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Preface

In this volume are collected some of the contributions presented at a conference
organized in memory of Carlo Cercignani, which took place at Politecnico di Milano
on May 24–28, 2021, 11 years after his death. A delay of 1 year was imposed by
the difficulties due to the COVID-19 pandemic. Carlo Cercignani was unanimously
considered one of the world’s leading experts of the Boltzmann equation, and he
carried out his research for decades in the Department of Mathematics at Politecnico
di Milano. He obtained significant results in many different areas of kinetic theory
relevant for applications, related, in particular, to the derivation of a gas-surface
interaction kernel (the so-called Cercignani-Lampis boundary conditions), to the
propagation of shock waves, to the modeling of polyatomic gases and mixtures,
and to the evaporation and condensation phenomena. As a mathematician, Carlo
Cercignani established important theoretical findings, including a conjecture on
the behavior of the solutions to the Boltzmann equation for large times, along
with the derivation of this equation from microscopic models. He also devoted
particular care to analytical and semianalytical methods of solution, formulating, in
particular, a variational principle for the integro-differential form of the linearized
Boltzmann equation applied successfully, in the last years of his scientific career,
to the study of microelectromechanical systems (MEMS) devices. This versatility
reflects the feeling, which Carlo Cercignani had throughout his life, of trying to
reconcile the theoretical investigation with its practical application. In addition,
it is perhaps thanks to this intuition that he has become a giant in the field of
rarefied gas dynamics. However, the scientific interests of Carlo Cercignani were
not confined to kinetic theory. He was also very active in the turbulence research
area, obtaining, among other results, a new class of subgrid-scale models for large
eddy simulations (LESs). Furthermore, in the 1970s, Carlo Cercignani was among
the first ones in Italy to understand the relevance of dynamical systems theory and its
developments in mechanics such as KAM theory. Finally, it is worth mentioning his
deep interest in the foundations of physics, in the spirit of the so-called “Einstein
Classical Program” of proving that quantum mechanics can be recovered from a
theory presenting some “realistic character.”

v



vi Preface

Carlo Cercignani published 10 research monographs and more than 300 scientific
papers. His most famous book, The Boltzmann Equation and its Applications
(Springer-Verlag, New York, 1988), is still nowadays considered the standard
reference in kinetic theory. To pay homage to the extreme versatility of this
prominent scientist, recent developments in all the themes summarized above have
been included in the present book.

In the framework of kinetic theory, simplified models for polyatomic gases and
mixtures have been presented, along with applications of the Boltzmann equation
to electron transport, social phenomena, and epidemic spread. Regarding turbulence
modeling, a description of turbulence based on generalized central moments instead
of fluctuations has been presented. This unconventional point of view has provided
fruitful enhancements to turbulence modeling. Additionally, a class of anisotropic
LES models, inspired by the work of Carlo Cercignani, has been studied and applied
to different kinds of turbulent flows. Lattice Boltzmann and gas-kinetic methods
are also addressed to describe complex flows. Some contributions concern the
Einstein Classical Program where the recovery of quantum mechanics from classical
electrodynamics is discussed, as well as Cercignani’s conjecture on the possibility
of having a classical zero-point energy. A few papers are also related to dynamical
systems theory.

Milano, Italy Paolo Barbante
Francesco D. Belgiorno

Silvia Lorenzani
Lorenzo Valdettaro
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The “Divertissements” of Carlo
Cercignani

Luigi Galgani

Abstract A short description is given of Carlo Cercignani’s intellectual activities
that he performed as a kind of refreshment from his scientific research. Some
samples of his poems are also included. Being not really gifted for sport activities,
Carlo, so much busy with his kinetic theory, had essentially two refreshing activities,
still of an intellectual character, i.e., literature and foundations of physics, that are
briefly illustrated below.

Literature
The most regenerating activity for Carlo, so much busy with his work on Kinetic
Theory, was literature, in the creative sense of actually writing himself poems and
novels, or of performing translations. He liked poetry immensely, and, gifted with
a prodigious memory as he was (for instance, he could at any moment recite all
of Dante’s Divine Comedy by heart), he enjoyed composing rhymes in the style
of jokes that imitated celebrated Italian poems, popular songs, or ballads. These
poems were collected in an unpublished booklet entitled “Scherzi in versi” (“Jokes
in verses”) that was prepared by his wife Silvana as a surprise gift at a conference
for his 60th birthday.

His activity as a translator was huge. Indeed, he not only translated, for
example, all of Shakespeare’s Sonnets, and the Queneau’s poem “Petite cosmogonie
portative”. But he also translated the Iliad and the Odyssey from Greek, and
eventually the Aeneid from Latin, using verses suitably chosen to best reproduce
the rhythm of the hexameter.

Novels
He also wrote three novels. I only have a vague memory of the second one, related to
the atmosphere of the “student revolution” of 1968. I was instead fascinated by his
first novel, written perhaps in the Seventies, by the title “Morte di un professore”

L. Galgani (�)
Department of Mathematics, Università degli Studi di Milano, Milano, Italy
e-mail: luigi.galgani@unimi.it
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2 L. Galgani

(i.e., Death of a professor), that is really amusing. It is mainly a parody, in which
one may recognize real life professors behind certain characters. However, Chapter
6 is somehow more serious. A character named Veroviro (i.e., true man, alluding
to a well known American professor) gives a talk at the Milan Politecnico, about
kinetic theory. In fact, the talk deals rather deeply with the problem of whether the
existence of a conscience (or of a soul, or of freedom) may be compatible with
a deterministic vision of the world. It is clear that Carlo himself is speaking here
through Veroviro. However, the only rather modest result obtained is the suggestion
that the emergence of complexity (the so-called butterfly effect) might help in this
connection.

Such a hard theme is instead, implicitly, the main objective of his third novel
(32 short chapters, for 136 pages) entitled La creazione secondo Michele (i.e., The
creation according to Michael), on which he worked in the final part of his life. In
the last pages he also introduced an explicit autobiographical reference to his illness,
albeit, as usual for him, in an extremely reserved way.

Apparently, the novel tells the story of how God created the world through
quantum fluctuations, letting it evolve according to the laws of physics, that also
account for biology and evolution. This is the first part, mainly of a didascalic
character. Then, human beings come in, and Lucifer is precipitated on the Earth,
bringing evil in the world. Here, the second part of the novel starts up. As the
human beings seem unable to understand how the world was created, God sends
the Archangel Michael on Earth in order to instruct them. To this end Michael goes
in search of a suited writer, or a “typist,” as he says. This is indeed the opportunity
for the most beautiful part of the novel, a fascinating round up of human history, the
Egyptians, the Hebrews, the Greeks, the Italian renaissance, Michelangelo, Luther,
Bruno, Galileo and Newton, Faraday and Maxwell, and finally Einstein, with a
mention of his love for realism, against the orthodox interpretation of Quantum
Mechanics. But according to Michael all those people were so genial that they could
not conceive of just acting as typists. Eventually Michael finds the good, sufficiently
humble, person, Carlo himself, while he was, ill, in Paris. Here, a few pages of a very
touching type (but still with irony) follow. In particular, Carlo reveals himself as the
true author (and not just the typist) of the book.

Then he says: “Man seems to go ahead towards the nothing, with a life that to
most people appears devoid of any aim”. So he refers to God, and actually fights
with Him, saying: “Men loved Him insanely all the time the world about them
brought the signs of mystery and enchantment. But when they entered the luminous
shadow of the tree of science, and they believed they were mastering . . . the secrets
of the universe, they loved God less and less. Perhaps knowledge and power made
the human beings so superb that they dumped the idea of God, asking themselves,
in the night, at the dim light of the stars, or in the moments of discouragement, what
were they doing in the world. They no more needed His blessing.” Then he asks
himself whether this is progress, but he finds no clear answer, just saying: “Life is
an adventure that is worth living.”
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About Soul Within Physics
In conclusion, about the main theme of the novel, i.e., the problem of soul within
physics, Carlo seems to have been unable to even imagine a clear answer. My
impression, however, is that he dares to witness he feels they coexist. For example,
in the novel he says the following touching words: “the human being, so easily
dominated by tenderness and wonder. A being made up of the stuff of the stars, born
from a womb, but able to understand, as by enchantement, the symbols of the spirit.
Living as if he were bewitched . . . ”

Foundations of Physics as a Further Divertissement
I close this short contribution by recalling how, along all his life, devoted to
Kinetic Theory somehow as a work, Carlo had another divertissement in addition to
literature, namely the foundations of physics in the spirit of the Einstein Classical
Program. Namely, to understand whether Quantum Mechanics might be “explained”
in some “realistic” way. Indeed, already in the year 1972 (see [1]) he had advanced
the idea that zero-point energy might be “explained” classically within dynamical
systems theory, in terms of a transition from ordered to chaotic motions, whereas
in 1998 (see [2]) he discussed how Planck’s distribution law may be derived in a
nonquantum frame. A review of such works is given in a paper of mine (see [3]).

In particular, in an Appendix to that review are reproduced two poems by Carlo:
my preferred one, by the title “1921,” a kind of a lyrical recollection of the themes
and characters of Mathematical Physics, and the one by the title “Beethoven in
Cielo (i.e., in Heaven)”. In the review, erroneously (by a the reason explained there)
I attributed the latter poem to Carlo. It is instead his translation of a Boltzmann’s
rather dramatic poem, an English version of which is available in Carlo’s book on
Boltzmann. Here such poems are again reproduced in an Appendix, together with
another one, inspired to Virgil’s Georgics.

Appendix

1921 (Year 1987)
Il pendolo semplice e il verso degli angoli, coppie e momenti,
e l’orientazion dei segmenti, che sembrano avere un po’ perso
quel ruolo di bei caposaldi, che noi studiavamo convinti
sui tomi, a caratteri stinti, del buon Levi Civita-Amaldi;
i solidi rigidi e i fili poggiati e sospesi per aria,
disposti per far catenaria, e, ancor, coniugati, i profili;
le formule dell’ellissoide d’inerzia, le tre rotazioni,
il calcolo delle reazioni, il grafico della cicloide;
e dopo? anche il moto centrale e la geometria delle masse,
e come se ciò non bastasse le formule del potenziale;
la velocità areolare, insieme col noto rapporto
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tra assi e periodi e uno storto poligono funicolare;
l’epicicloide ordinaria, le verghe, i vettori, i versori.
la legge d’inerzia, i cursori, l’odografo, la legge oraria;
e quei giroscopi, che ognuno ricorda, che sembrano armille;
rinasco, rinasco nel mille, eh sì, novecentoventuno!
Il Finzi è un ragazzo aitante, che svolge, sicuro e veloce,
il calcolo, pure il più atroce, e sgomina . . . un determinante;
e ancor la Pastori, serafica, in certe serate d’inverno,
risolve, su un lindo quaderno, problemi di statica grafica.
Sul tavolo la lucernetta fa un orbe di luce conchiuso,
nel quale discutere è d’uso problemi di base e rulletta.
Max Abraham, presso alla morte, ancor polemizza ma è stanco;
la teppa, rizzata sul banco, ne aveva deciso la sorte
da anni: doveva lontano andare la Kultur germanica
che quel professor di meccanica voleva illustrare a Milano.
I giorni si fanni piu’ foschi; che importa se poi il suo tensore
potrà risultare migliore di quello che ha dato Minkowski?
Ma è giunta notizia che oggi la vecchia teoria newtoniana,
ed è una notizia ben strana, su basi sicure non poggi.
Oltr’alpe, se pur tra i fragori di guerra, son stati trovati
dei nuovi concetti, e, applicati, dei vecchi si trovan migliori.
Qualcuno scuotendo la testa, davanti ai propositi empi,
ripete: Che tempi! Che tempi! Dovevo sentire anche questa!
Tal altro si sente già certo di quella scoperta recente
e dice: Che mente! Che mente quel tipo, quell’Einstein . . . Alberto!
Oh sere, passare a studiare le formule dell’avvenire,
passate a cercar di capire, sapendo pur sol balbettare
ja, bitte, Forelle e Kartoffel quei fogli di stampa ancor fresca,
riempiti di lingua tedesca, e i simboli di E.B. Christoffel!
Ci sono certuni che stiman che sia una pura follia
studiar quella nuova teoria con dentro il tensore di Riemann:
che cuore partire all’assalto di pagine, quindici a quindici,
ripiene di formule e indici che stanno un po’ in basso e un po’ in alto!
E Weyl, che negli ultimi mesi, seguendo i precetti di Mie,
produce ancor nuove teorie, chiamate di gauge dagli inglesi!
Misteri grandissimi ancor ha in serbo la quantizzazione,
descritta con la condizione che fu escogitata da Bohr.
Quel mondo si è rotto ed ormai i giovani studiano a caso
le cose più strane e col vaso Pandora ancor semina guai!
Sì certi equilibri son rotti e circolan libri un po’ strani
che srivono, qui, il Cercignani, e, un poco piú in là, il Gallavotti.
Perfino ai congressi si sente parlare di cose un po’ strane:
scompaiono le lagrangiane, emerge il fibrato tangente.
O tempo vicino e lontano, sei sempre presente nel cuore!
quand’era un versore un versore e non un simbolo strano,
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ch’è simile a una derivata parziale, che invece non è;
nessuno mi spiega il perché di questa Babele sfrenata.
Eh sı, non lo spiega nessuno ed io vorrei che tornasse
quel tempo, che ci si trovasse nel milnovecentoventuno.
Tornare nel tempo che fu, poter imparare i tensori
col Finzi, amar la Pastori! quei giorni non tornano più !

Beethoven in cielo (About 2000)
L’anima mia dal corpo si è staccata
con una lotta che sarà obliata.
Ma dopo tanta angoscia e sofferenza,
gioia è librarsi come pura essenza!
II brulichio del mondo è come un velo
e salgo verso un’alta meta: il cielo!
Lunga e svelta qual freccia è la mia via.
Sento lungi una splendida armonia.
D’angeli un coro dolcemente aspetta
per accogliere chi lassù si affretta.
Tra poco saro giunto; quale incanto!
Che monotono sembri però il canto
a nascondere agli angeli non riesco.
Ridon felici: –E’ un animo tedesco!
La musica da voi sale fin qua!
Dio glorifica, allor, l’eternità
cantiamo; e veda che ce ne intendiamo!
Ma di andare all’unì sono cerchiamo!–
E cantano un corale grande; e presto
penso: – E’ lo stile di Beethoven questo;
quel pezzo lì però mi è sconosciuto."
Chiedo allora: – Cos’è?– –Ordine ha avuto
di scriverlo – mi dicon – dal Signore
l’anima di Beethoven. Con fervore
lo eseguiamo ogni volta che c’è festa;
musica qui non c’è miglior di questa!–
–Lo credo! Ma vorrei che a me mostrata
fosse l’anima sua. Non sarà stata
vana così la gita.– Divertiti,
mi conducon per bei prati fioriti
e m’indican lo spirito divino
che solitario va, in lento cammino,
sotto le palme. – Da lui, benché indegno,
da lui or voglio andare in questo regno,
colui che onora più l’ingegno umano!–
Mi vede allora e mi porge la mano:
– Benvenuto, o terreno ospite, prono
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al poter della musica e al suo suono!
Per te fu il coro angelico eseguito,
da me composto in cielo, ed ho gradito
che gli angeli lo affrontin con impegno:
del mio corale, pure in questo regno,
son le quarte eccedenti assai temute!
Ma le mie note, di’, ti son piaciute? –
Confuso non rispondo. Ed egli lesto
e cortese prosegue: – Animo onesto,
tu sei sincero! E’ giusta l’opinione:
fuggivi in terra pur l’adulazione. –
Allora del suo dir colgo il vantaggio;
dico: – O mio eroe – , facendomi coraggio, –
o mio maestro! Ora ho ascoltato il canto
con entusiasmo. Devo dir soltanto
che, tra gli angeli, io, su queste cime,
musica mi aspettavo più sublime!–
Egli risponde sorridendo: – Senti,
la penso come te se ti lamenti.
Tutto in ciel mi vien male, che iattura!
Ho smesso di comporre addirittura.
Solo per il giudizio universale
ho dovuto impegnarmi, bene o male,
per non imbarazzare assai il buon Dio,
di scriver per gli ottoni un pezzo mio:
lo devo far, ma non ne sono lieto.
Ma sai perché, altrimenti, ormai mi vieto
di comporre? Mi manca la scintilla
più creativa, la nota che più brilla:
questa nota è il dolore! Sì, il dolore
che ti afferra e ti fa stringere il cuore;
come un metallo forte suona e vibra
e ti fa risuonare in ogni fibra.
E’ un vero amico e ti fa superiore:
solo chi piange e geme dal dolore
avrà l’umanità, dono divino.
Cosa lega alla madre ogni bambino?
La grandi pene della notte in cui
c’è Dio soltanto in veglia con lei e lui.
Non hai mai pianto insieme con tua moglie?
Chi non lo fa l’amor vero non coglie,
un dolore profondo e condiviso:
il suo ricordo è come un paradiso.
Sopporta il santo pena ed afflizione:
brilla in lui il raggio della perfezione.



The “Divertissements” of Carlo Cercignani 7

Fama di eroe ottener sol ti è concesso,
se fermamente domini te stesso.
Tremi il tuo cuore nella sofferenza!
Vivrai nel canto della discendenza.
Dio stesso quando qui fra noi si scorse,
fu forse un re, si volle ricco forse?
Fu figlio d’uomo, pieno del dolore,
che ognor s’incontra in qualsisia maggiore
cosa; è la nota mia fondamentale.
Ma qui tutto è beato e senza male;
la cetra mi e caduta allor di mano.–
Lo guardo ora atterrito: – Come ‘e strano
lo scorrere del mondo. Poche ore
fa, chiedevo alla morte che il dolore
al cuore mio venisse risparmiato.
Ora qui, in questo mondo alto e beato,
si rimpiange il dolore! Oh, cuore umano,
veramente insondabile e ben strano!–

Leggendo le georgiche (Year 1994)
Che dir delle stelle, del cielo d’autunno, dell’ansia che prende
se il sole ogni giorno discende piu’ presto e si copre d’un velo;
o se primavera finisce piovosa e nei campi matura
la messe di spighe e Natura le steli d’umori arricchisce?
E quando nei campi dorati falciare vuoi il fragile orzo
e i venti, rigonfi di sforzo, tu vedi scontrarsi adirati
e, come guerrieri nemici, avvolti di nuvole scure,
strappare le spighe mature, svellendo perfin le radici,
scagliarle nell’aria; e le nere tempeste avvolgere in spire,
facendoli in alto salire, gli steli e le stoppie leggere.
Il cielo non e’ piu’ celeste e senti continua scrosciare
la pioggia; salita dal mare, la nube si addensa in tempeste
oscure d’orribile pioggia; il cielo precipita in terra
e scende feroce a far guerra. Si gonfiano il fiume e la roggia,
con strepito il mare ribolle; si allagano i campi ridenti
dell’opra di giorni pazienti e sul seminato e sul colle.
Furente con noi Giove Pluvio, brandendo la folgore iroso
ci manda col buio nuvoloso, o sembra, un suo nuovo Diluvio. . .
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Tensorial Turbulent Viscosity Model for
LES: Properties and Applications

Antonella Abbà and Lorenzo Valdettaro

Abstract A review of the dynamic anisotropic eddy viscosity model and its
applications is presented here. Aim of the model is to overcome the limit of classical
eddy viscosity models where the subgrid stress tensor is forced to be aligned to the
velocity strain rate tensor. Based on the original intuition of Carlo Cercignani to
model the eddy viscosity by means of a fourth order tensor contracting locally to
a second order tensor, and joined to the Germano dynamic procedure, the model
demonstrated to take into account the anisotropicity of turbulent structures and at
the same time to well reproduce the energy transfer.

1 Anisotropic LES Models

For an incompressible, constant density flow, the filtered Navier–Stokes equations
read:

ρ
∂vi

∂t
+ ρ

∂

∂xj
(vivj ) = − ∂p

∂xi
+ ∂τ ij

∂xj
− ρ

∂τSGS
ij

∂xj
+ f i

where τSGS
ij is the subgrid-scale stress tensor:

τSGSij = vivj − vivj
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and overbar denotes filtered quantities

f (x, t) =
∫
D

f (x − r, t)G�(r, x) d3r

with G the filter function and � its amplitude. Frequently used eddy viscosity
models assume proportionality between the anisotropic part of the SGS stress tensor
τaij = τSGSij − 1

3δij τ
SGS
kk and strain rate tensor Sij = 1

2

(
∂vi
∂xj

+ ∂vj
∂xi

)
:

τaij = −νSGSSij
It usually contains a model constant to be provided. For Smagorinsky model, for
example:

νSGS = C2
S�

2|S|
here� is the filter width and |S|2 = 2Sij Sij . If νSGS > 0, this term has a dissipative
character and it cannot account for backscatter. The dynamic procedure [7] aims to
determine the model constant during the numerical simulation. The idea is to use
two filters, the grid filter ( ¯ ) of amplitude � and the test filter (̂) of amplitude
�̂ > �. It is assumed that both amplitudes are within the inertial band, and the same
turbulence model is assumed to be valid for equations filtered with both filters.

To illustrate in general the dynamic procedure, let us consider the following set
of differential equations (u could be a vector field):

∂u(x, t)

∂t
= f (u(x, t))

where f (u(x, t)) is a nonlinear differential operator. Let us apply the filter of
amplitude �:

∂u

∂t
= f (u) = f (u)+

(
f (u)− f (u)

)

and suppose that the term f (u) − f (u) can be modelled through a function
g(c, u,�) where c = (c1, . . . , cn) is a set of n model coefficients whose scale
of variation is larger than the filters used, so that the same set of coefficients c can
be applied to both filters:

f (u)− f (u) = g(c, u,�),

̂f (u)− f (̂u) = g(c, û, �̂) (1)

By applying subsequently the two filters we obtain:

̂

f (u)−̂f (u) = ̂g(c, u,�) (2)
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Now, (2)− (1) provides:

̂

f (u)−̂f (u)−̂f (u)+ f (̂u) = ̂g(c, u,�)− g(c, û, �̂)

Under the following assumptions (strictly true only when the sharp cut-off filter is
used):

̂

f (u) = ̂f (u), û = û

an equation for the coefficients c is obtained:

̂f (u)− f (̂u) = g(c, û, �̂)− ̂g(c, u,�) (3)

By solving this equation numerically at each node of the computational grid, the
values of the coefficients c are obtained. Of course if the term to be modelled had
not been a scalar but a vector or a tensor, we would have obtained more than one
equation for the coefficients ci .

We note that these coefficients depend on space and time. As a matter of fact, for
consistency reasons it will be necessary to check a posteriori that their variations are
small for distances of the order of the test filter.

In Germano’s model [7] the dynamic procedure is applied to the Smagorinsky
model for the subgrid stress tensor. Let us define:

⎧⎪⎪⎨
⎪⎪⎩
τij = vivj − vivj grid filter stress tensor

Tij = v̂ivj − v̂i v̂j test filter stress tensor

Lij = v̂ivj − v̂i v̂j Leonard resolved scales stress tensor

With f (vi) = τaij , eq. (3) provides the so-called Germano’s identity:

L
(a)
ij = T

(a)
ij − τ̂

(a)
ij (4)

using Smagorinsky model we set g(C,�, vi) = −2C�
2|S|Sij . Germano’s identity

becomes:

La
ij = −2CMij (5)

where

Mij = �̂2 |̂S |̂Sij −�
2
̂|S|Sij

This set of five equations (since the tensors that appear are symmetric and traceless)
for one unknown (the constant C of the model) is solved by applying a least squares
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procedure [10] and it reads:

C(x, t) = − La
ijMij

2MklMkl

Smagorinsky model is based on an isotropy hypothesis of the unresolved scales.
To partially overcome the limits of the above dynamic model, following Cercignani
idea [2], a fourth order symmetric tensor Bijrs is used:

τaij = −2Bijrs�
2|S|Srs + 2

3
δijBkkrs�

2|S|Srs

The number of unknowns of the tensor Bijrs is too large and one cannot determine
all of them via the dynamic procedure. The following simplified form was assumed:

Bijrs =
∑
α,β

Cαβaiαajβarαasβ

Note that summation over r and s is implied by the Einstein notation, while Greek
letters appear more than two times and an explicit sum sign is required.

• Cαβ = Cβα are the elements of a 3 × 3 symmetric matrix which replaces the
coefficient C of the isotropic model. In this case too the Cαβ coefficients depend
on space and time.

• aiα are the components of a rotation matrix to be determined, or alternatively
they can be viewed as the unit vectors aα(α = 1, 2, 3) of an orthonormal triad.
Thus the transformation matrix a defines a local reference system in which the
tensor Bijrs is reduced diagonally with respect to two indices.

• Smagorinsky formulation is retrieved by setting Bijrs = Cδirδjs , and this is
obtained when Cαβ = C ∀α, β.

The anisotropic model does not prescribe how to choose the matrix aiα, which in
principle can be any rotation matrix, possibly varying in space and time. Of course,
the values of the componentsCαβ computed with the dynamic procedure depend on
the chosen tensor. One possible Galilean invariant triple is the set of eigenvectors of
symmetric anisotropic Leonard tensor La

ij .
Coefficients Cαβ can be determined by applying the dynamic procedure. Ger-

mano identity (4) becomes:

La
ij = g(C, Ŝ, �̂)− ̂g(C, S,�) = −2BijrsMrs

with

g(C,�, vi) = −2�
2|S|BijrsSrs = −2�

2|S|
∑
α,β

CαβaiαajβarαasβSrs
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This equation can be easily solved for the unknowns Cαβ :

Cαβ = −
aT Laa

∣∣
αβ

2 aT Ma
∣∣
αβ

Mixed models combine eddy viscosity models and scale similarity models. Liu
et al. [11] proposed the following model:

τaij = KLa
ij − 2C�

2|S|Sij
with model parametersK andC to be determined using the dynamic procedure (five
equations in two unknowns, least squares solution). An anisotropic mixed model has
also been introduced [2]:

τaij = La
ij − 2Bijrs�

2|S|Srs + 2

3
δijBkkrs�

2|S|Srs

2 A Priori Tests for Homogeneous Isotropic Turbulence

In Fig. 1 we show the correlation between exact and modelled stress tensor for
various LES models. The figures have been obtained using results of a DNS of a
homogeneous isotropic turbulence flow at Re = 1000 which was obtained by a
pseudo-spectral method on a 512 × 512× 512 grid (courtesy M. Meneguzzi). The
exact filtered stress tensor is compared to the one predicted by the model on the
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Fig. 1 Correlations between exact and modelled stress tensor. Left: the average is performed over
the whole domain; right: only the high vorticity regions (worms) are considered. GL: isotropic
dynamic model from [7, 10]. A: anisotropic model. The triple aiα = δiα (δ is the Kronecker delta)
has been used. Lij: Leonard resolved stress tensor. SB: the dynamic mixed model from [13]
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filtered flow field. The correlation coefficient for component τ12 is defined as

corr. for τ12 =
∑

ijk τ
(e)
12,ijkτ

(m)
12,ijk√∑

ijk τ
2(e)
12,ijk

√∑
ijk τ

2(m)
12,ijk

where subscripts (e) and (m) denote, respectively, filtered DNS and modelled
quantities, and i, j, k are the mesh points on the filtered grid. The filtered DNS data
are obtained using a sharp cut-off filter in spectral space. The filter resolution is the
number of grid points in each direction, or equivalently the number of harmonics in
each direction in Fourier space.

The figure shows that correlations are generally low, but larger inside the high
vorticity regions. In descending order, The Leonard resolved stress tensor is the one
with the larges correlation(Lij ), followed by the dynamic mixed model (SB), the
anisotropic model (A) and finally the isotropic dynamic model (GL) from [7, 10].

We next define

α = arccos

〈
T r(A ∗ B)√

T r(A ∗A)T r(B ∗ B)
〉

(6)

If the two tensors A and B are proportional to each other, this angle is zero, while if
they were completely uncorrelated and random, the average angle would be about
90◦. In Fig. 2 we show the calculated mean angle between the modelled stress tensor
and the exact one using formula (6). We observe that the average angle is about 90◦,
demonstrating that the modelled tensor is practically not related to the exact one. We
also notice that the angle does not change so much with the resolution of the filter.
When restricted to the regions that contain most of the vorticity, the angle becomes
instead much smaller than 90◦ (see Fig. 2 right). This confirms that the coherent
structures that make up the worms are captured much better by the models. In this
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Fig. 2 Left: computed average angle between the modelled stress tensor and the exact one, using
formula (6). Right: Same as left figure but restricted to worms. The abbreviations are the same as
in Fig. 1
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Fig. 3 Left: backward scatter ε− =
〈
εSGS−|εSGS |

2

〉
. Right: forward scatter ε+ =

〈
εSGS+|εSGS |

2

〉
. The

abbreviations are the same as in Fig. 1

respect the anisotropic model behaves much better than the Germano isotropic one,
and almost as well as the resolved Leonard tensor Lij.

Finally in Fig. 3 we consider the energetics of the flow. The forward scatter ε+
and backward scatter ε−, defined as:

ε+ =
〈
εSGS + |εSGS|

2

〉
, ε− =

〈
εSGS − |εSGS|

2

〉
, εSGS =

〈
τij Sij

〉
,

are shown for different models and compared to DNS data. All the models except
Lij and A underestimate the amount of backward and forward scatter.

3 Rotating Boundary Layer

In order to highlight the properties of the SGS models in an anisotropic flow, the
results of an a priori test on the velocity field of a three dimensional boundary layer
generated on an infinite plate by a freestream rotating velocity [15] are presented
in this section. The external velocity vector has constant magnitude U0 and rotates
with angular frequency f in planes parallel to the wall as represented in Fig. 4.

This flow presents the advantage to be three dimensional and very simple at the
same time. Indeed the turbulence statistics, adimensionalized in a reference frame
rotating with the angular frequency f , depend only on the distance from the wall
and on the Reynolds number allowing the use of periodic boundary conditions in
the homogeneous parallel to the wall directions. Although its simplicity, this flow
is strongly anisotropic, making this rotating boundary layer a very convenient test
for the anisotropic turbulence models. A numerical code based on mixed finite
difference-pseudospectral discretization, kindly supplied by Passoni et al. [12], has
been used for the DNS. The simulation has been performed at a Reynolds number
Reδl = U0δl

ν
= 767 based on the freestream velocityU0 and on the viscous thickness
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Fig. 4 Scheme of the boundary layer generated by a rotating freestream velocity over an infinite
flat plate

δl = √
2ν/f corresponding to a Reynolds number based on the friction velocity

Reτ = 914. A grid with 192 × 180 × 192 cells has been adopted, corresponding
to a resolution in parallel to the wall directions δ+x = δ+z = 7 while the distance
of the first grid point from the wall is δ+y = 0.8 in wall unit. In order to eliminate
numerical errors, a sharp cut-off filter is applied in the homogeneous directions to
the DNS velocity field, while in the normal to the wall direction, where the mesh is
stretched, a high accuracy compact filter, characterised by null commutation error
with spatial derivatives, is applied in the physical space. The filtered quantities have
then been located on the DNS mesh instead of on the LES grid in order to avoid the
commutation errors occurring in finite difference discretization of derivatives [8].

In Fig. 5 (left) the SGS dissipation associated with the modelled stresses,
averaged in time and in directions parallel to the wall, is compared to the exact
one. The plot confirms that the Bardina model is poorly dissipative. The peak close
to the wall is well captured by the two anisotropic models and by the dynamic mixed
one. Far from the wall the anisotropic mixed model is a bit more dissipative while
the dynamic mixed model and the anisotropic one are a bit less, compared to the
exact stresses.

In Figs. 5 (right) and 6 (left) the mean forward and backward scatter are
represented. For these quantities the anisotropic model presents too low values
except for the too high peak close to the wall. Globally, from the energetic point
of view, the anisotropic mixed model performs better than the other models.

Observing Fig. 6 (right), where the probability density function of the energy
transfer of the models is compared to the exact one, it is evident that the anisotropic
models, in particular, the anisotropic mixed one, present a distribution similar to
that of the DNS. The large symmetric queues are representative of almost equally
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Fig. 5 Left: mean SGS dissipation 〈εSGS〉 =
〈
τijSij

〉
, where the brackets denote averaging over

horizontal planes and time. versus the distance from the wall in the rotating boundary layer [1].
Right: mean SGS forward scatter ε+ versus the distance from the wall [1]. Inside the graphics,
Bardina refers to the original dynamic model from [5], while Salvetti-Banerjee is the dynamic
mixed model from [13] and dynamic is the Germano dynamic model [7]
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Fig. 6 Left: Mean SGS backward scatter ε− versus the distance from the wall [1]. Right:
Probability distribution function for the energy transfer TSGS = − ∂

∂xj
(uiτij )− εSGS

distributed positive and negative energy transfer. On the contrary, all the other
models show a too high peak for values around zero.

From this results it can be assumed that the anisotropic mixed model well
represents the energetic behaviour of unresolved scales of motion.

4 Application to Rayleigh–Bénard Turbulent Convection

The nondimensional filtered Boussinesq system of equations reads

∂ui

∂xi
= 0
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∂ui

∂t
+ ∂

∂xj
(uiuj ) = ∂p

∂xi
− ∂τSGSij

∂xj
+ Ra

Pr
θδi3 + ∂2ui

∂xj ∂xj

∂θ

∂t
+ ∂

∂xj
(θuj ) = −

∂qSGSj

∂xj
+ 1

Pr

∂2θ

∂xj ∂xj

where u is the velocity, p the pressure and θ the temperature; the overbar represents
the filtering on the grid-scale. Ra and Pr are Rayleigh and Prandtl number.

The subgrid-scale (SGS) stress tensor

τSGSij = uiuj − uiuj

is modelled using the anisotropic approach presented above.
The SGS heat flux

qSGSi = θui − θui

is similarly modelled using a diffusivity tensor νϑir :

qSGSi = −
∑
r

νϑir
∂ϑ

∂xr

and prescribing

νϑir = �
4/3∑

α

Cθ
αaiαarα

we obtain:

Cθ
α = −

aT S
∣∣
α(

�̂4/3 −�
4/3
)∑

r arα
∂θ̂
∂xr

In Fig. 7 we evaluate the performance of the above model compared to dynamic
isotropic model [7] and Smagorinsky [14]. In left panel the vertical fluctuations
obtained using LES models at resolution 24 × 24× 31 are compared to DNS data
by R.M. Kerr [9] using a numerical grid 288 × 288 × 96. Velocity is in units of
Ra ν k/L2 (L is the height of the layer). On the right panel an a priori test is
performed on LES models using numerical results of a DNS at Ra = 4× 106.

In both panels the results show that the anisotropic model behaves far better than
the isotropic ones in the boundary layer and its vicinity, that is, in the regions where
the flow is more anisotropic.
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Fig. 7 Left: Normal fluctuating velocity component (RMS values) at Ra = 2×107. DNS: Results
of DNS by Kerr [9] A: anisotropic model; GL: isotropic dynamic model by Germano et al. [7];
Right: Correlation of εSGS between model and DNS data, as a function of height z. Smagorinsky:
original Smagorinsky model; A and GL are the same as in left panel. The long-dashed vertical
lines delimit the thermal boundary layer

5 Conclusions

A review of the tensorial dynamic eddy viscosity model and his applications to
different kinds of flows is presented here. The a priori test and the numerical simu-
lation of different flows such as 3D turbulent boundary layer and Rayleigh–Bénard
convection demonstrated good performances of the model in the reproduction of
anisotropicity of the turbulence and energetic aspects. The tensorial dynamic eddy
viscosity represents a general approach applicable to model any filtered moments.
Indeed the extension to model SGS terms in the energy equations for compressible
flows [3] presented very good performances too. The versatility and robustness
of the model are also demonstrated by its use in different numerical approach
with polynomial adaptivity [4]. Finally another variation of tensorial eddy viscosity
model recently proposed [6] proves the fruitfulness of this approach.
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Abstract A huge amount of papers investigated, over more than 65 years, the
Fermi–Pasta–Ulam problem. One of the leading ideas, present already in the early
literature, is that the unexpected regular behavior observed by the authors, quite
different from the expected ergodicity, could be explained by the presence of a close
hidden nonlinear integrable dynamics. This was initially searched among nonlinear
wave equations, but rather soon, after the discovery of the integrability of the Toda
model, it was progressively understood that Toda provides the natural integrable
approximation to FPU. The aim of this paper is to provide a short updated review of
the relation between the FPU dynamics and the Toda dynamics. Updated means it
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1 Introduction

In 1955 Fermi, Pasta, and Ulam wrote a paper [1] which was destined to have a deep
influence in different branches of research.

– It started Molecular Dynamics (more generally, numerical experiments on
dynamical systems), namely investigating the statistical properties of a system
by numerically solving its microscopic equations of motion.

– It raised “elementary” questions in the dynamical foundations of Statistical
Mechanics, which still are not clearly answered.

– It motivated a relevant branch of the theory of nonlinear oscillations, namely
modern theory of nonlinear wave equations (Boussinesq, KdV. . . ), and more
generally the study of nonlinear integrability for systems with many degrees of
freedom.

Hundreds of papers have been devoted to the subject, with a great variety of
theoretical and numerical approaches, still far from merging in a unitary clear view.1

The aim of this paper is to focus on one of the main ideas, namely that the
reference integrable dynamics for FPU is Toda dynamics [4], nonlinear and highly
nontrivial. This view was suggested already in 1974 in [5], one of the three
simultaneous papers where integrability of the Toda model was proved [5–7]. The
perspective was reconsidered and widely developed in 1982 [8], but nevertheless
not much exploited in the later literature, and emphasized again only recently, in a
few papers; among them [9–14].

We aim to show that viewing FPU as a perturbed Toda model provides a unitary
perspective, which can possibly give order to the complex phenomenology of FPU.
We refer here to the standard, generic case of the so-called α (also called α + β)
FPU model. We shall not discuss instead the β-model, which is not at all close to
Toda nor we shall enter extensions to dimension two and three, although physically
very important (see in particular the papers by Carati and Galgani and by Gangemi
in this volume).

The paper is addressed, ideally, to the wide community of researchers feeling The
legacy of Carlo Cercignani, joined together in his memory and contributing to this
Conference in his honor. Carlo was indeed very interested in FPU (see [15, 16] and
the comments in the paper by Carati and Galgani in this volume). Likely, however,
some of us are not very familiar with FPU, and so, in the remaining part of this
Introduction, a very short tentative introduction to FPU is provided.

After that, Sects. 2 and 3 are devoted, respectively, to the role of Toda dynamics in
the long-time approach to statistical equilibrium and to the mechanism of formation
of the so-called FPU state, that is the first, crucial part of the FPU dynamics, where
the underlying integrable Toda dynamics is particularly transparent. Section 3 also
includes new results.

1 See, for example, the collections of papers [2, 3], appeared in occasion of the 50th anniversary of
FPU.
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1.1 FPU in a Nutshell

The specific problem Fermi, Pasta, and Ulam confronted with, is the problem of
energy sharing in weakly nonlinear chains of oscillators. The Hamiltonian has the
form

H(p, q) = 1

2

N∑
i=1

p2
i +

N∑
i=0

V (qi+1 − qi) , (1)

V being some nearest-neighbors potential with a minimum in zero,

V (r) = r2

2
+ α

r3

3
+ β

r4

4
+ · · · , β > 0 . (2)

In (1) the boundary conditions are still not specified; they are generally either fixed
ends, i.e., q0 = qN+1 = 0, like in the original FPU paper, or periodic, qN = q0,
with not much difference.

The value of α, if different from zero, is irrelevant, since a trivial rescaling reports
it to any prefixed value; the effective parameters determining the dynamics are
indeed |α|√ε, ε = E/N being the specific energy, and then β/α2, . . . The choice
of α actually fixes the energy scale, as well as the scale of β and of possibly further
coefficients in (2). Throughout the paper we shall use α = 1.

Fermi, Pasta, and Ulam aimed to investigate how the system reaches the
statistical equilibrium, identified with the equipartition of energy among normal
modes, if started very far from equilibrium, the whole energy being given to only
one or two long-wavelength normal modes. This is indeed part of the general
problem of the energy flowing from macroscopic to microscopic scale, so crucial
in quite different fields of physics. With great surprise they found—within the time
scale accessible to their computer—no equilibrium at all: the system apparently
reached a stationary state, different both from the initial state and from equipartition,
in which only a few normal modes significantly share energy, and dynamics looks
quasi-periodic with long time almost exact recurrencies.

Consider, to be definite, the case of fixed ends. Normal modes are then

Qk =
√

2
N+1

N∑
i=1

qi sin
πki

N + 1
, Pk =

√
2

N+1

N∑
i=1

pi sin
πki

N + 1
;

their energies Ek and frequencies ωk are

Ek(Pk,Qk) = 1
2 (P

2
k + ω2

kQ
2
k) , ωk = 2 sin

πk

2(N + 1)
,
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and the Hamiltonian in such coordinates assumes the form

H̃ (P,Q) =
N∑
k=1

Ek(Pk,Qk)+ αU3(Q)+ βU4(Q)+ · · · ,

Uj being a homogeneous polynomial of degree j . For given initial data, let

Ek(T ) = 1

T

∫ T

0
Ek(P (t),Q(t)) dt ;

statistical mechanics is based on the ergodic hypothesis, which implies

Ek(T )
T→∞−→ 〈Ek〉 
 ε ,

〈Ek〉 denoting the microcanonical phase average. Figures 1 and 2 summarize the
heart of the FPU results. They both refer to a model with N = 32 and an initial
datum in which only mode k = 1 is excited, at small energy ε = 4× 10−5. Figure 1
shows Ek(T ) as function of T , for the first few modes. Quite evidently, there is
no indication at all of any tendency to energy equipartition: on the contrary, an
asymptotic state is apparently reached, in which only a few modes, and not at the
same extent, are involved in energy sharing. Figure 2 reports, for the same dynamics,
the instantaneous values Ek(t) as functions of t: panel a (left) shows, on a short time
scale, the behavior of modes k = 1, 2, 3, while panel b (right) reports only mode k =
1, on a longer time scale. The presence of long time recurrencies is quite impressive,
the dynamics appearing quasi-periodic and thus possibly integrable. Such longer
time recurrencies have been observed a few years after FPU, in [17].

Fig. 1 The time average Ek(T ) as a function of T , for the first few modes. FPU model with
N = 32, α = 1, β = 2; specific energy ε = 4× 10−5, initial excitation of mode k = 1
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Fig. 2 The instantaneous values Ek(t) as functions of t , in the same conditions as Fig. 1. Left:
modes k = 1, 2, 3; right: only mode k = 1, for a longer time scale

1.2 The Search for an Underlying Integrable Dynamics

The suspect the dynamics is close to integrable, in the conditions studied by the
authors—that is when only long-wave modes are excited, and so the discrete chain
appears almost continuous—prompted the idea to approximate the FPU model with
a convenient nonlinear wave equation.

The first attempt in this direction, going back to 1965, is [18], a fundamental
paper which is at the basis of modern theory of nonlinear integrable wave equations.
FPU appears there as a main motivation to study again, after years, the KdV equation

ut = α√
2
uux + 1

24uxxx .

The progress in the field is then rapid: a couple of years later the method of inverse
scattering [19] and Lax pairs [20] are introduced, and the presence of infinitely many
constants of motion is established [21]. Finally, in 1971 [22], KdV is shown to be
an infinite dimensional completely integrable Hamiltonian system.2

In parallel with the research on the integrability, numerical work clearly estab-
lished that FPU is not integrable: it is enough to raise the energy, to recover the
expected normal statistical behavior [24]. This is clear, for example, in Fig. 3, which
differs from Fig. 1 only for the larger energy ε = 10−2. It is not easy to reconcile
the two views; the suggestion in [23], spontaneous in that moment, was that the lack
of integrability of FPU is possibly due to the discretization.

2 In fact, the nonlinear wave equation which is more immediately related to FPU, if one searches
for a continuum limit in which the first nonlinear and the first dispersive terms beyond the wave
equation are kept, is the Boussinesq equation; a possible form is utt = uxx +2αuxuxx + 1

12uxxxx .
From Boussinesq it is possible to deduce, in a convenient limit, KdV, but the Boussinesq equation
itself was soon proved, in 1973, to be integrable [23]. In [23] the connection between FPU and
Boussinesq is particularly emphasized.
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Fig. 3 Same as Fig. 1, at larger ε = 10−2; all modes (logarithmic vertical axis, too)

In the same years, statistical physicists become interested in the Toda model [4].
As is well known, this is a Hamiltonian system with the same form as (1), V being
the Toda exponential potential

VT (r) = 1

λ2 (e
λr − 1− λr) .

In 1974 the Toda model was proved to be completely integrable, remarkably in three
independent papers [5–7]. Reference [5] is particularly important for FPU, because
the connection with the FPU problem is there stressed. Indeed, for λ = 2α it is

VT (r) = 1
2 r

2 + 1
3αr

3 + 1
4βT r

4 + 1
5γT r

5 + · · · , βT = 2
3α

2 , γT = 1
3α

3 , . . .

so the model has a third order contact with FPU and provides an integrable
approximation better than the harmonic chain. In [5] the slow stochastization of
FPU is not anymore attributed to the discretization with respect to an integrable
wave equation, but to the small difference, with dominating term 1

4 (β − βT )r
4,

between FPU and Toda. The reference to Toda as the best integrable approximation
for FPU is a considerable change of paradigm in the FPU problem. For example,
the distinction between long and short-wave initial excitation ceases to be important,
although of course wave equations, definitely easier than a discrete model, remain
useful in situations where only long waves are present.

The connection between FPU and Toda was proposed again, and emphasized,
in 1982 [8]. In this paper, on the one hand, a striking evidence is provided that the
dynamics of FPU, at low energy, is hardly distinguishable from the Toda dynamics;
on the other hand, the integrability of Toda is studied very constructively, and an
algorithm is proposed to compute numerically the Toda actions. We shall come
back to this point in Sect. 3. The striking similarity of the FPU and Toda dynamics
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Fig. 4 Same as Fig. 2, for Toda rather than for FPU

is evident in Fig. 4, produced under the same condition as Fig. 2 but for the Toda
model.

1.3 Different Phenomena at Different Time Scales

Simultaneously with the understanding of the strong connection between FPU and
Toda in [8], and completely independently, a new idea entered the literature [25, 26],
sometimes referred to as the “two time scales scenario.” The suggestion is that at
least for large N the formation of the FPU state, in which energy is shared only by a
small fraction of modes as in Figs. 1 and 2, is not the end of the story, and eventually,
in a possibly much larger time scale, statistical equilibrium is always reached: more
or less, as it happens in metastable phenomena.

To illustrate such a scenario, a good way is to look at the energy profile, i.e.,
the distribution of energy among normal modes, at different times; raising N is
also convenient. Figure 5a shows the result for N = 1023 and ε = 10−4; energy
was initially equidistributed among the first 10% of normal modes, with random
phases. The figure shows3 Ek(T ) vs. k/N , at selected times, marked in the figure,
in geometric progression. The initial profile is the black rectangle. It can be seen
that already at T 
 103, after a transient in which the initial discontinuity is
still present, a well-defined regular profile is formed, in which only some low
frequency modes effectively take part to the energy sharing, the energies of the
remaining ones decaying exponentially with k/N . The energy profile keeps its
form nearly unchanged for a rather large time scale, T 
 105 or 106, definitely
larger than the time needed to form it. Afterwards, on a much larger time scale, the
dynamics slowly evolves towards energy equipartition, the high-frequency modes

3 To be precise: time averages are computed here in a running window of width proportional to T ,
namely 2

3T ≤ t ≤ T (averages from the beginning are a little lazy), and moreover, to clean the
curves, an average over 24 different choices of the phases is introduced.
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being progressively involved into the energy-sharing game; in the above conditions,
equipartition requires T 
 1010.

The natural conjecture, at this point (natural, but explicit in the literature only
after [9], in 2011), is that the first time scale is the one in which the system
behaves similarly to Toda, while on larger times the difference between the two
dynamics becomes evident. To confirm such an interpretation, we can repeat the
above computation for the Toda model. The result is in Fig. 5b. Quite clearly, exactly
the same profile is formed, but there is no further evolution to anything different: in
Toda, only the first time scale does exist and is perpetual.

We can rephrase such a view in a better language. Toda is integrable and so,
for any initial datum, the motion is confined to a torus of dimension N : actions
stay constant, while angles advance linearly, and generically fill the torus. Time
averages on such a motion are very partial averages in the phase space, namely
averages only on the angles and not the actions. For Toda, this is all. For FPU,
the lack of integrability results in an additional slow drift transversal to tori, which
asymptotically (according to Fig. 5) results in a diffusion throughout the phase
space, and makes possible statistical equilibrium. Figure 6 shows very symbolically
the situation.

Both phenomena, that is the filling of the Toda torus in the dynamics common
to FPU and Toda, and the diffusion across tori possibly leading to normal statistical
equilibrium, are worth to be investigated. We shall start with the latter, devoting to
it the next Sect. 2, discussing instead the former in Sect. 3.

Fig. 6 Symbolically illustrating FPU as a perturbed Toda system
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2 The Long-Time Motion Across Toda Tori

In the previous section we focused the attention on very special initial data, in which
only a few normal modes share energy. The corresponding region of the phase space
is extremely small and atypical. Measuring the rate of approach to equilibrium in
such an exceptional situation can be done, see, for example, [9], but it is certainly
more interesting to consider generic initial data, in which the energy is distributed
randomly among normal modes with microcanonical distribution, and to study the
drift of FPU trajectories across Toda tori in such a generic situation.

Such a study has been performed in [10], looking at the correlation time of the
Toda constants of motion in the FPU dynamics. The Toda constants of motion,
for a system with N degrees of freedom and fixed ends as we are dealing with,
can be explicitly written by making reference to a larger system with 2(N + 1)
degrees of freedom and periodic boundary conditions, restricting the attention to
skew-symmetric states such that

qN+1+i = −qN+1−i , pN+1+i = −pN+1−i , i = 0, . . . , N , (3)

which are easily seen to form an invariant submanifold. In turn, the constants
of motion of the periodic chain are the eigenvalues of the Lax matrix L(p, q)

associated with the systems, or equivalently (much easier), the traces of the powers
of L; see Sect. 3.2 for the expression of L. In the submanifold (3), precisely N

constants of motion

Fs(p, q) = TrL2s(p, q) , s = 1, . . . , N ,

are independent and nontrivial, the odd powers ofL having vanishing trace. F1 turns
out to be the total energy of the system.

For given initial data, denote shortly Fs(t) for Fs(p(t), q(t)), and let 〈 . 〉 denote
microcanonical averaging on the initial data. The correlation function Gs of Fs is
defined as

Gs (t) = 〈Fs(t) Fs(0)〉 − 〈Fs 〉2
〈Fs(0)2〉 − 〈Fs(0) 〉2 ; (4)

the decay time of such functions provides the desired time scale of the motion
transversal to tori, in a generic situation. It is worthwhile to remark that looking
at the decay of correlation functions means looking at mixing, and this is fully in
the spirit of the original FPU paper.4 Practically, the microcanonical distribution

4 From [1]: “Instead of a gradual increase of all the higher modes, the energy is exchanged, essen-
tially, among only a certain few. It is, therefore, very hard to observe the rate of ‘thermalization’ or
mixing in our problem, and this was the initial purpose of the calculation.” For a previous study of
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in (4) is approximated by a Gaussian distribution of the normal modes coordinates
Pk,Qk , rescaled so as to fit the desired energy.

Figure 7a shows the decay of Gs(t), s = 2, . . . , 12, for FPU with N = 1023,
β = 2, ε = 8 × 10−4. Quite clearly, curves accumulate on a line G∗(t), which in
the semi-log scale of the figure corresponds to an exponential

G∗(t) = e−t/t∗ ;

the inverse slope t∗, to be thought of as depending, in principle, on N , β, and ε,
provides the time scale of the motion transversal to tori we are looking at, ideally the
mixing time that Fermi and coworkers aimed to observe. A similar accumulation is
observed at different N and ε, G12 always appearing as a reasonable approximation
of the limit curve G∗. In the following, G∗ will be identified with G12.

Figure 7b reports G∗(t) as function of t at fixed β = 2 and ε = 2 × 103, for
differentN between 127 and 2047. The stability in N is quite evident. To investigate
the dependence on β, computations have been repeated for fixed N = 511 and
ε = 2× 10−3, at different values of �β = β − βT in the range−1/3 ≤ �β ≤ 8/3.
The result is in Fig. 8: indeed Fig. 8a reports the lines as they are, showing a rather
dramatic dependence of the slope of G∗(t) on �β (although, remarkably, lines are
identical for �β = ±1/3); Fig. 8b shows the same curves, reported, however, as
functions of the rescaled time

t ′ = 16
9 �β

−2 t

(no rescaling for β = 2, �β = 4/3). Curves, although roughly, collapse into one,
thus indicating a rough growth of t∗ as �β−2. In a very similar way, one observes
an ε-dependence of t∗ which approximately follows the power law ε−5/2, see [10]
for details. So, the overall behavior of the correlation time looks

t∗ ∼ (β − βT )
−2ε−5/2 .

Unfortunately, there is no theory at all in support of such a law. From the point of
view we are exploiting in this paper, the most important point is the dependence of
t∗ on the difference β−βT , and thus, so to speak, on the distance between FPU and
Toda.5 It is worthwhile to mention that the analysis made in [9] of the time scale
of the phenomenon illustrated in Fig. 5a gives exactly the same dependence on �β,
although with a slightly different dependence on ε, namely with exponent 9/4 in
place of 5/2 (a slightly faster phenomenon, for small ε).

the decay properties of the correlation functions of normal modes energies, done in the same spirit
and actually inspiring [10], see [27].
5 The divergence of t∗ for �β → 0 should not be taken literally: for vanishing β, FPU has a higher
order contact with Toda, but the difference between the two Hamiltonians does not vanish, and a
crossover to a different dependence of t∗ on ε, faster for small ε, is expected; see [9] for a very
similar situation.
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3 Investigating the FPU State

The formation of the FPU state, in the first part of the FPU dynamics common to
FPU and Toda, is the process of filling a Toda torus. Should it be possible to observe
it in the Toda action-angle variables (I, ϕ), it would appear completely trivial, i.e.,

(I0, ϕ0) �→ (I0, ϕ0 + ω(I0)t) , (5)

as for any integrable system. Observed instead in the normal modes coordinates,
it appears as a progressive partial sharing of energy among some of the modes, as
illustrated in Figs. 1, 2, 3, 4, and 5 Understanding the formation and the properties
of the FPU state means, ultimately, understanding the relation between the Toda
action-angle coordinates, with their simple behavior (5), and the normal modes
coordinates (P,Q), or equivalently, the harmonic action-angle variables (I, θ),
related to (P,Q) by

Pk =
√

2ωkIk cos θk , Qk =
√

2Ik/ωk sin θk , Ek = ωkIk .

Before entering such a delicate question, let us examine, in the next subsection,
some important scaling properties of the FPU state, as described in the literature.

3.1 Scalings Laws from the Dynamics

Figure 9 refers to Toda and shows a process similar to the one in Fig. 5b. Figure 9a
differs from Fig. 5b only for the higher energy ε = 2.5 × 10−4; the profiles are
similar, but for higher energy the width of the spectrum gets larger, i.e., the FPU
state includes a larger number of modes. In Fig. 9b, in addition, the initial state (the
black rectangle) is narrower; quite clearly, the asymptotic situation is identical to
the previous one, but the process of formation of the FPU state gets slower.

To be quantitative, we need to assign to any profile of the spectrum an “effective
number” M of excited modes. This can be done in a rather standard way: if Ek is
the energy spectrum at a certain time, let

h = −
N∑
k=1

pk logpk , pk = Ek∑
j Ej

, (6)

denote the so-called spectral entropy, 0 ≤ h ≤ logN ; then

M = eh , 1 ≤ M ≤ N . (7)

In support to the definition, it is worthwhile to observe that in a situation in which
exactly M modes equally share energy, while the others are at rest, the definition
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Fig. 10 The growth of w(T ), same conditions as Fig. 9b

gives precisely M . We shall call width of a state the ratio w = M/N . Figure 10
shows, in the situation of Fig. 9b, the growth of w in time, from the initial value
w0 = 0.025 to the asymptotic value w∞ 
 0.21.

For FPU-like initial states, i.e., with the energy shared initially by low frequency
modes, the width w of the spectrum is a function, in principle, of t , N , ε and the
initial width w0. Figure 10 shows a process of the form

w(t,N, ε,w0)
t→∞−→ w∞(N, ε,w0) .

In several papers, w(t,N, ε,w0) has been observed to follow some elementary
scaling laws, or homogeneity relations, which are well established numerically and
also partially understood theoretically, although at a very heuristic level.

The first and better established scaling law [28–30] concerns the asymptotic
width w∞, and states that if w0 is sufficiently small, and N sufficiently large, then
w∞ is independent of both N and w0, and it is

w∞ ∼ ε1/4 . (8)

A more systematic investigation of the scaling laws satisfied by w(t,N, ε,w0) can
be found in [31] for FPU, and in [14] for Toda, with identical results. The width w is
there shown to satisfy three homogeneity relations, which reduce the variables from
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four to only one. The resulting scaling law depends on whether the phases θ0
k of the

initially excited modes are chosen randomly or are coherent.

– For random initial phases, the law is

w(t,N, ε,w0) = ε1/4 G(ε3/8w
3/2
0 t) , (9)

G being a suitable function of a single variable, with a sigmoid profile as in
Fig. 10.6 This holds also for w0 very small, including the case of a fixed small
number of excited modes; in such a case the assumption of random initial phases
is obviously meaningless and in fact unnecessary.

– Instead for coherent initial phases, for example, equal to each other or following
some easy pattern (see [14, 31] for details), then the total energy E = Nε rather
than the specific energy is relevant, and (9) is replaced by

w(t,N, ε,w0) = E1/4w
1/4
0 G′(E3/8w

15/8
0 t) . (10)

3.2 Scaling Laws from Toda Actions

In principle, should one know the transformation from the Toda action angle vari-
ables (I, ϕ) to the harmonic variables (I, θ), and conversely, one could understand
everything according to the scheme

(I 0, θ0) �→ (I0, ϕ0) �→ (I0, ϕ(t)) �→ (I (t), θ(t)) . (11)

Practically, in spite of the quite considerable theoretical progress [32–36], the
relation between the Toda and the harmonic variables is not really understood, other
than in the regime, very far from statistical mechanics,

ε � N−4 .

Numerically the situation is hard as well, but something can be done. Indeed, as
already mentioned, there exists an algorithm to compute the Toda actions Ik in any
configuration of the chain [8]. This is a little part of (11), but sufficient to support
an “elementary” conjecture concerning the FPU state, namely:

In the FPU state, the number M of Toda actions which are substantially different
from zero, that is the effective dimensionality of the Toda torus, scales as Nε1/4.

6 The time scale for the formation of the state has been first studied in [29], in the particular (but
important) case w0 ∼ ε1/4. The result t ∼ ε−3/4 there reported is coherent with (9).
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M can be defined similarly to M , namely via (6) and (7), using, however, the Toda
equivalent energy Ek = ωkIk in place of Ek . The Ek’s and M are constant in
time, and can be computed at any time, including the initial state. This means The
scaling laws characterizing the FPU state are contained in the initial state, and stay
in the nontrivial correspondence between harmonic actions and Toda actions. This
is a somehow innovative perspective, in which dynamics (integration of Hamilton
equations) does not play a role.

According to (9) and (10), the conjecture is expected to hold for states in
which one or a few harmonic actions are different from zero, or also a number
proportional to N , with, however, random phases; it is instead expected to fail
for coherent phases. This is precisely what we shall check in the next paragraphs
A and B, devoted, respectively, to states including a single travelling wave and
to states including a number of waves proportional to N , with either random or
coherent phases. Concerning the algorithm to compute the actions, a quick account
is provided in paragraph C.

A. States with a Single Travelling Wave Here we restrict the attention to FPU-like
initial conditions, precisely to states including a single travelling wave with k = 1
(a preliminary account of such results, limited to smaller N , can be found in [14]).
Figure 11a shows M vs. ε, in log-log scale, for different N ranging from 32 to
32, 768. The computed slopes, reported in the figure, indicate with great evidence
that, for large N , M is indeed proportional to ε1/4. The proportionality to N could
be similarly checked, but the best way to check the conjecture is to directly plot
M vs. Nε1/4: if we do, see Fig. 11b, curves for different N exactly superimpose,
and for large N the computed slope, see the data in the figure, is virtually 1. (One
might observe that N − 1, rather than N , enters the abscissa of Fig. 11b. Indeed, the
barycenter being at rest, the number of degrees of freedom is N − 1; the difference
is very minor, but is visible at small N , and slightly improves the figure.)

B. States with Many Travelling Waves We studied FPU-like states with energy
equidistributed among a number of waves proportional to N , namely travelling
waves with 0 < k/N ≤ w0, small w0. The phases of the waves are chosen
randomly; more precisely, before computing M, the Toda spectrum Ek is averaged
on several different random extractions of the phases, actually 128 of them.

Results here are encouraging, although not as satisfying as in the above case of
single wave. Figure 12 shows M/(N−1) vs. ε, for w0 = 0.025. The expected slope
was 1/4, the computed slope, for large N , is 0.24. Preliminary computations show
that by decreasing w0 the slope gets closer to 1/4, but a systematic study (which
would require larger N) has not yet been done.

Quite remarkably, however, if we pass to coherent phases θk, results drastically
change, reflecting the difference between (10) and (9). Indeed, the independence of
M/N on N , strongly evident in the superposition of curves in Fig. 12, gets lost;
see Fig. 13a, where M/N is plotted vs. ε for different N (also observe the crazy
behavior at large N). The choice of phases is here θk = kπ/2. The stability in N

is, however, roughly recovered if, according to (10), M/N is plotted vs. the total
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Fig. 12 The effective width M/N of the Toda torus, when energy is equidistributed among
travelling waves with 0 < k/N ≤ w0 = 0.025 and phases are random. Average on 128 random
extractions of the phases

energy E; see Fig. 13b. Changing the way coherent phases are chosen, for example,
equal to each other, or following a different “easy” pattern, changes the details of
the curves, but not the phenomenon.

