based on decomposi-
tion, the fifth based on evolutionary algorithms and the last one based on residual 
learning, which is understood in this work as a serial ensemble method. Although the 
review is relatively recent, many papers were published after it was made, and in this 
section, recent hybrid techniques for solar prediction will be discussed, following 
the categories introduced in Sect. 1. 

4.1 Model Ensemble 

Few authors explored model ensemble methods to predict solar power generation. 
Possibly it is due to the fact that the solar power prediction is a more recent problem, 
and more advanced techniques were available when these studies started. 

The only recent reference found that can be classified as a model ensemble method 
for solar power prediction is [94]. In that reference, a hybrid model combining
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SARIMA-LSTM using a stacking technique was implemented. Thus, it was pos-
sible to create a prediction model combining the advantages of different prediction 
models. Furthermore, in that paper, numerical text data were combined using time 
series and satellite images as exogenous variables in order to extract the spatial and 
temporal features of solar power generation. Results showed that the proposed model 
outperformed in terms of accuracy and precision single models such as LSTM, RF 
and SVR, demonstrating that ensemble models can achieve better performance than 
individual models. 

4.2 Parameters Determination Based on Meta-Heuristic 
Methods 

Meta-heuristic optimization methods were also applied to forecast solar power or 
related variables. For example, in a recent review, almost one hundred references 
were found regarding the use of meta-heuristic methods to optimize SVM models 
parameters to predict solar radiation [95]. Other recent applications, involving either 
SVM and other classes of models, are presented in this section. 

In [96], a hybrid method was proposed for short-term photovoltaic power fore-
casting. The method combined GA and SVM and consisted of two techniques: clas-
sification and optimization. The SVM classified historical weather data. Then, GA 
was used to optimize the SVM. Moreover, in order to define the weight/cost matrix, 
the GA was used again. This allows a more accurate fit of validation data. Results 
showed that the proposed hybrid model outperformed a simple SVM model. 

In [97], a method combining Salp Swarm Algorithm (SSWA), RNN and LSTM 
was proposed to forecast solar power. SSWA was used to optimize the LSTM model. 
The input variables considered in the work were solar radiation, ambient temperature, 
module temperature and wind speed, whereas the model output was the power of each 
photovoltaic (PV) system. The proposed hybrid model outperformed other hybrid 
models such as PSO-RNN-LSTM, RNN-LSTM and GA-RNN-LSTM in terms of 
accuracy and robustness. 

The authors in [98] implemented a short-term global solar radiation prediction 
based on LSTM and GP. GP was used to perform post-processing combining the 
outputs of the LSTM model to find the best prediction of global solar radiation. 
The performance of the proposed approach was compared to the stacking technique. 
Results showed that the proposed model outperformed, in terms of performance 
and consistency, other hybrid methods using the stacking technique, such as LSTM-
KNN, LSTM-SVR, LSTM-MLP and LSTM-RF, demonstrating the advantages of 
the meta-heuristic applied. 

In [99], a deep learning scheme was proposed for short-term solar irradiance 
prediction. The idea was to use GA to optimize the LSTM, GRU and RNN models. 
Moreover, GA was used to find the most suitable meta-parameters, such as window 
size and number of neurons in each hidden layer. In order to pre-process the input data,
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the normalization technique was used. Finally, the performance of solar irradiation 
prediction was compared within the three NNs mentioned above. Results showed 
that the GRU-GA combination resulted in the most accurate model. 

In [100], a hybrid model combining SOM, SVM and PSO was implemented for 
solar irradiance prediction. First, SOM was used to divide the input space into several 
disjointed regions. Then, the SVR was applied to models each disjointed region in 
order to identify the characteristic correlation. Finally, the PSO was used to perform 
the selection of parameters in the SVR modeling. Results showed that the proposed 
approach outperformed other models alone, such as ARIMA, LES, SES and RW, 
demonstrating that the parameters optimization using meta-heuristic results in more 
accurate models. 

The authors in [101] implemented a solar radiation prediction based on RF and 
PSO. The inputs were several meteorological factors, such as temperature, humidity, 
wind speed and others. In order to obtain the optimal performance of the RF model, 
it was necessary to determine the optimal parameters values, and to achieve this, the 
PSO technique was used. Results showed that the proposed method outperformed 
other methods alone, such as RF, MLP and DT. 

In [102], three hybrid models combining PSO, GA and DE with ANFIS were 
implemented for monthly global solar radiation prediction. The sunshine duration, 
temperature and clearness index were considered as input variables. Results showed 
that the hybrid model combining ANFIS and PSO presented greater accuracy and 
reliability if compared to other hybrid models, such as ANFIS-GA, ANFIS-DE, 
SVR-RBF. Moreover, it also outperformed SVR, ANFIS and KELM models alone, 
demonstrating once again the advantages of hybrid algorithms. 

The authors in [103] implemented a daily global solar radiation prediction based 
on Coral Reefs Optimization (CRO) and ELM. A combination of CRO and ELM was 
used for feature selection. Then another ELM was trained as a prediction mechanism. 
In other words, the CRO-ELM was applied to select the best set for daily global 
solar radiation prediction, whereas the second ELM was trained to obtain the final 
prediction process. Results showed that the proposed method outperformed other 
possible hybrid models following the same framework, such as CRO-ELM-MLR 
and CRO-ELM-SVR. The proposed approach also outperformed the multivariate 
adaptive regression splines (MARS), multiple linear regression (MLR) and SVR 
models alone. 

4.3 Time Series Decomposition 

The frameworks for solar power forecasting involving time series decomposition 
techniques are discussed in this section. In a similar way of what has been done for 
other sources, references where different components are fed to a singular model are 
discussed firstly, and then the references where each component is predicted by a 
model and then the final result is computed are discussed.
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In [104], the authors implemented a hybrid model using WT, PSO and SVM to 
forecast PV power based on meteorological information, such as solar radiation, 
atmospheric pressure, humidity and wind speed. In order to decompose the meteoro-
logical variables into a set of subseries, the WT technique was used. Then, subseries 
of the input variables were used to train the SVM. The PSO was applied to optimize 
SVM parameters in order to predict each solar power subseries. Finally, the inverse 
WT was applied to reconstruct the solar power prediction. Results showed that the 
proposed method was more accurate than other hybrid models such as PSO-NN, 
GA-SVM and PSO-SVM. The proposed approach also outperformed SVM alone, 
demonstrating the advantages of using hybrid methods based on decomposition. 

In [105], the authors implemented a hybrid method using CEEMDAN, CNN and 
LSTM. The CEEMDAN was used to decompose the original time series into com-
ponents. The CNN-LSTM framework was capable of extracting spatial and temporal 
features respectively. Moreover, it was used to predict solar radiation one hour ahead. 
The proposed hybrid model outperformed other hybrid models such as CEEMDAN-
LSTM, CEEMDAN-SVM, CEEMDAN-BPNN and CEEMDAN-ARIMA in terms 
of accuracy. The approach also outperformed LSTM, ARIMA, SVM and BP used 
alone, demonstrating the advantages of hybrid models. 

In [106], a hybrid method was proposed to forecast hourly solar irradiance. The 
model combined WPD, CNN, LSTM and MLP. First, WPD was used to decompose 
the original time series. The decomposed time series was processed by the CNN 
model. The outputs of the CNN models were inserted as input to the LSTM model. 
The LSTM outputs were concatenated into a fully connected layer. The weather 
variables, along with the LSTM outputs, were used as input to the MLP model. 
The final prediction value was the output of the MLP model. The proposed was 
advantageous in terms of accuracy when compared to other hybrid methods such as 
RNN-MLP, BP-MLP, LSTM-MLP, CNN-LSTM-MLP and WPD-CNN-LSTM. The 
proposed approach also outperformed BPNN, SVM, RNN and LSTM models alone. 

The authors in [107] implemented a solar irradiance prediction along a navigation 
route based on EEMD and Self Organizing Map-Back Propagation (SOM-BP). First, 
the EEMD technique was used to decompose the original time series into several sub-
sequences with various frequency bands and also to extract the data characteristics. 
In order to train different networks, the subsequences obtained were used as input 
to the SOM model and their outputs were used as input to the BP model. The final 
solar radiation prediction was the sum of the outputs of all sub SOM-BP networks. 
The proposed model outperformed in terms of accuracy when compared to other 
individual methods such as RBF and BP. 

In [108], a hybrid model combining PCA, Discrete Fourier Transform (DFT) 
and ERNN was proposed for day-ahead solar prediction. DFT was used to extract 
frequency features from historical solar irradiance data. The PCA was used to identify 
the most relevant frequency features to be considered in NN model to carry out the 
solar radiation forecasting. The proposed method outperformed other hybrid models 
such as DFT-PCA-BP and PCA-BP. The proposed approach also outperformed the 
ARIMA and Persistence models alone.
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In [109], a hybrid method was proposed for short-term PV power prediction. The 
model combined Bayesian Ridge Regression (BRR), Continuous Wavelet Trans-
form (CWT) and Gradient boosting DT with categorical features (Catboost). BRR 
was used to select the most important features. CWT was applied to convert the 
chosen features into a time-frequency domain. Catboost was used for day-ahead 
PV prediction. Inverse CWT was applied to obtain the prediction final values. The 
hybrid model presented reliability which guaranteed network energy compensation 
and preventive maintenance planning. 

The authors in [110] proposed an approach for short-term solar generation predic-
tion using WTP, Generative Adversarial Networks (GAN) and Dragonfly Algorithm 
(DA). WTP was used to decompose the series into subharmonics. GAN was applied 
to predict solar power generation. DA was used to train the GAN model in order to 
improve the prediction. The proposed method outperformed other individual meth-
ods such as ARMA, ANN, CNN, GAN, SVR, RNN and Fuzzy. 

The authors in [111] implemented an hour-ahead PV power prediction based 
on the component extraction method, GRU and scenario generation algorithm. The 
component extraction method was used to identify PV power time series patterns. 
GRU was trained based on the detection of the daily fluctuating patterns of the PV 
power generation. The scenario algorithm was applied to predict the linear trend data 
for each GRU. Linear and non-linear parts of the data were inserted into the GRU 
for PV power generation prediction. The proposed method was more accurate than 
multiple and single GRU models. 

Differently from the approaches discussed before, where a single model is trained 
considering each sub-series as an input, other authors proposed methods where each 
sub-series is modelled by an individual model. The references following this strategy 
are discussed in the following paragraphs. 

The authors in [112] implemented four hybrid models combining Wavelet Mul-
tiresolution Analysis (WMA)-MLP, WMA-ANFIS, WMA-NARX and WMA-GRNN 
for modelling solar radiation. The DWT technique was applied to decompose weather 
signals. Then, from the decomposed series, these were modeled by ANN methods 
and then reconstructed to estimate the original signal. In order to model the Global 
Horizontal Irradiance (GHI), four meteorological variables were considered such 
as temperature, humidity, wind speed and sunshine duration. Results showed that 
the hybrid model combining WMA and GRNN outperformed in terms of accuracy 
when compared to other hybrid models mentioned above. Moreover, this approach 
also outperformed ANFIS, NARX, MLP and GRNN models alone. 

In [113], a hybrid prediction method was proposed for short-term PV power. The 
model combined SARIMA, Random Vector Functional Link (RVFL) and Maximum 
Overlap Discrete Wavelet Transform (MODWT). The MODWT was used to decom-
pose the time series. The SARIMA and RVFL models were used to predict each com-
ponent of the original time series. The results from SARIMA and RVFL were linearly 
combined using the convex combination method in order to improve the prediction 
for each component, in a kind of model ensemble technique. The final forecasting 
was the sum of the decomposed forecasts. Results showed that the proposed hybrid 
model outperformed hybrid algorithms where only one of the forecasting methods
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were used to predict each component (MODWT-SARIMA and MODWT-RFVL) 
and other simpler algorithms, such as Persistence, SARIMA, RVFL and SVR mod-
els alone, demonstrating the advantages of hybrid models combined with time series 
decomposition. 

The authors in [114] proposed an approach for short-term PV power using Wavelet 
Packet Decomposition (WPD) and LSTM. The WPD technique was used to decom-
pose PV power time series. Linear weighting method was used in the decomposed 
series in order to improve the prediction results. Then, to predict each one of the 
components, a LSTM was trained considering weather data as inputs. The final fore-
casting value was obtained combining the results from each LSTM. The method 
was more accurate than LSTM, GRU, RNN and MLP models alone. The proposed 
approach also outperformed other hybrid methods. 

In [115] a hybrid model combining MODWT and LSTM was proposed for PV 
power prediction. First, MODWT was used to decompose the original historical data 
into components. LSTM was applied to forecast each component of the PV power 
time series. The final value of the prediction was the weighted contribution of each 
LSTM. Results showed that the proposed hybrid model presented more accurate 
results than a DWT-LSTM hybrid model, which is an algorithm composed by a time 
series decomposition using DWT followed by a prediction step using LSTM. The 
proposed approach also outperformed LSTM, RNN, GRU and neuro-fuzzy models 
alone, demonstrating that the decomposition was useful to improve the prediction 
results. 

Differently from the works above, where the same model is used for each compo-
nent, the authors in [116] implemented a hybrid model using VMD, Deep Belief Net-
work (DBN) and ARMA for solar power prediction. First, VMD was used to decom-
pose the original historical data into components with different frequencies. DBN was 
applied to predict high-frequency components, whereas ARMA was used to predict 
low-frequency components. The proposed method outperformed other hybrid meth-
ods using the same structure such as EMD-ARMA-DBN, EEMD-ARMA-DBN, 
DWT-RNN-LSTM. The proposed approach also outperformed ARMA, DBN and 
RNN models alone. 

4.4 Other Hybrid Methods 

Other hybrid methods include the combinations of deterministic, statistical, ML and 
clustering techniques for solar irradiation or solar power forecasting. The frameworks 
proposed in those methods are significantly different from the other methods studied, 
and for this reason, are not described in previous sections. 

The authors in [117] proposed an approach for solar and wind power prediction 
using post-processing techniques and principal component analysis (PCA). The basic 
data consists of solar irradiance and wind power measured by arrays of sensors 
scattered along large areas and predicted using NWP models. To reduce the amount 
of input data, the PCA technique was used. Then, the NN and Analog Ensemble 
(AnEn) were used as post-processing techniques. The first one provides deterministic 
forecasts and, the second, probabilistic predictions. The results obtained showed that
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combining PCA with post-processing techniques outperformed when compared to 
implementing using NN and AnEn directly on all prediction data, that is, without 
dimension reduction using PCA. Moreover, the proposed method computationally 
reduces the cost and prediction error, demonstrating the advantages of using data 
reduction techniques on large data. 

Another paper where signals from multiple solar plants were considered was 
[118]. In that work, a hybrid model combining residual network (Resnet) and LSTM 
was implemented for short-term solar irradiance prediction for twelve neighbour 
solar plants in the same state of US. The method was compared to another hybrid 
method developed with a combination of Resnet and MLP and presented superior 
accuracy. The method also outperformed CNN, LSTM, and Resnet models alone, 
demonstrating the advantages of the hybrid approach. 

Another combination between NNs to forescast solar power was presented in 
[119]. In that paper, a hybrid model combining attention-based long-term and short-
term temporal neural network prediction model (ALSM), CNN, LSTM and multiple 
relevant and target variables prediction pattern (MRTPP) was proposed to predict 
hourly PV power. Results showed that the proposed method outperformed a CNN-
LSTM hybrid method and simpler methods such as ARMA, ARIMA and LSTM 
alone. 

The authors in [120] implemented a solar irradiance prediction based on satellite 
image analysis and a hybrid model combining exponential smoothing state space 
(ESSS) and ANN. The self-organized maps (SOM) technique was used to classify 
and detect the cloud cover index and ESSS was applied to predict the cloud cover 
index. Finally, the MLP model was used for solar irradiation prediction. Results 
showed that the proposed method outperformed in terms of accuracy when compared 
to other individual methods such as ARIMA, Linear Exponential Smoothing (LES), 
Simple Exponential Smoothing (SES) and Random Walk (RW). 

The authors in [121] proposed a hybrid model using ARIMA and ANN for daily 
global solar radiation prediction. ARIMA was used to evaluate linear aspects. ANN 
was applied to model the residuals of the ARIMA model. Results showed superior 
accuracy when compared with ANN and ARIMA models alone, as expected. The 
approach was similar to the one used in [122] years before. 

The authors in [123] proposed a hybrid model combining LSTM and Gaussian 
Process Regression (GPR) for short-term solar power prediction. LSTM was used for 
point solar prediction whereas the GPR method was used to estimate the confidence 
levels of the estimates. This was one of the few articles identified where the authors 
propose a probabilistic forecasting for solar power. 

Differently of what was found for hydro and wind power prediction, for solar 
power prediction, many similarity based methods were devoped. Some examples are 
detailed in the sequel. 

The authors in [124] implemented an hourly solar radiation prediction based 
on the Mycielski and Markov model. The Mycielski based model groups the solar 
radiation data in a matrix and then finds the submatrix patterns most similar to the last 
recorded value. Then, Markov model was applied in order to reflect the probabilistic 
relationships of the data. Results showed that the proposed model outperformed other
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models such as ARIMA, ANN, and a hybrid method composed of a combination 
between Cloud cover index and ARIMA. 

In [125], a hybrid method was proposed for short-term power prediction. The 
model combined K-means, Gray Relational Analysis (GRA) and ERNN. In that 
work, weather variables and historical datasets were considered. K-means was used 
to group the similar meteorological factors. GRA was used to obtain the past day 
most similar to the day to be forecasted. Then, ERNN was applied to make the 
predictions into each group of days. The proposed method outperformed other hybrid 
methods such as GRA-BPNN, GRA-RBFNN, GRA-LSSVM and GRA-ERNN. All 
those methods did not have the clustering strategy adopted in the hybrid method 
proposed, demonstrating the advantages of similarity techniques. The approach also 
outperformed the LSSVM, RBFNN, BPNN and ERNN models alone. 

The authors in [126] implemented an hourly solar radiation prediction based on 
Deep Time-series Clustering (DTC) and Feature Attention based Deep Forecasting 
(FADF). DTC was used to group time series into similar patterns in the same cluster. 
FADF was applied to predict hourly solar radiation from each cluster that was grouped 
by the DTC model. Results showed that the proposed method was more accurante 
than other hybrid models such as FADF–k-means, FADF–FCM and FADF–Gaussian 
Mixture Model (GMM). The proposed approach also outperformed the FADF model 
alone. 

5 Conclusion and Future Perspectives 

The many references about renewable energy forecasting in the last few years demon-
strate that this topic is important and relevant. With the increase of penetration of 
intermittent power sources in national grids, and the increase in electrical power 
demand due to current trends, such as electric cars, it is possible that the number of 
people dedicated to this theme grows more and more each year. 

Although the recent advances made by many researchers, this review, including 
three different renewable power sources, demonstrates that some trends observed to 
forecast a power source are not commonly used for the other ones. For example, 
although some hybrid methods containing similarity techniques are found for solar 
power, almost no reference for hydro or wind power can be found using this kind 
of technique. Another interesting observation is that most of the references for wind 
power prediction use decomposition methods, whereas it is not a common practice for 
solar or hydropower prediction. Thus, it seems that the different renewable sources 
forecasting communities would benefit from knowledge exchange. 

Furthermore, some questions remain open. Generally, the authors that propose 
hybrid methods compare the results of their proposals to parts of the hybrid scheme 
developed. Sometimes, the complexity of hybrid methods results in marginal accu-
racy gains, and the authors claim that the proposed hybrid method is better, consid-
ering just the final result and not the method complexity. As the AIC or BIC criteria 
existent for statistical methods, a generalized criterion could be proposed for hybrid 
methods.
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Another open question is the prevalence of point prediction instead of probabilistic 
predictions. While most of the techniques result only on the average of the predicted 
series, it is essential to know the confidence level of the predictions to solve many 
planning problems. State-space statistical models can provide probabilistic predic-
tions, but this ability was lost in ML methods. An important research direction is to 
answer how ML methods can make probabilistic predictions. 

In conclusion, even with the vast quantity of works related to renewable energy 
prediction, there are still many works that the community can develop about the 
theme. 
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A Deep Learning-Based Islanding 
Detection Approach by Considering 
the Load Demand of DGs Under 
Different Grid Conditions 

Gökay Bayrak and Alper Yılmaz 

Abstract Islanding detection is a very important issue in the integration of renew-
able energy systems with the grid. In recent years, especially artificial intelligence and 
deep learning-based islanding detection methods have come to the fore in terms of 
providing reliable power quality. In this study, a deep learning-based islanding detec-
tion approach by considering power quality and load demand problems is proposed. It 
is aimed to effectively detect the islanding condition which occurs as a result of unin-
tentional disconnection of distributed generation (DG) systems from the grid. In the 
proposed approach, a deep learning-based islanding detection method is developed, 
taking into account the faults and power quality events occurring on the load side 
like considering asynchronous motor startup, capacitor switching, etc., conditions 
that are not possible to easily detect by conventional islanding detection methods. 
With the developed method, it is seen that the islanding event can be distinguished 
from the power quality events that occur on the grid, even under noisy signals. In 
this way, the power quality of the grid is increased and the performance of the DG 
in dynamic load behavior is developed. 

Keywords Deep learning · Islanding detection · Distributed generation · Artificial 
intelligence · Load demand 

1 Introduction 

Today, limited fossil fuel sustainability, environmental concerns, and increasing 
energy demand are universal issues that are widely addressed to find appropriate 
solutions. Renewable energy (RE)-based distributed generators (DGs) such as photo-
voltaic (PV), wind, hydrogen, etc., based DGs and electric vehicles (EVs) with
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Fig. 1 Positive and negative effects of distributed generators on the main grid 

vehicle-to-grid (V2G) support stand out in solving these problems [1, 2]. Figure 1 
shows the positive and negative effects of these rapidly increasing systems on 
the grid. Here, it is an important criterion to connect the RE-based DGs and EV 
charging stations (EVCS) with V2G technology to the grid following the grid code 
requirements [3, 4]. 

Sustainable power flow is required for both the consumers and the grid side to 
provide a reliable grid integration. One of these criteria and the most important 
is islanding detection. Islanding as defined by IEEE 929-2000 standards [3]: The 
condition in which a distribution system becomes is electrically isolated from the 
grid yet continues to be energized by one or more local DG through the associated 
point of common coupling (PCC). Islanding condition in a microgrid causes serious 
damage to both the DG and the operator. Thus, the detection of islanding in time is 
an essential issue for a DG system. 

In case any voltage and frequency value occurring in the grid exceeds the accept-
able limits, the DG system should be physically isolated from the grid as soon as 
possible and continue to feed the local loads. From this point of view, there is a 
need for methods that can detect the islanding condition of the DG system within the 
periods specified in the standards from the moment it occurs [3]. Besides, the identi-
fication of islanding conditions and non-islanding events is also of great importance. 
In microgrids, switching of different load/capacitor groups, different DG operating 
conditions, and short circuit faults cause minor disturbances called power quality 
events (PQE) that are not islanding events [5]. Here, evaluation of DG load demand
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Table 1 Islanding condition detection standards 

Parameters IEEE Std. 929-2000 IEEE Std. 1547-2003 IEC 62116 

Frequency range 59.3 ≤ f ≤ 60.5 Hz 59.3 ≤ f ≤ 60.5 Hz f 0 −1.5 Hz ≤ f , f 0 +1.5 Hz ≤ f 
Voltage range 0.88 ≤ V ≤ 1.10 0.88 ≤ V ≤ 1.10 0.85 ≤ V ≤ 1.15 
Quality factor 2.5 1 1 

Detection time t < 2 s t < 2 s t < 2 s  

in different grid conditions and performing tests in all possible load case scenarios 
are essential for system reliability and sustainability [6]. The frequency and voltage 
range allowed in the standards and the island detection time are given in Table 1. 

Islanding detection methods can be classified as remote, local (passive and active), 
and intelligent methods. However, passive and active methods have several draw-
backs, including difficulty in determining a threshold value, uncertainty due to oper-
ating conditions, and susceptibility to noise [7]. Also, they contain a large non-
detection zone (NDZ) [1]. The NDZ indicates the area where islanding occurred 
but could not be detected. Islanding detection should be possible even in the worst 
case where the active and reactive power generated in the microgrid is completely 
consumed by the loads. For good islanding detection, the NDZ should be as low 
as possible. NDZ is low in remote methods, but the cost is quite high [8]. To 
overcome the limitations of traditional methodologies, intelligent methods using 
signal processing and classifiers are presented [6]. Intelligent islanding detection 
approaches are including three steps in the literature: signal processing [9], feature 
selection [10], and classification [11]. In some studies in which signal processing-
based techniques are applied, very high accuracy is obtained in noise-free conditions, 
while it is observed that this accuracy decreased in high noise conditions [6]. In clas-
sifiers, features must be correctly defined by users. Besides, the feature selection 
takes a long time. Deep learning (DL) methods have automatic feature extraction 
capability and eliminate human involvement, and it has closed-loop feedback. These 
methods can automatically extract features without the need for any conventional 
signal analysis method. 

