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Abstract In recent decades, lots of robots are designed and produced all over the
world because of their important applications. Nowadays, using the robot is more and
more popular in many different fields. In practice, the modeling and control of most
of the robots are performed with an important assumption that all links of a robot are
rigid bodies. This is to simplify the modeling, analysis, and control for a robot. The
elastic deformation of a link always exists during a robot’s operation. This elastic
deformation of a flexible robot has significant effects on several characterizations and
specifications of the robot such as the robot strength, the accuracy of the robot motion,
the robot control, etc. In the literature, there have been many studies addressing the
dynamics modeling and control of flexible robots. This paper presents an overview
of the mathematical methods which have been used for the kinematic and dynamic
modeling of the flexible manipulators.
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1 Introduction

Modern design always aims at reducing the mass, simplifying the structure, and
reducing the energy consumption of systems, especially in robotics. A priority direc-
tion in robot design is to optimize structure with longer and thinner links. However, for
these structures such as flexible robots, the rigidity and motion accuracy are usually
reduced because of the elastic deformation of the links. Therefore, taking into account
the effects of elastic factors is necessary when investigating the dynamics and control
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of flexible robots. In comparison with the traditional rigid robots, the flexible ones
have potential advantages such as lower overall mass or energy consumption, small
actuator, and greater payload-weight ratio. However, owing to the complex nature of
such flexible systems, mathematical modeling has involved complex processes.

Since the modeling and control of the flexible robots are so complex, a simple
robot structure with one or two-flexible links, connected by only rotational joints is
mainly studied by most researchers. A few works consider the translational joints.
Note that the use of different joint types when designing a flexible robot improves the
flexibility for the robot. However, a robot model consisting of rotary and translation
joints make the kinematic, dynamic modeling, and control become more complex
than models which have only rotational joints. In the literature, there have been
several studies focusing on the model of two-link flexible robots with all revolute
joints [1-15] (Fig. 1).

Although there have been some researches considering the presence of the pris-
matic joint, they mainly focused on architectures of one or two links [16-20]. A
few works consider the prismatic joints for multi-link manipulators [1, 13]. As for
different configurations of the flexible manipulators, different modeling methods
have been used. Two mainly modeling approaches, including the assumed modes
method (AM method) [4, 7, 9, 20-27] and the finite elements method (FE method)
[5, 6, 8, 17, 19, 28-34] have been applied to describe the motion of flexible manip-
ulators. The governing equations for the flexible robots can be derived by using the
Newton—Euler equation [3, 5, 16, 20, 35], the Lagrange-Euler equation [4, 6, 8,9, 11,
12, 14,17, 19, 21, 22, 30, 36-38], or the Gibbs-Appel equation [1, 13, 15, 39]. This
paper presents an overview of the mathematical methods that have been exploited to
model the kinematics and dynamics of flexible robots.
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2 A Literature Review of Flexible Robot Modeling
and Control

Due to the complexity of the formulation of the flexible robot dynamics, most of the
works focus on a simplified robot mechanism consisting of one or two planar flexible
links.

In recent decades, a number of researchers have made their great contributions and
several approaches are now available to solve the mathematical modeling problem
for the flexible robot. The surveys of the state of the art can be found out in [40—47].
The previous works in the literature, which have been focused on the modeling and
analysis for different flexible robot’s types, can be categorized as the follow.

One-link flexible robot [16, 17, 22, 27, 30, 36, 40, 48-51];
Two-link flexible robot [2, 5, 17, 19-21, 37, 41, 52-58], and
Multi-link flexible robot [4-9, 11-13, 59, 60].

In particular, for the multi-link flexible robot, most of the researches emphasized
the robot architectures with all revolute joints. As discussed earlier in the Introduction
section, some of the works [1, 13] proposed the methods to model the dynamics
of the robot with the multi-flexible links, of which the links are connected one
another by prismatic joints. However, the work in [1] just considered the rotating
and reciprocating motion of the flexible links with the predetermined length and
revolute—prismatic joints, and the authors in [13] studied the dynamics of the robot
structure with multi-flexible links connected by the sliding prismatic joints, but in
this research, the effects of link’s time-variable length have not considered yet.

