
Turbulence Without Fluctuations

Massimo Germano

Abstract Fluctuations are very important in statistics, but their use in the study
of turbulent flows, particularly in the formulation and the analysis of Large
Eddy Simulations, is not so essential. In the paper some historical and personal
recollections on that are recorded.

1 Introduction

Thirty years ago, in 1992, I was invited by ENEL, the Italian agency for the
production and the distribution of electric power, to illustrate the recent progresses in
the new emerging computational techniques applied to the Large Eddy Simulation,
(LES), of turbulent flows. In Pisa, the morning of May 21, I spoke about the
past and the present of LES and the related perspectives of future developments.
In the afternoon some participants presented their activity in the field, and Carlo
Cercignani was one of them. It was a great day, plenty of suggestions and promises
for the future.

It was not my first conversation with Carlo, our friendship started in the sixties
of the last century, but it was the first time that we were directly related to some
joint project. Both Italians we were used to meet outside, at a congress in the United
States or a meeting in Denmark. I was attracted by his way of looking at science, his
passionate and disenchanted way of considering the progress, his penetrating and
well-disposed judgements of new theories and people. The contacts were rapid but
very significative, a dinner in a pub, a little walk in a campus or the casual encounter
in a library between one session and another. For me he was like an elder brother,
disposed to understand your problems and indulgent with your weaknesses.

At the time of our meeting in Pisa I recall his amused interest on my reports about
my personal American Adventure, the joint gestation of the dynamic model with
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Stanford. Thirty years ago the interest for LES suddenly had a great impulse due to
the new dynamic modeling approach [1] that was presented at the Summer Meeting
of the CTR in 1990. This procedure, originally applied to improve dynamically the
Smagorinsky model, was very general; Carlo was working with his collaborators,
Antonella Abbà and Lorenzo Valdettaro, on anisotropic eddy viscosity models and
a possible dynamic improvement was attracting their attention.

For me all that was a great surprise. The basic ingredient of the new modeling
approach was a trivial identity between the subgrid stresses at two different filtering
resolutions incidentally found in the framework of my speculations on LES. My
interest on LES was relatively new, and my main problem at that time was to
develop a simple multiscale approach to the analysis of turbulent flows based
on a generic hierarchy of filtering operators. The starting point was a curiosity
about the fundamentals, in particular, the problem of the average and the analytical
formalization of LES. I was attracted by LES mainly from the point of view of a
new way to represent turbulent flow, different from the statistical and the spectral
ones.

The beginning was discouraging, a good friend of mine, consulted on the subject,
was very strong about that: please leave that topic, it is unfitted for you. It requires
big computers, you are not an expert in numerical and computational problems
and there is little space left for new theoretical work. But I was attracted by some
analogies between the classical Leonard formulation of LES [2] and some old ideas
of Boussinesq [3] and Reynolds [4], developed in the middle of the last century
by Kampé de Fériet and his school [5], concerning the rules of the mean from the
algebraic point of view, and that was the starting point. Then I realized that a great
obstacle to the formulation of a hierarchical filtering approach was to get rid of
the fluctuations, and to remove the fluctuation-conditioned attitude peculiar of the
statistical decomposition. At the time of my presentation in Pisa I was in the main
of my struggle against the fluctuations, my first paper on that [6] was encountering
some difficulties to be published, it was presented to JFM on July 1990 and was
finally published on June 1992. That was my main interest and my major concern
at that time, and the main argument of my conversation gently supported by Carlo
with his particular witty smile that afternoon in Pisa. In the following I would like
to recall all that, in the ideal continuity that connect all us in an endless dialogue.

