
Digital Twins of Robotic Systems:
Increasing Capability for Industrial
Applications

Tran Tuan Anh, Nguyen Thanh Tan, Dinh Than Le, Le Chi Hieu,
Jamaluddin Mahmud, M. J. A. Latif, and Nguyen Ho Quang

Abstract Digital twin is one of the emerging areas of research and technology
development and the enabling technologies of Smart Manufacturing and Industry
4.0. This study aims to develop and demonstrate a proof-of-concept prototype with a
case study of the digital twin of a robotic system. The system has twomain elements:
the virtual element and the physical or the real element. The virtual element of system
has been built based on the Unity platform, which is a cross-platform game engine
developed by Unity Software Inc., and the physical element was built with the use of
two servomotors and the NVIDIA® Jetson Nano™ Developer Kit. The virtual and
the physical elements are connected and communicated via using the TCP socket
protocol suite. A digital twin model of the ABB IRB 120 robot was successfully

T. T. Anh · N. T. Tan · D. T. Le · N. H. Quang (B)
Institute of Engineering and Technology, Thu Dau Mot University, Thu Dau Mot City, Binh
Duong Province, Vietnam
e-mail: quangnh@tdmu.edu.vn

D. T. Le
e-mail: than.ld@ieee.org

D. T. Le
Artificial Intelligence Laboratory, Faculty of Information Technology, Ton Duc Thang University,
Ho Chi Minh City, Vietnam

L. C. Hieu
Faculty of Engineering and Science, University of Greenwich, Kent ME4 4TB, UK
e-mail: c.h.le@gre.ac.uk

J. Mahmud
School of Mechanical Engineering, College of Engineering, Universiti Teknologi MARA, Shah
Alam, Malaysia
e-mail: jm@uitm.edu.my

M. J. A. Latif
Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya,
76100 Durian Tunggal, Melaka, Malaysia
e-mail: juzaila@utem.edu.my

Advanced Manufacturing Centre (AMC), Universiti Teknikal Malaysia Melaka (UTeM), Hang
Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
T. D. L. Nguyen and J. Lu (eds.), Machine Learning and Mechanics Based Soft
Computing Applications, Studies in Computational Intelligence 1068,
https://doi.org/10.1007/978-981-19-6450-3_23

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6450-3_23&domain=pdf
mailto:quangnh@tdmu.edu.vn
mailto:than.ld@ieee.org
mailto:c.h.le@gre.ac.uk
mailto:jm@uitm.edu.my
mailto:juzaila@utem.edu.my
https://doi.org/10.1007/978-981-19-6450-3_23


242 T. T. Anh et al.

developed and demonstrated. The collected data include the joint angle position
values of the physical and virtual models, and they are stored both locally and in the
cloud for the future system development, which can be used as for minimizing the
errors between the physical and virtual models of digital twins of robotic systems.
The successfully developed digital twinmodel can be considered as the cost-effective
solutions for demonstrating and evaluating potential applications of digital twins in
industrial practices as well as in higher educations and research.

Keywords IoT · Coffee disease · Coffee farm · Environmental factor

1 Introduction

A digital twin [1, 2] is a digital duplicate of a physical entity whose base is infras-
tructure and data and at its core are algorithms and models and applications software
and services. This technology along with robotics has been growing rapidly in recent
years and is considered by research and industry to be the main driving factors for
Industry 4.0. Under the development of artificial intelligence (AI) [3–7], robotics
[8–11] has made breakthrough developments in the capabilities of robots such as
performing complex jobs with high danger, taking care of health, cooperation with
people, and more. The combination of digital twin and robot applying new tech-
nologies and algorithms will be the foundation for building and developing smart
manufacturing. The trends of using AI to analyze data and make prediction are being
special care.

The Robot Operating System (ROS) platform is a collection of tool software
libraries that help build robotic applications with source code [12]. The control
algorithms tend to apply ML to increase performance and optimization process. In
this study, ROS is used as middleware to connect the virtual and real parts and makes
it possible to apply platforms like motion planning [13–16], autonomous mobile
robotics [17, 18].

A digital twin provides various features such as visualization, simulation with
real data, and performance monitoring. To do that, the amount of data collected must
be stored. Firebase is a cloud-based database service, accompanied by an extremely
powerful server system of Google. Firebase provides capabilities such as analytics,
databases, activity reports, and error reporting for easy development. It has versatile
services and trusted security. Therefore, the data in this project, namely the joint
values and the execution time, are all stored using Firebase.