C. On the Algorithm to Compute Toda Actions The algorithm to compute Toda
actions is essentially as follows:

– Consider a periodic Toda chain with N particles, and let

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 a1 aN

a1 b2 a2

a2 b3 a3
. . .

bN−1 aN−1

aN aN−1 bN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
ai = eλ(qi+1−qi )/2

bi = −λpi

be the associated Lax matrix (tridiagonal periodic). Let P(x) = det(xI − L) be
its characteristic polynomial, and �(x) = P(x)+2 be the so-called discriminant.
When the system is at rest, � oscillates between−2 and 2 [8], as in Fig. 14a; for
positive energies instead the shape looks as in Fig. 14b, blue curve, with “gaps,”
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Fig. 14 Left: the discriminant �(x) for N = 16, chain at rest. Right: the discriminant (blue) and
the arcs ±(2+ ρ) (red), for ε = 10−2, in a typical situation

that is intervals where maxima and minima exceed ±2. For clarity, the figure
refers to quite smallN = 16 (observe the number of extremals is preciselyN−1).

– Let gk be the k-th gap. The recipe to compute the actions is:

Ik = 1

π

∫
gk

ρ(x) dx , ρ(x) = acosh
|�(x)|

2
.

Red arcs in Fig. 14b are the curves ±(2+ ρ(x)); the actions are precisely, up to
a trivial factor, the areas between such curves and the lines±2. Notice that if |�|
is large, then ρ 
 log |�|.

Practically, applying the algorithm is not as simple. A main difficulty is that for large
N , unbelievably large numbers enter the game. Indeed, assume tentatively that Ik

is not far from the corresponding linear action Ik , which in turn, when energy is
shared only by a few modes, is of the order E/ωk . If k is small, then ωk ∼ N−1,
so that Ik is of order N , and correspondingly the peaks of �(x) are of the order of
the exponential of N . Large numbers are in a sense virtual, since then ρk and Ik are
not as large, but they unavoidably enter the algorithm. Such a singularity for large
N also reflects the irreducible difference between Toda actions and linear actions,
unless, as in [34–36], ε � N−4 is assumed. How to proceed numerically in such
conditions is a little technical, and we haven’t had the possibility to further discuss
the question here.
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3.3 A Conclusion?

The only conclusion we feel confident to draw is that considering FPU as a perturbed
Toda model, rather than a perturbed linear model as is more commonly done, is very
fruitful and allows to achieve a unitary view of the FPU behavior. This includes
both the first time scale, with the formation of a state common to FPU and Toda,
trajectories staying (almost) confined to a torus, and the second time scale, where
diffusion across tori becomes important. The main point, highly non obvious, is that
FPU appears to stay close to Toda uniformly in N ; on the contrary, both FPU and
Toda look distant from the harmonic chain, no matter how small is ε, if Nε1/4 is
not small.

Investigating the relation between normal modes, or harmonic actions, and Toda
nonlinear actions, seems to us particularly important: indeed, on the one hand,
normal modes are the elementary bricks of statistical mechanics, which play a key
role in the equipartition theorem, and for ergodic-like systems are known to have
a simple statistical behavior; on the other hand, Toda actions are very essential
elements of the dynamics. As is not easy, the two points of view should be kept
together. We are making some effort to continue this investigation that we consider
promising.
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Half-Space Problems for the Boltzmann
Equation of Multicomponent Mixtures

Niclas Bernhoff

Abstract Half-space problems in the kinetic theory of gases are of great importance
in the study of the asymptotic behavior of solutions of boundary value problems for
the Boltzmann equation for small Knudsen numbers. They provide the boundary
conditions for the fluid-dynamic-type equations and Knudsen-layer corrections
to the solution of the fluid-dynamic-type equations in a neighborhood of the
boundary. These problems are well studied for single species, including some
important contributions by Carlo Cercignani, and it is well-known that the number
of additional conditions needed to be imposed depends on different regimes for the
Mach number (corresponding to subsonic/supersonic evaporation/condensation).
However, the case of mixtures is not as well studied in the literature. We will address
some extensions of the results for half-space problems for single species to the case
of multicomponent mixtures.

1 Kinetic Half-Space Problem for Mixtures

Half-space problems in the kinetic theory of gases are of great importance in the
study of the asymptotic behavior of solutions of boundary value problems for
the Boltzmann equation for small Knudsen numbers [26, 27]. These problems are
well studied for monatomic single species [4], including seminal contributions by
Carlo Cercignani [20]. However, the case of mixtures is not as well studied in
the literature; among the studies for binary mixtures we mention Ref. [1] for the
linearized problem, Ref. [3] for the weakly nonlinear case (with equal masses), and
Ref. [7] for discrete velocity models. This chapter will address some extensions of
results for half-space problems for single species to the case of multicomponent
mixtures. Linearized half-space problems will be reviewed for discrete velocity
models in Sect. 2 and for the full Boltzmann equation, based on a recent study of an
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abstractly formulated linear half-space problem [11], in Sect. 3, after an introduction
in this section.

Consider a mixture of s monatomic species α1, ..., αs , with masses mα1, ...,mαs ,
respectively (s = 1 corresponds to the case of a monatomic single species). The dis-
tribution functions are of the form F = (Fα1 , ..., Fαs

)
, where the distribution of the

molecules of species αi is given by Fαi = Fαi (t, x, v), with time t ∈ R+, position
x = (x, y, z) ∈ R

3, and molecular velocity v = (vx, vy, vz) ∈ R

3. The components
of the equilibrium, or Maxwellian, distributions M = (Mα1 , ...,Mαs

)
are Gaussians

Mαi = nαi

( mαi

2πT

)3/2
e−mαi

|v−u|2/(2T ),

where
{
nα1, ..., nαs

} ⊂ R+, u = (
ux, uy, uz

) ∈ R

3, and T ∈ R+ relate to the
number densities of the species α1, ..., αs , the bulk velocity, and the temperature,
respectively.

The steady half-space problem for the (vector) Boltzmann equation for a mixture
in a slab symmetry, cf., e.g., [4, 20, 26, 27] for single species, reads

⎧⎪⎪⎨
⎪⎪⎩
vx
∂F

∂x
= Q(F,F) , F = F (x, v) , x ∈ R+,

F (0, v) =MB (v) for vx > 0,
F → M∞ as x →∞.

(1)

The system (1) describes the evolution of a distribution function F = F (x, v)
for x > 0 approaching equilibrium—in form of a Maxwellian distribution
M∞ =M∞ (n,u, T ) =M∞

((
nα1, ..., nαs

)
, (u, 0, 0) , T

)
—at the far end, knowing

the outgoing distribution MB = MB (v) at an interface, x = 0. Typically, the
distributionMB = MB (v) is a half-Maxwellian. More general boundary conditions,
where the outgoing distribution depends on the incoming distribution, can also be
considered at the interface x = 0 [21, 22, 26, 27].

The components of the (vector) collision operator Q = (Qα1, ...,Qαs

)
read

Qαi = Qαi (F, F ) =
s∑

j=1

Q
αj
αi (Fαi , Fαj ),

where (omitting the x-dependence of F ) [21, 22]

Q
αj
αi (Fαi , Fαj ) =

∫∫

R3×S2

σij |v− v∗|
(
Fαi

(
v′
)
Fαj

(
v′∗
)− Fαi (v) Fαj (v∗)

)
dv∗dω.
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Here {v, v∗} and
{
v′, v′∗

}
denote pre- and post-collisional velocities (or, vice versa),

respectively. For hard spheres the cross sections σij = σji are constant, and

⎧⎪⎪⎨
⎪⎪⎩

v′ = mαiv+mαj v∗
mαi +mαj

+ mαi

mαi +mαj

|v− v∗|ω

v′∗ =
mαiv+mαj v∗
mαi +mαj

− mαi

mαi +mαj

|v− v∗|ω
, ω ∈ S2.

The set of collision invariants is spanned by {e1, ..., es ,mvx,mvy,mvz,m |v|2},
where m = (mα1, ...,mαs

)
and {e1, ..., es} is the standard basis of Rs , due to mass

(of each species), momentum, and kinetic energy conservation.
Due to Galilean invariance, a shift, v �→ v+ u, in the velocity space ends up in

⎧⎪⎪⎨
⎪⎪⎩
(vx + u)

∂F̃

∂x
= Q(F̃ , F̃ ),

F̃ (0, v) = MB (v+ u) for vx + u > 0,
F̃ → M as x →∞,

(2)

where F̃ (x, v) = F (x, v+ u) and M = M∞ (n, 0, T ) is a non-drifting (absolute)
Maxwellian. Linearizing around the Maxwellian M = M∞ (n, 0, T ) by denoting
F̃ = M +√Mf results, neglecting quadratic terms, in

⎧⎪⎪⎨
⎪⎪⎩
(vx + u)

∂f

∂x
+ Lf = 0, f = f (x, v) , x ∈ R+,

f (0, v) = M̃B (v) for vx + u > 0,
f → 0 as x →∞,

(3)

where M̃Bαi (v) = M
−1/2
αi (v)

(
MBαi (v+ u)−Mαi (v)

)
and

(Lf )αi =
∫∫

R3×S2

σij |v− v∗|M1/2
αj

(v∗)
(
M1/2

αi
(v) fαj (x, v∗)+M1/2

αj
(v∗) fαi (x, v)

−M1/2
αi

(
v′
)
fαj

(
x, v′∗

)−M1/2
αj

(
v′∗
)
fαi
(
x, v′

))
dv∗dω.

Consider the real Hilbert space h : = (L2 (dv)
)s

, with inner product

(f | g) =
s∑

i=1

∫
R3

fαi gαi dv, f, g ∈
(
L2 (dv)

)s
.

The linearized collision operator L (for hard spheres) is a nonnegative,
self-adjoint Fredholm operator [12], see also [1, 18, 19, 23], with the domain
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D(L) = (L2 ((1+ |v|) dv)
)s

and the kernel

kerL = span
{√

Mα1e1, ...,
√
Mαs es,

√
Mvx,

√
Mvy,

√
Mvz,

√
M |v|2

}
,

where M = (
m2
α1
Mα1, ...,m

2
αs
Mαs

)
and {e1, ..., es} is the standard basis of

R

s . Furthermore, the linearized collision operator L can be split into a positive
multiplication operator ν = ν(|v|) = diag

(
να1(|v|), ..., ναs (|v|)

)
minus a compact

operatorK on h [12] (cf. [18]; while noting that the condition on the collision kernel
stated in there, rules out the hard sphere models):

(Lf ) (v) = ν(|v|)f (v)−K(f )(v), f ∈ D(L), with

ν− (1+ |v|) ≤ ναi (|v|) ≤ ν+ (1+ |v|) for all i ∈ {1, ..., s} and v ∈ R

3,

for some constants 0 < ν− < ν+ and for some real number 0 < λ < 1

(f |Lf ) ≥ λ (f | ν(|v|)f ) ≥ λν− (f | (1+ |v|) f ) .

2 Discrete Velocity Models for Mixtures

Consider a mixture of s different species α1, ..., αs with masses mα1, ...,mαs . Fix for
each species αi a set of velocities V αi = {vαi1 , ..., vαiNαi

} ⊂ R

3 and assign the label

αi to each element in V αi . The construction results in a set of N = Nα1 + ...+Nαs

unique pairs (velocities may be repeated for different species) [9, 14]

{(vα1
1 , α1

)
, . . . , (vα1

Nα1
, α1), . . . ,

(
vαs1 , αs

)
, . . . , (vαsNαs

, αs)}
=: {(v1, α(1)) , . . . , (vN, α(N))}.

The planar stationary system, corresponding to system (2), for the discrete
Boltzmann equation reads

(vix + u)
dFi

dx
= Qi (F, F ) , x ∈ R+, i ∈ {1, ..., N} ,

with vi =
(
vix, viy , viz

)
, i ∈ {1, ..., N}, and F = F(x) = (F1, ..., FN ); or, by

introducing Q(F,F) = (Q1 (F, F ) , ...,QN (F, F )) and B = diag(v1x, ..., vNx),

Bu
dF

dx
= Q(F,F) , x ∈ R+, where Bu = B + uI.

Discrete velocity models for mixtures can approximate the Boltzmann equation up
to any order [16] (for any rational mass ratios [14]). For technical reasons, we
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assume that vix + u �= 0 for all i ∈ {1, ..., N}. After some reordering we may
assume that

vix+u > 0 for i ∈ {1, ..., n+} , while vix+u < 0 for i ∈ {n+ + 1, ..., N
}

, n− := N−n+.

For later use, denote

B+u := diag(v1x + u, ..., vn+x + u) and B−u := −diag(vn++1x + u, ..., vNx + u),

and define the projections

R+h := (h1, ..., hn+) and R−h :=
(
hn++1, ..., hN

)
for h = (h1, ..., hN) ∈ R

N . (4)

The collision operators are given by

Qi(F, F ) =
N∑

j,k,l=1

�kl
ij (FkFl − FiFj ), i ∈ {1, ..., N} ,

where the nonnegative collision coefficients �kl
ij = �kl

ji = �
ij

kl ≥ 0 are zero, unless
we have conservation of mass for each species, momentum, and kinetic energy;

{α(i), α(j)} = {α(k), α(l)} ,

mα(i)vi +mα(j)vj = mα(k)vk +mα(l)vl ,

mα(i) |vi |2 +mα(j)

∣∣vj ∣∣2 = mα(j) |vk|2 +mα(l) |vl |2 . (5)

Unlike the continuous Boltzmann equation, discrete velocity models (DVMs)
may, depending on the set of velocities and permissible collisions, have additional
quantities –the so-called spurious collision invariants– that are conserved under any
collision; represented by additional (linearly independent to the conserved vectors
induced by (5)) vectors ϕ = (ϕ1, ..., ϕN ), such that ϕi + ϕj = ϕk + ϕl for any indices
such that �kl

ij is nonzero. DVMs without spurious collision invariants, where the
physical collision invariants (5) are linearly independent, are called normal, see
[14] and references therein. Carlo Cercignani made fundamental contributions to
the study of normal DVMs for mixtures, see, e.g., [17]. Normal DVMs have exactly
s + 4 linearly independent collision invariants. That is, all collision invariants are
given by

φ = (φ1, ..., φN) , with φi = aα(i) +mα(i)b · vi + cmα(i) |vi |2 (6)

for some constant
{
aα1 , ..., aαs , c

} ⊂ R, and b ∈ R

3.
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The stationary points, or equilibrium distributions, are Maxwellians

M = eφ , or M = (M1, ...,MN) , with Mi = eφi , (7)

where (for normal DVMs) φ is a collision invariant (6).
A linearization, around a non-drifting Maxwellian M (7) with collision invariants

(6) having b = 0, by F = M + M1/2f , results, neglecting quadratic terms, in the
linearized system

Bu

df

dx
+ Lf = 0, (8)

where the N ×N matrix L is the linearized collision operator [5, 9, 14].
The linearized operator L is symmetric, nonnegative, and the null space N(L) of

L is given by

N(L) =
{
M1/2φ | φ is a collision invariant

}
.

The formal solution of system (8) is f (x) = e−xBuLf (0), while the bounded [resp.
slowly increasing] solutions are of the form

f (x) =
m+∑
r=1

βrϕre
−λrx +

s+4−l∑
i=1

μiyi +
l∑

j=1

ηj zj [+ αj
(
wj − xzj

)], (9)

where (here and below, 〈·, ·〉 denote the Euclidean scalar product in R

n for some
appropriate choice of n; here n = N)

Lϕr = λrBuϕr ,
〈
ϕq, Buϕr

〉 = λrδqr , with λ1, ..., λm+ > 0,

N(L) = span (y1, ..., ys+4−l , z1, ..., zl) , Lwj = Buzj ∈ N(L)⊥,

〈yi , Buyk〉 = γiδik , with γ1, ..., γk+ > 0 and γk++1, ..., γs+4−l < 0,
〈
ur , Buwj

〉 = 〈
yi , Buwj

〉 = 〈wj ,Buwp

〉 = 0, and
〈
wj ,Buzp

〉 = δjp. (10)

Here m+ = n+ − k+ − l is the number of positive eigenvalues (counted with
multiplicity) of the matrix B−1

u L, while
(
k+, s + 4− k+ − l, l

)
is the signature of

the restriction of the quadratic form 〈·, Bu·〉 to the kernel of L. The values of k+ and
l are given by the table

u < u− u = u− u− < u < 0 u = 0 0 < u < u+ u = u+ u+ < u

k+ 0 0 1 1 s + 3 s + 3 s + 4

l 0 1 0 s + 2 0 1 0

, (11)
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assuming that the velocity set is of the form V = Vα1 × ... × Vαs —where each set
Vαi can be decomposed as, cf. [2],

Vαi = V3
0αi for some set V0αi ⊂ R, such that V0αi = −V0αi ,

and represents a normal DVM for a single species—and constitutes a normal DVM.
Then any non-drifting Maxwellian is of the form M = (

Mα1 , ...,Mαs

)
, where

Mαi = nαi
Sαi

e−mαi
|v|2/(2θ), with Sαi =

∑Nαi

j=1 e
−mαi |vj |2/(2θ), and one has

u± = ±

√√√√√√√√

s∑
i=1

nαi

〈
Mαi

nαi
, mαi v

2
x

〉2

s∑
i=1

mαi nαi

〈
Mαi

nαi
, mαi v

2
x

〉
√
κ + 2

3
, with κ =

s∑
i=1

nαi

〈
Mαi

nαi
, m2

αi
v4
x

〉

s∑
i=1

nαi

〈
Mαi

nαi
, mαi v

2
x

〉2
.

At the interface x = 0 we consider the general boundary condition

R+f (0) = CR−f (0)+ h0, (12)

where R± are the projections (4), C is a given n+ × n− real matrix, and h0 ∈ R

n+ ,
and obtain the following results, cf. [5, 14]:

Theorem 1

(i) Assume that CT B+u C ≤ B−u . Then by imposing k+ + l conditions on h0, the problem
(8),(12) has a unique solution with exponential decay in x.

(ii) Assume that CT B+u C < B−u , or, if l = 0, that CT B+u C ≤ B−u . Then the problem
(8),(12) has a unique bounded [resp. slowly increasing] solution with asymptotic flow

fA =
s+4−l∑
i=1

μiyi+
l∑

j=1
ηj zj [+ αj

(
wj − xzj

)], if the s+4−k+− l [resp. s+4−k+]

parameters μk++1, . . . , μk [and α1, . . . , αl] are prescribed.

Here, see expression (9), slowly increasing, means that the solution is either
bounded or linearly increasing in x as x →∞.

The exponential speed of convergence in Theorem 1 is given by a leading term
with the factor e−σx , where σ = σu = min

1≤i≤m+
λi > 0 for fixed u, cf. relations (10).

However, as u tends to a value u0, for which l ≥ 1, from the left, that is, u → u−0 ,
l positive eigenvalues λi [or, equivalently, l negative γi (10)] will approach zero, that
is, λi → 0+ [γi → 0−], as u→ u−0 , and then become negative [positive] as u passes
u0. Indeed, the exponential speed of convergence is not uniform in u as u tends to u0

from the left, u→ u−0 . However, by imposing l extra conditions on the indata h0 for
u < u0 one can obtain uniform exponential speed of convergence in a neighborhood
of u = u0.

The results in Theorem 1 can be extended: (i) in a natural way (cf. [5, 6]), to
yield also for singular matrices Bu, if N(L)∩N(Bu) = {0}; (ii) to an inhomogeneous
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case with some restrictions on the inhomogeneity S = S(x) (on the right hand side
of system (8)) [5, 9]; (iii) to the weakly (for “small” indata h0) nonlinear case for a
function vanishing at infinity [9]. Extensions to polyatomic molecules are addressed
in [8, 9], see also [10].

3 Half-Space Problem for the Full Boltzmann Equation

Consider the continuous velocity case for a mixture of s species, and an inhomoge-
neous version of system (3), with more general boundary conditions at the interface:

⎧⎨
⎩
(vx + u)

∂f

∂x
+Lf = S

f (0, v) = RPf (0, v)+ fb (v) for vx + u > 0
(13)

for given indata fb ∈ h+ ∩ D(L) with h+ := h|vx+u>0 at the interface, where
eσxS(x, v) ∈ L2 (R+; h) and eσxf = eσxf (x, v) ∈ L2 (R+; h) for some positive
number σ > 0, and S = S(x, v) ∈ (kerL)⊥ for all x ∈ R+. Here Pf (x, v) = f (x, v−),
where v− = v− (2 (vx + u) , 0, 0), while R is a general linear (boundary) operator on
h fulfilling, cf. [21, p. 164], the conditions:

(Rh| (vx + u) g)+ = ( (vx + u) h|Rg)+
(Rg| (vx + u) Rg)+ ≤ ( g| (vx + u) g)+ ,

where ( ·| ·)+ = ( ·| ·)|vx+u>0. For single species, especially the case of complete
absorption, R = 0, at the interface, is well studied in the literature, see, e.g., the
review [4] and the references therein. Substituting f = e−σxg results in

⎧⎨
⎩
(vx + u)

∂g

∂x
+ Lg − σ (vx + u) g = eσxS

g(0, v) = RPg(0, v)+ fb, vx + u > 0,
(14)

for given fb ∈ h+ ∩ D(L), where g = g(x, v) ∈ L2 (R+; h), S = S(x, v) ∈ ImL for all
x ∈ R+, and eσxS(x, v) ∈ L2 (R+; h) for some positive number σ > 0.

Define � := {φ1, ..., φs+4} ⊂ h, with

φ1,αi =
mαi√
2ρT

√
Mαi

(√
ρ

15nT
|v|2 + vx

)
; φ2,αi =

√
mαi

nT

√
Mαi vy;

φ3,αi =
√
mαi

nT

√
Mαi vz; φ4+j = φ̃4+j∥∥φ̃4+j

∥∥ , j ∈ {0, ..., s − 1} ;
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φ4+s,αi =
mαi√
2ρT

√
Mαi

(√
ρ

15nT
|v|2 − vx

)
; ρ =

s∑
k=1

mαknαk , n =
s∑

k=1

nαk ;

φ̃4+j = φ̂4+j −
j∑

k=1

(
φ̂4+j

∣∣φ3+k
)
φ3+k; φ̂4+j,αi =

√
Mαi

(
mαi nαj

5nT
|v|2 − δij

)
,

and denote

�u+ : = {φi |(φi | (vx + u) φi) > 0 } = {φ1, ..., φk+} ,
�u

0 : = {φi |(φi | (vx + u) φi) = 0 } = {ψ1, ..., ψl} .

The set � is an orthonormal basis of kerL that is orthogonal with respect to the
form ( ·| (vx + u) ·) and

(
k+, s + 4− k+ − l, l

)
is the signature of the restriction of the

quadratic form (φ| (vx + u) φ) to the kernel of L. The values of k+ and l with respect

to u are given by table (11) with u± = ±
√

5nT
3ρ . More specific, we have that

�
u−
0 = {φ1} ; �0

0 = {φ2, ..., φs+3} ; �u+
0 = {φs+4} ; with u± = ±

√
5nT

3ρ
,

while �u
0 = ∅ if u /∈

{
0,±

√
5nT
3ρ

}
, and

�u+ = ∅ if u ≤ u−;�u+ = {φ1} if u− < u ≤ 0;
�u+ = {φ1, ..., φs+3} if 0 < u ≤ u+; �u+ = {φ1, ..., φs+4} if u > u+.

Theorem 2 ([11]) Imposing k+ + l conditions on fb, there exists a unique solution
f = f (x, v) to the problem (13), such that eσxf (x, v) ∈ L2 (R+; h) for some σ > 0.

Corollary 1 There exists a unique solution f to the problem (13), such that
eσx (f (x, v)− f∞) ∈ L2 (R+; h) , with f∞ = lim

x→∞f (x, v) ∈ kerL, for some σ > 0, if

the s + 4− (k+ + l
)

parameters
(
f∞|φk++l+1

)
, . . . , ( f∞|φs+4) are prescribed.

The exponential speed of convergence e−σx is determined by σ = σu for fixed u.
However, the speed of convergence is not uniform in u as u tends to some degenerate

value u0 ∈
{

0,±
√

5nT
3ρ

}
, for which l ≥ 1, from the left; it will appear l slowly varying

mode(s) as u → u−0 (cf. [13] and the references therein). Indeed, for u < u0 ∈{
0,±

√
5nT
3ρ

}
:

( (vx + u) φi |φi) = ( (vx + u0) φi |φi)+ u− u0 = u− u0 → 0− as u→ u−0

exactly for i ∈ {k+ + 1, ..., k+ + l
}
, inducing l slowly varying mode(s) as u → u−0 .

However, by imposing l extra conditions on the indata for u less than u0 the slowly
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varying modes present as u → u−0 can be removed [11], i.e., uniform exponential
speed of convergence can be obtained in a neighborhood of u0.

The corresponding problem for monatomic single species in a neighborhood of
u = 0, in the nonlinear context, is considered in more detail in [13], see also [25].

The results may be extended to the weakly nonlinear case applying methods
similar to the ones in [13, 24].

3.1 Brief Outline of Main Steps of the Proof of Theorem 2

If u ∈
{

0,±
√

5nT
3ρ

}
, then for each ψr , r ∈ {1, ..., l}, there exists ϕr ∈ D(L), such that

(without loss of generality, cf. [15])

Lϕr = (vx + u) ψr ∈ (kerL)⊥ = ImL,
(
(vx + u) ψr | ϕj

) = αrδrj ≥ 0 and ( (vx + u) ϕr |φi) =
(
(vx + u) ϕr |ϕj

) = 0

for all {r, j} ⊆ {1, . . . , l} , i ∈ {1, . . . , k+, k+ + l + 1, . . . , s + 4
}
.

Introduce the linear operators

�+ :=
k+∑
i=1

( ·|φi) φi ; �0 :=
l∑

r=1

( ·| ϕr)
(ϕr |Lϕr)2

ϕr ,

� := L− σ (vx + u)+ α�+ (vx + u)+ β (vx + u)�0 (vx + u) (15)

and consider the penalized problem (cf. [13, 24, 28]):

⎧⎨
⎩
(vx + u)

∂g

∂x
+�g = eσxS, x > 0,

g(0, v) = RPg(0, v)+ fb, vx + u > 0
. (16)

Then one can obtain the following result [11]:

Lemma 1 For appropriately chosen positive constants α, β, and σ there exists a positive
number μ = μ (α, β, σ ) > 0 such that

(
��f

∣∣ f ) = (�f |f ) ≥ μ (f | f ) for all f ∈ D(L),

where

�� = L− σ (vx + u)+ α (vx + u)�+ + β (vx + u)�0 (vx + u) ,

is the adjoint operator of �.
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Define the linear operator Tg := (vx + u)
∂g

∂x
+�g, with domain

D(T) :=
{
{g (x, v) , (vx + u)

∂g

∂x
(x, v) ,Lg (x, v)} ⊂ L2 (R+; h) , R̃g(0, v) = 0

}
,

where R̃ := 1vx+u>0 − R1vx+u<0.
Then the adjoint operator of T is given by the operator

T∗g = − (vx + u)
∂g

∂x
+�∗g,

with domain

D(T∗) =
{
{g (x, v) , (vx + u)

∂g

∂x
(x, v) ,Lg (x, v)} ⊂ L2 (R+; h) , R̃∗g(0, v) = 0

}
,

where R̃∗ = R1vx+u>0 − 1vx+u<0.
Moreover, one can obtain the following result [11]:

Lemma 2 For some α, β, σ > 0 there exists a positive number μ = μ (α, β, σ ) > 0 such
that

‖Tg‖L2(R+;h) ≥ μ ‖g‖L2(R+;h) for all g ∈ D(T),∥∥T∗g∥∥
L2(R+;h) ≥ μ ‖g‖L2(R+;h) for all g ∈ D(T∗).

In particular, kerT = {0} and ImT = L2 (R+; h) .
Based on this one can obtain the following result [11]:

Proposition 1 There exists a unique solution g (x, v) ∈ L2 (R+; h) to the penalized
problem (16).

Denoting by I : h+ → h the solution operator

I(fb) = g (0, v) ,

where g (x, v) ∈ L2 (R+; h) is the unique solution of the penalized problem (16) in
Proposition 1, one can obtain the following result [11]:

Lemma 3 The solution of the penalized problem (16) is a solution of the problem (14) if
and only if

�+ ((vx + u)I(fb)) = �0 ((vx + u)I(fb)) = 0, or, equivalently,

�+ ((vx + u)I(fb)) = �̃0 ((vx + u)I(fb)) = 0; �̃0 :=
l∑

r=1

( ·|ψr)ψr .



56 N. Bernhoff

Finally, one can conclude that [11]:

Theorem 3 There exists a unique solution g (x, v) ∈ L2 (R+; h) to the problem (14)
imposing k+ + l conditions on fb .
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BGK Model for a Mixture with Two
Reversible Reactions

Marzia Bisi and Romina Travaglini

Abstract We construct a kinetic model of BGK type for a mixture of eight
polyatomic gases undergoing two separate bimolecular and reversible chemical
reactions. Maxwellian attractors depend on suitable auxiliary parameters, and we
prove that they may be uniquely determined imposing preservation of Boltzmann
collision invariants. The mass action laws of the two reactions and the total energy
conservation turn out to be a set of transcendental equations in the auxiliary fields
that has to be carefully investigated in order to prove uniqueness of solution.

1 Introduction

BGK-type descriptions for gas mixtures have been proposed both in inert and
reactive frames. For inert mixtures, there are relaxation models with a unique
relaxation operator for each species [1], as well as other more complicated models
involving a sum of binary relaxation operators, preserving thus the structure of
the original Boltzmann system [8, 12, 13, 15]. The same two kinds of models are
available for mixtures subject to simple chemical reactions, see, for instance, [5, 11]
for models with a single BGK operator per species and [9, 14] for models with sums
of BGK terms. The simplest formulation involving a unique relaxation operator for
each species [1] has been recently generalized even to mixtures of monatomic and
polyatomic gases, each one with its own number of internal energy levels [3, 4].
In reactive models it is usually considered a very basic physical setting, made by
only four species subject to a bimolecular and reversible chemical reaction. The
following step we would like to take is to deal with a number of gas species greater
than four, involved in different chemical reactions. In this case the equilibrium
configuration is governed by a higher number of mass action laws, leading to
a higher number of auxiliary quantities to be determined and of transcendental
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equations to be managed. Our intent is to show that, in a case of eight polyatomic
gases undergoing two disjoint reactions, i.e., no gas species is involved in more
than one reaction, it is possible to write one of the auxiliary densities in terms of
the other ones and of the auxiliary temperature; successively we express everything
in terms of the auxiliary temperature, and we prove that it can be detected as the
unique admissible solution of a transcendental equation. In Sect. 2 we present our
physical setting and the basic kinetic approach, while Sect. 3 is devoted to the
detailed construction of a consistent BGK model. Finally, Sect. 4 contains some
conclusions and perspectives.

2 Physical Setting and Kinetic Approach

We consider a mixture of eight gas species, Gi , i = 1, . . . , 8, and we suppose that
they are involved in two separate reversible chemical reactions:

G1 +G2 � G3 +G4, (1)

G5 +G6 � G7 +G8. (2)

Reactions (1) and (2) involve different gases; more complicated situations with at
least a species involved in both reactions will be dealt with in future research. Each
gas species Gi has its own mass mi and, due to conservation laws, particle masses
satisfy the relations m1 + m2 = m3 + m4 and m5 + m6 = m7 + m8. As usual in
the kinetic description of polyatomic gases based on discrete energy levels [10, 16],
each gas species can be seen composed by a certain number Li ≥ 1 of components,
Ci
j , j = 1, . . . , Li , each one corresponding to a discrete internal energy level Ei

j ,

with (without loss of generality) Ei
j < Ei

k for any 1 ≤ j, k ≤ Li , with j < k.

The particular case Li = 1 obviously corresponds to a monatomic gas. Distribution
functions for each energy component Ci

j are

f i
j (t, x, v), i = 1, . . . , 8, j = 1, . . . , Li . (3)

Encounters among particles of the mixture are modeled as binary instantaneous
collisions and can be generically written as

Ci
j + Ch

k → Cl
m + Cn

p, 1 ≤ i, h, l, n ≤ 8,

1 ≤ j ≤ Li, 1 ≤ k ≤ Lh, 1 ≤ m ≤ Ll, 1 ≤ p ≤ Ln.
(4)

The superscript i of component Ci
j refers to the gas Gi which it belongs to, while

the subscript j identifies its energy level Ei
j . These encounters are elastic if i = l,
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h = n, j = m, k = p, since particles do not change their species and energy level,
while they are inelastic if i = l, h = n, j �= m or k �= p, since particles maintain
their chemical species but pass from one energy level to another (the subscripts
change). Moreover, such collisions describe chemical reactions when (i, h) �= (l, n)

(the superscripts identifying the species change), with (i, h), (l, n) ∈ {(1, 2), (3, 4)}
or (i, h), (l, n) ∈ {(5, 6), (7, 8)}. In the last two cases the collision is endothermic if
El
m + En

p − Ei
j − Eh

k ≥ 0 or exothermic if El
m + En

p − Ei
j − Eh

k < 0.

Moments of components Ci
j we are interested in are: number densities nij

(providing the total density of Gi as ni =∑Li

j=1 n
i
j ), drift velocities uij , and kinetic

temperatures T i
j . They are defined as

nij =
∫
R3
f i
j (v) dv, uij =

1

nij

∫
R3

vf i
j (v) dv, T i

j =
mi

3nij

∫
R3
|v− uij |2f i

j (v) dv.

During the evolution of the mixture we have conservation of six independent
combinations of gas species number densities that can be chosen as n1 + n3,
n1 + n4, n2 + n4, n5 + n7, n5 + n8, n6 + n8, of global momentum and of total
energy. Specifically, the sum n1 + n3 is preserved since, in each direct reaction (1),
to the disappearance of a particle G1 there corresponds the creation of a particle
G3, and vice versa in the reverse reaction; analogous properties hold for the other
combinations.

As usual, at equilibrium the distribution functions are of Maxwellian type, with
all components sharing a common mean velocity u and temperature T ,

f i
jM(v) = nij

(
mi

2π T

)3/2

exp

(
− mi

2T
|v− u|2

)
, i = 1, . . . , 8, j = 1, . . . , Li .

(5)

Moreover, at equilibrium, number density of each component nij is related to the

total density ni of the corresponding gas as nij = ni exp

(
− Ei

j−Ei
1

T

)
/Zi (T ) and

we also have the two mass action laws of chemistry regulating the ratio between
reacting species densities:

ninj

nhnk
=
(
mimj

mhmk

) 3
2 Zi (T )Zj (T )

Zh(T )Zk(T )
exp

(
�Ehk

ij

T

)
, (6)

with (i, j, h, k) = (1, 2, 3, 4) or (5, 6, 7, 8), Zi (T ) = ∑Li

k=1 exp

(
− Ei

k−Ei
1

T

)
,

�E34
12 := �E∗ = E3

1 +E4
1 −E2

1 −E1
1 and �E78

56 := �E∗∗ = E7
1 +E8

1 −E5
1 −E6

1 .
In next section we shall prove that our BGK model is well defined for any choice
for the signs of the two chemical energy gaps �E∗ and �E∗∗.
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3 BGK Model

The structure of the BGK model we are showing here is the same as in [2–4], thus
we write the set of L1 + . . .+ L8 kinetic BGK-type equations as

∂f i
j

∂t
+ v · ∇xf

i
j = νij (M

i
j − f i

j ) , i = 1, . . . , 8, j = 1, . . . , Li , (7)

in which the collision operator is a relaxation term, with νij macroscopic collision

frequencies and Mi
j Maxwellian attractors as in [5],

Mi
j (v) := ñij

(
mi

2π T̃

)3/2

exp

[
− mi

2T̃
|v− ũ|2

]
,

i = 1, . . . , 8,
j = 1, . . . , Li,

(8)

depending on auxiliary parameters ñij (i = 1, . . . , 8, j = 1, . . . , Li ), ũ, T̃ . In
addition, we require that fictitious parameters fulfill all other equilibrium conditions
[16], namely that auxiliary densities satisfy relations valid for the final configuration
of components corresponding to each energy level

ñij =
ñi

Zi (T̃ )
exp

(
− Ei

j − Ei
1

T̃

)
,

i = 1, . . . , 8,
j = 1, . . . , Li,

(9)

and that fictitious total densities ñi satisfy the mass action laws

ñ1ñ2

ñ3ñ4 =
(
m1m2

m3m4

)3/2 Z1(T̃ )Z2(T̃ )

Z3(T̃ )Z4(T̃ )
exp

(
�E∗

T̃

)
, (10)

ñ5ñ6

ñ7ñ8 =
(
m5m6

m7m8

)3/2 Z5(T̃ )Z6(T̃ )

Z7(T̃ )Z8(T̃ )
exp

(
�E∗∗

T̃

)
. (11)

Our purpose is to show that auxiliary parameters ñij , ũ, T̃ can be expressed in

terms of the actual quantities nij , uij , T i
j of the mixture. This is possible imposing

that the BGK model preserves the conservation of the same collision invariants
of the Boltzmann equations. More specifically, we impose conservation of the six
combinations of number densities expressed before that give

Lh∑
j=1

νhj

∫
R3
(Mh

j − f h
j )dv+

Lk∑
j=1

νkj

∫
R3
(Mk

j − f k
j )dv = 0, (12)
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with (h, k) varying in the set {(1, 3), (1, 4), (2, 4), (5, 7), (5, 8), (6, 8)}. Then we
have to require conservation of global momentum and of total energy, provided by

8∑
i=1

Li∑
j=1

νij m
i

∫
R3

v (Mi
j − f i

j )dv = 0, (13)

8∑
i=1

Li∑
j=1

νij

∫
R3

(
1

2
mi |v|2 + Ei

j

)
(Mi

j − f i
j )dv = 0. (14)

Relations (12) can be expressed as

Li∑
j=1

νij ñ
i
j =

Li∑
j=1

νijn
i
j + λi

L1∑
j=1

ν1
j (ñ

1
j − n1

j ), i = 1, . . . , 4, (15)

Li∑
j=1

νij ñ
i
j =

Li∑
j=1

νijn
i
j + λi

L5∑
j=1

ν5
j (ñ

5
j − n5

j ), i = 5, . . . , 8, (16)

with λ1 = λ2 = −λ3 = −λ4 = λ5 = λ6 = −λ7 = −λ8 = 1. Bearing in mind (9),
from (15) and (16) we can express total fictitious densities ñ2, ñ3, ñ4 and ñ6, ñ7, ñ8

in terms of ñ1 and ñ5, respectively:

ñi

Zi (T̃ )
=
⎡
⎣ Li∑
j=1

νij exp

(
− Ei

j − Ei
1

T̃

)⎤
⎦
−1⎧⎨
⎩

Li∑
j=1

νijn
i
j − λi

L1∑
j=1

ν1
j n

1
j

+ λi

⎡
⎣ L1∑
j=1

ν1
j exp

(
− E1

j − E1
1

T̃

)⎤
⎦ ñ1

Z1(T̃ )

⎫⎬
⎭ , i = 1, . . . , 4,

(17)

ñi

Zi (T̃ )
=
⎡
⎣ Li∑
j=1

νij exp

(
− Ei

j − Ei
1

T̃

)⎤
⎦
−1⎧⎨
⎩

Li∑
j=1

νijn
i
j − λi

L5∑
j=1

ν5
j n

5
j

+ λi

⎡
⎣ L5∑
j=1

ν5
j exp

(
− E5

j − E5
1

T̃

)⎤
⎦ ñ5

Z5(T̃ )

⎫⎬
⎭ , i = 5, . . . , 8,

(18)

observing that for i = 1 and i = 5 we get trivial identities.



64 M. Bisi and R. Travaglini

Analogously to [2, 3], conservation of total momentum (13) explicitly provides
auxiliary mean velocity as follows

ũ =
⎛
⎝ 8∑

i=1

Li∑
j=1

νij m
i nij uij

⎞
⎠
/⎛
⎝ 8∑

i=1

Li∑
j=1

νij m
i nij

⎞
⎠ . (19)

Conservation of total energy (14), instead, leads to

3

2

8∑
i=1

Li∑
j=1

νij n
i
j T̃ +

8∑
i=1

Y i(ñi , T̃ )Ei (T̃ ) = �, (20)

where we have set

Y i(ñi, T̃ ) = ñi

Zi (T̃ )

Li∑
j=1

νij exp

(
− Ei

j − Ei
1

T̃

)
, i = 1, . . . , 8, (21)

Ei (T̃ ) =
Li∑
j=1

νij E
i
j exp

(
− Ei

j − Ei
1

T̃

)/⎡
⎣ Li∑
k=1

νik exp

(
− Ei

k − Ei
1

T̃

)⎤
⎦ , (22)

and the right hand side � (not reported here for brevity) contains only actual
densities nij , velocities uij , temperatures T i

j and energies Ei
j . We note that even

if the two chemical reactions are disjoint, all the eight species interact energetically,
thus all the components are involved in the total energy conservation. This adds a
further constraint in determining auxiliary parameters.

Relations (17)-(18) may thus be written as

Y i = λiY 1 + αi, i = 1, . . . , 4, (23)

Y i = λiY 5 + βi, i = 5, . . . , 8, (24)

with quantities

αi =
Li∑
j=1

νij n
i
j − λi

L1∑
j=1

ν1
j n

1
j , βi =

Li∑
j=1

νijn
i
j − λi

L5∑
j=1

ν5
j n

5
j . (25)

Consequently, we have that (20) turns into the following expression

D(T̃ )

⎛
⎝Y 1 −

L1∑
j=1

ν1
j n

1
j

⎞
⎠+ B(T̃ )

⎛
⎝Y 5 −

L5∑
j=1

ν5
j n

5
j

⎞
⎠ = N(T̃ ), (26)
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with functions

D(T̃ ) =
4∑

i=1

λi Ei (T̃ ), B(T̃ ) =
8∑

i=5

λi Ei (T̃ ), (27)

N(T̃ ) = �−
8∑

i=1

⎛
⎝ Li∑
m=1

νim nim

⎞
⎠
[

3

2
T̃ + Ei (T̃ )

]
. (28)

The rest of the paper will be devoted to prove the following result.

Theorem 1 The system of equations constituted by (26) and by the fictitious mass
action laws (10)–(11), depending on three variables ñ1, ñ5, T̃ , has a unique solution
guaranteeing positivity of all auxiliary fields.

The proof will be divided into several technical lemmas. First, we note that Eq. (26)
gives a relation between the auxiliary densities ñ1, ñ5 and T̃ , and, in particular, it
allows to express ñ5 in terms of ñ1 and T̃ . In order to show that these quantities
are uniquely determined and that are physically admissible, we can exploit the
two fictitious mass action laws (10)–(11) (a system of two coupled transcendental
equations). By inserting the expressions (23) into (10) we get

G∗(T̃ , Y 1) =
(
m1m2

m3m4

)3/2

, (29)

with G∗(T̃ , Y 1) = G1(Y
1) · G2(T̃ ) · G3(T̃ ), being

G1(Y
1) =

Y 1
[
Y 1 + α2

]
[
−Y 1 + α3

] [
−Y 1 + α4

] , (30)

G2(T̃ ) =
∑L3

k=1 ν
3
k exp

(
− E3

k−E3
1

T̃

)∑L4

k=1 ν
4
k exp

(
− E4

k−E4
1

T̃

)

∑L1

k=1 ν
1
k exp

(
− E1

k−E1
1

T̃

)∑L2

k=1 ν
2
k exp

(
− E2

k−E2
1

T̃

) , (31)

G3(T̃ ) = exp

(
− �E∗

T̃

)
. (32)

The set of admissible values for Y 1, for which auxiliary densities ñi , i = 1, . . . , 4,
are positive, is

A1 =
{
Y 1 > 0 : max

(
0,−α2

)
< Y 1 < min

(
α3, α4

)}
, (33)
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which is a connected interval of R. Equation (29) may be rewritten as

L∗(T̃ , Y 1) = 0, (34)

with

L∗(T̃ , Y 1) = G1(Y
1)−M(T̃ ), M(T̃ ) =

[
G2(T̃ ) · G3(T̃ )

]−1 ·
(
m1m2

m3m4

)3/2

,

(35)

and we can state the following result.

Lemma 1 For any value T̄ > 0 there exists a unique positive value Ȳ 1 in
the admissible set A1 such that (34) is satisfied. Moreover, there exists an open
interval I with T̄ ∈ I and a unique function Y 1(T̃ ) : I → (0,+∞) such
that Y 1(T̄ ) = Ȳ 1 and L∗(T̃ , Y 1(T̃ )) = 0 for any T̃ ∈ I . Moreover Y 1(T̃ ) is

differentiable on I and the sign of
dY 1(T̃ )

dT̃
is the same of D(T̃ ), with function D

defined in (27).

Proof We compute

dG1

dY 1 = G1(Y
1)

[
1

Y 1 +
1

Y 1 + α2 +
1

−Y 1 + α3 +
1

−Y 1 + α4

]
, (36)

and we observe that
dG1

dY 1 is strictly positive in the admissible set A1. It follows that

the function G1 is strictly monotonically increasing in A1 and it ranges between

lim
Y 1→max(0,−α2)

G1(Y
1) = 0 and lim

Y 1→min(α3,α4)
G1(Y

1) = +∞. (37)

Thus, for any positive value T̄ there is a unique admissible value Ȳ 1 for which
Eq. (34) is satisfied and we are able to express it explicitly in terms of T̄ :

Ȳ 1 = −α2 −M(T̄ )(α3 + α4)+
√[

α2 +M(T̄ )(α3 + α4)
]2 + 4α3α4M(T̄ )(1−M(T̄ ))

2
(
1−M(T̄ )

) .

(38)

Being
∂L∗

∂Y 1 =
dG1

dY 1 strictly positive and beingL∗(T̃ , Y 1) differentiable with respect

to T̃ for any T̃ , we can apply the implicit function theorem that allows us to write
the derivative

(Y 1)′(T̃ ) = −
(
∂L∗(T̃ , Y 1)

∂T̃

)(
∂L∗(T̃ , Y 1)

∂Y 1

)−1

. (39)
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We compute the derivative of function L∗(T̃ , Y 1) with respect to T̃ , getting

∂L∗(T̃ , Y 1)

∂T̃
= −M ′(T̃ ) = −

[
G2(T̃ ) · G3(T̃ )

]−1 ·
(
m1m2

m3m4

)3/2

· D(T̃ )

T̃ 2
, (40)

and we see that the sign of (39) is the same of D(T̃ ). ��
Now, combining (24) and (26), and taking into account the results of previous

lemma, we may express quantities Y 5, . . . , Y 8 in terms of T̃ only, getting

Y i(T̃ ) = λiS(T̃ )+
Li∑
j=1

νijn
i
j , i = 5, . . . , 8, (41)

with

S(T̃ ) = N̂(T̃ )

B(T̃ )
, N̂(T̃ ) = N(T̃ )+D(T̃ )

( L1∑
j=1

ν1
j n

1
j − Y 1(T̃ )

)
. (42)

Consequently, the mass action law (11) turns out to be a transcendental equation
in T̃ that may be cast as

G∗∗(T̃ ) =
(
m5m6

m7m8

)3/2

, (43)

with G∗∗(T̃ ) = G4(T̃ ) · G5(T̃ ) · G6(T̃ ), being

G4(T̃ ) =
(∑L5

j=1 ν
5
j n

5
j + S(T̃ )

) (∑L6

j=1 ν
6
j n

6
j + S(T̃ )

)

×
(∑L7

j=1 ν
7
j n

7
j − S(T̃ )

)−1 (∑L8

j=1 ν
8
j n

8
j − S(T̃ )

)−1
,

(44)

G5(T̃ ) =
∑L7

k=1 ν
7
k exp

(
− E7

k−E7
1

T̃

)∑L8

k=1 ν
8
k exp

(
− E8

k−E8
1

T̃

)

∑L5

k=1 ν
5
k exp

(
− E5

k−E5
1

T̃

)∑L6

k=1 ν
6
k exp

(
− E6

k−E6
1

T̃

) , (45)

G6(T̃ ) = exp

(
− �E∗∗

T̃

)
. (46)
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We show that is possible to find a unique solution of (43) in terms of the actual
parameters of the mixture, in the admissible set

A2 =
⎧⎨
⎩T̃ > 0 : max

⎛
⎝−

L5∑
j=1

ν5
j n

5
j ,−

L6∑
j=1

ν6
j n

6
j

⎞
⎠ < S(T̃ ) < min

⎛
⎝ L7∑
j=1

ν7
j n

7
j ,

L8∑
j=1

ν8
j n

8
j

⎞
⎠
⎫⎬
⎭ ,

(47)

guaranteeing positivity of auxiliary densities ñ5, ñ6, ñ7, ñ8. To do so, we shall
exploit the fact that the behavior of function G∗∗ is strictly related to the properties
of functions S and B, which will be explored in turn through Lemmas 2, 3 and 4.

Lemma 2 Let I = (T̃1, T̃2) ⊆ A2 be any interval in which the function B(T̃ ) given
in (27) is strictly negative (positive), then the functionS(T̃ ) is strictly monotonically
increasing (decreasing) in I with respect to T̃ .

Proof We may compute the derivatives of quantities appearing in (42), and we get

D′(T̃ ) =
4∑

i=1

λiFi (T̃ ), B′(T̃ ) =
8∑

i=5

λiFi (T̃ ), (48)

N̂ ′(T̃ ) = − 3
2

∑8
i=1

(∑Li

j=1 ν
i
j n

i
j

)
−∑8

i=5

(∑Li

j=1 ν
i
j n

i
j

)
Fi (T̃ )

−∑4
i=1

[∑Li

j=1 ν
i
j n

i
j + λi

(
Y 1(T̃ )−∑L1

j=1 ν
1
j n

1
j

)]
Fi (T̃ )−D(T̃ )(Y 1)′(T̃ ),

(49)

where functions Fi (T̃ ) stand for

Fi (T̃ ) =
∑Li

j=1
∑Li

k=1
νij ν

i
k

2T̃ 2

[
Ei
j − Ei

k

]2
exp

(
− Ei

j+Ei
k−2Ei

1

T̃

)

[∑Li

k=1 ν
i
k exp

(
− Ei

k−Ei
1

T̃

)]2 ≥ 0, i = 1, . . . , 8.

(50)

Notice that, since the quantity Y 1(T̃ ) belongs to A1, the derivative N̂ ′(T̃ ) < 0.
Combining these results, it may be easily checked that the signs of S′(T̃ ) and B(T̃ )
are opposite. ��

We prove another result concerning the behavior of S(T̃ ).

Lemma 3 The function S(T̃ ) admits a unique positive value T ∗ such that
S(T ∗) = 0.

Proof Since S(T̃ ) = N̂(T̃ )/B(T̃ ), we show that the function N̂(T̃ ) defined in (42)
vanishes for a unique value of T̃ . We discuss the result depending on the sign of
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the quantity �E∗. If �E∗ < 0, recalling the definition of function M(T̃ ) given
in (35), we have limT̃→0+ M(T̃ ) = 0, and from expression (38) we also have
limT̃→0+ Y

1(T̃ ) = 0. If, instead, �E∗ > 0, the limit for T → 0+ of M(T̃ ) is +∞,
so the computation of the limit of Y 1(T̃ ) is not straightforward; skipping details,
rationalizing (38) we get

lim
T̃→0+

Y 1(T̃ ) = 2α3α4

α3 + α4 + ∣∣α3 − α4
∣∣ = αK, (51)

with K = 4 if α3 > α4 or K = 3 if α4 > α3. Therefore, keeping in mind the
expressions for quantities αi given in (25),

lim
T̃→0+

D(T̃ )

⎡
⎣ L1∑
j=1

ν1
j n

1
j − Y 1(T̃ )

⎤
⎦ =

{
−�E∗∑L1

j=1 ν
1
j n

1
j if �E∗ < 0

�E∗
∑LK

j=1 ν
K
j n

K
j if �E∗ > 0,

(52)

that is, in both cases, a positive quantity. Since also limT̃→0+ N(T̃ ) > 0, we can

state that the function N̂(T̃ ) tends to a positive value as T̃ → 0+; on the other hand,

limT̃→+∞ N̂(T̃ ) = −∞ thus, recalling that N̂
′
(T̃ ) < 0 and being the function

N̂(T̃ ) continuous, it is null in only one T̃ = T ∗. ��
Moreover, we can prove the following result.

Lemma 4 On every interval
(
T̃1, T̃2

)
⊆ A2 the sign of B(T̃ ) does not change.

Proof Being the limits

lim
T̃→0+

B(T̃ ) = −�E∗∗, lim
T̃→+∞

B(T̃ ) =
8∑

i=5

λi
( Li∑

j=1

νij E
i
j

/ Li∑
j=1

νij

)
,

(53)

and since the derivative of B(T̃ ) expressed in (48) may change sign in relation to
internal energy levels and collision frequencies, it could exist a positive value T #

root of B(T̃ ). We shall suppose that the choice of initial data, internal energies
and collision frequencies is such that T # �= T ∗, since in this case we would
have only algebraic equations. We note thus that limT̃→T̃ # S(T̃ ) = ±∞, getting a
neighborhood of T̃ # not contained in A2. Thus B(T̃ ) does not vanish on any interval(
T̃1, T̃2

)
of A2. ��

Now, let
(
T̃a, T̃b

)
be a connected component of A2. The previous result has as

a consequence the fact that on
(
T̃a, T̃b

)
the sign of S′(T̃ ) does not change. This
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means that S(T̃ ) varies monotonically from the minimum to the maximum value
that it can assume in A2, which have different sign. Consequently it has a root in(
T̃1, T̃2

)
. Also in the case in which T̃a = 0, since limT̃→0 B(T̃ ) < 0, S(T̃ ) is

monotonically increasing from limT̃→0 S(T̃ ) < 0 to its upper bound that is positive,
having a root as well. Since in Lemma 3 we proved that S(T̃ ) has a unique positive

root, it follows that
(
T̃a, T̃b

)
is the only connected component of A2, then the set

A2 is connected. This fact allows us to prove the following statement.

Lemma 5 There exists a unique value T̄ ∈ A2 such that

L∗∗(T̄ ) = G∗∗(T̄ , Ȳ 1(T̄ ))−
(
m5m6

m7m8

)3/2

= 0. (54)

Proof The derivative with respect to T̃ of the function L∗∗(T̃ ) turns out to be

dL∗∗(T̃ )
dT̃

= L∗∗(T̃ )

⎧⎪⎨
⎪⎩S

′(T̃ )

⎡
⎢⎣

8∑
i=5

⎛
⎝ Li∑
j=1

νijn
i
j + λiS(T̃ )

⎞
⎠
−1
⎤
⎥⎦− 1

T̃ 2
B(T̃ )

⎫⎪⎬
⎪⎭ .

(55)

The term in square brackets is positive in A2 and, as proved in Lemma 2, S′(T̃ )
and −B(T̃ ) have the same sign. It follows that L∗∗(T̃ ) is strictly monotonically

increasing or decreasing in A2, that is an interval of type
(
T̃min, T̃max

)
. In particular,

when T̃ → T̃min, G∗∗(T̃ )→ 0 and when T̃ → T̃max , G∗∗(T̃ )→+∞ or vice versa.
This holds also in the case T̃min = 0 if we have �E∗∗ > 0; if, instead, �E∗∗ < 0, it
is needed to take the inverse in both sides of Eq. (43) and repeat all the calculations

defining L∗∗(T̄ ) as
[
G∗∗(T̄ , Ȳ 1(T̄ ))

]−1 − [(m7m8)/(m5m6)
]3/2

. Thus, we can find
a unique value T̄ for which L∗∗(T̄ ) = 0. ��

This result provides the existence and uniqueness of an admissible auxiliary
temperature T̃ that can be expressed in terms of actual parameters of the mixture.
By inserting it in (38) we get the admissible quantity Y 1, then from (23) and (41) we
obtain the remaining Y i , i = 2, . . . , 8. This allows us to construct the Maxwellian
attractors Mi

j given in (8). The equilibrium configuration of our BGK model is
given by distributions coinciding with Maxwellian attractors, thus equilibrium mean
velocities, temperatures, and number densities of each component will be exactly the
auxiliary parameters individuated previously: uij = ũ = u, T i

j = T̃ = T , nij = ñij ,

(i = 1, . . . , 8, j = 1, . . . , Li ), with global density of each gas ni related to the
number densities of its components through the partition function, and densities and
temperature bound together by the two mass action laws of chemistry (6). By the
same arguments used in [3, 4], we are able to prove that our model also fulfills the
classical H -theorem, guaranteeing thus the stability of collision equilibria.
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4 Conclusions

In this paper we have built up a BGK model for a mixture of eight species undergo-
ing two bimolecular and reversible chemical reactions. The eight constituents may
be monatomic (with a fixed internal energy) or polyatomic (with a proper number of
internal energy levels). This work generalizes the BGK models proposed in [2] for a
mixture of four reacting gases with the same number of levels, and in [3] for an inert
mixture of monatomic and polyatomic particles. The additional difficulties arisen
with respect to the inert frame or to the case of four gases subject to one reversible
reaction [4] have been commented on. We remark that the two considered reactions
involve different species; the construction of relaxation-type models in case of two
non-independent reactions (with at least a gas involved in both of them) would give
rise to more complicated relations for conservation of sums of number densities,
and therefore to more cumbersome transcendental equations. This problem is worth
to be investigated in a near future.

Another way of modeling the non-translational degrees of freedom of polyatomic
particles assumes the internal energy to be a continuous positive variable I ,
and even in this case a BGK model is available [6]. In such formulation, the
different polyatomic nature of each constituent may be modeled by means of
suitable weight functions ϕi(I) in the Boltzmann collision kernels. The classical
options ϕi(I) = Iαi correspond to polytropic gases, with a caloric equation of
state linearly depending on temperature. In our discrete energy levels formulation,
the specific heat at constant volume is in general a nonlinear function of the
temperature, corresponding thus to non-polytropic gases, and the polytropic case
may be recovered introducing a suitable linear approximation in the internal energy
function [7]. The same procedure could be applied also in the hydrodynamic
equations corresponding to the present BGK model and will be matter of future
investigation.
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On a Class of Self-Similar Solutions of
the Boltzmann Equation

A.V. Bobylev

Abstract We consider a class of distribution functions having the form f (v, t) =
e−datF (ve−at ), a = const., where v ∈ R

d
, d ≥ 2 and t ∈ R+ denote the

particle velocity and the time. This class of self-similar solutions to the spatially
homogeneous Boltzmann equation (BE) for Maxwell molecules was studied by
Bobylev and Cercignani in early 2000s. The solutions are positive but have an
infinite second moment (energy). However, the same class of distribution functions
with finite energy appears to be closely connected with quite different class of
group-invariant solutions of the spatially inhomogeneous BE. This is a motivation
for considering the so-called modified spatially homogeneous BE, which contains
an extra force term proportional to a given matrix A. The modified BE was recently
studied under the assumption of “sufficient smallness of norm ‖A‖” without explicit
estimates of the smallness. We fill this gap and prove that all important facts related
to self-similar solutions remain valid also for ‖A‖ = O[10−1] in appropriate
dimensionless units.

1 Introduction

Self-similar solutions of nonlinear equations of mathematical physics are always
interesting for both physicists and mathematicians. The simplest example of such
solution for the classical Boltzmann equation can be described as follows. We
consider the spatially homogeneous case of this equation for Maxwell molecules
(with or without cut-off). The solution f (v, t) of this equation depends on the
velocity v ∈ R

3 and the time t ∈ R+. It is easy to show that the Boltzmann equation
admits (at least formally) a particular class of solutions having the form

f (v, t) = e−3ctF (ve−ct ), c = const. (1)
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Then we obtain the time-independent equation for the self-similar profile F(v) and
some conditions on the constant c. This is what we did jointly with Carlo Cercignani
approximately 20 years ago [5–7]. By that time I already had some experience
with related classes of group—invariant solutions to this equation [1, 2]. On the
other hand, Carlo Cercignani had an idea to use the Pomeau [24] approach to the
structure of infinitely strong shock wave. The connection with this approach is
briefly explained in [6]. Unfortunately we did not manage to produce something
useful for shock waves. However, the results of [5–7] for the spatially homogeneous
case were interesting. In fact we studied only isotropic (depending on |v|) solutions
having the form (1). We have proved that these solutions are positive and describe
a large-time asymptotics for certain classes of initial data. Integral representations
of two particular solutions were constructed in explicit form. They represent two
non-trivial examples of eternal solutions of the Boltzmann equations, which exist
for all real values of time t (for more information see the book [4]).

The self-similar solutions of the form (1) and related questions were studied more
deeply in some interesting mathematical papers, see, e.g., [11, 23]. Of course, a
serious drawback of solutions (1) is that they obviously contradict to the energy
(the second moment of F ) conservation. The contradiction can be avoided only
if the second moment of the positive function F(v) is infinite. It is really so
for above discussed solutions, they all have an infinite second moment. Thus, it
is a very unusual class of solutions for rarefied gas dynamics. However, there
is a quite different class of spatially inhomogeneous solutions to the Boltzmann
equation, which can also lead to distribution functions of the form (1.1). These
are the so-called homoenergetic affine flows introduced in 1950s independently
by Galkin [17] and Truesdell [25]. There are many related references, we just
mention two books [18, 26], and contributions of Cercignani to these areas [12–
14]. Recently these flows were considered in detail in a series of papers by James,
Nota and Velazquez [19–21], see also [10, 15]. Roughly speaking, these are spatially
inhomogeneous flows of gas having the linear (with respect to spatial variable
x ∈ R

3 ) profile of the bulk velocity. This assumption allows to reduce the problem
to the modified spatially homogeneous Boltzmann equation. The general form of
this equation introduced in [10] is also considered in the present paper. Our aim is
to study solutions of this equation having the form (1). The interest to this problem
is partly caused by the first proof of existence of self-similar solutions of that kind
in [19] and [10]. The modified Boltzmann equation depends on a small parameter.
This small parameter is assumed in these papers to be “as small as we want”.
One of the goals of the present paper is to weaken this assumption and to prove
that all main results of our previous work [10] remain valid for moderately small
values of the parameter (roughly 10% of contribution of collisions) and to show
why the proof cannot be extended to larger values. Unfortunately the restricted
volume of the paper does not allow to include details of the proofs, they will be
published elsewhere. Below we confine ourselves to statement of the problem in
Sect. 2, eigenvalue problem for matrices in Sect. 3 and formulation of main results
in Sect. 4.
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2 Statement of the Problem

We consider a modified Boltzmann equation [10] for the distribution function
f (v, t), where v ∈ R

d , d ≥ 2, and t ∈ R+ denotes, respectively, the particle
velocity and time. The equation reads

∂tf − divv (Avf ) = Q(f, f ) , (2)

where A ∈ Md×d(R) is a constant real matrix and Q(f, f ) is the collision integral
for Maxwell molecules

Q(f, f ) (v) =
∫

Rd×Sd−1

dwdng
(
û · n) [f (v′)f (w′)− f (v)f (w)

]
, n ∈ Sd−1

(3)

u = v − w, û = u/|u|, v′ = 1

2
(v +w + |u|n) , w′ = 1

2
(v + w − |u|n) .