2 Fluctuation-Conditioned Turbulence

Everybody knows that an alternative, rapid, and elegant way to compute the
Reynolds stress in turbulent flows is given by

Rij = uiuj − ūi ūj (1)

but for a teacher it is surprisingly scarce the number of students disposed to
appreciate this simple expression. Almost all prefer the classical formulation based
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on the differences, the fluctuations from the mean u′
i = ui − ūi

Rij = u′
iu

′
j (2)

where the overline stands for the statistical operator, and this fluctuation-conditioned
attitude is more evident when applied to the statistical analysis of a filtered
representation of a turbulent flow. Let us indicate with the overtilde a generic
filtering operator and with ũi a filtered representation of a turbulent flow ui . We
assume as usual that

·̃ · · = · · · ; ũi = ui ; ũiuj = uiuj (3)

and we introduce the new fluctuations u′′
i and u′′′

i defined as

u′′
i = ũi − ūi ; u′′′

i = ui − ũi (4)

Owing to the identity

u′
i = u′′

i + u′′′
i (5)

we can write the relation

Rij = u′′
i u

′′
j + u′′′

i u′′′
j + u′′

i u
′′′
j + u′′′

i u′′
j (6)

that if the new supplementary fluctuations u′′
i and u′′′

i are uncorrelated reduces to the
simple result

Rij = u′′
i u

′′
j + u′′′

i u′′′
j (7)

I will not underestimate the importance of these relations. Triple decompositions
have been studied by many authors in the past, I will cite one for all the important
paper by Reynolds and Hussain [7] where a triple decomposition has been applied
to the study of the mechanics of an organized wave in turbulent shear flow. Here I
only remark that it is very easy and more general to realize that

u′′
i u

′′
j = ũi ũj − ũi ũj (8)

and that

u′′′
i u′′′

j + u′′
i u

′′′
j + u′′

i u
′′′
j = ũj ui − ũi ũj (9)
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so that we have the alternative operational decomposition of the Reynolds stress
given by

Rij = Tij + τ ij (10)

where Tij is the resolved stress, explicitly computed

Tij = ũi ũj − ũi ũj (11)

and τij is the subfilter stress, usually modeled

τij = ũiuj − ũi ũj (12)

We remark that the identity (10) is operational and only subjected to the
assumption (3), so that can be also applied to two generic filtering operators, and
that was the new multiscale identity that I was illustrating that day in Pisa. Here
I would like to recall how important in his genesis was for me to remove the
fluctuation-conditioned attitude at that time dominant in the field. A fundamental
starting point was an old paper published in French in the Italian Rendiconti del
Seminario Matematico e Fisico di Milano [5]. In that paper Kampé de Fériet poses
the following question: Quelles sont les propriétés de la moyenne, nécessaires
et suffisantes pour que les équations de Reynolds se déduisent rigoureusement
des équations de Navier en en prenant la moyenne?, which are the properties
of the mean that mathematically justify the RANS equations. The arguments and
the developments are very interesting, but mainly two conclusions deserve in our
opinion our principal attention. The first is related to the fundamental property
of the statistical fluctuations, u′

i = 0, their nullity when averaged, that is proved

unessential: si on attache donc une telle importance à u′
i = 0 c’est parce qu’on

la juge impliquée intuitivement dans le concept de la moyenne, mais nullement
parce qu’elle intervient dans les calculs réellement effectués1. The second is that
the RANS equations are very simply and directly derived by the Navier-Stokes
equations si l’effet du mouvement de l’agitation turbulent sur le mouvement moyen
ne s’exprime plus par le tenseur de Reynolds, u′

iu
′
j , mais par un nouveau tenseur

Rij = uiuj − ūi ūj
2. More precisely the problem that interested Kampé de Fériet

in the fifties of the last century was to better understand algebraically the Reynolds
rules of the mean. Given a generic linear and constant preserving filtering operator
F that produces the quantities ūi let us introduce the fluctuations u′

i = ui − ūi . We

1 If one attains such importance to this property is that we intuitively think it associated with the
concept of mean, but it has no role at all in the computations really done
2 If the effect of turbulence is not expressed by the Reynolds stress u′

iu
′
j but by a new tensor

Rij = uiuj − ūi ūj
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can write

uiuj = ūi ūj + u′
iu

′
j + u′

i ūj + u′
j ūi (13)

and the problem was to find the operational rules that justify the equivalence of this
expression with the usual one

uiuj = ūi ūj + u′
iu

′
j (14)