Themain contribution of this paper includes data storage cloudwhich are the limi-
tations of the recent research papers [19–22]. In addition, we build virtual environ-
ment, calculated the kinematics, assure real time two-way data transmission between
virtual and analyze and evaluate the obtained data.

In this paper, we divide into five main sections. We first build a virtual model and
a virtual environment for the robot. Second, we build the real part system for the
robot. Third, we connect and transfer data between the real and the virtual models.



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 243

Fourth, we calculate the kinematics for the robot. Finally, the data will be transmitted
in both directions to control, evaluate errors, and store the data on both local storage
and the cloud.

2 Related Works

2.1 Proposed Framework

We have built a digital duplicate for a robot architecture. It is divided into two
components: virtual and real parts. The virtual element is a software built on the
Unity platform. For the real part, we use two servomotors with built-in encoder to
represent the two joints of the robot. These two motors are controlled via a PID
controller. In addition, we also use Jetson Nano with integrated ROS as a central
processor. The virtual element and the real part are connected to each other through
the TCP socket protocol suite.

Jetson Nano is a small but very powerful computer that allows to run multiple
neural networks in parallel for applications such as image classification, object detec-
tion, segmentation, and speech processing. Being in one platform, it is easy to use and
consumes less than 5 W. The Jetson Nano also delivers 472 GFLOPS to run modern
AI algorithms quickly, with a 64-bit ARM quad-core CPU, an onboard 128-core
NVIDIA GPU, as well as 4 GB of LPDDR4 memory. It is possible to run multiple
neural networks in parallel and handle several high-resolution sensors simultane-
ously. Here, users can control from the virtual model to real model and vice versa.
First, we will present the control process from virtual to real model. When the user
changes the robot’s joint position via the Unity controller, the matching angle data
will be sent through the central processor. The central processor will calculate the
forward kinematics to give the position of the end of the manipulator. Next, the
matching angles will be controlled by the Virtual robot model, and the data is also
given to the user interface to display the joint angle values and the coordinates of the
robot’s manipulator end point. After that, the data will be sent to the Physical robot
to control the real model through the TCP socket protocol suite.

In this study, we take two servomotors representing two joints of the robot. The
data will be sent to the central processor and then sent to the controller to control the
servomotor. Then the controller will take the position value of the servomotor and
send it to the central processor. The central processor will process the data through
the aforementioned formula and calculate the error between the matching angles of
the real and imaginary model. The data will then be stored on Cloud and sent back
to Unity which calculates the delay and then saves the data including the error, the
position of the real and virtual model’s joints, and the delay to local storage. For the
control process from real to virtual object, it will reverse the above process and start
from the controller at ROS. In this process, the Unity side controller will be ignored



244 T. T. Anh et al.

Fig. 1 System overview. The system consists of two parts: real and virtual models. On the left is
a virtual element system built on the Unity platform. On the right is the real part system

and the robot’s matching angle values will be fed directly into the Virtual robot model
through Unity’s central processor. Figure 1 is the architecture of the system.

2.2 Virtual Environment

We use the Unity platform to build and develop virtual environments. Unity is soft-
ware that specializes in games, so building a virtual environment is almost easy. In
addition, Unity also supports virtual reality and augmented reality for future devel-
opment of the system. To build a virtual environment on Unity, we used available
tools and some other graphics software like Blender. After building the objects of
the virtual environment, we started to set up features such as data communication,
kinematics, and rotation controller for the robot. In order to build a robot model
and put it into a virtual environment, we first downloaded the details of the ABB
IRB 120 robot model from the ABB homepage. Second, we edit and stitch the parts
together into a robot ABB IRB 120. Third, we set the coordinate axes for each joint
of the robot model. Fourth, we set the parameters of the model. Fifth, we exported
the model as a URDF file and stored it in the directory where the project is located.
Finally, we bring that model into the Unity virtual environment.

In the virtual environment with the Virtual robot model, the central processor will
process the data, store the data in local memory, and transmit the data to the real
model, meanwhile the controller helps the user to change the angles. This virtual
environment allows the data visualization, monitoring, and control. Figure 2 shows
the virtual environment built.



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 245

Fig. 2 Virtual environment in Unity includes robot model, robot status panel, and control panel

3 Approach: Digital Twin of Joint Angle of Robot Arm

3.1 Compare Inverse Kinematics Between the Construction
Algorithm and Robot Studio

After building the inverse kinematics algorithm, we compare the inverse kinematics
with Unity, MATLAB, and Robot Studio. We found that the coordinates of Unity,
the algorithm we built, and Robot Studio were interchanged. The joints values have
very low errors. These errors are due to the rounding process in the algorithm’s
calculation. The results showed that our inverse kinematic calculation is valid within
very acceptable limits of error. Table 1 is the test value obtained after testing.