When the literature studies are examined, an effective islanding detection method 
should have the following features [9]: 

• It should be applicable for distributed generation systems with different charac-
teristics. 

• Islanding conditions and non-islanding PQE events should be extensively tested 
considering the DG load demand. 

• Minimum measurement parameters should be used. 
• It must be validated with a large-scale dataset. 
• Cost should be reduced by using a limited number of measuring devices. 

In this study, a DL-based islanding detection method using long short-term 
memory (LSTM) and convolutional neural network (CNN) is proposed for the clas-
sification of islanding and PQEs such as sags, swells, and frequency deviations in
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DG-based microgrid considering the DG load demand. The NDZ is almost zero, and 
the detection time is under the IEEE Std. 929-2000, IEEE Std. 1547-2003, and IEC 
62116 standards. In Sect. 2, information about the mathematical and simulative data 
generated for islanding and non-islanding events (PQEs) is given, and the test system 
and data acquisition hardware are discussed in detail. In the next section, signal anal-
ysis and machine learning (ML)-based methods are discussed in detail, after briefly 
mentioning the conventional passive, active, and remote methods. Besides, in Sect. 3, 
deep learning methods used in fault detection, especially in microgrids, which are 
gaining popularity, are discussed. Section 4 covers the theoretical background of 
the proposed method, its application, and the results obtained from the method. 
The proposed methodology for the classification of islanding/non-islanding events 
is investigated by considering the DG load demand under different grid conditions. 
Discussion and conclusion are presented in Sect. 5. 

2 Data Generation and Test System 

2.1 Data Generation Using Mathematical Models 
and Simulation Models 

Islanding events and PQEs are generated using mathematical models, simulation 
studies, and real data acquisition systems with an experimental setup. In this study, 
mathematical PQE data is generated using the integral-based method [12], following 
IEEE 1159 standards, with the software created in the LabVIEW environment. 
Researchers have the option to configure such as the number of samples, the sampling 
frequency, the fundamental frequency, and the normal amplitude of the signals. 
Figure 2 shows the LabVIEW interface of the software using the integral-based 
method. PQE data parameters selected inf Ref. [8, 12]. 1000 samples are generated 
for each event.

Simulation models are the ability to provide hundreds of different operating condi-
tions in the computer environment that did not occur in the real system but can be 
realized in simulation. Islanding condition signals and PQEs are generated according 
to the references [9, 12] using the MATLAB/SIMULINK model. Simulations are 
generated for all scenarios that will occur depending on the situation on the demand 
side. The dataset scenarios used in islanding detection are shown in Fig. 3. The  
active/reactive power change in the PCC should be set to zero as specified in the 
IEEE 1457 standard. In this case, the variation between voltage and current values 
will drop to almost zero before and after the islanding [1]. The method to be proposed 
for the islanding detection should also be able to accurately detect the island study 
even in these cases. In this study, data is generated by considering various power 
values with low NDZ between production and consumption for islanding conditions.
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Fig. 2 LabVIEW interface of the software using the integral-based method

Fig. 3 Dataset scenarios used in islanding detection 

2.2 Islanding Test System 

The islanding detection test system following IEEE 929-2000 std is shown in Fig. 4, 
and the DG system operated under power factor is Q f = 2.5 at the resonance 
frequency ( fresonance = 50 Hz) [13]. In the applied methods, it is aimed that the 
detection time is below the IEEE 929-2000 standards and the NDZ is almost zero.



66 G. Bayrak and A. Yılmaz

Fig. 4 Islanding detection test system 

The test system is operated under a parallel load of R = 50 Ω, L = 63 mH and C = 
0.16 mF. The quality factor (Q f ) for demand side load is 2.5. 

Q f = R 
/
C 

L 
= 50 

/
0.000159 

0.063 
≈ 2.50, 

fresonance = 1 

2π
√
LC 

= 1 

2π 
√
0.000159 × 0.063 

≈ 50 Hz 

3 Islanding Detection Techniques 

The main purpose of the islanding condition detection methods is to determine 
whether the islanding has occurred by monitoring some electrical parameters and load 
demand on the grid and DG sides. Islanding detection methods can be divided into 5 
categories: active, conventional passive, remote, hybrid, and improved passive (signal 
analysis and ML-based) methods. Figure 5 shows islanding detection methods. In 
the sub-headings, the methods are detailed.

3.1 Conventional (Local and Remote) Techniques 

Local methods (Passive: over/under frequency and voltage (OFP/UFP, OVP/UVP), 
rate of change frequency (RoCoF) frequency, phase jump detection, etc. Active: 
sandia frequency shift, active power, reactive power, harmonic signal injection,
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Fig. 5 Islanding detection methods

impedance measurement, etc.) have several drawbacks, including difficulty in deter-
mining a threshold value, uncertainty due to operating conditions, and susceptibility 
to noise. Also, they contain a large NDZ. In the active method, an additional distur-
bance signal is given to the system from the outside and the islanding condition is 
detected by monitoring the changes. Although NDZ is relatively low compared to
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conventional passive methods, signals injected from the outside into the system can 
cause PQ degradation. In addition, detection times are slower than passive methods. 
NDZ is low in remote methods (transfer trip, phasor measurement unit (PMU)-based 
scheme, programmable logic controller (PLC)-based scheme, etc.), but the cost is 
quite high [1, 6]. 

3.2 Signal Analysis-Based Methods 

Signal analysis methods have a much more flexible structure as they offer the chance 
to observe both the time and frequency domain properties of the signals. Many signal 
analysis methods such as FT, short-time Fourier transform (STFT), Hilbert–Huang 
transform (HHT), wavelet transform (WT), s-transform (ST), TT transform, curvelet 
transform (CT), empirical mode decomposition (EMD), principal component anal-
ysis (PCA), etc., are used in the literature [1, 6]. There are some disadvantages to 
signal analysis approaches. STFT has a fixed time–frequency window resolution and 
cannot provide appropriate information for all event signals. WT is heavily influenced 
by noise. Spectral leakage influences the performance. ST is not good at real-time 
applications. Also, ST may cause a false estimation of harmonics. HHT applied to 
narrowband only. TT transform has high complexity. Furthermore, all methods have 
a computational burden and are not robust to noise [14]. 

Figure 6 provides a flowchart for the signal analysis methods. As seen, in 
these methods, field transform is performed to the event signal first and its coef-
ficients/features are extracted. Threshold values are determined with empirical tests 
afterward, and islanding/non-islanding events are detected according to the feature 
parameters. Applications with threshold values show trends in false detection and 
missed detection due to difficulties in choosing values. This causes problems espe-
cially for signals with high noise conditions when the nominal even and the fault 
state are very close. 

Fig. 6 Flowchart of signal processing-based method [9]
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Fig. 7 Flowchart of signal analysis, feature selection, and classifier-based method [11] 

3.3 Machine Learning-Based Techniques Using Signal 
Analysis, Feature Selection, and Classifier Methods 

To overcome the limitations of traditional methods, intelligent methods using signal 
processing, feature selection, and classifier-based three-stage ML techniques are 
presented [14–17]. A flowchart of the ML approaches using signal analysis, feature 
selection, and classifier is shown in Fig. 7. In these methods, in the first step, the signal 
analysis method is applied to the event signal and feature extraction is performed 
using statistics. The second step is the selection of features that affect the classifier’s 
performance. However, the feature filtering optimization process is time-consuming 
and tedious. Besides, it’s worth noting that the original feature set is still manually 
selected. In the last stage, event classification is performed using the selected features. 
The ability of conventional three-stage ML methods to reveal attributes in raw data 
is limited compared to DL and requires an expert in the training process. In DL, new 
features emerge spontaneously by training the data, while in ML, the features must 
be defined correctly by the users. As a result, it is seen that while the traditional 
ML approach achieves very high accuracy in noise-free conditions, this accuracy 
decreases under high noise conditions. 

3.4 Deep Learning-Based Techniques 

DL techniques have automatic feature extraction capability, eliminate human involve-
ment, it has closed-loop feedback. These methods can automatically extract features 
without the need for a signal processing step. Unlike traditional neural network 
structures, DL algorithms extract features in complex data using multiple layers. 
When DL is used to solve islanding identification difficulties, can streamline proce-
dures, enhance accuracy, and reduce the need for human intervention. The differences 
between traditional ML methods and DL are given below: 

• DL algorithms for training require more data than ML classifiers.
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• While new features emerge spontaneously by training the data in DL, ML 
classifiers need to define the features correctly by the users. 

• Deep neural networks (DNNs), which contain much more mathematical oper-
ations than classical ML give higher accuracy results in high-dimensional data 
thanks to these features. 

• In ML, problems are divided into small parts and the results are combined 
into a single result. In DL, on the other hand, step-by-step problem solving is 
approached. 

DL architectures can be examined in four different groups according to the training 
algorithms used. Examples of commonly used DL architectures are convolutional 
neural network (CNN), deep belief network (DBN), stacked auto-encoder (SAE), 
and long short-term memory (LSTM). 

• Convolutional neural network (CNN)-based algorithms [18]: CNN, one of the 
widely used DL algorithms, is a DNN equipped with one or more convolutional 
layers followed by one or more feedforward layers. Classical CNN architectures 
are formed by cascading convolutional layers, pooling layers, and fully connected 
(FC) layer structures. Besides, dropout and batch normalization are often used 
to standardize inputs and prevent overfitting. The data to be used in the input 
layer is given to the relevant network as raw. The size of the data directly affects 
the accuracy of the network. As the data capacity grows, higher memory and 
training time are needed. The conversion process on the input data is provided 
with filters. With the activation function, the linear structure in the convolution 
layer is activated by transforming it into a nonlinear structure. The pooling layer is 
used after the activation function and reduces the input size for the next convolution 
layer. In this way, the memorization of data is prevented, and the calculation cost 
is reduced. The fully connected layer comes after these layers and depends on all 
areas of the convolutional layer before it. The dropout layer, on the other hand, 
can be used in these architectures in some cases to prevent the network from 
overfitting. Finally, classification is made in the output layer and the Softmax 
function is generally preferred because of its success. It produces a certain amount 
of output according to the classification type of the network. 

• Long short-term memory (LSTM)-based algorithms: Recurrent neural networks 
(RNN) are one of the types of artificial neural networks, and it is formed as a 
result of the connection of several units consisting of directional loops with each 
other. The structure of the network has the potential for the entry-level neural 
network plan to predict the next data using the previous data. The most widely 
used structure in RNNs is LSTM. Consisting of memory cells and gates, LSTM 
is produced as a solution to the vanishing gradient problem and to overcome 
complex time series. LSTM architecture has three gates input, forget and output, 
fixed fault loop, output activation function, and peephole connections. Memory 
cells store information with the control of gates. There are input gates, output 
gates, and forget gates, which are used to control the flow of information into and 
out of the memory cell. LSTM is effectively used in sequential modeling tasks 
such as text classification and time series modeling. The application principle is



A Deep Learning-Based Islanding Detection Approach … 71

the same as the basis of artificial neural networks, and it is based on the input 
vector multiplied by the weight matrix and summed with the bias vector, and 
passed through an activation function. Models using multiple LSTM layers are 
called deep LSTM (DLSTM). 

• Stacked autoencoder (SAE)-based algorithms: Autoencoders (AE) are neural 
networks that obtain a generally lower-dimensional representation of the data 
and use that representation to produce the same data as output. With this feature, 
the training of self-encoders, which is an example of notation learning, takes 
place through unsupervised learning. AE has a feedforward structure; this neural 
network may have one or more hidden layers. The main difference between AE 
and conventional artificial neural networks is the size of the output layer. In an AE, 
the size of the output layer and the size of the input layer are the same. Islanding 
and PQE signals have a complex relationship. Therefore, using just one AE is 
not enough. A single AE stands out in SAE classification problems because it 
cannot reduce the dimensionality of the input features. SAE consists of multiple 
encoders. 

• Deep belief network (DBN)-based algorithms: In ML, DBN is a class of DNN that 
consists of multiple layers of hidden nodes, with connections between layers but 
not between nodes. DBNs can be viewed as a combination of simple, unsupervised 
networks such as restricted Boltzmann machines (RBM) or AEs. Each RBM layer 
is connected with both previous and subsequent layers. However, the nodes of 
any layer do not communicate with each other horizontally. DBNs can classify 
or cluster for unsupervised learning with a Softmax layer as the last layer. DBN 
architectures are applied to image recognition and generation. 

4 Proposed Hybrid Model Using CNN and LSTM 

ML-based islanding detection approaches are including three steps: signal 
processing, feature filtering, and classification. However, the ability of conventional 
three-stage ML methods to reveal attributes is limited compared to DL and requires 
an expert in the training process. Also, three-stage ML methods are not robust to 
noise. Signal processing and feature selection stages cause an extra computational 
burden. Human intervention at this stage makes the closed-loop control seen in DL 
structures impossible. To solve these problems, a novel multiple DL-based models 
are suggested in this study. In Fig. 8, the general structure of the DCNN, DLSTM, 
and proposed hybrid CNN-LSTM-based DL method is shown. In the study, it is 
tried to find the best of the existing deep learning algorithm outputs. Thus, choosing 
the best result is aimed to increase the accuracy and reliability of the system. This 
method provides reliably detecting islanding conditions differing from conventional 
methods that cause false detections due to load demands and noises in the signal. 
This method will be discussed in detail in this section.

The number of layers, layer order, and parameter selection in the DCNN model 
may differ based on the model designer. The data for CNN models is passed through
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Fig. 8 a DLSTM algorithm, b DCNN algorithm, and proposed DCNN-DLSTM-based method

the network layers, and the weights are updated and transferred to the next layer. The 
overall error value is computed by subtracting the DCNN response from the targeted 
result. A backpropagation technique is used to distribute the obtained error to all 
weights in the network. The influence of each weight on total error is determined 
using stochastic descent-based optimization approaches. To get the best network 
performance, each iteration aims to lower the overall error. Several models are formed 
in this study by changing various parameters such as ordering layers in the DCNN 
structures, kernel dimensions, activation functions, and optimizer functions, filter 
dimensions. Figure 8a shows the model parameters that provide the highest accuracy
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for the DCNN algorithm. RELU is used as the activation function in the CNN algo-
rithm. In the FC layer, the sigmoid activation function is used. Dropout and batch 
normalization are used to standardize inputs and prevent overfitting. 

In Fig. 8b, model parameters are shown in the case where the most suitable 
model providing the highest accuracy for the DLSTM algorithm to be used for 
island detection is created. This model is determined for the best-performing case 
by modifying the hyper-parameters on the network and using optimization methods. 
After choosing the most suitable LSTM model, the effects on the accuracy of the 
model are investigated by changing parameters such as the most appropriate input 
parameters using this model and changing the training test rates to determine a faster 
islanding detection. 

In this study, a hybrid network called DCNN-DLSTM combining DCNN and 
DLSTM algorithms is proposed for islanding/non-islanding event classification. 
DCNN and DLSTM models are created separately in the previous stage and combined 
to achieve better performance. The important information of the input samples is 
revealed in the first stage with CNN. The LSTM neural network, on the other hand, 
is designed to train and classify islanding and non-islanding conditions in the second 
step. The motivation to use LSTM in this model is to extract the dependencies between 
each feature row from the CNN network. The model parameters selected by consid-
ering the accuracy and loss factor consist of the number of convolutional layers, 
kernel size, maximum pooling, and the number of neurons in the fully connected 
layer. Model parameters are optimized by training with different options to achieve 
maximum performance. RELU is used as the activation function in the CNN algo-
rithm. In the FC layer, the sigmoid activation function is used. In Fig. 8c, model 
parameters are shown in the case where the most suitable model provides the highest 
accuracy for the DCNN-DLSTM algorithm. 

4.1 Results 

The number of training sets reached 7000 samples for DCNN, DLSTM, and proposed 
hybrid models. Generated test samples for islanding and non-islanding classes 
are given in Table 2. Class C1 shows islanding events, while class C2 covers 
non-islanding events such as PQEs.

The classification test results of the proposed method have given in Table 3. 
Accuracy performance is very high for test data containing noise at different signal-
to-noise ratio (SNR) values and covering all scenarios. The proposed approach clas-
sifies islanding conditions caused by CB opening and minor disturbances caused by 
switching and operating conditions in a microgrid.

The performance comparison of DLSTM and DCNN and the proposed DCNN-
DLSTM-based hybrid method at different noise levels is given in Table 4. The hybrid 
model provides better performance than DCNN and DLSTM in accuracy and noise 
immunity. LSTM is to extract the dependencies between each row of features. With
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Table 2 Generated test samples for islanding and non-islanding classes 

Class Events Number of test samples 

C1 Islanding in different power mismatches (at the PCC of the 
hydrogen energy-based DG) 

300 

C2 Voltage sag (switching on loads and switching off capacitor 
banks) 

100 

Voltage swell (switching offloads and switching on 
capacitor banks) 

100 

Induction motor starting 100 

Presence of drive systems 100 

PV disconnection 100 

Line-to-ground (LG), two line-to-ground (LLG), and three 
line-to-ground (LLLG) faults 

200

Table 3 The classification 
test results of the proposed 
method 

Class Number of test 
samples 

Corrections Accuracy rate (%) 

C1 300 295 98.33 

C2 700 688 98.29

Table 4 Comparison Accuracy rate (%) 

Model No-noise Low-level noise 
(SNR: 40 dB) 

High-level 
noise (SNR: 
30 dB) 

DCNN 98.43 97.13 96.46 

DLSTM 98.25 97.56 96.79 

Proposed 
hybrid model 

98.85 98.13 98.01 

this advantage, the proposed model shows performance superiority in automatic 
feature extraction. 

The detection time is within the IEEE standards for the hybrid DCNN-DLSTM 
with a binary classifier. NDZ region is almost zero for the proposed method, and its 
comparison with UVP/OVP, and UFP/OFP methods is shown in Fig. 9.

5 Discussion and Conclusion 

Previous ML-based islanding detection approaches are including three steps: signal 
processing, feature filtering, and classification. In the signal analysis step, all methods 
are affected by noise. The feature filtering and feature optimization process are
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Fig. 9 NDZ region comparison with UVP/OVP and UFP/OFP method for different Q f

tedious and time-consuming. Besides, signal processing and feature selection cause 
a computational burden. To solve these problems, a novel multiple DL-based models 
are suggested. A DL-based islanding classification method using LSTM and CNN 
is proposed for the classification of islanding and non-islanding PQEs such as sags, 
swells, and frequency deviations in DG-based microgrid considering the DG load 
demand. The important information of the input samples is revealed in the first step 
with CNN in the proposed method. The LSTM is designed to train and classify events 
in the second step. 

A DCNN-DLSTM-based method is analyzed under different scenarios that will 
occur depending on the situation on the demand side. The accuracy results are also 
compared with the DCNN and DLSTM models. The proposed method has 98.85% 
accuracy under no-noise and 98.01% high-level noise conditions. The detection time 
is within the IEEE standards and NDZ is almost zero for DCNN-DLSTM with a 
binary classifier. 
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Comparison of PV Power Production 
Estimation Methods Under 
Non-homogeneous Temperature 
Distribution for CPVT Systems 
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Abstract The way to increase energy generation in a standard photovoltaic (PV) or 
photovoltaic/thermal (PV/T) system is the tracking of the sun and/or concentrating to 
increase the solar energy coming into the field. As the radiation is increased in both 
concentrated PV and PV/T systems, both PV power output and PV module temper-
ature increase. The fact that the PV module temperature increases and exceeds the 
reasonable level reduces the life of solar cells and permanently damages the cells. 
The way to prevent this is to cool the PV modules. In other words, thermal energy is 
absorbed by integrating the thermal system. Thus, both electrical and thermal energy 
needs will be met easily, and a concentrating photovoltaic thermal (CPVT) system 
produces both electricity and thermal energy from the sun. Electrical and thermal 
behavior analyzes of CPVT systems are important issues in order to robust and accu-
rate deciding for electrical and thermal power production. In a previous study, finite 
volume methods were applied for thermal analysis of the CPVT system. Tempera-
ture distribution of the PV modules and CPVT surfaces was done. In the numerical 
analysis; power/temperature coefficient-based method was used for electrical power 
estimation. In this chapter, power/temperature coefficient-based and five parameter 
models of PV modules were presented and discussed for forecasting of electrical 
power production. Decided to PV module temperature in power/temperature coeffi-
cient model and temperature distribution applications on diode model were discussed.
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Power/temperature-based power estimation methods are depending on first, medium, 
and end PV module temperature. However, different case studies for CPVT electrical 
power production forecasting methods were investigated. 

Keywords Solar energy · Photovoltaics · Concentrating photovoltaic thermal ·
Electrical modeling · Uncertainties 

1 Introduction 

The current traditional energy use causes global climate changes with increase in 
energy demand in recent years. Therefore, the creation of an energy structure that 
does not or is less risky for the environment gains importance in terms of sustainable 
development and climate changes [1]. The limited energy and the increasing demand 
for energy every day encourages the use of more efficient energy from energy sources. 
Renewable energy sources (RES) are environmentally friendly, non-renewable and 
intermittent types of energy. The ever-increasing energy demand and the inability to 
store energy encourage more efficient use of energy produced from RES. Recently, 
due to the decrease in initial investment costs, the electricity produced from the sun 
as RES has increased by society and industry, institutions and organizations [2]. 

Solar photovoltaic (PV) cell includes semiconductor materials and converts the 
electricity from the sun. The quantity of solar radiation on the PV surface is raised 
in the concentrating PV (CPV) cells. However, PV module temperature increases 
because of the rising of solar radiation in CPV cells. Therefore, over temperatures 
can be permanently damaged to solar cells. PV cells are actively or passively cooled 
in order to prevent the damaging. In order not to damage the PV cells, they are 
actively or passively cooled. A channel through which a fluid flows is used on the 
PV back surface for active cooling. Thus, solar energy is converted into heat energy 
together with electricity. Systems operated in this way are referred to as concentrated 
PVT (CPVT). 

The solar radiation for the parabolic-trough node has uniform value for CPVT 
systems. And the PV modules are, respectively, cooled by the fluid as the fluid flows 
through the parabolic trough. On the other hand, as the liquid flows to the end of 
the parabolic trough, the cell temperatures rise and the liquid temperature rises. PV 
module temperature is higher than previous node. For this reason, inhomogeneous 
temperature distribution occurs in PV modules. For this reason, the current and 
voltage values of PV modules vary. The realization of these mismatches creates 
power losses in the PV. In this chapter, uncertainty of the amount of electricity from 
the CPVT system was evaluated. Uncertainty analysis in output power estimation 
caused by nonlinear behavior of solar cells and environmental factors in literature 
studies was presented below. In addition, literature studies about CPVT systems were 
mentioned. 