Obviously this equivalence is satisfied ifF = E, the statistical average, and at that
time the interest to this problem was not so appreciated by the scientific community.
Let us quote from Monin and Yaglom [8], volume 1, page 209: However, all
these investigations are of a formal mathematical nature and their results do not
find direct application in the theory of turbulence. Furthermore, they are not even
necessary, since in present day turbulence theory the question of the meaning of
averaging is resolved in a completely different manner, and, moreover, in such a way
that all the Reynolds conditions are evidently satisfied . . . . . . . Averages different
from the statistical one, like convolutional averages in space and time, are not so
interesting because these mean values will depend on the form of the weighting
function (in particular, when averaging over some time interval or region of space,
it will depend on the length of the interval or the form and volume of the region) and
in conclusion it is desirable in the theory of turbulence to avoid the use of this type of
averaging altogether, and to adopt instead some other method of defining the mean
value, a method that has simpler properties and is more universal. A convenient
definition of this type, which we shall use throughout this book, is found in the
probability-theory treatment of the fields of fluid dynamic variables in a turbulent
flow as random fields.

But things were rapidly changing due to a lot of reasons. The discovery of
coherent structures and the sensation that a turbulent field at least as regards the
large scales, is not so chaotic as presumed was more and more acting on the
scientific imagination. The classical double decomposition in ensemble averages
and statistical fluctuations was insufficient to capture the multiscale nature of
turbulence, and something new had to be implemented. It was clear that in order
to go on something new had to be conceived, and following the suggestions of
Kampé de Fériet the time of abandoning the fluctuation-conditioned approaches
was arrived. It was not so easy, and a fundamental step was to define the Generalized
Central Moments.

3 Turbulence Without Fluctuations

Once removed by the help of Kampé de Fériet my fluctuation-conditioned attitude,
everything became easier. Explicitly, given a generic velocity field ui (x, t, ω), the
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statistical average is given by

〈ui〉 =
∫

ui

(

x′, t ′, ω
)

p(ω)dω (15)

and a generic space average is given by

〈ui〉 =
∫

ui

(

x′, t ′, ω
)

G
(

x − x′) d3x′ (16)

where p(ω) is a probability density function and G
(

x − x′) a normalized space
filtering kernel, but operationally the filtered, averaged, Reynolds, LES equations
are all equivalent. In terms of the generalized Reynolds stress introduced by Kampé
de Fériet the Navier-Stokes equations are invariant to the filtering process, and this
averaging invariance is claimed in my paper [6], but essentially it is due to my
connection to the past. To generalize all that was simple. Let us consider a generic
filtering operator F representative of our Large Eddy Simulation, the explicit or
implicit LES filter, and given the generic turbulent quantities, a, b, c, · · · , let us
introduce the Generalized Central Moments (GCM) [6, 9, 10] associated with F

τf (a, b) ≡ 〈ab〉f − 〈a〉f 〈b〉f
τf (a, b, c) ≡ 〈abc〉f − 〈a〉f τf (b, c) − 〈b〉f τf (c, a) − 〈c〉f τf (a, b) − 〈a〉f 〈b〉f 〈c〉f

(17)

Let us now define a test filter G that we only assume linear and constant preserving
and let us consider the quantities extracted by this test filter G when applied to
the LES F-filtered quantities. In other words we are interested to the filter product
P = GF. We assume that GF = FG, and our notation is the following

P[· · · ] ≡ G[F[· · · ]] ≡ GF[· · · ] ≡ 〈· · · 〉gf ≡ 〈〈· · · 〉f 〉g ≡ 〈· · · 〉p
≡ F[G[· · · ]] ≡ FG[· · · ] ≡ 〈· · · 〉fg ≡ 〈〈· · · 〉g〉f ≡ 〈· · · 〉p (18)

It is easy to see that we can write the following identities

τp(a, b) = τg(〈a〉f , 〈b〉f ) + 〈τf (a, b)〉g = τf (〈a〉g, 〈b〉g) + 〈τg(a, b)〉f
τp(a, b, c) = τg(〈a〉f , 〈b〉f , 〈c〉f ) + 〈τf (a, b, c)〉g

+ τg(〈a〉f , τf (b, c)) + τg(〈b〉f , τf (c, a)) + τg(〈c〉f , τf (a, b))