We assume that

f (v, 0) = f0(v) ≥ 0,
∫
Rd

dv f0(v)v = 0,
∫
Rd

dv f0(v) = 1. (4)

The kernel g(η) in (3), with η ∈ [−1, 1], is non-negative and normalized by unity

∫
Sd−1

dng(ω · n) = 1, ω ∈ Sd−1. (5)

The motivation for considering the modified Boltzmann equation (2) is discussed
in detail in [10]. In particular, we note that the well-known shear flow for the
Boltzmann equation is described by Eq. (2) with nilpotent matrix A such that

A = {aij ; i, j = 1, ..., d}, (6)

where a12 = a = const., a �= 0 and all other elements of A are zeros. Many related
details and references can be found in [8, 12–14, 18, 19, 26].

Formally the second term in (2) describes the action of the external force

F = −Av, A ∈ Md×d(R), (7)

which looks like the anisotropic friction force proportional to components of the
particle velocity. Let us consider, e.g., the simplest case of Eq. (2) with

A = aI, a ∈ R, (8)
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where I is the unit matrix, a is a constant with any sign. If a > 0 this is just a regular
friction forceF = −av, a > 0. The solution f (v, t) of (2)–(5) under assumption (8)
leads to the following behaviour of the second moment (energy):

dE(t)/dt = −2aE(t) ⇒ E(t) = E(0)e−2at ,

where

E(t) =
∫
Rd

dvf (v, t)|v|2.

This equality gives an idea to consider the Eq. (2) in self-similar variables by
substitution

f (v, t) = edat f̃ (ṽ, t), ṽ = veat . (9)

Then after simple calculations, we obtain the familiar spatially homogeneous
Boltzmann equation for f̃ (ṽ, t)

f̃t = Q(f̃ , f̃ ), f̃ |t=0 = f0(ṽ). (10)

If, in addition,

E(0) =
∫
Rd

dvf0(v)|v|2 = d,

then we know (H-theorem for (10)) that

f̃ (ṽ, t) → f̃M(ṽ) = (2π)−d/2e−|ṽ|2/2, as t →∞.

Hence, coming back to initial variables, we (1) obtain the simplest self-similar
solution of (2), (8), namely

fs−s(v, t) =
(

2πe−2at
)−d/2

exp
(
−|veat |2/2

)
, (11)

and (2) show that this particular solution is an attractor for various classes of initial
data. It is obvious that this simple example is valid also for a < 0 in (8) (accelerating
forces) and for arbitrary kernel (not necessary the Maxwellian one) in the collision
integral.

Roughly speaking, our task is to prove that the situation is, to some extent, similar
in the case of arbitrary matrix A in (2) provided that its norm is not too large. In fact,
all proofs were already done in our previous paper [10] with standard formulations
of results like as “There exists such ε0 > 0 that the following property holds under
assumption that ‖A‖ ≤ ε0... ”. This approach allows to avoid some technical work,
but it does not show true limits (in terms of ‖A‖) of the results. The main aim of this
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paper is to partly clarify this question. Here and below we use the so-called operator
norm for matrices [22]. Its properties are discussed in the next section.

Following [10] we pass to the Fourier-representation [3] of the Eq. (2) and
introduce the characteristic function ϕ(k, t) (cf. [16])

ϕ(k, t) =
∫
Rd

dv f (v, t)e−ik·v, k ∈ R

d . (12)

Then we obtain

∂tϕ + (Ak) · ∂kϕ = I+(ϕ, ϕ)− ϕ|k=0ϕ , (13)

where

I+(ϕ, ϕ)(k) =
∫

Sd−1

dng
(
k̂ · n

)
ϕ(k+)ϕ(k−), k± = 1

2
(k ± |k|n) , k̂ = k

|k| .

(14)

The initial condition becomes

ϕ(k, 0) = ϕ0(k) =
∫
Rd

dv f0(v)e
−ik·v, ϕ0(0) = 1.

Note that (2) implies the mass conservation. Therefore

ϕ(0, t) = ϕ0(0) = 1, (15)

and we obtain from (13)

∂tϕ + ϕ + (Ak) · ∂kϕ = I+(ϕ, ϕ) = �(ϕ). (16)

For brevity we consider below the self-similar solution only. Following [10], we
look for such solution in the form

ϕs−s(k, t) = �(keβt), β ∈ R. (17)

Note that it corresponds to the distribution function (11), where a = −β. The
parameter β will be defined below.

Then we pass to self-similar variables in (16) by substitution

ϕ(k, t) = ϕ̃(k̃, t), k̃ = keβt , (18)

and obtain omitting tildes

∂tϕ + ϕ + (Aβk
) · ∂kϕ = �

[
ϕ
]
, Aβ = A+ βI. (19)
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It is clear that the self-similar solution (17) of Eq. (16) becomes a stationary solution
for Eq. (19). The differential form of the stationary solution is obvious from (19).
Its integral form can be obtained at the formal level from the operator identity

∞∫

0

dte
−t
(

1+D̂
)
=
(

1+ D̂
)−1

, (20)

where D̂ is an abstract operator. We refer to [10] for conditions of equivalence of
these integral and differential forms of equation for �(k). The integral equation
reads [10]

�(k) =
∞∫

0

dtEβ(t)�[�(k)], (21)

where �[�(k)] = I+(�,�) is given in (14),

Eβ(t) = exp
[−t(1+ Aβk · ∂k

)]
. (22)

It is easy to see that the action of the operator Eβ(t) on any function ϕ(k) is given
by formula

Eβ(t)ϕ(k) = e−tϕ
[
e−βt

(
e−tAk

)]
. (23)

Equation (21) will be solved below with all necessary estimates. We begin in the
next section with the definition of β and some preliminary estimates.

3 Eigenvalue Problem for Matrices

We can apply the operator
(
1+Aβ k · ∂k

)
to the Eq. (21) and obtain the equation for

�(k) in differential form (see also (19))

(
1+ βk · ∂k + Ak · ∂k

)
�(k) = �[�](k). (24)

It is always assumed below that �(k) is a characteristic function (the Fourier
transform of a probability measure in R

d ) and has the following asymptotic
behaviour for small |k|:

�(k) = 1− 1

2
B : k ⊗ k +O

(|k|p) (25)
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for some 2 < p ≤ 4. The notation B = {bij ; i, j = 1, · · · , d} is used for
symmetric positively defined matrix. We also denote for brevity

B : k ⊗ k =
d∑

i,j=1

bij kikj .

The formula (25) means that the corresponding distribution function, i.e., the inverse
Fourier transform of �(k), has finite moments of the order 2+ε, ε > 0 (see [10] for
details). It can be shown that the matrix B and the parameter β satisfy the following
equation (see Eq. (8) in [10]):

βB + θ

(
B − TrB

d
I

)
+ 〈BA〉 = 0, (26)

where

θ = qd

4(d − 1)
, q =

∫
Sd−1

dng(ω · n)[1− (ω · n)2], ω ∈ Sd−1;

TrB =
d∑
i=1

bii, 〈BA〉 = 1

2
[BA+ (BA)T ],

(27)

here the upper index T denotes the transposed matrix. This equation can be easily
obtained by substitution of (25) into Eq. (24). We are interested in solution (β, B) of
the eigenvalue problem (26) such that the eigenvalue β has the largest (as compared
to other eigenvalues) real part. In addition, the real symmetric matrix B must have
only positive eigenvalues. The existence of such solution (β, B) was proved in
Lemma 7.3 in [10] under assumption that ‖A‖ ≤ ε0 for sufficiently small ε0 > 0,
where

‖A‖ = sup
|k|=1

|Ak|, k ∈ R

d . (28)

No estimate of ε0 was given in [10]. Our aim in this paper is to fill this gap and to
show that main results of that paper remain valid for moderately small values of ε0.

4 Main Results

We begin with the eigenvalue problem from Sect. 3.

Lemma 1 For any real (d × d) matrix A satisfying the condition

‖A‖ < θ

6
, θ = qd

4(d − 1)
, (29)
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in the notation of Eq. (27), the eigenvalue problem (26) has a unique solution (β, B)
such that

1. β has the largest real part among all eigenvalues of the problem (26) and
2. the symmetric (d × d)-matrix B is normalized by condition TrB = d .

This solution can be represented by power series

β = θ

∞∑
n=1

βnε
n, B =

∞∑
n=1

Bnε
n, ε = ‖A‖

θ
, B0 = I,

convergent for |ε| ≤ 1/6. The eigenvalue β is real and simple. The matrix B is
positive-definite. The following estimates are valid under condition (29)

|β| < 2‖A‖, β − β ′ ≥ θ − 5‖A‖, ‖B − I‖ < 1,

where β ′ �= β is any other eigenvalue of the problem (26).

This lemma defines the parameter β in the Eq. (21) for the self-similar profile �(k).
It also defines the matrix B related to behaviour of �(k) for small |k| (see Eq. (25)).
The function �(k) can be constructed by iterations of the integral operator in (21).
A convenient initial approximation is given by function

�0(k) = exp

(
−1

2
B : k ⊗ k

)
, k ∈ R

d .

We just formulate the final result.

Theorem 1 Consider the integral equation (21) and assume that

‖A‖ < q

24
, q =

∫
Sd−1

dng(ω · n)[1− (ω · n)2], ω ∈ Sd−1. (30)

It is also assumed that the solution �(k) of that equation has asymptotic behaviour
for small |k| in accordance with Eq. (25) for some p ∈ (2, 4].
(i) Then the symmetric matrix B in (25) normalized by condition TrB = d

and the parameter β in (21) coincide with the solution (β, B) of eigenvalue
problem (26) constructed in Lemma 1.

(ii) For β and B from the item (i) there is a unique characteristic function �(k)

that solves Eqs. (21)–(23) and satisfies the asymptotic formula (25). The correct
value of p in (25) is p = 4 provided that condition (30) holds.

We also consider the initial value problem for characteristic function ϕ(k, t) in
self-similar coordinates (16). The problem reads (see Eq. (19))

ϕt + Aβk · ϕk + ϕ = �(ϕ), ϕ|t=0 = ϕ0(k), k ∈ R

d , (31)
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where Aβ = A+ βI , β ∈ R. It is assumed that

∣∣∣∣ϕ0(k)−
(

1− 1

2
G0 : k ⊗ k

)∣∣∣∣ ≤ C0|k|4, C0 = const., k ∈ R

d , (32)

in the notation analogous to Eq. (25). Then it is known from [10] that there exists a
unique characteristic function ϕ(k, t) that solves the problem (31) and satisfies the
condition

∣∣∣∣ϕ(k, t)−
(

1− 1

2
G(t) : k ⊗ k

)∣∣∣∣ ≤ C1|k|4, C1 = const., k ∈ R

d,

where G(t) is a time-dependent symmetric (d × d) matrix that solves the problem

1

2
Gt + βG+ θ

(
G− TrG

d
I

)
+ 〈GA〉 = 0, G|t=0 = G0, (33)

in the notation of Eqs. (27) with B = G.
Hence, the matrix G(t) satisfies the linear ODE with constant coefficients. We

assume that the parameter β in (31) is the eigenvalue from Lemma 1. Then the
matrix B from Lemma 1 is a stationary solution of Eq. (33). We can prove that

G(t) = c2B +O[exp(−qt/12)], t ≥ 0,

for some constant c > 0 provided the condition (30) is satisfied. The constant c
depends on G0. The following statement shows the asymptotic role of the self-
similar profile �(k).

Theorem 2 Let ϕ(k, t) be a solution of the problem (31), where ‖A‖ < q/24 and
ϕ0(k) is a characteristic function satisfying (32). Let the parameter β in (31) and
the function�(k) be the same as in Theorem 1. Then there exist two constants c > 0
and C > 0 such that

|ϕ(k, t)− �(ck)| ≤ C(|k|2 + |k|4)e−μt , μ = q − 24‖A‖
16

, k ∈ R

d , t ≥ 0.

The above results can be expressed in terms of distribution functions f (v, t) in the
same way as in [10].

5 Conclusions

We have considered the modified spatially homogeneous Maxwell–Boltzmann
equation (2). The equation contains an additional force term divAvf , where v ∈ R

d ,
A is an arbitrary constant (d×d)-matrix. Applications of this equation are connected
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with well-known homoenergetic solutions to the spatially inhomogeneous Boltz-
mann equation studied by many authors since 1950s. The self-similar solutions and
related questions for Eq. (2) were recently considered in detail in [10] by using the
Fourier transform and some properties of the Boltzmann collision operator in the
Fourier representation [9]. Main results of [10] were obtained under assumption of
“sufficiently small norm of A” in (2) without explicit estimates of this “smallness”.
Our aim in this paper was to fill this gap and to prove that most of the results related
to self-similar solutions remain valid for moderately small matrices A with norm
‖A‖ = O(10−1) in dimensionless units. This is important for applications because
it shows boundaries for the approach based on the perturbation theory. The main
results of the paper are formulated in Theorems 1 and 2 from Sect. 4. These theorems
extend the corresponding results of [10] to moderate values of ‖ A‖. The main idea
of proofs of new estimates is based on detailed study of the eigenvalue problem (26),
see Lemma 1 from Sect. 4. A by-product result is the proof of existence of the
bounded fourth moment of the self-similar profile for moderate values of ‖ A‖.
The question of existence of all moments for the self-similar profile F(v) remains
open even in the class of arbitrarily small norm of A.
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supported by Russian Science Foundation Grant No. 18-11-00238-�. The author thanks Alessia
Nota and Juan Velazquez for valuable discussions.

References

1. Bobylev, A.V.: On exact solutions of the Boltzmann equation. Dokl. Acad. Nauk SSSR 225,
1296–1299 (1975). English translation in Sov. Phys. Dokl. 20, 822–824 (1976)

2. Bobylev, A.V.: A class of invariant solutions of the Boltzmann equation. Dokl. Acad. Nauk
SSSR 231, 571–574 (1976). English translation in Sov. Phys. Dokl. 21, 632–635 (1976)

3. Bobylev, A.V.: Fourier transform method in the theory of the Boltzmann equation for Maxwell
molecules. Dokl. Acad. Nauk SSSR 225, 1041–1044 (1975). English translation in Sov. Phys.
Dokl. 20, 820–822 (1976)

4. Bobylev, A.V.: Kinetic Equations, Volume 1: Boltzmann Equation, Maxwell Models and
Hydrodynamics Beyond Navier–Stokes. De Gruyter, Berlin/Boston (2020)

5. Bobylev, A.V., Cercignani, C.: Self-similar solutions of the Boltzmann equation and their
applications. J. Stat. Phys. 106(5-6), 1039–1071 (2002)

6. Bobylev, A.V., Cercignani, C.: Exact eternal solutions of the Boltzmann equation. J. Stat. Phys.
106(5-6), 1019–1038 (2002)

7. Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with elastic
and inelastic interactions. J. Stat. Phys. 110, 333–375 (2003)

8. Bobylev, A.V., Caraffini, G.L., Spiga, G.: On group invariant solutions of the Boltzmann
equation. J. Math. Phys. 37, 2787–2795 (1996)

9. Bobylev, A.V., Cercignani, C., Gamba I.M.: On the self-similar asymptotics for generalized
non-linear kinetic Maxwell models. Commun. Math. Phys. 291, 599–644 (2009)

10. Bobylev, A.V., Nota, A., Velazquez, J.L.: Self-similar asymptotics for a modified Maxwell–
Boltzmann equation in systems subject to deformations. Commun. Math. Phys. 380, 409–448
(2020)



On a Class of Self-Similar Solutions of the Boltzmann Equation 83

11. Cannone, M., Carch, G.: Infinite energy solutions to the homogeneous Boltzmann equation.
Commun. Pure Appl. Math. 63(6), 747–778 (2010)

12. Cercignani, C.: Existence of homogeneous affine flows for the Boltzmann equation. Arch.
Ration. Mech. Anal. 105(4), 377–387 (1989)

13. Cercignani, C.: Shear flow of a granular material. J. Stat. Phys. 102(5), 1407–1415 (2001)
14. Cercignani, C.: The Boltzmann equation approach to the shear flow of a granular material. Phil.

Trans. R. Soc. 360, 437–451 (2002)
15. Duan, R., Liu, Sh.: The Boltzmann equation for uniform shear flow. arXiv: 2008. 0255 IvI

[math. AP] 6 Aug. 2020
16. Feller, W.: An Introduction to Probability Theory and Applications. Wiley, New York (1971)
17. Galkin, V.S.: On a class of solutions of Grade’s moment equation. PMM 20, 445–446 (1956)
18. Garzo, V., Santos, A.: Kinetic Theory of Gases in Shear Flow, Nonlinear Transport. Kluwer

Academic Publishers, Dordrech (2003)
19. James, R.D., Nota, A., Velazquez, J.J.L.: Self-similar profiles for homo-energetic solutions of

the Boltzmann equation: particle velocity distribution and entropy. Arch. Ration. Mech. Anal.
231(2), 787–843 (2019)

20. James, R.D., Nota A., Velazquez, J.J.L.: Long-time asymptotics for homoenergetic solutions
of the Boltzmann equation: collision-dominated case. J. Nonlin. Sci. 29(5), 1943–1973 (2019)

21. James, R.D., Nota, A., Velazquez, J.J.L.: Long-time asymptotics for homoenergetic solutions
of the Boltzmann equation: hyperbolic - dominated case. Nonlinearity 33(8), 3781–3815
(2020)

22. Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer (1976)
23. Morimoto, Y., Yang, T., Zhao, H.: Convergence to the self-similar solutions to the spatially

homogeneous Boltzmann equation. J. Eur. Math. Soc. 19, 2041–2067 (2017)
24. Pomeau, Y.: Shock at very large Mach number in simple gases: a physicist approach. Transp.

Theory Stat. Phys. 16, 727–734 (1987)
25. Truesdell, C.: On the pressures and flux of energy in a gas according to Maxwell’s kinetic

theory I. J. Ration. Mech. Anal. 5, 55–128 (1956)
26. Truesdell, C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory for a Simple

Monatomic Gas. Academic Press, London (1980)



The Einstein Classical Program,
the Wheeler-Feynman Reabsorption
and Kirchhoff’s Law

A. Carati and L. Galgani

Abstract The Einstein “Classical Program” consists in trying to recover Quantum
Mechanics (undoubtedly the “good” theory) within a “realistic” theory. Here we
address the extreme form of the program in which the realistic theory is just classical
electrodynamics of charges, with their Newtonian trajectories. First of all we remove
the objection that in a classical frame “electrons fall on nuclei and ions come to
rest”, because of radiation emission by the accelerated charges. Indeed this is not
proved for charges in bulk, which is the case of interest for atomic physics. On the
other hand we use a generic cancellation property of the single-particle emissions
for matter in bulk, which was proposed by Wheeler and Feynman in 1945, and is
actually proven. We also point out that such cancellation explains two fundamental
laws of physics, whose microscopic explanation is apparently lacking. Namely,
Kirchhoff’s law for the energy radiated by a hot body (emission proportional to
surface rather than to volume), and reabsorption in plasmas. Finally, some examples
of implementation of the extreme Einstein program are mentioned, one of which,
the existence of polaritons in ionic crystals, is a phenomenon not yet explained in a
quantum frame.

1 Introduction

The Einstein Classical Program, informally presented in the last part (Reply to
Authors) of the book “Albert Einstein Philosopher Scientist” [1], amounts to try
to prove that Quantum Mechanics (admittedly the correct theory) may be recovered
as some kind of theorem within a comprehensive theory having some “realistic”
character. An extreme form of the program consists in considering as realistic theory
classical electrodynamics of point charges with their trajectories, or rather, as we
shall see, classical electrodynamics of point charges in bulk. Such program was
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also conceived by Carlo Cercignani, to whose memory the present Conference is
dedicated: see papers [2, 3] and [4], as well as the contribution of Fabrizio Gangemi
to this conference, in connection with zero-point energy [5].

Now, the common opinion, expressed in all available handbooks, is that such
extreme form of the program is a priori impossible, because of a presumed
“unsurmountable” obstacle. Namely that, due to radiation emission by accelerated
charges, persistent motions could not exist in a classical framework for atomic
physics: “electrons would fall on nuclei and ions would come to rest”. We dare
to challenge such objection, and show that it is wrong. The proof of this statement
is the main content of the present paper. It will be given both along the lines of the
1945 Wheeler and Feynman paper [6] (i.e., “in general”, with suitable hypotheses),
and also by direct verification in particular cases.

In order to go to the heart of the problem, it may be useful to turn the question
around, and ask where a proof of this objection can be found. The embarrassing
answer is that such proof does not exist. The point is that here we are facing with a
misunderstanding. Indeed, it is true that, according to the familiar Larmor formula,
an accelerated charge emits power proportional to its acceleration squared, but this
is only proven for a single charge, whereas, considering a typical counterexample,
a macroscopic current in a metallic ring (a current constituted by an essentially
infinite number of charges) is proven not to emit energy at all.1 In other terms, the
fields created by the charges of a system add up, but in general their emissions do
not, and what occurs for a many-body system of partially correlated charges is not
at all obvious. Rather, in their 1945 paper, addressing such problem in a classical
framework, Wheeler and Feynman [6] advanced the opposite conjecture, namely
that, in general (we will come back later to this point), in the case of charges in bulk,
a full compensation (or cancellation, or reabsorption) is met, so that no emission
proportional to volume occurs, i.e., the bulk acts, they say, as a perfect or complete
absorber.

It is a curious fact that such qualitatively relevant result seems to have been
essentially ignored by the scientific community. Perhaps, for what concerns its
possible application to the foundations of quantum mechanics, one reason may be
found in the impact of the examples in which quantization was originally performed,
since they were all concerned with single atoms or molecules (think of the cases of
H or H2). This was emphasized by Fokker in the first lines of article [7], so often
quoted by Wheeler and Feynman. In any case, if their result were correct, then the
main objection to the extreme Einstein program would be removed, and one would
be authorized to pursue it. Furthermore, one would have available a theoretical
explanation of two relevant macroscopic phenomena apparently considered still
unexplained, both in the classical and in the quantum framework. Namely, Kirchhoff
law (the radiant energy emitted by a hot body is proportional to surface rather than to
volume), and the reabsorption phenomenon of plasmas (persistence of the gyration

1 This is proposed as an exercise in Jackson’s handbook.
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motions of the electrons in a strong magnetic field).2 For a microscopic approach to
plasmas, see the contribution [10] to this conference.

Two are the contributions we aim to bring to the fore with the present paper, on
the basis of works performed in our group since the year 2003. The first one is of a
didactic character, consisting in an attempt at producing a concise, hopefully clear,
formulation of the Wheeler-Feynman “theory”, which is presented by them in an
extremely verbose, rather uneasy, style. The second contribution concerns their main
result, i.e., the complete reabsorption property of the bulk. The way they formulate
such property may appear at first sight a little ambiguous, to the point that one might
wonder whether it is a proof or a conjecture (this possibly being the reason for the
essential neglect of their paper by the scientific community). In this connection,
working at a general level as they do, we first of all present a sufficient condition
for the reabsorption property, expressed in terms of the “material current” (i.e., the
electric current defined by the motions of the charges), which may appear even more
perspicuous than their own hypothesis (validity of the Wheeler-Feynman identity).
Moreover, we report results for a concrete realistic model of ionic crystals, in which
the only hypothesis introduced is the very system of equations defining the Wheeler-
Feynman model (the “standard” model, as they call it). Then no explicit hypothesis
is anymore required, and the Wheeler-Feynman identity, which formally expresses
the complete reabsorption property, shows up as a theorem.

In Sect. 2 we introduce the Wheeler-Feynman dynamical system, i.e., the
equations of motion (involving damping forces) postulated by them, along the lines
of Dirac, for the dynamics of a system of N charges. Additionally. we mention
their main idea of the reabsorption property, namely, that the damping force acting
on each charge may be canceled by the electric forces due to all other charges
in the bulk, thus making undamped motions possible. In Sect. 3 we show how
they formulate the reabsorption property in mathematical terms, and also add a
significant sufficient condition for it. Moreover, we introduce a complementary
sufficient condition, that might be even more perspicuous.

In Sect. 4 we illustrate the results obtained for concrete examples, particularly a
realistic model of ionic crystals, for which the reabsorption property is checked
directly, with no need of further hypotheses. We also show how this leads, for
the ionic crystal model, to the proof of relevant physical properties. First of all
the existence of polaritons, a phenomenon, due to retardation, not yet proven in
a quantum framework, and furthermore a very good reproduction of the infrared
spectra, expressed in terms of the time-correlations of the Newtonian trajectories of
the ions.

2 Concerning plasma reabsorption, the lack of an explanation at the microscopic level of particle
trajectories is generally pointed out, in particular by Artsimovich [8], the “father of tokamak”.
However, at the macroscopic level of dynamics of fluids an explanation is apparently given in a
long paper by Bornatici et al. [9].
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2 The Wheeler-Feynman Approach to the Electrodynamics
of Charges in Bulk: The Idea of a Reabsorption or
Cancellation Making Undamped Motions Possible

2.1 The Dirac-Wheeler-Feynman Equations of Motion

The Wheeler-Feynman electrodynamics is first of all, as they repeatedly point out,
nothing but standard electrodynamics of point charges, as formulated by Dirac in
his celebrated paper [11] “Classical theory of radiating electrons”, written in 1938,
i.e., ten years after his formulation of Quantum Electrodynamics.

In the non relativistic approximation we consider in this paper, this amounts to
Newton equations for a system of N point particles, with mutual retarded electric
forces, and with the radiation reaction (or damping) force acting on each charge,
described by the familiar term proportional to the time derivative of acceleration,
introduced by Planck and discussed by Abraham and Lorentz. So one has the system
of equations3

mj ẍj = ej
∑
l �=j

Eret
l + 2e2

j

3c3
...
x j , (1)

where mj, ej and xj are mass, charge and position vector of the j -th charge, Eret
l

the retarded field due to the l-th charge evaluated at the position of the j -th charge,
while c the speed of light in a vacuum.4

2.1.1 Conceptual Problems for the Dirac Equation: The Idea of Wheeler
and Feynman

The Dirac equation, even in the case of a single charge in an external field, is often
regarded with some suspicion, since its solutions are known to present peculiar
unexpected features. Some strange features were pointed out by Dirac himself, in

3 We don’t discuss here the role of an incident field, as Dirac calls it, that could be added at the right
hand side. Indeed, it was shown for example in [12] how susceptibility, the relevant quantity for the
computation of the spectra (which in principle involves external fields), can actually be obtained
as a property of the equilibrium fluctuations of the isolated system.
4 Notice that, from the analytic point of view, because of retardation these equations present
formidable problems. For example, for an infinitely extended system the computation of accelera-
tions requires knowing the motions of all particles from minus infinity up to the initial time. Thus
essentially nothing is known in general even about existence of solutions. An analytic approach is
however available, which leads to particular significant solutions (traveling waves), for a linearized
version of the model describing ionic crystals. As we shall see later, this approach has made
possible the description of polaritons, a phenomenon which is not yet amenable to a quantum
description.
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a very positive way, up to the point of writing the following comment: (page 157,
bottom): “This will lead us to the most beautiful feature of the theory”.

Notice that the presence of a damping force might suggest that in a classical
framework persistent motions (for example periodic ones), that are the relevant
ones for atomic physics, would be altogether impossible. Here, however, the
main contribution of Wheeler and Feynman comes in, someway implementing the
premonition of Dirac. Their contribution can be described in the simplest way by
making reference to the symmetry properties of the equations with respect to time
reversal. The point is that Eq. (1) do not present such invariance, since they contain
the third-order damping effective force, which takes into account the radiation any
single charge would emit if it were isolated, in addition to containing retarded forces.
Rather, what Wheeler and Feynman conceived is that the damping forces acting
on each charge are effectively necessary for persistent motions to occur. Indeed,
they understood that in general the forces that act on a charge due to the remaining
charges of the bulk, in fact build up (in the limit of an essentially infinite number of
charges) a term with a modulus equal to that of the damping force, but with opposite
sign. Thus the damping force is exactly canceled, whereas an increase of energy
would take place if the damping force were missing in the equations of motion. So
in the end one remains with a time-reversal invariant system, thus allowing for the
occurrence of persistent motions.

We met with such incredible cancellation when studying a toy model [13] for
the dynamics of a black body, in which the cancellation showed up unexpectedly in
the analytic expression of the solutions. Only later could we understand that this is
indeed the content of the Wheeler-Feynman “theory”, of which we were somehow
aware without having really understood it.5

3 The Reabsorption Property, or Cancellation, as the Main
Content of the Wheeler-Feynman Electrodynamics for
Matter in Bulk

3.1 First Step: The Oseen Identity

The simplest way of illustrating the procedure used by Wheeler and Feynman is the
following. One introduces the obvious identity6

Eret
l = 1

2

(
Eret
l + Eadv

l

)
+ 1

2

(
Eret
l − Eadv

l

)
. (2)

5 It may be worth recalling that such work was performed in connection with the foundations of
quantum mechanics. Indeed it was motivated by a criticism to the original papers of Planck on the
black-body. See work [14], presented in occasion of the sixtieth birthday of Francesco Guerra.
6 Notice that an explicit introduction of advanced fields is not necessary. When we first met with
the cancellation in our toy model, the advanced fields entered only later, in a reinterpretation of the
result. See the contribution [10] at this conference.
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so that equation (1) takes the form

mj ẍj − 1

2
ej
∑
l �=j

(
Eret
l + Eadv

l

)
= 2e2

j

3c3
...
x j + 1

2
ej
∑
l �=j

(
Eret
l − Eadv

l

)
(3)

in which the distribution of the terms between the two sides was performed so that
they are symmetric and respectively anti symmetric with respect to time reversal.
Now, Wheeler and Feynman say that the bulk is a perfect or complete absorber if
the right hand side vanishes identically. Additionally they give arguments supporting
the thesis that, in general, for large numbers N of charges the bulk should actually
be a perfect absorber. In any case, for a perfect absorber the right hand side of Eq. (3)
vanishes, i.e., one has the identity

2e2
j

3c3

...
x j + 1

2
ej
∑
l �=j

(
Eret
l − Eadv

l

)∣∣∣
xj
= 0 , (4)

which plays the role of some kind of kinematic property. Thus, eventually, the role
of equations of motion is played by the remaining equations

mj ẍj = 1

2
ej
∑
l �=j

(
Eret
l + Eadv

l

)∣∣∣
xj
, (5)

which enjoy time-reversal symmetry. This is the way in which the authors recover
time-reversal invariance by virtue of suitable properties of the bulk (an apparently
strange suggestion, indeed). In their words (page 170, top left): “We find in the case
of an absorbing universe a complete equivalence of the theory of Schwarzschild and
Fokker” (Eq. 5) “on the one hand, and the usual formulation of electrodynamics”
(Eq. 1) ”on the other”.

The symmetric equations (5) remind of the occurrence of the Feynman (or
causal) propagator (semi sum of advanced and retarded propagators) in quantum
electrodynamics. In particular, if delay is neglected, one recovers the familiar
Hamiltonian model usually considered in quantum mechanics, in which one behaves
as if no damping force were conceived at all.7

Notice that the structure of the identity (4) shows how the name “complete
absorber” introduced by Wheeler and Feynman for such bulk is appropriate. Indeed
it says that the power that would be emitted by any charge j (the term proportional
to

...
x j ) if it were isolated and not immersed in a bulk is exactly canceled by a suitable

7 A reading of Born’s book of 1933 (see [15], page 431) shows that the relevance of the classical
radiation reaction force was well clear to him. However, he had to take into account that it was not
easy to fit such force within quantum theory. In his very words: “Diese ganze klassische Theorie
der Strahlungdampfung ist natürlich mit der heutigen Quantumtheorie des Licht und der Materie
nicht vertäglich”.
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joint action (semi difference of retarded and advanced forces) of all other charges:
Energy emission proportional to volume is thus excluded, and only one proportional
to surface might be allowed (see [16]). This is indeed the reabsorption property
which removes the main objection to the use of Newtonian trajectories in atomic
physics, and at the same time explains Kirchhoff’s law and reabsorption in plasmas.
One should point out, however, that the reabsorption property only excludes the
presence of radiation having a speed equal to c, the speed of light in a vacuum. It
will be explained in the next section how a perfect absorber may be transparent to
light propagating with a refractive index n different from 1.

One can also understand why such identity at first appeared to us to be some kind
of an incredible miracle, because it looks as if all the remaining charges with index
l �= j make a conspiracy exactly suited to cancel the emission of the considered
charge j , irrespective of where it is located. Additionally, this should occur for any
one of the charges.

To the cancellation property expressed by Eq. (4) we gave the name of Oseen
identity, since it was first proposed by such an esteemed Swedish mathematical-
physicist8 in a paper published in the Annalen der Physik in 1916. However, with
the authority of a well known encyclopedia of physics [17] such result was estimated
to be irrig, i.e., wrong, and Oseen decided to leave electrodynamics and work in the
field of hydrodynamics, where he obtained relevant acknowledged results.

3.1.1 A Global Formulation: The Wheeler-Feynman Identity Inspired to
Dirac’s Radiation Field

The elimination of the idea itself of a “conspiracy” is performed by Wheeler a
Feynman through a formulation of global type, as follows. Using the relation, found
by Dirac,

2e2
j

3c3

...
x j = (Eret

j − Eadv
j )

∣∣∣
xj

the Oseen identity (4) takes the form

∑
all

(Eret
l − Eadv

l )

∣∣∣
xj
= 0

i.e. ( with Eret =∑all Eret
l , Eadv =∑all Eadv

l )

(Eret − Eadv)

∣∣∣
xj
= 0 ,

8 Well known for his “extinction theorem”, relevant for the macroscopic theory of Optics in solids.
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namely, the total advanced field coincides with the total retarded one at the positions
of the particles. On the other hand, this is certainly guaranteed if one assumes, more
in general, that such fields are equal at all points x of space, i.e., if one assumes as a
hypothesis the relation

(Eret − Eadv)
∣∣
x = 0 for all x , (6)

which we call the Wheeler-Feynman identity.
One might now recall how Dirac had already pointed out that the vector

(Eret
l − Eadv

l ), being a solution of Maxwell’s equations without sources, has the
physical meaning of the “field of radiation” produced by charge l at the space-
time point (x, t). Thus the Wheeler-Feynman identity (6) appropriately expresses,
in Dirac’s terminology, the property that the field of radiation created by the whole
bulk actually vanishes, i.e., in the Wheeler-Feynman terminology, that the bulk is a
complete absorber.

3.1.2 A Further Little Step: A Sufficient Condition for the Reabsorption
Property, as an Uncorrelation Property of the “material” Electric
Current

Thus, Wheeler and Feynman proved that the identity (6) is a sufficient condition for
the bulk to be a perfect absorber, so that the time-reversal invariant form (5) of the
equations of motion actually holds. In their paper they give qualitative arguments
that appear to support the idea that the perfect-absorber property of the bulk should
be somehow “generic”. However our impression is that it is not an easy task to
understand whether one is dealing here with a theorem or with a conjecture. We
have no doubt that such uncertainty is due to our inabilities, but we dare complement
here their exposition by adding a sufficient condition that, in our opinion, makes the
generic validity of the Wheeler-Feynman identity more plausible. The new condition
for the perfect-absorber property of the bulk makes reference to the electric current
density j. This seems to be significant, since it is obvious that the currents usually
employed in producing radio emissions should not occur in a perfect absorber.
On the other hand these currents present peculiar correlation properties. So it is
clear that suitable uncorrelation properties of the current (i.e. of the motions of the
charges) are expected to constitute significant characteristic features of a perfect
absorber. A sufficient uncorrelation property is given below.

Preliminarily we show that the original Wheeler-Feynman identity (6) is equiv-
alent to a condition involving the material current, namely that the latter should
propagate with a (phase) velocity different from the velocity c of light in a vacuum.
This is seen (and made clear) as follows. Recall that one has

Eret =
∫

j(xμ − yμ)Dret (yμ) dy

Eadv =
∫

j(xμ − yμ)Dadv(yμ) dy
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where Dret and Dadv are the retarded and the advanced propagators (or Green
functions) respectively,9 the integration being extended over the whole space-time.
Now, D− = Dret −Dadv is a solution of the homogeneous wave-equation, so that
the support of its Fourier-transform D̂−(ω,k) is totally contained in the light-cone
ω2

c2 − k2 = 0,10 i.e., D̂−(ω,k) vanishes outside the light-cone. Since the Fourier
transform of a correlation is the product of the Fourier-transforms, the Fourier-
transform of the difference (Eret − Eadv) is given by

Ê
ret − Ê

adv = ĵ(ω,k)D̂−(ω,k) ,

and thus can vanish everywhere (as required by the Wheeler-Feynman condition) if
and only if ĵ(ω,k) vanishes on the light-cone. In conclusion, an equivalent condition
for the perfect-absorber property of the bulk is that the Fourier transform ĵ(ω,k)
of the current density vanishes on the light cone, i.e., that the current velocity be
different from the velocity c of light in a vacuum.

Finally, we give now a sufficient condition involving a correlation property of
the current. This was proved in the Appendix to paper [18]. Referring to such paper
for details, the result can be summarized as follows. One considers the four-current
density jν truncated in a box of volume V , and defines its auto correlation by

Cjν (s, t, x) = lim
V→∞

1

V

∫
V

jν(s, y)jν(s + t, y− x))dy .

Then one has

lim
V→∞

1

V

∫
V

∣∣∣Aret − Aadv

∣∣∣2dx = 0 ,

if the causality condition

Cjν (s, t, x) = 0 for c2t2 − x · x ≤ 0

holds. Here Aret and Aadv are the retarded and the advanced potentials, solutions
of the wave equations with the given current. So the theorem says that for causal
currents the retarded and the advanced potentials (and thus also the corresponding
fields) are almost everywhere equal in space-time, i.e., they differ at most in a set
having vanishing relative measure. Namely, they satisfy a form of the Wheeler-
Feynman identity.

9 Namely, the advanced and the retarded solutions of the wave equation having as source a four-
dimensional delta.
10 This simply follows remarking that, in terms of Fourier-transforms, the homogeneous wave

equation ∂μ∂
μD− = 0 reads as ( ω

2

c2 − k2)D̂− = 0.
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Thus for a current satisfying the causality condition the bulk is a perfect absorber,
Kirchhoff’s law holds, plasma reabsorption occurs, and the extreme form of the
Einstein Classical Program can be pursued.

4 The Wheeler-Feynman Reabsorption Property Checked in
Particular Models: The Case of Ionic Crystals

The turning point, with a passage from general reasonings to realistic models of
Wheeler-Feynman type, occurred for us through our dear late friend Giuseppe
Pastori Parravicini, an authority among the solid-state-physics theoreticians in Italy.
Indeed, he had come to know of our result for the toy model [13] of a black-
body, in which the Wheeler-Feynman identity had been checked in a direct way,
without the need of introducing any assumption (apart form the Ansatz of looking
for normal modes).11 Probably stimulated also by the very last sentence of our
paper:(“In our opinion, the status of the microscopic foundation of Optics .... should
perhaps be reconsidered”), he suggested to us that we might be able to explain the
existence of polaritons. This is a phenomenon concerning ionic crystals and due to
retardation of the forces, that the solid state theoreticians were unable to explain in
quantum mechanical terms. However, it is illustrated below how the phenomenon
was explained in a classical framework [18], thus going even beyond the Einstein
program.

4.1 The Ionic Crystals Model

For what concerns ionic crystals (the prototype of which is Lithium Fluoride, LiF),
here we limit ourselves to recall that since the times of Born they are described as a
system of point ions with mutual retarded electric interactions, plus an effective
phenomenological inter ionic potential, which implicitly takes into account the
contribution of the electrons, whose dynamics is neglected. Obviously, in the spirit
of the Dirac-Wheeler-Feynman approach, we also introduce the damping force
acting on each ion, i.e., we are assuming the equations of motion (1). For details
see [18].

4.1.1 Proof of the Wheeler-Feynman Identity, and the Existence of
Dispersion Relations

The Wheeler-Feynman identity is proved by checking the equivalent property
previously illustrated, namely that the phase waves of the fields have a velocity

11 The computations for a minor variant of the model suited for describing fusion machines in
plasmas are illustrated in this Conference in the contribution [10].
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different from c. This is seen by a computation of the dispersion relations for a
linearization of the model.

If one looks for traveling wave solutions Qei(ωt−k·xj ) of equations (5), one meets
with a secular equation which, due to the non instantaneous character of the forces
involved, is not algebraic in ω2, being instead transcendent. A good approximation
of the equation to be satisfied by Q is given, at least for the infrared frequencies, by
the formula

−ω2M̂Q = F̂(k)Q+ c1
k×Q

ω2 − c2k2

where M̂ is the diagonal mass matrix, F̂(k) is a matrix depending both on the
phenomenological inter ionic forces and on the electric field, whereas the last term
is explicitly due to the finiteness of the propagation velocity of the electric field.
The constant c1 depends in general on the type of crystal. The relevant point is that
the last term12 has the factor ω2 − c2k2 as denominator. So traveling waves with
ω = ±ck cannot exist and thus, as just recalled, the Wheeler-Feynman identity
holds, i.e., the bulk is proven to be a perfect absorber, in their sense.13

Notice that the fact that the crystal is a perfect absorber does not mean that light
cannot propagate inside of it. Rather, the crystal even is completely transparent
(apart from a very restricted interval of frequencies). The point is that, in the
medium, light propagates with a velocity that is different from c, and it can be
shown to coincide with the phase velocity of the “material” waves (see again paper
[18]). One thus explains, by the way, the occurring of a refractive index different
from 1. Instead, what does not propagate in the crystal is the “free” electromagnetic
field (i.e., the solution of the homogeneous wave equations), in agreement with the
Ewald–Oseen extinction theorem of optics.

4.1.2 Existence of Polaritons

We now illustrate how the existence of polaritons is proved. First of all, one notices
that there is a difference between the longitudinal waves (those with k parallel to Q)
and the transversal ones (those with k orthogonal to Q). In the first case, the secular
equation is analogous to that of the purely mechanical (i.e. Coulomb) one; in the

12 This is the dominant term of the series over m (regarding the reciprocal lattice) appearing in
formula (15) of the quoted paper, i.e., the term with m = 0, for which one has qm = 0.
13 By the way, also the very existence of a dispersion relation is made possible by such identity.
Indeed, due to the delay, the dispersion relation turns out to be complex. The imaginary part,
however, vanishes identically just by virtue of the Wheeler-Feynman cancellation. Thus one
remains with a unique real equation involving two “unknowns”, ω and k, so that ω is defined
in terms of the “parameter” k, i.e., the curve ω(k) turns out to be defined. This is indeed the way
we first happened to meet with the Wheeler-Feynman identity, when studying our toy model of a
black body [13].
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Fig. 1 Dispersion relation for Lithium Fluoride (solid line). The three acoustic branches are not
shown. The horizontal line is the longitudinal branch, while the two transverse ones are doubly
degenerate, and actually constitute the polaritonic branches. In total one has eight branches instead
of the six ones found in the mechanical case. Triangles are the experimental data

second case, the degree of the secular equation is the double, because of the presence
of the denominator in the last term at the right hand side. Thus, in the latter case
one meets with a double number of solutions with respect to the mechanical case.
Namely, in the dispersion relations there arise further branches, named polaritonic,
whose experimental existence was confirmed in the case of semiconductors at the
end of the years sixties of the last century, and in the subsequent decade in the case
of ionic crystals. Figure 1 reports an example of the dispersion relations obtained
through the Dirac-Wheeler-Feynman equations (5) for a Lithium Fluoride model.

5 Conclusion

So we have shown how the Dirac-Wheeler-Feynman classical electrodynamics of
charges in bulk allows one to overcome the main objection raised since always
against the use of classical Newtonian trajectories in atomic physics. This is due
to the Wheeler-Feynman reabsorption property, which is proven in realistic systems
and is made plausible in general. Such property apparently also explains relevant
macroscopic phenomena such as Kirchhoff’s law and reabsorption in plasmas.
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With the main objection eliminated, one can proceed along the Einstein classical
program in its extreme form involving Newtonian trajectories of charges, in order
to recover phenomena that are usually considered inconceivable in a classical
framework. In such spirit we reproduced in a remarkably good way the infrared
spectra of ionic crystals (through the motions of the ions) [19, 20], and proved (at the
moment, only in an essentially qualitative way) the existence of the chemical bond
in the simplest case in which it occurs, that of the ion of the H2 molecule which
involves only one electron [21]. In addition, a proof was given of the existence
of polaritons in ionic crystals, a phenomenon still unexplained in a quantum
framework.

Notice that, while in the case of ionic crystals the considered Born model has a
kind of quantum flavor, since it contains a phenomenological inter ionic effective
potential that implicitly takes the role of the electrons into account, in the case
of the H+

2 ion no quantum-like element at all is introduced, and one deals with
a fully classical purely Coulomb model of point charges. Planck’s constant enters
through the initial data regarding the angular momentum Lz of the electron about
the inter ionic axis. For small Lz the motion is chaotic and the electron falls on one
of the protons. Instead, for Lz 
 h the motion becomes sufficiently ordered for
the occurring of a further integral of motion, which plays the role of a suitable
effective potential acting on the electron (analogous to the quantum mechanical
Born-Oppenheimer one), and a stable ion is formed.

At the moment we are unable to deal with atomic-physics models involving more
than one electron, and with magnetic properties. Whether this limitation constitutes
an unsurmountable barrier or is just a provisional one, is an open problem that
we plan to tackle in the future. The available results (in particular the proof of
the existence of polaritons) allow one to conclude at least that the problem of
the relations between classical and quantum physics is much subtler than usually
believed, and that such relations seem to involve features that are beyond the reach
and the aims of semi classical physics.

Acknowledgments We thank Gianenrico Picone for a very careful critical reading of the paper.
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Reabsorption and Density Limit in
Magnetized Plasmas Through a
First-Principles Toy Model

A. Carati, M. Zuin, E. Martines, and L. Galgani

Abstract In the physics of magnetized plasmas there are problems of principle that
apparently still miss a microscopic explanation. A typical case is the reabsorption
of cyclotron emission by gyrational electron motions in a magnetic field. On the
other hand, it seems that a microscopic explanation of reabsorption is contained
in the 1945 paper of Wheeler and Feynman that, however, strangely enough,
to our knowledge is never mentioned in this connection. Here we introduce a
simple toy model that, on the one hand, contains all the features of the Wheeler–
Feynman electrodynamics (which in fact is just the standard electrodynamics, as
they repeatedly point out) and, on the other hand, presents such a simple kinematics
as to allow for an analytic treatment. In such way reabsorption is proven. As a
byproduct, a density limit for magnetic confinement due to a microscopic instability
is also deduced.

1 Introduction

Let us briefly recall what is the phenomenon of reabsorption for plasmas in a
magnetic field. This is related to the fact that an accelerated charge emits energy
with a power proportional to acceleration squared. For example, in the book of
Landau it is proposed, as an exercise, to show that in about 10−8 sec an electron
gyrating around a nucleus would fall on it. Analogously, in a plasma immersed in
a magnetic field, the electrons, gyrating around its field lines, should continuously
emit energy, coming finally to rest. Consequently magnetic confinement would be
impossible, and furthermore a plasma should emit an enormous quantity of energy
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[1] at the cyclotron (or Larmor) frequency.1 On the other hand, such emission
process is proven in the case involving a single charge, whereas the case involving a
system of charges is not currently discussed, in this connection, at a microscopic
level. However, experimentally, the power radiated from the plasma is by far
lower, as the plasma is found to be optically thick at the fundamental harmonic
at ωc = eB/me, where ωc the Larmor gyrational frequency. Evidently this is due to
the electromagnetic interaction of any charge with all the other ones, i.e., to the
fact that one is dealing with charges in bulk. So, things proceed in such a way
that the energy emitted by any single charge is reabsorbed (this is the term used)
by the other ones, but the relevant mechanism is apparently unknown. A curious
fact is that in our opinion such “cancellation mechanism” is implicitly contained
in the Wheeler–Feynman paper of 1945 (see [2], and paper [3], presented at this
conference). However, apparently such explanation is ignored.

The first aim of the present paper is to prove that such cancellation occurs in a
model that complies with all requirements of standard electrodynamics for a system
of charges, but presents a so simplified kinematics as to allow for an analytical
discussion.2

As a byproduct we will also point out the existence of a microscopic instability
due to the repulsive character of the mutual Coulomb forces among the electrons that
occurs above a critical value of the electron density. The effects of such repulsion
are commonly observed by plasma physicists involved in molecular dynamics
simulations. Indeed, in these simulations the initial positions of the electrons are
usually extracted randomly in the simulation box, with, however, “a small region
surrounding each particle excluded, to avoid initial explosion” (see [4]). In the
presence of a magnetic field one has instead a competition between the repulsive
role of the Coulomb forces, and the “confining” gyrational effect of the field. Such
competition was investigated both by the methods of modern perturbation theory
[5], and by numerical methods of molecular dynamics [6], and a density threshold
for the magnetic confinement was determined, that turns out to scale as the square
of the field. Now, the existence of such threshold shows up as a kind of corollary
also in the model considered here, and with the same B2 law. However, while in
the mentioned papers the electron dynamics involved only instantaneous Coulomb
forces, here the retardation of the mutual forces is taken into account, together
with the presence of damping due to radiation emission by the single accelerating
charges.

1 In the case of typical plasmas of fusion interest (with a magnetic field of the order of a few
Teslas, electron density of the order of 1020m−3 electron temperature of a few keV), the radiated
power would be Pe = e4/(3πε0m

3
ec

3)B2neTe , where ε0 is the vacuum permittivity, c the speed
of light, me the electron mass, ne and Te the electron density and temperature, respectively, and B

the magnetic field intensity. The radiated power would thus be larger than ≥ 1 MW/m3) (see [1],
section 4.21).
2 In a context formally analogous to the present one but concerning crystals, the analogue of such
cancellation was already observed in paper [7], to which the present work is inspired.



Reabsorption in Magnetized Plasmas 101

In the next Section the model is introduced and its analytic features are studied.
The conclusions follow.

2 The Model, and Its Analytic Solution Through Normal
Modes

From the dynamical point of view, we work in the framework of what Wheeler and
Feynman call standard electrodynamics for a system of charges. This means charges
subject to forces that are not only the mutual retarded electromagnetic ones (and,
in our case, even the Lorentz forces due an external magnetic field) but also to the
electromagnetic damping forces acting on each single charge. The latter forces take
into account the radiation any single charge emits due its actual motion, irrespective
of the motions of the other ones. So, in the nonrelativistic case we are going to
consider, the equations of motion are the Newton ones and the damping force is the
familiar Abraham–Lorentz force, proportional to the time derivative of acceleration.

The great contribution of Wheeler and Feynman has been to show how, for an
infinite system of charges, under rather general conditions a compensation occurs,
so that the damping forces are cancelled, i.e., one has reabsorption. Such result is
obtained by them in a general framework, in the form of a kind of existence theory.
Instead, in the model we are going to consider, which is chosen of such an extremely
simple kinematics as to allow for an analytic discussion, such cancellation will be
seen to show up in the form of an unexpected analytic identity.

2.1 The Model

First of all, the external magnetic field is taken time-independent and uniform, of
a given intensity B, say directed along the z axis of a cartesian coordinate system.
The model is aimed at describing only the gyrational motions taking place near a
selected field line, say the z axis itself. For the sake of simplicity the electrons are
constrained to lie on planes orthogonal to the axis, and moreover a discretization
is introduced by considering a lattice of equally spaced planes (say, a distance a

apart). Each such plane contains one electron, so that the n-th one has coordinates
(xn, yn, na), with n ∈ Z. For what concerns the retarded forces, they are taken
in the well-known dipole approximation (in particular, the magnetic contribution
is neglected). Finally the definition of the model is completed by performing a
linearization with respect to the distance of the electrons from the axis, in order that
the equation be physically significant only for motions taking place near the chosen
axis. In particular the distance rn,m between electrons m and n is approximated as
rn,m = a|n−m|.
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The system of Newton equations of motion for the model is thus

ẍn− ωcẏn −2

3

e2

4πε0mec3

...
x n =

− e2

4πε0me

∑
m �=n

[xm(t − rnm/c)

r3
nm

+ 1

c

ẋm(t − rnm/c)

r2
nm

+ 1

c2

ẍm(t − rnm/c)

rnm

]

ÿn− ωcẋn −2

3

e2

4πε0mec3

...
y n =

+ e2

4πε0me

∑
m �=n

[ym(t − rnm/c)

r3
nm

+ 1

c

ẏm(t − rnm/c)

r2
nm

+ 1

c2

ÿm(t − rnm/c)

rnm

]
(1)

2.1.1 Analytic Treatment Through Normal Modes

Equations (1) constitute an infinite system of linear equations with delay, which is
just a simple variant of the system considered in [7]. Our aim is now to investigate
the stability properties of the system, as the control parameters of density ne =
1/a3 and field B (or equivalently ωc) are varied. Following a completely standard
procedure, we compute the normal modes of the system, with the aim of determining
the values of the parameters for which the frequencies become complex. It will be
seen, however, that, due to the presence of retardation, such apparently innocuous
program can be fulfilled only if a suitable identity, that is the counterpart of the
Wheeler–Feynman one, turns out to be satisfied.

So we look for traveling wave solutions with wavenumber k and angular
frequency ω, i.e., of the form

xn = Axe
i(kan+ωt) , yn = Aye

i(kan+ωt) . (2)

This leads to a linear system in the unknowns Ax , Ay , from which the dispersion
relation between ω and k is found by equating the determinant to zero. Due to
retardation, this gives a complex equation, i.e., two real equations in the two
unknowns ω and k, namely

(
ω

ωc
)2 ± ω

ωc
+ pF(ka, aω/c) = 0 , p = ω2

p

ω2
c

(3)

2

3

e2

4πε0mec3
ω3 −G(ka, aω/c) = 0 . (4)

Here, ωp is the familiar plasma frequency defined by
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ω2
p =

e2

ε0mea3 =
nee

2

ε0me

, (5)

while F and G, as functions of the variables α = ka and β = aω/c, are defined by

F(α, β) = 1

4π
[β2 log(2| cos(β)− cos(α)|)− f (α, β)] (6)

G(α, β) = β2 − g(α, β) (7)

the functions f and g being the ones already introduced in [7], namely

f (α, β) =
∑
n�=0

( (cos(nα − |n|β)
|n3| − β

sin(nα − |n|β)
|n2|

)
(8)

g(α, β) =
∑
n�=0

( (sin(nα − |n|β)
|n3| + β

cos(nα − |n|β)
|n2|

)
. (9)

Some details concerning the summation of the series leading to the term
β2 log(2| cos(β)− cos(α)|) entering the function F are here omitted.

2.1.2 The Wheeler–Feynman Identity as Guaranteeing the Existence of a
Dispersion Relation

Now, one meets here with a very relevant question of principle. Indeed, for fixed
values of the parameters a and ωc one has two equations in two unknowns (ω and
k), and in general this would not allow for the existence of a dispersion relation,
i.e., of a function ω = ω(k), for a continuous range of values of k. However,
the existence of a dispersion relation is guaranteed by the fact that relation (4)
is an identity, as was shown in paper [7] (see section 6) for the analogous one-
dimensional model of a crystal and later in [8] for a three-dimensional case. In fact,
these are just particular cases of the Wheeler–Feynman identity that was proved by
them in a general framework. In order to have a feeling of how much such identity
is unexpected and a priori unplausible, it suffices to look at the way in which the
parameter a enters relation (4). Indeed it shows up in the second term and not in
the first one, so that one would not imagine that they may be equal (apart from the
sign).

2.1.3 Evidence for the Density-Induced Instability, and Estimate of a
Density Limit

Once the existence of a dispersion relation is guaranteed by the fact that the
Wheeler–Feynman identity holds, the dispersion relation can be determined by
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p

ω2
c

(or equivalently of the

electron density ne)

standard numerical methods. In the present case one has to solve (3) in the unknown
ω = ω(k) for any given k, in which p = ω2

p/ω
2
c plays the role of a parameter.

In Fig. 1 the dispersion relations are shown for a cyclotron frequencyωc = 3.8×
1011 Hz, which corresponds to a magnetic field of about 2.1 T (a typical value used
for the magnetic confinement of thermonuclear plasmas in the experiments), for

several values of the parameter p = ω2
p

ω2
c

(or of the corresponding electron density

ne, at given ωc).
The most important qualitative result is that normal modes are found to exist

(for all k) only below a critical value of p, i.e., below a certain threshold of plasma
density. Indeed, starting from low densities, at a certain critical density a bifurcation
is seen to occur, characterized by the fact that the curves no more intersect the
vertical axis ka = π . This means that for values of k just below π/a Eq. (3) does
not admit a real solution, so that the corresponding frequencies acquire an imaginary
part, and the whole system becomes unstable. Numerical computations not reported
here show that the characteristic time of the instability is of the order of 2π/ωc.

Notice that this phenomenon of the existence of a maximal allowed density
is obviously lost if one introduces the continuum approximation, and thus it is a
characteristic feature of the discrete structure of matter. Indeed, following [8], the
continuum approximation corresponds to deal with wavelengths much larger than
the step a, i.e., to assume k � π/a, whereas the existence of a density limit depends
on the behavior of the system for ka ≈ π . We have now to determine the bifurcation
value of the parameter p. As the bifurcation occurs for ka = π and for values of
ω/ωc ≤ 1, i.e., for aω/c 
 0, one can just limit oneself to study equation (3) for a
fixed value of the function F , namely F(π, 0), so that one is simply reduced to deal
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with an algebraic equation of second degree. One computes F(π, 0) 
 0.14, and so
real values of ω are found to exist only for p ≤ 1.74. This, recalling the definition
of p and using ε0μ0 = 1/c2, gives for the critical density nMe the law

nMe = 1.74
1

mec2

B2

μ0
. (10)

This, by the way, is the same law predicted by the modern methods of perturbation
theory [5] (apart from the factor 1.5 in place of 1.74) and is also in agreement with
the estimate obtained by molecular dynamics numerical simulations [6].

For typical magnetic field values used in the laboratory, the density limit
predicted by the model is well in the range of the experimental densities [1]. The
instability described here might thus play a significant role in determining the
confinement properties of magnetized plasmas. A comparison with the experimental
data can be found in paper [5].

It is worth noticing that law (10) has the same form of the Brillouin limit
[9], which is known to apply to the case of non-neutral plasmas [10]. The main
difference with respect to our procedure is that in the case of the Brillouin limit
the mutual electric field acting on electrons is introduced within a mean field
approach, whereas here it is computed in the frame of a many-body microscopic
theory. Correspondingly, we find that the instability involves normal modes with
wavelengths of the order of the mean electron distance, so that it escapes a mean
field approach. In particular, such instability is found to occur in neutral plasmas,
for which the mean charge density vanishes, and the Brillouin approach cannot be
used.

3 Conclusion

In conclusion, we have proved that, in a microscopic toy model of a magnetized
plasma, cyclotron emission radiation due to electron gyration is reabsorbed. This
occurs in virtue of the Wheeler–Feynman identity, proved in the model, that was
proposed by those authors as a general property of matter in bulk.

Just in virtue of such identity, dispersion relations exist, and so it was also
possible to draw them for our model, studying their dependence on the parameters,
in particular, on density. A relevant result is that a density threshold exists, above
which microscopic instabilities occur, and thus magnetization is lost. Such density
limit turns out to scale as B2, in agreement with estimates obtained by modern
perturbation methods and by numerical molecular dynamics methods.

A further comment can be added concerning the role the Wheeler–Feynman
identity plays in clarifying a general feature of the damping force, namely the
analytic form it should have (for example, the Abraham–Lorentz one proportional
to the time derivative of acceleration, or some approximation of it). In fact, the
identity occurs in the form of a compensation, in which the damping force acting
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on each charge is exactly cancelled by a part of the electromagnetic forces due to
the remaining ones. It is thus clear that the other charges themselves do produce the
correct form of the damping force. So, for example, in a relativistic treatment one
can show that necessarily the damping force should have exactly the form proposed
by Dirac in 1938.
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Kinetic Effects in Non-ideal, Two-Phase
Shear Flows

Aldo Frezzotti and Henning Struchtrup

Abstract A steady two-phase Couette flow in a liquid film in contact with its vapor
phase, through a resolved interface, is studied numerically by Direct Simulation
Monte Carlo, based on Enskog–Vlasov kinetic model. Simulations with increasing
degree of vapor non-ideality are performed to assess the attenuation of kinetic
effects as the vapor phase becomes denser and denser. Deviations of flow properties
from hydrodynamic behavior are obtained by direct comparison with a simple
hydrodynamic model and by the numerical computation of higher order moments,
not present in the hydrodynamic description.