The performance of PV systems varies according to material properties, oper-
ating conditions, and environmental conditions (temperature, solar radiation, wind
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speed, etc.). Mallick and Eames [3] evaluated the electrical performance analysis 
of the low-concentrated PV system. Current–voltage (I–V) and power-voltage (P– 
V) curves were used for electrical performance analysis. According to the findings, 
weak optical coating between the unit concentrator and the PV module causes more 
than one MPP. Maka and O’Donovan [4] performed dynamic performance analysis 
with thermal and electrical models for a triple junction solar cell-based CPV module. 
It has been observed that the annual change in cell temperature above 80 °C covers 
13% in the summer season. In addition, it has been emphasized that one of the 
causes of current mismatching in the triple junction solar cells is spectral variation. 
Durusoy et al. [5] determined the correction factor as 0.33 for the calculation of solar 
radiation incident on the back surface of the bifacial PV module. The annual PV 
efficiency calculation error was 1.4% after the correlation methods. Metlek et al. [6] 
estimated the effect of temperature on electrical power in the natural zeolite PVT 
system using a long short-term memory algorithm. It has been seen that the proposed 
algorithm accomplished the accurate predictions with very small errors. Navabi et al. 
[7] presented work for accurate estimation of output energy using PV module equiv-
alent circuit models. The proposed modeling in the study for the planning studies of 
PV systems was compared with the system supervisor model and RETScreen soft-
ware. According to the monthly analyzes, the average error of the developed model 
was below 5%, while the other techniques were found to be above 10%. Carullo 
and Vallan [8] analyzed the long-term performance of PV power plants. According 
to the power plant data and their calculations, the most uncertainty is seen in the 
average PV efficiency with 1.3%, while the plant with CIGS thin film PV module is 
more efficient than the others. Makrides et al. [9] presented a study on the errors and 
uncertainties in estimating the annual energy yield of different types of PV modules. 
They have been reported that the accuracy is increased by the correlation of the 
temperature coefficient in the single-point efficiency model. In addition, study has 
been observed that the results of the single diode model better match the real data. 
Dubard et al. [10] investigated the uncertainties in PV performance measurement 
traceability. According to obtained results; uncertainty varies between 2.5 and 10% 
in the PV production line. And practically it is between 3% and 5%, while it is as 
low as 2% for the crystalline silicon reference modules. They emphasized that the 
uncertainty developed is a key factor for the PV market and has a significant impact 
on the economy and the environment. Dirnberger et al. [11] presented a study on 
the performance ratios and uncertainties of eight different PV module types. In the 
analysis with STC power uncertainty, it was observed that the uncertainties changed 
between 1.8 and 3.0%. Roberts et al. [12] presented system models and analyses of the 
process from global solar radiation to alternating current output for PV performance 
evaluation. In another study [13], literature reviews on the correct estimation of the 
maximum power point for quality assurance of large-scale PV plants were evaluated 
and compared with experimental data. In the study evaluation for four different PV 
technologies, it was stated that CdTe and CIGS thin film technologies are similar 
to the technologies with crystalline silicon. In terms of amorphous/microcrystalline 
PV technologies, it is declared that the seasonal variation is 3.5% of the STC power. 
It has been emphasized that the uncertainties about the models for such a situation
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are great. Zhang et al. [14] performed the analysis of parameter uncertainty on the 
reliability and performance of PV cells with the quasi-Monte Carlo method. In the 
study based on the single diode model, small series internal resistance and large 
parallel internal resistance were reported for increasing the amount of power gener-
ation. Bharadwaj and John [15] proposed a sub-cell model for PV modules with 
hotspots. In the proposed model, the shading cross-section and PV equivalent circuit 
parameters are correlated. According to the tests performed in the shading condi-
tions, the proposed model has proven to be useful with an output prediction accuracy 
of 93%. Chin and Salam [16] developed the three-point approach technique for PV 
parameter extraction. According to the obtained results, the standard deviation of the 
proposed method is lower, and it is superior to other methods in parameter extrac-
tion. Li et al. [17] has been reported that I-V characteristic curve-based methods 
are used more frequently in PV parameter extraction and maximum power point 
estimation. In this chapter, power/temperature coefficient-based and five-parameter 
models of PV modules were presented and discussed for forecasting of electrical 
power production. Decided to PV module temperature in power/temperature coeffi-
cient model and temperature distribution applications on diode model were discussed. 
Power/temperature-based power estimation methods are depending on first, medium, 
and end PV module temperature. In the literature studies about CPVT systems were 
presented as follows. 

Ben Youssef et al. [18] developed a two-dimensional numerical model for elec-
trical and thermal performance analysis in a triple-junction CPVT system. Thermal 
model and electrical performance evaluations based on current–voltage curves in a 
CPVT system with north–south solar tracking in the steady state and transient anal-
ysis carried out by Wang et al. [19]. According to the comparison with experimental 
studies, it has been seen that the thermal model in the transient analysis gives more 
realistic results. Bernardo et al. [20] implemented and simulated a parabolic-trough 
CPVT system with a triangle receiver. Calise and Vanoli [21] zero-dimensional 
energy balance equations, finite volume methods [22], high-temperature solar tri-
generation system [23], air holding unit with dryer [24], CPVT assisted heating and 
cooling [25], thermodynamic performance evaluation [26], thermal modeling and 
parametric analysis [27], optical modeling and optimization [28], CPVT-based air 
heating and thermal energy storage [29], effect of different absorbers on performance 
[30], absorption-thermoelectric cooling [31], optical design [32], and electro-thermal 
analysis [33]. Various studies have been carried out on the CPVT and PVT systems. 
Demircan et al. [2] investigated electrical connections of PV strings in CPVT systems. 
Afzali Gorouh et al. [34] designed a low-concentrated CPVT system with an A-
shaped PV array. The system was evaluated with zero-dimensional thermal modeling, 
optical analysis using Monte Carlo light tracking software, and experimental studies. 

In this chapter, power/temperature coefficient-based and five-parameter model 
of PV module were presented and discussed for forecasting of electrical power 
production. Decided to PV module temperature in power/temperature coefficient 
model and temperature distribution applications on diode model were discussed. 
Power/temperature-based power estimation methods are depending on first, medium,
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and end PV module temperature. However, different case studies for CPVT electrical 
power production estimation methods were investigated. 

2 System, Modeling, and Evaluation 

In this section, the two string-triangular-based CPVT system is described. The finite 
volume method for the analysis of the temperature distribution of the triangular 
receiver CPVT system is briefly summarized. Furthermore, mathematical modeling 
for PV modules in CPVT systems is introduced. Information on the comparison of 
power generation forecasts is presented. 

2.1 Definition of the CPVT System 

The schematic diagram of the parabolic-trough CPVT system is shown in Fig. 1. 
As seen in the figure, this system consists of a concentrator concentrated on the 
trough, a triangular parabolic trough, a fluid channel within the trough, and PV 
modules positioned on the triangular trough. Mirror is used to reflect the sunlight 
coming through the concentrator into the triangular trough. The triangular prismatic 
trough is placed at the focus of the concentrator. While one surface of the trough 
looks perpendicular to the sunlight, the junctions of the other two surfaces form the 
concentrator two reflection zones. Sunlight from these regions is reflected to the PV 
modules on the trough. No PV module is added to the trough surface perpendicular 
to the sun when the purpose of thermal treatment is desired. In response to the 
electricity production in the PV modules, there is an increase in both the PV module 
and triangular trough temperatures. A fluid channel is placed in the triangular trough 
to reduce the temperature here. 

Fig. 1 
Parabolic-trough-based 
CPVT system diagram
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Fig. 2 PV equivalent circuit 
for five parameters 

2.2 Mathematical Modeling of PV 

Mathematical modeling is necessary to discuss the dynamic behavior of PV modules 
under certain conditions. Single diode model, double diode model, triple diode, or 
multiple diode models have been proposed to model the nonlinear dynamic behavior 
of solar PV modules. The most frequently used and preferred model among the 
models is the single diode model (SDM). This model is based on four and five 
parameters. It takes into account series and parallel resistance values. When the 
SDM is compared with two-diode model, it is most simple. The equivalent circuit of 
the PV module based on five parameters is given in Fig. 2. 

In this section, the single diode model consisting of five parameters in the PV 
modules of the CPV system is discussed. For four and five parameter-based mathe-
matical models of such a PV module, the relationship between current and voltage 
can be given in Eqs. (1) and (2) [35]. 

Io = Ipv − Id
(
e 

q(Vo+Rs Io ) 
nkT − 1

)
(1) 

Io = Ipv − Id
(
e 

q(Vo+Rs Io ) 
nkT − 1

)
− Vo + Rs Io 

Rp 
(2) 

where Io, Ipv, and Id denote the currents in load, PV and diode, respectively. In 
addition, q, k and n are, respectively, the electron charge, the Boltzmann constant 
and the diode ideality factor. Rs and Rp represent the series and parallel resistances, 
respectively. 

Under short-circuit current and open-circuit operating conditions, the current– 
voltage relations can be written as follows [35]: 

Isc = Io − Id
[
e 

q Isc Rs 
nkT − 1

]
− Isc Rs 

Rp 
(3) 

0 = Io − Id
[
e 

qs Voc 
nkT − 1

]
− Voc 

Rp 
(4)
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Table 1 The datasheet 
values of the TPS105S-5W 
PV module [37] 

Parameter Value Parameter Value 

Isc (A) 0.32 Voc (V) 21.5 

Imp (A) 0.29 Vmp (V) 17.5 

λ (%/K) 0.05 β (%/K) -0.32 

Sizes (cm) 19.3 × 23.3 Weight (kg) 0.54 

where Isc and V oc denote the short-circuit current and open-circuit voltage, respec-
tively. The estimated Isc and V oc values according to the PV module temperature are 
as follows, respectively: 

Isc,T = Isc
(
1 + λ(

Tpv − 25)) (5) 

Voc,T = Voc
(
1 + β(

Tpv − 25)) (6) 

where λ, β, and T pv denote the current–temperature coefficient, the voltage-
temperature coefficient, and the PV module temperature, respectively. 

In the CPVT system, TPS105S-5W PV module are taken into account. The 
parameters for the PV modules used are given in Table 1 [2, 33, 37]. Their math-
ematical modeling is performed in the MATLAB/SIMULINK program [36] using  
five-parameter equivalent circuit of PV modules. 

One of the important factors affecting energy performance in photovoltaic energy 
conversion systems is environmental parameters. The main affecting environmental 
parameters are solar radiation, ambient temperature, and wind speed. The efficiency 
of PV modules under certain environmental conditions is expressed as follows: 

ηPV = ηref
(
1 − γ (

Tpv − 25)) (7) 

where ηref is the reference efficiency value and is calculated according to the power 
value under standard test conditions (1000 W/m2, 25 °C).  γ is the power/temperature 
coefficient of the PV module. This coefficient is taken as 0.45% for crystalline PV 
modules and 0.25% for amorphous PV modules [38]. TPV shows the PV module 
temperature. The power that the PV module can produce at a given concentration 
ratio (C), solar radiation (G), and TPV module temperature, as 

PPV = CG  AηPV (8) 

In this chapter, temperature coefficient-based power production per PV module 
in CPVT system and total power production of CPVT system in FVM method 
are compared with five-parameters single diode model (SDM) based PV power 
production estimation. In order to SDM power estimation, temperature distribu-
tion is applied on PV mathematical modeling of the PV strings. However, electrical 
power uncertainty of the CPVT system is evaluated.
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In the FVM, the size of the CPVT system is divided into each node. When the 
next fluid outlet temperature is calculated, this temperature is considered the next 
node’s inlet temperature and outlet temperature of that node. In the next node, the 
energy balance equations are analyzed again by taking advantage of the tempera-
tures obtained from the previous nodes. Thus, the numerical analysis of the CPVT 
system is evaluated with the help of the solutions obtained for each point. The five 
energy balance equations of the CPVT system are taken into account, respectively for 
upper surface—PVT, fluid channel—metallic surface, PVT—metallic surface, upper 
surface of the triangular receiver—substrate and parabolic-trough concentrator. 

The finite volume method is based on obtaining the energy balance equations 
between the triangular receiver and the parabolic-trough concentrator [21, 22, 33]. 
And the least squares method was used to solve the energy balance equations. In the 
finite volume method, the length of the CPVT system is divided into nodes. When the 
next fluid outlet temperature is found, this temperature value is accepted as the outlet 
temperature of that node and the inlet temperature of the next node. At the next node, 
the energy balance equations are solved again by utilizing the temperature values 
obtained from the previous nodes. Numerical modeling is done using MATLAB 
program [36] and COOLPROP [39] for thermo-physical specifications of refrigerant 
fluid and air. Thus, thermal analysis of the CPVT system is performed. Among 
the environmental conditions in the operating conditions of the CPVT system, the 
ambient temperature is 25 °C, the wind speed is 2 m/s, the direct radiation is 800 W/m2 

and the total radiation is 1000 W/m2. The concentration ratio of the system is about 
2.61. The results obtained are given and discussed below. In this chapter, R134a fluid 
is considered for effects of non-homogeneous temperature distribution on electrical 
power production. Obtained results are presented and discussed the next section. 
However, electrical power production uncertainties are evaluated in this study. 

3 Results and Discussion 

In the CPVT system, two string PV modules are used for electricity production. 
In order to utilize of thermal energy in PV modules fluid channel and refrigerant 
fluid is used. However, electrical and thermal energy of incoming solar energy is 
useful. Parabolic concentrator is reflected to incoming solar radiation to PV cells for 
increasing of solar radiation. Thus, electricity and thermal energy increased. 

Datasheet values for a PV module (TPS105S-5W) used in PV arrays on trough in 
the CPVT system are listed in Table 1. The mathematical modeling results based on 
the diode model obtained under standard test conditions (STC) (1000 W/m2, 25 °C)  
and different radiation conditions are shown in Fig. 3. As seen in Fig. 3, the output 
power (5.07 W) reaches its maximum value when the module voltage is at 17.5 V 
for 1 kW/m2. Beyond this point, the output power starts to decrease.

The I–V and P–V curves in the PV module for different module temperatures at 
1000 W/m2 are plotted in Fig. 4. In the context of Fig. 4, it is observed that the output 
power drops rapidly as the open circuit voltage is approached due to the non-linear
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Fig. 3 Voltage, current, and power curves of PV module for various solar radiation

behavior. An increase in module temperature will slightly increase the Isc value, 
while a greater decrease in the V oc voltage. PV power generation also reduces [2].

In this chapter, temperature coefficient-based power production per PV module 
in CPVT system and total power production of CPVT system in FVM method are 
compared with five parameters SDM-based PV power production estimation. In order 
to SDM power estimation, temperature distribution is applied on PV mathematical 
modeling of the PV strings. However, electrical power uncertainty of the CPVT 
system is evaluated. Obtained results are presented as follows. 

In the thermal analysis results of the CPVT system using FVM method for 
different fluid inlet temperatures are given in Fig. 5. As can be seen in this figure, 
PV temperature (T cpvt) increases when the fluid temperature increases for each node. 
However, non-homogeneous temperature distribution is available in CPVT system 
characteristics.

Power production for the PV module at each node is given in Fig. 6. Power  
production decreases at each node due to fluid temperature. Power production per 
module for 50 °C fluid inlet temperature is 8.35 W in the first node. It decreases up 
to 6.52 W at the end of the CPVT system. On the other hand, T cpvt exceeds 110 °C 
when the fluid inlet temperature increases. However, power production decreases 
according to low inlet temperature.
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Fig. 4 Voltage, current, and power curves of PV module for different module temperature

The goal of this chapter is power uncertainty of the CPVT system. The reason for 
the non-homogeneous temperature distribution is given below due to fluid circulation 
in the fluid channel of the triangular receiver in the parabolic-trough CPVT system. 
Single diode model application results for non-homogeneous temperature distribu-
tion and numerical method results of the system are given following. However, power 
uncertainty is evaluated for the CPVT system under non-homogeneous temperature 
distribution. 

In the finite volume methods, temperature coefficient-based efficiency and power 
estimation method are used in given Eq. (8). Power estimation results for FVM and 
SDM methods are presented in Table 2 for different fluid inlet temperature (T in). 
Moreover, current–voltage and power-voltage variations under non-homogenous 
temperature gradients are presented in Fig. 7. As can be seen the results of two 
different methods, power estimation results are close to each other in terms of 
maximum power point of PV modules. When the T in is 30 °C of the CPVT system, 
power differences is approximately 14 W. And, it decreases 4.4 W for the other T in 

parameters. On the other hand, operating voltages in maximum power point decrease 
by increasing of fluid temperature. As a result, high fluid inlet temperatures decrease 
the power production and can cause to damage of PV cells. Therefore, low inlet 
temperature for R134a fluid should be preferred for more electricity production and
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Fig. 5 Temperature 
distribution of CPVT system

Fig. 6 Electric power 
production per module at 
each node in CPVT system
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Table 2 Estimated total 
electricity production of the 
system for FVM and SDM 
methods 

Pel/T in 30 °C 40 °C 50 °C 

Pel,FVM (W) 1486.72 1411.47 1336.24 

Pel,SDM (W) 1470.71 1405.89 1340.75 

Fig. 7 I voltage, current and 
power characteristics of 
CPVT system under 
non-homogeneous 
temperature distribution 

physical protection of PV cells. In this way, solar energy could be efficiently used 
for a long lifetime. 

As a result, obtained results for two estimation methods are in good agreement 
with each other. Power differences are very less. And power uncertainty of the CPVT 
system could be negligible according to two different methods when the PV module 
operates at maximum power point. However, two different methods are reliable for 
performance analysis of the CPVT system. 

4 Conclusions 

In this chapter, temperature coefficient-based power estimation method and 
maximum power point in single diode modeling of the CPVT strings are compared



Comparison of PV Power Production Estimation Methods … 89

for power uncertainty analysis. Maximum power difference was obtained for 30 °C 
fluid inlet temperature as well as 14 W. It is smaller than 5 W for other fluid temper-
ature when the maximum power point tracking is used in CPVT system. As a result, 
power uncertainty of the CPVT system could be negligible according to FVM and 
SDM methods. On the other hand, when the fluid inlet temperature increases, PV 
module temperatures reach up to 110 °C. This temperature should be carefully chosen 
and designed for R134a refrigerants. In addition, operating at maximum power point 
of the CPVT string is useful for efficient solar energy utilization. 
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Renewable Energy Predictions: 
Worldwide Research Trends and Future 
Perspective 

Esther Salmerón-Manzano, Alfredo Alcayde, 
and Francisco Manzano-Agugliaro 

Abstract The objective of this chapter is to have a global perspective of the research 
related to renewable energy predictions and thus determine the worldwide research 
trends in this field. For this purpose, all the publications indexed in the Scopus 
database with these terms in the title, abstract or keywords were studied, obtaining 
more than 10,000 records. The subject categories were analyzed, and the most impor-
tant ones were engineering and energy. Regarding the trend in the number of publi-
cations, two periods have been detected, from 1996 to 2007 and from 2008 to the 
present with a growing interest. Regarding countries, it has been observed that this 
ranking is led by the United States, followed by China, and in third place by the United 
Kingdom. The main institutions with more than 100 publications were: North China 
Electric Power University (China), National Renewable Energy Laboratory (USA), 
Ministry of Education (China), Technical University of Denmark (Denmark), and 
Tsinghua University (China). The study of key words made it possible to detect 
the main clusters that have been considered significant and are the ones that set the 
research trends in this field. Three clearly differentiated clusters have been found. 
The first one focused on the search for alternative renewable energies, in its begin-
nings mainly with the use of biomass. The second one is more focused on electric 
power transmission network, and the third one is focused on wind energy and its 
forecasting, where modern computational and mathematical techniques are being 
used.
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energy · Forecasting ·Wind power · Renewable energy source · Solar energy ·
Electric power transmission networks 

1 Introduction 

From the beginning of the mankind, its development has been characterized by the 
use of alternative forms of energy according to its needs and availability [32]. Energy 
resources were always based on renewable energies in the form of biomass, wind, 
water, or sun. They were used as a source of fuel, or as mechanical energy for the 
beginnings of industry such as hydraulic or wind mills [33]. 

In this sense, any process that does not alter the thermal balance of the planet, 
that does not generate irrecoverable waste, and that its rate of consumption does not 
exceed the rate of recovery of the energy source and the raw material used in it is 
renewable [4]. 

Nowadays, the main resources of renewable energy are: solar energy, wind energy, 
hydropower, biomass, biogas, ocean energy, or geothermal energy. The search for 
a balance between supply and demand is a particularly relevant fact as it is not 
feasible to conserve energy [23]. In addition, in the energy sector, this information 
becomes even more important due to the degree of uncertainty involved in predicting 
highly volatile factors, such as natural or meteorological phenomena, as well as other 
variables that have a major impact on markets, such as legislative or socioeconomic 
changes [2, 3]. 

There is an ever-increasing increase in electricity demand and an increasing need 
to use renewable resources to supply this demand [24]. Renewable energy sources 
imply complexity when planning and managing energy demand, given the high 
volatility in their generation through non-storable resources such as wind or solar 
radiation. 

Thus, nowadays, to know the availability of the renewable resource is essential 
to maintain a given energy level at the lowest possible cost [18]. Thus, generation 
forecasting for renewable energy sources allows energy managers to have a maximum 
performance tool that helps them to optimally manage their renewable resources [22]. 
This further enables energy pricing [60]. Therefore, the prediction of demand or the 
behavior of the electricity price to make the best decision to sell or buy energy is 
currently a need for any company in the sector, whether it is a producer, distributor, 
marketer, or system operator. 

In this chapter to identify the current directions of research and trends in the field 
of renewable energy prediction, a bibliometric study of publications indexed in the 
Scopus scientific database will be conducted, which has proven useful for similar 
studies [39].



Renewable Energy Predictions: Worldwide … 95

Fig. 1 Periods of the worldwide scientific production in renewable energy predictions 

2 Data 

The data in this chapter were extracted from the Scopus database, the exact search 
query was: TITLE-ABS-KEY (“Renewable Energ*”) AND (TITLE-ABS-KEY 
(prediction*) OR TITLE-ABS-KEY (forecast*)). 

For this search, more than 10,000 results were obtained from 1976 to 2021, the 
last year considered because of the completeness of the data. Of these scientific 
documents, 58% were articles in scientific journals (of which 4% were review papers), 
39% were conference papers, and only 3% were books or book chapters. The low 
percentage in books and book chapters indicates that it is a scientific topic still rising 
and with scientific progress [55, 56]. The newest technologies start in the scientific 
meetings, and when they reach a certain maturity, they are published in articles in 
journals and later in specialized books. 

Figure 1 shows the evolution of these publications, where two periods have 
been distinguished. The first one from 1976 to 2007, in which 100 publications 
per year were published. The second period starts in 2008 with almost 250 publica-
tions, growing exponentially until the last year studied, 2021, with more than 1500 
publications in that year. 

3 Subjects from Worldwide Publications 

One of the most important aspects in a bibliometric analysis of this nature is to 
check the distribution of publications by scientific category, to determine where 
the publications fall [57]. In this sense, Fig. 2, research is led by the engineering



96 E. Salmerón-Manzano et al.

Fig. 2 Distribution and evolution of Scopus categories on renewable energy predictions 

category with 27% of the total, followed closely by the energy category (26%). 
Between these two main categories, they account for more than 50% of the total 
scientific production of renewable energy prediction. The most cited publication in 
the engineering category is related to wind energy volatility [62], while for the energy 
category it is a review paper on wind speed and power generation forecasting [28]. 

The computer sciences category is very relevant with 12%, showing the promi-
nence of computational techniques in this scientific field, which are supported by 
the field of mathematics (in fifth position with 7% of the total). The most cited work 
for computer science is a research on short-term residential load forecasting based 
on LSTM recurrent neural network [26]. The most cited paper for mathematics is a 
review paper of neural networks applied for wind speed prediction [58]. 

The fourth scientific field is environmental sciences with 8%. This was to be 
expected with renewable energies not only because of the resource itself but also 
because of the effort to achieve climate neutrality such as the decarbonization of the 
electricity sector, and for this one is the link between environmental conservation and 
the large-scale deployment of wind and photovoltaic energy. The most cited work in 
this scientific field deals with the production of bioethanol from rice straw [7]. 

In addition, Fig. 2 shows the evolution of scientific production in each of these 
five main categories. In this sense, it can be observed how the energy category has 
dominated until the year 2019, where the engineering category has surpassed it and 
is maintaining its position as leader in research in renewable energy prediction. 
The computer science category has been in third place since 2011, where it clearly 
maintains this position. The mathematics category has held the fourth position since 
2017, the year in which environmental sciences moved to the fifth position.
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4 Countries, Affiliations, and Their Main Topics 

Another important factor to consider when studying the state of the art in this field is 
the geographical distribution. Therefore, Fig. 3 shows all the countries in the world 
that have publications on renewable energy prediction, as the legend of the figure 
itself suggests, the more intense the color, the greater the number of publications. In 
this sense, research is led by China, followed by the USA. The most cited work from 
China is the aforementioned review on wind speed and power generation forecasting 
[28], and from the USA is the aforementioned review on wind power volatility [62]. 
At a greater distance is India in third place, followed by the UK and Germany, in fifth 
and sixth place, respectively. The most cited paper from India is the one on bioethanol 
production from rice straw [7]. The most cited paper from the UK is an engineering 
paper related to the estimation of spinning reserve requirements in systems with a 
significant penetration of wind generation [43], and the one from Germany is on life 
cycle dynamics assessment of renewable energy technologies [44]. To complete this 
group of countries with more than 300 publications in order, there are: Italy, Spain, 
Australia, Japan, France, and South Korea: Italy, Spain, Australia, Japan France, and 
South Korea. 

On the other hand, if we analyze the publications of the main affiliations with the 
highest scientific production, we obtain Table 1. In the Fig. 4, the affiliations with 
at least 50 publications have been listed. Twenty-six affiliations have been found, of 
which thirteen are from China. Followed by Portugal with three affiliations, Denmark 
with two, and USA, Italy, Bangladesh, Switzerland, France, Singapore, Australia, 
and Japan with one.

Looking at the main keywords of these institutions, Table 1, there are no major 
differences in the fields of specialization. The top five affiliations (North China Elec-
tric Power University, National Renewable Energy Laboratory, Ministry of Education 
China, Technical University of Denmark, and Tsinghua University) have wind power

Fig. 3 Worldwide geographical distribution of the scientific production on renewable energy 
predictions 
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Fig. 4 Main affiliations on renewable energy predictions (more than 50 publications)

among their main keywords. The keyword Electric Power Transmission Networks 
also appears in the top institutions such as Ministry of Education China, Shanghai Jiao 
Tong University, or State Grid Corporation of China. The keyword Neural Networks 
appears only in Politecnico di Milano, although it is one of the top 20 keywords as 
will be seen below. 