3.2 Build a PID Controller

A PID controller is built for the purpose of controlling the motor rotation angle.
Planetary GP36 Planetary Reducer DC Servomotor with 1:27 deceleration ratio with
145 rpm integrated Optical Encoder 500 CPR (count per round) and two channels
A–B has been used. From here, we get the formula to convert between pulse count
to angle with angle being the current angle and p being the count of pulses, c is the
number of pulses of the rising or falling edge when the motor is turn 1 revolution,
and r is rate of motor reducer:

α(x) = p

c× r
× 360 (1)

= p

500× 27
× 360 = p

37.5
(2)

The PID controller for the motor includes three parameters: Kp; Ki; and Kd .
The above parameters are determined by the method of manual adjustment through



246 T. T. Anh et al.

Ta
bl
e
1

E
va
lu
at
io
n
of

in
ve
rs
e
ki
ne
m
at
ic
s

N
o

M
an
ip
ul
at
or

en
d
po
in
tc
oo
rd
in
at
es

R
ot
at
io
n
an
gl
e
(°
)

Jo
in
t1

Jo
in
t2

Jo
in
t3

Jo
in
t4

Jo
in
t5

Jo
in
t6

So
ft
w
ar
e

1
X
:3

74
R
X
:0

24
.4
8

6.
8

20
.9
6

44
.3
4

−3
6.
35

−3
8.
21

R
ob
ot

St
ud
io

Y
:1

37
.4
7

R
Y
:9

0
24
.4
7

6.
8

20
.9
6

44
.3
4

−3
6.
35

−3
8.
21

U
ni
ty

Z
:4

79
.3
9

R
Z
:9

0
24
.4
8

6.
8

20
.9
6

44
.3
4

−3
6.
35

−3
8.
21

M
A
T
L
A
B

2
X
:3

74
R
X
:0

−3
8.
4

17
.8
7

7.
78

−6
1.
37

−4
5.
05

52
.3

R
ob
ot

St
ud
io

Y
:−

23
9.
4

R
Y
:9

0
−3

8.
4

17
.8
7

7.
78

−6
1.
37

−4
5.
05

52
.3

U
ni
ty

Z
:4

79
.3
9

R
Z
:9

0
−3

8.
4

17
.8
7

7.
78

−6
1.
37

−4
5.
05

52
.3

M
A
T
L
A
B

3
X
:4

20
.1
2

R
X
:0

−2
2.
93

19
.0
1

−2
6.
64

72
.5
9

24
.1

−7
1.
04

R
ob
ot

St
ud
io

Y
:−

14
7.
3

R
Y
:9

0
−2

2.
93

19
.0
1

−2
6.
64

72
.5
9

24
.1

−7
1.
04

U
ni
ty

Z
:6

54
.7
2

R
Z
:9

0
−2

2.
93

19
.0
1

−2
6.
64

72
.5
9

24
.1

−7
1.
04

M
A
T
L
A
B

4
X
:4

20
.1
2

R
X
:0

25
.4
1

20
.9
5

−2
9.
2

−7
3.
21

26
.6
3

71
.3
4

R
ob
ot

St
ud
io

Y
:1

65
.3
7

R
Y
:9

0
25
.4
1

20
.9
5

−2
9.
2

−7
3.
21

26
.6
3

71
.3
4

U
ni
ty

Z
:6

54
.7
2

R
Z
:9

0
25
.4
1

20
.9
5

−2
9.
2

−7
3.
21

26
.6
3

71
.3
4

M
A
T
L
A
B

5
X
:5

35
.1
7

R
X
:0

−1
4

38
.4

−2
8.
05

−5
4.
23

−1
7.
35

52
.9
6

R
ob
ot

St
ud
io

Y
:−

11
5.
5

R
Y
:9

0
−1

4
38
.4

−2
8.
05

−5
4.
23

−1
7.
35

52
.9
6

U
ni
ty

Z
:5

16
.2
2

R
Z
:9

0
−1

4
38
.4

−2
8.
05

−5
4.
23

−1
7.
35

52
.9
6

M
A
T
L
A
B

6
X
:3

89
.9
3

R
X
:0

26
.4
9

22
.0
6

−4
4.
05

−5
3.
08

33
.9
1

47
.8
4

R
ob
ot

St
ud
io

Y
:1

58
.4
3

R
Y
:9

0
26
.4
9

22
.0
6

−4
4.
05

−5
3.
08

33
.9
1

47
.8
4

U
ni
ty

Z
:7

18
.2
3

R
Z
:9

0
26
.4
9

22
.0
6

−4
4.
05

−5
3.
08

33
.9
1

47
.8
4

M
A
T
L
A
B

7
X
:4

54
.3
9

R
X
:0

−2
4.
88

25
.7
3

−2
3.
7

−8
5.
64

−2
4.
95

85
.1
9

R
ob
ot

St
ud
io

Y
:−

17
7.
3

R
Y
:9

0
−2

4.
88

25
.7
3

−2
3.
7

−8
5.
64

−2
4.
95

85
.1
9

U
ni
ty

Z
:5

92
.5
1

R
Z
:9

0
−2

4.
88

25
.7
3

−2
3.
7

−8
5.
64

−2
4.
95

85
.1
9

M
A
T
L
A
B



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 247

experiment, respectively, Kp = 0.01; Ki = 0.002; and Kd = 0.001. The built-in PID
controller is used to control the rotation position of the motor with the feedback
signal being the number of pulses of the encoder. Through the PID algorithm, it will
determine the voltage to be supplied to the motor (the desired voltage value). U(V)
is the value of voltage to be supplied to the motor is shown by the formula:

U = Kp × e + Ki ×
(
epre + e × (

t − tpre
)) + Kd ×

(
e − epre

)

t − tpre
(3)

In which, Kp, Ki, Kd , respectively, are the PID coefficients declared above. t is
the current sampling time, and tpre is the immediate previous sampling time. t and
tpre have units of seconds (s). e is the error between the desired motor angle (p) and
the current motor angle (pcur). epre is the number of times before.

e = p − pcur (4)

Since the power supply for the motor driver (UPow) is 12 V source and the
microcontroller is 8-bit, the formula for converting voltage to control pulse (Pwm)
is

Pwm = U × 255

UPow
= U × 255

12
= U × 21.25 (5)

3.3 Two-Way Data Transfer Between Real and Virtual Models

Here, we install ROS on a Jetson Nano and set up nodes and topics to transmit and
receive data between Arduino and ROS and between ROS and Unity. ROS is an
intermediary that supports sending and receiving data between Arduino and Unity.
We use TCP socket protocol for two-way data transmission between ROS and Unity
and UART for two-way data transmission between ROS and Arduino.

A TCP end point running as a ROS node facilitates message passing to and from
Unity and ROS. The message being passed between Unity and ROS is expected to
be serialized as ROS would internally serialize them.



248 T. T. Anh et al.

4 Experiences and Results

4.1 Compare the Forward Kinematics Between
the Construction Algorithm and Robot Studio

After building the forward kinematics algorithm,we compare the forward kinematics
with Unity and Robot Studio. We found that the coordinates of Unity, the algorithm
we built, and Robot Studio were interchanged. Here, Unity’s X-axis is the Y-axis of
our algorithm andRobot Studio’sX-axis. Unity’sY-axis is the Z-axis of the algorithm
we built and Robot Studio’s Z-axis. Unity’s Z-axis is the X-axis of the algorithm we
built and the Y-axis of Robot Studio. The obtained values have very low errors. These
errors are due to the rounding process in the algorithm’s calculation. That proved our
algorithm can accept. Table 2 is the test value obtained after testing.

4.2 Error and Latency

The error between the virtual model and the real model is calculated by the central
processing unit of Physical robot. We take the value of the virtual model matching
angles minus the value of the real model matching angles. Here, Em is the value of
the joint virtual model and En is the value of the joint physical model with m and n
are from 1 to the last retrieved data stored at the system. From there, we calculate
the �E(t) of the system using the formula:

�E(t) = Em − En (6)

To calculate the delay, we took the time of data sent fromVirtual robot to Physical
robot set as t1 and time of data sent from Physical robot to Virtual robot set as t2.
From there, we calculate the �t(s) (latency) of the system using the formula:

�t(s) = t2 − t1 (7)

4.3 Data Storage

The data is stored locally, in the Firebase Cloud and Google sheet. Cloud Firestore’s
data transmission and reception rate is 10 Hz, and a limit of 50,000 data updates and
edits in one day for the free version. We also tried storing data on Google Sheets,
and it also receives and sends data at 10 Hz and is limited to 100 fetches and updates
per minute. The data is divided into three parts including the collection, the directory
and the file. The collection we named data contains folders inside. The name of each