= τf (〈a〉g, 〈b〉g, 〈c〉g) + 〈τg(a, b, c)〉f
+ τf (〈a〉g, τg(b, c)) + τf (〈b〉g, τg(c, a)) + τf (〈c〉g, τg(a, b)) (19)
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where, consistently with the definition of the GCM,

τp(a, b) ≡ τgf (a, b) = 〈ab〉gf − 〈a〉gf 〈b〉gf
≡ τfg(a, b) = 〈ab〉fg − 〈a〉fg〈b〉fg

τp(a, b, c) ≡ τgf (a, b, c) = 〈abc〉gf − 〈a〉gf τgf (b, c) − 〈b〉gf τgf (c, a)

− 〈c〉gf τgf (a, b) − 〈a〉gf 〈b〉gf 〈c〉gf
≡ τfg(a, b, c) = 〈abc〉fg − 〈a〉fgτfg(b, c) − 〈b〉fgτfg(c, a)

− 〈c〉fgτfg(a, b) − 〈a〉fg〈b〉fg〈c〉fg

τg(〈a〉f , 〈b〉f ) ≡ 〈〈a〉f 〈b〉f 〉g − 〈a〉gf 〈b〉gf
τg(〈a〉f , τf (b, c)) ≡ 〈〈a〉f τf (b, c)〉g − 〈a〉gf 〈τf (b, c)〉g (20)

A particularly important case is G = E. In this case, if we also assume that
EF = E, we have

τe(a, b) = τe(〈a〉f , 〈b〉f ) + 〈τf (a, b)〉e
τe(a, b, c) = τe(〈a〉f , 〈b〉f , 〈c〉f ) + 〈τf (a, b, c)〉e + τe(〈a〉f , τf (b, c))

+ τe(〈b〉f , τf (c, a)) + τe(〈c〉f , τf (a, b)) (21)

and we remark that the total turbulence represented by the statistical central
moments τe(a, b) and τe(a, b, c) is operationally decomposed in the resolved large
scale turbulence τe(〈a〉f , 〈b〉f ) and τe(〈a〉f , 〈b〉f , 〈c〉f ), and in the subfilter small
scale turbulence given by 〈τf (a, b)〉e, 〈τf (a, b, c)〉e and τe(〈a〉f , τf (b, c)).

This multiscale operational technique can be easily extended to an ensemble of
filtering operators hierarchically organized

F , GF , HGF , · · · (22)

and has a lot of different applications. At the time of our meeting in Pisa the
main interest was in subgrid modeling, and the first application of this multiscale
filtering approach was dedicated to the optimization of the Smagorinsky model. In
this case the filter G is a test filter that applied to the F-filtered quantities should
provide a different representation at a different resolution level, useful to compare
and optimize the subgrid model at different grid resolution. We refer for more detail
on that to [10], and we also remark an interesting review and generalization of this
modeling procedure recently provided by Meneveau [11].

Here we would like to also recall the application of this multiscale filtering
technique to the analysis of LES data, in particular, the extraction of statistical data
from a LES database. Let us first of all consider a constant density turbulent field
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and let us assume that EF = E. We explicitly define

Rij ≡ τe(ui, uj )

Rijk ≡ τe(ui, uj , uk)

τij ≡ τf (ui, uj )

τijk ≡ τf (ui, uj , uk)

Tij ≡ τe(〈ui〉f , 〈uj 〉f )

Tijk ≡ τe(〈ui〉f , 〈uj 〉f , 〈uk〉f )

(23)

where ui are the components of the velocity field at a given time and location, and
we have

Rij = 〈τij 〉e + Tij

Rijk = 〈τijk〉e + Tijk + τe(〈ui〉f , τjk) + τe(〈uj 〉f , τki) + τe(〈uk〉f , τij )

(24)

where

τe(〈ui〉f , τjk) ≡ 〈〈ui〉f τjk〉e − 〈〈ui〉f 〉e〈〈τjk〉f 〉e (25)

Let us now only assume that EF = FE. We define the following additive GCM

ϑij ≡ τf (〈ui〉e, 〈uj 〉e)
ϑijk ≡ τf (〈ui〉e, 〈uj 〉e, 〈uk〉e) (26)

and we have finally

〈Rij 〉f + ϑij = 〈τij 〉e + Tij (27)