1 Introduction

The paper aims at presenting the results of a mainly numerical study of a simple
shear flow in a two-phase fluid, from the kinetic theory point of view. Although
focused on a specific and simplified flow geometry, the work finds its motivations
in the more general and widely investigated kinetic theory [7] approach to the
modeling of flows in which the liquid and vapor phases of the fluid coexist [8, 12,
20]. The vast majority of kinetic theory studies and applications in this research
area are based on a mathematically heterogeneous model. The liquid phase bulk
and the vapor bulk, far from interfaces, are described by Navier–Stokes–Fourier
(NSF) equations. The vapor phase, considered as a dilute gas, is described by the
Boltzmann equation [7] in a more or less extended non-hydrodynamic vapor region,
in contact with interfaces. Due to the large separation between the space and time
scales in the two phases, their coupling is modeled by a phenomenological boundary
condition [12, 16, 24]. The latter specifies the distribution function of molecules

A. Frezzotti (�)
Politecnico di Milano, Dipartimento di Scienze & Tecnologie Aerospaziali, Milano, Italy
e-mail: aldo.frezzotti@polimi.it

H. Struchtrup
University of Victoria, Victoria, BC, Canada
e-mail: struchtr@uvic.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
P. Barbante et al. (eds.), From Kinetic Theory to Turbulence Modeling, Springer
INdAM Series 51, https://doi.org/10.1007/978-981-19-6462-6_9

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6462-6_9&domain=pdf

 66 3973 a 66 3973 a
 
mailto:aldo.frezzotti@polimi.it

 66 4263 a 66 4263 a
 
mailto:struchtr@uvic.ca

 386 4612 a 386 4612 a
 
https://doi.org/10.1007/978-981-19-6462-6_9


108 A. Frezzotti and H. Struchtrup

entering the vapor phase because of spontaneous evaporation from the liquid or
scattering at the liquid surface. A possible and attractive alternative to the model
briefly described above is represented, in principle, by Diffuse Interface Models
(DIMs) [2]. DIMs provide a unified description the liquid and vapor phases, on
the base of the NSF equations. The vapor-liquid interface structure is explicitly
resolved by adding Korteweg’s capillary contributions to the Navier–Stokes stress
tensor and to the Fourier heat flux [2]. Hence, no condition has to be formulated at
the liquid-vapor boundary since the interface is part of the flow field. Unfortunately,
when the vapor is dilute DIMs fails to provide an accurate description of flows
where a kinetic layer is present [4], as is to be expected. However, their accuracy
becomes better and better as the vapor phase gets increasingly denser and non-
ideal [13]. Extending DIMs, to give them the capability of describing kinetic layers
and, at the same time, non-ideal flows is limited by the difficulty of obtaining a
general kinetic description of dense fluids [19]. However, a kinetic extension of
the van der Waals fluid has been proposed by Louis de Sobrino in 1967 [9]. In
this model, the classical Enskog equation for the dense hard spheres fluid [10]
is modified by adding an attractive tail to the repulsive hard sphere potential. To
keep the treatment of the interacting particle system within the framework of a
closed kinetic equation for the one-particle distribution function [18, 19], the tail
contribution is added to Enskog’s non-local collision integral in the form of a self-
consistent Vlasov force term. The resulting equation, named Enskog–Vlasov (EV)
equation, has been used in Ref. [22] to obtain a set of moment equations, based
on Grad 13 moments approximation [21]. More recently, an extension to Grad 26
moments [21] has been proposed [23]. However, the formulation of the moment
equations is complex and depends on the truncation of the local expansions of non-
local terms to a prescribed order [14, 22, 23]. In order to support the development of
a proper set of moment equations for EV equation, the latter is solved numerically
in a simple test problem, consisting in a two-phase Couette flow. The behavior and
generation of the non-hydrodynamicmoments in the interface region is investigated,
along the liquid-vapor coexistence curve from near ideal to fully non-ideal vapor
conditions. The approach to hydrodynamic behavior is assessed by the comparison
of the numerical solutions of EV equation with a reduced set of moment equations
which represents, in a sense, the DIM approximation of EV equation. The rest of
the paper content is subdivided in: Sect. 2, which summarizes the structure and
properties of EV equation and the associated moment equations, Sect. 3 devoted
to a description of the test problem; the final Sect. 4 describes and discusses the
obtained results. Concluding remarks are given in Sect. 5

2 The Enskog–Vlasov Model

Enskog–Vlasov (EV) equation [9] extends the classical Enskog theory of the dense
hard spheres fluid [10] by replacing the purely repulsive hard sphere potential with a
Sutherland potential which adds a soft attractive tail to the hard sphere contribution.
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In its unsteady, spatially one-dimensional form used in this work EV equation takes
the following form:

∂f

∂t
+ vx

∂f

∂x
+ Fx(x, t)

m

∂f

∂vx
= Chs(f, f ). (1)

In Eq. (1), f (x, v, t) is the one-particle distribution function of molecular velocities
v, at the spatial position x and time t .

The collision integral Chs(f, f ), on the R.H.S of Eq. (1), describes short range,
repulsive molecular interactions as instantaneous, elastic collisions between two
spherical molecules of diameter a and mass m. At the time of their impact,
molecules spatial positions are r and r− ak̂, respectively. Its form:

Chs(f, f ) = a2
∫
S
{
χhs(x, x + akx)f (x + akx, v∗1, t)f (x, v∗, t)−

χhs(x, x − akx)f (x − akx, v1, t)f (x, v, t)} (vr · k̂)+dv1d
2k̂ (2)

is taken from Standard Enskog Theory (SET) [25], in which the uniform equilibrium
pair correlation function at contact χhs is used. The latter is a function of local
number density n which is often approximated as:

χhs(r, r± ak̂) = Y

[
n

(
r± a

k̂
2

)]
, Y (n) = 1

2

2− η

(1− η)3
, η = πa3n

6

(3)

using the relationship between Y and the pressure equation of state of the hard
sphere fluid [19], well approximated by the Carnahan and Starling expression [6].

The force term in Eq. (1) is derived by the smooth tail φt of the molecular
interaction potential φ:

φ(r) =
{
+∞ r < a

φt (r) r ≥ a
(4)

which describes the interaction of two molecules whose centers distance is r .
Elementary calculations show that, in a one-dimensional, slab geometry the x

component Fx(x, t) of the attractive force has the following expression [14]:

Fx(x, t) = −2π

[
φt(a)

∫
|y−x|≤a

(y − x)n(y, t) dy+
∫
|y−x|>a

(y − x)φt (|y − x|)n(y, t) dy
]
. (5)
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The choice of the tail potential is arbitrary but it affects the thermodynamics of the
fluid described by Eq. (1) [14, 15]. It is easily shown that the pressure equation of
state of the EV fluid has the form of a generalized van der Waals equation [3]. The
critical temperature, Tc, depends on the assumed φt , whereas the critical number
density nc is determined only by the hard sphere interaction [15].

In this work an algebraic tail in the form:

φt(ρ) = −φa
(
a

ρ

)γ
, φa, γ > 0 , (6)

has been assumed. The exponent γ has been set equal to 6, to mimic the attractive
contribution of the Lennard-Jones 12− 6 potential [17]. The critical parameters for
this particular form of the tail potential are [14]:

ηc = πa3nc/6 = 0.13044 T ∗c =
kBTc

φa
= 1

αc

4γ

γ − 3
, αc = 10.601. (7)

For temperature T0 below Tc, Eq. (1) admits equilibrium solutions in the form:

f0(x, v) = n0(x)ω0(v), ω0(v) = 1

(2πRT0)3/2 exp

(
− v2

2RT0

)
(8)

being R = kB/m and kB the gas and the Boltzmann constants. The non-uniform
density of two-phase fluid obeys the equation [14]:

kBT0
dn0

dx
= n0(x)Fx(x)+ 2πa2n0(x)kBT0

∫ +1

−1
kxY

[
n0(x − a

2
kx)
]
n0(x − akx) dkx.

(9)

Table 1 reports about liquid and vapor reduced densities on liquid-vapor equilib-
rium coexistence curve, for reduced temperatures in the range 0.45–0.70, below Tc.

Table 1 Reduced liquid number density n∗l = nla
3, reduced vapor number density n∗v = nva

3,
reduced pressure p∗ = pa3/φa , vapor compressibility Zv(T ) = p(n, T )/(nkBT ), and normalized
hard sphere mean free path λ/a = 1/[√2πna3Y(n)], as a function of reduced equilibrium
temperature T ∗ = kBT /φa .

T ∗ T /Tc n∗l n∗v p∗ Zv λv/a

0.45 0.5963 0.77915 5.683e−03 2.4527e−03 0.95909 3.9312e+01

0.50 0.6626 0.7187 1.2213e−02 5.6822e−03 0.9237 1.7988e+01

0.55 0.7288 0.6568 2.3111e−02 1.1154e−02 0.8739 9.4004e+00

0.60 0.7951 0.5917 3.9941e−02 1.9436e−02 0.8093 5.3298e+00

0.65 0.8613 0.5205 6.5517e−02 3.1009e−02 0.7275 3.1434e+00

0.70 0.9276 0.4363 0.1066 4.6261e−02 0.6201 1.8283e+00
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As shown by the values of the vapor compressibility Zv and (nominal) mean free
path λv , the temperature range spans vapor conditions from near ideal to non-ideal.

2.1 Simplified Moment Approximation of the Linearized EV
Equation

Let ψ(v) be any velocity dependent molecular property, then multiplying Eq. (1) by
ψ(v) and integrating over v yields the following balance equation:

∂

∂x

(
J
(k)
ψ + J

(c)
ψ

)
− Fx(x)

m

∫
∂ψ

∂vx
f (x, v) dv = S

(c)
ψ (x). (10)

In Eq. (10), J (k)
ψ is the kinetic flux, J (c)

ψ is the collisional flux, whereas S(c)ψ (x) is the
collisional production term. They are defined as follows:

J
(k)
ψ (x) =

∫
cxψ(v)f (x, v) dv (11)

J
(c)
ψ (x) = a2

4

∫
dv dv1 d

2k(g · k)+
∫ a

0
dλkx�ψ(v, v1,k)Y

[
n
(
x +

(
λ− a

2

)
kx

)]
×

f (x + λkx, v)f (x + (λ− a)kx, v1) (12)

S
(c)
ψ (x) = a2

2

∫
dv dv1 d

2k(g · k)+�ψ(v, v1,k)Y
[
n
(
x − a

2
kx

)]
f (x, v)f (x − akx, v1),

(13)

where

�ψ(v, v1,k) =
[
ψ(v

′
)− ψ(v)

]
−
[
ψ(v

′
1)− ψ(v1)

]

�ψ(v, v1,k) =
[
ψ(v

′
)− ψ(v)

]
+
[
ψ(v

′
1)− ψ(v1)

]
.

The linearized form of Eq. (10) can be used to obtain a system of closed, linearized
moment equations to study isothermal shear flows in the two-phase fluid described
below. The distribution function is assumed to have the form:

f (x, v) = f0(x, v)
[

1+ uy(x)
vy

RT0
+ σxy(x)

vxvy

ρ0(x)(RT0)2

]
(14)

being uy(x) the tangential bulk velocity field, σxy(x) = m
∫
cxcyf (x, v) dv the

kinetic tangential stress tensor component and c the molecular peculiar velocity. It
is to be noted that the above perturbation of equilibrium does not contribute to the
density and temperature, assuming that temperature and density perturbations are of
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second order in the shear rate. The unknowns uy(x) and σxy(x) are determined by
the two following moment equations:

(
1+ 4π

15

a3

m
ρ0Y0

)
σxy − 4a4

15

√
πRT0

ρ2
0Y0

m

∂uy

∂x
= Pxy (15)

−
√
πa4

m

√
RT0

[
8

35
ρ0

∂

∂x

(
Y0

∂σxy

∂x

)
− 88

105
σxy

∂

∂x

(
Y0

∂ρ0

∂x

)
− 16

105
ρ0σxy

∂2Y0

∂x2

]
+

[
ρ0RT0

(
1+ 4π

15

a3

m
ρ0Y0

)]
∂uy

∂x
= −16

5

ρ0
√
πRT0a

2

m
Y0σxy. (16)

In Eq. (15), Pxy denotes the constant, total tangential stress, which reduces to σxy in
the ideal gas limit. Equations (15,16) are obtained by setting ψ(v) = mvy,mvxvy
in Eq. (10) and replacing non-local integrals with local expansions [14, 19] of the
unknowns up to the order a4 [22, 23]. It is worth observing that the above equations
reduce to the NS equation for an isothermal shear flow in regions of uniform density
but not in the interface region. Although not capable of capturing slip effects in low
density vapor phase, their predictions are useful to judge about the influence of
higher order moments as vapor density increases, when compared with EV results.

3 Test Problem Formulation

The effects of vapor non-ideality on the deviation of a two-phase shear flow from
hydrodynamic behavior have been studied by solving Eq. (1) in the spatial domain

D =
{
(x, y, z) ∈ R3 : −LD

2
< x <

LD

2

}

of width LD . A central strip of D, of nominal width Lliq < LD , is occupied by
an infinite and planar liquid slab, surrounded by two vapor regions of width (LD −
Lliq)/2, symmetrically located with respect to the center of the liquid slab.

The domain is delimited by two parallel, planar, and impermeable walls, where
gas-surface interaction is described by Maxwell’s model [7], with full accommoda-
tion and prescribed wall temperature Tw . The shear flow in the fluid is produced by
assigning opposite velocities Uw ŷ and −Uwŷ to the walls, respectively, located at
x = LD

2 and x = −LD

2 , being ŷ the unit vector parallel to the walls themselves.
It is to be observed that the energy dissipated by the shear motion would cause a
continuous increase of the fluid temperature, the effect being proportional to the
square of the shear rate. On the other hand, the comparison of EV solutions with the
linearized moment equations, described in Sect. 2.1, requires that the temperature is
constant and uniform, thus keeping the density as close as possible to its unperturbed
equilibrium profile. Energy dissipation has been contrasted by thermostatting a
central strip of the liquid slab to the prescribed temperature T0 < Tc by a Gaussian
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thermostat [1]. Moreover, walls common temperatures Tw have been also assigned
the value T0 and the shear rate kept as small as permitted by the statistical noise to
signal ratio of the numerical method. Equation (1) has been solved numerically by
the Direct Simulation Monte Carlo (DSMC) developed in Refs. [5, 11, 14].

4 Numerical Results

The flow geometry and the DSMC particle scheme mentioned in the previous
section have been used to obtain the profiles of shear velocity uy(x), kinetic
component of the shear stress σxy(x), transversal component of the heat flux qy(x)

and of the moments mxxy , Rxy appearing in the Grad 26 description. The latter two
quantities are, respectively, the xxy and xy components of the tensors:

mi1i2i3 = m

∫
c〈i1 ci2c i3〉f (v)dv Ri1i2 = m

∫
c2c〈i1 c i2〉f (v)dv− 7RT σ〈i1i2〉

(17)

being σ〈i1i2〉 the stress tensor deviator. The brackets denote a symmetric and traceless
tensor. Once again, it is to be noted that qy(x), mxxy , and Rxy do not appear in
the hydrodynamic limit of the considered flow. Equation (1) has been solved by

a DSMC particle scheme [5], based on reduced units, being a, m, and a
√

m
φσ

the

length, mass, and time units, respectively. Accordingly, velocities are normalized to√
φa
m

, temperature to the reference value Tref = φa
kB

, whereas the reduced number

density a3n replaces n. In order to obtain a sample size in the vapor region sufficient
to compute the small deviations from local equilibrium, simulations with about 24
million particles have been performed for each value of T0. Spatial grid size has
been set equal to 1/10 and the time step �t in the range 2–5×10−3.

4.1 Ideal Vapor Phase and Comparison with BE

Before discussing the behavior of moments in non-ideal vapor conditions, it is
interesting to compare the results of EV simulations with ideal gas simulations,
based on the Boltzmann equation for the hard sphere gas, when T0 = 0.45. In this
case, the vapor phase is nearly ideal, as shown by the vapor equilibrium properties
listen in the first line of Table 1. The results of an EV DSMC simulation, which
includes the liquid, interface, and vapor region, are compared to a companion BE
DSMC simulation of the vapor region, only. In the latter, the liquid-vapor boundary
has been set 3a to the right of the center of the liquid-vapor interface, whose position
is determined by the maximum of the density gradient modulus, as shown in Fig. 1a,
which zooms on the interface region to show the beginning of the vapor phase where
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Fig. 1 T0 = 0.45. EV moments profiles in the dilute vapor regime and comparison with
BE.Vertical dashed lines indicate the interface center position and the beginning of the vapor
region. (a) Reduced density and temperature profiles. (b) Shear velocity profiles. (c) Profiles of
third order moments, qy(x) and mxxy . (d) Profiles of fourth order moment Rxy

BE description applies. At the liquid surface, fully diffusive boundary condition has
been applied to represent scattering from the liquid layer in absence of evaporation
or condensation. The small liquid surface velocity has been taken into account in
the Maxwellian representing scattered molecules. At the right domain boundary,
both simulations (EV and BE) have assumed fully diffuse scattering from a wall
at temperature 0.45 and sliding with velocity 0.2 along ŷ direction. On the scale
of molecular diameter, the extent of vapor gap is about 177 which corresponds to a
Knudsen number of about 0.22. As shown in Fig. 1b, the assumption of fully diffuse
scattering at the liquid-vapor interface leads to a very good agreement between EV
and BE based simulations. EV equation fully resolves the interface and shows that,
on the molecular scale, the velocity slip actually consists of a steep ramp occupying
the vapor side half of the interface. Good agreement is also found for the profiles of
the third and fourth order moments qy , mxxy and Rxy , as shown in Figs. 1c,d. It is
to be noted that, for EV, both qy and mxxy exhibit sharp peaks within the interface
reaching values almost two times larger than their respective liquid-vapor boundary
values. The fourth order moment Rxy has also a sharp negative peak inside the
interface, followed by a rapid growth to reach the boundary value corresponding to
diffuse reflection.
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Fig. 2 Flow field properties as function of T0. (a) Comparison of EV and moment approximation
of the shear velocity uy , in the liquid, interface, and vapor regions. (b–d) Enlarged views of
third and fourth order moments profiles, qy/ρ, mxxy/ρ, Rxy/ρ, in the interface region. x = 0
corresponds to the center of the interface

4.2 Non-Ideal Vapor Phase

The behavior of higher order moments, as markers of non-equilibrium
flow conditions, has been investigated for the fluid temperatures T0 =
0.45, 0.50, 0.55, 0.60, 0.65, thus obtaining an increasingly denser vapor phase.
It was not possible to obtain a stable liquid slab for the value T0 = 0.70, very
close to Tc. The wall velocities have been kept equal to ∓0.2, the nominal liquid
slab thickness, based on the interface centers separation has been kept equal to
50, whereas LD has been set equal to 200. The choice of the above parameters
has to be considered a compromise between the need of keeping the shear driven
perturbation small and the necessity of obtaining an acceptable signal to noise ratio
in the statistical estimation of moments. Figures 2a–d summarize the results by
showing the moments per particle, in order to compensate the effect of the strong
density variation across the interface. The computed profiles show that higher
order moments, absent in the liquid phase, are created in the interface, i.e., within
a region a few molecular diameters wide. This behavior is particularly evident
in Figs. 2b,c, where the reference frame origin has been placed in the interface
center. The third order moments, qy and mxxy , exhibit a similar behavior (the
different noise level depends on the different variance), showing a positive peak in
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the outer half of the interface. The fourth order moment Rxy exhibits a somewhat
different behavior since the peak is negative and precedes a steep increase toward
a positive value in the vapor phase. The peaks intensity strongly decreases while
T0 increases and all moments become negligible at T0 = 0.65. The approach to the
hydrodynamic regime can be also seen more directly by the comparison of shear
velocity profiles shown in Fig. 2a. EV profiles (circles) show a much larger slip at
the interface, compared to the profiles computed from the moment equations (15,
16), by setting the same Pxy obtained from EV simulations and by a simple (but
accurate) hyperbolic tangent approximation of the equilibrium density profile n0.
However, moment equations velocity profiles become more and more accurate
as higher order moments disappear. The reduced moment set only accounts for
velocity and stress tensor, and implicitly ignores higher moments. As the results
show, these have marked contribution in and at the interface, hence an extended
moment set is expected to yield better agreement.

5 Conclusions

The exploration of kinetic effects in non-ideal fluids, here limited to the study
of a simple Couette flow in a two-phase fluid, has shown that deviations from
hydrodynamics next to the liquid-vapor interface, typical of dilute vapors, persist
in non-ideal flow conditions. The numerical results presented here will help the
development and fine tuning of a recently proposed, more extended moment
method [23] which is necessary for the full understanding of the considered flow
regimes.
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The Cercignani Conjecture About a
Classical Zero-Point Energy, and Its
Confirmation for Ionic Crystals

F. Gangemi, R. Gangemi, A. Carati, and L. Galgani

Abstract A characteristic feature of Quantum Mechanics is that it predicts the
existence of zero-point energy, i.e., of states with a nonvanishing kinetic energy at
zero temperature. This is a fact that is experimentally verified and is considered to
be inconceivable in a classical frame. In the year 1972 Carlo Cercignani advanced
the idea that a classical zero-point energy may be conceived, if one understands
the corresponding motions as characterized by being (in the terminology used at
those times) of “ordered” rather than of “chaotic” type. Here we illustrate how
the Cercignani idea is actually implemented for an ionic crystal model which was
already shown to be of such a realistic character as to reproduce in a remarkably
good way, in terms of the Newtonian trajectories of the ions, the experimental
infrared spectra.

1 Introduction

The existence of “zero-point energy” or ZPE (which in German means zero-
temperature energy) was first conceived in 1911 by Planck [1], within an attempt
at understanding his blackbody formula in classical terms (as also did Nernst in the
year 1916 [2]). Einstein and Stern in 1913 were able to confirm the existence of ZPE
in diatomic molecules, making use, in a rather astonishing way, of the experimental
data on specific heats [3]. ZPE manifests itself particularly in crystals, as exhibited
by the Debye–Waller B-factors, which describe the fluctuations of atoms around
their equilibrium positions, measured, e.g., by X-ray diffraction. It is observed that,
when absolute temperature T tends to zero, the values of the B-factors don’t vanish,
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tending instead to finite values [4]. Thus, it is an experimental fact that atoms present
a residual mechanical energy at zero temperature.

Since the first paper of Planck, the occurring of a zero-point energy was explicitly
associated with the idea that it should correspond to a transition from chaotic
to ordered motions. So, the internal energy at temperature T was thought of
as the sum of a “thermal energy” and of a residual zero-point energy. In fact
such a superposition of two terms came out somehow “automatically” in the
frame of quantum mechanics after Heisenberg and Schrödinger. But the idea that
zero-point energy should have some kind of ordered character didn’t find any
explicit implementation in dynamical terms. The only qualitative distinction was
of a thermodynamic character, since zero-point energy corresponds to a state of
vanishing entropy (which is the “quintessence of the hypothesis of quanta,” in
Planck’s words (see the preface of [5])).

In the year 1972 the idea that zero-point energy may exist in a classical frame,
and actually as corresponding to a transition from chaotic to ordered motions, was
advanced by Carlo Cercignani, in a joint paper with L. Galgani and A. Scotti [6].
A Fermi–Pasta–Ulam (FPU) model was considered, namely a chain of particles
with nearest-neighbor interactions, the latter being taken of Lennard-Jones type
with realistic parameters of atomic physics, a fact that implicitly introduces Planck’s
constant h̄ into the problem.1

So one deals with a system of “weakly coupled” harmonic oscillators (the
normal modes of the chain, of angular frequencies ωj ), to which a quantum zero-
point energy

∑
h̄ωj /2 can be associated. The Cercignani conjecture was that

such a quantum zero-point energy should be of the order of magnitude of the
“stochasticity threshold” from chaotic to ordered motions that had been found in
the FPU problem.2 And this was actually checked to be the case.

In the present paper we will illustrate how ZPE naturally appears in a classical
model of an ionic crystal, Lithium Fluoride (LiF), which was shown to reproduce
with a surprisingly good accuracy experimental measurements of infrared spectra
[8, 9]. It is just in terms of such spectra that ZPE comes in. Indeed the spectra
are available at many different temperatures ranging from a few K up to values
close to the melting point. Now, one of the peaks appearing in these spectra is of an
anharmonic origin, since it doesn’t correspond to any normal-mode frequency of the
system. Thus its relative intensity would be expected to vanish at low temperatures,

1 As pointed out in the previous paper [7], this occurs through the known relation
√
mεσ = 2Zh̄,

where ε and σ are the familiar parameters of the Lennard-Jones potential, while m and Z are the
mass and the atomic number of the particles.
2 At those times the question of interest was what Fermi had called his “little discovery,” i.e., a
lack of attainment of energy equipartition starting from an initial non-equipartition state. In the
following years it was found that the Fermi discovery corresponds to a metaequilibrium state,
since a final equipartition state is always attained, however small the energy of the system be. On
the other hand, a transition from ordered to chaotic motions still persists in a suitable sense. To this
point we will come back later.
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where the crystal vibrations tend to become harmonic, whereas experimental data
show that the peak keeps a significant intensity even at the lowest temperatures.

Tentative interpretations of this phenomenon were suggested in the context of
quantum mechanics (see, for example, [10]). We show here that, in a classical model
of ionic crystals, such a phenomenon can be interpreted as a manifestation of a state
function or equation of state ε(T ), internal energy versus temperature (at fixed room
pressure), with the property that limT→0 ε(T ) �= 0, i.e., a ZPE exists.

At the present stage of our investigations the relation between ε and T can only
be obtained through an empirical procedure, in which the value of the (specific)
internal energy ε corresponding to a given temperature T is chosen so as to give
the best fit of the calculated spectrum to the experimental one. As a result of this
procedure, the value of internal energy per vibrational mode ε0 corresponding to
T = 0 can be estimated to be3 ε0 ≈ 120 K, which differs by about a factor 2 from
the quantum mechanical one. From the description of the procedure used it will
appear that it contains an empirical element, a better choice of which might perhaps
remove such a discrepancy.

In Sect. 2 the model is presented, in Sect. 3 the results of the numerical
simulations for the spectra are illustrated, and are then discussed in Sect. 4 in
connection with ZPE. The conclusions follow.

2 The Ionic Crystal Model

The model of LiF we adopt treats each ion as a point charge with a mass equal to
the experimental value. Electrons are not explicitly present in the model. However,
following a tradition going back to Born, their effect is assumed to be responsible for
two features, namely: (1) the value of an “effective charge” ei for each ion i, which
is one of the free parameters in the model, and (2) the production, through their
distribution around the ions (in the spirit of Born’s adiabatic principle), of a short-
range “effective potential” V SR acting among the ions. The pairwise interaction
potential among the ions, with a suitable choice for V SR, is thus given by

Vij (r) = eiej

r
+ V SR

ij (r), V SR
ij (r) = Aij e

−Bij r − Cij

r6
. (1)

Simulations are performed on a cubic cell of N ions (with N between 512 and
4096) with periodic boundary conditions, so that the system has infinite size. The
short-range interactions are calculated for pairs within a cutoff r ≤ 5 Å, while the
familiar Ewald summation method is applied for the Coulomb long-range forces.

3 Here and in the following we report energy values divided by the Boltzmann constant kB , so that
they are expressed in kelvin.
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By means of the Green–Kubo linear response theory applied to dispersion
in dielectric media, along the lines of ref. [11] one can show that the electric
susceptibility of a system of charges is given by

χij (ω) = 3V

2 〈K〉
∫ +∞

0
e−iωt

〈
Pi(t)Ṗj (0)

〉
dt , (2)

P(t) = 1

V

∑
j

ejxj (t) microscopic polarization, (3)

where xj is the position vector of charge ej , V is the volume of the integration
cell, K the kinetic energy, and the notation 〈. . .〉 indicates phase averages. The
latter are actually replaced by time averages. We perform molecular dynamics (MD)
simulations at constant energy and volume,4 integrating the equations of motion
by means of the Verlet integration method with 2 fs integration step. Moreover, in
order to enhance phase-space sampling, we average over multiple trajectories with
independent initial conditions.

From electric susceptibility one obtains the permittivity tensor

εij (ω) = δij ε∞ + 4πχ(ions)
ij (ω) , (4)

where the constant ε∞ takes into account the electronic contribution and is obtained
from experimental data. For isotropic materials such as LiF, one simply has εij (ω) =
ε(ω)δij . Once the permittivity is known, the quantities observed in the experiments
can be easily calculated: the refractive index is given by

n(ω) = √ε(ω) , (5)

while the reflectivity is

R(ω) =
∣∣∣∣ε(ω)− 1

ε(ω)+ 1

∣∣∣∣ . (6)

3 The Computed Spectra

A comparison between calculated and measured spectra at room temperature
(T = 295 K) is shown in Fig. 1. The very good agreement with data is the
result of accurate determination of the parameters of the potential, by fitting the

4 As will be further discussed in the following, the lattice spacing, and thus the density, is suitably
chosen at each temperature T , according to the experimental data on thermal expansion at fixed
room pressure. In this sense, one may consider that the crystal is simulated at constant pressure.
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Fig. 1 Comparison between calculated (line) and experimental (circles) values of optical prop-
erties at room temperature. Upper left: imaginary part of susceptibility. Upper right: real part of
susceptibility. Lower left: refractive index. Lower right: reflectivity. Experimental data are taken
from [12] (lower right panel) and [13] (all the other panels)

calculated dispersion relations to the experimental ones. The resulting curves are
in better agreement with data than quantum calculations available in the literature
[14]. Notice that the fitting was performed within the familiar assumption of MD
simulations that T = 295 K should correspond to ε = 295 K. On this point we will
come back later.

Experimental data on reflectivity are available at many different temperatures,
and, in particular, in ref. [12] they are given in a range from 7.5 K to 1060 K. In order
to make a comparison with calculated data one has to define what is temperature in
a classical model of a system different from a gas. The common prescription used
in molecular dynamics studies consists in identifying temperature with a quantity
proportional to the average kinetic energy per atom in the system, according to the
well known Clausius relation < K >= 3

2kBT , assumed to hold at all temperatures,
not only for ideal gases but also for other aggregation states. The results shown
in Fig. 2, corresponding to four values of temperature, were obtained by applying
such a prescription: moreover, since all experimental data are at room pressure,
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Fig. 2 Comparison between calculated (solid line) and experimental (circles) reflectivity at four
different temperatures. Simulations are based on the prescription < K >= 3

2kBT . Data are taken
from [12]

and each simulation is performed at constant volume and energy, the density of the
system was changed at each temperature by adjusting the lattice spacing according
to the available experimental data on thermal expansion. The figure shows that the
agreement of calculated spectra with experimental data essentially persists at high
temperatures, whereas at low temperatures a strong disagreement is found.

A detailed analysis of the LiF reflectivity spectra is needed to better understand
these results. The reflectivity curve is determined by susceptibility as shown in
Eqs. 4–6, and its features can be interpreted in terms of the peaks of susceptibility, as
shown in Fig. 3, where experimental data of both quantities are shown for T = 295
K. In the range from 200 to 800 cm−1, where reflectivity data are collected, there are
two peaks in the susceptibility curve: one at a frequency
 310 cm−1, of harmonic
origin, and one at 
 500 cm−1, of anharmonic origin, since no optically active
normal mode is found at this frequency. The reflectivity curve consists of a rising
part at low frequencies that reaches its maximum approximately at the position of
the first peak of susceptibility, followed by a plateau. The height of this plateau is
related to the width of the susceptibility peak: the higher the width, the lower is
the plateau, while for a vanishing width the plateau tends to 1. At the position of
the second susceptibility peak one has a local minimum in the reflectivity plot and
then almost a second plateau, lower than the first one. The height of this plateau is
related to the width of the second susceptibility peak in the same way as discussed
for the previous one. Now, the second peak in susceptibility should disappear when
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Fig. 3 Analysis of the main features of experimental data on reflectivity (upper panel) and on the
imaginary part of susceptibility (lower panel)

the vibrational energy of the crystal vanishes, since the anharmonic interactions
between modes vanish. This is what is actually observed in the calculated curve in
the lower right panel of Fig. 2, but not in the experimental data. This fact suggests
that the specific energy of the crystal doesn’t vanish when temperature tends to zero.
Indeed a good agreement between calculated and experimental spectra is restored
if the values of internal energy of the crystal are suitably chosen in an empirical
way, abandoning the Clausius relation between kinetic energy and temperature. The
plots shown in Fig. 4 were obtained by means of simulations with average energy
per mode ε = 180 K in the case of T = 85 K and ε = 125 K in the case of T = 7.5
K.5

5 It should be noticed that the parameterization of the potential was done by assuming ε = 295 K at
T = 295 K, which is not consistent with the values of ε obtained at lower T . A more realistic curve
ε(T ) should be obtained by a different suitable choice of the ε value corresponding to T = 295 K.
This we leave for possible future work.
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Fig. 4 Comparison between calculated (solid line) and experimental (circles) reflectivity at the
two lowest temperatures of Fig. 2. Calculated spectra are fitted in this case to the experimental data
by choosing a suitable value ε of specific energy for each temperature T

4 Discussion of the Results

The results shown in Fig. 4 may be interpreted as an empirical determination of the
relation ε(T ) between internal energy and temperature for LiF. This clearly indicates
that limT→0 ε(T ) ≈ 120 K, i.e., that a ZPE exists.

In other words, the persistence of the second peak at very low temperatures (down
to 7.5 K) could be justified by assuming that, due to ZPE, the total energy of the
crystal even at T = 0 is sufficiently large to produce significant anharmonic effects
as those involved in the generation of the secondary peak.

Although the role of ZPE to explain the behavior of experimental spectra of LiF
at low T was invoked by other authors in the framework of quantum calculations, we
point out that the model considered here is completely classical as far as the motions
of the ions (the only particles entering the model) are concerned. So it is of interest to
investigate whether suitable dynamical properties of the system can be found, which
reveal the existence of some energy threshold separating two qualitatively different
regimes, along the lines of the original Cercignani’s conjecture that a transition may
occur from chaotic to ordered motions.

A first attempt can be made, using an extremely naive procedure, as follows.
In Fig. 5 are reported the projections, on some chosen single normal modes phase
planes, of two phase-space trajectories generated by numerical simulations at ε =
300 K (upper row) and at ε = 10 K (lower row): points are taken at 0.02 ps intervals
along the trajectories. One sees that, at 10 K, in most cases the projections exhibit
a character that might be considered ordered, whereas they become completely
disordered at 300 K. This seems to be in agreement with the hypothesis that the
value ε 
 120 K of internal energy indicated through the spectra as corresponding
to T = 0 might correspond to a threshold from partially ordered to completely
disordered motions.
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Fig. 5 Projections of simulated phase-space trajectories onto selected normal-mode phase planes
for ε = 300 K (upper row) and ε = 10 K (lower row). Points are taken at 0.02 ps intervals from
trajectories of 20 ps. Notice that the scales of the different plots are different, being just chosen in
order to produce a common size

5 Conclusions

The existence of a zero-point energy (an energy below which motions occur at zero
temperature) is considered to be a typical quantum phenomenon, but already in the
year 1972 Carlo Cercignani proposed that it may be conceived also in a classical
frame. A result supporting such a conjecture was reported here, on the basis of
numerical computations performed in a classical Born-like model of ionic crystal,
for which the rather astonishing result was already obtained that it reproduces fairly
well the infrared spectra in terms of the Newtonian trajectories of the ions. The
existence of a zero-point energy was exhibited by extrapolating to zero temperature
the state function ε(T ), specific energy versus temperature. In turn, the latter was
obtained by the empirical procedure of finding, for each T , the value of ε which
gives the best fit of the calculated spectrum to the experimental one. Moreover, such
a zero-point energy appears to correspond to a qualitative change in the chaoticity
character of the motions, along the lines of the original Cercignani conjecture.

Although it was not yet possible for us to find a rationale for the existence of
a zero-point energy within classical statistical thermodynamics,6 it was for us a
gratifying experience to produce the preliminary supporting arguments illustrated
above, almost exactly fifty years after the idea of a classical zero-point energy was
conceived, in the form of a startling invention, by our dear late friend Carlo.

6 The key point is to understand why temperature might vanish at all below an energy threshold.
Here arguments mimicking the familiar ones of Khinchin should be considered. One should,
however, take into account that the microcanonical or the canonical ensembles cannot be used,
due to lack of ergodicity in the case of crystals. Indeed the arrangement of the atoms in a crystal
is just one among the N ! ones a priori available and, as long as a crystal is a crystal, most of the
remaining N ! − 1 arrangements are not dynamically attained.
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Turbulence Without Fluctuations

Massimo Germano

Abstract Fluctuations are very important in statistics, but their use in the study
of turbulent flows, particularly in the formulation and the analysis of Large
Eddy Simulations, is not so essential. In the paper some historical and personal
recollections on that are recorded.

1 Introduction

Thirty years ago, in 1992, I was invited by ENEL, the Italian agency for the
production and the distribution of electric power, to illustrate the recent progresses in
the new emerging computational techniques applied to the Large Eddy Simulation,
(LES), of turbulent flows. In Pisa, the morning of May 21, I spoke about the
past and the present of LES and the related perspectives of future developments.
In the afternoon some participants presented their activity in the field, and Carlo
Cercignani was one of them. It was a great day, plenty of suggestions and promises
for the future.

It was not my first conversation with Carlo, our friendship started in the sixties
of the last century, but it was the first time that we were directly related to some
joint project. Both Italians we were used to meet outside, at a congress in the United
States or a meeting in Denmark. I was attracted by his way of looking at science, his
passionate and disenchanted way of considering the progress, his penetrating and
well-disposed judgements of new theories and people. The contacts were rapid but
very significative, a dinner in a pub, a little walk in a campus or the casual encounter
in a library between one session and another. For me he was like an elder brother,
disposed to understand your problems and indulgent with your weaknesses.

At the time of our meeting in Pisa I recall his amused interest on my reports about
my personal American Adventure, the joint gestation of the dynamic model with
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Stanford. Thirty years ago the interest for LES suddenly had a great impulse due to
the new dynamic modeling approach [1] that was presented at the Summer Meeting
of the CTR in 1990. This procedure, originally applied to improve dynamically the
Smagorinsky model, was very general; Carlo was working with his collaborators,
Antonella Abbà and Lorenzo Valdettaro, on anisotropic eddy viscosity models and
a possible dynamic improvement was attracting their attention.

For me all that was a great surprise. The basic ingredient of the new modeling
approach was a trivial identity between the subgrid stresses at two different filtering
resolutions incidentally found in the framework of my speculations on LES. My
interest on LES was relatively new, and my main problem at that time was to
develop a simple multiscale approach to the analysis of turbulent flows based
on a generic hierarchy of filtering operators. The starting point was a curiosity
about the fundamentals, in particular, the problem of the average and the analytical
formalization of LES. I was attracted by LES mainly from the point of view of a
new way to represent turbulent flow, different from the statistical and the spectral
ones.

The beginning was discouraging, a good friend of mine, consulted on the subject,
was very strong about that: please leave that topic, it is unfitted for you. It requires
big computers, you are not an expert in numerical and computational problems
and there is little space left for new theoretical work. But I was attracted by some
analogies between the classical Leonard formulation of LES [2] and some old ideas
of Boussinesq [3] and Reynolds [4], developed in the middle of the last century
by Kampé de Fériet and his school [5], concerning the rules of the mean from the
algebraic point of view, and that was the starting point. Then I realized that a great
obstacle to the formulation of a hierarchical filtering approach was to get rid of
the fluctuations, and to remove the fluctuation-conditioned attitude peculiar of the
statistical decomposition. At the time of my presentation in Pisa I was in the main
of my struggle against the fluctuations, my first paper on that [6] was encountering
some difficulties to be published, it was presented to JFM on July 1990 and was
finally published on June 1992. That was my main interest and my major concern
at that time, and the main argument of my conversation gently supported by Carlo
with his particular witty smile that afternoon in Pisa. In the following I would like
to recall all that, in the ideal continuity that connect all us in an endless dialogue.

2 Fluctuation-Conditioned Turbulence

Everybody knows that an alternative, rapid, and elegant way to compute the
Reynolds stress in turbulent flows is given by

Rij = uiuj − ūi ūj (1)

but for a teacher it is surprisingly scarce the number of students disposed to
appreciate this simple expression. Almost all prefer the classical formulation based
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on the differences, the fluctuations from the mean u′i = ui − ūi

Rij = u′iu′j (2)

where the overline stands for the statistical operator, and this fluctuation-conditioned
attitude is more evident when applied to the statistical analysis of a filtered
representation of a turbulent flow. Let us indicate with the overtilde a generic
filtering operator and with ũi a filtered representation of a turbulent flow ui . We
assume as usual that

·̃ · · = · · · ; ũi = ui ; ũiuj = uiuj (3)

and we introduce the new fluctuations u′′i and u′′′i defined as

u′′i = ũi − ūi ; u′′′i = ui − ũi (4)

Owing to the identity

u′i = u′′i + u′′′i (5)

we can write the relation

Rij = u′′i u′′j + u′′′i u′′′j + u′′i u′′′j + u′′′i u′′j (6)

that if the new supplementary fluctuations u′′i and u′′′i are uncorrelated reduces to the
simple result

Rij = u′′i u′′j + u′′′i u′′′j (7)

I will not underestimate the importance of these relations. Triple decompositions
have been studied by many authors in the past, I will cite one for all the important
paper by Reynolds and Hussain [7] where a triple decomposition has been applied
to the study of the mechanics of an organized wave in turbulent shear flow. Here I
only remark that it is very easy and more general to realize that

u′′i u′′j = ũi ũj − ũi ũj (8)

and that

u′′′i u′′′j + u′′i u′′′j + u′′i u′′′j = ũj ui − ũi ũj (9)
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so that we have the alternative operational decomposition of the Reynolds stress
given by

Rij = Tij + τ ij (10)

where Tij is the resolved stress, explicitly computed

Tij = ũi ũj − ũi ũj (11)

and τij is the subfilter stress, usually modeled

τij = ũiuj − ũi ũj (12)

We remark that the identity (10) is operational and only subjected to the
assumption (3), so that can be also applied to two generic filtering operators, and
that was the new multiscale identity that I was illustrating that day in Pisa. Here
I would like to recall how important in his genesis was for me to remove the
fluctuation-conditioned attitude at that time dominant in the field. A fundamental
starting point was an old paper published in French in the Italian Rendiconti del
Seminario Matematico e Fisico di Milano [5]. In that paper Kampé de Fériet poses
the following question: Quelles sont les propriétés de la moyenne, nécessaires
et suffisantes pour que les équations de Reynolds se déduisent rigoureusement
des équations de Navier en en prenant la moyenne?, which are the properties
of the mean that mathematically justify the RANS equations. The arguments and
the developments are very interesting, but mainly two conclusions deserve in our
opinion our principal attention. The first is related to the fundamental property
of the statistical fluctuations, u′i = 0, their nullity when averaged, that is proved

unessential: si on attache donc une telle importance à u′i = 0 c’est parce qu’on
la juge impliquée intuitivement dans le concept de la moyenne, mais nullement
parce qu’elle intervient dans les calculs réellement effectués1. The second is that
the RANS equations are very simply and directly derived by the Navier-Stokes
equations si l’effet du mouvement de l’agitation turbulent sur le mouvement moyen
ne s’exprime plus par le tenseur de Reynolds, u′iu′j , mais par un nouveau tenseur

Rij = uiuj − ūi ūj
2. More precisely the problem that interested Kampé de Fériet

in the fifties of the last century was to better understand algebraically the Reynolds
rules of the mean. Given a generic linear and constant preserving filtering operator
F that produces the quantities ūi let us introduce the fluctuations u′i = ui − ūi . We

1 If one attains such importance to this property is that we intuitively think it associated with the
concept of mean, but it has no role at all in the computations really done
2 If the effect of turbulence is not expressed by the Reynolds stress u′iu′j but by a new tensor
Rij = uiuj − ūi ūj
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can write

uiuj = ūi ūj + u′iu′j + u′i ūj + u′j ūi (13)

and the problem was to find the operational rules that justify the equivalence of this
expression with the usual one

uiuj = ūi ūj + u′iu′j (14)

Obviously this equivalence is satisfied if F = E, the statistical average, and at that
time the interest to this problem was not so appreciated by the scientific community.
Let us quote from Monin and Yaglom [8], volume 1, page 209: However, all
these investigations are of a formal mathematical nature and their results do not
find direct application in the theory of turbulence. Furthermore, they are not even
necessary, since in present day turbulence theory the question of the meaning of
averaging is resolved in a completely different manner, and, moreover, in such a way
that all the Reynolds conditions are evidently satisfied . . . . . . . Averages different
from the statistical one, like convolutional averages in space and time, are not so
interesting because these mean values will depend on the form of the weighting
function (in particular, when averaging over some time interval or region of space,
it will depend on the length of the interval or the form and volume of the region) and
in conclusion it is desirable in the theory of turbulence to avoid the use of this type of
averaging altogether, and to adopt instead some other method of defining the mean
value, a method that has simpler properties and is more universal. A convenient
definition of this type, which we shall use throughout this book, is found in the
probability-theory treatment of the fields of fluid dynamic variables in a turbulent
flow as random fields.

But things were rapidly changing due to a lot of reasons. The discovery of
coherent structures and the sensation that a turbulent field at least as regards the
large scales, is not so chaotic as presumed was more and more acting on the
scientific imagination. The classical double decomposition in ensemble averages
and statistical fluctuations was insufficient to capture the multiscale nature of
turbulence, and something new had to be implemented. It was clear that in order
to go on something new had to be conceived, and following the suggestions of
Kampé de Fériet the time of abandoning the fluctuation-conditioned approaches
was arrived. It was not so easy, and a fundamental step was to define the Generalized
Central Moments.

3 Turbulence Without Fluctuations

Once removed by the help of Kampé de Fériet my fluctuation-conditioned attitude,
everything became easier. Explicitly, given a generic velocity field ui (x, t, ω), the
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statistical average is given by

〈ui〉 =
∫

ui
(
x′, t ′, ω

)
p(ω)dω (15)

and a generic space average is given by

〈ui〉 =
∫

ui
(
x′, t ′, ω

)
G
(
x− x′

)
d3x′ (16)

where p(ω) is a probability density function and G
(
x− x′

)
a normalized space

filtering kernel, but operationally the filtered, averaged, Reynolds, LES equations
are all equivalent. In terms of the generalized Reynolds stress introduced by Kampé
de Fériet the Navier-Stokes equations are invariant to the filtering process, and this
averaging invariance is claimed in my paper [6], but essentially it is due to my
connection to the past. To generalize all that was simple. Let us consider a generic
filtering operator F representative of our Large Eddy Simulation, the explicit or
implicit LES filter, and given the generic turbulent quantities, a, b, c, · · · , let us
introduce the Generalized Central Moments (GCM) [6, 9, 10] associated with F

τf (a, b) ≡ 〈ab〉f − 〈a〉f 〈b〉f
τf (a, b, c) ≡ 〈abc〉f − 〈a〉f τf (b, c)− 〈b〉f τf (c, a)− 〈c〉f τf (a, b)− 〈a〉f 〈b〉f 〈c〉f

(17)

Let us now define a test filter G that we only assume linear and constant preserving
and let us consider the quantities extracted by this test filter G when applied to
the LES F-filtered quantities. In other words we are interested to the filter product
P = GF. We assume that GF = FG, and our notation is the following

P[· · · ] ≡ G[F[· · · ]] ≡ GF[· · · ] ≡ 〈· · · 〉gf ≡ 〈〈· · · 〉f 〉g ≡ 〈· · · 〉p
≡ F[G[· · · ]] ≡ FG[· · · ] ≡ 〈· · · 〉fg ≡ 〈〈· · · 〉g〉f ≡ 〈· · · 〉p (18)

It is easy to see that we can write the following identities

τp(a, b) = τg(〈a〉f , 〈b〉f )+ 〈τf (a, b)〉g = τf (〈a〉g, 〈b〉g)+ 〈τg(a, b)〉f
τp(a, b, c) = τg(〈a〉f , 〈b〉f , 〈c〉f )+ 〈τf (a, b, c)〉g

+ τg(〈a〉f , τf (b, c))+ τg(〈b〉f , τf (c, a))+ τg(〈c〉f , τf (a, b))
= τf (〈a〉g, 〈b〉g, 〈c〉g)+ 〈τg(a, b, c)〉f
+ τf (〈a〉g, τg(b, c))+ τf (〈b〉g, τg(c, a))+ τf (〈c〉g, τg(a, b)) (19)
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where, consistently with the definition of the GCM,

τp(a, b) ≡ τgf (a, b) = 〈ab〉gf − 〈a〉gf 〈b〉gf
≡ τfg(a, b) = 〈ab〉fg − 〈a〉fg〈b〉fg

τp(a, b, c) ≡ τgf (a, b, c) = 〈abc〉gf − 〈a〉gf τgf (b, c)− 〈b〉gf τgf (c, a)
− 〈c〉gf τgf (a, b)− 〈a〉gf 〈b〉gf 〈c〉gf

≡ τfg(a, b, c) = 〈abc〉fg − 〈a〉fgτfg(b, c)− 〈b〉fgτfg(c, a)
− 〈c〉fgτfg(a, b)− 〈a〉fg〈b〉fg〈c〉fg

τg(〈a〉f , 〈b〉f ) ≡ 〈〈a〉f 〈b〉f 〉g − 〈a〉gf 〈b〉gf
τg(〈a〉f , τf (b, c)) ≡ 〈〈a〉f τf (b, c)〉g − 〈a〉gf 〈τf (b, c)〉g (20)

A particularly important case is G = E. In this case, if we also assume that
EF = E, we have

τe(a, b) = τe(〈a〉f , 〈b〉f )+ 〈τf (a, b)〉e
τe(a, b, c) = τe(〈a〉f , 〈b〉f , 〈c〉f )+ 〈τf (a, b, c)〉e + τe(〈a〉f , τf (b, c))

+ τe(〈b〉f , τf (c, a))+ τe(〈c〉f , τf (a, b)) (21)

and we remark that the total turbulence represented by the statistical central
moments τe(a, b) and τe(a, b, c) is operationally decomposed in the resolved large
scale turbulence τe(〈a〉f , 〈b〉f ) and τe(〈a〉f , 〈b〉f , 〈c〉f ), and in the subfilter small
scale turbulence given by 〈τf (a, b)〉e, 〈τf (a, b, c)〉e and τe(〈a〉f , τf (b, c)).

This multiscale operational technique can be easily extended to an ensemble of
filtering operators hierarchically organized

F , GF , HGF , · · · (22)

and has a lot of different applications. At the time of our meeting in Pisa the
main interest was in subgrid modeling, and the first application of this multiscale
filtering approach was dedicated to the optimization of the Smagorinsky model. In
this case the filter G is a test filter that applied to the F-filtered quantities should
provide a different representation at a different resolution level, useful to compare
and optimize the subgrid model at different grid resolution. We refer for more detail
on that to [10], and we also remark an interesting review and generalization of this
modeling procedure recently provided by Meneveau [11].

Here we would like to also recall the application of this multiscale filtering
technique to the analysis of LES data, in particular, the extraction of statistical data
from a LES database. Let us first of all consider a constant density turbulent field
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and let us assume that EF = E. We explicitly define

Rij ≡ τe(ui, uj )

Rijk ≡ τe(ui, uj , uk)

τij ≡ τf (ui, uj )

τijk ≡ τf (ui, uj , uk)

Tij ≡ τe(〈ui〉f , 〈uj 〉f )
Tijk ≡ τe(〈ui〉f , 〈uj 〉f , 〈uk〉f )

(23)

where ui are the components of the velocity field at a given time and location, and
we have

Rij = 〈τij 〉e + Tij

Rijk = 〈τijk〉e + Tijk + τe(〈ui〉f , τjk)+ τe(〈uj 〉f , τki)+ τe(〈uk〉f , τij )
(24)

where

τe(〈ui〉f , τjk) ≡ 〈〈ui〉f τjk〉e − 〈〈ui〉f 〉e〈〈τjk〉f 〉e (25)

Let us now only assume that EF = FE. We define the following additive GCM

ϑij ≡ τf (〈ui〉e, 〈uj 〉e)
ϑijk ≡ τf (〈ui〉e, 〈uj 〉e, 〈uk〉e) (26)

and we have finally

〈Rij 〉f + ϑij = 〈τij 〉e + Tij (27)

〈Rijk〉f + ϑijk + τf (〈ui〉e, Rjk)+ τf (〈uj 〉e, Rki)+ τf (〈uk〉e, Rij ) =
〈τijk〉e + Tijk + τe(〈ui〉f , τjk)+ τe(〈uj 〉f , τki )+ τe(〈uk〉f , τij ) (28)

Another important application of this fluctuation-free multiscale approach is to
Variable Density Turbulent Fields  , ui . In this case we also remove the mass-
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weighted averages [12], and in terms of the GCM we explicitly write

R i ≡ τe( , ui)

Rij ≡ τe(ui, uj )

R ij ≡ τe( , ui , uj )

τ i ≡ τf ( , ui )

τij ≡ τf (ui , uj )

τ ij ≡ τf ( , ui , uj )

T i ≡ τe(〈 〉f , 〈ui〉f )
Tij ≡ τe(〈ui〉f , 〈uj 〉f )
T ij ≡ τe(〈 〉f , 〈ui〉f , 〈uj 〉f ) (29)

where  is the density and ui are the components of the velocity field at a given time
and location. We have

R i = 〈τ i〉e + T i

Rij = 〈τij 〉e + Tij (30)

R ij = 〈τ ij 〉e + T ij + τe(〈 〉f , τij )+ τe(〈ui〉f , τ j )+ τe(〈uj 〉f , τ i)
(31)

Let us now only assume that EF = FE. We define the following additive GCM

ϑ i ≡ τf (〈 〉e, 〈ui〉e)
ϑij ≡ τf (〈ui〉e, 〈uj 〉e)
ϑ ij ≡ τf (〈 〉e, 〈ui〉e, 〈uj 〉e) (32)

and we have finally

〈R i〉f + ϑ i = 〈τ i〉e + T i

〈Rij 〉f + ϑij = 〈τij 〉e + Tij (33)
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and

〈R ij 〉f + ϑ ij + τf (〈 〉e, Rij )+ τf (〈ui〉e, R j )+ τf (〈uj 〉e, R i) =
〈τ ij 〉e + T ij + τe(〈 〉f , τij )+ τe(〈ui〉f , τ j )+ τe(〈uj 〉f , τ i) (34)

These last decompositions of the Reynolds stresses in the case of compressible
turbulent flow are new, simple, and fluctuation-free. Moreover they are also mass
weighted-free, and the author really hope that they could be appreciated more and
more in the future in the analysis of LES databases. We recall finally that some
recent applications of the filtering approach concerning the subfilter stress [13], the
decomposition of the Reynolds stresses [14, 15], the dynamic modeling of the Shock
Driven Turbulent Mixing [16] and the definition of statistical homogeneity indices
[17] have been recently reviewed in [18].

4 Conclusions

But let us return to that afternoon in Pisa and to the conversation with Carlo.
Everything went on well: two months later my paper was finally published, and
in the following years the application of the new dynamic modeling procedure to
the anisotropic eddy viscosity model proposed by Carlo, Antonella, and Lorenzo
was developed and worked successfully [19]. Fluctuations continue to be applied
in LES, but some final lessons deserve to be remarked. The first is related to our
starting point, the identity (10). Why this simple and, in our opinion, interesting
decomposition of the Reynolds stress was appreciated so lately in turbulence? We
remark that in applied statistics the identities (3) and (10) are better known as the
Adam and Eve’s laws [20, 21]: given a partition of the probability space, the total
statistical covariance Rij of ui and uj is the average τ ij of the partial covariance
τij plus the statistical covariance Tij of the partial mean values. Science as every
human activity is often conditioned by great ideas that in some cases obscure
other different possibilities. Obviously the fluctuations remain very important, but
not always they are essential, and in the case of LES their importance has been
overvalued. Individual deviations from the average are intuitively very appealing,
but not always you are obliged to decline them: differences are not so relevant in
turbulence.

Another important lesson regards finally our ideal endless dialogue with the past:
old papers are often plenty of useful observations and suggestions.
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An Ellipsoidal-Statistical (ES) Model for
a Polyatomic Gas with
Temperature-Dependent Specific Heats

Shingo Kosuge and Kazuo Aoki

Abstract In a previous paper by the present authors and H.-W. Kuo [S. Kosuge
et al, J. Stat. Phys. 177, 209 (2019)], the ellipsoidal-statistical (ES) model of the
Boltzmann equation for a polyatomic gas with constant specific heats (calorically
perfect gas), proposed by P. Andries et al. [P. Andries et al., Eur. J. Mech. B/Fluids
19, 813 (2000)], was extended to a polyatomic gas with temperature-dependent
specific heats (thermally perfect gas), and the associated Navier–Stokes equations
were derived by the Chapman–Enskog procedure. In this paper, the new model,
together with the Navier–Stokes equations, is summarized. Then, the form of the
appropriate boundary conditions for the latter equations is derived by the analysis
of the Knudsen layer.

In memory of Carlo Cercignani (1939–2010)

1 Introduction

The study of nonequilibrium flows of polyatomic gases is an important subject
in kinetic theory of gases nowadays in connection with various applications in
high-temperature circumstances [1, 2]. However, the original Boltzmann equation,
even in the case of a single-component gas, requires detailed information about
collision processes of polyatomic molecules, which is not necessarily available.
Even if the data are available for a specific gas, the Boltzmann equation becomes
very complicated. Therefore, it is generally very hard to use the original Boltzmann
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equation for practical applications. To bypass this difficulty, various simplified and
tractable models of the Boltzmann equation, which satisfy some basic properties of
the original Boltzmann equation, have been proposed (see [3–13] and the references
therein), and some of them have been successfully applied to practical problems.
One of such models is the ellipsoidal-statistical (ES) model proposed by Andries et
al. [6] and rederived in a systematic way by Brull and Schneider [14].

In a previous paper by the present authors [15], this ES model was successfully
applied to analyzing the structure of a plane shock wave in a polyatomic gas with
large bulk viscosity. However, the ES model in [6] is for a polyatomic gas with
constant specific heats (calorically perfect gas). In reality, however, the specific heats
for most gases depend on the temperature even under the condition that the gases
are treated as ideal gases. The effect of the temperature dependence of the specific
heats becomes particularly important when the temperature varies significantly in
the flow field, such as gas flows containing strong shock waves [16].

For this reason, in a paper by the present authors and H.-W Kuo [17], the ES
model in [6] has been extended to the case of a polyatomic gas with temperature-
dependent specific heats (thermally perfect gas). In the same reference, the com-
pressible Navier–Stokes equations were derived from the new model by the
Chapman–Enskog expansion [18–21]. In the present paper, we first summarize
the new ES model proposed in [17] for a polyatomic gas with temperature-
dependent specific heats (Sect. 2) together with its basic properties (Sect. 3). Then,
the associated Navier–Stokes equations are summarized in Sect. 4. Finally, we
will show the form of the appropriate boundary conditions for the Navier–Stokes
equations that is derived by the analysis of the Knudsen layer (Sect. 5).

2 ES Model for a Gas with Temperature-Dependent Specific
Heats

Let us consider a polyatomic rarefied gas. Let t be the time variable, X (or Xi ) the
position vector in the physical space, ξ (or ξi ) the molecular velocity, and E the
energy associated with the internal modes per unit mass. We denote the total mass
of the gas molecules contained in an infinitesimal volume dXdξdE around a point
(X, ξ , E) in the seven-dimensional space consisting of X, ξ , and E at time t by

f (t, X, ξ , E)dXdξdE . (1)

The ES model is the equation governing this f (t, X, ξ , E). In the present paper,
we consider the thermally perfect gas, for which the specific heat at constant volume
cv and that at constant pressure cp are both functions of the temperature T , and
summarize the model Boltzmann equation for such a gas proposed in [17]. It is a
straightforward extension of the ES model for a gas with constant cv and cp [6].
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We first consider an equilibrium state with a uniform and constant temperature
T and assume that the specific heats are constant and the classical equipartition
law holds. Then, the internal energy E of the gas per unit mass can be expressed
as E = (3 + δ0)RT/2, where δ0 is the (constant) number of internal degrees of
freedom, and R is the gas constant per unit mass. Now, we consider a more general
gas for which the internal energy E is a given (monotonically increasing) function
of the temperature T , i.e., E = E(T ). Then, we define a function D(T ) as D(T ) =
2E(T )/RT −3. This D(T ) is a generalized number of internal degrees of freedom.
Note that the relations cv(T ) = dE(T )/dT and cp(T ) = cv(T )+R hold, so that cv
and cp depend on the temperature.

Next, we extend E(T ), D(T ), cv(T ), and cp(T ) in the nonequilibrium case and
use them in the definition of the new model equation, which is described as follows
[17]:

∂f

∂t
+ ξi

∂f

∂Xi

= Q(f ), (2)

with

Q(f ) = Ac(T )ρ(G − f ). (3)

Here,

G = ρEδ/2−1

(2π)3/2[det(T)]1/2(RTrel)δ/2�(δ/2)

× exp

(
−1

2
(T−1)ij (ξi − vi)(ξj − vj )− E

RTrel

)
, (4a)

(T)ij = (1− θ)[(1− ν)RTtrδij + νpij /ρ] + θRT δij , (4b)

ρ =
∫∫ ∞

0
f dEdξ , vi = 1

ρ

∫∫ ∞

0
ξif dEdξ , (4c)

pij =
∫∫ ∞

0
(ξi − vi)(ξj − vj )f dEdξ , (4d)

T = E−1(e), δ = D(T ) = 2e/RT − 3, (4e)

Ttr = 2etr/3R, Tint = 2eint/Rδ, Trel = θT + (1− θ)Tint, (4f)

where e, etr, and eint are defined by

e = etr + eint, etr = 1

2ρ

∫∫ ∞

0
|ξ − v|2f dEdξ , eint = 1

ρ

∫∫ ∞

0
Ef dEdξ .

(5)



144 S. Kosuge and K. Aoki

In Eqs. (2)–(5), ρ is the density, v (or vi) is the flow velocity, pij is the stress tensor,
e is the internal energy per unit mass, etr is that associated with the translational
motion, eint is that associated with the internal modes, T is the temperature, Ttr
is the temperature associated with the translational motion, Tint is the temperature
associated with the energy of the internal modes, dξ = dξ1dξ2dξ3, and the domain
of integration with respect to ξ is the whole space of ξ . The symbol δij indicates
the Kronecker delta, and ν ∈ [−1/2, 1) and θ ∈ [0, 1] are parameters. In addition,
Ac(T ) is a function of T such that Ac(T )ρ is the collision frequency of the gas
molecules, �(z) = ∫∞

0 sz−1e−sds is the gamma function, T is the 3 × 3 positive-
definite symmetric matrix whose (i, j) component is defined by Eq. (4b), and det(T)
and T−1 are, respectively, its determinant and inverse.