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 249

Table 2 Evaluation of forward kinematics

No Joint 1–3 Joint 4–6 PX PY PZ Software

1 Joint1: 0 Joint4: 0 374 374 374 Robot Studio

Joint2: 0 Joint5: 0 0 630 0 Unity

Joint3: 0 Joint6: 0 630 0 630 MATLAB

2 Joint1: 10 Joint4: 100 413.94 135.34 414 Robot Studio

Joint2: 30 Joint5: 60 135.37 413.94 135 Unity

Joint3: 15 Joint6: 0 341.91 341.98 341 MATLAB

3 Joint1: 10.46 Joint4: 5.59 257.61 50.61 258 Robot Studio

Joint2: −18.76 Joint5: 25.7 135.37 257.64 51 Unity

Joint3: 6.02 Joint6: 2.86 341.91 665.05 665 MATLAB

4 Joint1: 20 Joint4: 35 315.36 143.03 315 Robot Studio

Joint2: 25 Joint5: 40 143.01 315.35 143 Unity

Joint3: 30 Joint6: 45 260.52 260.54 260 MATLAB

5 Joint1: 21 Joint4: 15 373.27 146.74 373 Robot Studio

Joint2: 30 Joint5: 10 146.74 373.25 147 Unity

Joint3: 24 Joint6: 18 256.2 256.19 255 MATLAB

6 Joint1: 26 Joint4: 18 321.37 177.03 321 Robot Studio

Joint2: 24 Joint5: 55 176.99 321.39 177 Unity

Joint3: 20 Joint6: 60 308.18 307.44 307 MATLAB

7 Joint1: 71 Joint4: 30 5.24 124.13 5 Robot Studio

Joint2: 58 Joint5: 100 124.12 525 124 Unity

Joint3: 56 Joint6: 90 165.12 165.11 165 MATLAB

8 Joint1: −131.53 Joint4: −63.18 −270.96 −255.33 −271 Robot Studio

Joint2: 5.04 Joint5: 31.64 −255.13 −271.17 −255 Unity

Joint3: 22.36 Joint6: −70.25 438.77 438.036 438 MATLAB

9 Joint1: −29.44 Joint4: −90.96 −130.88 21.15 −131 Robot Studio

Joint2: −47.9 Joint5: 39.75 21.01 −131.12 21 Unity

Joint3: −18.86 Joint6: 76.07 827.31 827.25 827 MATLAB

10 Joint1: 92.25 Joint4: −37.11 −13.8 −136.52 −14 Robot Studio

Joint2: −3.69 Joint5: −26.07 −134.91 −13.74 −136 Unity

Joint3: −89.73 Joint6: 70.26 919.8 919.44 919 MATLAB

folder is the time that the data inside that folder is stored in the Cloud. And the
file is inside the directory. The data including the time, the matching position of the
virtual model, the rotational position of the servomotor and the error between the
matching position of the virtual model and the position of the virtual model, and
rotation position of the servomotor at that time was collected.

We also used one more local data storage. With this local data storage, the
frequency is around 165 Hz and is limited to memory on local storage only. This



250 T. T. Anh et al.

is not a concern because local storage can expand memory and it also takes a long
time to fill this local storage. Where the STT column is the ordinal number of the
data sorted in ascending order based on the time that the data was stored, the Time
column is the column that stores the data about the time that the data was stored.
The Error column is the column used to represent the error between the matching
position of the virtual model and the real one. The Joints Unity column is the column
representing the joint position of the virtual model, and the last column is the Joints
Servo column, which represents the rotation position of the servomotor.

4.4 Results

The analyzed data showed that the system takes about 2 s for the system to stabilize
after booting. Here, the sampling frequency is about 165 Hz. They are shown in
Fig. 3. Here, the vertical axis is the value of the number of samples taken in one
second and the horizontal axis is the time the sample is taken. The system latency is
about 30 ms with an error of ± 2 degrees. They are shown in Fig. 4. Figure 4 has
the vertical axis being the error between the matching angle of the virtual and real
model (degrees) and the horizontal axis being the time (ms).

Here, we have simulated servomotor power failure. Figure 5 shows the difference
of the data when the fault occurs and when the failure occurs. When there are 3000
data stored, we have disconnected the servomotor and powered up again when 3150
data is stored, and we have also disconnected the servomotor when there is 4665 data
until it stops completely system. Error is error of joint between real and virtual when
the system is operating normally.

Fig. 3 Number of samples received in 1 s



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 251

Fig. 4 Error between real and virtual model

Fig. 5 Error between real and virtual model when there is a problem

5 Conclusion

In this paper, we have successfully built a digital twin model of ABB IRB 120
robot. The digital twin model has developed communication between real and virtual
through the TCP socket protocol suite. We also calculated the forward kinematics of
the robot and compared it with the forward kinematics of Robot Studio. In addition,
we also build a PID controller for the engine and store the data on Cloud and local
storage for later machine learning development.