In summary, it can be said that all these institutions have similar objectives as 
their main keywords coincide in almost all of them and can be summarized in these 
five: renewable energy resources, renewable energies, wind power, forecasting, and 
electric power transmission networks. 

5 Keywords from Worldwide Publications 

Keywords make it possible to classify the entries in the indexing and information 
retrieval systems in the databases of a particular manuscript or subject area [54]. 
Keywords then become an essential two-way tool, i.e., for those who write and 
for those who search for information on related manuscripts or subject areas. In 
general, the number of keywords in most scientific journals ranges between 3 and 
10. Consequently, their importance should not be undervalued or underestimated 
when considering them, since it could become difficult to disseminate a manuscript 
and even fail to detect its relationship with other similar ones, due to the inadequate 
use of keywords. 

Therefore, from all these publications, to try to narrow down the topics on which 
they focus, it is necessary to analyze the keywords that these research papers deal 
with. As can be seen in Table 2, apart from the obvious search terms (renewable
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energy resources, forecasting, or renewable energies), the fourth place is held by wind 
power, which is the renewable energy that occupies most scientific effort in trying 
to determine its periodicity and, therefore, its forecasting as an energy resource. It 
is striking that electric power transmission networks are above solar energy. This 
may be due to the importance of the renewable energy resource on the design of 
energy transmission networks or that solar energy in this sense is well studied, i.e., 
energy-efficient solar hours in a specific area of the planet. To compare the relative 
importance of these keywords, they have been represented by a cloud of words, 
Fig. 5.

6 Worldwide Research Trends: Cluster Analysis 

The analysis of the relationships between keywords makes it possible to obtain the 
scientific communities or clusters in which these publications are grouped [55, 56]. 
For the analysis of this section, the software Vosviewer (https://www.vosviewer. 
com/) available online has been used, which has proven to be useful for this analysis 
in many scientific fields. 

Figure 6 shows the representation of the three clusters retrieved with the total 
number of publications analyzed. Table 3 shows the main keywords of these clusters, 
and in the last column a name has been proposed for their identification.

The first cluster can be considered as starting in 2001 with the objective of opti-
mizing the overall performance of isolated and weakly interconnected systems in 
liberalized market environments, increasing the share of wind and other renewable 
forms of energy [14]. This cluster has a high component of studies of the potential of 
bioenergy already since 2002 and for studies of its temporality in very different fields 
[59], biogas [13], horticultural waste [9] for electricity production [1], grassland [53], 
woody [48], and vegetable residues such as those of tropical fruits like avocado [45], 
mango [47], date [12], or loquat [49]. More recently, the production of hydrogen 
from plant residues such as those from the wine industry has been introduced [40]. 

Another major line of study of this cluster is the energy market and its implications 
on greenhouse gas emissions [21], both in high-energy consuming countries such 
as the United Arab Emirates [24], US [63], or China [35], and in medium energy 
consuming countries such as Spain [36] or Italy  [10]. 

The second cluster, focused on renewable energy resources, started in 1991 with 
the study of geothermal power in Iceland [27], and is closely related to optimization 
techniques both in terms of the use of different methods [6] and the optimization of 
small installations [5]. In this cluster, energy storage plays an important role, and 
therefore there are researches related to the improvement of batteries [20], especially 
those based on lithium [61] and their incorporation into microgrids based on renew-
able energies [30, 41]. Within this cluster, the electric power transmission network is 
of great relevance. For this purpose, forecasting models for photovoltaic energy [51] 
and wind energy [28] are under study. Solar energy prediction studies range from 
direct irradiance data of high quality [31], the possible shading of large installations

https://www.vosviewer.com/
https://www.vosviewer.com/
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Table 2 Top 20 keywords  
related to renewable energy 
predictions 

Keyword N 

Renewable energy resources 3.703 

Forecasting 3.076 

Renewable energies 2.579 

Wind power 2.148 

Renewable energy 1.858 

Renewable energy source 1.678 

Electric power transmission networks 1.304 

Solar energy 1.215 

Weather forecasting 982 

Optimization 931 

Neural networks 791 

Energy policy 730 

Solar power generation 729 

Photovoltaic cells 717 

Energy management 713 

Alternative energy 709 

Wind 692 

Smart power grids 690 

Renewable resource 685 

Energy utilization 673 

Energy efficiency 627 

Costs 616 

Electric utilities 616 

Scheduling 609 

Energy storage 578 

Stochastic systems 573 

Electric power generation 571 

Prediction 548 

Machine learning 534 

Solar radiation 524 

Commerce 508

for a specific latitude [11, 42], or for isolated rooftop installations [2, 46] to cloudi-
ness prediction models [34]. And, the other major source of energy that influences 
the power grid is wind energy, and therefore its forecasting is fundamental [28] both 
for the possible available energy and for the selection of the type of turbine for a 
wind farm [38]. Some authors also point out the possible power quality disturbances 
due to the incorporation of renewable energy into the energy system [37].
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Fig. 5 Cloud of keywords from the scientific production of the renewable energy predictions

Fig. 6 Relationship between renewable energy predictions
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Table 3 Main clusters (Fig. 6), weight, and names 

Color Weight (%) Main keywords Cluster name 

Red 40 Renewable energies, alternative 
energy, energy policy, prediction, 
greenhouse gases, carbon dioxide, 
biomass, biofuels, biological 
materials, energy efficiency, 
energy utilization, electricity 
generation, turbines, energy 
market 

Renewable energies 

Green 34 Renewable energy resources, 
electric power transmission 
network, electrical load flow, 
distributed generation, 
optimization, energy storage, 
electricity market, smart grid, risk 
assessment, uncertainty, 
predictive control systems 

Renewable energy resources/electric 
power transmission network 

Blue 26 Forecasting, wind power, electric 
power generation, solar radiation, 
photovoltaic cells, bid data, deep 
learning, regression analysis, 
learning systems 

Wind power/forecasting

The third cluster is mainly focused on wind energy and its possible estimation. 
Once estimates of the availability of this resource have been made at the local [16], 
regional [19], or country level [15], it is necessary to identify the periodicity of the 
resource [17], based on complete data series that sometimes need to be revised or 
completed with modern mathematical techniques such as wavelet [64]. Short-term 
forecasting employs from simple statistical methods [8] to very diverse algorithms 
such as security-constrained unit commitment (SCUC) algorithm [62], or f-ARIMA 
models for day-ahead wind speed forecasting [25]. More recently, neural networks 
are used for short-term wind power and load forecasting [50], where the use of 
particle swarm optimization (PSO) stands out [52]. 

7 Evolution of the Research and Future Perspective 

The evolution of research trends has also been analyzed through their key words. 
Figure 7 shows the evolution of the keywords of all the analyzed publications. Table 
4 shows the main keywords for each period. At the beginning of the period studied 
is in the year 2012, where differences begin to emerge. In that year, publications 
related to biofuels and biomass are reflected. A little later, in 2014, the impact on the 
electricity market also begins to be studied.
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Fig. 7 Trend of renewable energy predictions 

Table 4 Main clusters (Fig. 7) 

Color Years Main keywords Cluster name 

Blue 2012–2014 Biomass, biological materials, electric load 
forecasting, biofuels, electricity market, 
ocean current 

Bioenergy 

Cian–green 2015–2016 Energy policy, costs, investments, emission 
control, wind power 

Energy policy 

Yellow 2017 neural network, forecasting, electric power 
transmission network, energy storage 

Transmission network 

Orange–red 2018–2020 Bid data, learning systems, deep learning, 
lstm 

Computer sciences 

In the following years, studies on the economic viability of the sector (costs vs. 
investments) and energy policy were included. As renewable energy sources, a boost 
is given to wind power and, on the other hand, the advantages for the environment, 
such as the reduction of emissions, begin to be highlighted. In 2017, studies on 
the electricity grid itself as a whole (electric power transmission network, energy
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storage) highlighted, and its study with neural network, or how forecasting can affect 
the network. In parallel, forms of energy storage are being studied. 

The last period analyzed in Table 4, from 2018 to 2020, appear with great strength 
the computer techniques applied to the study of energy such as Bid data, learning 
systems, deep learning, LSTM (Long Short Term Memory). The latter, LSTM, is an 
algorithm of neural networks but differs from the standard ones in that it has feedback 
connections [26]. Deep Learning techniques are booming especially for PV power 
prediction models [29]. 

The global demand for renewable energy will increase significantly in the very 
near future given the global energy and geopolitical situation to avoid dependence 
on other countries. The two renewable energies with the greatest projection are wind 
and solar, being the forecasting of the production of the first one where the greatest 
efforts will continue to be made from the scientific and technological point of view. 
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Models of Load Forecasting 

Sunil Yadav, Bhavesh Tondwal, and Anuradha Tomar 

Abstract World is growing every day in many aspects. Economic growth, popu-
lation growth, technical growth, etc., leads to a common factor: a never-ending 
increasing demand of energy. To meet this energy demand, fossil fuels will burn 
out soon and renewable energy is a long way to go to certain advancements to meet 
the energy demand. Here, load forecasting (LF) will play a key role to predict the 
future load so that the energy can be generated in efficient way which will be less 
harmful to environment and more economical. LF is done using various models such 
as long short-term memory (LSTM), artificial neural network (ANN), and support 
vector machine (SVM), which predicts the future load based on historic data. In this 
chapter, we have discussed about LF, types of LF, factors affecting LF, and a compar-
ative review has been performed of recently developed techniques and models with 
benchmarks models used for LF. 

Keywords Load forecasting · Load forecasting models ·Machine learning · Deep 
learning · Artificial intelligence 

Abbreviations 

ANN Artificial Neural Network 
ANFIS Adaptive Network-Based Fuzzy Inference System 
ARIMA Autoregressive Integrated Moving Average 
ARMSE Average Root Mean Squared Error 
BDLSTM Bayesian Deep Long Short-Term Memory 
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DNN Deep Neural Network 
DT Decision Tree 
ELM Extreme Learning Machine 
ES Expert Systems 
ETS Exponential Smoothing 
GA Genetic Algorithm 
GBRT Gradient boosted Regression Trees 
KNN K-Nearest Neighbor 
LR Linear Regression 
LSTM Long Short-Term Memory 
LTLF Long-Term Load Forecasting 
MAE Mean Absolute Error 
MLP Multilayer Perceptron 
MLR Multiple Linear Regression 
MAPE Mean Absolute Percentage Error 
MTLF Medium-Term Load Forecasting 
NN Neural Network 
OP-ELM Optimally Pruned Extreme Learning Machine 
PDRNN Pooling-based Deep Recurrent Neural Network 
PLCNet Parallel Long Short-Term Memory-Convolutional Neural Network 
QLSTM Pinball Loss Guided Long Short-Term Memory 
RF Random Forest 
RFR Random Forest Regression 
RMSE Root Mean Squared Error 
RNN Recurrent Neural Network 
SDTRM Spark Decision Tree Regression Model 
SGBT Spark Gradient-Boosted Trees 
SRFRM Spark Random Forest Regression Model 
STLF Short-Term Load Forecasting 
SVM Support Vector Machine 
SVR Support Vector Regression 
SVRL Support Vector Machine with Linear Kernel 
SVRP Support Vector Machine with Polynomial Kernel 
SVRR Support Vector Machine with Radial Kernel 
WNN Wavelet Neural Network 
XGB Extreme Gradient Boosting 

1 Introduction 

Most of the industries depend on electrical energy therefore its availability is of 
economic importance throughout the world. A continuous, affordable, and reliable
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source of electricity is of great importance to achieve all the objectives mentioned 
we apply ‘Electrical Load Forecasting’ on a power grid [1]. 

‘Electrical Load Forecasting’ is a computational method by means of which we 
predict the future load demand with the help of past and present data of load demand. 
It acts as an important factor during power system planning, operation, and control 
[2]. 

By performing ‘Electrical Load Forecasting’ for the residential and commercial 
load’s the electricity generation and distribution companies can schedule functionally 
ahead and develop energy conservation among the users [3]. 

The objectives of ‘Electrical Load Forecasting’ are power system:

● Planning
● Operation
● Finance
● Development
● Maintenance. 

The load prediction can be calculated for about 2–4 h for operative purposes or 
as much as about 30 years for planning purposes [2]. 

2 Types of Load Forecasting 

Electrical Load Forecasting’ can be majorly categorized into three types: 

(1) Short-Term Load Forecasting (STLF) 
(2) Medium-Term Load Forecasting (MTLF) 
(3) Long-Term Load Forecasting (LTLF) [4].

● In STLF, the load is being predicted from few hours to week ahead to curtail 
the running and transmitting cost. The methods commonly used for fore-
casting are the LSTM, neural network (NN), random forest regression (RFR) 
method, and SVM method [5]. It is used in load flow study and further to take 
decisions for the prevention of overloading. Its applications are allocation 
of spinning reserve, unit commitment calculation, maintaining proper fuel 
stock, maximizing utility revenue, development of small generation schemes, 
etc.

● In MTLF, the load is being predicted in a range of few weeks to 10 years ahead 
so that the systematic planning can be maintained [6]. The multilayer percep-
tron (MLP) and SVM are some of the methods used for the forecasting. Its 
application include deciding rate structures of different consumers, calcu-
lating capital cost of different generation options, annual planning and 
budget allocation for fuel requirements, and other operational purposes etc.

● In LTLF, the load is being predicted in a range of a decade to 50 years ahead 
so that development planning can be eased upon. Neural network (NN), 
genetic algorithm (GA), fuzzy rules, SVM, wavelet neural networks, and
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expert systems. Its applications are national grid expansion, demand side 
management, selection of substation capacity, development of a new power 
plant, ‘Fuel Mix’ decision, etc. [7]. 

3 Factors Affecting Load Forecasting 

3.1 Meteorological Factors: It is Further Divided into Two 
Sub Parts that are ‘Climate’ and ‘Weather’

● Climate is the mean weather over a finite period in an area. With a change in 
climate influences the load consumption consequently. It is a major factor in 
long-term load forecasting.

● Weather is an atmospheric condition that mostly exists for a temporary period of 
time in an area. It is reasonable and important to take weather factor into consider-
ation for STLF. It affects the load demand for domestic and agricultural customers. 
The alterations in weather alters the utilization of appliances in accordance with 
comfort level of consumers. It is a major factor to be considered in short-term 
forecasting.

● ‘Weather’ further incorporates four parts, i.e., temperature, cloud cover, wind 
speed, and humidity. 

3.2 Temporal and Calendar Factors

● The impact of the calendar difference of the same month between different years 
are known as the calendar factors.

● Load consumption varies between different seasons due to dissimilar beginning 
and ending timings of day and night, hours of difference between timings of day 
or nights; increased residential load at weekends compared to weekdays, timings 
of the year leading to festivals or big events. 

3.3 Economy Factors

● The economic factors play significant role in load forecasting, such as type of 
customers, per capita income, demographic conditions, gross domestic product 
(GDP) growth, industrial development, and cost of electricity. The daily load 
curve of developing and developed countries is distinct as maximum loading 
occurs at different time period, for developing countries, it is at evening time 
between 06:00 pm and 09:00 pm, whereas for developed countries the peak load 
timings are from 11:00 am to 04:00 pm [8].
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● Spot market prices and short-term futures contracts are a crucial factor for STLF, 
whereas the LTLF are not very much affected by these factors.

● Some countries use these factors to reduce load during peak load hours be keeping 
a difference in electricity prices between peak and off-peak load hours consumed 
by residential households. If the price of electricity is increased, then domestic 
consumption will reduce because the price of electric power and the consumer’s 
financial condition varies the load consumption [9]. 

3.4 Random Factors

● Huge industrial loads in a power system sometimes cause sudden imbalance in 
load consumption; these sudden imbalances are known as random factors.

● Special events such as festival or regional happenings are also considered as 
important factors for load forecasting.

● Other than these, certain situations such as the shutdown of an industry, or a big 
event such as sports competition, wedding season, and lockdown are the random 
factors affecting the load forecasting. 

3.5 Customer Factors

● The various consumers such as residential and commercial so the load curve 
may be varying from consumer to consumer. The consumer factors of electricity 
consumption are the specifications or ratings of the electrical equipment of the 
customer. Also, the electrical equipment varies from consumer to consumer. 

3.6 Factors Based on Time Horizon

● Short-Term Influence Factors: These factors frequently appear in a specific 
forecasting span and nearly do not have the characteristic of that time span.

● Medium-Term Influence Factors: These factors frequently last for some fore-
casting span and have specific characteristics of that time span.

● Long-Term Influence Factors: These factors are experienced for many forecasting 
periods and have especially the characteristic of that time span [8]. 

3.7 Other Factors

● According to the geographical areas the load curve could be different, i.e., the 
load curve of less populated areas will be different from highly populated.
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● These factors can have more or less effect on the machine learning (ML) model, 
it can also have a destructive effect on a model. As the load varies the effect of 
various factors changes accordingly. 

4 Comparative Review of Popular Load Forecasting 
Techniques 

4.1 Techniques Based on Machine Learning 

4.1.1 In Table 8 [10–14], Different Individual Models Are Compared 
Which Were Enhanced with the Help of Multi-processing, and it 
is Noticed that SVR Had the Most Significant Performance 
and also RF Had Lowest RMSE 

See Table 1.

4.1.2 In Table 3 [15, 16], a Novel Technique Based on ML Based 
on Distributed Trees with Apache Spark is Applied to Some 
Models and Compared Using a Standard Error ARMSE 
Distributed Tree-Based Machine Learning with Apache Spark 

See Table 2.

4.1.3 In Table 3 [17–21], the Performance of a Hybrid Model Which 
Combines Two Individual Models; LSTM and CNN are 
Compared to Various Models, and It Is Noticed That This New 
Model is Very Accurate 

See Table 3.

4.1.4 In Table 4 [22–26], A Novel Algorithm to Select Least Cost 
Electric Load Forecasting Model is Used and Compared Using 
Correlated Meteorological Parameters 

See Table 4.
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Table 5 Bayesian deep learning technique 

Model Data used Types of 
load 
forecasting 

Errors 
(%) 

Significance/remarks Application/applicable 
to 

QLSTM Smart 
meter data 
from the 
Australian 
grid 
grid 

STLF MAPE = 
0.1155 
MAE = 
17.7268 
RMSE = 
21.9014 

Residential and 
commercial loads 
forecasting 

Bayesian 
deep long 
short-term 
memory 
(BDLSTM) 

STLF MAPE = 
0.0892 
MAE = 
13.8607 
RMSE = 
17.1698 

High speed and 
reduction in error 

4.2 Techniques Based on Deep Learning (DL) 

4.2.1 In Table 5 [27, 28], the Bayesian Deep Learning technique is Used 
to Improve the Performance of LSTM, and the Results Are 
Compared with Pinball Loss Guides LSTM (QLSTM) 

See Table 5. 

4.2.2 In Table 6 [29–32], Clustering is Used to Enhance CNN and then 
Compared with Other Similar Models 

See Table 6.

4.2.3 In Table 7 [33, 34], a Hybrid Model of Deep Recurrent Neural 
Network (DRNN) Based on Pooling is Compared with Similar 
Models. Based Deep Recurrent Neural Network 

See Table 7.

4.2.4 In Table 8 [35], Four Hybrid Models Based on Clustering 
and Deep Learning Are Compared Using a Real-Life Dataset 
Collected from Commission of Energy Regulation 

See Table 8.
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Table 8 Combination of clustering and NN 

Model Data used Types of 
load 
forecasting 

Errors (%) Significance/remarks Application/applicable 
to 

K-shape 
clustering 
+ (DNN) 

Real-life 
dataset from 
Commission 
of Energy 
Regulation 

STLF MAPE = 2.15 Very high accuracy 
achieved clustering 
methods are used in 
combination with 
DNN 

Residential loads and 
small to medium 
enterprises 

K-means 
clustering 
+ DNN 

STLF MAPE = 2.55 

K-shape 
clustering 
+ (NN) 

STLF MAPE = 2.98 

K-means 
clustering 
+ NN 

STLF MAPE = 3.33 

Table 9 Combination of deep learning and k-means clustering 

Model Data used Types of load 
forecasting 

Errors 
(%) 

Significance/remarks Application/applicable 
to 

K-means 
clustering + 
LSTM 

Real-life 
Irish 
residential 
load dataset 

STLF MAE = 
0.3791 
RMSE = 
0.6022 

Improved prediction 
accuracy 

Residential load 
forecasting 

PDRNN STLF MAE = 
0.3959 
RMSE = 
0.6202 

Comparatively better 
performance then 
benchmarks models 

– 

4.2.5 In Table 9 [36], a Hybrid Model Combination of Deep Learning 
and k-means clustering is Compared with Another Hybrid 
Model, PDRNN, Based on Standard Errors MAE and RMSE 

See Table 9. 

4.2.6 In Table 10 [37–40], a Hybrid DNN Model Based on Two 
Different Techniques Transfer Learning and Meta learning is 
Compared to Various Models Based on Their Performance 
in a Residential Dataset 

See Table 10.
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4.2.7 In Table 11 [41, 42], Multiple Hybrid Models Based on DNN Are 
Compared Using a Dataset of Independent System Operator 
of New England (ISO-NE) 

See Table 11.

4.3 Techniques Based on Artificial Intelligence 

4.3.1 In Table 12 [43], Two Hybrid AI-Based Techniques, Optimally 
Pruned Extreme Learning Machine (ANFIS) and Adaptive 
Network-Based Fuzzy Inference System (OP-ELM) Are Used 
for LF and Compared 

See Table 12.

5 Conclusion 

In this chapter, a review has been done of load forecasting models with a brief intro-
duction of Electrical load forecasting and further moving toward its importance in 
current global power systems. There are many uncertainties faced during load fore-
casting which are discussed as factors affecting load forecasting. Therefore, using 
different parameters, a comparative review has been done of recent studies focusing 
on different techniques and models to obtain efficient and fast results. Parameters used 
to compare these models are: type of data used, type of load forecasting, standard 
errors: RMSE, NRMSE, MAE, significance/remarks, and their application. From 
this review, it is concluded that it is feasible to use individual models as LSTM, LR, 
RF, etc., for very short and short-term load forecasting. To forecast load for a longer 
period of time, models can be combined to form hybrid models according to their 
performance. Further studies can focus on hybrid models with combination of more 
than two models and with proper tuning of its parameters, these can be used for even 
long-term forecasting.
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Table 7.12 Hybrid AI techniques: ANFIS and OP-ELM 

Model Data used Types of 
load 
forecasting 

Errors 
(kWh) 

Significance/remarks Application/applicable 
to 

(OP-ELM) Real 
dataset of 
large 
power 
consuming 
substation 

STLF, 
MTLF 

MAPE = 
0.090344 
MAE = 
0.057076 
RMSE = 
0.077942 

OP-ELM model out 
performs ANFIS 
model 

Distribution stations 

(ANFIS) STLF, 
MTLF 

MAPE = 
0.088012 
MAE = 
0.060583 
RMSE = 
0.073518 

Better performance 
then benchmarks 
models 

Turning on/off electric 
power plants
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Load Forecasting Using Different 
Techniques 

Arshi Khan and M. Rizwan 

Abstract Load forecasting uses previous data from the electrical system to predict 
future electric load. For the planning and operation of the utility, precise models for 
forecasting the electric power load are required. Load forecasting can also be used to 
support an electric utility’s future system operations, such as load switching, demand-
side management, and identifying and forecasting energy consumption patterns. 
Electric charge prediction is critical in the electric power system because it deter-
mines when and how much generation, transmission, and distribution capacity must 
be arranged to match the predicted load without supply interruptions. As a result, 
the higher the quality of the forecast, the more accurate, dependable, and timely 
the results are. In this chapter, various methodologies used for load forecasting are 
discussed. With the help of artificial intelligence techniques, namely fuzzy logic, 
ANN, and ANFIS, the future load is predicted. All three methods are used for the data 
set considered, and the results are analyzed. The results of all three methodologies 
are studied and compared. 

Keywords Short-term load forecasting · Artificial intelligence · Fuzzy logic 

1 Introduction 

With the rise in people’s living standards, the share of cooling load, such as air 
conditioning, is increasing in summer load, posing a threat to the power system’s 
safe operation and economic dispatch. Accurate daily load forecasting can provide 
a strong scientific basis for optimal unit combination, economic dispatch, electricity 
market transaction, and demand response in the implementation of national energy 
saving and emission reduction policies. The demand for power in India is steadily
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increasing. India’s total installed capacity is 3,95,075 MW as of January 31, 2022. 
The reason for the rise in electricity usage is urbanization and population growth. It 
may be stated that this need will continue to rise in the future. Electricity is produced 
in response to demand [1]. 