Note that all the macroscopic quantities contained in G are generated from f .
To be more specific, (i) ρ, v, pij , etr, eint, and e are obtained by Eqs. (4c), (4d),
and (5); (ii) T and then δ are determined by Eq. (4e) using the inverse function
E−1 of the function E; (iii) Ttr, Tint, and Trel are determined by Eq. (4f), and then
T is established by Eq. (4b). Since e = etr + eint = (3Ttr + δTint)R/2 and also
e = (3 + δ)RT/2, we have the relation T = (3Ttr + δTint)/(3 + δ) [note that δ
depends on T : cf. Eq. (4e)].

The pressure p and the heat-flow vector qi are given by

p = RρT, (6a)

qi =
∫∫ ∞

0
(ξi − vi)

(
1

2
|ξ − v|2 + E

)
f dEdξ , (6b)

where Eq. (6a) is the equation of state.

3 Basic Properties

In the following, we summarize the basic properties that follow from the model
equation (2) [17]. Some properties are different when the parameter θ is equal to
zero.

• Conservations for θ �= 0: For an arbitrary function f (t, X, ξ , E), the following
relation holds:

∫∫ ∞

0
ϕrQ(f )dEdξ = 0, (7)

where ϕr (r = 0, . . . , 4) are the collision invariants, i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1

2
|ξ |2 + E . (8)
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• Conservations for θ = 0: For an arbitrary function f (t, X, ξ , E), the following
relation holds:

∫∫ ∞

0
ϕrQ(f )dEdξ = 0, (9)

where ϕr (r = 0, ..., 5) are the collision invariants, i.e.,

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1

2
|ξ |2, ϕ5 = E . (10)

• Equilibrium for θ �= 0: The vanishing of the collision term Q(f ) = 0 is
equivalent to the fact that f is the following local equilibrium distribution:

feq = ρ̄E δ̄/2−1

(2πRT̄ )3/2(RT̄ )δ̄/2�(δ̄/2)
exp

(
−|ξ − v̄|2

2RT̄
− E

RT̄

)
, (11)

where ρ̄, v̄, and T̄ are arbitrary functions of t and X, and δ̄ = D(T̄ ).
• Equilibrium for θ = 0: The vanishing of the collision term Q(f ) = 0 is

equivalent to the fact that f is the following local equilibrium distribution:

feq = ρ̄E δ̄/2−1

(2πRT̄tr)3/2(RT̄int)δ̄/2�(δ̄/2)
exp

(
−|ξ − v̄|2

2RT̄tr
− E

RT̄int

)
, (12)

where ρ̄, v̄, T̄tr, and T̄int are arbitrary functions of t and X, and δ̄ and T̄ are
determined by the following coupled equations:

δ̄ = D(T̄ ), T̄ = E−1(3RT̄tr/2+ δ̄RT̄int/2). (13)

The solution (δ̄, T̄ ) of Eq. (13) exists. In particular, it is unique when T̄int ≤ T̄tr.
• Entropy inequality: For an arbitrary function f (t, X, ξ , E), the following

inequality holds:

∫∫ ∞

0

(
ln

f

Eδ/2−1

)
Q(f )dEdξ ≤ 0, (14)

where δ is defined by Eqs. (4e) and (5). The equality sign holds if and only if
f = feq in Eq. (11) (θ �= 0) or (12) (θ = 0).

• H theorem for spatially homogeneous case: Let Hδ(f ) be defined by

Hδ(f ) =
∫∫ ∞

0
f ln

f

Eδ/2−1
dEdξ . (15)



146 S. Kosuge and K. Aoki

If f does not depend on X, the following inequality holds:

dHδ/dt ≤ 0, (16)

and the equality sign holds if and only if f = feq with constant ρ̄, v̄, and T̄ in
Eq. (11) (θ �= 0) or that with constant ρ̄, v̄, T̄tr, and T̄int in Eq. (12) (θ = 0).

• Mean free path: The mean free path l0 of the gas molecules in the equilibrium
state at rest at density ρ0 and temperature T0 is given by

l0 = 2√
π

(2RT0)
1/2

Ac(T0)ρ0
, (17)

for Eq. (2), since Ac(T0)ρ0 is the collision frequency at this equilibrium state.

It should be remarked that we were not able to show the H theorem for the
spatially inhomogeneous case. It is a drawback of this model, which should be the
consequence of the simple and convenient definition of the temperature T and the
resulting δ using the given function E [cf. Eq. (4e)].

4 Navier–Stokes Equations

When the mean free path l0 of the gas molecules in the reference equilibrium state
at rest with density ρ0 and temperature T0 is much shorter than the characteristic
length L of the system, i.e., when the Knudsen number Kn = l0/L is small, one
can formally derive fluid-dynamic equations by a classical procedure, such as the
Chapman–Enskog expansion, from Eq. (2). In this section, restricting ourselves
to the case where θ is of the order of unity, we summarize the Navier–Stokes
equations derived by the standard Chapman–Enskog procedure. Incidentally, when
θ is small, one can derive Navier–Stokes type equations with two temperatures and
their appropriate boundary conditions by following the procedure for a polyatomic
gas with constant specific heats [22, 23].

The macroscopic quantities ρ, vi , and T are governed by the following Navier–
Stokes equations for a compressible fluid [17]:

∂ρ

∂t
+ ∂ρvj

∂Xj

= 0, (18a)

∂ρvi

∂t
+ ∂ρvivj

∂Xj

= − ∂p

∂Xi

+ ∂

∂Xj

[
μ(T )

(
∂vi

∂Xj

+ ∂vj

∂Xi

− 2

3

∂vk

∂Xk

δij

)]

+ ∂

∂Xi

[
μb(T )

∂vk

∂Xk

]
, (18b)
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∂

∂t

[
ρ

(
3+ δ

2
RT + 1

2
|v|2

)]
+ ∂

∂Xj

[
ρvj

(
5+ δ

2
RT + 1

2
|v|2

)]

= ∂

∂Xj

[
λ(T )

∂T

∂Xj

]
+ ∂

∂Xj

[
μ(T )vi

(
∂vi

∂Xj

+ ∂vj

∂Xi

− 2

3

∂vk

∂Xk

δij

)]

+ ∂

∂Xj

[
μb(T )vj

∂vk

∂Xk

]
, (18c)

with p = RρT [cf. Eq. (6a)] and δ = D(T ). Here, the viscosity μ(T ), the bulk
viscosity μb(T ), and the thermal conductivity λ(T ) are given by

μ(T ) = Pr
RT

Ac(T )
, μb(T ) = 1

θ

[
5

3
− γ (T )

]
1

Pr
μ(T ),

λ(T ) = γ (T )

γ (T )− 1
R

RT

Ac(T )
, Pr = 1

1− ν + θν
,

(19)

where γ (T ) = cp(T )/cv(T ) = [cv(T )+R]/cv(T ) is the ratio of the specific heats,
and Pr = cp(T )μ(T )/λ(T ) is the Prandtl number. In addition, the translational and
internal temperatures Ttr and Tint are, respectively, given as

Ttr = T − 1

R
μb(T )

1

ρ

∂vk

∂Xk

, Tint = T + 3

Rδ
μb(T )

1

ρ

∂vk

∂Xk

. (20)

One of the advantages of the present ES model is that the resulting transport
coefficients (19) are simple and explicit, so that the Navier–Stokes equations (18)
have a wide applicability for practical flows of a polyatomic gas with temperature-
dependent specific heats. The same is true for the so-called higher-order transport
coefficients, such as the coefficients occurring in the thermal stresses [21, 24].

5 Boundary Conditions for Navier–Stokes Equations

The Navier–Stokes equations shown in Sect. 4 correspond to the first-order solution
of the Chapman–Enskog expansion, that is, the solution that satisfies the model
equation (2) formally with the error of the order of Kn2 in the dimensionless setting
in which the collision term is set to be of the order of unity. Here, it should
be recalled that the Chapman–Enskog solution is obtained without considering
the effect of boundaries. However, in most practical problems, gas flows are in
contact with boundaries, where the kinetic boundary condition, i.e., the boundary
condition for Eq. (2), is specified. Therefore, the Chapman–Enskog solution should
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be matched with the kinetic boundary condition on the boundary. Since we are
considering the first-order Chapman–Enskog solution, we have to satisfy the kinetic
boundary condition also with the error of the order of Kn2 (in the dimensionless
setting). This can be achieved by introducing the Knudsen layer, a thin layer
with thickness of the order of the mean free path l0, adjacent to the boundary.
The analysis of the Knudsen layer leads to the appropriate boundary conditions
for the compressible Navier–Stokes equations. The Knudsen-layer technique was
developed and established in the framework of asymptotic theory of the Boltzmann
equation for small Knudsen numbers in a series of papers by Sone (e.g., [25–27]).
The reader is referred to [21, 24] for the details.

The Knudsen-layer technique in Sone’s asymptotic theory has been adjusted
to the Champan–Enskog procedure to derive the boundary conditions for the
compressible Navier–Stokes equations in [28] for the Boltzmann equation for a
monatomic gas and in [29] for the ES model for a polyatomic gas with constant
specific heats. Since the present model is basically the ES model, the Knudsen-
layer analysis in [29] can straightforwardly be applied to the present case. In this
section, we summarize the resulting form of the boundary conditions.

Before presenting the result, we mention the kinetic boundary condition for
Eq. (2). We assume that the gas molecules undergo the Maxwell diffuse-specular
reflection on the boundary. Let Xw (or Xwi) be a point on the boundary and vw (or
vwi), Tw, and n (or ni ) be, respectively, the velocity, the temperature, and the unit
normal vector, pointing into the gas, of the boundary at the point Xw. The boundary
condition for Eq. (2) is written as

f (t, Xw, ξ , E) = (1− α)Rf (t, Xw, ξ , E)

+ α
ρwEδw/2−1

(2πRTw)3/2(RTw)δw/2�(δw/2)
exp

(
−|ξ − vw|2

2RTw
− E

RTw

)
,

for (ξ − vw) · n > 0, (21a)

ρw = −
(

2π

RTw

)1/2 ∫
(ξ−vw)·n<0

∫ ∞

0
(ξ − vw) · nf (t, Xw, ξ , E)dEdξ , (21b)

where δw = D(Tw), α ∈ (0, 1] is the accommodation coefficient, and R is the
reflection operator defined with an arbitrary function g(ξ ) by

Rg(ξi ) = g(ξi − 2(ξj − vwj )nj ni). (22)

We assume that the shape of the boundary is smooth and vw and Tw change smoothly
in t and Xw.
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The boundary conditions for the Navier–Stokes equations (18) obtained by the
Knudsen-layer procedure are in the following form: at X = Xw,

(vi − vwi )ni = 0, (23a)

(vi − vwi )ti =
√

2

R1/2

1

Pr
cIv
μ(Tw)

ρT
1/2

w

(
∂vi

∂Xj

+ ∂vj

∂Xi

)
nitj

+ 2

R
cIT

γ (Tw)− 1

γ (Tw)

λ(Tw)

ρTw

∂T

∂Xi

ti, (23b)

T − Tw = 1

R

1

Pr
cIIv

μ(Tw)

ρ

∂vi

∂Xj

ninj +
√

2

R3/2
cIIT

γ (Tw)− 1

γ (Tw)

λ(Tw)

ρT
1/2

w

∂T

∂Xi

ni,

(23c)

where ti is an arbitrary unit vector tangent to the boundary at X = Xw. The
coefficients cIv , cIT , cIIv , and cIIT , which are the so-called slip coefficients, are
determined by solving four half-space problems of the linearized version of the
model equation (2). These problems contain the properties of the gas and the
boundary through the parameters α, ν, and θ , the boundary temperature Tw, and
the functions D(Tw) and γ (Tw). Therefore, the coefficients cIv , cIT , cIIv , and cIIT
also depend on these properties. In other words, we have to specify these properties
for the gas and the boundary under consideration with the help of available data
in the literature and then solve the four problems numerically. As the results, the
coefficients cIv , cIT , cIIv , and cIIT are determined for our gas. Since the space is
limited, the explicit forms of the four problems are omitted here. We only mention
that they are classical half-space problems; more specifically, the problems of
shear slip, thermal creep, temperature jump caused by the normal viscous stress,
and temperature jump caused by the normal heat flow. The form of the boundary
conditions (23), which is of the type of slip conditions, is basically the same as that
for a polyatomic gas with constant specific heats [29]. The difference lies in the fact
that in the latter case, the coefficients cIv , cIT , cIIv , and cIIT do not depend on the
boundary temperature Tw.

To complete the Navier–Stokes system, we should specify the initial conditions
at time t = 0, in addition to the boundary conditions (23). In general, the initial
condition for the model (2) is given as

f (0,X, ξ , E) = f ini(X, ξ , E), (24)

where f ini is an arbitrary function. Correspondingly, one may set

ρ(0,X) = ρini(X), v(0,X) = vini(X), T (0,X) = T ini(X), (25)

as the initial conditions for Eq. (18), where ρini, vini, and T ini are the density,
flow velocity, and temperature generated from f ini and are assumed to be smooth
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functions of X. One should note that, with the general initial conditions (25),
Eq. (18) and the boundary conditions (23) do not give a correct approximation of the
solution to Eqs. (2), (21), and (24) at the initial stage 0 < t < O(mean free time)
(the initial layer). This initial inaccuracy may remain for a long time in some cases,
such as the problems with the propagation of strong shock waves generated at the
initial stage. However, for many problems in which the boundary has dominant
effects, the Navier–Stokes system (18), (23), and (25) may be expected to provide
a good approximate solution globally to the solution of the kinetic system (2),
(21), and (24) formally with the error of O(Kn2) (in the appropriate dimensionless
setting), except inside the Knudsen and initial layers.

The occurrence of the initial layer can be avoided by considering a special kinetic
initial condition (24) and by imposing some restrictions on vw and Tw in the kinetic
boundary condition (21). Suppose that the gas is in the equilibrium state at rest with
density ρ0 and temperature T0 at t = 0, that is,

f ini = f0 = ρ0Eδ0/2−1

(2πRT0)3/2(RT0)δ0/2�(δ0/2)
exp

(
− |ξ |2

2RT0
− E

RT0

)
, (26)

where δ0 = D(T0). Correspondingly, Eq. (25) reduces to

ρ(0,X) = ρ0, v(0,X) = 0, T (0,X) = T0. (27)

If we assume that vw = 0 and Tw = T0 in Eq. (21), then f0 in Eq. (26) is the solution
of the problem for all t (> 0). Let vw and Tw start changing slowly in position and
time after the initial time, with the time scale much longer than the mean free time
and with the length scale much longer than the mean free path. In this setting, the
initial layer does not appear.
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Discrete- and Continuous-Time Random
Walks in 1D Lévy Random Medium

Marco Lenci

Abstract A Lévy random medium, in a given space, is a random point process
where the distances between points, a.k.a. targets, are long-tailed. Random walks
visiting the targets of a Lévy random medium have been used to model many
(physical, ecological, social) phenomena that exhibit superdiffusion as the result
of interactions between an agent and a sparse, complex environment.

In this note we consider the simplest non-trivial Lévy random medium, a
sequence of points in the real line with i.i.d. long-tailed distances between consecu-
tive targets. A popular example of a continuous-time random walk in this medium is
the so-called Lévy-Lorentz gas. We give an account of a number of recent theorems
on generalizations and variations of such model, in discrete and continuous time.

1 Introduction

In this note we give an overview of recent rigorous results on random walks (RWs)
in random medium on the real line. The random medium is given by a point process
ω = (ωk, k ∈ Z) ⊂ R, where ω0 = 0 and the distances ζk := ωk − ωk−1 between
consecutive points are positive i.i.d. random variables with a long tail. By this we
mean that the variance of ζk is infinite. The points ωk will be henceforth called
targets. For reason that will be better clarified below we refer to ω as a Lévy random
medium.

We consider two types of RWs on R related to ω. To define them we introduce the
auxiliary process S = (Sn, n ∈ N), a Z-valued RW with S0 = 0 and independent
increments. We postulate that S is independent of ω and call it the underlying
random walk. The first process of interest is Y ≡ Yω := (Yn, n ∈ N), where
Yn := ωSn . This is the discrete-time RW (DTRW) that “jumps” on the targets of
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ω as determined by S. For example, if S produces the realization (0, 2,−3, . . .),
the walker Y starts at the origin, then jumps to the second target to the right of
0, then to the third target to the left of 0, etc. The second process of interest is
X ≡ Xω := (X(t), t ≥ 0), the continuous-time RW (CTRW) defined as the unit-
speed interpolation of Y . This means that the walker X visits all the points Yn,
ordered by n, but “walking” with unit speed rather than jumping. For instance, for
S as in the above example, X starts at the origin and moves with velocity 1 until it
reaches Y1 = ω2, then it instantaneously turns its velocity to −1 and moves until it
reaches Y2 = ω−3, and so on.

In the case where the underlying RW S is simple and symmetric, the process X
is generally referred to as the Lévy-Lorentz gas, after Barkai, Fleurov, and Klafter
introduced it in the physical literature in 2000 [1]. The Lévy-Lorentz gas has been
used since as a simple model for a number of phenomena exhibiting superdiffusion,
i.e., diffusion at a faster speed than square root of time. They include transport in
porous media, disordered optical media (such as Lévy glasses [2]), nanowires, etc.;
see [1, 3–5] and the references therein.

In the physical literature, DTRWs, respectively, CTRWs, whose distributions
of jumps, respectively, inertial stretches, are long-tailed, are often called Lévy
flights, respectively Lévy walks. Lévy flights and walks, in regular or random
media, have been employed as models for anomalous diffusion in a wide range of
situations, from the physical to the biological and social sciences [6, 7]. A rigorous
mathematical treatment of these systems has only been given for the simplest of
them, mostly on regular media. In real-world applications, however, the anomalous
behavior of a certain diffusing quantity is seldom due to a special law governing
the diffusing agent per se, but rather to the interaction between the agent and an
irregular medium (e.g., a photon in a Lévy glass, a signal in a small-world network,
an animal foraging where food is scarce, etc.). Hence the interest in Lévy media,
namely media that induce superdiffusive behavior, such as the random point process
ω defined earlier.

A fair amount of mathematical work on the processes X and Y has been done
in recent years by different authors [8–12]. In particular, in a number of cases,
limit theorems have been proved for suitable rescalings of either process. In some
instances, the convergence of moments has been proved as well. The purpose of this
note is to present these results in a concise, unified manner. For reasons of space
and self-consistency, we will neglect interesting work by Artuso and collaborators
on yet another type of RW related to the Lévy-Lorentz gas, a persistent RW in an
averaged medium [13, 14].

In Sect. 2 we present results on the DTRW Y and in Sect. 3 on the CTRW X.
Understandably, the results depend on the assumptions on the random medium ω

and the underlying RW S. Major differences occur depending on whether ζk , the
distance between two consecutive targets, has infinite variance but finite mean, or
infinite mean (and thus infinite variance), so we consider these cases in different
subsections. No proofs are given, but references are placed throughout.
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1.1 General Notation

Throughout the paper we denote by P the probability law that governs the whole
system, both the random medium ω and the underlying RW S (that latter playing
the role of the random dynamics, as it “drives” both X and Y , in a given ω). P
is called the annealed law and we denote by E its expectation. For a fixed ω, the
conditional probability Pω := P(·|ω) is called the quenched law relative to the
realization ω of the medium. We denote by Eω its expectation. A limit theorem,
such as the CLT or the Invariance Principle, etc., relative to P is referred to as an
annealed limit theorem. One speaks instead of a quenched limit theorem if the result
is proved w.r.t. Pω, for P-a.e. ω.1 In what follows, for the most part, we present
annealed and quenched results in different subsections.

We indicate with ξn := Sn−Sn−1 (n ∈ Z

+) the i.i.d. increments of the underlying
RW, whose drift is denoted ν := E[ξn], if it exists in R∪ {±∞}. The mean distance
between the targets of ω is denoted μ := E[ζk]. Since ζk > 0, μ always exists in
R ∪ {+∞}. Let us recall that all ξn (n ∈ Z

+) and ζk (k ∈ Z) are independent.

2 Discrete-Time Random Walk

In this section we consider the asymptotic behavior of the DTRW Y ≡ Yω, under a
number of different assumptions on the distributions of ζ1 and ξ1.

2.1 Finite Mean Distance Between Targets, Quenched
Theorems

We start with the results of [8] on the quenched version of Y , which only require a
very simple condition on the medium, μ = E[ζ1] < ∞, that is, the mean distance
between neighboring targets is finite. The assumptions on the underlying RW are
instead as follows:

• the increment ξ1 of S is symmetric, i.e., P(ξ1 = j) = P(ξ1 = −j), for all j ∈ N;
• its distribution is unimodal, i.e., j �→ P(ξ1 = j) is non-increasing for j ∈ N;
• it has finite variance: Vξ := E[ξ2

1 ] <∞.

1 Since we have neither introduced the measurable space (#,A) where P is defined nor declared
that ω are elements of #, mathematical formality requires that we define the phrase “P-almost
every ω.” The counterimages (equivalently, level sets) of the process ω form a partition of #. We
assume this partition to be measurable in the sense of Rohlin [15]. Now, a property is said to
hold for P-a.e. ω if the values of ω which do not satisfy the property correspond to elements of
the partition whose union has zero P-measure. Incidentally, the existence of such a measurable
partition is what guarantees that P(·|ω) is well-defined (for P-a.e. ω).
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The authors prove a quenched CLT for Y [8, Thm. 1]:

Theorem 1 Assume the above conditions, most notably μ <∞. Then, as n→∞,

Yn√
n

d−→ N
(
0, μ2 Vξ

)
,

w.r.t. Pω, for P-a.e. ω. Here N(0, μ2 Vξ ) is a Gaussian variable with mean 0 and
variance μ2Vξ .

Obviously, a quenched distributional limit theorem with the same limit for a.e.
quenched law implies the annealed version of the same theorem:

Corollary 1 The limit in the statement of Theorem 1 holds w.r.t. P as well.

Convergence is known for the quenched moments of Yn/
√
n as well, at least of

lower order. Let p := sup{q ≥ 0 |E[|ξ1|q ] <∞}. By the assumption on Vξ , p ≥ 2.
For all q ∈ R

+, denote by

mq :=
√

2q

π
�

(
q + 1

2

)
(1)

the q-th absolute moment of the standard Gaussian N(0, 1) (here � is the usual
Gamma function). It is not hard to show that, at least for all q < p,

lim
n→∞

E[Sn]
nq/2

= V
q/2
ξ mq. (2)

The following is a reformulation of Theorem 2 of [8].

Theorem 2 Under the above assumptions and notation, fix q ∈ (0, p). For a.a. ω,

lim
n→∞

Eω[Yn]
nq/2

= μq V
q/2
ξ mq.

Observe that μq V
q/2
ξ mq is the q-th absolute moment of N(0, μ2 Vξ ), so Theorem 2

is consistent with Theorem 1.

2.2 Finite Mean Distance Between Targets, Annealed
Theorems

In the next two subsections we report the functional limit theorems of [11]. We
refer the reader to [16] for background material on stable laws, Lévy processes,
Skorokhod topologies, etc. All distributional convergences in these subsections are
meant w.r.t. P, that is, we are considering annealed functional limit theorems.
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We assume that ζ1 is in the normal basin of attraction of a α-stable distribution,
with α ∈ (1, 2]. This means that μ = E[ζ1] <∞ and

1

n1/α

n∑
i=1

(ζi − μ)
d−→ Z̃

(α)
1 , (3)

as n → ∞, for some α-stable variable Z̃(α)
1 (whose skewness index2 must then be

0). As for the underlying RW, we assume ξ1 is in the normal basin of attraction of
an β-stable distribution, with β ∈ (0, 1) ∪ (1, 2]. We must distinguish two cases,
depending on whether ν = E[ξ1] exists and differs from 0, or otherwise.

• If β ∈ (0, 1), or β ∈ (1, 2] and ν = 0, we assume that there exists a β-stable
variable W(β)

1 such that, as n→∞,

1

n1/β

n∑
i=1

ξi
d−→ W

(β)

1 . (4)

• If β ∈ (1, 2] and ν �= 0, we assume that there exists a β-stable variable W̃
(β)
1

such that

1

n1/β

n∑
i=1

(ξi − ν)
d−→ W̃

(β)
1 . (5)

To state the results of this section, we need two spaces of functions with jump
discontinuities. In what follows, we denote by D+ the space of càdlàg3 functions
R

+ −→ R and by D the space of functions R −→ R whose restriction to [0,+∞),
respectively (−∞, 0], is càdlàg, respectively càglàd.

Let (Z̃(α)
± (s), s ≥ 0) be two i.i.d. Dα-stable Lévy processes such that Z̃(α)

± (0) =
0 and Z̃

(α)
± (1) is distributed like Z̃(α)

1 , introduced in (3) (these conditions uniquely
determine the distribution of the processes), and set

Z̃(α)(s) :=
{
Z
(α)
+ (s) , s ≥ 0;
−Z(α)

− (−s) , s < 0.
(6)

2 The skewness index is the parameter that, in virtually all textbooks on stable variables (such as
[16]) is denoted β ∈ [−1, 1]. In this paper β is used for the stability index of ξ1.
3 That is, right-continuous with left limits existing everywhere. Càglàd means left-continuous with
right limits everywhere.
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By construction, every realization Z̃(α) belongs to D, and so do the realizations

ω̄(n)(s) := 1

n

{
ω'ns( , s ≥ 0;
ω)ns* , s < 0,

(7)

ω̃(n)(s) := 1

n1/α

{∑'ns(
i=1 (ζi − μ) , s ≥ 0;

−∑0
i=)(n−1)s* (ζi − μ) , s < 0,

(8)

defining the processes (ω̄(n)(s), s ∈ R) and (ω̃(n)(s), s ∈ R). The single-variable
convergence (3) entails functional convergence of these processes: as n → ∞,

ω̄(n) a.s.−−−→ μ id and ω̃(n) d−→ Z̃(α), relative to the Skorokhod topology J1. From
now on, we will write “in (D, J1)” for short.

We now introduce continuous-argument processes for the dynamics.

• In the case β ∈ (0, 1), or β ∈ (1, 2] and ν = 0, we denote by (W(β)(t), t ≥
0) a Dβ-stable Lévy process whose distribution is uniquely determined by the
conditions that W(β)(0) = 0 and W(β)(1) be distributed like W(β)

1 ; cf. (4). Also

define (Ŝ(n)(t), t ≥ 0) via

Ŝ(n)(t) := S'nt(
n1/β . (9)

It follows from (4) that Ŝ(n)
d−→ W(β), in (D+, J1), as n→∞.

• In the case β ∈ (1, 2] and ν �= 0, we consider W̃ (β), defined exactly as W(β)

above but with W̃
(β)
1 in place of W(β)

1 ; cf. (5). In lieu of (9) we define two
processes:

S̄(n)(t) := S'nt(
n

, S̃(n)(t) :=
∑'nt(

i=1 (ξi − ν)

n1/β . (10)

All these processes take values in D+. By (5), S̄(n)
a.s.−−−→ ν id and S̃(n)

d−→ W̃ (β),
in (D+, J1), as n→∞.

The following result extends Theorem 2.3 of [11].

Theorem 3 Under the above assumptions, in particular, α ∈ (1, 2], the following
convergences hold, w.r.t. P:

(a) If β ∈ (0, 1), or β ∈ (1, 2] with ν = 0, let Ŷ (n)(t) := Y'nt(
n1/β , for t ≥ 0. As

n→∞,

Ŷ (n) d−→ μW(β) in (D+, J1).
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(b) If β ∈ (1, 2] with ν �= 0, let Ȳ (n)(t) := Y'nt(
n

, for t ≥ 0. As n→∞,

Ȳ (n) d−→ μν id in (D+, J1).

Remark 1 The statement of [11, Thm. 2.3] does not include the cases α = 2
and/or β = 2, because the authors were mostly interested in bona fide Lévy media
and Lévy flights in them. The proof of the theorem, however, works verbatim if
the assumptions are generalized to include ζ1 and/or ξ1 in the normal domain of
attraction of a 2-stable distribution, i.e., a Gaussian. In this case, of course, Z̃(2)

± ,

W
(2)
1 and W̃ (2)

1 are Brownian motions. The same remark holds for Theorems 4 and 5
below.

Remark 2 Theorem 3 mostly supersedes Theorem 2.1 of [9] (which is stated for the
case where S is simple and symmetric), but not quite, since the hypothesis on ζ1
there is that P(ζ1 > x) ≈ x−p, for x → +∞, with p ≥ 1. This is weaker than
asking that ζ1 be in the normal domain of attraction of an α-stable distribution, with
α ∈ (1, 2]. For example, it includes the case P(ζ1 > x) = Cx−2, where ζ1 is in the
domain, but not normal domain of attraction of a Gaussian [17, Ex. 5.10]. Also, the
assertion of Theorem 3 is of course much stronger than that of Corollary 1, but the
hypothesis on the medium for the latter is much weaker: simply μ <∞.

The case (b) of the above theorem is the case where Y has a drift. Understandably,
the scaling rate of Y'n·( is n (one says that the process is ballistic) and the
convergence is to a deterministic function. It is therefore natural to study the
fluctuations around the deterministic limit.

Theorem 4 Under the same assumptions and notation as Theorem 3, if α, β ∈
(1, 2], the following convergences hold, w.r.t. P:

(a) If β < α, let Ỹ (n)(t) := n(Ȳ (n)(t)− μν t)

n1/β = Y'nt( − nμν t

n1/β . As n→∞,

Ỹ (n) d−→ μW̃(β) in (D+, J1).

(b) If β > α, let Ỹ (n)(t) := n(Ȳ (n)(t)− μν t)

n1/α = Y'nt( − nμν t

n1/α . As n→∞,

Ỹ (n) d−→ sgn(ν) |ν|1/α Z̃(α)
+ in (D+, J2).
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(c) If β = α, let Ỹ (n)(t) := n(Ȳ (n)(t)− μν t)

n1/β = Y'nt( − nμν t

n1/β . As n→∞,

Ỹ (n) d−→ μW̃(β) + sgn(ν) |ν|1/α Z̃(α)
+ in (D+, J2),

where W̃ (β) and Z̃(α)
+ are two independent processes, defined as in (5) ff.

Remark 3 The limits in (b) and (c) involve the unusual Skorokhod topology J2 [16,
§11.5]. But this is the strongest amongst the classical Skorokhod topologies relative
to which such limits hold, cf. Remark 2.11 of [11]. However, see Remark A.2 in the
same paper.

2.3 Infinite Mean Distance Between Targets, Annealed
Theorems

In this subsection we assume that ζ1 is in the normal basin of attraction of a α-stable
distribution with α ∈ (0, 1). Since E[ζ1] = ∞, this means that, for n→∞,

1

n1/α

n∑
i=1

ζi
d−→ Z

(α)
1 , (11)

for some α-stable variable Z
(α)
1 (whose skewness index is 1, since ζi > 0).

Out of Z(α)
1 , we construct continuous-argument processes (Z

(α)
± (s), s ≥ 0) and

(Z(α)(s), s ∈ R) in complete analogy with the previous case; cf. (6). Z(α) takes
values in D, and the same is true for

ω̂(n)(s) := 1

n1/α

{
ω'ns( , s ≥ 0,
ω)ns* , s < 0.

(12)

It is a basic fact that, as n→∞, ω̂(n) d−→ Z(α), in (D, J1).
As the underlying RW, we maintain the same assumptions and notation as in

Sect. 2.2, recalling that the fundamental assumption is that ξ1 is in the normal basin
of attraction of an β-stable distribution, with β ∈ (0, 1) ∪ (1, 2]. Once again, ν
denotes the expectation of ξ1, when defined.

The following theorem comprises and extends Theorems 2.1 and 2.2 of [11]:

Theorem 5 Under the above assumptions, in particular, α ∈ (0, 1), the following
convergences hold, w.r.t. P:
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(a) If β ∈ (0, 1), or β ∈ (1, 2] with ν = 0, let Ŷ (n)(t) := Y'nt(
n1/αβ , for t ≥ 0.

As n → ∞, the finite-dimensional distributions of Ŷ (n) converge to those of
Z(α) ◦W(β). This means that, for all m ∈ Z

+ and t1, . . . , tm ∈ R

+,

(
Ŷ (n)(t1), . . . , Ŷ

(n)(tm)
) d−→ (

Z(α)(W(β)(t1)), . . . , Z
(α)(W(β)(tm))

)
.

(b) If β ∈ (1, 2] with ν �= 0, let Ŷ (n)(t) := Y'nt(
n1/α , for t ≥ 0. As n→∞,

Ŷ (n) d−→ sgn(ν) |ν|1/α Z(α)
+ in (D+, J2).

Remark 4 The convergence of the finite-dimensional distributions in assertion (a)
is certainly a weak form of convergence, but it is morally the best one can do, given
that Z(α) ◦W(β) is not D with positive probability; see the comments after Theorem
2.2 of [10]. As for assertion (b), the considerations of Remark 3 apply here too.

3 Continuous-Time Random Walk

In this section we deal with the CTRW X ≡ Xω , again under various assumptions,
depending on the papers we report on.

3.1 Finite Mean Distance Between Targets, Quenched
Theorems

Once more, we start by presenting a result by [8], namely the quenched CLT for X
[8, Thm. 1]. The assumptions are the same as in Sect. 2.1 above: the mean distance
μ between targets is finite and the underlying RW has symmetric, unimodal, finite-
variance increments ξn. Let us recall, in particular, the notation Vξ := E[ξ2

1 ].
Theorem 6 Under the above assumptions, most notably μ <∞, let Mξ := E[|ξ1|]
denote the first absolute moment of the underlying RW. Then, as t → ∞ and w.r.t.
Pω, for a.a. ω,

X(t)√
t

d−→ N
(

0, μ
Vξ

Mξ

)
.

Here, once again, N(0, · ) is a centered Gaussian variable with the specified
variance.
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The annealed CLT follows immediately:

Corollary 2 The limit in the statement of Theorem 6 holds w.r.t. P as well.

A recent preprint of Zamparo [12] claims the convergence of all quenched
moments of X(t)/

√
t , under the additional assumption that the underlying RW is

simple and symmetric (implying that X is the bona fide Lévy-Lorentz gas). Recall
the notation mq for the q-th absolute moment of the standard Gaussian, cf. (1).

Theorem 7 Assume that μ <∞ and S is a simple symmetric RW. Then, for a.a. ω,

lim
t→∞

Eω[|X(t)|q ]
tq/2 = μq/2 mq.

Remark 5 When S is simple and symmetric, Vξ = Mξ = 1, so Theorem 7 is
consistent with Theorem 6, showing that X is completely diffusive in this case.

Theorem 7 descends from another result of independent interest, concerning the
large deviations of X, namely events of the type {|X(t)| > at}, for a > 0. Since
X(t) is centered and scales like

√
t , the probability of such “ballistic events” is

expected to be exceedingly small. In [12, Thm. 2.3] it is proved that this probability
vanishes like a stretched exponential. We report such result here:

Theorem 8 Under the same assumptions as in Theorem 7, there exists κ > 0 such
that, for all a ∈ (0, 1], the limit

lim sup
t→∞

1√
at

logPω(|X(t)| > at) ≤ −κ

holds for a.e. ω.

3.2 Finite Mean Distance Between Targets, Annealed
Theorems

Apart from recalling Corollary 2, which establishes the annealed CLT for X under
the assumptions of [8] (μ < ∞ and S has symmetric, unimodal, finite-variance
increments, cf. §2.1), in this section we present the results of [12] on the moments
and large deviations of the annealed version of X.

The assumptions for this part are stronger than for Theorems 7 and 8. Like
before, S must be a simple symmetric RW, but now we also posit that the tail of
the distribution of ζ1 is regularly varying with index −p ≤ −1. This means that

τζ (x) := P(ζ1 > x) = $(x)

xp
, (13)
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where $ is a slowly varying function at +∞, namely for all c > 0,4

lim
x→+∞

$(cx)

$(x)
= 1. (14)

In order to describe the upcoming theorems in their full power, we need more
notation. For 0 < r < 1, set

fp(r) :=
)(1−r)/2r*−1∑

j=0

((
2j + 2

1+ r

)p
−
(

2j

1− r

)p)
. (15)

It can be seen [12, §2.1] that 0 < fp(r) ≤ r−p and, as r → 0+,

fp(r) ∼ 1

(p + 1) rp
. (16)

Here and in the rest of the paper∼ denotes exact asymptotic equivalence. This limit
shows, in particular, that

∫ 1
0 rq−1fp(r) dr converges for q = 2p − 1 and p > 1, or

q > 2p − 1 and p ≥ 1.

Theorem 9 Assume that S is a simple symmetric RW, μ < ∞ and τζ is regularly
varying with index −p ≤ −1, cf. (13). For all q > 0, recall the notation mq for the
q-th moment of the standard Gaussian, cf. (1), and set

dμ,p,q :=
√

2

μ

�(q − p + 1)

�(q − p + 3/2)

∫ 1

0
rq−1fp(r) dr.

Then, as t →∞,

E[|X(t)|q ] ∼
⎧⎨
⎩
mq μ

q/2 tq/2 , q < 2p − 1, or q = p = 1;
mq μ

q/2 tq/2 + dμ,p,q t
q+1/2 τζ (t) , q = 2p − 1, and p > 1;

dμ,p,q t
q+1/2 τζ (t) , q > 2p − 1.

A few words of comment: In the subject of anomalous diffusion, an important
quantity to investigate is the scaling exponent of the moments,

γ (q) := lim
t→∞

logE[|X(t)|q ]
log t

, (17)

assuming this limit exists at least for a.e. q > 0. In many relevant models one
observes that q �→ γ (q) is piecewise linear with two branches, a left one with slope

4 See [18] for a treatise on regularly varying functions.
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1/2 and a right one with slope 1. Researchers named this situation strong anomalous
diffusion,5 cf. [6, 19]. Theorem 9 shows that this is precisely what happens for the
annealed Lévy-Lorentz gas, under the above assumptions. The corner between the
two branches occurs at the moment of order 2p − 1 ≥ 2, so the behavior of the
second moment is still normal, at least in terms of the leading exponent. Even more
interestingly, this picture is very different from that of the corresponding quenched
Lévy-Lorentz gas, which is fully diffusive, as seen in Theorem 7.6

As for the quenched case, Theorem 9 is based on a large deviation result, which,
however, is very different from Theorem 8:

Theorem 10 Under the same assumptions as in Theorem 9, for a ∈ (0, 1], let

Fμ,p,a := 1√
2πμ

∫ 1

a

fp

(
a

η

)
η−p√
1− η

dη.

Then, as t →∞,

P(X(t) > at) = P(X(t) < −at) ∼ Fμ,p,a
√
t τζ (t).

Moreover, for any δ ∈ (0, 1), the lower order terms are uniformly bounded for
a ∈ [δ, 1].

Remark 6 The first equality of the above assertion is obvious because, by the
symmetry of the distributions of ω and S, the annealed distribution of X(t) is the
same as that of −X(t).

3.3 Infinite Mean Distance Between Targets, Annealed
Theorems

The last and hardest case is that of the CTRW X in a medium ω with μ = ∞. At
least to this author’s knowledge, only a limit theorem seems to be available, that
of Bianchi et al, recently appeared in [10]. We present it after some preparatory
material.

5 Though different authors use different terminologies, not always compatible with each other, or
even fully self-consistent.
6 This does not mean that Theorems 7 and 9 are incompatible: what is happening here is that
t−q/2 Eω[|X(t)|q ] converges to the suitable limit for a.a.ω, but, at least for large q, the convergence
rate depends heavily on ω. Moreover, the convergence is not monotonic in t . Mathematically
speaking, the convergence is neither dominated nor monotonic, so one cannot interchange the
limit in t and the integration on ω, to obtain the limit of the annealed moments from that of the
quenched moments.
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First off, the assumption on the medium is that ζ1 is in the normal domain of
attraction of an α-stable positive variable, with α ∈ (0, 1). As far ω is concerned,
this is the same assumption as in Sect. 2.3, so we use the same notation introduced
there, in particular, for the processes (Z(α)

± (s), s ≥ 0) and (Z(α)(s), s ∈ R). The
underlying random walk S is assumed to be centered and such that E[|ξ1|q ] < ∞,
for some q > 2/α. This implies, in particular, that Vξ = E[|ξ1|2] < ∞. So this
is a special case of the assumptions on S of Sect. 2.3 (which were the same as in
Sect. 2.2).

All the preliminary results seen earlier then apply, in particular, for n → ∞,

ω̂(n) d−→ Z(α), in (D, J1), cf. (12), and Ŝ(n) := n−1/2 S'n·(
d−→ W(2), in (D+, J1).

Here W(2) is a Brownian motion such that W(2)(t) has mean 0 and variance Vξ t .

As clarified in Sect. 2.3, the processes Z(α)
± and W(2) are independent. Recalling the

notation Mξ := E[|ξ1|], let � := (�(t), t ≥ 0) be defined by

�(t) := Mξ

(∫ ∞

0
Lt (x) dZ

(α)
+ (x)+

∫ ∞

0
Lt (−x) dZ(α)

− (x)

)
, (18)

where, for all x ∈ R, Lt (x) := #
(
W(2)|[0,t ]

)−1
(x). In other words, Lt (x) is the

local time of the Brownian motion W(2) in x, up to time t . As a function of x, Lt

is compactly supported and almost surely continuous, thus the above r.h.s. is well-
defined. Since Lt is also strictly increasing in t , � is almost surely continuous and
strictly increasing. Processes like � are called Kesten-Spitzer processes and arise in
the context of RW in random scenery [20], which is one of the technical ingredients
of Theorem 2.1 of [10] which we now present.

Theorem 11 Under the above assumptions, in particular, α ∈ (0, 1), ν = 0, and

ξ1 has a finite absolute moment of order q > 2/α, let X̂(n)(t) := X(nt)

n1/(α+1)
, for

t ≥ 0. Then the annealed finite-dimensional distributions of X̂(n) converge to those
of Z(α) ◦W(2) ◦�−1. This means that, for all m ∈ Z

+ and t1, . . . , tm ∈ R

+,

(
X̂(n)(t1), . . . , X̂

(n)(tm)
) d−→ (

Z(α)(W(2)(�−1(t1))), . . . , Z
(α)(W(2)(�−1(tm)))

)
,

as n→∞, relative to P.

Remark 7 The process Z(α) ◦W(2) ◦�−1 is not a.s. càdlàg, so the same considera-
tions and reference as in Remark 4 apply here.
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4 A Brief Discussion on Perspectives

Just by looking at the titles of the previous subsections, one notices that no quenched
theorems were given for the case of infinite mean distance between targets. This is
the main shortcoming of the current mathematical description of the processes X
and Y . Technically speaking, the problem is that, without the condition μ < ∞,
one does not have a strong law of large numbers for the variables ζk . This is after
all the simplest form of a quenched result and provides the scaling of k �→ ωk ,
as |k| → ∞, for each realization ω of the medium, apart from a negligible set of
exceptions. How to prove quenched limit theorems without this basic ingredient is
not clear to me at the moment.

An open question of a different nature is that of devising a good model of
Lévy-Lorentz gas in dimension d ≥ 2. Here ‘good’ means that it should have the
following features, in one form or another:

• The random medium should be homogeneous, in the sense that the distribution
of the relative positions of two or more targets should not depend on the absolute
position of any of the targets involved.7

• The distances between targets should be heavy-tailed.8

• The law of the random medium should be rotation-invariant, at least for a
subgroup of rotations, e.g., the coordinate directions. In other words, the model
should be isotropic, unless it has a clear reason not to be.

• The transition probabilities from one target to the next should not depend on their
distance, only on the “degree of accessibility” of the new target. For example,
the next target might always be the nearest one along a random (isotropically
selected) direction. The meaning of this condition is that it should be the medium,
not the walker, to decide how long the next inertial stretch will be.

Even with all these features, a model might not be very interesting. Here is
an example of a feasible, yet not very instructive model. Let (ω′k1

, k1 ∈ Z)

and (ω′′k2
, k2 ∈ Z) be two i.i.d. point processes in R, as introduced in Sect. 1.

For k = (k1, k2) ∈ Z

2, set ωk := (ω′k1
, ω′′k2

). This defines a random medium

ω = (ωk, k ∈ Z

2) in R

2. An independent, Z2-valued, underlying RW (Sn, n ∈ N)

is given, whereby we introduce the DTRW Y := (Yn := ωSn, n ∈ N). The CTRW
X := (X(t), t ≥ 0) is then defined as the unit-speed interpolation of Y .

7 The reader who feels this condition is not well-defined is right, see footnote below.
8 This condition is ill-defined in the same way as the previous condition was. It would be well-
defined if the points of the random medium were labeled in a consistent way, so that it would make
sense to consider, say, the distribution of the distance between ωk and ω$ (here k and $ are generic
indices, not necessarily in Z). But no labeling is assumed on the random medium, as it is not easy
to think of a general, physically relevant way to label the points of a d-dimensional point process,
for d ≥ 2.
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Obviously, the process X is simply the direct sum, in a very natural sense, of
two independent, orthogonal, 1D CTRWs X′ and X′′. Its properties are thus (for the
most part) easily derived from those of X′ and X′′, as presented in Sect. 3.

Introducing and investigating more relevant, and truly d-dimensional, flights and
walks in Lévy random medium will be the subject of future work.
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Mesoscale Modelling of the Tolman
Length in Multi-component Systems

Matteo Lulli, Luca Biferale, Giacomo Falcucci, Mauro Sbragaglia,
and Xiaowen Shan

Abstract In this paper we analyze the curvature corrections to the surface tension
in the context of the Shan-Chen (SC) multi-component Lattice Boltzmann method
(LBM). We demonstrate that the same techniques recently applied in the context of
the Shan-Chen multi-phase model can be applied to multi-component mixtures. We
implement, as a new application, the calculation of the surface of tension radius Rs

through the minimization of the generalized surface tension σ [R]. In turn we are
able to estimate the Tolman length, i.e., the first-order coefficient of the curvature
expansion of the surface tension σ(R), as well as the higher order corrections,
i.e., the curvature- and the Gaussian-rigidity coefficients. The SC multi-component
model allows to describe both fully symmetric as well as asymmetric interactions
among the components. By performing an extensive set of simulations we present a
first example of tunable Tolman length in the mesoscopic model, being zero for
symmetric interactions and different from zero otherwise. This result paves the
way for controlling such interface properties which are paramount in presence of
thermal fluctuations. All reported results can be independently reproduced through
the “idea.deploy” framework available at https://github.com/lullimat/idea.deploy.
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List of Symbols

Symbols are reported according to their order of appearance. Bold font symbols
refer to tensorial quantities that can be indexed through Greek letters.

nJ Concentration of the J-th fluid component

u Fluid velocity field

nJ,s Saturation concentration of the J-th fluid component

σ Surface tension

nJ,b Concentration of the J-th fluid component in the bulk of a J-rich droplet

nJ,out Concentration of the J-th fluid component outside of a J-rich droplet

zs Surface of tension position for a flat interface

R Position of an arbitrary dividing surface for a droplet

σ [R] Generalized surface tension[
dσ
dR

]
Notional derivative of the generalized surface tension

{A,B} Components labels for a binary mixture

Rs Position of the surface of tension for a droplet

�P Pressure jump between the inside and outside of a droplet

σ(R) Curvature dependent surface tension

σ0 Flat interface surface tension

δ Tolman length

k̄,k Curvature- and Gaussian-rigidity coefficients

f (J)(x, ξ , t) Single-particle distribution function for the J-th component

{x} Set of discrete lattice points

ξ Particle peculiar velocity

t Time

{ξ i} Discrete velocity set or stencil

f
(J)
i i-th population for the J-th component

nJuJ J-th component momentum

F
(J)
i Forcing term in the Lattice Boltzmann equation for the i-th population of

the J-th component

#
(J)
i Collision operator for the i-th population of the J-th component

τJ BGK relaxation time for the J-th component

f
(eq,J)
i Discrete equilibrium distribution for the i-th population of the J-th

component

c2
s Square of the speed of sound

wi Weight associated with the discrete velocity ξ i

FJ Force exerted on the J-th component

G Inter-component coupling constant

GAA, GBB Components self-coupling constants

ψJ Pseudopotential function for self-interactions

W Weights associated with the forcing directions
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Gc Critical value for phase separation for the self-interactions for the given ψJ

δGc Relative distance from the critical point

δGAB Asymmetry parameter estimating the relative difference of GAA, GBB

Pμν (Lattice) pressure tensor

PN Normal component of the pressure tensor to an interface

p0 Bulk pressure for a flat interface

P Bulk pressure

e2 Second order isotropy coefficient

q Projector onto the tangential direction to an interface

n Normal to an interface

r Radial coordinate

Pin, Pout Bulk pressure inside and outside of a droplet

PJ Pressure jump function

θ Heaviside step function

L, Lx , Ly , Lz Linear system size according to the direction

nJ,in, nJ,out Initial concentrations inside and outside a droplet for the J-th component

nJ,h, nJ,l High and low initial concentrations values for the J-th component with a
flat interface

x0, w Center and width of the initial profile for the flat interface

σm, σM Minimum and maximum values of the flat surface tension obtained from
the simulations

δm, δM Minimum and maximum values of the Tolman length obtained from the
simulations

1 Introduction

Multi-component fluids are systems where two or more components, distinguished
by their chemical properties, are mutually diffused into each other. The J-th
component can be described by the concentration nJ while the flow of the mixture
is characterized by a common velocity u. In the appropriate thermodynamic
conditions, i.e., temperature and pressure, for values of the concentration above a
saturation threshold nJ,s, it is possible for droplets of the J-th component to form.
In particular, this happens when the free-energy gain provided by the formation
of a nJ-rich bulk region overcomes the barrier provided by the surface free-energy
associated with the interface. The latter contribution is commonly described by the
free-energy cost per unit area, i.e., the surface tension σ , which, in the limit of small
deformations, allows to describe the mechanic response of the interface as that of
an elastic membrane. Only a few configurations are mechanically stable, namely the
flat and the spherical interfaces. In settings where the typical scale of the interface
is such that thermal fluctuations are negligible it can be useful to adopt a simplified
description of the interface as being a discontinuity point for the concentration nJ,
i.e., going from the bulk value nJ,b > nJ,s to a soluble value nJ,out < nJ,s outside the
bulk region. Such a discontinuity can be used to identify the surface of tension [1]
providing a simple, yet useful, mechanical model of the interface. However, this is
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a somewhat idealized description since thermal fluctuations naturally induce a finite
interface thickness which opens the question of the determination of the position
of the surface of tension itself. In other words, the average of the concentration
profile over thermal fluctuations is a continuous curve rather than a step function.
Considering a flat interface, it is possible to determine the position zs of the surface
of tension by means of the pressure tensor [1]. However, when considering spherical
interfaces the determination of the surface of tension is more complicated. While in
the case of a flat interface the value of zs does not explicitly enter the definition of the
free-energy, for closed interfaces the curvature appears as a new control parameter
with the explicit introduction of an arbitrary dividing surface [1–3] whose position
with respect to the center of the droplet is denoted by R. Since the position of such
interface is arbitrary, i.e., it can either be completely inside or outside the nJ-rich
droplet (see Fig. 1a), a natural request is for the free-energy to be independent, i.e.,
stationary, with respect to arbitrary, or notional [1], changes in R. Starting here we
restrict our discussion and results to the case of two different components, hence
two concentrations fields nJ with J ∈ {A,B}. The stationarity condition reflects on
the definition of a generalized surface tension σ [R], which assumes the shape of
a convex function reaching a minimum at the surface of tension Rs . At the latter
position the Laplace law applies in the usual form [1–4]. Indeed, it is possible to
show [1] that the stationarity of the free-energy at the surface of tension Rs yields

�P = 2σ [Rs]
Rs

+ dσ [R]
dR

∣∣∣∣
R=Rs

= 2σ(Rs)

Rs

. (1)

1

1

0

R−1
s

σ[R]/σ0

R/Rs

α

A-droplets

B-droplets

arctan(−α) = −2δ

Rs, σ

nA, Pin

nB, Pout

ΔP = Pin − Pout > 0

R

R

(a) (b)

σ(Rs)
σ0

= ΔP ·Rs
2σ0

Fig. 1 (a) Sketch of a nA-rich droplet surrounded by the nB-rich fluid; the position of the arbitrary
dividing surface is indicated by R while Rs indicates the position of the surface of tension where
the surface tension σ acts. (b) Sketch for the curvature dependence of the (normalized) surface
tension, σ(Rs)/σ0, reported in brown, as the locus of minima of all the generalized surface tension
functions σ [R]/σ0 reported in dash-dotted orange (cf. with Fig. 2). The horizontal axes express the
physical dependence on the curvature R−1

s and the notional dependence [1] on the (normalized)
arbitrary dividing surface position R/Rs
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By considering a generic value of R �= Rs in (1) one obtains the so-called
generalized Laplace law which explicitly depends on the notional derivative [1] of
σ [R].

The locus of the minima of σ [R] identifies a physical, i.e., non-arbitrary,
dependence of the surface tension σ(R) on the droplet size at the surface of tension
Rs , σs = σ [Rs] = σ(Rs). Such a dependence was first examined, for the case of
multi-phase systems, in the seminal paper by Tolman [5] (see [6, 7] for reviews).
Similar results have been obtained for the case of elastic membranes in Helfrich’s
work [8] where the curvature dependence is expressed as a power-law expansion in
the curvature, i.e., the inverse radius, which at second order reads [4, 9–11]

σ (Rs) 
 σ0

(
1− 2δ

Rs

+ 2k̄ + k

R2
s

)
. (2)

The flat interface value σ0 appears at the leading order, the first-order coefficient
δ defines the Tolman length [cf. Fig. 1b] and k̄ and k are called curvature- and
Gaussian-rigidity coefficients, respectively. It has been shown and studied in the
literature [12–14] that the Tolman length provides a measure of the “symmetry” of
the interactions under, e.g., a vapor-liquid exchange transformation. Such symmetry
can be readily realized (and broken) in mesoscopic multi-component models [15].
In the next Sections we describe how to tune the degree of asymmetry of the
interactions which, in turn, will induce a tuning in the Tolman length and the higher
order coefficients.

Several works based on the Density Functional Theory (DFT) [10, 11, 16–18]
have led to expressions for the coefficients δ, k, and k̄, for realistic multi-phase
and multi-component systems. From the numerical perspective, simulations have
mostly focused on molecular dynamics (MD) for multi-phase [19–22] and multi-
component systems [7, 23]. The Tolman length has been measured in nucleation
experiments [24], and its role was analyzed both in confined geometries [25] and in
colloidal liquids [26]. The curvature dependence of the surface tension is paramount
in extending Classical Nucleation Theory (CNT). The standard formulation of CNT
relies on the capillary approximation by which the nucleation free-energy barrier
W linearly depends on the flat interface value of the surface tension σ0. Nucleation
rates are one of the quantities of interest in CNT with an exponential dependence
on W , so that, curvature corrections to σ0 can quantitatively affect the rate to a large
extent. Such considerations are valid for both multi-phase and multi-component
systems [27], however, much of the literature focuses on multi-phase systems for
both theory [28, 29] and experiments [24, 26]. Indeed, at present, the application
of CNT to multi-component systems is a most challenging yet very important area
of research [27] in which a sound control over curvature corrections can provide
a valuable contribution. Indeed, in [30] curvature corrections have been used to
eliminate a few important inconsistencies of CNT for the case of a propanol-water
mixture, e.g., a negative number of molecules in the critical nucleating cluster,
highlighting the relevance of the Tolman length and curvature coefficients. Our
present mesoscale modelling bears the possibility of extending these results to the
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hydrodynamic regime where nucleation rates could be consistently predicted also in
heterogeneous stress conditions of relevance in several engineering problems.

In this work, we study the Tolman length and the higher order corrections
using a three-dimensional Shan-Chen multi-component [15, 31] lattice Boltzmann
method (LBM) [32, 33] by means of an extensive set of hydrostatic simulations.
Specifically, we demonstrate that it is possible to tune the value of δ by “breaking,”
in a controllable way, the symmetry of the system’s interactions under the exchange
A ←→ B, thus making a further step with respect to the results already obtained
for the multi-phase case [34] for which the possibility of tuning was left for future
works. A strong dependence of the Tolman length on the relative concentrations
of the two components has been thoroughly studied in [10] by means of a Square
Gradient Theory (SGT) approach which is a first approximation of DFT [35]. In
the latter case the variation of the curvature corrections are related to the same
physical system, while in this work we investigate a parametrization potentially
describing different physical systems. We estimate δ and the combination 2k̄ + k

by leveraging a lattice formulation of the pressure tensor [36] extended to the multi-
component case [37]. Using the pressure tensor we can compute σ [R] (see Fig. 1b)
following a construction stemming by the mechanic equilibrium condition [1] which
was detailed in [34]. Most approaches in the field have either leveraged microscopic
MD simulations or continuum DFT approaches so that non-equilibrium mesoscopic
effects, i.e., hydrodynamics, have mostly been neglected so far. Hence, the present
work represents a first step in developing a mesoscale approach for the tuning of
the curvature corrections to the surface tension for multi-component systems which
can naturally include hydrodynamics. It would also be interesting to investigate the
curvature corrections in different models such as the color gradient approach [38–
40], the free-energy approach [41–43] and the entropic one [44]. Further, it is
important to mention that in the case of multi-phase mixtures, in [45] results
compatible with those in [34] have been reported, i.e., same power-law behavior
of the Tolman length approaching the critical point. Most importantly, the model
in [45] differs from that in [34], for its implementation a for the equation of
state, thus providing an important independent validation of the overall approach
presented in [34] and extended here. Another interesting perspective is that of
studying the relation between curvature corrections and the so-called near-contact
interactions, e.g., the disjoining pressure that develops when the interfaces of two
droplets get close enough and hinders their coalescence. Different lattice Boltzmann
models have been devised to correctly capture this kind of interactions [40, 46]
and the possibility of an interplay between the Tolman length and the length-scales
involved in near-contact interactions will be the focus of future works.

The paper is organized as follows: we describe in Sect. 2 the fundamentals of
the LBM formulation adopted in this work; in Sect. 3 we detail the method used to
evaluate the position of the surface of tension Rs and how to “break” the symmetry
of the interactions in order to achieve a tunable Tolman length; in Sect. 4 we report
the results followed by the conclusions in Sect. 5. The simulations source code and
a Jupyter notebook to reproduce all the results and figures can be found on GitHub
https://github.com/lullimat/idea.deploy.
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2 Lattice Boltzmann Model

The lattice Boltzmann method (LBM) allows to simulate the Navier-Stokes dynam-
ics of a multi-component mixture by means of two coupled forced Boltzmann
transport equation acting on a discretized phase-space [32, 33]. For each component,
the single-particle distribution function f (J)(x, ξ , t) is defined on the nodes {x} of a
three-dimensional lattice at discrete times t . Hence, one defines the populations as
the single-particle distribution function evaluated at a given discrete velocity ξ i , i.e.,
f
(J)
i (x, t) = f (J)(x, ξ i , t). Remarkably, the convergence to the hydrodynamic limit

is very fast even when employing only a few velocity vectors {ξ i} connecting each
lattice point to a set neighboring nodes. In this paper we adopt the D3Q19 stencil
with nineteen discrete velocity vectors ξ i with i = 0, . . . , 18. The first two moments
of the discretized distribution define the component concentration nJ = ∑

i f
(J)
i

and the momentum density nJuJ = ∑
i f

(J)
i ξ i , respectively. The lattice transport

equation for the J-th component reads

f
(J)
i

(
x+ ξ i , t + 1

)− f
(J)
i (x, t) = #

(J)
i (x, t)+

(
1− 1

2τJ

)
F
(J)
i (x, t) , (3)

whereF (J)
i (x, t) is the forcing term [47] and#(J)

i (x, t) is the local collision operator

conserving mass and momentum, i.e.,
∑

i #
(J)
i = ∑

i ξ i#
(J)
i = 0. Equation (3) is

usually interpreted as implementing two separate steps, namely (i) the streaming
step represented by the left-hand side by which populations freely stream from
one lattice node to the other and (ii) the collision step represented by the right-
hand side which only involves local quantities. The locality of #(J)

i is one of the
main features of LBM which renders the approach particularly amenable to parallel
implementations [32, 33]. More specifically, the right-hand side of (3) is composed
by the Bhatnagar–Gross–Krook (BGK) [48] collision operator

#
(J)
i (x, t) = − 1

τJ

[
f
(J)
i (x, t)− f

(eq,J)
i (nJ,u)

]
(4)

and by the Guo [47] forcing term

F
(J)
i (x, t) = wi

[
1

c2
s

ξ
β
i +

1

c4
s

(
ξαi ξ

β
i − c2

s δ
αβ
)
uα

]
F
β

J (x, t) , (5)

where repeated Greek indices imply summation. This term is used to implement in
the LBM the Shan-Chen [15, 31] (SC) force Fα

J (x, t) responsible for the formation
of stable concentration gradients, i.e., interfaces between the two components. The
equilibrium populations f (eq,J)

i are obtained as a second order approximation of the
Maxwell distribution

f
(eq,J)
i (nJ,u) = nJwi

[
1+ 1

c2
s

ξαi uα +
1

2c4
s

(
ξαi ξ

β
i − c2

s δ
αβ
)
uαuβ

]
(6)
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and the equilibrium fluid velocity is computed according to Guo prescription [32,
47]

nuμ =
∑

J∈{A,B}

[
18∑
i=0

f
(J)
i ξ

μ
i +

1

2
F
μ
J

]
. (7)

Several different approaches for multi-component flows [32, 33] have been devel-
oped for LBM yielding some of the most successful applications of the method. In
this paper we show that the SC multi-component model [15, 31] correctly captures a
curvature dependent surface tension while allowing for the tuning of the expansion
coefficients, i.e., the Tolman length δ and the combination of the rigidity constants
2k̄ + k. The main feature of the SC model, allowing for the existence of stable
gradients of the concentrations nJ(x, t), is a force computed on the lattice nodes,
which, separating the contribution of each component, reads

F
μ
A (x) =−Gc2

s nA (x)
18∑
a=1

W
(
|ξa|2

)
nB
(
x+ ξa

)
ξμa

−GAAc
2
s ψA (x)

18∑
a=1

W
(
|ξa |2

)
ψA
(
x+ ξa

)
ξμa

F
μ
B (x) =−Gc2

s nB (x)
18∑
a=1

W
(
|ξa |2

)
nA
(
x+ ξa

)
ξμa

−GBBc
2
s ψB (x)

18∑
a=1

W
(
|ξa|2

)
ψB
(
x+ ξa

)
ξμa ,

(8)

where ψJ(x, t) = ψ(nJ(x, t)) is the so-called pseudopotential, a local function of
the concentration nJ, implicitly depending on space and time, cs = 1/

√
3 is the

speed of sound,G is the inter-component coupling constant while GAA and GBB are
the self-coupling constants. If one sets G = 0 the two components are completely
decoupled and one effectively simulates two parallel multi-phase systems which
can display phase separation whenever GAA,GBB < Gc where Gc is the critical
coupling constant whose value depends on the choice of ψJ(x, t) [15, 31]. A similar
approach has been used in [46, 49] for the simulation of emulsions and comparison
with experimental results [50, 51]. The vectors ξ are the discrete forcing directions
such that their squared lengths are |ξa |2 = 1, 2, and W(1) = 1/6 and W(2) = 1/12
are the weights ensuring 4-th order lattice force isotropy [52, 53]. The set of the
forcing vectors ξa coincide with that of the lattice velocities ξ i after excluding the
“rest" direction ξ0 = (0, 0, 0).