The systemoperates stablywith amaximum frequency of 165Hzwhen not storing
data and 10Hzwhen putting data in the cloud. Calculation of kinematics gives results
with very small error due to rounding of values in the calculation. The PID controller
is stable and has been able to control the position of the motor as desired. Data is



252 T. T. Anh et al.

transmitted bidirectionally with very small errors due to rounding during conversion
in calculations.

In the future, we will increase the frequency of sending data to the cloud and
use machine learning to analyze the collected data to help monitor and evaluate the
system. We will then make digital copies of typical mobile robots like manipulator
platform and rehabilitation robots that we plan to do in the near future.

Appendix

Kinematics DH

We use ABB IRB 120 robot model as a model to calculate forward and experimental
kinematics. We have set representation of the coordinate positions and orientation
based on the joints of the robot model as shown in Fig. 6. Figure 6 is a coordinate
axis location diagram with the red axis being the X-axis, the orange axis being the
Y-axis, and the blue axis is the Z-axis.

The DH parameters of the ABB IRB 120 for the specified joint frames in Fig. 6
are presented in Table 3. Here, θi is the relative rotation of the stitches, ai is the
length, αi is the twist angle of the stitch, and di is the distance between the stitches.

According to the manufacturer’s specifications, the limits of joints are shown in
Table 4.

Each link can bethink as a coordinate transformation from the previous coordinate
system to the next coordinate system. That transformation is described as a product of
translations along and rotations about X- and Z-axes. They are expressed in formula
33:

n−1Tn =

⎡

⎢
⎢
⎣

cos θn − sin θn cosαn sin θn sin αn an cos θn

sin θn cos θn cosαn − cos θn sin αn an sin θn

0 sin αn cosαn dn
0 0 0 1

⎤

⎥
⎥
⎦ (8)

Table 3 DH parameters of robot ABB IRB 120

Joints θi (°) ai (mm) αi (°) di (mm)

1 θ1(+90) 0 −90 290

2 θ2(−90) 270 0 0

3 θ3 70 −90 302

4 θ4 0 90 0

5 θ5 0 −90 0

6 θ6 0 0 72



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 253

Fig. 6 Schematic and
frames assignment of ABB
IRB 120. 0P =
[0R1.1R2.2R3.3R4.4R5.5R6].6P
= 0R6.6P is the direction and
coordinate location

Table 4 Table ranges of
motion in every axes

Joints Lower limit [deg] Upper limit [deg]

1 −165 165

2 −110 110

3 −110 70

4 −160 160

5 −120 120

6 −400 400

Forward Kinematics

The purpose of this part is to find the absolute position and orientation of each frame
(which is attached to each joint/servo) in reference to the global coordinate system,
which is the very first frame attached to the shoulder. Apply Table 1 attributes to
Eq. 33, we get transformation for each link.

Now that we have each transformation, we can calculate the position and
orientation of each frame in reference to the “global coordinate system.”

0T6 =0 T 1
1 T

2
2 T

3
3 T

4
4 T

5
5 T6 (9)

=

⎡

⎢⎢
⎣

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

⎤

⎥⎥
⎦ (10)

In matrix 35, the parameters r form the rotation matrix of the robot and the
parameter P is the coordinate position of the end point of the manipulator. From
that, we can derive the formula for determining the position of the manipulator’s end
point coordinates as follows:



254 T. T. Anh et al.

px = d5c1s234 + d4s1 − d6c1c234 + a2c1c2 + d6c5s1 + a3c1c2c3 − a3c1s2s3

py = d5s1s234 − d4c1 − d6s1c234 + a2c2s1 − d6c5c1 + a3c2c3s1 − a3s1s2s3

pz = d1 − d6s234s5 + a3s23 + a2s2 − d5c234

Inverse Kinematics

A very large number of joints make it difficult to solve the trigonometric equation,
we can divide 6 joints into two groups of joints: Group one is from joint 1 to joint 3,
and group two is from joint 4 to joint 6. For joint 1 to joint 3: Pc point coordinates
are shown in Fig. 7. Parameters d1, a2, a3, and d4 are taken in Table 3. Change to
new end point Pc =

[
Pcx ; Pcy; Pcz

]
with the matrix a being the cosine of the three

Euler angles:

Pc = P[x; y; z]− d6a
[
ax ; ay; az

]
(11)

Perform inverse matrix multiplication:

(0T1)
−1 ×

⎡

⎢⎢
⎣

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

⎤

⎥⎥
⎦ = (1T2)(

2T3)(
3T4) (12)