Demand expectation is a significant angle in the advancement of any model for 
power planning, particularly in the present improving power framework structure. 
The type of the interest relies upon the kind of preparation and precision that is 
required. Depending upon the time locale of planning strategies, the forecasting of 
load can be classified into the following three types specifically: 

• Short-term load forecasting (STLF): In this method, generally, the time period 
ranges from an hour to a week. It can direct us to surmised load flow and then 
lead to making choices that can block excess loading. Transient determining is 
utilized to give mandatory data for managing system of day-to-day activities and 
unit responsibility. 

• Medium-term load forecasting (MTLF): In this method, the period of time range 
is from a week to a year. The figures for various time horizons are significant for 
various tasks inside a utility organization. Medium-term estimating is utilized to 
plan fuel supplies and unit the board. 

• Long-term load forecasting (LTLF): In this method, the time range is more than a 
year. It is utilized to supply electric service organization with précised expectation 
of future requirements for extension, hardware buys, or staff employing. 

In [2], importance of load forecasting and issues regarding load forecasting are 
focused. Various methodologies of artificial intelligence that can be used in fore-
casting are explained like fuzzy, ANN, statistical, spatial, etc. It highlights the impor-
tance of these various intelligent system approaches and helps in recognizing various 
aspects of research in these methods. In [3], priority vector-based technique for load 
forecasting is used. Records of almost two years of load at every hour and weather 
are extracted, and the relation between them is drawn and categorized based on that. 
It is an adaptive technique as it generates relationship coefficient between weather 
parameters and load continuously. As these relations change from time to time, it 
automatically updates the changed coefficient between these two parameters. It is 
used to predict forecast of load of one week. In [4], knowledge-based expert system 
is used for short-term load forecasting (STLF). The expert system developed in this 
method is written using 5 years of historical data in prolog. Distinct load shapes and 
their load calculations are done. Various categories of load usage according to the 
observation are set like low level of load during Chinese New Year or at the time 
of typhoon. With the help of these observations, new rules or information are made 
or set for the purpose of short-term load forecasting. In [5], linear regression-based 
method or model used for STLF is described. This model takes care of many areas 
such as innovative model of building, with the help of which weighted least squares 
in linear regression techniques estimation of parameters are done, with the use of 
which reverse errors-in-variables techniques effect of potential errors on load fore-
casts can be relieved, and to differentiate between daily time-independent peak load 
forecast and maximum hourly peak load forecast from negative bias.
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In this chapter, three models are developed for short-term load forecasting using 
fuzzy logic, ANN, and ANFIS. 

2 Fuzzy Logic-Based Forecasting 

The fuzzy logic concept was introduced by Professor Lotfi A. Zadeh. Truth is 
certainly not an outright idea. Fuzzy logic gives an approach to address levels of 
conviction. It is a technique for thinking that looks like human thinking. It is a 
problem-solving tool that falls somewhere between classical logic’s precision and 
the real world’s inherent imprecision. Several fuzzy logic-based algorithms have 
been established in recent years to interpret picture data with vagueness and ambi-
guity due to the acquisition phase, as well as imprecise and ill-defined knowledge 
about the image contents. Fuzzy sets, which are the main parts of fuzzy logic, can 
be used to handle the imprecision in an image stored in the pixels. Vague ideas such 
as sharp boundaries, excellent contrast, high saturation, bright red, and so on can be 
recognized qualitatively by human reasoning and articulated in a formal way using 
fuzzy logic, allowing a machine to emulate human reasoning. 

2.1 Architecture of Fuzzy Logic 

Figure 1 shows the block diagram of fuzzy logic. The methodology of FL imperson-
ates the method of dynamic in people that includes all middle of the road prospects 
between computerized values YES and NO. The four main parts can be explained 
as follows:

(1) Fuzzifier: The method of fuzzification involves converting crisp inputs into 
fuzzy sets defined on the input space. The component of the system that 

Fig. 1 Fuzzy logic block diagram
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performs this procedure is known as a fuzzifier. In this stage, a fuzzifica-
tion function is used to express the measurement uncertainty for each input 
variable. The fuzzification function’s objective is to interpret measurements of 
input variables, each of which is expressed as a real number, as more realistic 
fuzzy approximations of those real numbers.

(2) Fuzzy rule base: It contains the course of action of rules and the IF–THEN 
conditions given by the experts to direct the unique structure, in view of 
linguistic information. Late upgrades in feathery speculation offer a couple 
of fruitful strategies for the arrangement and tuning of fuzzy controllers. Most 
of these headways decline the number of fuzzy rules. 

(3) Fuzzy inference system: It chooses the organizing with level of the current 
fuzzy information concerning every norm and picks which rules are to be 
ended by the data field. At that point, the ended standards are joined to outline 
the control exercises. 

(4) Defuzzifier: A crisp value is frequently required as the output of a fuzzy rule-
based system, which is a necessity in many engineering challenges, such as 
fuzzy control applications. A defuzzification stage is required in these circum-
stances to achieve a crisp output from the fuzzy output generated by rule 
inference. 

Membership functions allow us to graphically represent a fuzzy set. In the 
membership functions, The x axis represents the universe of discourse, whereas 
the y axis represents the degrees of membership in the [0, 1] interval. 

Membership functions that could be classified into two groups: those made up of 
straight lines being “linear” ones, and the “curved” or “nonlinear” ones. Some of 
the most common membership functions are listed as follows: 

(1) Triangular function. 
(2) Trapezoidal function. 
(3) Gaussian function. 

2.2 Fuzzy Logic Model 

Generalized flowchart for fuzzy is shown in Fig. 2. The load consumed in a location 
is recorded every minute and the average is calculated every 15 minutes. The data of 
input and output is a normalized value that is scaled down in the range of 0.1–0.9. It 
is done to avoid convergence problem. The normalized values of the data can be seen 
in Table 1. Fuzzy logic is basically the general Boolean logic that is used in design 
of digital circuits. It takes only two values, i.e., false (0) or true (1). But in this, the 
input can take the values in between 0 and 1 also. It chips away at the degrees of 
potential result for contribution to attain the definite output. The actual data is scaled 
down using the equation below: 

LS = 
(Ymax − Ymin) 

(Lmax − Lmin) 
(L − Lmin) + Ymin (1)
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Fig. 2 Flowchart for fuzzy logic 

where 
Ymax is 0.9; 
Ymin is 0.1; 
Lmax is maximum load value; 
Lmin is minimum load value; 
L is load to be converted; 
LS is normalized value.
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Table 1 Normalized value 

Time Inputs Output 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

00:15 0.3 0.34 0.44 0.43 0.48 0.50 0.54 

00:30 0.27 0.30 0.41 0.4 0.48 0.47 0.54 

00:45 0.27 0.30 0.41 0.34 0.47 0.39 0.54 

01:00 0.26 0.27 0.39 0.34 0.40 0.49 0.54 

01:15 0.26 0.27 0.37 0.34 0.40 0.49 0.54 

01:30 0.25 0.27 0.37 0.34 0.40 0.49 0.51 

01:45 0.25 0.27 0.38 0.34 0.40 0.49 0.39 

02:00 0.26 0.27 0.37 0.34 0.40 0.43 0.39 

02:15 0.25 0.27 0.37 0.34 0.40 0.38 0.39 

02:30 0.26 0.27 0.37 0.34 0.40 0.38 0.39 

02:45 0.25 0.27 0.37 0.34 0.40 0.38 0.39 

03:00 0.26 0.27 0.37 0.34 0.39 0.38 0.39 

03:15 0.25 0.27 0.37 0.34 0.35 0.38 0.39 

03:30 0.25 0.24 0.37 0.34 0.35 0.38 0.39 

03:45 0.26 0.25 0.37 0.34 0.35 0.38 0.39 

04:00 0.26 0.26 0.33 0.34 0.35 0.38 0.39 

04:15 0.26 0.24 0.33 0.32 0.35 0.38 0.39 

04:30 0.25 0.24 0.33 0.30 0.35 0.37 0.39 

04:45 0.25 0.25 0.33 0.30 0.35 0.35 0.39 

05:00 0.25 0.25 0.33 0.31 0.35 0.35 0.39 

05:15 0.26 0.27 0.33 0.31 0.38 0.35 0.39 

05:30 0.27 0.27 0.33 0.31 0.38 0.35 0.39 

05:45 0.27 0.27 0.33 0.31 0.35 0.35 0.39 

06:00 0.27 0.27 0.33 0.31 0.35 0.35 0.39 

06:15 0.26 0.27 0.30 0.31 0.35 0.35 0.36 

06:30 0.25 0.27 0.34 0.31 0.32 0.32 0.35 

06:45 0.25 0.33 0.33 0.27 0.33 0.36 0.35 

07:00 0.26 0.36 0.33 0.33 0.41 0.45 0.44 

07:15 0.26 0.35 0.33 0.38 0.41 0.45 0.45 

07:30 0.27 0.35 0.34 0.37 0.43 0.46 0.46 

07:45 0.26 0.35 0.40 0.38 0.45 0.46 0.48 

08:00 0.26 0.35 0.42 0.38 0.48 0.47 0.52 

08:15 0.28 0.35 0.42 0.41 0.51 0.50 0.53 

08:30 0.28 0.34 0.46 0.42 0.53 0.53 0.56 

08:45 0.29 0.31 0.48 0.46 0.55 0.55 0.61

(continued)
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Table 1 (continued)

Time Inputs Output

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

09:00 0.30 0.31 0.54 0.48 0.57 0.57 0.63 

09:15 0.31 0.31 0.51 0.46 0.61 0.61 0.56 

09:30 0.35 0.29 0.62 0.43 0.47 0.70 0.64 

09:45 0.30 0.38 0.75 0.61 0.78 0.73 0.68 

10:00 0.40 0.45 0.77 0.66 0.8 0.73 0.79 

10:15 0.42 0.46 0.77 0.69 0.8 0.66 0.84 

10:30 0.43 0.45 0.77 0.73 0.84 0.69 0.87 

10:45 0.43 0.46 0.81 0.77 0.84 0.69 0.88 

11:00 0.44 0.33 0.81 0.79 0.87 0.72 0.88 

11:15 0.44 0.40 0.81 0.80 0.89 0.82 0.88 

11:30 0.44 0.40 0.81 0.80 0.88 0.89 0.88 

11:45 0.44 0.39 0.81 0.78 0.9 0.88 0.88 

12:00 0.45 0.36 0.83 0.75 0.88 0.86 0.87 

12:15 0.44 0.38 0.83 0.73 0.85 0.84 0.86 

12:30 0.43 0.37 0.81 0.73 0.87 0.83 0.84 

12:45 0.43 0.37 0.79 0.78 0.87 0.82 0.8 

13:00 0.43 0.37 0.79 0.79 0.87 0.82 0.78 

13:15 0.43 0.35 0.77 0.76 0.81 0.82 0.75 

13:30 0.40 0.35 0.77 0.67 0.67 0.78 0.74 

13:45 0.39 0.35 0.79 0.61 0.77 0.78 0.75 

14:00 0.38 0.36 0.78 0.59 0.79 0.79 0.74 

14:15 0.38 0.39 0.78 0.56 0.79 0.79 0.77 

14:30 0.38 0.35 0.76 0.60 0.79 0.81 0.85 

14:45 0.38 0.43 0.75 0.73 0.75 0.83 0.85 

15:00 0.38 0.46 0.69 0.73 0.74 0.83 0.83 

15:15 0.38 0.25 0.62 0.76 0.74 0.81 0.80 

15:30 0.38 0.39 0.48 0.75 0.73 0.78 0.78 

15:45 0.35 0.35 0.44 0.76 0.70 0.76 0.73 

16:00 0.32 0.38 0.44 0.66 0.83 0.69 0.67 

16:15 0.31 0.38 0.44 0.60 0.55 0.54 0.51 

16:30 0.31 0.1 0.44 0.47 0.54 0.49 0.44 

16:45 0.36 0.28 0.44 0.42 0.55 0.45 0.40 

17:00 0.02 0.26 0.43 0.43 0.57 0.45 0.40 

17:15 0.36 0.25 0.40 0.40 0.42 0.47 0.43

(continued)
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Table 1 (continued)

Time Inputs Output

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

17:30 0.36 0.27 0.37 0.38 0.42 0.45 0.43 

17:45 0.36 0.24 0.37 0.36 0.40 0.41 0.44 

18:00 0.36 0.24 0.37 0.36 0.39 0.41 0.44 

18:15 0.29 0.25 0.35 0.35 0.33 0.39 0.41 

18:30 0.26 0.27 0.37 0.32 0.33 0.38 0.40 

18:45 0.26 0.20 0.45 0.32 0.33 0.38 0.37 

19:00 0.3 0.26 0.48 0.32 0.33 0.41 0.37 

19:15 0.31 0.25 0.48 0.32 0.33 0.49 0.38 

19:30 0.31 0.26 0.48 0.33 0.35 0.46 0.38 

19:45 0.28 0.34 0.48 0.36 0.37 0.47 0.40 

20:00 0.27 0.36 0.49 0.43 0.37 0.46 0.42 

20:15 0.28 0.39 0.52 0.43 0.37 0.46 0.41 

20:30 0.28 0.38 0.52 0.43 0.37 0.47 0.38 

20:45 0.29 0.35 0.49 0.43 0.37 0.50 0.40 

21:00 0.29 0.36 0.49 0.45 0.38 0.53 0.50 

21:15 0.29 0.36 0.49 0.47 0.41 0.53 0.53 

21:30 0.29 0.35 0.51 0.47 0.41 0.53 0.56 

21:45 0.30 0.35 0.52 0.47 0.41 0.53 0.56 

22:00 0.30 0.29 0.52 0.47 0.41 0.53 0.57 

22:15 0.30 0.28 0.52 0.47 0.41 0.53 0.56 

22:30 0.30 0.31 0.51 0.47 0.41 0.53 0.56 

22:45 0.30 0.38 0.49 0.47 0.41 0.53 0.53 

23:00 0.30 0.38 0.49 0.46 0.41 0.53 0.52 

23:15 0.30 0.38 0.43 0.46 0.43 0.53 0.52 

23:30 0.30 0.38 0.40 0.44 0.54 0.53 0.52 

23:45 0.30 0.38 0.40 0.43 0.48 0.53 0.51 

00:00 0.27 0.38 0.40 0.4 0.48 0.53 0.49 

Fuzzy methodology that is put forward can be utilized as a guide to forecasting 
the heaps with various time arrangements. An accurate fuzzy system can be made by 
dividing into various intervals. The basic fuzzy logic model used for STLF for the 
data can be seen in Fig. 3. The span of input as well as output is divided into thirteen 
triangular membership functions that is presented in Fig. 4.

The triangular membership functions are utilized where the help of the partici-
pation work is settled based on the gathered information. The arrangement of the 
creation rules depends on the basic semantic learning and is the essential premise 
for the forecast model. The output of the model will exclusively rely upon this, and



Load Forecasting Using Different Techniques 139

Fig. 3 Model of fuzzy logic for STLF 

Fig. 4 Input and output triangular membership function 

subsequently after primer investigation of the informational collection, the accom-
panying creation rules are utilized; anyway, the equivalent might be distinctive for 
another arrangement of information. Together the triangular membership functions 
as well as fuzzy rules are intended to give a simpler technique in which we can 
implement instinct and experience directly into a PC program. 

After the crisp input is applied with logical reasoning or through the fuzzy infer-
ence system, an output is obtained to which the defuzzification process can be applied 
and the crisp output can be obtained. The output obtained from the model is then 
compared to the actual load which can be seen in Fig. 5. One of the outputs for the 
28th rule is seen in Fig. 6. 

Then, absolute relative error (ARE) is calculated with the help of formula given 
below:
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Fig. 5 Actual load versus forecasted load using FL 

Fig. 6 Rule viewer for 28th rule
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Fig. 7 Error obtained in fuzzy 

ARE = 
Pdesired − Pforecasted 

Pdesired 
× 100 (2) 

where Pdesired is the target load and Pforecasted is the forecast load through fuzzy logic 
model for STLF. The error obtained is observed in Fig. 7. 

The comparison is done to check the accuracy of the fuzzy logic model developed 
for the STLF. It can be observed that the load forecasted is nearby the actual demand 
data. It was observed that minimum ARE is 0.052% and maximum ARE is 8.514%. 
The average absolute relative error calculated is 2.376%. It can be concluded that 
the error is low. Hence, the fuzzy model developed for the purpose of STLF for this 
data is accurate. 

3 Artificial Neural Network 

It is also known as neural network (NN). It is a machine which acts like human 
brain with learning capacity and speculation as its attributes. ANNs make them learn 
capacities that empower them to deliver better outcomes as more information opens 
up. It is the establishment of AI and tackles issues that would demonstrate outlandish 
or troublesome by human or measurable norms. They are basically nonlinear math-
ematical processing networks. They are being used in fields like image recognition, 
load forecasting, speech recognition, energy consumption prediction, data retrieval, 
and mine dam water level prediction and monitoring. Because of their ability to work 
on complicated and nonlinear systems, artificial intelligence methods for predicting 
complex and ambiguous models have grown popular. Artificial neural networks 
(ANNs) are based on the operation of biological neural networks and can learn 
in a similar way to humans. It has three layers: an input layer that accepts data, a
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hidden layer that processes data between the input and output levels, and an output 
layer that outputs the data (which sends computed data). Each layer is made up of 
neurons that process the input parameters and produce an output, with a weight factor 
applied to the connections between layers. 

In [6], ANN is studied in context of its strength in field of power system and 
its application. Also, its application in various problems of power system is briefly 
discussed. An overview of ANN-based models for STLF is presented in [7]. Review 
of paper published during 1991 and 1999 is done. These papers that are reviewed 
are application of NN used for STLF purpose. Each paper is critically reviewed to 
properly understand the use of NN in forecasting. A further developed NN approach 
is produced for STLF purpose in [8]. An approach that is befitting for selection of 
training cases in the NN is suggested. This approach has benefit of circumventing the 
issue of holidays and sudden changes in weather patterns, which makes it difficult 
for training of network. Additionally, an improved algorithm for neural network is 
presented. In [9], the practicality of utilizing simple NN for STLF is researched. The 
combination of nonlinear and linear neural network is created. The estimates are 
computed utilizing weights that are re-estimated using recent observations. 

3.1 Architecture of Artificial Neural Network 

ANNs are made out of different nodes, which mimic natural neurons of human 
mind. The neurons are associated with connections, and they communicate with one 
another. The hubs can take input information and perform straightforward procedure 
on the information. The outcome of these activities is passed to different neurons. 
The yield at every hub is called its initiation or node value. It consists of three layers: 

(i) Input layer: It is the first layer. It enters the external input data in the network. 
(ii) Hidden layer: It is the second layer. It is the layer between output and input. All 

sorts of calculation are performed in this to determine any pattern or hidden 
feature. 

(iii) Output layer: It is the final layer. After going through some transformation 
series in hidden layer, it provides an output which is conveyed by this layer. 

The basic structure is seen in Fig. 8. 

3.2 ANN Method for Load Forecasting 

Using the algorithm discussed through flowchart in Fig. 9, the forecasted load data for 
the seventh day for the location is generated through ANN. With the help of “nftool” 
in MATLAB, ANN model is developed. Feed forward network type of ANN is used 
here. Training of network is done by using “Levenberg–Marquardt backpropagation 
algorithm”.
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Fig. 8 Basic structure of ANN 

The input layer includes information that the network must use during the learning 
process, like target data that the network must imitate. The weights are modified 
during. 

The training process to provide the best outcomes. The network’s input and target 
vectors are divided into three groups at random as follows: 

• 60% will be used for training. 
• 20% for validating that the network is generalizing and terminating the training 

process before overfitting or terminating training when generalization has reached 
its limit. 

• The 20% was utilized as a completely independent network generalization test. 
This has no bearing on training; instead, it serves as an independent indicator of 
network performance during and after training (Fig. 10). 

Figure 11 represents the regression plot obtained during ANN model training and 
testing. Figure 12 is comparing of actual load and forecasted load from ANN model. 
Figure 13 is the error plot obtained by ANN. 

The average absolute relative error calculated is 2.913%. It is slightly more than 
fuzzy model error but accurate enough for the purpose of STLF. 

4 Adaptive Neuro-Fuzzy Interference System 

ANFIS can address any sort of nonlinear and complex issues successfully by adding 
the benefits of ANN and fuzzy. It merges the mathematical and linguistic information 
by using fuzzy methods. It additionally utilizes the ANN’s capacity of classification 
of data and identifies the pattern. Also, the ANFIS causes less retention error and is
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Fig. 9 Flowchart of ANN algorithm
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Fig. 10 ANN model in MATLAB 

Fig. 11 Regression plot while implementing ANN model

more noticeable to user in comparison with ANN. It is a combination of both ANN 
and fuzzy logic (FL). Hence, it has advantages of both the methods overcoming 
their flaws. FL cannot gain any information from the data. ANN has absence of 
information representability and logic.
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Fig. 12 Actual versus forecasted load through ANN 

Fig. 13 Error obtained using ANN

In [10], adaptive neuro-fuzzy inference system (ANFIS) is used for the purpose 
of studying STLF design. In this paper, consumed load is forecasted with the help 
of multi-ANFIS. Sections of the presenting model are into the multi-ANFIS which 
includes maximum and minimum temperature, date of day, condition of climate, and 
consumed load of previous day, and its output is the forecast of load consumption of 
power. In [11], ANFIS model is developed for short-term load forecasting purpose. 
It is the combination of both fuzzy and ANN. Factors like data types and weather, 
etc., are used in this model. The training of the model is done by historical load 
data. ANFIS-based approach of load forecasting is used for small regions with low 
consumption in [12]. 
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4.1 Architecture of ANFIS 

ANFIS consists of five layers of neurons as shown in Fig. 14. Every layer has their 
own behavior. Layers 2, 3, and 5 consist of constant behavior, whereas layer 1 and 
layer 4 have varying parameters, in these modifications are done for training. These 
five layers are as follows: 

(1) Layer 1—Fuzzification 

In this layer, process known as fuzzification is carried out. Degrees in which every 
input is belonged to fuzzy space are given the values in between 0 and 1. Every node 
in this layer is adaptive node. The input and output relation of this node can be given 
as follows: 

O(1, i ) = µAi (x), i = 1, 2 (3)  

(2) Layer 2—Fuzzy rule 

Every node is fixed and addressed with a rule. Every node of this layer duplicates the 
input signal which can show degrees to which the sources of incoming signal fulfill 
the membership function. The result of the information signs to every node of this 
layer addresses the terminating strength of a rule. The output for this can be defined 
as follows: 

O(2, i) = µAi (x)XµBi (y), i = 1, 2 (4)

Fig. 14 Basic structure of ANFIS
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(3) Layer 3—Normalization 

In this layer, fixed nodes are named as N. Output in this layer is normalization of the 
weight work or summation of every rule firing strength as follows: 

O(3, i) = w'
i =

wi 

w1 + w2 
, i = 1, 2 (5)  

(4) Layer 4—Defuzzification 

Every node registers the weighted subsequent value of every rule which addresses 
the contribution of every rule to the output overall. These are adaptive nodes other 
than the nodes in fuzzy layer. In this layer, nodes calculate output of rules base on 
subsequent parameters as follows: 

O(4, i) = w'
i f = w'

i (pi x + qi y + ri ), i = 1, 2 (6)  

(5) Layer 5—Output 

It is the final layer. By summing all the incoming signals, it provides the output as 
below: 

O(5, i ) = 
2⎲

i=1 

w
'
i fi , i = 1, 2 (7)  

4.2 ANFIS Model for Load Forecasting 

For the development of ANFIS model, MATLAB 2018 software is used. With the 
help of “anfisedit”, ANFIS model is developed. The methodology’s training section 
is based on a system that collects data from the plant’s database on a regular basis 
in order to analyze the data and find potential energy pattern behaviors. Approxi-
mately, 70% data is trained and 30% data is tested in this model. Using the algorithm 
discussed through the flowchart in Fig. 15, the forecasted load data for the seventh 
day for the location is generated through ANFIS. 

Figure 16 shows the comparison of forecasted load from ANFIS model and actual 
load recorded. Figure 17 is the error plot obtained by ANFIS. 