Now, a few remarks are in order. From the structure of Eq. (8) above it clearly
appears that as long as the GAA = GBB the system is symmetric, or invariant, under
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the exchange of the two components A ←→ B. In order to “break” this symmetry
one possibility is that of choosing different self-coupling constants GAA �= GBB. In
order to do this, we adopt the following parametrization

GAA = Gc [1− δGc (1+ δGAB)]

GBB = Gc [1− δGc] ,
(9)

where Gcc
2
s 
 −2.463 is the critical value of the self-interaction coupling

corresponding to the pseudopotentialψJ = exp(−1/nJ). It is possible to select other
functional forms for ψJ [53, 54]. The present choice is not meant to fulfill a specific
requirement and it is only instrumental for the purpose of analyzing the effects
on the Tolman length and the rigidity coefficients of switching from symmetric
to asymmetric interactions. By setting δGc = 0.4 and δGAB > −1, we assure
that GAA,GBB > Gc, i.e., the values of the self-coupling constants are above the
critical point so that the gradients in the multi-component system are only due to the
inter-component interactions. Indeed, the parameter δGAB estimates the degree of
asymmetry of the self-interactions, i.e., the ratio GAA/GBB. One has the following
linear relation

δGAB

[
δGc

1− δGc

]
= 1− GAA

GBB
, (10)

hence, by setting both positive and negative values we can analyze the behavior of
the system around the symmetric case δGAB = 0.

The SC force defined in Eq. (8) is related to a lattice pressure tensor [36, 55–57]
that reads

Pμν(x) = [nA (x)+ nB (x)] c2
s δ

μν

+ Gc2
s

2
nA(x)

18∑
a=1

W
(
|ξa|2

)
nB(x+ ξa)ξ

μ
a ξ

ν
a

+ Gc2
s

2
nB(x)

18∑
a=1

W
(
|ξa |2

)
nA(x+ ξa)ξ

μ
a ξ

ν
a

+ GAAc
2
s

2
ψA(x)

18∑
a=1

W
(
|ξa |2

)
ψA(x+ ξa)ξ

μ
a ξ

ν
a

+ GBBc
2
s

2
ψB(x)

18∑
a=1

W
(
|ξa|2

)
ψB(x+ ξa)ξ

μ
a ξ

ν
a .

(11)
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We wish to highlight that the tensor in the Eq. (11) is such that the flat interface
mechanical equilibrium condition, i.e., constant normal component PN(x) = p0
throughout the interface, is obeyed on the lattice with a value of p0 that is constant
to machine precision. This property has allowed for an extremely precise estimation
of the coexistence curve in the multi-phase case [36, 54, 56] and it is one of the
building blocks for the results presented in this paper. By performing the Taylor
expansion of Eq. (11) one obtains, at the leading order, the bulk pressure

P(x) = [nA (x)+ nB (x)] c2
s +Gc2

s e2nA(x)nB(x)

+ GAAc
2
s e2

2
ψ2

A(x)+
GBBc

2
s e2

2
ψ2

B(x),
(12)

where e2 = ∑
ea W(|ea |2)exaexa = 1 [37, 52, 57] for the values of the weights

used in this work. The first line represents the ideal gas contribution plus the
inter-component interaction contribution while the second line yields the sum
of the self-interaction ones. Considering the combination of the ideal and self-
interaction parts each component can independently display phase separation
whenever GAA,GBB < Gc [15].

The SC model has been widely used to model complex fluids with a non-
trivial impact on the study of the interface physics, one may cite heterogeneous
cavitation [58] and emulsion rheology physics [59], also in presence of complex
boundary conditions [51]. The ability to model and tune the Tolman length and
the rigidity coefficients in LBM allows to effectively tackle the study of nucleation
and cavitation phenomena in the mesoscale regime for multi-component systems,
while providing a computationally efficient tool allowing for a direct bridge with
experiments.

3 Method

In Sect. 1 we briefly discussed that in a multi-component system the free-energy
needs to be independent on the choice of the position R of an arbitrary dividing
spherical surface. Such a condition yields the generalized Laplace law [1–3, 60]

�P = 2σ [R]

R
+
[

dσ

dR

]
(13)

with σ [R] the generalized surface tension and its notional derivative [1] [dσ/dR] =
σ ′[R] and �P = Pin−Pout, with Pin and Pout the values of the bulk pressure in the
center of the droplet and far away from the interface, respectively (see Fig. 1a). The
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function σ [R] is convex and at its minimum Eq. (13) reduces to the usual Laplace
law. The condition σ ′[R]|R=Rs = 0 defines the position of the surface of tension
Rs . Hence, comparing Eqs. (2) and (13), it follows that at second order in R−1

s the
latter reads

�P = 2σs(Rs)

Rs


 2σ0

Rs

(
1− 2δ

Rs

+ 2k̄ + k

R2
s

)
. (14)

In order to estimate the Tolman length we simulate droplets with nA- and nB-rich
bulks for different values of the asymmetry parameter δGAB. Further, we compute
the deviations from the Laplace law using the surface of tension radius Rs which is
used to determine the droplets sizes. In order to estimate Rs from the simulations we
use a construction presented in [1] which only employs the mechanic equilibrium
condition ∂μP

μν = 0. The same arguments have been adopted in the case of the
multi-phase SC model in [34] where they are described in details. Here, we limit our
discussion to the most important steps. Let us consider the following decomposition
of the pressure tensor

Pμν = PNδ
μν − (PN − PT)q

μν, (15)

where PN and PT are the (locally) normal and tangential components to the droplet
interface, respectively. The projector along the tangential direction is defined as
qμν = δμν − nμnν where nμ is the normal vector to the interface which is given by
the direction of the largest gradient. The mechanic equilibrium condition reads

∂μP
μν = nνnμ∂μPN + nν∂μn

μ (PN − PT) = 0. (16)

In three dimensions one has nν∂μnμ = 2nν/r , where r is the value of the radial
coordinate. Selecting the normal/radial direction to be parallel to the x-axis, i.e.,
nμ = e

μ
x yields

d

dr
PN (r)+ 2

r
[PN (r)− PT (r)] = 0. (17)

Upon multiplication by rn followed by some derivatives rearrangements it is
possible to obtain a sequence of identities

d

dr
[rnPN(r)] = rn−1[(n− 2)PN(r)+ 2PT(r)]. (18)

Finally, after introducing the pressure jump function PJ(r;R) = Pin − (Pin −
Pout)θ(r−R), where θ(r−R) is the Heaviside function, one can subtract the integral
between Rin and Rout of Eq. (18) and that of rn PJ(r;R). After setting n = 2 one
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obtains the following expression for the pressure jump �P = Pin − Pout across the
interface

�P = 2

R2

∫ Rout

Rin

dr r[PJ(r;R)− PT(r)]

= 2σ [R]
R

+
[

dσ

dR

]
.

(19)

It is possible to extract the expressions for σ [R] and [dσ/dR] [1] obtaining

σ [R] =
∫ +∞

0
dr
( r
R

)2 [PJ(r;R)− PT(r)], (20)

[
dσ

dR

]
= − 2

R3

∫ +∞

0
dr r(r − R)[PJ (r;R)− PT (r)], (21)

where we also considered the limits Rin → 0 and Rout → ∞. In order to
estimate the position of the surface of tension Rs , we interpolate the position of
the minimum of Eq. (20) after evaluating the expression by means of the SC lattice
pressure tensor in Eq. (11), integrating along the x axis so that PN = Pxx and
PT = Pyy = Pzz. The pressure jump across the droplets interfaces �P and the
position of the surface of tension Rs are the key quantities in our analysis allowing
us, by means of hydrostatic simulations of droplets of different sizes, to estimate the
curvature dependence of the surface tension as σ(Rs)/σ0 = Rs �P/2σ0. We remark
that other choices are possible for the dividing surface, such as the total equimolar
interface [10], however, such choices allow the notional derivative [1] in Eq. (13)
to play a non-trivial role in the estimation of the coefficients, whereas the surface
of tension allows to directly estimate the function σ(Rs). Moreover, more than one
definition for an equimolar radius is possible, appearing as a further dependence
for the rigidity coefficients and not for the Tolman length [10, 16]. All in all, using
the surface of tension, as already done in [23], allows for a simpler analysis of the
surface tension curvature dependence.

4 Results

The simulations source code can be found on GitHub https://github.com/lullimat/
idea.deploy [61–68]. A Jupyter notebook [67] is available from the “idea.deploy”
framework to reproduce the results and the plots reported in this paper. The
code provided for the multi-component model relies on a straightforward
implementation, i.e., not highly optimized, with a set of kernels that can be
compiled either in CUDA or OpenCL. This version still does not leverage the
automatic code generation already implemented for the multi-phase case which

https://github.com/lullimat/idea.deploy
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will soon be extended to the multi-component one. In order to give an estimate
of the needed simulation time, one needs roughly 5hrs on a Tesla P100 or 1.5hrs
on a Tesla A100, for executing the simulations in order to obtain the data for one
of the points in Fig. 4 with L ≤ 213lu for a maximum RAM usage of 8GB
per simulation. This is not the full size range presented here which requires
16GB of RAM per simulation. Hence, with the former constraint one would
need roughly 5 days on one P100 and 1.5 days on a A100. The largest system
size is the most challenging, not only because it requires more resources but also
because the actual convergence is slower. The strategy used for the simulations
closely follows our previous contribution [34]. Here we report some details for
completeness. We simulate three-dimensional droplets in a cubic system of linear
size L with periodic boundary conditions using the D3Q19 discrete velocity set
with c2

s = 1/3 [32, 33]. We adopt ψJ = exp(−1/nJ) [31] as the pseudopotential
function for the self-interaction part in Eq. (8). Other definitions of ψJ have
been used in the literature, however, the present choice is just as suitable for
our primary objective, i.e., a first exploration of the tunability of the curvature
corrections coefficients. The asymmetry parameter varies in the range δGAB ∈
{0,±0.04, ±0.08, ±0.16, ±0.24, ±0.32, ±0.40, ±0.48, ±0.56, ±0.64, ±0.80,
±0.88}, δGc is set to 0.4, Gcc

2
s 
 −2.463 and the inter-component coupling is set

to Gc2
s = 0.5 (cf. Eq. (8)). The value of L is chosen to be an odd number so that the

center of mass of the system exactly falls on the coordinates of a node. The simu-
lated system sizes are L ∈ {25, 31, 37, 41, 51, 57, 65, 97, 127, 151, 213, 301}lu,
where “lu” stands for lattice units. The radial concentration fields nJ(r) are
initialized to the following profile

nJ(r, R) = 1

2
(nJ,in + nJ,out)− 1

2
(nJ,in − nJ,out) tanh(r − R), (22)

where the inner nJ,in and outer nJ,out densities are set to the steady-state values
obtained from the simulations of a flat interface system and the initial value of the
radius is set to maintain a fixed aspect ratio R = L/4 for all simulations. The
radial coordinate r is computed taking the center of the system as the origin. The
valuesPin andPout are evaluated in the middle of the system ('L/2(, 'L/2(, 'L/2()
and at the farthest corner (L − 1, L − 1, L − 1), respectively. The outcome of the
simulations is analyzed only if all the coordinates of the center of mass lie within
a distance of 10−3 from the center of the domain. We use two convergence criteria
for the simulations, both comparing quantities at a time distance δt = 211: (i) we
consider the relative variation of the �P with respect to the previous configuration,
and when the latter is such that |�P(t) − �P(t + δt)|/�P(t) < 10−5 the
simulation is considered as converged; (ii) we consider the magnitude δu of the
spatial average of the difference between the components of two velocity fields,
δu = L−3∑

x
∑

α |uα(x, t + δt) − uα(x, t)| so that the simulation is considered
as converged when δu < 10−12. Meeting only one of the two criteria is enough to
finalize the simulation.
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The set of simulations for the flat interface has been performed on a three-
dimensional domain of sizesLx = 127, Ly = Lz = 5 and the concentration profiles
are initialized according to

nJ (x, x0, w) =1

2

(
nJ,h + nJ,l

)

−1

2

(
nJ,h − nJ,l

)
tanh

[
x −

(
x0 − w

2

)]

+1

2

(
nJ,h − nJ,l

) {
tanh

[
x −

(
x0 + w

2

)]
+ 1

}
,

(23)

where x0 is the center of the strip and w = Lx/2 its width. As a first approximation,
in the presence of self-interactions, the flat interface concentrations, nJ,h and nJ,l for
the high and low value, respectively, can be computed using the purely repulsive
result of Eq.(43) in [46] with the substitution θ(τ )→ 1 to take into account Guo’s
forcing [47]. Such values are then used to initialize the flat interface profile which is
simulated until the steady state is reached. The final concentrations are then used to
initialize the spherical interface simulations. This procedure proves to be effective in
providing a good starting point for the droplets simulations which are able to reach
the steady state in a reasonable time avoiding large pressure waves originating by a
less precise estimation of the initial concentration values.

As a first result we report in Fig. 2a the data for the rescaled generalized surface
tension σ [R]/σs , where σs = σ [Rs] = σ(Rs) is the value at the minimum, as
a function of the normalized position of the arbitrary diving surface R/Rs . It is
possible to compare these data with an analytical expression obtained from the
integration of the generalized Laplace law: we can rewrite Eq. (13) as R2�P =
d
[
R2σ [R]

]
/dR and integrate from Rs to R and obtain [1] the expression σ [R]

σs
=

1
3

(
Rs

R

)2+ 2
3
R
Rs

. The latter one is referred to as “universal” in [13], i.e., not depending

on temperature or on the droplet size, mirroring that σ [R] depends on the arbitrary
value of R. In Fig. 2a we compare the results obtained from the entire set of
simulations with the analytical prediction, yielding a good agreement. This result
allows us to determine the positions of the surface of tension Rs from the minima
of the generalized surface tension curves. Figure 2b displays the points (R−1

s ,�P),
i.e., the Laplace law, for the symmetric interactions with δGAB = 0, and the two
most asymmetric cases δGAB = ±0.88. All curves converge to the slope expected
from the flat interface surface tension, i.e., 2σ0, while sizeable corrections are visible
for smaller droplets.

We analyze in further details the surface tension σ0 as computed from (i) flat
interface simulations and (ii) from the Rs → ∞ limit of the data obtained from
the droplets simulations. Figure 3a displays the results for different values of δGAB
reaching a minimum near the symmetric case δGAB = 0 and increasing at the
boundary of the interval δGAB = ±0.88. We report using circles the Rs →∞ data
while those for the flat interface simulations are reported in dashed. In the first case
we use parabolic fits of the quantity σ(Rs) = �P ·Rs/2 to estimate the value of σ0
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Fig. 2 (a) Collapse of the rescaled generalized surface tension σ [R]/Rs as a function of the
rescaled arbitrary dividing surface position R/Rs for all the simulated nA- and nB-rich droplets,
related to full and empty circles, respectively, for all the values of δGAB, represented by different
colors, and all system sizes L, displaying a good superposition to the expected “universal”
behavior. (b) Values of the pressure difference �P as a function of the curvature (negative
for B-rich droplets) at the surface of tension R−1

s for the extrema of the asymmetry parameter
δGAB = ±0.88 and the fully symmetric case δGAB = 0. Corrections to the expected Laplace law
(dashed lines) are visible and asymmetric when changing the sign of δGAB. The curvature R−1

s is
reported in inverse lattice units, i.e., lu−1

in the Rs → ∞ limit, while for the flat interface we use the mechanical definition
of the surface tension

σ0 =
∫ Lx

Lx/2
dx[PN(x)− PT(x)], (24)
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Fig. 3 (a) Values of the surface tension as estimated from the droplets simulations in the flat
interface limit (symbols) compared to the values computed from flat interface simulations. The
discrepancy is at most 3 × 10−2. The inset displays the variation relative to the maximum
which does not exceed 2 × 10−1. (b) Curvature dependence of the surface tension σ(Rs)/σ0 =
�P ·Rs/2σ0 for three different choices of the asymmetry parameter δGAB. Dashed-dotted straight
lines indicate the results for the linear term while the dashed parabolas indicate the second order
approximation. Thicker lines are used for the symmetric case δGAB = 0. The curvature R−1

s is
reported in inverse lattice units, i.e., lu−1

where PN(x) = Pxx(x) and PT(x) = Pyy(x) have been obtained from the lattice
pressure tensor (11). The relative difference between the two estimates for σ0 never
exceeds 3.7 × 10−2, while the relative difference between the minimum and the
maximum values, σm and σM, respectively, as a function of δGAB is bounded at
1− σm/σM ∼ 2× 10−1. We continue with the analysis of the curvature corrections
to the flat interface value of the surface tension σ0. In Fig. 3b we report the data for
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σ(Rs)/σ0 as estimated from the droplet simulations through the ratio �P · Rs/2σ0
(cf. Eq. (14)). We wish to remark that the values of σs = σ(Rs) estimated from the
pressure jump �P and those obtained from the minimum of σ [R] in Eq. (20) have
a relative difference of at most 4× 10−3. We only report the symmetric, δGAB = 0,
as well as the most asymmetric cases, δGAB = ±0.88 for ease of reading. We
perform quadratic fits in order to estimate the first and second order coefficients.
After normalizing the coefficients by the zero-th order one, i.e., σ0, one obtains
−2δ and 2k̄ + k, respectively. The values of σ0 are reported in Fig. 3. Dash-dotted
lines represent the result for the linear coefficient. The thicker line indicates the
symmetric case which has a negligible slope, i.e., vanishing Tolman length. On
the other hand, the two asymmetric cases display finite slopes of opposite signs,
signaling a change in the sign of the Tolman length. We report in dashed lines
the results for the fits of the full parabola which give a good approximation in the
R−1
s → 0 limit.
Finally, Fig. 4a and b display the Tolman length δ and the rigidity coefficients

combination 2k̄ + k, respectively, as a function of the asymmetry parameter δGAB.
As already visible from Fig. 3 the sign of the Tolman length changes with the sign
of δGAB with an almost monotonic dependence. Moreover, one can notice that the
absolute value of δ is larger for negative δGAB. This can be understood given that for
δGAB < 0 the A-component gets closer to the critical point of the self-interactions.
While these are still too weak to induce phase separation, they exert a stronger
effect on the interface with respect to δGAB > 0 branch for which the interface
features are set, almost entirely, by the inter-component interactions. A non-trivial
competition between inter-component and self-interactions for the formation of the
interface is probably responsible for both the presence of a maximum for 2k̄+k and
the non-monotonic behavior of the first derivative clearly visible around δGAB 

−0.75. A theoretical prediction for both the Tolman length and the higher order
curvature coefficients will be paramount to fully capture this competition among
interactions. On the other hand, the rigidity coefficients display a non-monotonic
behavior, reaching a maximum for δGAB 
 −0.40. We notice that the results do not
show symmetry under sign exchange for δGAB mirroring the asymmetric change in
the interactions under exchange of the two components A ←→ B. The relative
change of δ is around 1− δm/δM ∼ 1.5, with δm and δM the norm of the minimum
and the maximum values, respectively. Hence 1 − δm/δM is far larger than 1 −
σm/σM, so that one variation is weakly dependent on the other. A few remarks on
the dependence of the results on the simulations parameters are in order. Let us
begin from the system size L dependence: limiting the set of simulations to a value
L ≤ 213lu still yields a consistent curve for δ while the estimates for 2k̄+ k change
by roughly 20%. This is due to the fact that the points closest to the flat interface
limit R−1

s 
 0 are the most significant for getting a reliable estimate of the second
order coefficient for the curvature corrections. Furthermore, the value of the inter-
component coupling G has been chosen so that the largest spurious currents is of
order O(10−3Ma), where Ma is the Mach number, which is weak enough not to
affect the estimations of�P . Moreover, since the magnitude of the spurious currents
is correlated to the surface tension [53], the relatively small variation of σ0 reported
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Fig. 4 (a) Values of the Tolman length δ as a function of the asymmetry parameter δGAB,
vanishing in the symmetric case δGAB = 0. (b) Values of the combination of the rigidity
coefficients 2k̄+k as a function of δGAB displaying a non-monotonic behavior. δ, and the curvature
coefficients are reported in lattice units, i.e., lu and lu2

in Fig. 3a assures that the spurious currents consistently stay at the same order in
the whole range of δGAB . Finally, in a three-dimensional system, the initial droplet
size ratio L/R = 4 is large enough to avoid the spurious currents effect to propagate
through the periodic boundaries. Future works will aim at completely disentangle
the variations of the two quantities making them independent.



Mesoscale Modelling of the Tolman Length in Multi-component Systems 187

5 Conclusions

In the present work we demonstrate, by means of an extensive set of simulations of
a two-component system, that (i) the Shan-Chen [15, 31] multi-component model is
able to capture the curvature corrections to the surface tension and (ii) it naturally
allows for a straightforward method for tuning both the Tolman length and the
rigidity coefficients in a wide range of values, while keeping the surface tension
in a relatively narrow range. Specifically, this is obtained by tuning the degree of
asymmetry [12] of each component self-interaction [46] while keeping the cross-
component interaction constant. By this method we demonstrate how the Tolman
length, i.e., the first-order curvature correction of the surface tension in the flat
interface limit, can be made to vanish in a continuous way by restoring the symmetry
of the interaction under exchange of the two components A ←→ B. The tuning of
the Tolman length, especially by means of the tuning of the relative concentrations
of the two components, has been thoroughly studied in the context of Density
Functional Theory approaches [10]. While those studies focus on the variation of
the curvature corrections for the same physical system, here we chose, as a first
instance, a parametrization potentially describing different physical systems.

This represents a first step for the tuning of the curvature corrections in order to
correctly model different realistic systems. Further studies will address the same
results seeking an analytical control also for the multi-phase systems for which
recent results [34] have already demonstrated the existence of the Tolman length
and its temperature dependence in the Shan-Chen multi-phase model. This research
direction holds the potential to allow a more straightforward approach for the study
and modelling of nucleation and cavitation problems taking naturally into account
the hydrodynamic contributions, while offering, at the same time, a very compu-
tationally efficient method capable of dealing with complex and realistic boundary
conditions. The simulations source code and a Jupyter notebook to reproduce all the
results and figures can be found on GitHub https://github.com/lullimat/idea.deploy.
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Kinetic and Macroscopic Epidemic
Models in Presence of Multiple
Heterogeneous Populations

Andrea Medaglia and Mattia Zanella

Abstract We study the impact of contact heterogeneity on epidemic dynamics.
A system characterized by multiple susceptible populations is considered. The
description of the spread of an infectious disease is obtained through the study of
a system of Boltzmann-type equations for the number densities of social contacts
of the introduced compartments. A macroscopic system of equations characterizing
observable effects of the epidemic is then derived to assess the impact of contact
heterogeneity.

1 Introduction

The recent efforts to design effective non-pharmaceutical measures to mitigate the
COVID-19 pandemic were based on the link between social activities and the
spreading of a respiratory disease [2]. Several works in mathematical epidemiology
characterized the number of contacts of the population taking into account an
additional structure that is maintained for the whole dynamics. A classic example
is represented by age-structured populations for which realistic contact matrices
have been determined, see, e.g., [1, 15, 20]. Nevertheless, recent works highlighted
strong changes in contact distribution in the early phases of an epidemic, whose
evolution can shape the infection dynamics, see [25]. For these reasons, in [11] it
has been proposed in a simple SIR-type compartmentalization a kinetic model to
couple the dynamics of an infectious disease with the contact evolution of a system
of agents. Based on the observation that people with high number of contacts may
by capable to transmit the disease to a large number of people, we introduced a
modeling approach in which the social structure of compartments is characterized
by the number of contacts. Interestingly enough, in the present setting, models with
saturated incidence rates can be easily derived with minimal assumptions [7, 17, 24].
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Other recent contributions were centered on the effects of the structure of contacts
of agents, we mention in this direction the works [12, 16, 19].

In the present contribution, we concentrate on the influence of contact het-
erogeneity on the dynamics of the disease in presence of multiple susceptible
populations. Each susceptible compartment can be characterized by its mean
number of connections. This situation is very common when non-pharmaceutical
interventions have different impacts on the population [6] or in presence of sanitary
cordon measures, where a portion of the territory results highly affected by the
disease. We mention recent contributions in this direction using mobility data
[4, 9, 13, 18, 22].

The mathematical tools that we consider are based on kinetic theory for large
interacting systems [8, 14, 21] for which we are able to derive the evolution of
observable quantities from microscopic, often unobservable, dynamics. In details,
we will show how heterogeneity in the contact structure plays a central role in
the evolution of an epidemic. In particular, preliminary results will highlight that,
in several regimes of parameters, the asymptotic number of recovered can be
unexpectedly high in societies with small contact heterogeneity, compared to the
ones with high contact heterogeneity. These results are coherent with the recent
findings presented in [5].

2 Interplay Between Contact Distribution and Epidemic
Dynamics

In this section, we introduce a kinetic model to describe the spreading of an
infectious disease depending on an additional variable describing the number of
social contacts. Coherently with the modeling approach introduced in the recent
works [10], we subdivide the total population into three main compartments:
susceptible, who can contract the disease, infected infectious, who can transmit
the disease and recovered, corresponding to formerly infected patients that are
not infectious. Furthermore, to mimic the early effects of the epidemic, where the
collective compliance to reduce the number of daily contacts is often not accepted,
we subdivide the susceptible population into two main categories S+, S− in relation
to their average number of contacts, mS+ and mS− , respectively.

The contact distribution of the whole population is therefore recovered as

f (w, t) = fS+(w, t)+fS−(w, t)+ fI (w, t)+ fR(w, t),

∫
R+

f (w, t)dw = 1.

Hence, we obtain the mass fractions of population in each compartment and their
momentum of order α > 0 as

J (t) =
∫
R+

fJ (w, t)dw, J (t)mα,J (t) =
∫
R+

wαfJ (w, t)dw.
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Unambiguously, in the following we will indicate the mean of contact in the
compartment J , corresponding to α = 1, by mJ .

2.1 Formation of the Contact Distribution

Coherently with [11], we can define a process of contact formation based on
microscopic transitions for the variation of contacts of a single agent. At aggregate
level, the evolution of the distributions fJ , J ∈ {S±, I, R}, can be obtained through
a Boltzmann-type equation. As shown in the aforementioned work, to obtain an
explicit formulation of the large time distribution, it is possible to derive the
following Fokker-Planck-type equation

∂

∂t
fJ (w, t) = λJ

2
∂w

[(
w

mJ

− 1

)
fJ

]
+ σ 2

J

2
∂2
w(wfJ (w, t)) (1)

with λJ > 0, σ 2
J > 0 and mJ > 0 the mean number of contacts, complemented

with no-flux boundary conditions
∂

∂w
(wfJ (w, t))

∣∣∣
w=0

= 0, J = {S, I, R}.
The emerging large time contact distributions f∞J (w), J ∈ {S±, I, R} of (1) can
be explicitly computed and are of Gamma-type [23] coherently with experimental
results in [2]. In particular, if μJ = λJ /σ

2
J > 0, we have

f∞J (w) =
(
μJ

mJ

)μJ 1

�(μJ )
wμJ−1 exp

{
−μJ

mJ

w

}
, (2)

whose momenta of order α are

∫
R+

wαf∞J (w)dw =
(
mJ

μJ

)α
�(μJ + α)

�(μJ )
= cα,Jm

α
J , (3)

where cJ,α =
(

1

μJ

)α
�(μJ + α)

�(μJ )
. Since f∞J is a Gamma distribution we also have

cα+1,J = μJ + α

μJ

cα,J ,

and mα+1,J = mα,J

α + μJ

μJ

mJ . We remark that (2) is explicitly dependent on

the positive parameter μJ = λJ /σ
2
J that measures the contact heterogeneity of

a population in terms of the variance of the distribution of social contacts. More
precisely, small values of μJ correspond to a larger heterogeneity of the individuals
in terms of social contacts. Different models with the defined experimentally
consistent equilibrium may be considered, for example, BGK-type operators.
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2.2 The Kinetic Model

The resulting system of kinetic equations is given by

∂tfS+(w, t) = −K(fS+, fI )(w, t)+
1

ε
QS+(fS+)(w, t)

∂tfS−(w, t) = −K(fS−, fI )(w, t)+
1

ε
QS−(fS−)(w, t)

∂tfI (w, t) = K(fS+ + fS−, fI )(w, t) − γfI (w, t) + 1

ε
QI (fI )(w, t)

∂tfR(w, t) = γfI (w, t) + 1

ε
QR(fR)(w, t),

(4)

where ε > 0 and γ > 0 is the recovery rate. The infection transmission is taken into
account by the operator

K(g, fI )(w, t) = g(w, t)

∫
R+

κ(w,w∗)fI (w∗, t)dw∗, g = fS+ , fS− ,

with κ(w,w∗) > 0 expressing the dependency of the disease transmission by the
number of contacts and such that κ(0, y) = κ(x, 0) = 0. In [11] it has been
proposed as possible example

κ(x, y) = βxα1yα2, α1, α2 > 0.

The operators QJ (fJ ), J ∈ {S±, I, R} characterize the thermalization of the
distributions fJ (w, t) and as discussed in Sect. 2.1 are given by

QJ (fJ )(w, t) = λJ

2
∂w

[(
w

mJ

− 1

)
fJ

]
+ σ 2

J

2
∂2
w(wfJ (w, t)),

that are mass and momentum preserving. From now on we will omit time depen-
dency. Integrating both sides of (4) we get

dS+
dt

= −βmα1,S+mα2,I S+I

dS−
dt

= −βmα1,S−mα2,I S−I

dI

dt
= β

[
S+mα1,S+ + S−mα1,S−

]
mα2,I I − γ I

dR

dt
= γ I
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that is not closed like classical compartmental modeling since it depends on the
evolution of local mean values mJ (t). A possible way to obtain a closed system
of equations is obtained by resorting to a limit procedure that is classical in
statistical physics. Indeed, for ε � 1 the distribution functions fJ (w, t) collapse
to Gamma-type densities with mass fractions J (t) and local mean values mJ (t).
After multiplication by w we get

d(S+mS+)

dt
= −βmα1+1,S+mα2,I S+I,

d(S−mS−)

dt
= −βmα1+1,S−mα2,I S−I,

d(ImI )

dt
= β

(
mα1+1,S+S+ +mα1+1,S−S−

)
mα2,I I − γmI I

d(RmR)

dt
= γmI I.

Hence, in view of (3) we obtain the following closed system for the evolution of the
mass fractions and mean connections in each compartment

dS+
dt

= −βcα1,S+cα2,Im
α1
S+m

α2
I S+I,

dS−
dt

= −βcα1,S−cα2,Im
α1
S−m

α2
I S−I,

dI

dt
= βcα2,I

[
cα1,S+S+m

α1
S+ + cα1,S−S−m

α1
S−

]
m
α2
I I − γ I

dR

dt
= γ I

(5)

and

dmS+
dt

= −βα1

μS+
cα1,S+cα2,Im

α1+1
S+ m

α2
I I

dmS−
dt

= −βα1

μS−
cα1,S−cα2,Im

α1+1
S− m

α2
I I

dmI

dt
= βcα2,Im

α2
I

{
cα1,S+S+m

α1
S+

(
α1 + μS+

μS+
mS+ −mI

)

+ cα1,S−S−m
α1
S−

(
α1 + μS−

μS−
mS− −mI

)}

dmR

dt
= γ (mI −mR)

I

R
.

(6)
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We observe that the obtained social SIR model with generalized interaction
forces reduces to the one obtained in [10] in the case of a unique susceptible
population with the choice α1 = α2 = 1.

2.3 Saturated Incidence Rate

Fixing mI (t) = m̃I > 0 from the first two equations in (6) we get

dmS±
dt

= −β̄±mα1+1
S± ,

being β̄± = βα1

μS±
cα1,S±cα2,I m̃

α2
I I complemented with the initial condition mS±(0).

The exact solution of the above equation reads

mS±(t) =
mS±(0)(

1+ βα2
1

μS±
m
α1
S±(0)cα1,S±cα2,I m̃

α2
I

∫ t
0 I (s)ds

)1/α1
.

Hence, with the introduced assumption we get the following set of first order
macroscopic equations with saturated incidence rate

dS+
dt

= −βcα1,S+cα2,IH+(t, I (t))S+I,

dS−
dt

= −βcα1,S−cα2,IH−(t, I (t))S−I,

dI

dt
= βcα2,I (cα1,S+H+(t, I (t))S+ + cα1,S−H−(t, I (t))S−)I − γ I

dR

dt
= γ I,

(7)

where

H±(t, I (t)) =
m̃
α2
I m

α1
S±(0)

1+ βα2
1

μS±
m
α1
S±(0)cα1,S±cα2,I m̃

α2
I

∫ t
0 I (s)ds

is a generalization of the classical saturated incidence rate.
To understand the influence of contact heterogeneity we divide the equations for

S±(t) in (7) by dR/dt . Hence, in the limit t →+∞ we have

dS∞±
dR∞

= −ξ±μS±
S∞±

1+ α2
1ξ±R∞

, (8)
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where ξ± =
βcα1,S±cα2,I m̃

α2
I m

α1
S±(0)

γμS±
> 0 is a given constant. The solutions of (8)

are

S∞± (R∞) = S±(0)
(

1+ α2
1ξ±R∞

)−μS±
, (9)

since S∞± (R∞ = 0) = S±(0).
For large times we have

S∞+ + S∞− + R∞ = 1.

Taking advantage of the explicit solution (9) we can rewrite the last relation as

1− R∞ = S+(0)
(

1+ α2
1ξ+R∞

)−μS+ + S−(0)
(

1+ α2
1ξ−R∞

)−μS−
, (10)

whose solution defines the dependence ofR∞ by the introduced contact heterogene-
ity.

3 Numerical Results

In this section, we present several numerical experiments for the system (5)–(6) and
the system (7) with saturated incidence rate. In particular, we focus on the relation
between the fraction of the recovered at the equilibriumR∞ and the coefficientsμS±
measuring the heterogeneity of the population of the compartments S± in terms
of the variance of the contact distribution. More specifically, small values of μS±
correspond to a larger heterogeneity of the individuals with respect to the social
contact, since μS± = λS±/σ

2
S± .

Since R∞ defined in (10) depends on several parameters defining the initial
set-up of the contact distribution, to understand the influence of the contact
heterogeneity, we fix the following values

mS+(0) = mR(0) = mI (0) = m̃I = 15, mS−(0) = 10,

S+(0) = 0.68, S−(0) = 0.28, I (0) = R(0) = 0.02,

α1 = α2 = 1, γ = 0.1.
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Fig. 1 Numerical solution of equation (10) for R∞, varying the parameters μS± . Left: R0 = 1.25.
Right: R0 = 2.5. The initial data are mS+ (0) = mR(0) = mI (0) = m̃I = 15, mS− (0) = 10,
S+(0) = 0.68,S−(0) = 0.28, I (0) = R(0) = 0.02, the other parameters of the model α1 = α2 =
1, γ = 0.1

Therefore, with these choices R∞ is function of μS+ and μS− with a parametric
dependence on β, that is linked to the reproduction number

R0 = β

γ
mI (0)

(
S+(0)mS+(0)+ S−(0)mS−(0)

)
.

The relation between the contact structure of the agents and the spreading of the
epidemics has been recently studied in literature [5, 12]. In particular, regarding the
COVID-19 pandemic, it has been pointed out that a smaller heterogeneity could be
associated with a larger value of the recovered at the equilibrium.

Similarly to [5], we consider first the case R0 = 2.5. This choice is then
compared with the case of an infectious disease characterized by R0 = 1.25.
In details, we solve numerically equation (10) for R∞, varying μS± and taking
different values of R0. As we can observe from Fig. 1, R∞ is an increasing function
of both the coefficients μS± regardless of the considered values of the reproduction
number R0.

A rather different behavior can be observed for the non-saturated system (5)–(6).
In particular, R∞ exhibits in this case a maximum for small μS± . This means that a
higher heterogeneity is linked to a larger value of the recovered at the equilibrium.
As a consequence, we note also that different conditions of the heterogeneity of the
social contacts could be associated with the same R∞, despite they have a distinct
time evolution.

As we can easily observe from the left panel of Fig. 2, R∞ in the R0 = 1.25
scenario has a maximum for high conditions of heterogeneity and then it decreases
as the parametersμS± increase. On the contrary, the R0 = 2.5 case in the right panel
of Fig. 2 shows the same trend of the system with saturated incidence rate. In more
details, in Fig. 3 we show the time evolution of the system (5)–(6) for R0 = 2.5. We
clearly see that a decreasing contact heterogeneity is associated with bigger fraction
of recovered for large times.
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Fig. 2 Fraction of recovered R∞ versus the parameters μS± , obtained solving the system (5)–(6).
Left: R0 = 1.25. Right: R0 = 2.5. The initial data are mS+ (0) = mR(0) = mI (0) = m̃I = 15,
mS− (0) = 10, S+(0) = 0.68,S−(0) = 0.28, I (0) = R(0) = 0.02, the other parameters of the
model α1 = α2 = 1, γ = 0.1
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Fig. 3 Evolution of the system (5)–(6) with R0 = 2.5 for μS+ = μS− = 0.5 (solid lines) and
μS+ = μS− = 1 (dashed lines). The initial conditions are mS+ (0) = mI (0) = mR(0) = 15,
mS− (0) = 10, S+(0) = 0.68, S−(0) = 0.28 and I (0) = R(0) = 0.02. The other parameters are
α1 = α2 = 1, γ = 0.1

In the end, we observe that for high values of heterogeneity parameters the model
with saturated incidence rate, mimicking non-pharmaceutical protection measures
such as a lockdown strategy, exhibits a lower fraction of recovered at the equilibrium
than the system (5)–(6). In particular, for small R0, a fixed mean of contacts in the
infected compartment is able to avoid the maximum for small μS± shown in the left
panel of Fig. 2.
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4 Conclusion and Perspectives

In this short note, we focused our attention on a kinetic compartmental model
describing the spread of an infectious disease. The process of contact formation
is coupled with the epidemic dynamics. We show that the presence of contact
heterogeneity is central for the assessment of the evolution of a disease. The
interplay between the process leading to the formation of social contacts and
Maxwellian models with multiple interactions studied in [3] is currently under
deeper investigation.
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Electron Transport in Graphene
Nanoribbons

Giovanni Nastasi and Vittorio Romano

Abstract Lately, graphene has attracted the attention of several scientists because
of its interesting properties. In particular, charge transport in graphene nanoribbons
has peculiar effects which reveal very challenging, especially for future generations
of electron devices. The possibility to replace traditional semiconductor materials
with graphene in the active area of electron devices constitutes the ultimate
miniaturization since graphene has the width of a single atom. Here we present
an analysis of charge transport in graphene nanoribbons in the framework of
semiclassical transport.

1 Introduction

The interest in charge transport in low dimensional structures [1] has recently
increased both for the aim to shrink the dimension of the existing electron devices
and for the discovery of 2D materials such as graphene and transition metal
dichalcogenides. Much effort has been devoted to devise novel graphene field effect
transistors [2–4] but the gapless nature of pristine graphene makes it a semimetal
and hampers its use in microelectronics. A viable way is to use carbon nanotube or
graphene nanoribbons (GNRs) instead of large area graphene. In fact, it has been
experimentally observed that GNRs have an energy gap like semiconductors, see,
for example, [5], due to quantum confinement effects. Therefore GNRs are potential
candidates to replace standard semiconductors, e.g., Si or GaAs, in the active area of
electron devices. This should constitute the ultimate miniaturization since graphene
has the width of a single atom.

In order to employ GNRs, an accurate analysis of their transport properties is
mandatory, in particular, the energy bands, the electron–phonon scatterings, and
the edge effects. Here we present an analysis of charge transport in graphene
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nanoribbons in the framework of semiclassical transport. The plan of the paper is
as follows. In Sect. 2 the semiclassical Boltzmann equations for electrons in the
valence and conduction bands are introduced along with the structure of the energy
band and scattering terms. In Sect. 3 an efficient numerical scheme based on the
Discontinuous Galerkin (DG) method is presented. In Sec. 4 models of mobilities
are deduced from the numerical simulations of the semiclassical transport equations.

2 Semiclassical Charge Transport in Graphene

The main peculiarity of large area graphene is that the energy bands ε(k) around the
Dirac point have a conical shape [6]

εα(k) = αh̄vF

√
k2
x + k2

y, (1)

where vF is the (constant) Fermi velocity, h̄ the reduced Planck constant and k =
(kx, ky) is the wave-vector, we assume to vary in R

2. The parameter α assumes the
value 1 for the conduction band and −1 for the valence band. The conduction and
valence bands touch at the Dirac points making graphene a gapless semimetal. This
feature has important consequences. The most relevant one for the design of a Field
Effect Transistor (FET) with the active area made of graphene, the so-called GFET,
is the difficulty to get an efficient on-off switch of the current.

Recently, several papers have tackled the problem to model the charge con-
finement in graphene nanoribbons. In the idealized cases of armchair edges,
band-structure calculation predicts that a gap is present; zigzag GNRs are semi-
metallic instead. In more realistic cases the edge disorder makes the analysis much
more involved. The usual approaches are based on a square potential well [1] of
width W and lead to the energy subbands

εn(k) = αh̄vF

√
k2
x +

(nπ
W

)2
, n = 1, 2, . . . . (2)

However, as shown in [7] by a comparison with DFT calculations, the subband
models suffer from a certain discrepancy regarding the density of states (DOS).
In the same paper the authors propose a simpler model in good agreement with
DFT up to energies of 1 eV, enough for many practical device applications. Such an
approach consists of still retaining a single band but changing the dispersion relation
as follows

εα(k) = αh̄vF

√
k2
x + k2

y +
( π

W

)2
. (3)
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We set C = π

W
which is related to the energy gap Eg through Eg = 2h̄vFC. We

remark that this model for the energy bands tends to the dispersion relation of a
monolayer graphene for large W and it does not require a multi-subband treatment.
Moreover, if W is so small that the bandgap is greater than the phonon energy, the
inter-band scatterings can be neglected [8, 9].

The semiclassical Boltzmann equations (BEs) in the conduction and valence
bands describe the flow of electrons in GNRs with a good accuracy. The electrons
in the valleys K and K ′ are treated as equivalent. Since electrons are confined in the
transversal direction, we consider the transport only along the longitudinal direction
and, as a consequence, the BEs write

∂fα

∂t
+ (vα)x

∂fα

∂x
− e

h̄
E
∂fα

∂kx
= C(fα, f−α), (α = ±1). (4)

The unknowns fα = fα(t, x,k) denote the distribution functions of electrons, being
t the time, x the position along the longitudinal direction and k the (2D) wave-
vector belonging to the first Brillouin zone which is extended to R

2. We observe
that equations are written both for electrons. The alternative descriptions with holes
in the valence band will be used for calculating the average quantities only. We have
denoted by e the elementary (positive) charge. E = E(t, x) is the component of
the electric field along the x-direction. In principle it must be determined via the
Poisson equation but in the investigated cases it can be considered as external.

In each energy band the following group velocity vα is obtained

vα = ((vα)x, (vα)y) = 1

h̄
∇k εα = αvF√

k2
x + k2

y + C2
k, (5)

∇k being the gradient with respect to the vector k. Note that, at variance with the
gapless case, the modulus of vα is no longer constant but |vα| < vF .

The collision terms C(fα, f−α) include both the interaction of electrons with the
phonons of graphene and an additional scattering modelling the edge effects.

The general form of the electron–phonon scattering C(el−ph)(fα, f−α) reads

C(el−ph)(fα, f−α) =
∑
α′

∫
R2

S
(el−ph)
α′,α (k′,k) fα′(t, x,k′) (1− fα(t, x,k)) dk′

−
∫
R2

S
(el−ph)
α,α′ (k,k′) fα(t, x,k)

(
1− fα′(t, x,k′)

)
dk′,
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where the total transition rate is the sum of interactions due to acoustic, optical and
K phonons of graphene

S
(el−ph)
α′,α (k′,k) =

∑
λ

∣∣∣M(λ)(k′,k)
∣∣∣2
[(
n(λ)q + 1

)
δ
(
εα(k)− εα′(k

′)+ h̄ ω(λ)
q

)

+ n(λ)q δ
(
εα(k)− εα′(k

′)− h̄ ω(λ)
q

)]
.

We have labelled with λ the λth phonon mode and indicated with
∣∣M(λ)(k′,k)

∣∣ the
corresponding matrix element of the scattering due to the phonons of type λ [10, 11].
The symbol δ denotes the Dirac distribution, ω(λ)

q is the the λth phonon frequency,

n
(λ)
q is the Bose–Einstein distribution for the phonon of type λ

n(λ)q =
[

exp

(
h̄ω

(λ)
q

kBTL

)
− 1

]−1

,

kB is the Boltzmann constant and TL is the lattice temperature, assumed constant
in this article. The scattering with the acoustic phonons is considered in the elastic
approximation

2 n(ac)q

∣∣∣M(ac)(k′,k)
∣∣∣2 = y

π D2
ac kB TL

4h̄ σm v2
p

(
1+ cosϑk ,k′

)
, (6)

where y = 2/(2π)2, Dac is the acoustic phonon coupling constant, vp is the sound
speed in graphene, σm the graphene areal density, and ϑk k′ is the convex angle
between k and k′.

The matrix elements of the three relevant optical phonon scatterings, i.e., the
longitudinal optical (LO), the transversal optical (TO) and the K phonons, read

∣∣∣M(O)(k′,k)
∣∣∣2 =

∣∣∣M(LO)(k′,k)
∣∣∣2 +

∣∣∣M(TO)(k′,k)
∣∣∣2 = y

π D2
O

σm ωO
(7)

∣∣∣M(K)(k′,k)
∣∣∣2 = y

π D2
K

σm ωK

(
1− cosϑk ,k′

)
, (8)

where DO is the optical phonon coupling constant, ωO the optical phonon fre-
quency, DK is the K-phonon coupling constant and ωK the K-phonon frequency.

We observe that the acoustic phonon scattering is intra-valley and intra-band
while the scattering with optical phonons is intra-valley and can be both intra-band
and inter-band. Scattering with optical phonon of type K is inter-valley and can
be also both intra-band and inter-band. Regarding the physical parameters of the
collision terms see ref. [8].
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If the nanoribbon lies on an oxide, e.g., SiO2, an additional scattering arises
with the phonons of the substrate; the main observed effect is a degradation of the
mobility [3, 9, 12]. Here, for the sake of simplicity, only suspended nanoribbons will
be studied.

A major difference with respect to the large area graphene is the edge effect.
Following [13], a way for including the edges roughness is to adopt the Berry-
Mondragon (or infinite-mass) boundary conditions. It corresponds to the single
Dirac cone approximation and therefore is applicable for smooth enough disorder
near the edges. Under the assumption that the type and distributions of scatterers
are the same at both edges and requiring that the scattering with rather strong
longitudinal momentum transfer is effectively suppressed, the edges roughness
gives rise to an additional scattering term C(el−edg)(fα) (see [13] for more details)
which reads

C(el−edg)(fα) =
∫
R2
S(el−edg)(k′,k)[fα(t, x,k′)− fα(t, x,k)] dk′ (9)

with

S(el−edg)(k′,k) = y
πNiV

2
0

h̄W
exp(−2(kx − k′x)2a2)δ(εα(k)− εα(k′)). (10)

Ni is the linear density of defects along the graphene edge and the quantity

V0 exp(−(kx − k′x)2a2) (11)

is the matrix element due to the potential of a single scattering at the edge, V0
being a constant and a a characteristic range, along the edge direction, so that
electron scattering with rather strong longitudinal momentum transfer (along the
x-direction), |kx − k′x | > 1/a, is effectively suppressed. The physical parameters
for the edge collision terms are summarized in Table 1.

In the rest of the paper, we will consider a spatially homogeneous graphene
nanoribbon (see [14]) under an external constant electric field E. Therefore, the
BEs reduce to

∂fα

∂t
− e

h̄
E
∂fα

∂kx
= C(fα, f−α), (α = ±1), (12)

Table 1 Physical parameters
for the electron-edge collision
term

Parameter Value

Ni 104 cm−1

V0 4.56 × 10−14 eV cm2

a 10−8 cm
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where the total collision term is the sum of the electron–phonon and the electron-
edge collision terms

C(fα, f−α) = C(el−ph)(fα, f−α)+ C(el−edg)(fα). (13)

Now fα = fα(t,k) and therefore Eq. (12) is an evolutive integro-differential
equation which is 2D in k.

3 Numerical Scheme

An efficient numerical scheme for solving the transport equations has been proposed
in [8, 15]. It is based on a discontinuous Galerkin scheme (which can be also viewed
as a finite volume scheme when a piecewise approximation is considered). From
physical argumentations one can reasonably assume that f1 and 1 − f−1 tend to
zero sufficiently fast as |k| → +∞. Let # ⊆ R

2 be a compact domain containing
the support of f1 and 1 − f−1 for every t > 0. We decompose the domain # with
open sets Cα, α = 1, 2, . . . , N, satisfying

Cα ⊆ # ∀α , Cα ∩ Cβ = ∅ ∀α �= β ,

N⋃
α=1

Cα = # .

If we approximate the solution of the transport equation in each cell with a piecewise
constant function fs(t,k) with respect to the wave-vector k

fs(t,k) ≈ f α
s (t), ∀k ∈ Cα,

a set of partial differential equations for the new unknowns f α
s (t)’s is obtained by

formally integrating Eq. (4) over each cell Cα

∫
Cα

∂fs

∂t
dk−

∫
Cα

e

h̄
E
∂fs

∂kx
dk =

∫
Cα

C(fs, f−s ) dk . (14)

For the first integral in Eq. (14) we have

∫
Cα

∂fs

∂t
(t,k) dk ≈ meas(Cα)

df α
s (t)

dt

with meas(Cα) the measure (area) of the cell Cα . The drift term is discretized by the
divergence theorem with a reconstruction of the fluxes based on a Min-Mod slope
limiter (for details see [15]).
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Regarding the collision terms, if we introduce the coefficients,

Aα,β =
∫
Cα

[∫
Cβ

S(k,k′) dk′
]
dk , (15)

one has (see [8])

∫
Cα

C(fs, f−s ) dk ≈
∑
s ′

N∑
β=1

[
Aβ,α

(
1− f α

s (t)
)
f
β

s ′ (t)− Aα,β f α
s (t)(1− f

β

s ′ (t))
]
.

As numerical k-space, we take the circle |k| ≤ kmax , where kmax is a fixed
maximum value chosen so that f1 and 1 − f−1 are negligible if |k| > kmax . The
parameter kmax is determined by numerical experiments.

In order to remove apparent singularities arising from the source term, modified
polar coordinates k = √p (cosϑ, sinϑ) are adopted. Therefore the generic cell Cα

is defined by the inequalities

0 ≤ pα < p < pα +�p ≤ k2
max and 0 ≤ ϑα < ϑ < ϑα +�ϑ ≤ 2π,

where �p and �ϑ are constant, while the dispersion relation (3) reads

ε(k) = ±ε(p) = ±h̄vF
√
p + C2. (16)

Regarding intra and inter-band electron–phonon scatterings, the computation of
the coefficients (15) requires the evaluation of integrals of the kind

∫ θ ′b

θ ′a
dθ ′

∫ θb

θa

dθ

∫ p′b

p′a
dp′

∫ pb

pa

dp
1

4
[A(ν) + B(ν) cos(θ − θ ′)]

×
[
(n(ν)q + 1)δ(εs ′(p

′)− εs(p)+ h̄ω(ν)
q )+ n(ν)q δ(εs ′(p

′)− εs(p)− h̄ω(ν)
q )
]
,

where A(ν) and B(ν) are constant, depending on ν = ac,O,K , and the factor 1/4
is the product of the Jacobian of the coordinate transformations.

If we set ξ(ν) = (h̄ω
(ν)
q )/(h̄vF ) and r = √

p + C2, we get the following
expression for the previous integrals (for the details see [14])

n
(ν)
q + 1

h̄vF

[
1

3

s

s′
r3 − 1

2

ξ(ν)

s′
r2

]max Ĩ−

min Ĩ−
+ n

(ν)
q

h̄vF

[
1

3

s

s′
r3 + 1

2

ξ(ν)

s′
r2

]max Ĩ+

min Ĩ+
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where

Ĩ± =
{
r ∈ R :

√
pa + C2 ≤ r ≤

√
pb + C2,

√
p′a + C2 ≤ s

s′
r ± ξ(ν)

s′
≤
√
p′b + C2

}
.

The same formula holds for acoustic scatterings as well and can be obtained by
formally setting ξ(ac) = 0. Observe that if C > ξ(ν) then Ĩ± = ∅ in the inter-band
transitions.

Concerning the edge scattering, we have to evaluate the following terms

w
(el−edg)
α,β =

∫ θ ′b

θ ′a
dθ ′

∫ θb

θa

dθ

∫ p′b

p′a
dp′

∫ pb

pa

dp
1

4
A(el−edg)

× exp

(
−2
(√

p sin θ −√p′ sin θ ′
)2

a2
)
δ(εs(p)− εs(p

′))

× 1

2
exp

(
−2p

(
sin θ − sin θ ′

)2
a2
)
χ[p′a,p′b](p)

√
p + C2

=A(el−edg)

2h̄vF

∫ θ ′b

θ ′a
dθ ′

∫ θb

θa

dθ

∫
[pa,pb]∩[p′a,p′b]

dp

√
p + C2

× exp
(
−2p

(
sin θ − sin θ ′

)2
a2
)
.

The discretization is completed by adopting a standard quadrature formula for the
remaining integrals.

4 Numerical Results and Mobility Models

By adopting the numerical scheme outlined in the previous section, we simulate the
electron transport in a suspended GNR under an external and constant electric field
along the longitudinal direction.

As initial condition the equilibrium distribution functions of electrons in both
bands are taken. They are Fermi-Dirac distributions

f±FD(k) =
1

1+ exp
(
ε±−εF
kBT

) .
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Here εF represents the Fermi energy. The upper sign is for the conduction band
while the lower sign is for the valence band. Therefore the initial conditions for
holes reads

f h
FD(k) = 1− f−FD(−k) = 1− 1

1+ exp
(
ε−(k)−εF

kBT

) = 1

1+ exp
(
εh(k)+εF

kBT

) ,

where [16] εh(k) = −ε−(k) = h̄vF

√
k2
x + k2

y + C2.

From the distribution function the macroscopic quantities of interest are evalu-
ated as expectation values, e.g., the electron and hole densities1 which are given by
Jacoboni [16]

ρe(t) := 2

(2π)2

∫
R2

fe(t,k) dk, ρh(t) := 2

(2π)2

∫
R2

fh(t,k) dk,

where fe(t,k) = f1(t,k) and fh(t,k) = 1 − f−1(t,−k). Note that at equilibrium
there is a ono-to-one correspondence between the Fermi energy and the densities.

The Fermi energy can be controlled by applying a gate voltage [3, 4]. If εF =
0 eV we have a symmetrical situation between electrons and holes which is no
longer valid when εF �= 0 eV. Positive (negative) values of εF imply that the
majority charge constituting the electric current is that of the electrons (holes). For
small W the stationary regime is reached in a few picoseconds but for high values
of W one needs about 100 picoseconds, as in the case of large area graphene. This
is the effect of the inter-band scatterings when the energy gap becomes comparable
with the phonon energy.

Further important macroscopic quantities are the mean values of the electron and
hole velocities

< (ve)x > (t) := 1

ρe(t)

2

(2π)2

∫
R2

fe(t,k) vx(k) dk,

< (vh)x > (t) := 1

ρh(t)

2

(2π)2

∫
R2

fh(t,k) vx(k) dk,

which are related to the currents.
The design of electron devices where the active area is made of graphene

nanoribbons requires as a fundamental step devising an appropriate model for the
mobilities μe and μh of electrons and holes which are defined through the relations
(in the one dimensional case)

< (ve)x >= μe(E, ρe)E, < (vh)x >= μh(E, ρh)E, (17)

1 The spin degeneracy is not included; otherwise an additional factor 2 must be added which is
irrelevant to compare the mobilities.
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leading to the following expression for the currents

Je = −eρe < (ve)x >= −eμe(E, ρe)E, Jh = eρh < (vh)x >= eμh(E, ρh)E.

It is customary firstly to determine the low field mobility μ0, which is defined as

μ0(ρ) = lim
E→0

μ(E, ρ). (18)

The determination of the low field mobility from experimental data or Monte
Carlo simulations is rather ambiguous because of the intrinsic statistical noise.
We overcome such difficulties by employing an extensive simulation with the DG
approach which does not suffer from any statistical noise.

Large area graphene mobilities have been already obtained from the direct
solution of the Boltzmann equation by a DG approach in [3, 12, 17–20]. Here, we
tackle the case of GNRs with a width of 5 nm.

The low field mobility is fitted by the following trial expression

μ0(ρ) = μ̃

1+
(

ρ
ρref

)α . (19)

μ̃, ρref, and α are fitting parameters whose values, estimated by means of the least
squares method, are reported in Table 2.

Then we include the electric field dependence by a modified version of the fitting
described in Refs. [12, 17]

μ(E, ρ) =
μ0(ρ)+ μ1

(
E
Eref

)β1

1+
(

E
Eref

)β2 + γ
(

E
Eref

)β3
, (20)

where Eref, μ̃, β1, β2, β3 and γ are fitting parameters. Their values obtained with
the least square method are reported in Table 3.

In Figs. 1, 2 and 3 the low and high field mobility along with the currents versus
the electric field are plotted. We observe that regarding the high field mobility, a
reduction of about one order of magnitude is obtained with respect to the large
area graphene (see [14]). Moreover, the hole mobility is independent on the Fermi
levels when they are positive. If negative Fermi energies are considered, the role of
electrons and holes is exchanged.
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Table 2 Least square parameters for the low field mobility

μ̃ [µm2/Vps] ρref [µm−2] α [−]
1.4927410 4.2356158e+04 1.1283797

Table 3 Least square parameters for the high field mobility

εF [eV] Eref [V/µm] β1 [−] β2 [−] β3 [−] γ [−] μ1 [µm2/Vps]
0.1 1.1979e–01 2.8647e–04 1.3632 1.8102e–01 7.29058 7.4501

0.2 1.3429e–01 8.8654e–09 1.3527 1.8242e–01 6.0100 5.9609

0.3 7.1836e–02 2.8068 3.7755 2.6693 3.4984 4.4756

0.4 5.7731e–02 2.3942 3.3868 2.3360 6.4674 5.7173

0.5 2.2322e–02 1.8037 2.6963 1.7498 1.5198e+01 8.6961
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Fig. 1 Low field mobility versus density in the case of nanoribbons with a width of 5 nm. The dots
represent the DG results. The continuous line is the fitting (19) with the least square parameters
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Fig. 2 High field mobility versus electric field in the case of nanoribbons with a width of 5 nm for
several values of the Fermi energy. The dots represent the DG results. The continuous line is the
fitting (20) with the least square parameters
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Fig. 3 Current density versus electric field in the case of nanoribbons with a width of 5 nm for
several values of the Fermi energy. The dots represent the DG results. The continuous line is the
fitting (20) with the least square parameters
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5 Conclusions

Charge transport in graphene nanoribbons has been investigated by numerically
solving the semiclassical Boltzmann equations with a discontinuous Galerkin
method by taking into account all the phonon scattering mechanisms and the edge
scattering. For the energy band the model in [7] has been adopted and the edge
effects have been included with the approach in [13].

The numerical results have been used to get analytical models of low and high
field mobilities which play a crucial role for the simulation of electron devices based
on graphene nanoribbons. A degradation of the mobility is found with respect to the
large area graphene.

Several open problems remain to be addressed. Just to mention a few of them:
the inclusion of the crystal lattice thermal effects as in [21–24] and the transport
properties at the metal-nanoribbons interface in the contacts. Moreover, quantum
corrections could be included along the lines followed in [25–27].
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A Review on a General Multi-Species
BGK Model: Modelling, Theory and
Numerics

Marlies Pirner and Sandra Warnecke

Abstract In this article we focus on kinetic equations for gas mixtures since in
applications one often has to deal with mixtures instead of a single gas. In particular,
we consider an approximation of the Boltzmann equation, the Bhatnagar–Gross–
Krook (BGK) equation. This equation is used in many applications because it is
very efficient in numerical simulations. In this article, we recall a general BGK
equation for gas mixtures which has free parameters. Specific choices of these free
parameters lead to special cases in the literature. For this model, we provide an
overview concerning modelling, theoretical results and numerics.