From 2, we have the formula

Fig. 7 Point coordinates Pc
(Pcx ; Pcy ; Pcz)



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 255

Pcy cos(θ1) − Pcx sin(θ1) = 0 (13)

=> θ1 = a tan 2
(
Pcy, Pcx

)
(14)

2a2a3 cos(θ3) − 2a2d4 sin(θ3) = n2x + n2y −
(
a22 + a23 + d2

4

)
(15)

After simplifying, we get

θ3 = a tan 2

(

±
√

1− (
D

ρ
)2,

D

ρ

)

− a tan 2(d4, a3) (16)

with

D = n2x + n2y −
(
a22 + a23 + d2

4

)
(17)

ρ = 2
√

(a2a3)2(a2d4)2 (18)

nx = Pcx
cos(θ1)

(19)

ny = Pcz − d1 (20)

Continuing to multiply the inverse matrix, we have

(1T2)
−1(0T1)

−1 ×

⎡

⎢⎢
⎣

r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

⎤

⎥⎥
⎦ = (2T3)(

3T4) (21)

We have the equation

d4 cos(θ3) + a3 sin(θ3) = cos(θ2)(d1 − Pcz) + Pcy sin(θ1) + sin(θ2)Pcx cos(θ1)

After simplifying, we get

θ2 = ϕ − a tan 2

(

±
√

1− (
M

σ
)2,

M

σ

)

(22)

with

M = d4 cos(θ3) + a3 sin(θ3) (23)



256 T. T. Anh et al.

σ =
√
p2x + p2y (24)

ϕ = a tan 2
(
py, px

)
(25)

px = Pcx cos(θ1) + Pcy sin(θ1) (26)

py = d1 − Pcz (27)

For joint 4 to joint 6: We can calculate the transformation matrix from joint 4 to joint
6

3T6 =3 T 4
4 T

5
5 T6 =

⎡

⎢⎢
⎣

c4c5c6 − s4s6 −c4c5c6 − s4c6 c4s5 c4s5d6
s4s5c6 + c4s6 −s4s5s6 + c4c6 s4s5 s4s5d6
−s5c6 s5s6 c5 c5d6
0 0 0 1

⎤

⎥⎥
⎦

We get rotated matrix

3R6 =
⎡

⎣
c4c5c6 − s4s6 −c4c5c6 − s4c6 c4s5
s4s5c6 + c4s6 −s4s5s6 + c4c6 s4s5
−s5c6 s5s6 c5

⎤

⎦ (28)

but

0R6 =0 R3
3R6 (29)

or

3R6 = (0R3)
T (0R6) =

⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ (30)

From matrixes 18 and 20, we have:

cos(θ5) = r33 (31)

sin(θ5) = ±
√
1− r233 (32)

=> θ5 = a tan 2

(
±

√
1− r233, r33

)
(33)



Digital Twins of Robotic Systems: Increasing Capability for Industrial … 257

sin(θ5) sin(θ6)

− sin(θ5) cos(θ6)
= r32

r31
=> θ6 = a tan

(−r32
r31

)
(34)

sin(θ5) sin(θ4)

sin(θ5) cos(θ4)
= r23

r13
=> θ4 = a tan

(
r23
r13

)
(35)

From Eqs. (14), (16), (22), (33), (34), (35), we have obtained the formula to
calculate the joint angle values to complete the inverse kinematics problem for the
ABB IRB 120 robot. From here, we will build a robot controller based on this
algorithm.

References

1. Wu, Y., Zhang, K., & Zhang, Y. (2021). Digital twin networks: A survey. IEEE Internet of
Things Journal, 8(18), 13789–13804.

2. Lim, K. Y. H., Zheng, P., & Chen, C.-H. (2020). A state-of-the-art survey of digital twin:
Techniques, engineering product lifecycle management and business innovation perspectives.
Journal of Intelligent Manufacturing, 31, 1313–1337.

3. Russell, S., &Norvig, P. (2010). Artificial intelligence: A modern approach (3rd edn.). Prentice
Hall.

4. Bishop, C. M. (2006). Pattern recognition and machine learning (information science and
statistics). Springer-Verlag.

5. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning. MIT Press. http://www.dee
plearningbook.org

6. Le, T. D., Huynh, D. T., & Pham, H. V. (2018). Efficient human-robot interaction using deep
learning with mask R-CNN: Detection, recognition, tracking and segmentation. In 2018 15th
International conference on control, automation, robotics and vision (ICARCV) (pp. 162–167).