The average absolute relative error calculated is 1.953%. It is less than fuzzy and 
ANN model. It can be said that the model developed is accurate for load forecasting.
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Fig. 15 Flowchart for ANFIS algorithm 

5 Conclusion 

The importance of short-term load forecasting is increasing with increase in the 
utilization of electricity. In electricity load forecasting, machine learning techniques 
are demonstrating to be quite useful. These are frequently being used as one of the 
most forward-looking approaches during the time of generation of electricity, market 
planning activities, and also in planning for development in the distribution network.
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Fig. 16 Actual versus forecasted load through ANFIS 

Fig. 17 Error obtained using ANFIS 

In fuzzy model, it is observed that at 12:30 pm the accuracy of the model developed 
is 100%. The rest are nearby values for the actual load. The average absolute relative 
error calculated is 2.376%. So, it can be concluded that the model developed for the 
STLF is quite accurate (Fig. 18).
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Fig. 18 Comparison of actual load with all the techniques used 
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Time Load Forecasting: A Smarter 
Expertise Through Modern Methods 

Trina Som 

Abstract Electricity is a necessary aspect of modern life, and it benefits us in a 
variety of ways. Electricity is a part of daily living of human race, which includes 
basic lighting, cooling, heating, cooking, refrigeration, as well as for operations of 
electronic appliances, online-based systems, transportations, and medical purposes. 
With growing awareness towards effective and green energy production, forecasting 
of accurate load demand has become the most vital part in today’s power sectors. 
Suppliers of energy and others involved in electric energy’s generation, distribution, 
and transmission along with marketing, rely heavily on the demand estimates. Elec-
tricity demand estimates are used to guide investment decisions in power generating 
transmission, distribution, and markets, as well as network infrastructure. Forecasts 
are also important for development experts as well as power utilities, energy policy-
makers, and private investors. Forecasting of electric power demand is regarded as 
one of the most important aspects of economic operation of power systems, which 
serves as a significant cost-cutting potential for power utilities or companies. Many 
research resulted in achievement of maximum savings when control operations, 
fuel allocations, economic dispatch, unit commitments are made on the basis of 
proper load forecasting. Hence, development of exact models for projecting the elec-
tricity demand is critical for functioning and planning of utility companies. Calendar 
seasonal information, wind speed, air temperature, history knowledge of load pattern, 
air temperature, wind speed, geographically information, and economic events are all 
aspects that influence prediction or forecasting of the load. The forecasting of load on 
timely basis has mainly been classified into short-term, medium-term, and long-term 
forecasts. Different models with different modes and constraining parameters, needs 
proper controlling methods. These methods are generally known as traditional fore-
casting technique, modified traditional technique, and modern techniques. Though 
the conventional methods are able to consider the above-mentioned aspects on time 
series forecast, but it often takes a longer time and complicated ways to predict the 
desire value. Unlike the conventional methods, the hybrid models, are capable of
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adapting to the fluctuations in the raw value of electric load data. The hybrid tech-
niques results in a better performance and higher accuracy in forecasting. By fusing 
the best of statistics and machine learning techniques, the hybrid methods promise 
to advance time series forecasting. The basic concepts of hybrid techniques in fore-
casting lies in compensating the weakness of one method with strength of other. 
However, this field of research is essential to create the statistical significance of the 
existing data, by analyzing existing methods, initiating generalized research queries, 
and further exploring areas of possible improvements. 

Keywords Load forecasting · Short term · Long-term · Optimization ·
Grasshopper optimization method 

1 Introduction 

Electricity forecasting is an important part of the power grid, which has piqued 
academic interest. Forecasting allows for well-versed and efficient responses to 
demand for electricity. However, there are many models for forecasting which are 
available thus making the unskilled researchers to choose the right one. 

Forecasting models are frequently employed in a variety of fields, including as 
stock market movements with forecasting or stock market indexes [1]. In business, 
it’s used to schedule employees, manage inventories, and forecast demand, while in 
meteorology, it’s used to forecast weather [1], and in many economic estimations in 
social and professional events. 

Power plant control relies heavily on forecasts and the exchange of electrical power 
in linked systems [2]. Proper forecast aids the planners in comprehending the impact 
of several factors influencing energy consumption, thereby providing better results 
with good decisions [3]. Prediction of electrical load demand is an important part 
of the power industry’s planning. It is important for the function of electrical power 
grids [3]. Electrical load demand projections is closely linked to the economic growth, 
as well as national security and society’s day-to-day operations [4]. As a result, the 
accuracy of electric load forecasting and scheduling of maximum generation of power 
is crucial for power system management. On a temporal scale, forecast includes short-
term predictions, such as for keeping a balance between the prediction on long term 
basis and electrical power generation, and long-term predictions, such as for building 
the maximum capacity, return on investment evaluations, and revenue studies [5]. 
Various forecasting models or frameworks have been explored and tested to aid in 
the easier acquisition of results in the sphere of business and marketing [6]. Despite 
the fact that several forecasting models and methodologies have been developed to 
calculate reliable load forecasts, selecting an acceptable. It is difficult to develop a 
forecasting model for a given energy network, and none of these, however, can’t be 
used for all demand patterns [7]. Hence emerging of new and modified forecasting 
methods are the prime need of the society at the present time period.
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2 Types of Electrical Load Forecasting 

For proper planning and functioning of a power utility firm, a good model for 
projecting electric power consumption is required. Accurate prediction of load is crit-
ical in assisting an electric utility when making key decisions about power, switching 
of load, control of voltage, re-configuration of network, and structure development 
[8]. Among various forecasting models, the most common type of classification is 
done on the basis of time. Long, medium-and short-term forecasting models are the 
types in this genre. 

2.1 Long Term 

This form of forecasting is usually done over a number of years (of about twenty years 
approximately). This form of projection is crucial for long-term planning, generating 
new building, and the development of the power supply and distribution system. In 
terms of annual numbers, long-term power demand may increase, and the temporal 
load profile’s contour could also change. With the need of long-term load forecast 
precision, for grid growth and operation [9], it has gotten little attention in terms 
of other aspect. Grading up current electrical load has conventionally been used to 
forecast the hourly profile of local as well as national electricity consumption [10]. 
In comparison to today’s circumstances, end-user freedom and more electrification 
will change things the hourly profile of load demand. Power-system planners must 
account for such changes in their modeling concepts and frameworks for analysis in 
order to propose cost-effective and practical solutions. Peak electricity demand is a 
big concern since it dictates the size and power producing capacity of the electrical 
infrastructure all times. Understanding how current and future developments, such 
as developing structures of integrated PV systems, heat pumps, electric vehicles, 
energy storage devices, variations in demand responses, and affect peak electrical 
load is critical. Long-term models including the power sector must incorporate better 
solutions to enable more accurate load forecasting by involvement of construction 
and transportation sectors. 

2.2 Medium Term 

Medium-term forecasting is useful for planning maintenance and obtaining fuel, as 
well as energy transaction and utility revenue review, and is normally for a week to a 
year. This information is useful for planning proper operation of power system, and 
has considerable advantages for businesses in the energy market, whether regulated 
or unregulated [11]. Taipower is a state-owned combined generation, distribution 
and transmission of power company which is an example of a regulated business that
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might benefit from the MTLF [12]. For many of these types of businesses, MTLF 
data can serve as a barometer of energy consumption and growth at the regional and 
national levels, as well as assisting with energy planning for the long and medium 
term [13]. Load projections over the medium term can also be utilized to plan and 
manage network repairs. The use of intermittent resources is maximized when fuel 
purchases for power generation are effectively negotiated. Major choices about long-
term power system development, such as building of a power plant that takes two 
or more years to complete, typically necessitate longer-term estimates. Forecasting 
on basis of medium-term time, on the other hand, might provide useful information, 
viz, the improvement of the transmission grid for guiding the development of other 
infrastructure parts that must be completed in a shorter timeframe. 

For distribution systems, grid congestion is a major issue, and it can have a consid-
erable influence on consumer energy prices and efficiency of overall system [14]. 
In a regulated sector, MTLF can be utilized to increase overall system reliability 
by optimizing energy generation and transmission. In a regulated sector, MTLF can 
be utilized to increase overall system reliability by optimizing energy generation 
and transmission. Majority of the advantages realized in an energy market that is 
regulated through precise MTLF can be achieved as well as in a deregulated energy 
market. Transmission congestion is a problem that affects all energy delivery systems 
independent of legislation. Similarly, transmission and distribution companies are 
also affected in a deregulated energy economy. These deregulated enterprises can 
successfully use MTLF data to direct the upgrading their transmission network in 
order to provide better service to their clients. 

2.3 Short Term 

In recent decades, one of the most significant fields in the electrical industry is fore-
casting short-term load in order for electricity systems to run efficiently and reliably 
[15]. It is particularly important in the fields of load flow studies, planning and 
monitoring, power unit scheduling, and exigency analysis. This type of forecasting 
is generally last for an interval of one hour to one week. It is critical for a utility’s 
day-to-day operations, along with proper scheduling regarding transmission of gener-
ated electricity. Another, type of forecasting, i.e., ultra or VSTLF (very short-term 
load forecasting) is used for controlling operation in real-time and varies between 
a few minutes and an hour in advance. Several forecasting methods and models 
have been created to calculate an accurate forecast for an hour to week interval. It 
is critical for a day-to-day operation of the utility to schedule power transmission 
and generation. Short-term load forecasting (STLF) has been a popular research area 
in recent decades. This STLF offers precise input into a previous day’s scheduling, 
load power flow analysis, planning, and maintenance, exigency analysis, of power 
systems [16] to achieve improved reliability and effectiveness in power system oper-
ation, and to make it easier to reduce the cost of operation by offering standard 
statistical models, namely, ARIMA, ARMAX, SARIMA, exponential smoothing,



Time Load Forecasting: A Smarter Expertise Through Modern Methods 157

multi-variable regression, and Kalman filter based methods. AI-based models such 
as knowledge-based expert systems, artificial neural networks (ANNs), evolutionary 
computation models, fuzzy theory and fuzzy inference system, and support vector 
regression also enhance the efficiency of the system. 

To obtain a sufficiently precise forecasting level, many advanced hybrids using 
those AI-based models have lately been developed because of the rapid advancement 
of evolutionary algorithms (EAs) and novel computing ideas viz chaotic mapping 
functions, quantum cloud mapping process and computing concepts. By implemen-
tation of a superior methods, existing models such as ARIMA become capable of 
solving seasonal problems. STLF’s study trends and progress have revealed a wealth 
of potential, deserving of additional investigation into this vital topic. 

Considering these types of forecasting, several models of load forecasting 
have been developed and adapted for improvement in electricity generation and 
distribution. 

3 Existing Models of Load Forecasting 

The existing models for load forecasting are mainly developed on the basis of certain 
parameters which are realized as time series-based analysis [17] and estimates, qual-
itative techniques, and causal models. Generally, the models were compared in terms 
of the timeframe they are supposed to forecast. The most important issue becomes 
selecting the appropriate forecasting method depending on the qualities of the time 
series data. On the basis of different parameters, regression, bottom up, time series 
analysis, ANN, and SVM are the five most prevalent models being compared. Further, 
considering only the time series analysis, three different types of series models are 
constructed, as exponential smoothing model, moving average model, and ARIMA 
[18]. Many parameters under consideration hold a good inter relationship such as 
dependence on the frequency. Furthermore, the time series can be represented as a 
yearly annual budget or quarterly expenses, as well as monthly air traffic, weekly 
sales volume, daily weather conditions, hourly stock prices, minutes inbound calls in 
a call center, and even seconds wise web traffic. Furthermore, the time series can be 
represented as a yearly annual budget or quarterly expenses, as well as monthly air 
traffic, weekly sales volume, daily weather conditions, hourly stock prices, minutes 
inbound calls in a call center, and even seconds-wise web traffic. In consideration to 
so many parameters, three main types of time series models came into the market, 
namely, moving average, exponential smoothing, and ARIMA. 

The ARIMA model focus on the way of forecasting, where prediction of future 
value is made on the basis of previous value are called univariate time series fore-
casting; while the predictions when made on basis of different factors other than 
series data, are known as multi-variate time series forecasting. Auto Regressive Inte-
grated Moving Average (ARIMA) is a type of model that describes a time series 
using its own previous values [19]. These are the equation’s own lags and lagged 
forecast mistakes, which will aid in forecasting values for future. Any ‘non-seasonal’
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time series can be modeled using ARIMA models, that isn’t random white noise but 
has pattern. If a time series has seasonal trends, the model is seasonal and is named 
as SARIMA, i.e., Seasonal ARIMA. The three terms that characterize an ARIMA 
model are p, d, and q, where p and q are the order of the AR term and MA term 
respectively, and d is the number of differencing steps required to stabilize the time 
series. However, the nonlinearity of the impacting components makes electricity load 
forecasting challenging, where ARIMA fails to address the problem. 

In this regard, support vector machines (SVMs) have been used to address time 
series issues and nonlinear regression satisfactorily. The structural risk minimization 
(SRM) principle, which is better than ERM, is used in SVM [20]. Rather than mini-
mizing the training error, an upper constrain on the generalization error is minimized, 
which is the most fundamental concept in SRM. SVM was able to achieve an optimal 
network structure using this technique. In addition, the SVM regression transforms 
the original data x nonlinearly into a space of higher dimension. This is analogous 
to solve a problem of linear constrained quadratic programming, guaranteeing that 
the SVM solution remains unique and optimal globally. 

On the basis of the quantitative forecasting, those uses past data in numerical 
and continuous pattern form, many other load forecasting models have also been 
developed. Econometric modeling, judgmental forecasting modeling, time series 
modeling, and Delphi method modeling are among them. These methods create 
a forecasting logic by identifying the components that influence the forecast and 
constructing a functional form of the link between the identified factors. Short-term 
load prediction gives most suitable results using these models. 

The load forecasting models require proper controlling techniques on the basis of 
criteria and parameters to be considered. 

4 Controlling Method in Load Forecasting 

Despite the fact that several techniques and models for forecasting have been created 
to compute reliable load forecasts, selecting an acceptable It is difficult to develop a 
forecasting model for a given energy network of varying demand pattern. This gave 
rise to many research questions relating to the responses of the criteria with that of 
the platform to conduct the forecasting algorithms. Keywords such as “electricity 
demand models,” “electricity prediction models,”, “electricity forecasting models,” 
“online database,” “advanced search tool,” and so on are included. 

Among the controlling methods, the search for causal linkages among various 
inducing factors and forecasted values is the focus of the cross sectional or multi-
factor based forecasting approach, the time series-based forecasting methods, on the 
other hand, is more reliant on past data. When comparing these methodologies, the 
researchers discovered that time series forecasting is a lot easier and faster. This 
method avoids the numerous and subjective aspects that could sway the accuracy of 
a forecasting model while considering multivariable forecasting. Three types of time 
series-based forecasting models can be found [21, 22], namely,
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• Models based on statistical data. 
• Models based on machine learning. 
• Models based on hybrid technology. 

4.1 Classical Methods in Load Forecasting 

In fundamental approaches, both qualitative and quantitative methodologies are used 
to anticipate outcomes, with the most appropriate kind being selected by the data 
available. The future load is estimated subjectively. Using expert opinions in subjec-
tive or qualitative forecasting methods, nonetheless, they are not simply guessing, 
but have developed organized procedures for creating effective forecasts without the 
use of historical data [23]. When historical data is inaccessible or scarce, such tactics 
are useful. These approaches include Delphi method, subjective curve fitting, and 
technical comparison method. Quantitative or objective forecasting methods, on the 
other hand, operates through mathematical and statistical formulas. With accessi-
bility of data, these methods are implemented satisfying two criteria, viz, accessible 
historical data in the form of numbers, and it is acceptable to infer that few features 
of historical forms should persist in the future. Methods of quantitative forecasting 
include a diverse set of techniques, each with its own set of features, precisions, and 
prices to consider when selecting a method within a field for a given goal. Decom-
position methods, regression analysis, Box-Jenkins methodology, and exponential 
smoothing, are examples of methods based on quantity [24]. The majority issues 
with quantitative prediction is either data collected over a period of time at regular 
intervals or data acquired at a specific point in time in cross section. However, the 
load forecasting methods can be summarized on the basis of the structural methods. 

4.1.1 Statistical Models 

A mathematical model is referred to as a statistical model that contains a collec-
tion of numerical assumptions about how sample data is generated. A model based 
on statistics can also be defined as highly idealized representation of the data-
gathering process. Statistical model provides a mathematical relationship exists 
between non-random variables with one or more random variables. Several other 
statistical models for forecasting and prediction-making have also been developed 
based on specific criteria of optimal fit. Methods developed and implemented in this 
regard are Box-Jenkins basic models such as ARIMA, and ARIMAX, AR, MA, and 
ARMA [25], Algorithms for Kalman Filtering in State Space [26], Grey models [27] 
and exponential smoothing.
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4.1.2 Autoregressive (AR) Model 

Autoregressive models work on the principle that the series’ most recent value. Y t can 
be described as a linear mixture of prior loads. Mathematically, the auto regressive 
(AR) model can predict future load values. The value for a pth order auto regression 
can be found through the expression shown below, 

Yt − 
pΣ

i=1 

yt−1φi = εt (1) 

where εt is the random noise, and φ1, φ2, φ3, …,  φp the AR coefficients that are 
unknown. The model’s order specifies the number of lagged preceding values. As 
a result, the mentioned model can forecast future behavior on the basis of previous 
actions. This method considers the random noise along with the present and past 
values. Many industries, including finances, electrical load demand prediction, and 
digital signal processing units, have used autoregressive models for decades [28]. 

4.1.3 Model Based on Moving Average 

The moving average-based model imitates the behavior of the process regarding 
moving average. It is just a regression model that reverts existing values linearly 
against one or more preceding values generate white noise. The time series is treated 
as unevenly weighted of a random shock series (εt) in a moving average model. Thus, 
the qth order of moving average based model can be represented as: 

Yt = εt − 
pΣ

i=1 

εt−i θi (2) 

The noise series can be represented by model residuals or forecast errors once load 
observations are available. This gives rise to the technique a “duality,” or invertibility, 
property. An infinite order or autoregressive form can be inverted or rebuilt, in this 
type of model which makes the difference between the MA with the AR processes. 
This is only possible if the MA parameters meet certain criteria, otherwise, the model 
will fail to meet the Box-Jenkins conditions for stationarity, invertibility, and stability 
[29]. 

4.1.4 Autoregressive Moving Average (ARMA) Model 

George Box and Gwilym Jenkins created the autoregressive moving average in 1970. 
Because of their relative simplicity and effectiveness, ARMA models are becoming 
increasingly prevalent and have been extensively studied in load forecasting [30]. The 
present value Y t is linearly stated in terms of the current value in ARMA models,
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prior values, and preceding noises. The ARMA (p, q) models are a combination 
of AR (p) and MA (q) autoregressive and moving average models, which can be 
mathematically expressed as below; 

Yt + 
pΣ

i=1 

yt−i φi = εt + 
qΣ

i=1 

εt−i θi (3) 

4.1.5 Autoregressive Integrated Moving Average (ARIMA) Model 

Because many time series, such as those connected to business and socioeconomics, 
have non-stationary behavior in practice, approaches that can deal with parameter 
and behavior fluctuations are required. As a result, the AR, MA, or ARMA models 
are unable to adequately characterize non-stationary time series because they can 
only deal with stationary data. As a result, Box and Jenkins presented the ARIMA 
models in 1976 with the goal of including non-stationarity as well. The parameters 
of autoregression (1, 2, …, p), the amount of distinctions d done to (1 − B), with 
B as a lag operator, and the moving average parameters (1, …, q), and are the three 
types of parameters in the ARIMA Box–Jenkins models. 

The lag polynomials are used to create the mathematical expression for the 
ARIMA (p, d, q) model, as illustrated below. The lag polynomials are used to create 
the mathematical expression for the ARIMA (p, d, q) model, as illustrated below in 
Eq. (4) 

φ(B).∇d .yt = θ (B).εt (4) 

The seasonal model ARIMA (p, d, q) (P, D, Q)s, where s is the number of periods 
each season and P, D, and Q are the cyclical counterparts of p, d, and q, respectively. 
(SARIMA) models are seasonal versions of the ARIMA model. The autoregressive 
fractionally integrated moving average (ARFIMA) model is a useful generalization 
of ARIMA models that enables non-integer differencing parameters’ values d. The  
ARFIMA has applications in time series modeling with a large memory. For electric 
load forecasting, the ARIMA models and their derivatives have had a lot of success 
[19]. 

4.1.6 ARMAX and ARIMAX Models 

Apart from the random noise that disrupts the process, only time and load are required 
as input data for the ARMA and ARIMA models. Exogenous factors can occasionally 
be incorporated in the ARMAX and ARIMAX models because loads are influenced 
by the meteorological conditions and the time period of day [31].
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In the model based on autoregressive moving average with exogenous inputs. In 
the time series the present value, yt is linearly stated in terms of its preceding values. 
Present and historical noise levels, as well as current and previous exogenous variable 
levels (s), are all taken into account. 

The ARMAX (p, q, r1, …,  rk) can be expressed as, 

φ(B).yt. = θ (B).εt + 
kΣ

i=1

Ψ i 
0(B)vi 

t (5) 

where the i’s represent the exogenous factor ordering (variables) vt i and ψi (B) is an  
adequate coefficient polynomials 

The ARIMAX model can be expressed in the same way as the ARMAX model, 
with the exception that the integrated part must be taken into account. This can be 
done with the help of differencing operator [32]. However, with many advantages, 
still the conventional methods fail to address all the issues and factors of an effective 
load forecasting. Because of the strong reliance on socioeconomic factors, long-term 
forecasting has a high level of uncertainty; As a result, a degree of error of up to 10% 
is allowed. Kalman Filtering algorithm can be used to reduce the inaccuracy of the 
mean squared model, thus considering the uncertainties. 

4.1.7 Kalman Filtering Algorithm 

Rudolph E. Kalman, who presented his important paper on a recursive solution to 
the discrete-data linear filtering challenge in 1960, is the name of the Kalman filter. 
The Kalman filter (KF) is a collection of state-space mathematics that can be used to 
estimate the state of an observable process in a computationally efficient (recursive) 
manner [33]. It can predict past, present, and future conditions, even if the nature 
of the system that is being represented is unknown. A Kalman filter can also be 
implemented to control noisy systems, such as electric power systems. 

According to many researchers [34], the main rudiments that influence the electric 
load behavior are weather, random disturbances, economy, customer factors and 
time. In weather factor, wind speed, humidity, precipitation, and temperature, etc. 
are considered as adjustment in habit patterns in consumers like heaters, coolers, 
etc. The load curve impulses caused by the massive loads, such as steel mills or 
wind tunnels, are shut down or restarted, and considered as random disturbances. 
Other irregular events that are known in advance but have an unknown influence 
on the load are likewise classified as random disturbances. The type of facility, i.e., 
residential complex, commercial buildings, agricultural units, or industry), the size of 
the building, employees and electricity users are all factors to consider as customer 
factor. The time factors include the effect of loads during weekdays, weekends, 
holidays, and seasons. 

The KF mechanism operates in two steps such as the corrector step (CP) and 
predictor step (PS). The PS, together with its covariance uncertainty, assesses the
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present load’s state based on its previous state. After taking the new SMD measure-
ment, a weighted average is used to update the predicted state vector. The estimate 
with the greatest degree of certainty gives greater weight. 

The KF is usually expressed as a discrete-time linear dynamic system as state-
space vector, shown below in Eq. (6) 

xt (k) = [x1(k), x2(k), x3(k) . . .  xn(k) (6) 

where k represents discrete time moment. Further, the smart meter device (SMD) 
readings can be realized as an observant vector y(k). Finally the delayed estimator 
calculate the output as y(k/k − 1) by the application of (k − 1)th output. 

The Kalman filter has been commonly utilized for tracking in computer visuals 
that interact. It has been utilized for both prediction of motion and fusion of multi-
sensors (inertial-acoustic). Furthermore, this filter is extremely effective in several 
additional areas: 

Because the linear KF frequently fails to meet the strict requirement while 
detecting accuracy of forecasting in the presence of significant nonlinearities in the 
situation, numerous nonlinear versions have been created. To study the problem’s 
hidden nonlinearities, the unscented Kalman filter (UKF) and extended Kalman filter 
(EKF) are occasionally utilized. 

4.1.8 Gray System Theory (GST) 

Deng was the first to introduce this approach in 1982. To predict the behavior of an 
unknown system, gray models simply require a small amount of data [35]. The GST’s 
fundamental goal is to derive plausible governing laws for the observed system from 
available data, regardless of how complicated or chaotic it is. One of the most often 
utilized models is the gray model, which is capable of producing future primitive data 
point projections as well as coping with observed systems with partially unknown 
parameters. 