1 Introduction

In this paper we shall concern ourselves with a kinetic description of gas mixtures.
For simplicity in notation and statements, we present it here for two species,
but the model can be extended to an arbitrary number of species since we only
consider binary interactions. A gas of mono atomic molecules and two species is
traditionally described via the Boltzmann equation for the distribution functions
f1 = f1(x, v, t), f2 = f2(x, v, t), see, for example, [19, 20]. Here, x ∈ R

3 and
v ∈ R

3 are the phase space variables, position and velocity of the particles, and
t ≥ 0 denotes the time. Assume that the particles of species 1 have mass m1 and the
particles of species 2 have mass m2. The Boltzmann equation for gas mixtures is of
the form

∂tf1 + v · ∇xf1 = Q11(f1, f1)+Q12(f1, f2),

∂tf2 + v · ∇xf2 = Q22(f2, f2)+Q21(f2, f1),
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where the intra-species collision operators Q11(f1, f1) andQ22(f2, f2) satisfy

∫
Qkk(fk, fk)

⎛
⎝ 1

mkv

mk|v|2

⎞
⎠ dv = 0, k = 1, 2 (1)

and the inter-species collision operators Q12(f1, f2) and Q21(f2, f1) satisfy

∫
Q12(f1, f2)dv =

∫
Q21(f2, f1)dv = 0,

∫ ((
m1v

m1|v|2
)
Q12(f1, f2)+

(
m2v

m2|v|2
)
Q21(f2, f1)

)
dv = 0.

(2)

These properties of the collision operator ensure conservation of the number of
particles, total momentum and total energy at the macroscopic level, (1) in intra-
species interactions, (2) in inter-species interactions. In addition, the collision
operators satisfy the inequalities

∫
Qkk(fk, fk) ln fkdv ≤ 0, k = 1, 2

∫
Q12(f1, f2) ln f1dv +

∫
Q21(f2, f1) ln f2dv ≤ 0.

(3)

The first inequality turns into an equality if and only if fk is a Maxwell distribution
Mk given by

Mk = nk

(2π Tk
mk
)3/2

exp

(
−|v − uk|2

2 Tk
mk

)
. (4)

Here we define for any f1, f2 : � ⊂ R

3 × R

3 × R

+
0 → R with (1 + |v|2)f1, (1 +

|v|2)f2 ∈ L1(R3), f1, f2 ≥ 0, the macroscopic quantities

∫
fk(v)

⎛
⎝ 1

v

mk|v − uk|2

⎞
⎠ dv =:

⎛
⎝ nk

nkuk

3nkTk

⎞
⎠ , k = 1, 2, (5)

where nk is the number density, uk the mean velocity and Tk the mean temperature of
species k (k = 1, 2). For ease we write Tk instead of kBTk , where kB is Boltzmann’s
constant.

In the second inequality in (3), we have equality if and only if f1 and f2 are
Maxwell distributions M1 and M2 and additionally if and only if u1 = u2 and
T1 = T2.
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If we are close to equilibrium, the complicated interaction terms of the Boltz-
mann equation can be simplified by a so-called BGK approximation, consisting of
a collision frequency νkjnj multiplied by the deviation of the distributions from a
local Maxwell distribution

∂tf1 + v · ∇xf1 = ν11n1(M1 − f1)+ ν12n2(M12 − f1),

∂tf2 + v · ∇xf2 = ν22n2(M2 − f2)+ ν21n1(M21 − f2).
(6)

The collision frequencies per density νkj are assumed to be dependent only on x

and t and not on the microscopic velocity v. For references taking into account also
a dependency on the microscopic velocity v see [64] for the one-species case, [40]
for the gas mixture case and [41] for the numerics of the gas mixture case.

The mixture Maxwell distributions M12 and M21 are given by

M12(x, v, t) = n12

(2π T12
m1

)3/2
exp

(
−|v − u12|2

2 T12
m1

)
,

M21(x, v, t) = n21

(2π T21
m2

)3/2
exp

(
−|v − u21|2

2 T21
m2

)
,

(7)

where nkj , ukj and Tkj will shortly be defined.
This approximation should be constructed in a way such that it has the same main

properties as the Boltzmann equation mentioned above.
Now, the question arises how to choose the mixture quantities nkj , ukj and Tkj .

In this review article we present a general model which is published in [50] for two
species. This model contains a lot of proposed models in the literature as special
cases. Examples are the models of Gross and Krook [37], Hamel [42], Asinari [4],
Garzo et al. [34], Sofena [62], Cercignani [19], Greene [35] and recent models by
Bobylev et al. [11]; Haack et al. [38].

The second last [11] presents an additional motivation how the corresponding
model can be derived formally from the Boltzmann equation, whereas the last
[38] presents a derivation to macroscopic equations on the Navier-Stokes level and
numerical results.

BGK models give rise to efficient numerical computations, which are asymptotic
preserving, that is, they remain efficient even approaching the hydrodynamic regime
[7, 9, 25, 29, 31, 58]. However, the BGK approximation is incapable of reproducing
the correct Boltzmann hydrodynamic regime in the asymptotic continuum limit.
Therefore, a modified version called the ES-BGK approximation was suggested
by Holway for one species [44]. Then the H-Theorem of this model was shown
in [57] and existence and uniqueness of mild solutions in [66]. Alternatively, the
Shakov model [61] and a BGK model with velocity dependent collision frequency
[64] were suggested to achieve the correct Prandtl number. For the BGK model
with velocity dependent collision frequency, it is shown that a power law for the
collision frequency also leads to the proper Prandtl number. The standard BGK
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model is extended to a velocity dependent collision frequency while it still satisfies
the conservation properties. This works when replacing the Maxwell distribution
by a different function, for details see [64]. For this model an H-Theorem can
be proven. The existence of these modified functions is proven in [40]. However,
since BGK models form the basis to build extended models as ES-BGK models,
Shakov models and BGK models with velocity dependent collision frequency, we
will mainly review BGK models for gas mixtures of the form (6) in this paper.

Considerations of the hydrodynamic regime for an BGK model for gas mixtures
is considered, for example, in [38], a special case of the model presented in this
paper. It presents a Chapman–Enskog expansion with transport coefficients in
Sect. 5, a comparison with other BGK models for gas mixtures in Sect. 6 and a
numerical implementation.

Additionally, we want to mention that there is also another type of BGK model
for gas mixtures containing only one collision term on the right-hand side. Examples
for this are Andries, Aoki and Perthame [3] and the models in [18, 36]. A derivation
of the Navier-Stokes system in the compressible regime for the model in [3] and the
corresponding transport coefficients can be found in section 4 of [3]. The transport
coefficients of the hydrodynamic regime for the model in [18] can be found in
section 5 of [18]. A comparison of these models concerning their hydrodynamic
limit can be found in [15]. For gas mixtures there are also many results concerning
extensions to ES-BGK models, Shakov models and BGK models with velocity
dependent collision frequency [16, 36, 40, 65].

In the following, we will present theoretical and numerical results for this general
BGK model for two species with two interaction terms which captures all those
special cases in the literature. The outline of the paper is as follows: In Sect. 2 we
will present the general multi-species BGK model for two species. For this model,
we will give a review of recent theoretical results in Sect. 3. The physical meaning
and possible choices of the free parameters are discussed in Sect. 4. And recent
existing numerical schemes are given in Sect. 5.

2 The General BGK Model for Gas Mixtures

In this section, we will concern the question of how to choose the mixture quantities
n12, n21, u12, u21, T12, T21 and the collision frequencies. The collision frequencies
ν11n1 and ν22n2 correspond to interactions of the particles of each species with
itself, while ν12n2 and ν21n1 are related to inter-species collisions. To be flexible in
choosing the relationship between the collision frequencies, we now assume

ν12 = εν21, 0 < ε ≤ 1. (8)

The restriction on ε is without loss of generality. If ε > 1, exchange the notation
1 and 2 and choose 1

ε
. In addition, we assume that all collision frequencies are

positive. The Maxwell distributions M1 and M2 in (4) are chosen to have the
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same density, mean velocity and temperature as f1 and f2, respectively. With
this choice, we guarantee the conservation of mass, momentum and energy in
interactions of one species with itself (1) (see section 2.2 in [50]). The remaining
parameters n12, n21, u12, u21, T12 and T21 will be determined using conservation
of the number of particles, total momentum and energy (2), together with some
symmetry considerations. If we assume that

n12 = n1 and n21 = n2, (9)

we have conservation of the number of particles, see Theorem 2.1 in [50]. If we
further assume that u12 is a linear combination of u1 and u2

u12 = δu1 + (1− δ)u2, δ ∈ R, (10)

then we have conservation of total momentum provided that

u21 = u2 − m1

m2
ε(1− δ)(u2 − u1), (11)

see Theorem 2.2 in [50]. If we additionally assume that T12 is of the following form

T12 = αT1 + (1− α)T2 + γ |u1 − u2|2, 0 ≤ α ≤ 1, γ ≥ 0, (12)

then we have conservation of total energy provided that

T21 =
[

1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1)+ δ + 1

)
− εγ

]
|u1 − u2|2

+ε(1− α)T1 + (1− ε(1− α))T2,

(13)

see Theorem 2.3 in [50]. In order to ensure the positivity of all temperatures, we
need to restrict δ and γ to

0 ≤ γ ≤ m1

3
(1− δ)

[
(1+ m1

m2
ε)δ + 1− m1

m2
ε

]
, (14)

and

m1
m2
ε − 1

1+ m1
m2
ε
≤ δ ≤ 1, (15)

see Theorem 2.5 in [50]. For all these choices one can prove the entropy inequalities
(3), see Theorem 2.7 in [50]. We observe that we have free parameters α, δ, γ . We
keep the free parameters to be as general as possible. We will discuss the meaning
and possible choices in Sect. 4.
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3 Theoretical Results of This Model

In this section, we give an overview over recent theoretical results for the model
presented in Sect. 2 concerning existence of solutions and large-time behaviour. To
start with, one can prove an existence and uniqueness result of mild solutions in the
periodic setting in space under certain conditions on the initial data and the collision
frequencies. The proof is presented in [49]. Another existence result concerning
the existence of a unique global-in-time classical solution when the initial data
perturbed slightly from a global equilibrium can be found in [6].

Moreover, one can prove the following results on the large-time behaviour [25].
We denote the entropy of a function f by H(f ) = ∫

f ln f dv and the relative
entropy of f and g by H(f |g) = ∫

f ln f
g
dv. Then one can prove the following

results on the large-time behaviour [25].

Theorem 1 Suppose that ν12 is constant in time. Then, in the space-homogeneous
case we have the following decay rate of the distribution functions f1 and f2

||fk −Mk||L1(dv) ≤ 4e−
1
2Ct [H(f 0

1 |M0
1 )+H(f 0

2 |M0
2 )]

1
2 , k = 1, 2,

where C is the constant given by

C = min{ν11n1 + ν12n2, ν22n2 + ν21n1},

and the index 0 denotes the value at time t = 0.

Theorem 2 Suppose that ν12 is constant in time. In the space-homogeneous case,
we have the following relaxation rate

∂t (u1 − u2) = ν12(1− δ)(n2 + m1

m2
n1)(u2 − u1) (16)

and a decay rate of the mean velocities

|u1(t)− u2(t)|2 = e
−2ν12(1−δ)

(
n2+m1

m2
n1

)
t |u1(0)− u2(0)|2.

Theorem 3 Suppose ν12 is constant in time. In the space-homogeneous case, we
have the following relaxation rate

∂t (T1 − T2) = −C1(T1 − T2)+ C2|u1 − u2|2 (17)
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and a decay rate of the temperatures

T1(t)− T2(t) = e−C1t

[
T1(0)− T2(0)+ C2

C1 − C3
(e(C1−C3)t − 1)|u1(0)− u2(0)|2

]
,

where the constants are defined by

C1 = (1− α)ν12 (n2 + n1) ,

C2 = ν12

(
n2

(
(1− δ)2 + γ

m1

)
− n1

(
1− δ2 − γ

m1

))
,

C3 = 2ν12(1− δ)

(
n2 + m1

m2
n1

)
.

There are also results in the space-inhomogeneous case for the linearized
collision operator, see [51]. In their article, the authors study hypocoercivity for the
linearized BGK model for gas mixtures in continuous phase space. By constructing
an entropy functional, they prove exponential relaxation to global equilibrium with
explicit rates. The strategy is based on the entropy and spectral methods adapting
Lyapunov’s direct method as presented in [1] for the one-species linearized BGK
model.

4 Possible Choices and Meaning of the Free Parameters

In this section, we deal with the meaning and possible choices of the free parameters.
One possibility is that we can choose the parameters such that we can generate
special cases in the literature [4, 11, 19, 34, 35, 37, 38, 42, 62]. For instance, if we

choose ε = 1, δ = m1
m1+m2

, α = m2
1+m2

2
(m1+m2)2

and γ = m1m2
(m1+m2)2

m2
3 , we obtain the

model by Hamel in [42].
Another possibility is to choose the parameters in a way such that the macro-

scopic exchange terms of momentum and energy can be matched in a certain way,
for example, that they coincide with the ones for the Boltzmann equation. For this,
we first present the macroscopic equations with exchange terms of the BGK model

(6). If we multiply the BGK model for gas mixtures by 1,mjv,mj
|v|2

2 and integrate
with respect to v, we obtain the following macroscopic conservation laws

∂tn1 + ∇x · (n1u1) = 0,

∂tn2 + ∇x · (n2u2) = 0,

∂t (m1n1u1)+ ∇x ·
∫

m1v ⊗ vf1(v)dv +∇x · (m1n1u1 ⊗ u1) = fm1,2 ,

∂t (m2n2u2)+ ∇x · P2 +∇x · (m2n2u2 ⊗ u2) = fm2,1 ,
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∂t

(
m1

2
n1|u1|2 + 3

2
n1T1

)
+∇x ·

∫
m1|v|2vf (v)dv = FE1,2 ,

∂t

(
m2

2
n2|u2|2 + 3

2
n2T2

)
+∇x ·Q2 = FE2,1 ,

with exchange terms fmi,j and FEi,j given by

fm1,2 = −fm2,1 = m1ν12n1n2(1− δ)(u2 − u1),

Fm1,2 = −Fm2,1

=
[
ν12

1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2))+ 1

2
ν12n1n2γ (u1 − u2)

]
· (u1 − u2)

+ 3

2
εν21n1n2(1− α)(T2 − T1).

Here, we can observe a physical meaning of α and δ. We see that α and δ show
up in the exchange terms of momentum and energy as parameters in front of the
relaxation of u1 towards u2 and T1 towards T2. So they determine, together with
the collision frequencies, the speed of relaxation of the mean velocities and the
temperatures to a common value. This can already be observed in Theorem 2 and
Theorem 3.

Next we follow Chapter 4.1 in [38] and compare the relaxation rates in the space-
homogeneous case to the relaxation rates for the space-homogeneous Boltzmann
equation. In [38], they find values for νkj such that either the relaxation rate for
the mean velocities (16) or the relaxation for the temperatures (17) coincides with
the corresponding rate of the Boltzmann equation. But using the free parameters
α, δ and γ we are able to match both of the relaxation rates at the same time. For
this, we compare the coefficients of the terms u2 − u1, T2 − T1 and |u2 − u1|2 in
these Boltzmann relaxation rates and the BGK relaxation rates (16) and (17), and
we derive the values of the parameters for this model:

(u2 − u1)-term: δ = 1− α12

ν12

m1 +m2

2

m1n1 +m2n2

m1n1m2n2

(
n1

m1

m2
+ n2

)−1

,

(T2 − T1)-term: α = 1− α12

ν12n2n1
,

|u2 − u1|2-term: γ = 1

3
(n1 + n2)

−1
[
α12

ν12

m2n2 −m1n1

n2n1
−m1n2(1− δ)2 +m1n1(1− δ2)

]
,

where α12 is a coefficient for energy transfer coming from Boltzmann equation, see
[38] and references therein. Additionally, the constraints (12), (14) and (15) need to
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be satisfied. This can be verified by a corresponding choice of νkj . One possibility is

νkj = 1

2

αkj

nknj

(mk +mj )
2

mkmj

(18)

and for 1 ≥ ε = mj

mk
(cf. in a plasma).

5 On Existing Numerical Schemes

In the literature, various approaches for the discretization of kinetic equations can
be found, including schemes for the one-species BGK model. Contributions in
numerics for multi-species BGK models have strongly increased in the last years.

To start with, we give a short overview over existing numerical methods for the
one-species BGK equation. Since the contributions are very crowded, we do not
claim completeness. Many ideas can be carried over to the discretization of multi-
species BGK equations, and we conclude with identified publications on numerical
schemes for multi-species BGK equations which can be written in the form (6).

The (one-species) Boltzmann equation captures physical phenomena very well at
the kinetic level [19]. Nevertheless, numerical computation is expensive. The fastest
algorithms for evaluating the Boltzmann collision operator are spectral methods
with special kernels [54]. This motivates the BGK equation as an approximation
of the Boltzmann equation: Even though the dimensionality is as high as for the
Boltzmann equation, the BGK interaction term is better to handle and explicitly
computable [31, 58]. Hence, the computational cost is much less compared to the
Boltzmann equation while maintaining most of the physical properties [44, 53, 64].

The computational advantages are also useful for penalization techniques [31]
where the BGK equation is solved as preconditioner for the numerical solution of the
Boltzmann equation. This idea is generalized to the multi-species setting in [47]. In
[27], the authors develop an improved Monte Carlo method for the BGK equation.
This is supposed to be a first step towards an improved Monte Carlo simulation
of the Boltzmann equation. Moreover, the BGK approach is useful when coupling
different domains in which the regimes range from equilibrium to very rarefied [2].

A fully discrete scheme requires the discretization in (microscopic) velocity,
space and time. First we consider the discretization in velocity before we look at
the space and time variables.

Having the microscopic velocities as independent variables introduces both more
degrees of freedom and more difficulties. Due to the high dimensionality, it is
recommendable to use coarse grids [59] which then poses challenges regarding
errors in the macroscopic quantities. This can be tackled when the conservation
properties (1) are fulfilled at the discrete level. The handling of discrete moments,
a discrete entropy and the corresponding discrete Maxwellians is discussed in [52].
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Another approach to fulfil the conservation laws at the discrete level is given by a
constrained L2-projection in [33].

Being interested in macroscopic quantities only, the Chu reduction is a possible
approach to lower the dimensionality if there are more degrees of freedom in
velocity than in space [22]. Using the Chu reduction, one follows the evolution
of appropriate integrals of the distribution functions, but these integrals do not
correspond to macroscopic quantities yet. This method reduces the computational
costs considerably.

When the mean velocities u(x, t) cover a wide range and small temperatures are
encountered, grid adaption becomes an important tool. This issue is tackled more
and more in the last decade, e.g., in [8, 13, 17, 43].

This leads us to another advantage of multi-species BGK equations. In case of
the multi-species Boltzmann equations, a large mass ratio of the species, which
results in very distinct thermal speeds, requires an expensive grid resolution [55].
As particles of different species only interact through moments in the BGK model,
the evolution of each species can be numerically solved on separate grids [38] which
might be an important ingredient for an efficient simulation.

There can be found many different approaches for the space discretization in
the literature as the BGK equation shares the same transport term with many other
kinetic equations such as Boltzmann, Fokker-Planck, Vlasov, etc.

The transport term being hyperbolic, a finite volume discretization is often used.
High-resolutions can be obtained by weighted essentially non-oscillatory (WENO)
or discontinuous Galerkin (DG) schemes. However, for orders higher than two the
corresponding formulation of the relaxation term requires additional care because it
does not suffice to consider the relaxation of the cell averages, but the cell averages
of the relaxation term need to be calculated. [5, 21, 45, 52, 58]

Another convenient choice is the semi-Lagrange method. The characteristics
are followed exactly which requires an interpolation for the evaluation of the
corresponding foot point. By conservative reconstructions or corrections, these
methods can be kept conservative also for higher orders [14, 26, 29, 60, 63].

In [28], the authors present an approach for an efficient scheme based on
discrete velocity models and semi-Lagrangian methods. In contrast to standard
semi-Lagrangian schemes, the distribution function needs not to be reconstructed
at each time step which of course accelerates numerical computations.

For the Vlasov equation, the most used method is the Particle In Cell (PIC)
method [32]. But to our knowledge, it is less used for equations with interaction
terms when hydrodynamic effects become more important. In [32], the authors
shortly discuss different methods for the Vlasov equation and then introduce their
positive and flux conservative method (PFC).

For the interaction term, a time implicit formulation is often chosen since the
right-hand side becomes stiff when the collision frequencies become large (close
to the hydrodynamic regime). By the implicit discretization, one can avoid tiny
time steps coming from stability issues. Thanks to the special structure of the
interaction term, the implication is comparably easy manageable, and the equation
stays explicitly solvable [31, 58].
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Usually, the transport part is evaluated explicitly. It is combined with the
interaction term, e.g., by splitting methods [23, 39], implicit-explicit Runge-Kutta
(IMEX RK) schemes [56, 58] or IMEX multistep methods [30].

Splitting methods must be treated with care when the right-hand side becomes
stiff. In [46], the author shows that the (second-order) Strang splitting reduces
actually to a first-order approximation of the equilibrium equation in the hydro-
dynamic limit. This leads us to the so-called asymptotic-preserving (AP) schemes
which provide an adequate discretization also of the limiting equations. Using AP
schemes, the correct equilibrium solutions are preserved [9, 29, 31, 45, 59]. This
issue is addressed more and more in the recent years. In this context, we also
want to mention the micro-macro decomposition and the parity decomposition/AP
splitting. For the former approach, the distribution function is written as a sum of its
equilibrium (macro) part and the remnant which represents the kinetic (micro) part.
This results in one microscopic and one macroscopic equation which can be solved
by individual and adequate methods [24]. For the latter approach, the distribution
function is decomposed by an even and an odd parity. A new system of equations
can be derived with only one time scale where splitting techniques can be applied
[29, 48].

More physics is (re)introduced by multi-species models. At the discrete level,
many ideas can be carried over from the single-species schemes. In the following,
we give contributions of numerical schemes for multi-species BGK equations,
which can be written in the form of (6).

In [25], the authors extend the work of [24] for the multi-species model. They
perform a micro-macro decomposition and focus on the fluid limit. The micro part
is solved by a particle method, whereas the macro part (depicting the fluid part) is
solved by a standard finite volume approach. Here, an additional force term with an
electric field is considered.

In [38], the authors are interested in capturing physical transport coefficient.
They use the additional degrees of freedom in the multi-species setting to match
relaxation rates in the space-homogeneous case equivalent to the Boltzmann ones.
An extension to space-inhomogeneous simulations is done in [39] where they
additionally examine the coupling to electric fields.

In [12], the authors compare numerical results for different multi-species BGK
models, where one of these models is a special case of (6).

A BGK model for gas mixtures is extended to velocity dependent collision
frequencies in [40]. Collision frequencies influence the relaxation process and the
resulting hydrodynamic behaviour such that they also become important when
calculating transport coefficients. The class of models in [40] captures a model of
the form (6) as a special case, but in general the Maxwellians are replaced by more
sophisticated Gaussian functions. Numerical schemes for this kind of equations
have been developed in [41]. The key new ingredient is a solver based on a convex
entropy minimization problem which makes possible an implicit treatment of the
BGK operator.
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6 Conclusions and Outlook

We recalled a general BGK model for gas mixtures with two collision terms for
two species and its theoretical properties. We presented results on the H-Theorem,
existence of solutions and large-time behaviour. The special feature of the presented
model is the free parameters α, δ and γ . They influence the exchange of momentum
and energy and can be set such that the model’s behaviour matches the physics or
coincides with another (more specialized) model.

An overview over existing literature on numerics for this kind of models was
given.

However, BGK- type models often lack on correct parameters in the continuum
limit like the Prandtl number. Therefore these models can be used as a basis for more
extended models like ES-BGK models or BGK models with velocity dependent
collision frequency. As a future work the Chapman–Enskog expansion of such
models can be computed. Then the transport coefficients of all these models can
be compared and eventually extended to match all parameters in the macroscopic
equations. Here, the free parameters in the BGK model for monoatomic molecules
with a sum of interaction terms might be useful.
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Gas-Kinetic Methods for Turbulent Flow

Marcello Righi

Abstract Gas-kinetic schemes are derived from the BGK-Boltzmann equation.
These family of schemes for CFD are computationally more demanding than
conventional upwind schemes but provide a number of advantages stemming
precisely from the fact that they were not derived from the Navier–Stokes equations.
We highlight three peculiarities: (i) the gas evolution is derived in space and time
exactly, (ii) the viscous stress tensor is built from the collision operator and not
through the diffusion operator, variations of the relaxation time are thus not simply
applied linearly to the strain rate (and its moments) but input through the collision
operator, (iii) the order of the Chapman–Enskog expansion is a “natural” way to
further improve the physical consistence of the collision operator. In practice, gas-
kinetic schemes are not only more suitable to resolve vortical structures but they
also handle turbulent viscosity (or, better, a turbulent relaxation time) in a physically
more relevant fashion. Whereas the first advantage is exploited mostly in approaches
like Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES), where
the ability to resolve turbulent structures is key, the latter provides some leverage to
approaches like Reynolds-Averaged Navier–Stokes (RANS) or hybrid RANS-LES
where unresolved turbulence is funnelled through the collision operator. The paper
aims at reviewing these advantages in the light of the results obtained by the author
and those published in the recent years.

1 Introduction

Gas-kinetic schemes for hydrodynamic were developed from the 1990s from
the Boltzmann-BGK equation and are still an area of active research. They are
appreciated for the higher spatial and temporal accuracy as well as for the non-linear,
physically consistent viscous stress tensor derived from the collision operator.
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Xu developed the best known gas-kinetic scheme in 2001 [49] during his PhD
at Stanford University under Professor Jameson’s supervision. The research work
on the gas-kinetic scheme seems pretty much still concentrated around Xu and his
group in Hong Kong, even though other researchers provided over time valuable
contributions to the establishment of the gas-kinetic scheme [13, 23, 26, 27, 51, 52,
54].

The current research work mainly focuses on the enhancement of the numerical
scheme and, in particular, on the ability to adapt it to unstructured meshes for both
finite volumes and finite elements and on the addition of approximate Jacobians to
allow implicit time advancement; the relevant work has been published by Xu and
his group, for instance, refer to Refs. [19, 56, 58] and references therein.

A further research direction is the one focusing on the “multi-scalarity” of the
scheme, in which the particles velocity are discretized allowing a more physically
consistent model of rarefied flow. This area is also actively pursued by the same
group [19, 50, 55].

Finally and central to this paper, gas-kinetic schemes are also increasingly
applied to turbulent flow, following the RANS, LES and implicit LES, as well
as hybrid RANS-LES frameworks, as recently published in Refs. [6, 8, 9] and
references therein. These frameworks each have very different requirements for the
numerical implementation and each may exploit different peculiarities of gas-kinetic
schemes. DNS, and to a point also LES, take advantage of the exact gas-evolution
provided by gas-kinetic schemes. The spatial and temporal resolution (for given
spacing and time step) may be further enhanced by high-order reconstruction
schemes such as Weighted Essentially Non-Oscillatory (WENO) and Discontinuous
Galerkin (DG).

Turbulence modeling techniques like RANS and hybrid RANS-LES may benefit
from gas-kinetic schemes through different mechanisms: these include the ability
to handle the ratio of resolved-to-unresolved scales of motion (often referred to as
“multi-scale” or “multi-scalarity,” the high-order reconstruction also affecting the
collision operator (hence the stress tensor), the Chapman–Enskog expansion order
beyond the Navier–Stokes level.

Whereas the advantages provided to DNS and LES simulations mostly concern
the numerical implementation, RANS and RANS-LES simulations may also benefit
from the physical modeling standpoint, as shown by the author in Refs. [35–39],
arguing that the ratio between unresolved and resolved scales of motion is the
mechanism leading to corrections to the turbulent stress tensor.

This paper presents the implementation of a gas-kinetic scheme into a RANS
solver and shows that it may be exploited to improve turbulence modeling. More-
over, it addresses the potential to further contribute to the ongoing efforts towards
more accurate and physically consistent modeling of turbulence. It is structured as
follows: the derivation of the gas-kinetic scheme is presented in Sect. 2 whereas the
extension of the scheme for turbulent flow is in Sect. 3; Sect. 4 presents the results
of numerical experiments obtained by the author, in Sect. 5 these are discussed in
the light of more recent research; conclusions are finally presented in Sect. 6.
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2 Gas-Kinetic Scheme

2.1 Gas Model at the Interface Between Two Computational
Cells

All calculations and theoretical work is based on the Gas-Kinetic Scheme put
forward by Xu in 2001 in Ref. [49]. Xu and his group have been improving and
extending this scheme over the past twenty years, mostly adapting it to particular
spatial schemes, enhancing the convergence rate and showing special applications.
Following previous studies, the gas state is represented by a distribution function
f (x, v, t), whereas the conservative variables w = [ρ ρv1 ρv2 ρv3 ρE]T are as
customary obtained by taking moments of f :

w =
∫

ψf d%, (1)

where d% = du1du2du3 dξ is the elementary volume in phase space and the vector
ψ is:

ψ =
[

1 u1 u2 u3
1

2

(
ui

2 + ξ2
)]T

, (2)

where the internal degrees of freedom of the molecules are indicated by ξ . A time
integration over the interval 0−�t provides the fluxes F through to a unit interface
line normal to direction n:

Fn =
∫ �t

0

∫
fψund%dt. (3)

The key assumption here is to introduce the solution to the Boltzmann-BGK
equation [3] for f is assumed:

∂f

∂t
+ (u · ∇)f = f eq − f

τ
, (4)

where τ is the usual relaxation time referred to the “average” fluctuation period
which in laminar flow can be assumed to be proportional to molecular viscosity
divided by static pressure:

τ = μ

p
, (5)
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the distribution f eq is a Maxwellian, providing the reference thermal equilibrium
state:

f eq = ρ

(
λ

π

)N+2
N

exp
[
−λ

(
(ui − vi)

2 + ξ2
)]

, (6)

the parameters λ = ρ/2p = 1/2T and N represent the number of effective degrees
of freedom of the molecules, respectively. Additional details are found in Refs. [13,
48, 49]. Equation 4 includes the transport terms and a relaxation process towards
thermal equilibrium through the effects of molecular collisions. The solution to Eq. 4
is sought in terms of a series expansion of f around the Maxwellian distribution:
the Chapman–Enskog expansion [10, 48] is another key step in the derivation of
the scheme and is here used to model the deviations from the thermal equilibrium.
In principle any expansion orders may be used in the derivation of a gas-kinetic
scheme. For instance, a Chapman–Enskog expansion to the zeroth-order, i.e.:

f = f eq , (7)

ignores the thermal fluctuations and hence provides the Euler representation of
a gas (one can insert Eq. 7 into Eq. 4 and take the moment as in Eq. 1). As the
following step, we might consider a first-order expansion, which includes the linear
“collisions” term:

f = f eq − ετ̂Df eq + . . . , (8)

where Df eq = ∂f/∂t + ui∂f/∂xi (repeating the second term for all dimensions), a
more formal presentation is found in Ref. [10]. We use τ̂ for the reference relaxation
time and ε to measure of the deviations from thermal equilibrium. Equation 4 with a
first-order Chapman–Enskog expansion leads to the derivation of the Navier–Stokes
equations, as is well known [10, 48].

Further, the Chapman–Enskog expansion to the second-order:

f = f eq − ετ̂Df eq + ε2τ̂D
(̂
τDf eq

)+ . . . . (9)

allows recovering the Burnett equations [10]. The third truncation order, not shown
here, is associated with the Super Burnett set of equations. These higher-order
expansions provide a more accurate model of unresolved fluctuations; however,
no convincing implementation to rarefied have been so far proposed (a discussion
is found in Ref. [10]). Interestingly, higher-order expansions are being used with
gas-kinetic schemes [23, 32] pursuing a higher accuracy. The schemes used by the
author have used so far the first-order expansion. A further key assumption used by
Xu [49] is the introduction of an upwind reconstruction, that is, a discontinuous gas
state. Xu used the Monotone Upstream-centered Scheme for Conservation Laws
(MUSCL). At each time step, an initial distribution f0 is generated from the gas
states in the computing cells and adopting a first-order Chapman–Enskog expansion.
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A distribution function f BGK is introduced as the analytical solution to the BGK
equation, Eq. 4:

f BGK(x1, x2, x3, t, u1, u2, u3, ξ) =
1

τ

∫ t

o

f eq (x ′1, x ′2, x ′3, t, u1, u2, u3, ξ)e
−(t−t ′)/τ dt ′+

+ e−t/τf0(x1 − u1t, x2 − u2t, x3 − u3t), (10)

where x ′1 = x1 − u1(t − t ′), x ′2 = x2 − u2(t − t ′), x ′3 = x3 − u3(t − t ′). The
initial distribution f0 depends on spatial and temporal gradients calculated from
the macroscopic variables. For additional details refer to Refs. [35, 49]. Here, the
resulting distribution function, solution to the BGK model and compatible with the
gas initial states, f BGK , is expressed in the compact form:

f BGK = f NS + e−t/τ�f, (11)

fNS is a first-order Chapman–Enskog expansion around an average gas state
at the interface; �f is a function obtained as difference between fNS and a
Chapman–Enskog expansion obtained combining the “left” and “right” gas states.
The presence of the blending function e−t/τ is significant and builds the kernel of
the “multi-scalar” mechanism inside the gas-kinetic scheme.

2.2 Numerical Fluxes

fNS generates fluxes which might be related to those of a central conventional
scheme. Inserting f = f BGK into Eq. 3 the fluxes are finally obtained:

Fn = FNS
n + α(ε)F�

n , (12)

where FNS
n are the fluxes from fNS and F�

n the ones from �f , in 12 α(ε) =
ε(1 − e−1/ε)) and ε = τ/�t . Equation 12 might recall an upwind scheme where
central fluxes are corrected by additional terms, whose weight increases with the
flow gradients. We point out that ε = τ/�t is the ratio between two time scales:
τ relates to the relaxation process (hence to diffusion in physical space) and may
be considered as a representative time scale of the unresolved scales of motion. �t
(the time step) is related to the smallest resolved time scale. ε is therefore the ratio
of unresolved-to-resolved time scales. The “multi-scale” mechanism in gas-kinetic
schemes is now evident: the larger ε, the larger the corrections to the Navier–stokes
fluxes. However, this mechanism alone does not suffice for a gas dynamics scheme
to provide a physically consistent model of rarefied gas. To this end, the relaxation
time must also provide a consistent model of particle collisions. In laminar flows,
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some investigations have demonstrated the suitability of this gas-kinetic scheme to
moderate rarefaction [53].

2.3 Artificial Dissipation

Xu in Ref. [49] introduces artificial dissipation by modifying the relaxation time, in
order to provide numerical stability:

τ = μ

p
+ C�t

(pl − pr)

(pl + pr)
, (13)

where pl and pr are the pressure values at the interface, �t is the time step, C is an
empirical coefficient. According to the author’s experience, the artificial dissipation
may be necessary with coarse grids.

We recall that the BGK model implies a unity Prandtl number; the heath flux are
corrected for realistic fluids, also following [49].

2.4 Boundary Conditions

A further desirable property of this type of gas-kinetic schemes is given by
the straight forward application of boundary conditions. They are set on the
conservative variables; in the case of the finite-volume discretization, one or more
layers of “ghost” cells (depending on the order of the reconstruction) is added. The
values of density and energy are set to model the desired heat flux whereas the
velocities in the “ghost” computational cells must guarantee no-penetration and no-
slip. For hypersonic flows, Li [22] introduced a kinetic boundary condition allowing
slip and temperature difference between the flow and the wall. The hypersonic flow
cases shown in this paper were computed with the kinetic boundary condition.

3 Extension of the Gas-Kinetic Scheme to Turbulent Flow

3.1 Relaxation Time Based on Eddy Viscosity

Since the effect of unresolved turbulent scales of motion can be modeled by a
diffusion process, in case the eddy viscosity μt is available, the relaxation time
to use in Eq. 4 may be trivially set to:

τ = μ+ μt

p
. (14)
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A more consistent expression is (Li [44]):

τ = μ+ μt

p + 2/3k
, (15)

where k is the turbulent kinetic energy. In either case, the introduction of a
turbulence model is now essential to make eddy viscosity available; this may be,
for instance, a RANS model, as used by the author.

The time scale ratio ε is now:

ε = τ

�t
= μ+ μt

p�t
. (16)

We point out that ε may assume quite larger values, especially in the presence of
shocks. We may recall here that the idea of eddy viscosity originates from the
analogy between a distribution of particles and a distribution of eddies in a turbulent
flow. The rarefaction in Eq. 16 would now imply the lack of a clear separation
between the scale of motion of the eddies and of the resolved flow. As gas-kinetic
scheme may handle moderate rarefaction, we may already anticipate the advantages
brought by these schemes in turbulent flow. Xu [53] put forward the following
approach for moderately rarefied flow: a first-order expansion is used as in Eq. 8,
whereas τ is adjusted in order to locally achieve second-order accuracy, as in
Eq. 9. The generalized relaxation time τ ∗, now a function of local gradients, can
be enforced in the Chapman–Enskog expansion, Eq. 8:

f = f eq − τ ∗Df eq, (17)

which is then inserted into the BGK equation Eq. 4 in order to obtain the dependence
of τ ∗ on the flow gradients:

τ ∗ = τ (1−Dτ ∗)
1+ τ

(
D2f eq/Df eq

) . (18)

As pointed out in Ref. [53], the term τD2f eq/Df eq can be considered as a length
scale ratio, associated with the Knudsen number. To the leading order, Eq. 18 can be
reduced to:

τ ∗ 
 τ

1+ τ
(
D2f eq/Df eq

) . (19)

Remarkably, a qualitatively similar result was derived in [11, 12] from different
considerations:

τ = μ

p
+ μt

ρT
(
1+ η2

)1/2 , (20)
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where T is temperature and η = Sk/ε = S/ω is a time scales ratio, S is a measure of
the local velocity gradients. k, ε, and ω are the turbulent kinetic energy, dissipation,
and specific dissipation. Considering the leading order and same sign derivatives,
Eqs. 19 and 20 (looking only at the turbulent part) both tune the relaxation time as a
function of a scale ratio ε:

τ ∗ = τ
1

1+ ε
. (21)

In this study, Eq. 20 has been preferred to Eq. 19 for practical reasons, in order
to avoid the calculation of gradients. We may also recall that the unresolved-to-
resolved scales ratio, a term proportional to η = S/ω, is conventionally used to
adjust or limit the expression of eddy viscosity, e.g., in the limiting value for ω
proposed by Wilcox [46].

3.2 Modification of the Timescales Ratio

We may assume that the quantity ε = τ/�t may assume large values in turbulent
flows, as a function of the time advancing technique and grid, leading to a lack of
robustness and grid dependent results. We propose to replace it with:

ε = τ

τ̃
, (22)

where τ̃ is the assumed timescale of the resolved flow and may be obtained from the
gradients of one of the resolved variables (i.e., τ̃ = ρ/Dρ). Details are explained
in [35]. We point out that the expression used in Eq. 22 is similar to the one used
in rarefied gas dynamics to estimate the local Knudsen number, with the difference
that in this case timescales are used instead of spatial quantities. In Sect. 4, it can
be seen that this timescale ratio may assume values up to a few hundredths inside
shock layers, that is, a value well above the conventional threshold for rarefaction.

3.3 Second-Order Turbulent Stress Tensor Obtained from the
Second-Order Chapman–Enskog Expansion

As a final comment, we note that the relation between higher-order Chapman–
Enskog expansion and turbulent stress models. As shown by Chen in [12], a
gas-kinetic scheme built from a second-order Chapman–Enskog expansion (Eq. 8
truncated to the second-order), generates a non-linear turbulent stress tensor Rij =
− 2

3ρkδij + 2μtSij + μ2
t /(ρk)R

(2)
ij . The second-order term, R(2)

ij , can be expressed
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as a function of the velocity fields ui as:

R
(2)
ij =

[
C1

∂ui

∂xk

∂uj

∂xk
+ C2

(
∂ui

∂xk

∂uk

∂xj
+ ∂uj

∂xk

∂uk

∂xi

)
+ C3

∂uk

∂xi

∂uk

∂xj

]
. (23)

Chen et al. [12] showed that the second-order Chapman–Enskog expansion leads
to values for the numerical C1, C2 and C3 similar to those selected by turbulence
researchers, but based on empirical methods (refer, for instance, to Ref. [40] and
references therein). This represents a further advantage provided by gas-kinetic
schemes, which has not yet been implemented.

3.4 Boundary Conditions for Turbulent Flow

No particular modification to the conventional boundary conditions used in RANS
computations is strictly necessary for simulations of turbulent flow with a gas-
kinetic scheme.

4 Gas-Kinetic Schemes for RANS

The author presented a number of test cases calculated with a conventional RANS
scheme and the gas-kinetic scheme; these are found in Refs. [35–39]. The associated
RANS model was a k-ω by Wilcox [45] in all cases.

The most relevant test cases presented by the author are listed in Table 1. They
include simulations of the flow around aerofoils in transonic regime, the flow in a
“bump” channel also in transonic regime and several test cases in supersonic regime
up to Mach 5. For convenience, two of the test cases listed in Table 1 are re-proposed
in this paper, namely one airfoil case and the compression corner at Mach 5.

All cases are characterized by the interaction between a shock wave and the
boundary layer leading to the separation and reattachment of the boundary layer.
The turbulent structures in the boundary layer are strongly affected by the shock
wave and subsequently change their spatial and temporal scales of motion dramat-
ically in the separated flow. As is well known, these conditions are very different
from those for which the evolution equations for the turbulent quantities in RANS
models are traditionally defined and tuned. The book by Babinsky and the review
by Bendiksen provide valuable material on the performance of RANS models in
these conditions [1, 2]. The several Workshops hosted by the AIAA over the last ten
years (e.g., “Drag Reduction Workshop,” “Aeroelastic Prediction Workshop”) also
showed the clear limits of these turbulence models. As an example, the summary
paper by Heeg [21] presents a striking example of the “failure” of well known
models such as SA [42] and SST [29] to predict the unsteady flow characterized
by shock induced separation of the boundary layer. As a side comment, it might
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Table 1 Summary of flow cases presented by the author. 1 h=bump height, θ=momentum
thickness, δ = displacement thickness; flow cases 2 and 4 also include a sensitivity analysis to
Reynolds number. 2 Délery bump channel: freestream Mach = 0.615, the flow reaches M 
 1.45
before the shock

Case Reynolds1 Mach2 Ref.

RAE2822 Case 9 [14] Re = 6,200,000 0.72 [34]

RAE2822 Case 10 [14] Re = 6,300,000 0.73 [34]

NACA0012 [20] Re = 9,000,000 0.799 [34]

Délery bump channel (Case C) [15] Reh = 1,000,000 0.615 [37]

Supersonic compression corner α = 8◦, 16◦, 20◦, 24◦ [41] Reθ = 23,000 2.85 [37]

Supersonic compression corner α = 16◦ [41] Reθ = 23,000 2.85 [35]

Supersonic compression corner α = 20◦ [41] Reθ = 23,000 2.85 [35]

Supersonic compression corner4 α = 24◦ [41] Reθ = 23,000 2.85 [35]

Supersonic compression corner α = 24◦ [4] Reθ = 2400 2.90 [37]

Impinging shock α = 12◦ [4] Reθ = 2400 2.90 [37]

Impinging shock α = 7◦, 8◦, 8.8◦, 9.5◦ [17] Reθ = 6900 2.3 [37]

Reflected shock α = 8◦ [17] Reθ = 6900 2.3 [35]

Reflected shock α = 8.8◦ [17] Reθ = 6900 2.3 [35]

Reflected shock α = 9.5◦ [17] Reθ = 6900 2.3 [35]

Supersonic compression corner α = 28◦ [16] Reδ = 877,000 4.95 [37]

be worthwhile mentioning that one of the unofficial outcomes of these workshops is
that the simplest model of all, the one presented by Spalart and Allmaras and known
as SA, often performs better than the other ones in flow conditions considered
difficult for RANS model or even “off-design”. The SA model, unlike other popular
models such as SST and k-ω (used by the author), only models the eddy viscosity
and includes strongly non-linear functions of the strain rate to control turbulence
production and destruction. Whereas there are no similarities whatsoever between
the SA turbulence model and the gas-kinetic scheme, we observe that both introduce
flow-dependent “corrections” into conventional models. The gas-kinetic scheme
also modifies the stress tensor.

4.1 Flow Around a Supercritical Aerofoil in Transonic Regime

Case 10 is a well known test case extracted from the measurement campaign carried
out by Cook [14] with the supercritical airfoil RAE2822. It is conducted at slightly
higher Mach number (0.745) and similar angle of attack and Reynolds number with
respect to another well known benchmark case (Case 9). The solution was obtained
on a set of converging grids (ranging from 625 × 125 to 928 × 160, with a cell-
clustering at the expected shock position).

The higher Mach number is sufficient to cause a proper separation. As a matter of
fact, the experimental data does not include any clear indication as to the extension
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Fig. 1 Super critical airfoil RAE2822, measurements from Cook [14]. Pressure (a) and skin
friction coefficient (b) for the Délery bump channel flow. (solidrule) Gas-kinetic scheme (GKS)
on finest grid, (thindashedrule) GKS on medium grid, (verythindashedrule) GKS on coarsest grid,
(dotdashedrule) Navier–Stokes (Roe’s approximate Riemann solver) on finest grid, ( open circle ):
experimental data

of the separated area. In the literature, results obtained with conventional schemes
and two-equation models do not provide a single picture. However, most of the
numerical experiments fail to predict the measured boundary layer thickening,
incipient separation and consequent shift upstream of the shock (of a few percent of
the chord). The results obtained in this study with the conventional RANS scheme
fall within the expected range. It predicts a shock position slightly downstream of the
measured point. Remarkably, the gas-kinetic scheme provides a more accurate result
as can be seen in Fig. 1 Outside of the interaction region, both solvers are in good
agreement with each other and with the experiments as can be observed. It is well
known that more sophisticated turbulence models, such as algebraic stress model,
for instance, might be able in this case to improve the performance of conventional
schemes.

4.2 Supersonic Compression Corner at Mach 5

This flow case, investigated by Dolling et al. [16], has been selected to extend the
Mach Number range to the borders of hypersonic flow. This flow case has been,
however, calculated assuming adiabatic wall conditions. Results from RANS and
hybrid simulations can be found in Edwards et al. [18]. In Fig. 2 the pressure
distribution predicted by the turbulent gas-kinetic scheme is compared to the
experimental values by Dolling et al. [16], highlighting an acceptable agreement.
Figure 3 shows the distribution of the degree of rarefaction defined in Eq. 22. This
quantity reaches values close to 0.07 in the areas where the strongest gradients
appear, that is, inside shock layers. A conventional threshold for rarefaction is
considered to be 0.001. It is well known that conventional RANS simulations often
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Fig. 2 Compression corner M = 5, Experimental values from Dolling et al. [16]. Results obtained
on a grid with size: 384 × 160

Fig. 3 Degree of rarefaction according to Eq. 22 in Flow Case 6, supersonic compression corner,
M = 4.95 (iso-contours in grayscale). 20 pressure contour lines have been added for reference

fail to properly place the shock; this shortcoming is attributed to the fact that the
flow is much different from the models “design” conditions, i.e., attached boundary
layers.

5 Discussion

The conclusion from all simulations is that the gas-kinetic scheme would perform
systematically better than the conventional RANS scheme. Incidentally, the ratio
of unresolved-to-resolved scales of motion—being the unresolved scales of motion
those modeled by the RANS model and the resolved ones those associated with
the steady-state RANS solution—appears to be larger in correspondence in the
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interaction region. This is of course not surprising; however, it is also an indicator
for the corrections introduced by the gas-kinetic scheme.

When surveying the most recent publications, two stand out: the one by Cao
[6], which reports a general good agreement with experimental results obtained
from RANS simulations with a gas-kinetic scheme. A RAE2822 test case is also
presented. The very recent paper by Liu [25] is also interesting: it presents results
of RANS simulations obtained in hypersonic turbulent flow: In this case, two
innovations were introduced: (i) the Langtry [30] transitional version of the SST
turbulence model was used, and (ii) remarkably the fluxes from the equation for the
turbulent kinetic energy were also calculated with a gas-kinetic scheme. The test
cases were chosen among the available supersonic and hypersonic ramps.

We shall also comment on the application of the gas-kinetic scheme for DNS,
such as those presented in these recent papers [5, 7–9, 24, 33, 57]. The very
satisfactory results are definitely due to the high spatial and temporal accuracy
achieved by the scheme (for given grid and order of reconstruction). However, we
might also argue that the physically exact gas-evolution contributes. Further, the
gas-kinetic scheme was also applied to LES and hybrid RANS-LES simulations,
mostly by Li [44]. The definition of the turbulence length scale used to switch from
RANS to LES is a conventional one in [44]; however, it is theoretically possible to
exploit the gas-evolution stage of the scheme to improve on it (this was the object
of a private communication with Li).

We finally mention two very active areas of research, to which gas-kinetic
schemes may contribute. Gas-kinetic schemes may play a role in the ongoing
Machine Learning supported data-driven efforts to improve on RANS, LES, and
hybrid RANS-LES models [28, 43]. The turbulent stress tensor built by gas-kinetic
schemes provides more physically meaningful calibration options, such as the order
of the Chapman–Enskog expansion, the estimate of the “rarefaction indicator” or
the use of limiters to control the gradients of the conservative variables. For the
same reasons, gas-kinetic schemes may be useful in the propagation of the epistemic
uncertainties stemming from turbulence modeling. Refer to the review by Xiao [47],
to the references therein and, in particular, to Mishra [31].

6 Conclusions

Gas-kinetic schemes offer a number of advantages to the simulation of turbulent
flow, following both the RANS approach and working in frameworks such as LES,
DNS, or hybrid RANS-LES where the numerical resolution covers a portion or the
entirety of the turbulent spectrum.

In previous publications the author could show that the ratio of resolved-to-
unresolved turbulent scales of motion may be exploited by gas-kinetic schemes and
make the way RANS models work physically more acceptable, even and especially
in the presence of particular flow patterns such as those appearing in the interaction
between a shock wave and boundary layers in transonic flows.
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These results appear more meaningful in the light of recent research showing (i)
the growing interest in the turbulent applications of gas-kinetic schemes and (ii) the
advantage of exploiting the interaction between the gas-evolution and the turbulence
model. It goes without saying that much more work is necessary in order to fully
understand the potential of these schemes which might go beyond correcting the
behavior of RANS turbulence models.

Finally, it is worth mentioning that the emergence of data-driven analysis may
provide further scope for gas-kinetic schemes. Being the turbulent stress tensor
affected by fundamental choices such as the Chapman–Enskog order and the
reconstruction order, data-driven machine-learning tuning of model coefficients
could be carried out for different gas-kinetic schemes types and provide more
robust results. Further, the propagation of epistemic uncertainties associated with
turbulence modeling may be assessed by introducing perturbations of the turbulent
stress tensor and measuring their effects on quantities of interest. To this end, the
higher physical consistence of gas-kinetic schemes provides more options than
conventional schemes.

References

1. Babinsky, H., Harvey, J.K.: Shock Wave-Boundary-Layer Interactions. Cambridge University
Press, New York (2011)

2. Bendiksen, O.O.: Review of unsteady transonic aerodynamics: theory and applications. Progr.
Aerosp. Sci. 47(2), 135–167 (2011)

3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small
amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–
525 (1954)

4. Bookey, P., Wyckham, C., Smits, A.: Experimental investigations of Mach 3 shock-wave
turbulent boundary layer interactions. AIAA Paper No. 2005-4899 (2005)

5. Cao, G., Pan, L., Xu, K.: Three dimensional high-order gas-kinetic scheme for supersonic
isotropic turbulence i: criterion for direct numerical simulation. Comput. Fluids 192, 104273
(2019)

6. Cao, G., Su, H., Xu, J., Xu, K.: Implicit high-order gas kinetic scheme for turbulence
simulation. Aerosp. Sci. Technol. 92, 958–971 (2019)

7. Cao, G., Pan, L., Xu, K.: Three dimensional high-order gas-kinetic scheme for supersonic
isotropic turbulence II: Coarse-graining analysis of compressible Ksgs budget. J. Comput.
Phys. 439, 110402 (2021)

8. Cao, G., Pan, L., Xu, K., Wan, M., Chen, S.: Non-equilibrium time-relaxation kinetic model
for compressible turbulence modeling (2021). Preprint arXiv:2112.08873

9. Cao, G., Pan, L., Xu, K.: High-order gas-kinetic scheme with parallel computation for direct
numerical simulation of turbulent flows. J. Comput. Phys. 448, 110739 (2022)

10. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1988)
11. Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., Yakhot, V.: Extended Boltzmann

kinetic equation for turbulent flows. Science 301(5633), 633–636 (2003)
12. Chen, H., Orszag, S.A., Staroselsky, I., Succi, S.: Expanded analogy between Boltzmann

kinetic theory of fluids and turbulence. J. Fluid Mech. 519(1), 301–314 (2004)
13. Chou, S.Y., Baganoff, D.: Kinetic flux–vector splitting for the Navier–Stokes equations. J.

Comput. Phys. 130(2), 217–230 (1997)



Gas-Kinetic Methods for Turbulent Flow 247

14. Cook, P.H., McDonald, M.A., Firman, M.C.P.: Aerofoil RAE 2822–pressure distributions,
and boundary layer and wake measurements. Experimental data base for computer program
assessment. AGARD Advisory (1979)

15. Délery, J.: Experimental investigation of turbulence properties in transonic shock/boundary-
layer interactions. AIAA J. 21, 180–185 (1983)

16. Dolling, D.S., Erengil, M.E.: Unsteady wave structure near separation in a Mach 5 compression
rampinteraction. AIAA J. 29(5), 728–735 (1991)

17. Dupont, P., Haddad, C., Debiève, J.F.: Space and time organization in a shock-induced
separated boundary layer. J. Fluid Mech. 559, 255–278 (2006)

18. Edwards, J.R.: Numerical simulations of shock/boundary layer interactions using time-
dependent modeling techniques: a survey of recent results. Progr. Aerosp. Sci. 44(6), 447–465
(2008)

19. Guo, Z., Xu, K.: Progress of discrete unified gas-kinetic scheme for multiscale flows. Adv.
Aerodyn. 3(1), 1–42 (2021)

20. Harris, C.D.: Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the
Langley 8 foot transonic pressure tunnel. NASA Technical Memorandum 81-927 (1981)

21. Heeg, J., Chwalowski, P.: Investigation of the transonic flutter boundary of the benchmark
supercritical wing. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, AIAA SciTech Forum. American Institute of Aeronautics and Astro-
nautics, AIAA–2017–0191, 9–13 January 2017 (2017)

22. Li, Q., Fu, S., Xu, K.: Application of gas-kinetic scheme with kinetic boundary conditions in
hypersonic flow. AIAA J. 43(10), 2170–2176 (2005)

23. Li, Q., Xu, K., Fu, S.: A high-order gas-kinetic Navier–Stokes flow solver. J. Comput. Phys.
229(19), 6715–6731 (2010)

24. Liu, H., Cao, G., Chen, W., Agarwal, R.K., Zhao, W.: Gas-kinetic scheme coupled with
turbulent kinetic energy equation for computing hypersonic turbulent and transitional flows.
Int. J. Comput. Fluid Dyn. 35(5), 319–330 (2021)

25. Liu, H., Agarwal, R.K., Chen, W.: Computation of hypersonic turbulent and transitional flows
using an extended gas kinetic scheme. In: AIAA SCITECH 2022 Forum, p. 1050 (2022)

26. Mandal, J.C., Deshpande, S.M.: Kinetic flux vector splitting for Euler equations. Comput.
Fluids 23(2), 447–478 (1994)

27. May, G., Srinivasan, B., Jameson, A.: An improved gas-kinetic BGK finite-volume method for
three-dimensional transonic flow. J. Comput. Phys. 220(2), 856–878 (2007)

28. McConkey, R., Yee, E., Lien, F.-S.: A curated dataset for data-driven turbulence modelling.
Sci. Data 8(1), 1–14 (2021)

29. Menter, F.R.: Improved two-equation k-omega turbulence models for aerodynamic flows.
NASA STI/Recon Technical Report N 93, 22809 (1992)

30. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-
based transition model using local variables–part i: model formulation. J. Turbomach. 128,
413–422 (2006)

31. Mishra, A.A., Mukhopadhaya, J., Iaccarino, G., Alonso, J.: Uncertainty estimation module for
turbulence model predictions in su2. AIAA J. 57(3), 1066–1077 (2019)

32. Ohwada, T., Xu, K.: The kinetic scheme for the full-Burnett equations. J. Comput. Phys.
201(1), 315–332 (2004)

33. Pan, L., Cao, G., Xu, K.: Fourth-order gas-kinetic scheme for turbulence simulation with
multi-dimensional WENO reconstruction. Comput. Fluids 221, 104927 (2021)

34. Righi, M.: A Gas-Kinetic Scheme for Turbulent Flow. AIAA Paper No. 2014-3330 (2014)
35. Righi, M.: A modified gas-kinetic scheme for turbulent flow. Commun. Comput. Phys. 16(1),

239–263 (2014)
36. Righi, M.: A Numerical Scheme for Hypersonic Turbulent Flow . AIAA Paper No. AIAA

2015-3341 (2015)
37. Righi, M.: A gas-kinetic scheme for turbulent flow. Flow Turbulence Combust. 97(1), 121–139

(2016)
38. Righi, M.: Turbulence Modelling in Aeroelastic Problems. ERCOFTAC ETMM11 (2016)



248 M. Righi

39. Righi, M., Wang, R.: A gas-kinetic scheme for the simulation of turbulent flows. In: Fan, J.
(ed.) Proceeding of the 29th International Symposium on Rarefied Gas Dynamics, Xi’an, pp.
1363–1370. American Institute of Physics, College Park (2014)

40. Rubinstein, R., Barton, J.M.: Nonlinear Reynolds stress models and the renormalization group.
Phys. Fluids A Fluid Dyn. (1989–1993) 2(8), 1472–1476 (1990)

41. Settles, G.S., Fitzpatrick, T.J., Bogdonoff, S.M.: Detailed study of attached and separated
compression corner flowfields in high Reynolds number supersonic flow. AIAA J. 17(6), 579–
585 (1979)

42. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. 30th
Aerospace Sciences Meeting and Exhibit (1992). https://arc.aiaa.org/doi/abs/10.2514/6.1992-
439

43. Taghizadeh, S., Witherden, F.D., Girimaji, S.S.: Turbulence closure modeling with data-driven
techniques: physical compatibility and consistency considerations. New J. Phys. 22(9), 093023
(2020)

44. Tan, S., Li, Q., Xiao, Z., Fu, S.: Gas kinetic scheme for turbulence simulation. Aerosp. Sci.
Technol. 78, 214–227 (2018)

45. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries, La Canada (2006)
46. Wilcox, D.C.: Formulation of the kw turbulence model revisited. AIAA J. 46(11), 2823–2838

(2008)
47. Xiao, H., Cinnella, P.: Quantification of model uncertainty in rans simulations: a review. Progr.

Aerosp. Sci. 108, 1–31 (2019)
48. Xu, K.: Gas-kinetic schemes for unsteady compressible flow simulations. In: VKI,

Computational Fluid Dynamics, Annual Lecture Series, 29th, Rhode-Saint-Genese, Belgium
(1998)

49. Xu, K.: A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with
artificial dissipation and Godunov method. J. Comput. Phys. 171(1), 289–335 (2001)

50. Xu, K.: A Unified Computational Fluid Dynamics Framework from Rarefied to Continuum
Regimes. Cambridge University Press, Cambridge (2021)

51. Xu, K., Prendergast, K.H.: Numerical Navier-Stokes solutions from gas kinetic theory. J.
Comput. Phys. 114(1), 9–17 (1994)

52. Xu, K., Mao, M., Tang, L.: A multidimensional gas-kinetic BGK scheme for hypersonic
viscous flow. J. Comput. Phys. 203(2), 405–421 (2005)

53. Xu, K., He, X., Cai, C.: Multiple temperature kinetic model and gas-kinetic method for
hypersonic non-equilibrium flow computations. J. Comput. Phys. 227(14), 6779–6794 (2008)

54. Xuan, L., Xu, K.: A new gas-kinetic scheme based on analytical solutions of the BGK equation.
J. Comput. Phys. 234, 524–539 (2013). https://doi.org/10.1016/j.jcp.2012.10.007

55. Yang, X., Shyy, W., Xu, K.: Unified gas-kinetic wave-particle method for gas-particle two
phase flow from dilute to dense solid-particle limit (2021). Preprint arXiv:2112.01829

56. Yang, X., Ji, X., Shyy, W., Xu, K.: Comparison of the performance of high-order schemes
based on the gas-kinetic and HLLC fluxes. J. Comput. Phys. 448, 110706 (2022)

57. Zhao, W., Wang, J., Cao, G., Xu, K.: High-order gas-kinetic scheme for large eddy simulation
of turbulent channel flows. Phys. Fluids 33(12), 125102 (2021)

58. Zhao, F., Ji, X., Shyy, W., Xu, K.: A compact high-order gas-kinetic scheme on unstructured
mesh for acoustic and shock wave computations. J. Comput. Phys. 449, 110812 (2022)


 1375 724 a 1375 724 a
 
https://arc.aiaa.org/doi/abs/10.2514/6.1992-439
https://arc.aiaa.org/doi/abs/10.2514/6.1992-439

 1085 2883 a 1085 2883 a
 
https://doi.org/10.1016/j.jcp.2012.10.007


Density Functional Kinetic Theory for
Soft Matter

Sauro Succi, Fabio Bonaccorso, Mihir Durve, Marco Lauricella,
Andrea Montessori, and Adriano Tiribocchi

Abstract In the last decades kinetic theory has developed into a very elegant and
effective framework to handle a broad spectrum of problems involving complex
states of flowing matter, far beyond the original realm of rarefied gas dynamics.
In this paper, we present recent applications of the lattice Boltzmann method
to the computational design of soft mesoscale materials, including soft flowing
crystals, dense multicore emulsions, as well as Petascale simulations of deep-sea
glassy sponges. This manuscript is a tribute to the groundbreaking work of Carlo
Cercignani and his undiminished impact on modern non-equilibrium statistical
physics.