〈Rijk〉f + ϑijk + τf (〈ui〉e, Rjk) + τf (〈uj 〉e, Rki) + τf (〈uk〉e, Rij ) =
〈τijk〉e + Tijk + τe(〈ui〉f , τjk) + τe(〈uj 〉f , τki) + τe(〈uk〉f , τij ) (28)

Another important application of this fluctuation-free multiscale approach is to
Variable Density Turbulent Fields �, ui . In this case we also remove the mass-
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weighted averages [12], and in terms of the GCM we explicitly write

R�i ≡ τe(�, ui)

Rij ≡ τe(ui, uj )

R�ij ≡ τe(�, ui, uj )

τ�i ≡ τf (�, ui)

τij ≡ τf (ui, uj )

τ�ij ≡ τf (�, ui, uj )

T�i ≡ τe(〈�〉f , 〈ui〉f )

Tij ≡ τe(〈ui〉f , 〈uj 〉f )

T�ij ≡ τe(〈�〉f , 〈ui〉f , 〈uj 〉f ) (29)

where � is the density and ui are the components of the velocity field at a given time
and location. We have

R�i = 〈τ�i〉e + T�i

Rij = 〈τij 〉e + Tij (30)

R�ij = 〈τ�ij 〉e + T�ij + τe(〈�〉f , τij ) + τe(〈ui〉f , τ�j ) + τe(〈uj 〉f , τ�i)

(31)

Let us now only assume that EF = FE. We define the following additive GCM

ϑ�i ≡ τf (〈�〉e, 〈ui〉e)
ϑij ≡ τf (〈ui〉e, 〈uj 〉e)

ϑ�ij ≡ τf (〈�〉e, 〈ui〉e, 〈uj 〉e) (32)

and we have finally

〈R�i〉f + ϑ�i = 〈τ�i〉e + T�i

〈Rij 〉f + ϑij = 〈τij 〉e + Tij (33)
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and

〈R�ij 〉f + ϑ�ij + τf (〈�〉e, Rij ) + τf (〈ui〉e, R�j ) + τf (〈uj 〉e, R�i) =
〈τ�ij 〉e + T�ij + τe(〈�〉f , τij ) + τe(〈ui〉f , τ�j ) + τe(〈uj 〉f , τ�i) (34)

These last decompositions of the Reynolds stresses in the case of compressible
turbulent flow are new, simple, and fluctuation-free. Moreover they are also mass
weighted-free, and the author really hope that they could be appreciated more and
more in the future in the analysis of LES databases. We recall finally that some
recent applications of the filtering approach concerning the subfilter stress [13], the
decomposition of the Reynolds stresses [14, 15], the dynamic modeling of the Shock
Driven Turbulent Mixing [16] and the definition of statistical homogeneity indices
[17] have been recently reviewed in [18].

4 Conclusions

But let us return to that afternoon in Pisa and to the conversation with Carlo.
Everything went on well: two months later my paper was finally published, and
in the following years the application of the new dynamic modeling procedure to
the anisotropic eddy viscosity model proposed by Carlo, Antonella, and Lorenzo
was developed and worked successfully [19]. Fluctuations continue to be applied
in LES, but some final lessons deserve to be remarked. The first is related to our
starting point, the identity (10). Why this simple and, in our opinion, interesting
decomposition of the Reynolds stress was appreciated so lately in turbulence? We
remark that in applied statistics the identities (3) and (10) are better known as the
Adam and Eve’s laws [20, 21]: given a partition of the probability space, the total
statistical covariance Rij of ui and uj is the average τ ij of the partial covariance
τij plus the statistical covariance Tij of the partial mean values. Science as every
human activity is often conditioned by great ideas that in some cases obscure
other different possibilities. Obviously the fluctuations remain very important, but
not always they are essential, and in the case of LES their importance has been
overvalued. Individual deviations from the average are intuitively very appealing,
but not always you are obliged to decline them: differences are not so relevant in
turbulence.

Another important lesson regards finally our ideal endless dialogue with the past:
old papers are often plenty of useful observations and suggestions.
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