The gray model’s differential equation is crucial since it allows the power load to 
be forecasted. The system’s n step forward predicted value can be found once the DE 
is solved. The GM (1, 1) is a model for forecasting time series with time-dependent 
changing coefficients and a differential equation (DE). It is feasible to moderate the 
system’s uncertainty and hence lower its intensity. This is accomplished through the 
use of cumulative generation (AG). Because the models can employ random changes 
reflecting the quantity of gray, which is altered in a particular interval. These gray 
system theory-based models are commonly utilized in networks. The model that 
can be used to predict future load can be brought into market after it has been 
successfully tested for acceptable dependability, stability, and accuracy. All three 
forms of load forecasting can benefit from gray models. One of the main benefits of 
GMs is that they may be created without considering load distribution or load trend 
variations. However, their shortcoming is that they are only useful for effectively 
tackling problems with current exponential development tendencies.
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4.1.9 Exponential Smoothing (ES) 

The ES models are one of the most widely used statistical forecasting techniques, 
because to their precision, simplicity, durability, and inexpensive price [36]. They’re 
also necessary for power system load predictions. The EF model’s smoothing coef-
ficients have a significant impact on the model’s accuracy. This research also shows 
how to locate the smoothing coefficients having best values. Exponential smoothing 
is a practical forecasting method that uses an exponentially weighted average of 
previous observations to make a prediction. The present observation is given the 
highest weight, followed by the measurement preceding it, and so on. Single expo-
nential smoothing (SES) based on Brown’s approach, double exponential smoothing 
(DES) using Holt’s method, and triple exponential smoothing (TES) are three forms 
of ESP. This exponential smoothening procedure further based on Holt-Winters 
method. 

When there is no seasonal or periodic change in the data pattern, the SES model 
is used. It also does not have a trend in the earlier data. DES models, on the other 
hand, are frequently used in economics sectors which allow for anticipated values to 
have a trend. The TES model based on Holt-Winters concept can be computed in two 
different ways: additive and multiplicative. If the original data shows stable seasonal 
fluctuations, the additive type model is applied. When the original data exhibits large 
changes in seasonal fluctuations, however, multiplicative models are applied. The 
basic Holt-Winters method, according to empirical evidence, tends to yield over-or 
under-forecasts, especially for longer forecasting horizons. 

Regression analysis, weighted iteration, and exponential smoothing as well as 
other enhanced algorithms like adaptive prediction and stochastic time series, have 
all been utilized for electric load forecasting. 

Traditional statistical models have flaws and can sometimes cause unfavorable 
outcomes. This is because there are too many computational options, resulting in 
long times to solve and the difficulty of some nonlinear data patterns. As a result, 
machine learning and artificial intelligence techniques offer a viable and enticing 
option. 

4.2 Modern Techniques in Load Forecasting 

Forecasting and categorization are two applications where ANNs have proven to 
be useful. The use of artificial neural networks (ANNs) as a technique for antici-
pating electric load has been extensively studied in recent decades, and have garnered 
enormous popularity.
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4.2.1 Artificial Neural Network (ANN) 

In 1990, Warren McCulloch and Walter Pitts created the artificial neural network 
(ANN) approach as a time series forecasting substitute [38]. The ANNs try to spot 
patterns and regularities in the data and learn from their mistakes, and then deliver 
generalized results based on their previously acquired knowledge. Input, hidden, and 
output layers make up the most basic form of an artificial neural network model. The 
function of hidden layers, related weights, and outputs can all be considered when 
modifying the input values to the hidden node. An iterative training method is one 
in which the weights of the ANNs are changed over time. Some of the most widely 
used ANN algorithms for electric load forecasting include neural networks, feed-
forward (FF), back-propagation (BP), radial basis function (RBF), NARX (nonlinear 
autoregressive with exogenous inputs), random neural networks, recurrent neural 
networks, and self-organizing competitive networks. In order to explore more better 
options, wavelet neural networks have also come up in load forecasting problems. For 
approximating arbitrary nonlinear functions using wavelet transform theory, WNNs 
are suggested as a substitute for feedforward neural networks. 

4.2.2 Wavelet Neural Networks (WNNs) 

Grossman and Morley introduced wavelet theory in the 1980s. Few scholars later 
proposed the wavelet neural network to make use of wavelet functions as well as 
the extensively used neural network (WNN). By computing the signal vector’s 
internal product and wavelets base, a WNN may recognize pattern recognition-
inspired feature abstraction of the signal using feature space. As a result, the network 
may efficiently learn the system’s input and output properties without too much prior 
knowledge. WNN transmits the signal forward while propagating the error backward, 
resulting in a more accurate signal predictive value. For approximating nonlinear 
functions, WNNs have a rough capability and are robust. 

Another form of controlling approaches in load forecasting field is extreme 
learning machine. Extreme learning machines are a subset of feed forward ANNs. 
Clustering, regression, feature learning, and sparse approximation are some of its 
applications. 

4.2.3 The Extreme Learning Machines (ELM) 

Extreme learning machines were introduced by Huang, Zhu, and Siew in 2004. 
They mainly deal with an FF neural network with a single hidden layer. Weights for 
buried layer nodes are chosen at random in the ELM, and the output weights of the 
ELM can be determined analytically using a least-squares solution. This means that, 
in addition to the weights that connect inputs to hidden nodes, the hidden nodes’ 
parameters do not need to be changed. The nodes those who are hidden, on the other 
hand, can be assigned at random and never updated. ELM networks have a lot of
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potential, generalization performance that can learn thousands of times more quickly 
than backpropagation networks. Furthermore, the hidden nodes’ output weights are 
frequently resolved in a single step, significantly reducing the time required for 
learning the algorithm. In both regression and classification difficulties, literature 
suggests that ELM models outclass support vector machines. For ELF forecasting, 
Chen [40] developed a unique recurrent ELM technique, while Rafie [39] employed 
a mechanism to improve the prediction by combining numerous ELM machines in 
a linear fashion and established the performance on three engineering challenges. 

4.2.4 Support Vector Machines (SVMs) 

Vapnik invented support vector machines (SVMs) as a reversion and organization 
approach in 1992. SVMs were first created to cope with pattern classification diffi-
culties, but their use has now expanded to include regression techniques like support 
vector regression (SVR). The fundamental goal of SVMs is to create a unique deci-
sion rule with acceptable generalization ability by selecting a training data forming a 
subset which is known as support vectors. The training approach for an SVM model 
is similar to that of solving a quadratic programming problem with linear constraints. 
In contrast to the training of other networks, SVM solutions appear to be globally 
optimum and exclusive at all times. Instead of obtaining the least empirical errors 
the principle of minimizing the structural risk is taken into account while dealing 
with SVM models [41]. 

SVMs have gained in popularity over the last two decades, not just for pattern 
identification as well as regression analysis, forecasting, and dealing with prediction 
based on time series. However, the fundamental shortcoming of SVMs, is that they 
require a large number of computations, which dramatically increases the temporal 
complexity of the solutions. 

4.2.5 Fuzzy Logic-Based Forecasting 

Modeling and prediction have been prioritized in the field of electric load forecasting, 
with a focus on computational and artificial intelligence techniques, such as models 
based on fuzzy logic. Several researchers have used fuzzy logic models to forecast 
long-term load [42] and short-term ELF [43]. Furthermore, Jamaluddin et al. [44] 
used fuzzy logic to anticipate a very short-term peak load time, whereas authors 
[45] created a 220 kV transmission line short-term load forecasting model based 
on FL. Laouafi et al. [46] developed a daily load curve prediction system based on 
an adaptive neuro-fuzzy inference system, and Yao few researchers used an interval 
Type-2 FL system for short-term load forecasting. 

Fuzzy approaches are extremely beneficial for dealing with uncertainties and are 
required for human specialists to acquire information. To produce good prediction 
outcomes, fuzzy theory is frequently integrated with other methodologies.
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4.2.6 Genetic Algorithm 

In the realm of electric load forecasting, GAs have been frequently used. Genetic 
algorithms have become one of the most widely utilized evolutionary computation 
approaches. GAs are a collection of genetics and natural selection principles-based 
optimization and exploration techniques. Nonlinear systems are frequently well-
suited to these strategies. They carry out a specific optimization which is founded on 
the natural selection of the most effective solutions. The information comes from a 
variety of forecasting model having candidates’ populations. 

When the best appropriate forecasting model parameters must be discovered, this 
type of during selecting model, GA-based optimization is widely applied. The imple-
mentation of GAs was used to find the ARIMA model’s best p, d, and q parameters 
[47]. Singh et al. [48] have used GAs to construct a load forecasting model based on 
neural network for ELF. For effective ELF forecasting, Semero et al. [49] applied 
the hybrid back-propagation-GA method. Khan et al. [50] described how Cartesian 
Genetic Programming developed Recurrent Neural Networks were used to forecast 
very short-term load. Furthermore, several additional works, such as [51], have also 
discuss and implemented GA-based ELF forecasting. 

With increasing automation, the demand toward remote monitoring and control-
ling has increased to its peak. The knowledge of an expert must be easy to codify into 
software rules. This made the expert system as the most convenient and desirable 
option in forecasting load data apriori. 

4.2.7 Expert Systems 

Human experts employ rules and procedures to create expert systems. Experts must 
elucidate their decision-making process to programmers in particular [52]. According 
to researchers, a computer program that can explain, comprehend, and the knowledge 
base is expanded when new data becomes accessible, is called as expert system. It’s 
a set of relationships between system load changes and changes in load-influencing 
external factors. In these processes, some rules do not alter over time, while others 
may need to be modified on a regular basis. Several studies on load forecasting have 
been conducted by developing various expert systems [40, 53, 54]. 

However, with many attractive features, the conventional hard computing and soft 
computing techniques leaves a scope for improvement in load forecasting. By inte-
grating the best of statistical and machine learning methodologies, hybrid methods 
promise to improve time series forecasting.
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5 Hybrid Method and a Classification System for Load 
Forecasting Models 

Hybrid or combination models combine the benefits of multiple separate forecasting 
models. These methods can outperform single models in terms of prediction accuracy, 
and are thus widely employed in many forecasting domains. In this regard, a variety of 
forecasting methodologies, data processing techniques and optimization methods are 
available for constructing various hybrid models [55–57]. As a result, recent research 
has shifted its primary focus to the construction of successful hybrid models in the 
hopes of boosting prediction performance [58, 59]. However, there are no openly 
available guidelines on how to choose among alternative strategies when creating 
a hybrid model. In, consideration with many modern techniques implemented in 
various newly developed models, a case study of very short-term forecasting of load 
has been presented in next section of the chapter. 

6 Case Study 

A case study has been conducted as short-term forecasting of load considering the 
load data of the specific region. The specific region corresponds to Kolkata, located 
at 22.5726° N latitude, and 88.3639° E longitude. The single most important climatic 
component impacting load demand is commonly recognized as temperature. 

6.1 Problem Formulation 

The short-term load forecasting problem has been proposed in terms of the objective 
function mentioned below [60] in Eq.  (7) 

Jβ = C+ 
t

Σ
et + C− 

t

Σ
et (7) 

where, Jβ is the total cost function, based on the load forecasting error, in considera-
tion with hourly variation of temperature and humidity, et is the difference between 
the actual values and the forecasted values, defined as LF errors, Ct 

+ and Ct
− are the 

rates of electricity corresponding to positive error and negative error. 
The load forecasting error is calculated [61] as given below in Eq. (8) 

et = yEN  
t − fβ(xt − l) (8) 

where yt EN is the real value obtained at time t, as calculated following a well reputed 
Euclidean norm (EN), (xt−l) is the independent variable at time (t − l) for forecasting 
yt, l is the lead time. The function f β is based on an optimal parameter β.
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Further, the actual data yt EN follows the Euclidean norm (EN) including weight 
factors and climatic factors of a specific place, while computing the forecasted value. 

yEN t =
/
W1

(
ΔT 2

) + W2
(
ΔH 2

)+ (9)

ΔT = Tt − Tp (10)

ΔH = Ht − Hp (11) 

where T t and H t are the forecasted temperature and humidity on hourly basis, and 
T p and Hp are the past data for temperature and humidity on hourly basis. W1 and 
W2 are the weight factors. 

6.2 Input Data 

The study has been performed by considering the influence of climatic factors on 
the load data. The load data was collected data from a distribution center [62] of  
south Kolkata, India. Figures 1 and 2 represent the monthly load variation, with 
temperature and humidity, respectively. 

The average temperature rises in March, April, and May, but the average load 
demand does not rise in proportion because to the large decline in average humidity. 
On the other hand, though the average temperature in the months of July, August and 
September does not rise much from that of the months from March to May, but as the 
humidity rises enormously, hence the demand for power increases. Electricity rates 
in Kolkata are defined as Rs 4.8/unit, Rs 5/unit, Rs 6/unit, Rs 7/unit, Rs 7/unit and

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

1000 

Te
m

pe
ra

tu
re

 (⁰
ce

lc
iu

s)
 

lo
ad

 D
em

an
d 

(k
W

) 

Month 

Load Demand with Temperature 

Fig. 1 Variation of average load demand versus temperature on monthly basis



170 T. Som

0 

20 

40 

60 

80 

100 

0 

200 

400 

600 

800 

1000 

Hu
m

id
ity

(%
) 

Lo
ad

 D
em

an
d 

(k
W

) 

Month 

Load Demand and Humidity 

Fig. 2 Variation of average load demand versus humidity on monthly basis

Rs 9/unit for first 25 unit of consumption, for next 35 units, for further 40 units of 
consumption, for next 50 unit, for extra 150 units and above 300 units respectively. 
The Ct 

+ and Ct
−, i.e., rates of electricity corresponding to positive error and negative 

error has been considered as Rs 6.41 per unit and Rs 7.33 per unit respectively, 
considering the average tariff of Kolkata. 

6.3 Result 

GOA was chosen to address this type of forecasting challenge because AI-based 
soft computing approaches are tolerant of imprecision and ambiguity, can generate 
and sense “linguistic variables,” and are capable of deriving approximate solutions 
to problems. Furthermore, unlike other approaches, GOA is best suited to account 
for climate fluctuation in a specific location. The data pre-processing unit (DPPU), 
which identifies the problem and computes the desired outcome, is usually included 
in forecasting models. The grasshopper optimization method GOA was used in the 
present study as the control methodology. 

6.3.1 Controlling Method and Implementation 

The grasshopper optimization algorithm (GOA) is a relatively modern optimiza-
tion method that was first developed in structural optimization issues by Saremi 
et al. [63]. The GOA imitates grasshopper swarming behavior, includes nymphs 
and adults; those are without wings and with wings respectively. Adults are used to 
investigate the entire search space and identify superior food source regions, whilst 
the nymphs are used to exploit a specific region or neighborhood of a certain place
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(exploitation). Exploitation and exploration are seamlessly balanced in this strategy, 
and it is theoretically included into a less sophisticated algorithm structure. 

The current study, implemented GOA algorithm through following steps: 
Step 1: A population of size Nij is generated at first, where, the number of solutions 

is i, and j denotes number of hours; i.e., 24 h. 
Step 2: The best position is found which corresponds to the best forecasted data, 

depending on the fitness function, as shown below in Eq. (12) 

f i t
(
ei j

) = 1 

1 + f
(
ei j

) (12) 

Here, eij is the fitness function corresponds to the error of load forecasting, as 
mentioned in Eq. (12), which needs to be minimized. 

The initial set of position is generated by the following equation, 

yEN i j  = yEN i ∗ rand(0, 1) − fβ
(
xi(rand(0,1) − l

)
(13) 

Step 3: GOA has a parameter called ‘c’ that varies depending on the number of 
iterations in order to strike a balance between exploration and exploitation. 

This parameter ‘c’ can be calculated by, 

c = cmax − iter. 
Cmax − Cmin 

M1 
(14) 

where M1 is the maximum number of cycles. 
Step 4: New set of position is calculated, which corresponds to new set of solution, 

through the equation mentioned below in (15) and (16) 

yEN i j  = c 

⎧ 
⎨ 

⎩ 
c.

Σ
yEN i max − yEN i min 

2 
.s(yEN i − yEN j ) −

(
yEN i − yEN j

)

di j  

⎫ 
⎬ 

⎭ + Td (15) 

s(r ) = f.e(−
r 
l ) − e−r (16) 

where T d is the best-found solution, f is the intensity of attraction and the length of 
attraction is given as l. 

Changes to c in Eq. (14) cause earlier iterations to focus on exploitation while later 
iterations focus on exploration. The algorithm’s complete performance is improved 
by this balancing approach. 

Step 5: The iterations are made, and the best solution from every iteration is being 
stored. 

Step 6: The iteration count proceeds until it reaches the maximum cycle number, 
i.e. M1. 

Step 7: The cost function is calculated following Eq. (7), considering the best 
solution, i.e. minimum error function.
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Table 1 Load Forecasting and Cost as evaluated by GOA 

Load forecasting error (et) Total cost (Jβ) 

Positive Error Negative error Mean error 

Case 1 4.74 −0.07 2.405 Rs (4724 + 3921) = Rs 
8645 per unit per month 

Case 2 5.26 −0.04 2.61 Rs (3912.6 + 2814) = Rs 
6726 per unit per month 

Case 1 has been studied considering the summer months load demand, while Case 
2 has been studied in consideration with winter months. As, the specific location is 
Kolkata, hence, in case 1 the humidity factor is quite low, while in case 2 the humidity 
factor in quite high. 

Table 1 shows the load forecasting error and minimum cost for both case 1 and 
case 2 by implementation of GOA algorithm. 

It has been noticed, that for case 1 the monthly cost achieved is about 22% more 
than that obtained during case 2. With less load demand in winter months, which 
depicts case 2, along with the computed monthly price the negative error obtained 
is also less than that attained in case 1. This signifies the consideration of region-
specific climatic factors. Both the region-specific model as well as climatic variations 
are much needed in all types of load forecasting. The load deviation occurred on 
hourly basis resulted very less when computed by Grasshopper optimization method. 
Moreover, the proposed method is a single-stage based algorithm with several unique 
characteristics, such as all search agents participating in updating each search agent’s 
position. This function aids load forecasting in meeting all regional climatic needs. 

7 Conclusion 

Many utilities have experienced a paradigm shift in how customers use power and 
how much they use as a result of the current recession. As a result, despite all of the 
mentioned studies discovered and carried by several researchers, the study door is 
still wide open for the use and adaptation of a variety of unique integrated models for 
energy and power prediction. In this regard, a case study has been performed using 
grasshopper optimization algorithm for a short-term forecast; which reflected a cost-
effective scheduling for a region-specific load. Furthermore, special focus should 
have been paid to studying very short-term and mid-term load forecasting in order 
to fill the identified vacuum in the field. 

However, the foundation for utility planning and a basic commercial concern in 
the utility industry has always been load forecasting. 

The rapid growth of stored information in the demand forecasting, associated with 
data analysis provoked an utmost need for generating a powerful tool which must be 
capable of extracting hidden and vital knowledge of load forecasting from available
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vast data sets. It is critical for utilities to have accurate load forecasts, especially 
given the extraordinary risks that the electric utility industry faces due to a potentially 
significant change in the resource mix as a result of environmental regulation, aging 
infrastructure, projected low natural gas prices, and decreasing costs of renewable 
technologies. Moreover, the load forecasting is also required for rate cases, resource 
planning, financial planning, designing rate structures, and so forth. Forecasting 
load is not a one-dimensional procedure. Instead, utilities and politicians should 
be always looking for methods to improve the process, databases, and forecasting 
tools’ state-of-the-art. A thorough load forecasting procedure includes complex data 
needs, dependable software packages, powerful statistical methodologies, and good 
documentation to build plausible narratives that describe customers’ probable future 
energy use. Almost every state in every country has varied degrees of jurisdiction 
to promote database, forecasting tool, and forecasting process advancements. To 
establish procurement policies for construction capital energy forecasts, future fuel 
requirements are required. This data can only be available from an advance and 
accurate load forecast. Thus, a good forecast, reflecting the present and future trends 
of load demand, is the key to all planning. With many emerging models and control 
techniques, it is essential that utilities dedicate significant time and resources to 
developing reliable load projections. 
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Deep Learning Techniques for Load 
Forecasting 

Neeraj, Pankaj Gupta, and Anuradha Tomar 

Abstract Electricity load dominates energy consumption and greenhouse gas 
emissions. There are increasing concerns about climate change and the need to min-
imize energy consumption and enhance energy performance. Energy management, 
optimization, and planning all depend on forecasting load energy consumption. The 
data-driven approaches are the most popular approaches to energy forecasting. Deep 
learning techniques are a new category of data-driven models that have emerged in the 
recent years. They offer improved capabilities in managing big data, attribute extrac-
tion characteristics, and a better ability to model nonlinear phenomena. This paper 
examines the effectiveness and potential of deep learning-based approaches for load 
energy forecasting. This paper begins with a literature survey, tracked through an out-
line of deep learning-based concepts, methodologies, and examples. Following that, 
the current trends in published research were examined and how deep learning-based 
approaches may be utilized for forecasting and feature extraction. The study finishes 
with an analysis of current problems and recommendations for further research. 
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1 Introduction 

1.1 Motivation 

In 2018, nearly one-third of global energy consumption was accounted for by build-
ings and construction, and almost 40% of global CO2 emissions. These percentages 
will continue to rise in the coming years. It is critical to minimize energy consumption 
and enhance energy efficiency in buildings and facilities to maintain sustainability. 
Many strategies and approaches to energy planning, management, and optimization 
can forecast and predict energy loads. These applications include modeling predictive 
controls, load demand management, load demand response, and optimization. Short-
and long-term forecastings are available for scheduled maintenance, renovations, and 
planning. Data-driven and physics-based models are the commonly used models for 
load forecasting. Nowadays, data-driven models are the most commonly used energy 
models. These representations can also be classified into either black-box or gray-
box representations. But, the physics-based models can describe the system and its 
components in detail. However, such models require many measured parameters to 
be developed and calibrated. It can be challenging to obtain the parameters needed 
in many cases. 

On the other hand, data-driven models usage mathematical models derived from 
measured data. These models do not require a large number of parameters nor detailed 
knowledge about the building/plant or system’s internal components. Many build-
ings/plants have smart meters and automation systems, making data access easier. 
These data are easily accessible and can be used to forecast the load energy. 

1.2 Compilation of Published Papers on Data-Driven 
Approaches for Load Forecasting 

The popularity of data-driven approaches has increased in the recent years. There have 
been several literature reviews published. Each study focused on a different compo-
nent of energy models. A summary will be provided in this section and highlight the 
main points of each paper. These selections are based on the most recent advances in 
artificial intelligence, especially deep learning-based techniques increasing in pop-
ularity from 2015 to 2016. The author in [1] compared artificial intelligence (AI) 
and statistical and physical models to estimate the energy consumption. The paper 
suggested future research directions, including developing better accuracy models, 
integrating these models into building energy management systems, and collecting 
data for future research. The capabilities and predictions of artificial neural networks 
were examined in [2, 3] looked at ANN, support vector machines (SVM), and hybrid 
models for the load forecast of energy usage. Ahmad et al. [4] have looked into how 
energy models interact with building controls and operations. The procedures are still 
not relevant, according to [5]. Future research should reduce the computing cost and
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memory requirements while retaining accuracy. Wang and Srinivasan [6] reviewed  
AI-based energy prediction. They are particularly interested in ensemble-based and 
single-point models. The author examined AI-based and traditional ways of predict-
ing electricity [7, 8] examined time series-based forecasting strategies to estimating 
energy usage, highlighting popular approaches, and mixed methodologies. A full 
study of machine learning (ML) techniques for building energy prediction may be 
found in [9]. The authors suggested a few suggestions for future investigation. They 
a devised that deep learning algorithms be studied more because they are currently 
understudied. Furthermore, Ahmad et al. [10] have reviewed data-driven methods for 
the organization and estimation of building energy. The author has studied estimating, 
mapping benchmarking, and describing building energy models. And also focusing 
on how these methods have been used for large-scale and building applications [11]. 
The author studied data-driven models to forecast building energy consumption [12]. 
A breakdown of trends was also included. 

Furthermore, Runge and Zmeureanu [13] provided a thorough study of artificial 
neural network applications for temperature prediction. The authors also recom-
mended that further research should be done on deep learning-based approaches. It 
is engrossed on how ANN models can forecast power consumption [14]. In addi-
tion, the authors noted that future research should be focused on DL-based models. 
Aslam et al. [15] published a review of data-driven models for energy prediction. 
The focus was on feature engineering and data-driven algorithms. To the best of their 
knowledge, there has not been a literature review paper focused on DL models for 
forecasting energy consumption for energy loads. However, some published papers 
acclaim that forthcoming research on these techniques. 