7. Le, T. D., & Pham, H. V. 2020. Intelligent data analysis (Chap. 5, pp. 85–114).Wiley. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119544487.ch5

8. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2010). Robotics: Modelling, planning
and control. Springer Publishing Company.

9. Siciliano, B., & Khatib, O. (2007). Springer handbook of robotics. Springer-Verlag.
10. Nguyen, H. V., Le, T. D., Huynh, D. D., Nauth, P.: Forward kinematics of a human-arm system

and inverse kinematics using vector calculus. In 2016 14th International conference on control,
automation, robotics and vision (ICARCV) (pp. 1–6).

11. Than, L., & An, L. (2020). Manipulation-based skills for anthropomorphic human-arm system
based on integrated anfis and vector calculus. bioRxiv. [Online]. Available: https://www.bio
rxiv.org/content/early/2020/02/10/2020.02.10.941344

12. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A.
Y. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source
software.

13. Palmieri, L., &Arras, K.O. (2015). Distancemetric learning for rrt-basedmotion planningwith
constant-time inference. In 2015 IEEE International conference on robotics and automation
(ICRA) (pp. 637–643).

14. Palmieri, L., & Arras, K. O. (2014). A novel rrt extend function for efficient and smooth mobile
robot motion planning. In 2014 IEEE/RSJ International conference on intelligent robots and
systems (pp. 205–211).

15. Le, T. D., Bui, D. T., & Pham, V. H. (2018). Encoded communication based on sonar and
ultrasonic sensor in motion planning. IEEE Sensors, 2018, 1–4.

http://www.deeplearningbook.org
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119544487.ch5
https://www.biorxiv.org/content/early/2020/02/10/2020.02.10.941344


258 T. T. Anh et al.

16. Le, T., & Le, T. D. (2018). Search-based planning and replanning in robotics and autonomous
systems. in R. Róka (Ed.), Advanced path planning for mobile entities. IntechOpen, 2018,
Chap. 4. [Online]. Available: https://doi.org/10.5772/intechopen.71663

17. Le, T., Hung, B. T., VanHuy, P. (2021) Search-Based Planning and Reinforcement Learning for
Autonomous Systems and Robotics (pp. 481–501). Springer International Publishing. [Online].
Available: https://doi.org/10.1007/978-3-030-77939-9_14

18. Le, T. D., Le, A. T., Nguyen, D. T. (2017). Model-based q-learning for humanoid robots. In
2017 18th International conference on advanced robotics (ICAR) (pp. 608–613).

19. Garg, G., Kuts, V., & Anbarjafari, G. (2021). Digital twin for fanuc robots: Industrial robot
programming and simulation using virtual reality. Sustainability, 13(18). [Online]. Available:
https://www.mdpi.com/2071-1050/13/18/10336

20. Mengacci, R., Zambella, G., Grioli, G., Caporale, D., Catalano, M. G., & Bicchi, A. (2021).
An open-source Ros-gazebo toolbox for simulating robots with compliant actuators. Frontiers
in Robotics and AI, 8. [Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.
2021.713083

21. Dröder, K., Bobka, P., Germann, T., Gabriel, F., & Dietrich, F. (2018). A machine learning-
enhanced digital twin approach for human-robotcollaboration. Procedia CIRP, 76, 187–192.

22. Wang, X., Liang, C. -J., Menassa, C., & Kamat, V. (2020) Real-time process-level digital
twin for collaborative human-robot construction work. In F. H. T. K. Osumi Hisashi (Ed.),
Proceedings of the 37th International symposium on automation and robotics in construc-
tion (ISARC), (pp. 1528–1535). International Association for Automation and Robotics in
Construction (IAARC).

https://doi.org/10.5772/intechopen.71663
https://doi.org/10.1007/978-3-030-77939-9_14
https://www.mdpi.com/2071-1050/13/18/10336
https://www.frontiersin.org/article/10.3389/frobt.2021.713083

	 Digital Twins of Robotic Systems: Increasing Capability for Industrial Applications
	1 Introduction
	2 Related Works
	2.1 Proposed Framework
	2.2 Virtual Environment

	3 Approach: Digital Twin of Joint Angle of Robot Arm
	3.1 Compare Inverse Kinematics Between the Construction Algorithm and Robot Studio
	3.2 Build a PID Controller
	3.3 Two-Way Data Transfer Between Real and Virtual Models

	4 Experiences and Results
	4.1 Compare the Forward Kinematics Between the Construction Algorithm and Robot Studio
	4.2 Error and Latency
	4.3 Data Storage
	4.4 Results

	5 Conclusion
	Appendix
	Kinematics DH
	Forward Kinematics
	Inverse Kinematics
	References