1 Introduction

The kinetic theory of gases in its original form as devised by Ludwig Boltzmann
was restricted to binary collisions to pointlike particles hence formally limiting its
application to dilute gases [1–3].

Subsequent attempts to extend it to dense gases and liquids were notoriously
plagued by several problems, mostly due to infinities arising in the treatment of
higher order collisions.

Several strategies have been developed over the years to cope with such
problems, but the kinetic theory of dense, heterogeneous fluids remains a difficult
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subject to this day [3–5]. A similar statement applies to complex flows with
interfaces often encountered in science, engineering, soft matter, and biology. Soft
droplet-based materials, namely assemblies of close-packed deformable droplets or
bubbles separated by thin fluid films, include dense emulsions, foams, gels, soft
granular materials, liquid crystals, and a number of biological (active) materials
that are ubiquitous in industries, forming food and cosmetic products and in
nature. These materials share an important common feature in that predominant
physical behaviors occur at an energy scale comparable with room temperature
thermal energy. A particularly interesting framework to deal with such complex
flows is provided by density functional theory (DFT) [6]. Essentially the idea
is that much of the physics of the complex many-body problem associated with
dense fluids can be explored by investigating the dynamics of the fluid density,
namely a single one-body scalar field. Of course, such dynamics is subject to
self-consistent closures, typically in the form of well-educated guesses on the
generating functional from which the effective one-body equation for the density
can be derived via standard functional minimization of the suitable free-energy-
functional (FEF). Density functional theory has met with spectacular success for
the case of quantum many-body problem, leading to the development of powerful
theorems and attending computational methods that still form the basis for modern
computational quantum chemistry [7]. The classical version, albeit less spectacular
than its classical counterpart, also provides a milestone framework to describe and
simulate complex flows with interfaces, which we now proceed to illustrate in some
more detail [6].

2 Density Functional Theory

The stepping stone of DFT is the free-energy functional

F[ρ] =
∫
V

[φ(ρ)+ κ

2
(∇ρ)2]dx (1)

where φ(ρ) is the bulk free-energy, a local function of the fluid density ρ(x) and the
second term represents the cost associated with the build up of interfaces within the
fluid. The bulk component of the FEF determines the non-ideal equation of state via
the Legendre transform p = ρdφ/dρ−φ, while the interface term fixes the surface
tension.

For the case of a binary mixture of components A and B, it proves expedient to
defined a compact order parameter

φ = ρA − ρB

ρA + ρB
(2)
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which varies between 1 in phase A and −1 in phase B. Such order parameter is
conserved, hence it obeys a corresponding continuity equation of the form

∂tρ = −∂x[μ∂x δF[φ]
δφ

] (3)

where δ denotes functional derivative.
The order parameter is convected by the barycentric velocity of the two species,

u(x, t), which obeys the standard Navier-Stokes equations of fluids, with an extra

non-ideal pressor, known as Korteweg tensor, formally given by Kab[ρ] = δ2F
δgaδgb

,
where ga ≡ ∇aρ. The divergence of the pressor determines the mechanical force
acting upon the fluid interfaces, Fa[ρ] = −∂bPab and the condition Fa = 0 selects
the density profile realizing mechanical equilibrium of the interface.

The explicit form of the Korteweg tensor is as follows

Kab = [p + κ

2
(∂aφ)

2 − κφ�φ]δab − κ∂aφ∂bφ (4)

where the Latin indices a and b run over the spatial dimensions.
The continuity equation (3), jointly with the non-ideal Navier-Stokes equations

provides a self-consistent mathematical framework for the quantitative description
of the dynamics of the binary mixture.

What is the role of kinetic theory in the above picture?
In principle, the usual one, namely provide a bridge between the molecular

description and the hydrodynamic one. And again, taking this task in a bottom-
up guise, is by no means an easy enterprise. In the following, we shall take a more
pragmatic top-down standpoint, namely design suitable kinetic equations capable of
reproducing the non-ideal Navier-Stokes equations, without deriving them from an
underlying microscale model.

3 Density Functional Kinetic Theory

DFT gives rise to a variety non-ideal hydrodynamic equations as covered in
Hohenberg and Halperin [7], with no reference to kinetic theory.

In the framework of kinetic theory, the main ingredient is the non-ideal force
associated with the forced-streaming term S = Fa[ρ]∂vaf .

One natural question arises: why would the kinetic formulation be computation-
ally advantageous over the hydrodynamic one?

The main point is that in the kinetic framework the term S can be brought
to the right hand side and treated as a soft-collision term. Note that the partial
derivative in velocity space is handled by integrated by parts, This permits to move
the distribution function along unperturbed, force-free (straight) characteristics
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�xv = v�t and include the effect of soft forces as a local correction/perturbation
to this free-streaming motion.

In equations:

f (x + v�t, v, t +�t)− f (x, v, t) = (C − S)dt (5)

where C stands for standard short-range collisions, and vector indices have
been omitted for simplicity. A very popular choice is the single-time relaxation
Bhatnagar-Gross-Krook model [3, 8]

C = (f eq − f )/τ

where f eq is the local equilibrium and τ the relaxation time, namely the char-
acteristic lifetime of non-equilibrium excitation [9–11]. The soft-collision term is
conveniently turned into an algebraic source term

S = Fa[ρ]
∑
l

slaHl(v)

by integrating by parts in velocity space and exploiting recurrence relations of tensor
Hermite polynomials [8, 12, 13]. In the above equation, sla is the coefficient of the
velocity gradient of f corresponding to the lth Hermite polynomial.

The advantage of the above formulation is that the streaming step at the left hand
side proceeds along constant characteristics, hence it is exact, i.e., zero round-off
error in the numerical treatment. This stands in contrast with the hydrodynamic
formulation in which information moves along spacetime dependent material lines
defined by the fluid velocity itself, dxu = u(x, t)dt .

This simple but key advantage lies at the heart of the success of lattice kinetic
techniques and most notably Lattice Boltzmann method, in which the characteristics
are restricted to a suitable set of discrete velocities {vi}, i = 0, Nv , showing
sufficient symmetry to recover the correct large scale hydrodynamic limit.

Differently restated, the highly complex physics of moving interfaces is entirely
absorbed within the local source S.

Clearly, such perturbative treatment is limited to sufficiently weak forces, as
gauged by the so-called cell-Froude number

Fr = a�t

v

where a is the acceleration due to the non-ideal forces. In order to preserve the
stability of the numerical scheme, the time step must be chosen such that Fr �
10−3, a condition which may eventually go broken in the presence of strong density
gradients. This problem can be mitigated by improving the time-marching scheme,
typically via locally implicit formulations, but it must be watched carefully case by
case.
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Lattice DFKT as discussed above is currently being used over an amazingly
broad spectrum of soft-fluid problems, definitely beyond the original realm of
rarefied gas dynamics.

4 Families of Lattice DFKT

In the sequel we provide a brief survey of the three major families of lattice DFKT.

4.1 Free-Energy Lattice Models

The first lattice transcription of the free-energy functional (1) has been proposed
back in the mid 90s [14]. The main idea is to write the collision operator in single-
relaxation form, i.e., C = −(f − f eq)/τ , where f eq is the Maxwell-Boltzmann
equilibrium, and incorporate the effect of the soft term S within a generalized non-
local equilibrium, reflecting the non-locality of the Korteweg tensor. Ever since
its inception, it has generated a wide body of interesting results, especially in
multiphase microfluidics.

4.2 Lattice Many-Body Models

An alternative and possibly more straightforward route is to connect with is to write
the non-ideal pressor directly in the form of a two-body convolution:

Pab(x) =
∫

raψ(x − r

2
)G(x, r)ψ(x + r

2
)rbdr (6)

where G(x, r) is the two-body density correlator and ψ(ρ) is a local functional of
the density.

Taylor expanding the correlator about r = 0 delivers the following series

Pab(x) = G0ψ
2δab +G2,ab∇aψ∇bψ + . . . . (7)

where G0 =
∫
G(x, r)dr , G2,ab =

∫
G(x, r)rarbdr and so on to higher orders.

At variance with the free-energy approach, the correlator is designed top-down,
i.e., by reverse-engineering the expression of G(x, r) so as to obtain the desired
physical phenomena, namely (i) Non-ideal EoS, (ii) Tunable surface tension, (iii)
Positive disjoining pressure.

The earliest and still very popular such top-down formulation is due to Shan-
Chen [15] and makes use of just a single-parameter correlator, taking the value
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G0 within the first Brillouin lattice cell and zero elsewhere Clearly, a single-
parameter model does not permit to tune the three properties (i)–(iii) separately,
but it nevertheless showed the way towards a very handy and flexible lattice DFKT
which still takes the lion share of LB application to multiphase and multicomponent
flows.

The Shan-Chen model has been subsequently extended in many directions,
including the formulation of multi-range models in which the correlator extends
beyond the first Brillouin region [16]. This permits to tune the surface tension
independently of the EoS and also to realize a positive disjoining pressure, i.e.,
repulsive interaction between approaching interfaces. The multi-range method has
met with significant success for the simulation of dry foams and moderately dense
emulsions [17].

4.3 Lattice Chromodynamic DFKT

The above mentioned multi-range model has found many applications to complex
states of flowing matter, particularly foams and wet emulsions. However, when it
comes to dense emulsions, spurious effects have been reported on the disjoining
pressure, due to lack of sufficient lattice symmetry.

To this regard, a very fruitful avenue turned out to be offered by a entirely rule-
driven approach, based on the so-called Color Gradient technique ("color" is just a
mnemonics for different chemical species or different phases of the same species,
in analogy with quantum chromodynamics) [18]. Essentially the idea is to add
an explicit anti-diffusive flux sending particles of each species uphill along their
density gradient instead of against it. By construction, such anti-diffusive flux helps
interface formation against the coalescing effect of surface tension. here too, the
parameters can be adjusted to recover the properties i)-iii) above independently.

In the lattice chromodynamics models for multicomponent flows, two sets of
distributions functions(let us say red and blue) are introduced to code for two
different fluids.

f k
i (x+ ci , t + 1) = f k

i (x, t)+#k
i (x, t) (8)

In the above equation, k = R,B denotes the fluid and #k
i is a collision operator

which can be written as the combination of three sub-collisional.

#k
i = (#k

i )
3[(#k

i )
1 + (#k

i )
2] (9)

where (#k
i )

1 is the BGK collisional, (#k
i )

2 is a two-phase collision operator,
generating an interfacial tension between the two immiscible components and (#k

i )
3

is an anti-diffusive operator which favors phase segregation and keeps interfaces
sharp.
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Moreover, the stress-jump condition across the fluid interface can be augmented
with a suitable repulsive term aiming at modelling the effect of short-range,
repulsive near-contact forces induced by the presence of surfactants and colloids
adsorbed at the fluid-fluid interface. The additional repulsive term can be added
efficiently in the LB framework via a forcing term localized at the interface:

Frep,a = Ah[h]na (10)

where Frep,a is the near-contact, repulsive force acting at the fluid interface along
the normal na and whose magnitude Ah[h] depends on the distance (h) between
two interacting interfaces. The interested reader is referred to [19, 20] and related
literature. The main advantage in employing such a coarse-grained approach is
the possibility of simulating very large droplet systems without compromising
the computational efficiency of the numerical framework. Indeed, the introduction
of NCIs sidesteps the explicit tracking of different phases interacting within the
systems as instead occurs in immersed boundary method and multi-color volume
of fluid approach [21–23]. To conclude, the extended approach still holds to a
continuum description of the interface dynamics, with the governing equations
modified only by the presence of a distributed body force, which can heuristically
be interpreted as a coarse-grained version of the short-range molecular forces acting
at the nanometer and sub-nanometer scales.

4.3.1 Near-Contact Interactions

For highly dense emulsions anti-diffusive gradient may still fail to prevent coales-
cence, and a more detailed description of the near-contact interactions which arise
when two microscopic bodies, say droplets, come at molecular distances (say a few
nanometers). The pressure associated with such forces can be estimated as

pnc ∼ A
kBT

h3 (11)

where h is the film thickness between two approaching interfaces and A an
amplitude coefficient scaling the near-contact forces in units of thermal ones. Such
pressure withstands the coalescing action due to capillary pressure, given by

pcap ∼ σ

R
(12)

It has been shown that the ratio N = pnc/pcap plays a major role on the multi-
body configuration of the interfaces. For N � 1 the interfaces tend to coalesce,
while at N ∼ 0.1 they may eventually form an ordered pattern known as soft
flowing crystals. For N > 1 the pattern loses order giving rise to a dense disordered
emulsion.
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Needless to say, these three distinct states of soft flowing matter display a very
different rheology.

5 Applications: Simulating Dropland

In the following we briefly comment upon just two recent applications of density
functional lattice kinetic theory.

5.1 Dense Emulsions and Soft Granular Materials

As a first application, we show the capability of the multicomponent model with
near-contact interactions to reproduce the formation of ordered droplets clusters in
microfluidic channels. In Fig. 1a we reported the formation of multilayer hexagonal
droplet clusters in a channel formed by a thin inlet and an outlet chamber (see [24]).
The droplets are continuously injected within the main channel by employing a
recently developed internal periodic boundary condition. To note that the spon-
taneous ordering of the droplets into hexagonal clusters is drive by a non-trivial
competition between local, short-range, repulsive interactions (i.e., the near-contact
forces) and the surface tension.

(a)

(b)

increasing fI

Fig. 1 (a) Multi-layer hexagonal droplets clusters in a microfluidic channel. Dashed lines
represents Voronoi tessellation while solid lines Delauney triangulation (b) Droplet self-assemblies
within a microfluidic channel with a divergent opening angle α = 45◦ for two different inlet
channel Capillary numbers (Ca = 0.04 left, Ca = 0.16 right)
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In particular, small disturbances introduced by the short-range repulsive action of
the near-contact interaction forces trigger the rupture of the initial, single-file crystal
symmetry, driving the droplets towards a new spatial arrangement.

It is interesting to note that the process described above is somehow similar
to the instability observed in densely packed granular materials subjected to force
unbalances. In panel (b) of Fig. 1 we reported the formation of dense emulsions in
microfluidic devices formed by a divergent inlet channel connected to a downstream
channel (see [25]). Even in this case the droplets are continuously injected within
the system and let free to assemble within the outlet channel. By simply tuning the
inlet capillary number it is possible to observe a spontaneous transition from a high-
ordered emulsion, formed by hexagonal clusters flowing within the system (i.e., a
wet emulsion) to a foam-like, dry-state, structure which results in a neat distortion
of the Delauney triangulation (blue solid lines connecting the centers of neighboring
droplets).

In the simulations, both the dispersed and continuous phases’ discharges are kept
constant and the Ca is changed via the surface tension. The observed transition
is likely to be due to (i) the breakup processes downstream the injection channel,
promoting the formation of liquid films and (ii) the increased deformability of
the droplets interface, due to the lower values of surface tension employed.
The simulations described above have been performed in two dimensions. The
computational domains count, roughly, 3–500,000 nodes and the number of degrees
of freedom for each time step, considering a nine speed two-dimensional lattice, is in
turn, 3–5·106. The memory occupancy is of order 50–100 megabytes by considering
to allocate all the arrays in double precision. Typical simulations run for several
millions of cycles.

The computational framework, described in the previous section, has been
capable of providing accurate predictions over a number of different dynamical
modes observed in recent flow-focusing experiments of high internal phase double
emulsions.

As shown in Fig. 2, the ratio between the emulsion flow rate, injected at the inlet
of the main channel, and that the bulk fluid flowing through the lateral channels
of the flow focuser, controls the onset of a full set of highly non trivial dynamical
modes from multilayered, jetting (panel (a)) to the irregular (panel(b)) and regular
dripping regime characterized by the metronomical production of roughly equally
sized shells with a small number (∼4–5) of cores.

It is worth noting that the simulations and experiments reported here stand
as a proof of concept of the possibility of assembling discrete, soft granular,
droplets based materials in microfluidic channels in a controlled manner. The
simulations performed to predict the formation of SGM have been performed in
three dimensions by employing an in-house HPC MPI code run on Galileo100
cluster https://www.hpc.cineca.it/hardware/galileo100. In this case the number of
degrees of freedom is ∼200 · 106 nodes with a memory occupancy of order 4 GB.
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(b)

(a)
Experiments Simulations

Fig. 2 Hydrodynamic simulations of soft granular materials in flow-focuser devices. For low
values of φ ∼ 1 the low flow rates of the continuous phase favor the formation of a stable jet, with
typical width of 2–3 droplet diameters (panel (a)) while by decreasing the inlet to continuous flow
rate ratio the system transits spontaneously from a jetting to dripping regime with the formation of
smaller clusters of droplets encapsulated in an external shell. The dimensions of the experimental
device are W = 1 mm (width of the constriction), L = 2 mm (Length of the constriction),
H = 0.2 mm (depth of the device), W0 = 2 mm (width of the outlet channel)

6 Summary and Future Outlook

Kinetic theory was originally derived in the restricted framework of dilute gases.
As of today, it has blossomed into a vigorous and ever-growing branch of non-

equilibrium statistical mechanics, with countless applications to a broad spectrum
of transport problems across various disciplines, such as traffic flows, finance, and
soft matter, to name but a few.

In this paper, we have focused on the latter and shown how a judicious merge with
density functional theory can lead to a conceptual and computational framework
capable of describing soft flowing states of matter whose extreme complexity would
be very hard to handle by any other method. This projects a bright future ahead
of density functional (lattice) kinetic theory, a future that would have been simply
unthinkable without the pioneering foundational work of Carlo Cercignani [26].
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A Multi-Agent Description of Social
Phenomena with Lognormal Equilibria

Giuseppe Toscani

Abstract The lognormal distribution, very common in physical and biological
applications, also appears in various phenomena related to economic and social
activities. In socio-economics these phenomena describe in most cases the evolution
in time of the distribution of a certain attribute of agents, which aim to reach a
desired target by repeated attempts. By resorting to the analogies of these problems
with the classical kinetic theory of rarefied gases, we aim to illustrate the nature of
the microscopic interactions which give rise to a macroscopic lognormal distribution
profile.

1 Introduction

The study of random variations that occur in the data from many scientific
disciplines commonly show more or less skewed probability distributions, which
often closely fit the lognormal distribution [1, 8, 21].

A lognormal distribution is a continuous probability distribution of a non-
negative random variable whose logarithm is normally distributed. Its density
function depends on two parameters μ ∈ R and σ ∈ R+, and it is expressed by

L(x) = 1√
2πσ x

exp

{
− (log x − μ)2

2σ

}
, x ∈ R+ (1)

As documented by the exhaustive review by Limpert et al. [21], in natural sciences
the list of phenomena which fit the distribution (1) is quite long. In addition to
samples from physical and biological sciences, a relevant number of phenomena
fitting distribution (1) comes from social sciences and economics, areas where it
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can be reasonably assumed that the appearance of this distribution is closely linked
to the behavior of the agents.

The interest in natural phenomena described by lognormal distribution dates
back to more than a century ago. Few years later the contribution by Galton [13]
to demonstrate the central limit theorem through the so-called bean machine, a
similar device for the lognormal distribution was constructed by Kapteyn [20], while
studying and popularizing the statistics of the lognormal in order to help visualize it
and demonstrate its plausibility. A photograph of this machine is present in [1].

Nevertheless, while the normal distribution is playing an important role in kinetic
theory, where it is commonly known with the alternative name of Maxwellian
distribution [3], kinetic equations leading to a macroscopic lognormal profile to our
knowledge are few and recent [16, 17, 26, 27].

The kinetic modeling of social phenomena leading to lognormal profiles has been
recently proposed in [16, 17] by resorting to a linear Boltzmann-type equation based
on particular elementary interactions. Other phenomena have been modeled in terms
of more classical interactions, similar to the collisions between molecules of rarefied
gases [26, 27]. These latest kinetic models have their roots in the powerful theory of
Maxwell molecules, and were inspired by the work of Carlo Cercignani.

In one of his last contributions [2], jointly written with Alexander Bobylev and
Irene Gamba, Carlo Cercignani considered and studied generalized Maxwell models
of the Boltzmann equation in presence of multiple interactions.

The main application of this generalized Boltzmann equation is in an economic
context. Specifically, the n ≥ 1 interacting particles are interpreted as a community
of agents participating in economical trades. Denoting with V = (v1, v2, . . . , vn)

the n-dimensional vector of the non-negative wealth of the agents, the post-
collisional state V ∗ = (v∗1 , v∗2 , . . . , v∗n) gives the new wealth after a single economic
trade. The n-particle interaction considered in [2] is a linear transformation of V into
the post-collisional state V ∗, given by

v∗i = avi + b

n∑
j=1

vj i = 1, . . . , n, (2)

where the parameters a, b may be fixed or randomly distributed with a certain
number of moments bounded.

Denoting by f = f (v, t) the density of particles with state v ∈ R at time t ≥ 0,
and postulating the validity of molecular chaos, the evolution of any observable
quantity ϕ, i.e., any quantity which may be expressed as a function of v, is given by
the Boltzmann-type equation [2]

d

dt

∫
R+

ϕ(v)f (v, t) dv = 1

τn

∫
R
n+

n∑
i=1

〈
ϕ(v∗i )− ϕ(vi)

〉 n∏
j=1

f (vj , t) dv1 . . . dvn,

(3)
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where τ denotes a relaxation time and 〈·〉 is the average with respect to the
distributions of the random parameters a, b contained in (2). The collision integral
depends on a constant collision kernel, that corresponds to consider Maxwell-
type interactions. The right-hand side of (3) takes into account the whole set of
microscopic states, and consequently it depends on the n-product of the density
functions f (v1, t) · . . . · f (vn, t). Thus, if n > 1 the evolution of f obeys a
highly non-linear Boltzmann-type equation. The interesting point remarked in [2]
is that a considerable simplification occurs in presence of a large number n - 1 of
participants, which results in a linearized version of Eq. (3).

The findings of [2] are an interesting example of the way kinetic theory of rarefied
gases can be fruitfully employed to study multi-agents problems in economics.

The agent-based models constitute a broad class of models which have been
recently introduced to describe various socio-economic phenomena of western
societies [23, 24]. The mathematical modeling showed a great expansion especially
in the past twenty years (cf. [4–7, 9] and the references therein). This relatively new
research field borrows several methods and tools from classical statistical physics,
where the macroscopic emergent behavior arises from relatively simple rules as a
consequence of microscopic interactions among a huge number of agents [23, 24].

Kinetic models of Boltzmann and Fokker–Planck type are often the building
block. Similarly to (3), these models can be derived by resorting to well-known tools
of classical kinetic theory of gases [7, 10–12, 22], and Boltzmann-like equation for
Maxwell-type molecules play the relevant rule [3, 24].

Starting from the general Boltzmann equation (3) introduced in [2], we shall
here discuss several cases in which social-type interactions give rise to lognormal
distributions, or in the form of self-similar solutions, or in the form of resulting
equilibria. These results will take advantage of various types of asymptotics which
are of common use in kinetic theory.

Section 2 refers to Eq. (3) in the simple case n = 1 and v ∈ R+, and the linear
interaction (2) reduces to

v∗ = (a + b)v, v ≥ 0, (4)

with a > 0 constant and b a random variable. In order that v∗ ∈ R+, in (4) the
random variable b needs to satisfy some bound from below, to guarantee that a+b ≥
0.

Then, Sect. 3 will deal with a kinetic model based on multiple interaction of
type (2), recently considered in [27] to study a jackpot game with n - 1 gamblers.
Last, Sect. 4 will deal with a generalization of interaction (4) of the form

v∗ = (a(v)+ b)v, (5)

suitable designed to obtain Boltzmann-type kinetic models deeply connected with
lognormal equilibria [16, 17]. All these examples enlighten the structure of the
microscopic details which give rise to a macroscopic profile fitting the lognormal
distribution.
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2 Gibrat’s Law and Distribution of Firms

Let us consider the Boltzmann equation (3) with n = 1 and v ∈ R+. By further
fixing a = 1 and b = η, where η is a centered random variable of finite variance,
the elementary linear collision (2) reduces to

v∗ = v + ηv, (6)

and, as discussed in [26], the Boltzmann equation is easily shown to describe the
economic Gibrat’s law for firm growth [14, 15], law usually known under the name
of law of proportionate effect. This law states that the expected increment of a firm’s
size in a fixed period of time is proportional to the size of the firm at the beginning
of the period. Denoting by x(τ) the size of a firm at a time τ ≥ 0, the postulate is
expressed as

x(τ + 1) = x(τ)+ η(τ)x(τ ), (7)

where η(τ) is a random number independent of x(τ), and η(τ) is independent of
η(τ + k) for any natural number k, and there are no interactions between firms.

After a sufficiently long sequence of increments, Gibrat’s law implies that

x(n) = x(0)(1+ η(1))(1+ η(2)) · · · (1+ η(n)),

so that log x(n) follows a random walk. Therefore, the growth rate predicted by
Gibrat’s law is lognormally distributed with mean and variance linked to the mean
and variance of η(·).

Resorting on classical kinetic arguments, the appearance of the lognormal
distribution as a consequence of the interaction (7) has been rigorously justified in
[26] by considering the quasi-invariant limit of the Boltzmann equation (3), namely
the asymptotics as ε → 0 of the Boltzmann equation (3) where the relaxation time
τ = ε and η = √

εμ, with μ a centered random variable of finite variance σ , and
bounded moments up to the order three. In this asymptotics (the grazing collisions
asymptotics [28]), the solution to the Boltzmann equation (3) is well-described by
the solution f (v, t) of the linear diffusion equation

∂f

∂t
= σ

2

∂2

∂v2 (v
2f ). (8)

Equation (8) contains the main effects of Gibrat’s law (7) when the random variable
η produces small symmetric effects, and the relaxation time τ is small. The linear
diffusion equation (8) allows to describe the evolution in time of the density f =
f (v, t) of the size v ≥ 0 of firms, given their distribution f0(v) at time t = 0, as
well as its asymptotic behavior. As shown in [26], resorting to the connection of the
solution of Eq. (8) with the solution of the linear diffusion equation one shows that
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Eq. (8) possesses a (unique) source-type solution given by the lognormal density

Lt (v) = 1√
4πt v

exp

{
− (log v + t)2

4t

}
, (9)

which departs at time t = 0 from a Dirac delta function located in v = 1. The
time-dependent lognormal density Lt (v) has constant mean value, and its variance
at time t ≥ 0 is equal to e2t − 1.

3 Distribution of Winnings in a Multi-Agent Jackpot Game

The behavior of a multi-agent system of online gamblers has been studied in
[27] by methods of statistical physics. In particular, the analysis has been focused
on a popular type of virtual-item gambling, the jackpot, i.e., a lottery-type game
which occupies a big portion of the gambling market on the web. The jackpot
game relies on a very simple mechanism. The gamblers participate in the game
by placing a bet with a certain number of lottery tickets purchased. There is only
one winning ticket in each round of the game. The winning ticket is drawn through
a uniformly distributed random number with a range equal to the total number of
tickets purchased in that round. The gambler who holds the winning ticket wins all
the wagers after a site cut (percentage cut) has been subtracted. By assuming that
the gamblers play with a part of the sum in their possess, the single game can be
easily represented as a multiple collision [27]. Suppose the extracted winner is the
gambler k = 1. Then, if ε is the small percentage of the sums played by gamblers
in a game, and γ is the percentage cut operated by the site, the post-interactions
amounts in the hands of the gamblers are

v∗1 = (1− ε)v1 + ε(1− γ )

n∑
j=1

vj ; v∗k = (1− ε)vk, k = 2, 3, . . . , n. (10)

As first noticed in [2], in presence of a large number n - 1 of gamblers,
the Boltzmann equation (3) can be approximated by a linear kinetic model with
interaction rule

v′ = (1− εγ )v +√εvηε. (11)

In (11), ηε is a discrete random variable taking only the two values −√ε(1 − γ ),
Mε/

√
ε with probabilities

P
(
ηε = −√ε(1− γ )

) = 1− pε, P

(
ηε = Mε√

ε

)
= pε,



266 G. Toscani

where pε ∈ [0, 1] and Mε > 0 are two constants to be properly fixed.
The meaning of the rule (11), together with the prescribed values of ηε , is the

following: a gambler, who enters the game with a number of tickets (viz. an amount
of money) equal to εv, may either win a jackpot equal to (Mε−εγ )v (whereMε(1+
γ ) is the value of the sum played in the jackpot game) with probability pε or lose
the amount εv put into the game with probability 1− pε .

In particular, pε is determined by imposing 〈ηε〉 = 0, which guarantees that (11)
reproduces the correct evolution of the mean. This gives

pε = ε(1− γ )

Mε + ε(1− γ )
.

Last, Mε is determined by assuming that the second moment of ηε is equal to the
second moment of the system of gamblers playing according to (10). Then, if the
relaxation time τ = ε, in the limit ε → 0 one shows that the limit distribution
function f = f (v, t) of the amount of money of the gamblers solves the Fokker–
Planck equation

∂f

∂t
f (v, t) = σ

2

∂2

∂v2 (v
2f (x, t))+ γ

∂

∂v
(vf (v, t)). (12)

Also in this case, one can verify that the time-dependent lognormal distribution

L̃t (v) = 1√
2πσ tv

exp

(
−
(
log v + (γ + σ/2)t

)2
2σ t

)
(13)

is a solution to the Fokker–Planck equation (12) corresponding to an initial value
which is a Dirac delta of unit mass concentrated in the point v = 1. Notice that,
in consequence of the percentage cut γ operated by the site, if the gamblers to
not operate a refilling at the end of each game, the mean value of the lognormal
density (13) decays exponentially in time at a rate γ .

4 Social Phenomena with Lognormal Equilibria

The examples of Sects. 2 and 3 underline the importance of introducing the law
of proportional effect [14, 20], as random part of the elementary interactions, to
produce the lognormal distribution at a macroscopic scale. On the other hand, the
pure law of proportional effect requires the kinetic model to be based on elementary
collisions which, in analogy with the kinetic theory of rarefied gases, are linear in
the v-variable.

A different interaction, still based on properties peculiar of the lognormal
distribution [1], has been first considered in [16]. This microscopic social interaction
combines the random part of the law of proportional effect with a non-linear
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dependence on v of the deterministic part. This interaction is of type (5), and for
any v ∈ R+ reads

v∗ = (a(v)+ b)v = v (1− �(v/v̄T )) v + ηv. (14)

As before, the random variable η is such that 〈η〉 = 0, while 〈η2〉 = σ . In (14) the
function � is given by

�(s) = μ
sδ − 1

sδ + 1
, s ≥ 0, (15)

where μ, δ, and v̄T are positive constants, with μ and δ satisfying 0 < μ < 1,
0 < δ < 1. This function is a bounded and concave function, positive above the
reference value 1 (v > v̄T ), while negative below (v < v̄T ). Note that

−μ ≤ �(s) ≤ +μ,

so that the value μ < 1 implies that v∗ is non-negative provided that the random
variable η satisfies the lower bound η ≥ −(1− μ).

Before entering into the meaning of the various parameters, and to enlighten the
social reasons behind the choice of this interaction, let us remark a key property
of its deterministic part. In absence of randomness (η = 0) let us compute the
interaction satisfied by the inverse variable w = 1/v. Since

1

w∗
= 1

w
(1−�(w̄T /w)) ,

simple computations give

w∗ = w −�∗(w/w̄T )w.

The new function �∗(s) reads

�∗(s) = μ
sδ − 1

(1− μ)sδ + 1+ μ
= μ∗ sδ − 1

αsδ + 1
,

Thus, the functions � and �∗ are of the same shape (with different parameters)

μ∗ = μ

1+ μ
; α = 1− μ

1+ μ
.

A typical property of the lognormal distribution is that, if the random variable X

is lognormal, the inverse 1/X is still a lognormal random variable. This suggests
that the structure of the function �(·) is suitable to characterize phenomena that are
described by a lognormal profile.
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The function � plays the role of the value function in the prospect theory of
Kahneman and Twersky [18, 19], and characterizes the natural asymmetry present
in many aspects related to the human behavior, when trying to reach an objective
characterized by a target value v̄T . In [16], the problem to be studied was the
distribution of the service time of agents working in a call-center, which are forced to
end services respecting a limit time, given by the value v̄T . In this case, the presence
of the minus sign in front of the value function � is due to the obvious fact that an
agent will tend to increase the working time when v < v̄L, and to decrease it if
v > v̄T . The function �(s) is such that, given 0 < �s < 1

−� (1−�s) > � (1+�s).

Hence, given two agents starting at the same distance from the prescribed target time
v̄T from below and above, it is easier for the agent starting below to move closer to
the target, than for the agent starting above. Also, the prospect an agent will have of
his work will be completely different depending of the sign of the value function.

In the grazing collision limit, corresponding to small interactions characterized
by a function � in which δ = ε, and η → √

εη, the solution to the Boltzmann
equation (3) with n = 1 and relaxation time τ = ε converges as ε → 0 to the
solution to the Fokker–Planck equation

∂f (v, t)

∂t
= 1

2

[
σ
∂2

∂v2

(
v2f (v, t)

)
+ μ

∂

∂v

(
v log

v

v̄T
f (v, t)

)]
. (16)

The stationary distribution of Eq. (16) is easily found by solving the differential
equation

σ
d

dv

(
v2f (v)

)
+ μv log

v

v̄T
f (v) = 0.

It is immediate to conclude that the unique steady solution of unit mass is the
lognormal density

f∞(v) = 1√
2πσ ∗ v

exp

{
− (log v − κ)2

2σ ∗

}
, (17)

where

σ ∗ = σ

μ
, κ = log v̄T − σ ∗.

At difference with the examples of Sects. 2 and 3 the lognormal profile is a steady
state of the underlying kinetic model. Note that the mean value of the lognormal
equilibrium (17) takes the value

m(f∞) = v̄T exp

{
−σ ∗

2

}
< v̄T ,
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which shows that the desired target value v̄T is never reached by the mean number
of agents.

The situations in which an elementary interaction of type (14) holds, and
consequently the social phenomena are characterized by a certain asymmetry around
a target value, have been collected in a companion paper [17], which illustrates a
number of examples that can be suitably described at equilibrium in terms of the
lognormal distribution. The list of these phenomena is conspicuous, and include
body weight distribution, behavior of drivers in traffic, distribution of agent’s
consumptions, distribution of city size and others. Also, in biological sciences, the
Fokker–Planck equation (16) and the corresponding lognormal equilibrium profile
appears when studying from a kinetic point of view the distribution of tumor size in
the case of a Gompertz-type growth [25].

5 Conclusions

Recent results on kinetic modeling of social phenomena in multi-agent systems
confirm that the lognormal distribution is suitable to fit them in a variety of
situations, which can be described by linear diffusion equations and/or by linear
Fokker–Planck equations with variable coefficients of diffusion. At the kinetic level,
it is interesting to remark that the elementary collisions leading to a lognormal
profile are characterized in their random part by the so-called law of proportional
effect, namely by the property that the random part of the collision is proportional
to the value of the pre-interaction variable. Further, the deterministic part of the
pre-collision variable has to be characterized by the property that its inverse share a
similar profile.
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Oscillatory Rarefied Gas Flows in Long
Capillaries

Alexandros Tsimpoukis, Nikos Vasileiadis, Giorgos Tatsios,
and Dimitris Valougeorgis

Abstract Oscillatory, rarefied, linear and nonlinear fully developed flows of single
gases and binary gas mixtures, driven by external harmonic mechanisms with arbi-
trary frequency, have been recently considered by the authors in a series of works.
Here, these works are reviewed by focusing on the most notable findings. More
specifically, the effects of the oscillation frequency on the velocity overshooting
and gas separation phenomena in gas mixture flows and of the oscillation amplitude
on the flow pattern in nonlinear single gas flows are presented. Modeling is based
in the former case on the McCormack kinetic model and in the latter one on the
DSMC method. In general, as the flow becomes more rarefied higher frequencies are
needed to trigger the overshooting phenomenon, which becomes more pronounced
as the molecular mass of the gas species is increased. Notably, gas separation may
be present in the whole range of gas rarefaction, provided that the flow is subject
to adequate high oscillation frequency. Finally, the presence of strong external
harmonic forces does not significantly affect the oscillatory macroscopic quantities,
including the mass flow rate (no distortion of the amplitude-frequency curve), except
of the oscillatory axial heat flux, which exhibits a non-sinusoidal pattern.

1 Introduction

Rarefied boundary-driven oscillatory flows of single gases have been extensively
investigated over the last two decades [1–7]. These flows are present in various res-
onator structures [8, 9], while acoustic enhancement or attenuation (even cloaking)
may be achieved in viscous-thermal fluids [10]. Propagation of sound waves due
to mechanical and thermal excitation through binary gas mixtures has been also
considered [11–13].
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The corresponding rarefied pressure-driven oscillatory gas flows have attracted
much less attention, although there are employed in vapor deposition [14], microflu-
idic oscillators and pumps [15] and cryogenic pulse tubes [16]. Of course, in the
hydrodynamic regime, pressure-driven oscillatory gas flows have been thoroughly
examined and are encountered in numerous technological fields ranging from
pneumatic lines and control systems [17], reciprocating pumps [18], combustion
engines, and bioengineering to enhancement of thermal diffusion in mass and heat
transfer processes, species contaminants dispersion and gas separation or mixing
[19, 20]. Experimentally, oscillatory-type pressure-driven gas flows may be realized
by reciprocating pistons [21] or membranes [22] or by oscillating the channel itself
[23].

Although boundary and pressure gradient oscillatory flows have certain similari-
ties, such as the traveling wave disturbance causing the flow, they also have various
differences related to the involved physical phenomena and quantities of practical
interest. The general mechanisms occurring in oscillatory boundary-driven flows
include inertia and viscous forces, while in pressure gradient flows, in addition to the
above, pressure forces are also considered. In the latter case, the difference in time
scales of pressure and viscous forces may lead to unexpected results, such as the
annular effect (velocity overshooting) and enhanced gas separation, which are not
observed in former case. Also, in boundary-driven flows we are mainly interested
in velocity and shear stresses, while in oscillatory pressure gradient flows including
pulsatile flows, we are also interested in the computed flow rates.

Taking into consideration that oscillatory pressure- driven gas flows in the
hydrodynamic regime are very common, along with the progress in fabrication
techniques of micro devices, it is reasonable to expect that oscillatory pressure-
driven rarefied flows of single gases and gas mixtures will be also widely employed,
in the short future. Therefore, very recently, some theoretical studies in fully
developed oscillatory gas flows in capillaries [24–27] have been reported. Here,
the most notable results of the detailed analysis in [24–27] for linear and nonlinear
fully developed flows of single gases and binary gas mixtures are presented.

2 Linear Oscillatory Fully Developed Binary Gas Mixture
Flow

Consider the time-dependent, isothermal, rarefied flow of a binary gas mixture
between two infinite long parallel plates fixed at y ′ = ±H/2, connecting two
containers, as shown in Fig. 1. The pressure in the two containers harmonically
oscillates as P̃j

(
t ′
) = R

[
Pj exp

(−iωt ′)], j = 1, 2, resulting in the externally
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Fig. 1 Oscillatory flow configuration

imposed harmonically oscillating pressure gradient, along the parallel plates, of the
form

dP̃

dx ′
= R

[
dP

dx ′
exp

(−iωt ′)
]
. (1)

Here, P̃
(
x ′, t ′

) = P
(
x ′
)

exp
(−iωt ′) is the oscillatory pressure in the x ′−

direction parallel to the plates, dP/dx ′ and ω refer to the amplitude and frequency,
respectively, of the oscillatory pressure gradient dP̃ /dx ′ and t ′ is the time, while
R denotes the real part of a complex expression i = √−1). The well-established
assumption that the fluid oscillates in bulk or en mass, i.e., that all quantities oscillate
with the same frequency as the pressure gradient, is applied [28]. Thus, this is an
harmonically oscillating, fully developed flow (pressure and density remain constant
at each cross section, while all other macroscopic distributions depend only in the
y ′−direction normal to the plates).

The binary gas mixture consists of two monatomic species of molecular masses
mα, with the index “α = 1, 2,” always referring, without loss of generality,
to the light and heavy species of the mixture, respectively. The corresponding
local number densities of the mixture components, defined by ñα

(
t ′
)
, oscillate

harmonically as ñα
(
t ′
) = R

[
nα exp

(−iωt ′)] , where nα , α = 1, 2, is the local
amplitude of the oscillating number density of each species. The number density
of the mixture is ñ

(
t ′
) = ñ1

(
t ′
) + ñ2

(
t ′
)
, while the molar fraction of the mixture

is defined as the ratio of the number density of the light species over the mixture
number density, given by C̃

(
t ′
) = R

[
C exp

(−iωt ′)] , with C = n1/n =
n1/ (n1 + n2), being the local amplitude of the molar fraction. The molar fraction
amplitude of the heavy species is 1 − C. The mean molecular mass of the mixture
is given by m = Cm1 + (1− C)m2. The number densities of the species and
the mixture are related to the corresponding pressures with the equation of states
as P̃α = ñαkT and P̃ = ñkT , respectively, where P̃α are the partial pressures,
P̃ = P̃1+P̃2 is the total pressure, T is the reference temperature. The mass densities
of the species and the mixture are defined as ρα = mαnα and ρ = mn, respectively.

The deduced time-dependent flow quantities of practical interest include the bulk
velocity Ũα

(
t ′, y ′

)
, shear stress Π̃α

(
t ′, y ′

)
and heat flow Q̃α

(
t ′, y ′

)
of the two
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species α = 1, 2, which depend on y ′, the space independent variable vertical to
the plates and vary harmonically with time t ′ as

Z̃α

(
t ′, y ′

) = R

[
Zα

(
y ′
)

exp
(−iωt ′)] , (2)

where Z̃α

(
t ′, y ′

) =
[
Ũα

(
t ′, y ′

)
, Π̃α

(
t ′, y ′

)
, Q̃α

(
t ′, y ′

)]
, while Z̃α

(
y ′
) =[

Uα

(
y ′
)
,Πα

(
y ′
)
,Qα

(
y ′
)]

is a vector of the corresponding complex functions.
In addition, the oscillatory particle flow rates of the two species are given by

J̃α
(
t ′
) = R

[
Jα exp

(−iωt ′)] , where Jα = nα

H/2∫
−H/2

Uαdy
′, as well as the

corresponding mixture particle flow rate J̃ = J̃1 + J̃2, are complex functions.
Furthermore, the dimensionless independent space and time variables x =

x ′/H, y = y ′/H and t = t ′ω, are introduced. The dimensionless amplitude of the
local oscillatory pressure gradient is

X = H

P (x ′)
dP

(
x ′
)

dx ′
= 1

P (x)

dP (x)

dx
� 1. (3)

The bulk velocity, shear stress and heat flow in Eq. (2) are nondimensionalized by

(υX), (2PX) and (υPX), respectively, with υ =
√

2kT
/
m being the characteristic

speed of the mixture, to yield:

ϕ̃α (t, y) = R

[
ϕα (y) exp (−it)] = ϕ(A)α (y) cos

[
t − ϕ(P )a (y)

]
, (4)

where ϕ̃α (t, y) =
[
ũα (t, y) , *̃α (t, y) , q̃α (t, y)

]
. In Eq. (4) the superscripts (A)

and (P ) refer to the amplitude and the phase angle, respectively, of each complex
quantity.

Furthermore, the flow rates J̃α
(
t ′
)

are nondimensionalized by (PXH/mυ) to
obtain the dimensionless oscillatory particle flow rates of each species

G̃α (t) = R

[
Gα exp (−it)] = R

[
G(A)
α exp

[
i
(
G(P )
α − t

)]]
= G(A)

α cos
[
t −G(P )

α

]
,

(5)

where

Gα = G(A)
α exp

(
iG(P )

α

)
= 2

∫ 1/2

−1/2
uαdy. (6)

Also, the dimensionless oscillatory particle flow rate of the mixture is given by
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G̃ (t) = R

[
G exp (−it)] = R

[
G(A) exp

[
i
(
G(P) − t

)]]
= G(A) cos

[
t −G(P)

]
,

(7)

where G = CG1+ (1− C)G2, with the superscripts (A) and (P ), always referring
to amplitudes and phase angles, respectively.

The oscillatory binary gas mixture flow between parallel plates is also character-
ized by the gas rarefaction and oscillation parameters, given by

δ = PH

μυ
and θ = P

μω
, (8)

respectively, where μ is the gas viscosity at some reference temperature T , υ is the
characteristic speed of the mixture, the ratio (P/μ) is the intermolecular collision
frequency. The composition of the binary gas mixture, i.e., the molecular masses m1
and m2, as well as the amplitude of the molar fraction C, must be also specified.

Next, the kinetic formulation, based on the McCormack model [29], is shortly
presented. Due to the condition X � 1 the unknown time-dependent distribution
function of each species can be linearized in a standard manner and the linearized
distributions are accordingly projected to yield the following set of kinetic equa-
tions:

−i δ
θ

√
mα

m
Φα + cαy

∂Φα

∂y
+ ωaγαΦa =

−1

2

√
m

ma

+ ωα

{
γαua − v

(1)
αβ

(
ua − uβ

)− 1

2
v
(2)
αβ

(
qa − ma

mβ

qβ

)
+

+2

√
m

ma

[(
γα − v(3)αα + v(4)αα − v

(3)
αβ

)
*a + v(4)αα*β

]
cay+

+2

5

[(
γα − v(5)αα + v(6)αα − v

(5)
αβ

)
qa + v

(6)
αβ

√
mβ

ma

qβ − 5

4
v
(2)
αβ

(
ua − uβ

)] (
c2
ay −

1

2

)}
,

(9)

−i
√
mα

m

δ

θ
Ψα + cαy

∂Ψα

∂y
+ ωαγαΨa =

= 4

5
ωα

[(
γα − v(5)αα + v(6)αα − v

(5)
αβ

)
qa + v

(6)
αβ

√
mβ

ma

qβ − 5

4
v
(2)
αβ

(
ua − uβ

)]
. (10)

Here, Φa and Ψa are complex perturbed distribution functions for each species,

ωα = δ
(
C
/
γ1 + (1− C)

/
γ2
)√

ma

/
m and γa (a = 1, 2) are the collision

frequencies of each species [30]. Also, α, β = 1, 2, with α �= β, while the
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expressions for the quantities ν
(k)
αβ are given in terms of the Chapman-Cowling

integrals as in [30]. The macroscopic quantities uα, *α and qα at the right hand
side of Eqs. (9) and (10) are defined in Eq. (4), respectively, and after applying the
linearization and projection procedures, they are obtained as moments of Φα and
Ψα as follows:

uα (y) = 1√
π

∫ ∞

−∞
Φa exp

(
−c2

ay

)
dcay, (11)

*α (y) = 1√
π

√
ma

m

∫ ∞

−∞
Φacay exp

(
−c2

ay

)
dcay, (12)

qα (y) = 1√
π

∫ ∞

−∞

[
Ψa +

(
c2
ay −

1

2

)
Φa

]
exp

(
−c2

ay

)
dcay. (13)

In the present work purely diffuse reflection at the walls is assumed.
The above set of equations is computationally solved based on the discrete

velocity method in the cy space and on the second-order diamond finite difference
scheme in the y space. The discretized equations are solved in an iterative manner
between the kinetic equations (9) and (10) and the moment equations (11)–(13).
More information about the numerical scheme may be found in [27].

Computational results are presented for the mixture flow rate amplitude and
phase angle (Fig. 2), the velocity and shear stress distributions (Fig. 3) and the
ratio of the flow rate amplitudes of the species (Fig. 4) in a wide range of the
gas rarefaction and oscillation parameters δ and θ , as well as of the molar fraction
C ∈ [0, 1] for the He–Xe mixture with m2/m1 = 32.8.

In Fig. 2, the He–Xe flow rate amplitudeG(A) and phase angleG(P) are presented
in terms of δ, with θ = [1, 100] and C = [0, 0.5, 0.9]. The results with C =

Fig. 2 Mixture flow rate amplitude G(A) and phase angle G(P) of He-Xe vs δ
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Fig. 3 Velocity u(A)α (y) and shear stress *(A)
α (y) amplitudes of each species of He-Xe for δ = 10

and θ = 0.1. Reprinted with permission from [27]. Copyright (2022) by the American Physical
Society

Fig. 4 Ratio of flow rate amplitudes G
(A)
1 /G

(A)
2 of the species of He-Xe vs δ ∈ [

10−4, 102
]
.

Reprinted with permission from [27]. Copyright (2022) by the American Physical Society

0 correspond to the oscillatory single gas flow reported in [25]. The flow rate
amplitudes and phase angles of the mixture (C �= 0) depend on the flow parameters
similarly to the corresponding single gas ones (C = 0). Always, the mixture flow
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rate amplitude is larger and the phase angle is smaller than the corresponding ones of
the single gas. At large θ the dependency of G(A) on δ, is not monotonic, indicating
that there is a critical δ to obtain the maximum flow rate, while at small θ , G(A) is
decreased monotonically. This is due to the fact that at low oscillation frequencies
and as long as δ � θ , the variation of G(A) with δ has some resemblance with the
steady one, including the presence of the Knudsen minimum. Then, as δ is further
increased the effect of the inertia forces becomes significant and G(A) is decreased.
In addition, as θ is decreased (the oscillation frequency is increased),G(A) is always
decreased, while G(P) (the phase angle lag with respect to the pressure gradient) is
always increased reaching the limiting value of π/2 .

In Fig. 3, the distributions of the velocity and shear stress amplitudes u(A)α (y) and
*

(A)
α (y) of each species of the He–Xe gas mixture, with C = [0.1, 0.4, 0.7, 0.9],

are provided for δ = 10 and θ = 0.1. The specific values of δ and θ are suitable
for investigating the velocity overshooting phenomenon in the light and heavy
species of the mixture. Velocity overshooting is due to the fact that close to the
wall, viscous and pressure gradient forces actually add to each other due to the
large phase angle lag between them. As a result, the combined effect accelerates the
fluid to higher velocities than those produced in the core by the pressure gradient
forces acting alone. For Xe, compared to He, the velocity overshooting becomes
sharper, appearing, along with its maximum value, closer to the wall inside a
much thinner layer. In the core of the flow, the velocity amplitudes of both He
and Xe become flat and they are close to the corresponding analytical amplitudes
u
(A)
α = (θ/2δ) (m/mα) (see Section 3 in [27]). In parallel, *(A)

α (y) for both He
and Xe take their highest values at the wall and they are monotonically decreased
towards the channel center. The attenuation of the shear stress amplitude of He is
smooth, diffused in the whole distance from the wall to the center, while the one of
Xe is rapid in a narrow zone close to the wall and far from the wall the shear stress of
Xe becomes zero. Since the viscous forces in the case of He act in the whole distance
between the plates, while in the case of Xe only in thin zones close to the walls,
the above observations on the velocity overshooting of He and Xe are physically
justified. This description of the velocity and shear stress amplitudes remains valid
for all molar fractions tested [27]. In brief, it is seen that as the molecular mass
of the gas species increases, the species shear stress, which is created at the wall
and is diffused into the flow, attenuates more rapidly, i.e., the Stokes layer becomes
thinner and the Richardson effect more pronounced. Velocity overshooting may be
also present in even lower rarefaction parameters provided that higher oscillation
frequencies are applied [24].

The gas separation phenomenon for various values of δ and θ is discussed next.
Gas separation in rarefied steady-state pressure-driven binary gas flows though
capillaries may be analyzed by computing the ratio of the particle flow rates J1/J2,
which is monotonically increased as δ is decreased up to its maximum value, equal
to
√
m2/m1 (1− C) /C, in the free molecular limit (δ→ 0) [31].

In Fig. 4, the ratio of the flow rate amplitudesG(A)
1 /G

(A)
2 is provided in terms of δ

for the He–Xe gas mixture, with C = [0, 05, 0.35, 0.65, 0.95] and θ = [0.1, 1, 10].
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At θ = 10 the ratio G
(A)
1 /G

(A)
2 varies qualitatively similarly as in the steady-

state binary gas flow setup. It is about constant or slightly reduced in the free
molecular regime (at δ = 0 it is equal to the corresponding steady one) and then
it is monotonically decreased asymptotically going in the slip and hydrodynamic
regimes to one. In the free molecular regime, with regard to the gas rarefaction
parameter, as δ → 0, with θ > 0, Eqs. (9) and (10) tend to the corresponding
ones for steady-state binary gas flow in the free molecular limit [30]. However, at
θ = 1 and θ = 0.1 the behavior of G(A)

1 /G
(A)
2 is completely different. It remains

about constant in free molecular regime, but then, it is increased in the transition
regime and finally, as δ further increases, it keeps asymptotically increasing to some
constant value, which is the molecular mass ratio of the heavy over the light species
m2/m1 (G(A)

He /G
(A)
Xe = 32.8). This is in accordance to the closed-from expression

that as θ → 0, G1/G2 = m2/m1 [27]. This behavior, with the minimum and
maximum values of G(A)

1 /G
(A)
2 appearing at the free molecular and hydrodynamic

limits, respectively, and the increase in the transition regime (completely reversed
compared to the steady-state behavior) becomes more pronounced as θ is decreased.

It is evident that the oscillation parameter θ has a dominant effect on the
amplitude ratio of He over Xe, which is significantly increased as θ is decreased
(at θ = 0.1 the flow rate amplitude of He is about thirty times larger than of
Xe). This behavior is due to the corresponding behavior of the velocity amplitudes
and it is contributed to inertia forces, which are increased with the oscillation
frequency and they influence the bulk velocity amplitude of the heavy species much
more than of the light one. Therefore, as θ is decreased, the flow rate amplitude
of the heavy species decreases much more significantly than the light one and
although both amplitudes are decreased the velocity amplitude ratio of the light
over the heavy species is increased. This effect is magnified as the flow becomes
less rarefied overcoming diffusion effects due to increased intermolecular collisions
and therefore, as δ increases the amplitude ratio keeps increasing. There is no
contradiction to general theory, since oscillatory flows approach the hydrodynamic
regime, only when both δ and θ are adequately large.

3 Nonlinear Oscillatory Fully Developed Single Gas Flow

Consider the oscillatory nonlinear fully developed flow of a monatomic rarefied
gas, confined between two parallel infinite plates at temperature T0 located at
y ′ = ±H/2, due to an external harmonic force acting on the gas per unit mass
in the x−direction parallel to the plates [26]. The external force is defined as
F̃ ′
(
ω, t ′

) = F ′ cos
(
ω t ′

)
, where F ′ is the force amplitude. The convenient

complex factor exp
(−iωt ′) previously used, cannot be employed since the force

amplitude F ′ may be arbitrarily large and in nonlinear oscillatory flows the real and
imaginary parts are not separable.
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The oscillatory macroscopic distributions of practical interest, characterizing
the flow, include the x−component Ux ′

(
y ′, t ′

)
of the velocity vector, the number

density N
(
y ′, t ′

)
, the temperature T

(
y ′, t ′

)
, and the axial and normal heat flow

components Qx ′
(
y ′, t ′

)
and Qy ′

(
y ′, t ′

)
, respectively, with −H/2 ≤ y ′ ≤ H/2 and

0 ≤ t ′ ≤ 2π/ω. The most important overall quantities are the mass flow rate and
axial heat flow

M ′ (t ′) = m

∫ H /2

−H /2
N
(
y ′, t ′

)
Ux ′

(
y ′, t ′

)
dy ′ and Q̄x ′

(
t ′
) = 1

H

∫ H /2

−H /2
Qx ′dy

′,

(14)

respectively, where m is the molecular mass.
The parameters defining the above dimensional flow setup include the rarefaction

parameter and oscillation parameter defined in Eq. (8). Also, the external force
parameter, defined as F = F ′H/υ2

0 , is needed. It is the inverse of the square of the
Froude number (F r). The effect of the external force on the flow is increased with
F and nonlinear effects are becoming dominant. On the contrary, as F is decreased
the corresponding linear oscillatory flow, which is linearly proportional to the force
magnitude, is gradually recovered.

The following dimensionless variables are introduced:

x = x ′

H
, dx = dx ′

H
, y = y ′

H
, dy = dy ′

H
, t = t ′

(H/υ0)
(15)

n = N

N0
, ux = Ux ′

υ0
, τ = T

T0
, pxy = Πx ′y ′

2P0
, p = P

2P0
, qx = Qx ′

υ0P0
, qy = Qy ′

υ0P0
.

(16)

The equation of state becomes p = nτ/2.
Then, the dimensionless external force acting on the gas per unit mass becomes

F̃ (δ, θ, t) = F cos

(
δ

θ
t

)
, (17)

while the dimensionless flow rate and axial heat flow are given by

M (t) = M ′

2P0
(
H
/
υ0
) =

∫ 1/2

−1/2
n (t, y) u (t, y) dy, q̄x (t) =

∫ 1/2

−1/2
qx (y, t) dy.

(18)

Next, the typical DSMC approach, with the No Time Counter (NTC) scheme
proposed by Bird [32], is implemented. The time evolution of the particle system
within a small time interval�t ′ is split into two consecutive steps: free motion of all
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particles and binary collisions of particles. The time step �t ′ is nondimensionalized
as �t = �t ′/ (H/υ0). Purely diffuse boundary conditions are considered at the
walls, while periodic boundary conditions are applied in the x− and z− directions.
Hard sphere (HS) molecules are assumed. The external force is introduced by
accordingly altering the particle velocities at each time step, during the free motion.

Numerical results of the dimensionless flow rate and axial heat flow are provided
in terms of the force amplitude F = [0.05, 0.1, 0.5], corresponding to small,
moderate, and large force amplitudes, in a wide range of δ and θ . Since the results
of the nonlinear gas flow are similar with the linear ones in terms of δ and θ , only
the effect of the force amplitude is here discussed.

In Fig. 5, the flow rate amplitudes GA are divided by the external force F

in order to directly compare with the corresponding linear results (the linear
solution is proportional to F ) and they are presented for δ = [0.1, 1, 10], θ =[
0.1, 1, 10, 20, 102

]
and F = [0.05, 0.1, 0.5]. The linear flow rate amplitudes

obtained in [26] are also provided. It is seen that for F = 0.05 and F = 0.1 the
deviation between the corresponding DSMC and linear solutions is small for δ ≥ 1
and for all values of θ , while for δ = 0.1 and θ = [10, 20, 102] the deviation
is increased. It is evident that nonlinear effects are becoming more pronounced in
highly rarefied atmospheres (small δ) and low frequencies (large θ ). For F = 0.5 all
deviations between DSMC and linear results are further increased due to nonlinear
effects. Again, the largest deviations are occurring at δ = 0.1 and θ = [10, 20, 102]
(δ << θ ), while the deviations remain small for δ ≥ 1, even at high frequencies.
Overall, it may be stated that the presence of strong external harmonic forces does
not significantly affect the mass flow rate of the oscillatory flow, i.e., there is no
distortion of the amplitude-frequency response curve.

The space-average axial flow q̄x (t) is plotted over one cycle in Fig. 6 for
δ = [0.1, 1, 10] and θ = [

0.1, 1, 10, 20, 102
]

with F = [0.05, 0, 5]. It is readily
seen that there are significant qualitative differences between the corresponding
space-average heat flow for F = 0.05 and F = 0.5. For F = 0.05, q̄x (t) for
all values of δ and θ has a sinusoidal behavior over time. For F = 0.5, q̄x (t)
shows over one cycle various patterns. It is seen that for δ = 0.1 with θ = 0.1,
δ = 1 with θ = [0.1, 1] and for δ = 10 and θ = [0.1, 1, 10], i.e., in all cases

Fig. 5 Normalized oscillatory flow rate amplitude GA/F vs θ ∈ [10−1, 102
]
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Fig. 6 Space-average axial heat flux q̄x (t) vs t with F = 0.05 (up) and F = 0.5 (down) and
θ = [0.1, 1, 10, 20, 100]. Reproduced from [26], with the permission of AIP Publishing

where δ ≥ θ , q̄x (t) exhibits a sinusoidal pattern. On the contrary, in all cases where
δ < θ , q̄x (t) exhibits a rather complex non-sinusoidal pattern indicating that the
introduced nonlinearities are responsible for the generation of oscillatory motion
containing several harmonics. These results are in agreement with the discussion
in Fig. 5, where nonlinear effects are becoming more significant in highly rarefied
flow (small δ) and low oscillation frequencies (large θ ). Also, for both values of
F , the amplitude of q̄x (t), as of all other macroscopic quantities, is reduced with θ

and almost diminishes at very high frequencies, particularly as the gas becomes less
rarefied.

4 Concluding Remarks

A brief overview of rarefied, oscillatory, pressure-driven, linear and nonlinear, fully
developed flows of single gases and binary gas mixtures is provided, while the
detailed analysis may be found in [24–27]. Here, the discussion is focused on
the most notable findings, which include velocity overshooting, gas separation and
nonlinear effects. The following concluding remarks are stated:

• Velocity overshooting (or the so-called Richardson effect) is present in oscilla-
tory, rarefied single and binary gas mixture flows, but as the flow becomes more
rarefied higher frequencies are needed to trigger this phenomenon.
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• Gas separation in oscillatory binary gas mixture, may be present in the whole
range of gas rarefaction provided that the flow is subject to adequate high
oscillation frequency.

• Range of applicability of linear theory is much wider than expected in terms
of the imposed amplitude of the oscillatory pressure gradient. The oscillatory
axial heat flux is the mostly affected quantity and the only one that, due to
nonlinearities, may exhibit a complex pattern.

The present results may be useful in the design of technological devices operating
at moderate and high frequencies in the whole range of gas rarefaction, applicable
in various technological fields.
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