1.3 The Aim of the Literature Review 

Although earlier literature reviews helped review and describe the current state using 
various applications of load forecasting models. This review aims to summarize the 
main points. There are still many gaps. The review paper [16] noted that there are not 
many review papers that emphasize new methods for load forecasting. It is noticed in 
a review paper that the deep learning models are the most emerging methods for load 
energy forecasting [17]. The author says no current paper focuses on load forecasting 
using deep learning approaches. Researchers may not be able to access the previous 
research because there are no review papers. The review paper [18] states that a 
future direction of research should be to establish a roadmap for machine learning-
based load forecasting models. This paper attentions on establishing an idea for 
deep learning-based approaches that contribute to further research direction [19]. 
This paper reviews how deep learning-based approaches can predict load energy 
consumption. This paper addresses the gaps in papers identified by the literature 
analysis.
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1.4 Objectives and Contributions 

Deep learning approaches can be used to predict the load energy. The range of appli-
cations of such methods is extensive such as energy generation, smart grid networks, 
electricity price forecasting, and many others [20]. These models can also be used in 
other areas: air pollution [21], sales estimating [22], and others like health care and 
business. This work will only discuss the techniques used to forecast load energy 
consumption because of their wide range of applications. This literature review does 
not include integrating fuel cells, absorption, or adsorption systems. This paper will 
review several publications that use DL techniques to forecast load energy. This paper 
is organized as follows. The second section introduces deep learning and its many cat-
egories. The third section summarizes the current research trends. Section 4 examines 
the research that has employed deep learning-based feature extraction approaches in 
their research. Section 5 looks at papers that employed deep learning-based forecast-
ing models. The future work, results and problems are discussed in Sect. 6. Section 7 
brings the evaluation to a close. 

2 Deep Learning Techniques 

This part describes the fundamental descriptions, classifications, and approaches of 
deep learning that are used in exploration. Autoencoders, recurrent neural networks 
(RNNs), and deep neural networks (DNNs) are the most commonly used deep learn-
ing approaches. However, some approaches to deep learning, such as convolution 
neural networks (CNNs) and Boltzmann networks, are used in fewer cases. This 
section summarizes the most popular deep learning approaches that have been used 
for load forecasting. 

2.1 History, Categorization, and a General Description 

Deep learning approaches are popular for load forecasting due to their ability to deal 
with large amounts of data and feature extraction capabilities. So that the accuracy 
of the model is improved due to their features. This paper will overview several 
techniques and approaches to deep learning approaches. The word intelligence is the 
ability to process the information, take as input a bunch of information, and make 
some informed future decision or prediction. So, the field of artificial intelligence 
is simply the ability of computers to take as input: much information and use that 
information to inform some future situations or decision making. Deep learning is 
simply a subset of machine learning specifically focused on using neural networks, 
which extract useful features and patterns in the raw data and use them. Those patterns 
or features inform the learning tasks.



Deep Learning Techniques for Load Forecasting 181

Traditional machine learning algorithms typically operate by defining a set of 
rules or features in the environment in the data right. The key idea of deep learning 
is that these features will be learned directly from the data itself in a hierarchical 
manner. These types of hierarchical features, and that is the goal of deep learning 
compared to machine learning, are the ability to learn and extract these features to 
perform machine learning on them. Today, we live in a world of big data, where 
we have more data than ever before. Neural networks are extremely and massively 
parallelizable. They can benefit tremendously and have benefited tremendously from 
modern advances in architecture that we have experienced over the past. Source 
toolboxes like TensorFlow can build and deploy these algorithms, and these models 
have become extremely streamlined. 

The deep learning architectures have four to five levels of nonlinear operations. 
First, deep learning is a way for practitioners to discover good features. This requires 
some engineering skills and domain expertise. Deep learning approaches do not need 
domain expertise; they can learn automatically using the general learning process. 
This is the main advantage of deep learning. Feature extraction can also be done 
automated. Deep learning can also easily deal with huge amounts of a dataset to 
make precise predictions. Nowadays, precise prediction using giant data is a grow-
ing problem, but deep learning solves such problems. These models can store and 
hold more information than conventional ANNs. Deep learning methods have a few 
drawbacks. They are not easy to train the model and contain a lot of hyperparameters. 
There are three main ways deep learning-based approaches were used to build power 
estimation. 

1. Increment the number of layers concealed in a feed-forward neural organization 
or multi-facet discernment framework. 

2. A few repetitive neural organizations like RNN, LSTM, and GRU are utilized. 
These intermittent neural network models can have at least one secret layer. 
These models can be regarded as networks with intense structures. 

3. Consecutively coupling various calculations into one in general construction. 

2.2 Autoencoder 

In the case of autoencoder, the neural networks consist of multiple hidden layers. 
An autoencoder is composed of two sections. One is an encoder, and the other is 
a decoder section. An autoencoder’s goal is to be able to recognize the dataset and 
reconstruct it using training. The encoder is the input of a hidden model, and the 
decoder is the output of a hidden model. Input data is represented by y, which is 
s equal to (y). To make the output, the decoder extracts the hidden representation. 
The training aims to reduce the difference between input and output so that y equals 
to y’. Generally, an autoencoder is used for feature extraction in huge datasets. The 
structure of the autoencoder is shown in Fig. 1.
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Fig. 1 Autoencoder 

2.3 Recurrent Neural Network 

Deep learning models can be used to process time-series data. Time-series data is a 
series of data tracked over time. Recurrent neural networks can solve the problem 
of feed-forward networks. The feed-forward networks such as density connected 
networks or convolutional neural networks. In other words, feed-forward networks 
do not consider the relationship between the current sample and the previous samples. 
The relationship between current and previous data is significant for some kinds of 
data, especially time-series data. The previous data predicts the following data to 
solve this problem. A loop is purposed to memorize the previous information [23]. 
RNN has a loop current connection/recurrent connection, representing the output 
back to itself. The RNN has a memory to remember the previous output and when 
the following input comes. RNN calculates a new output based on the current and 
previous outputs. So, recurrent neural networks can remember and memorize the 
previous data in the previous state. Therefore, the temporal relationship is considered 
to understand better how it works and can unfold on a loop in the time domain. 
Figure 2 shows that the input is time-series data x, and the output is data h. So first, 
the input data is unfolded data in the time domain. The data from the beginning of 
x0, x1, x2 to xt will have the output h0, h1, h2. It has only one cell, but this is the 
same cell at a different time. So, RNN will consider the previous input x0, save the  
output step, and then pass it to the next state. So when it has the following data x1, 
it can use x1 and the previous output to calculate new output h1. Then set the state 
and then paste the state to the next cell. So this Fig. 2 unfolds an unknown loop that 
can better illustrate how RNN works. 

St = Fw(St−1, Xt ) (1)
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Fig. 2 RNN 

This equation explains what RNNs are and how they work. Xt denotes the input at 
time step t, St denotes the state at time step t, and Fw is the recursive function. 

St = tanh(Ws St−1 + Wx Xt ) (2) 

A tanh function is a recursive function. W x multiplies with the input state, while 
Ws multiplies with the prior state. Then, it passes through a tanh activation to get 
the new state. The weights are W x and Ws . The new state St is multiplied with W y 
to produce the output vector. It can be seen in Fig. 2, the input and output states are 
calculated using the previous and new state [24]. 

2.4 Long Short-Term Memory (LSTM) 

RNN suffered a diminished and exploding gradient problem. The researcher proposed 
a long short-term memory model to solve the gradient management and exploding 
problem. It has become very successful. The long short-term memory adds multiple 
gates. First, they add an input gate to control if the new input is in or ignore the input 
and then add the forget gate. So, it can delete the trivial information. The output 
gate can decide to let the info impact the output at the current time step. The input 
gate usually outputs from zero to one. So if the output is zero, then the input will 
be ignored. If the gate output is one, the input will pass through to the hidden cell. 
So the gate is like a switch, and it is output continuously from zero to one. So it can 
control the part of the input that is passed to the hidden cell. So another gate is the 
forget gate, or if the forget gate is zero, the hidden cell’s memory will clean right 
to zero. The last one is the output gate or the controller output that decides if the 
information pass to the next stage or not. The original LSTM picture is not easy to 
understand. The LSTM model has two paths. One is to update the memory state in the 
model. Another one is like the original RNN to pass the output to the next stage. For 
LSTM, it has two paths to pass the data to the next stage. The forget gate can control 
if it ignores the information. The sigma means the sigmoid activation function. The 
output of the sigmoid is between zero and one. So the sigmoid activation function is 
used as a switch of zero means turn off, and the one is turned on. It is also assigned a
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value between zero. The activation is multiplied by the output with the previous state 
to control the portion of the information. The second state is the input gate. It can 
control to pass how much input information passes into the state to generate the new 
form. The third gate is the output gate that can control how much information is to 
pass to the next stage. LSTM model helps to solve the vanishing gradients problems 
[25]. 

i t = σ(W i [ht−1 , xt ] +  bi ) (3) 

f t = σ(W f [ht−1 , xt ] +  b f ) (4) 

ot = σ(W o[ht−1 , xt ] +  bo ) (5) 

C 
t = tanh(W c[ht−1 , xt ] +  bc ) (6) 

Ct = f t C t−1 + i t C t (7) 

ht = tanh(Ct ) ∗ ot (8) 

it , f t , and ot are the input, forget, and output gates of the LSTM cell. W represents the 
recurring construction between the previously hidden and the existing layers. The 
hidden layers are connected to the input through the weight matrix. The cell state C 
is calculated and depending on the current and previous input. C stands for the unit’s 
internal memory. Figure 3 shows the equations that describe the behavior of all gates 
in the LSTM cell. As inputs, each gate accepts the hidden state and the current input 
x. The vectors are concatenated, and a sigmoid is applied. C is a new potential value 
for the cell’s state. The input gate controls the memory cell’s updating. As a result, it 
is applied to the C vector, which is the only one that can change the state of the cell. 
The forget gate determines how much of the previous state should be remembered. 
To get the hidden vector, this state is applied to the output gate [26] (Fig. 4). 

2.5 Convolutional Neural Networks 

Convolutional neural networks are a family of neural networks characterized by 
convolutional layers. They are particularly suitable for tasks involving data with 
spatial dependencies, such as images and videos. Convolution is a filtering operation 
applied to the data to detect certain features. This is just a matrix of numbers for 
a computer, with one value for each pixel. For seeing the borders, take a smaller 
filter matrix called kernel and perform an element-wise product between the kernel 
values and a portion of the image. Then sum up the results and get a single value, 
which indicates whether in that portion of the image borders are present or not. 
The kernel is then shifted by several pixels to cover another section until the whole 
image has been covered. The final result is a new matrix, called a feature map, whose 
numbers describe the borders. A convolutional layer implements several kernels,
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Fig. 3 LSTM 

Fig. 4 GRU
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Fig. 5 CNN 

each detecting a specific feature. The cool thing about convolutional layers within a 
neural network is that it does not have to design the kernels in advance. 

During training, the network decides the important features and adapts the kernel 
to detect them. The parameters to set in this stage are the number of kernels to train, 
the kernel size, and the convolution dimension such as 1D, 2D, and 3D convolution. 
The difference between 1D, 2D, and 3D convolutions is: the convolution dimension 
sets the number of axes on which the kernel moves. In a 1D convolution, the kernel 
moves along one axis; in a 2D convolution along two axes, and so on. Convolutions 
with different dimensions discover features in those dimensions. The data dimension 
does not necessarily bind the dimension of the applied convolution. For example, 
black and white images are 2D objects, while color images are 3D objects because 
of the additional color channel. In both cases, if we are interested in 2D features, 
like borders, a 2D convolution moving along the width and height of the image 
will do the job. The same holds for time series. There are two dimensions, values 
and time. If we want to discover a 1D feature such as upward trends, we can apply 
a 1D convolution. Therefore, the dimension of the convolution is determined by 
the dimension of the feature to discover, not by the object’s dimension. A CNN is 
represented in Fig. 5. Allude to reference [27] for a point by point depiction of a 
CNN’s overseeing conditions and merits. 

2.6 Deep Belief Networks 

Deep belief networks (DBNs) is a type of deep neural network created from [28]. 
DBNs can be described as a range of algorithms that combine probabilities with unsu-
pervised learning to produce outputs. The restricted Boltzmann machines (RBM) are 
fundamental to the DBN. It can then be configured to exhibit desirable properties 
[29]. The visible layer or input layer is the first layer of RBM. The hidden layer is 
the second. The RBM is illustrated in Fig. 6.
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Fig. 6 DBN 

Figure 6 shows an example of a DBN. Although stacking multiple RBMs together 
can produce large models, it may prove cumbersome to train such large models. Refer 
to references [30] for more information about the governing equations, merits, and 
limitations of RBMs, DBNs, and their potential benefits. 

2.7 Deep Feed-forward Neural Networks 

Deep feed-forward neural networks (DFFNNs) are another popular technique for 
forecasting energy in buildings. These models differ from the standard feed-forward 
neural networks (FFNNs) because they have multiple hidden layers. To extract more 
information from the data, additional layers are added. Research has shown that there 
are many other deep learning-based structures [31] (Fig. 7). 

3 Trends in the Present 

From 2000 to 2021, the publications are looked. This section examines the trends 
that have been observed in the published data.
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3.1 Level of Building Application 

Data-driven models need to be validated on testbeds before being used in real-world 
applications. There are four levels to these testbeds. The forecasting model may be 
modified by the building level data and time steps data. According to the analysis, the 
studies were broken into four categories: district level, buildings, sub-meter level, and 
component level. The use of data from existing systems for large-scale installations 
and district heating/cooling systems may explain the tendency to focus on whole 
building cases and districts. 

3.2 Qualities of Data 

In each case study, the data size varies to the length and amount of data. DL-based 
approaches are being suggested to solve the problem related to large amounts of data 
to handle the big data. According to the observed breakdown of published work, 18% 
used less than six months, 23% used 6 months to 1 year, 57% used more than 1 year, 
and 2% did not justify their data size. This review also examined data types. Three 
types of data are commonly used in the published research papers: energy plus, real 
data, and target data. According to the findings, 93% of the case studies were applied 
to real data. Following that were 4% for experimental data and 3% for the target data. 

3.3 Output Variables 

The DL-based model’s energy usage was applied to the forecast. The sub-meter and 
components are target variables like electric heating and cooling demand, etc. 

Fig. 7 Deep feed-forward neural network
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3.4 Input Styles 

The characteristics or regressors utilized as inputs into the forecasting model are 
inputs. All energy-based models require that you choose the correct input data. Data-
driven models require the selection of appropriate input data. The poor choice of input 
variables may cause poor forecasting performance. The most commonly used features 
were: environmental data, such as outdoor temperature, and historical data, such as 
past energy use. Nowadays, it is not easy to find out which attributes are the most 
crucial. These may depend upon the various case study conditions such as weather, 
place, and type of structure. So, many feature extraction techniques were introduced 
in published research. Although a thorough examination of feature selection may 
be beneficial, the focus of this paper will be on DL-based approaches for variable 
selection. 

3.5 Granularity of Time 

Forecasting models have two main types: forecast horizon and resolution. The fore-
cast horizon is the projected time. The term “resolution” mainly relates to the data’s 
time step. These two temporal granularities are applicable in various ways to fore-
cast models. For hourly time step data, a forecast horizon can be used to estimate a 
horizon of 24 h ahead. The models’ resolutions were 1% annually, 0% monthly, and 
3% weekly. There are three types of prediction horizons: medium, long-term, and 
short-term [31]. It is important to note that the classifications mentioned above are 
not set in stone and may differ from those published. 

4 Feature Extraction Applications Using Deep Learning 

Feature selection is a process that reduces the size of an initial dataset into more man-
ageable segments. Big datasets take a lot of computational time to process the model. 
So, computational time can be reduced by choosing the appropriate attribute. This 
can improve accuracy, reduce overfitting risks, and reduce computational resources 
for forecasting-based models. Recently, DL-based approaches are widely used for 
feature extractions and load forecasting. Due to its fast computing speed and simplic-
ity of construction, this model has grown in popularity. Many studies have compared 
their efficacy to that of other data-driven models. In [32], compared four feature 
extraction techniques and forecasting models. This paper examined four different 
feature extraction methods: 

(i) Technical, which selected the model on the basis of technical expertise. 
(ii) Analytical calculated actual data from a response variable that could be used as 

a criterion.
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(iii) Architectural, in which the time series was transformed. 
(iv) Autoencoder. 

Variables were selected from various models to forecast the energy load with 
different time horizons. Although, DL-based models are the best estimating perfor-
mance models, the researchers conclude. The DL-based model is compared with 
data-driven models such as autoencoder and machine learning approaches in [33]. 
In the case of a retail facility, these models were utilized to forecast the total energy 
use. The model was used with a horizon of 60 min and 30-mintime intervals. The 
autoencoder and machine learning approaches provide lower estimating errors. In 
[34], compared different feature selection methods. The performance of each method 
was compared with feed-forward neural network (FFNN), support vector regression 
(SVR), and random forest models. The models have trained with the resolution of 
15 min and ahead horizon. The observation showed that the prediction error was 
reduced in 33% of the AE coupling clusters. However, the predicting inaccuracy 
was either maintained or significantly increased in 1/3 of the clusterings. In [35], the 
autoencoder model is compared with support vector machine (SVM) and FFNN. In 
this paper, forecasting was conducted on the office building energy load with the res-
olution of 5 min. They targeted the heating load and cooling load. Chitalia et al. [36] 
compared the various data-driven models for estimating the energy load of a commer-
cial building with the resolution of 24 h ahead. This research found that combining 
DL feature extraction with estimating models results in a high-performing estimating 
model. DL feature removal methods to anticipate building energy use are still being 
developed. More study is required to compare these models across different case 
studies and applications. 

5 Application Summary at the Load Level 

To predict, the energy loads of the whole plant are the plant-level applications. The 
published research is classified into the following categories: educational, industrial, 
domestic, combined, etc. Combined states to publications that have applied their 
findings to various case studies involving various plant kinds. 

This section contains publications that employed a DL-based approach to conduct 
a study on power loads. According to the analysis, all of the paper in this area came 
from educational places. There were also several case studies involving educational 
structures. Within this research, there are many case studies discussed. Cooling and 
electricity usages are the essential target load in the used research. There are still 
several gaps in understanding DL forecasting models for educational buildings, such 
as heating and lighting. This discrepancy might be due to the difficulties in obtaining 
data for specific loads [37]. On the other hand, the energy loads of heating and lighting 
can account for a significant portion of an industrial or educational building. They 
use 30% for heating and 15% for lighting [38]. As a result, future work may benefit 
from looking into these possibilities. In some papers, cooling loads were examined by
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DL-based predicting models [39, 40]. Increasing the predicting efficiency for cooling 
loads uses an autoencoder for variable extractions [35, 45]. The author discussed in 
[28] the performance of the RNN, LSTM, and GRU-based models to predict the 
cooling loads using various approaches such as direct and recursive approaches. 
This paper showed that for the RNN model, the direct approach was more reliable. 
In [40], twelve predicting models are compared for the cooling load applications. 
According to this paper, the LSTM model gives more accurate results. In [41], various 
university campus heating load was predicted using the RNN model. According to 
their work, the RNN models worked better than the other machine learning-based 
approaches for medium and long-term estimation. They show that to get better results 
to predict the thermal energy loads, RNN models are used. More study is needed 
to corroborate the previous work based on different case studies. Marino et al. [42] 
show how GRU-based models may be used to predict energy usage. After examining 
several strategies for inferring missing data, GRU forecasting models were tested. 
For LSTM models that output power load predictions in educational buildings, see 
references [31]. The authors of the reference publication [43] evaluate the efficacy 
of several deep learning models. 

6 Results and Discussion 

Because deep learning approaches and techniques can manage vast volumes of data 
and give superior results, they have seen rapid expansion in the recent years. There 
is substantial research on their application in load energy forecasting. According to 
the observations, most of the DL-based models are used to predict the full power 
loads. They also target the energy loads for the entire plant. Most DL techniques have 
been used in the LSTM and deep feed-forward neural networks. When comparing 
forecasting performance with other ML-based methods, it was found that DL-based 
methods typically lead to better performance than ML-based ones. In some cases, 
however, it did not. Similar observations were also observed when the models were 
used as forecasting models. Despite the strong outcomes, there are still considerable 
hurdles to be overcome. 

6.1 Challenges 

Although the use of DL-based methods is still in their initial stages for forecasting the 
energy loads, several new and thrilling tasks remain. The most significant challenges 
that have been observed are divided into two categories: 

1. The difficulties that the research community is confronted 
2. The DL-based methods are faced the technical challenges 

The following are the main challenges which the researchers face:
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1. Most papers used unpublished proprietary datasets. This point was raised in a 
review study on data-driven models [38, 44]. Because of the extensive usage of 
proprietary data, it is not easy to produce the results, conduct comparison, and 
expand on the work of others. 

2. As a result of the developing number of publishers, there is no standard for 
foreseeing model data in each diary composition. 

3. Inadequate descriptions of the components/or methods used in their research. It 
was found that some papers did not specify their forecast horizons or hyperpa-
rameter tuning approach. 

4. Many performance metrics can be applied to each publication. The most common 
performance metric in research is the mean absolute percentage error, found in 
references [45]. However, it is not always employed in the study. Occasionally, 
the author will utilize other metrics or change the measurements. 

5. The issue is further complicated by using unclear terms in research. 

A few significant challenges have been identified in the research on DL-based 
models. It is challenging to develop and test DL-based models without guidelines. 
Creating, applying, and comparing such models are much more challenging because 
there are no guidelines. According to the findings, the majority of articles had 
changed their hyperparameters by trial and error. Building various models and ensur-
ing repeatability may be easier with an automated method and guideline. The models 
can improve forecasting performance at multiple levels, but they have a trade-off: 
increased complexity of the model and longer training times than typical machine 
learning approaches. Future researchers would benefit from the establishment of 
guidelines for DL modeling. This will provide them with a standard set of crite-
ria that they can use to compare and build on models. This could allow for more 
generalizations more quickly. 

6.2 Data Collection and Results 

6.2.1 Data Collection 

Data is collected from the Delhi power plant from January 2011 to December 2020 
with hourly resolution. Before processing, any analysis dataset is normalized using 
a min-max scalar. Figure 8 represents the power consumption data before normal-
ization, and Fig. 9 represents the data after normalization using a min-max scaler. 
Normalized data provides equal weights to each attribute. Because they are more 
significant numbers, no one attribute influences model performance in one way. 

6.2.2 Results 

From Figs. 10, 11, 12, it can be observed that the forecasted load performance is 
identical to the actual load consumption. All deep learning models provide accurate
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Fig. 8 Hourly power consumption data–before normalization 

Fig. 9 Hourly power consumption data–after normalization 

results as compared to the actual values. It can be seen that where the behavior of the 
power consumption load is unstable. The predicted results are that diverging from 
the actual values is moderately important. However, the power load consumption 
curves are repeated in all cases, as shown in Fig. 13. If the power load consumption 
graph is irregular or stable, the forecasted values fluctuate, especially when the power 
consumption load appears irregular.
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Fig. 10 Prediction made by RNN model 

Fig. 11 Prediction made by LSTM model 

6.3 Future Research Prospects 

The potential of coming ways for DL-based methods in energy load forecasting 
contains: 

1. The improvement of DL approaches across a scope of area types for load fore-
casting focuses on comparison-based papers. 

2. The applications of DL models in research papers have not been much discussed. 
3. Different case studies have been analyzed using DL gray-box models.
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Fig. 12 Prediction made by GRU model 

Fig. 13 Predicted versus actual 

4. Analyze the sensitivity of DL models and their uncertainty. 
5. The selection of hyperparameters for the DL model proposal establishes the 

guidelines. 
6. The production of mountable DL-based models can be immediately evolved and 

tuned for use in various areas for load estimation. 
7. The growth of strong models can provide accurate predictions even in the case 

of sensor fiascos, variations of the process, and other unforeseen events.
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8. Implementation of innovative deep learning-based approaches in real-world 
applications, such as predictive model controllers, and demand-side manage-
ment scheduling optimization. 

7 Conclusion 

This paper reviewed deep learning approaches that can be used to estimate the 
load energy consumption. Firstly, the concept and characteristics of deep learning 
approaches were discussed. After that, most widely used and vital methods of deep 
learning were presented. The basic overview and types for deep learning-based mod-
els are provided first, followed by an overview of some of the most popular method-
ologies. Following that, this report included a summary of current trends based on 
published studies. After that, attributes extraction and load forecasting using deep 
learning techniques were studied. At last, this paper discusses some issues related to 
such type of model using deep learning approaches. According to our review, deep 
learning strategies have proved to generate more significant performance outcomes 
when used to feature extraction when compared to other methods, according to our 
consideration. Furthermore, comparable effects were reported when the deep learn-
ing approaches were used as prediction models. Because there are few comparison-
based studies among DL-based approaches, determining which one produced the 
most promising outcomes is challenging. However, the current results are encourag-
ing, and future research should build on the existing part of the information. Despite 
the significant growth of the papers and case studies in the recent years, there are 
still several obstacles and tasks to be completed. The applications of the deep learn-
ing approaches are not typically used for case studies and target attributes. But the 
comparison of the deep learning approaches across various case studies and imple-
mentation of DL-based models is the actual application of such works. Many applica-
tions for energy management and improvement rely heavily on forecasting models. 
Predictive control, demand response management, fault detection, and optimization 
models are examples of such applications. The conversation and discoveries of this 
paper might assist the researchers with concluding which profound learning-based 
models are utilized for load determining. 
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