Note that there also exist some researches concerning with the flexible robot
having prismatic joints. Wang and Wei [16] investigate the dynamics of a one-link
flexible arm modeled by a moving slender prismatic beam. Al-Bedoor [17] addresses
the dynamic modeling of one sliding link with a fixed prismatic joint. This joint
in the two-link flexible robots was modeled by Ju [18] and Pan [19]. Wang [34]
considers parallel robots having flexible links and sliding prismatic joints. The multi-
link flexible robots with prismatic joints are considered in [1, 13]. For the kinematic
and dynamic modeling, both the mentioned researches employed the assumed modes
method which has proven the effectiveness to numerically simulate the single-link
flexible arm [42].

Though the prismatic joint has been taken into account for the mathematical
modeling, there was a little work, devoted to the flexible robot having two specific
kinds of prismatic joint as shown in Fig. 2a and b.

The fixed prismatic joint can be characterized by the fixed and sliding motions
between the joint and two consecutive links (i — 1) and link (i), respectively. The
length of the link (i) varies in time (Fig. 2a), whereas when two links connecting
by a sliding prismatic joint, the link (i — 1) is a variable length. Due to these char-
acterizations, for a structure with the first case (Fig. 2a), the relative motion of the
current link i depends on the joint’s motion and the elastic deformation at the distal
end of the previous link (i — 1). Nonetheless, this deformation does not affect the
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Fig. 2 Two kinds of prismatic joint

link i motion in the configuration with the sliding prismatic joint. In this case, the
effect of link (i — 1) deformation is considered through the elastic deformation at
the coincide sliding element in the connection of the link (i — 1) and the joint. This
element moves along the link (i — 1), , depending on the state of the flexible robot
(Fig. 2b). The dynamic model of the flexible robot with those mentioned kinds of
prismatic joint is built based on the basic assumption of the element having zero
elastic deformation. It is noticeable that the elasticity effects involves the variable
length of such links should be taken into account to propose a model for flexible
robots consisting of all the joint types as discussed.

In theory, formulating the dynamics of the multi-link flexible robot with various
jointtypes is adifficult task. A few works have been considered this issue to generalize
the dynamic modeling and control for this robot’s kind [61, 62].

To formulate the flexible robot dynamics model, several analytical approaches
and computational methods have been investigated. Generally, the flexible robot is
investigated as continuous systems that are not confined by the number of freedom
degrees, and described by nonlinear differential equations that cannot be solved
exactly. To describe the dynamic motion of flexible robots, two discretized methods
of the assume mode method (AM) and the finite element method (FE) are often
used. Comparing the effectiveness of these methods, in [42, 43], the authors pointed
out that the main disadvantage of the AM method is difficult to find the modes for
non-regular cross-sections links and multi-link manipulators. Moreover, the authors
in [42] also proved that the FE method is simple for the computations, resulting
in suitable applications to model the multi-links flexible arms and the real-time
control law computation. In practice, the FE method has been widely utilized to
model the flexible robot’s dynamics [5, 6, 8, 17, 19, 28-34]. In the FM method-
approach, the flexible links are discretized by finite elements with the same length.
The dynamic model is built based on the global mass matrixes, stiffness matrixes
of the entire system. These matrixes are constructed by the assembly of the mass
and stiffness matrix of each element, which is formulated through the calculation of
the kinetic and potential energy in the nodal coordinates. The assembled procedure
is complicated, requires expensive computational time. Especially, with the flexible
robots that consist of prismatic joints, this process is even more complicated due to
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the time-varying boundary conditions. Besides, there are many studies that has been
focused on proposing the dynamic modeling for the flexible robots, combining the
analytical approaches with the FE method or the AM method, such the approaches
are:

Newton—Euler approach [3, 5, 6, 16, 20, 35, 63-65],

Approach based on Lagrange’s equations [4, 6, 8, 9, 11, 12, 14, 17, 19, 21, 22,
30, 36-38],

Approach based on Hamilton’s equations [18, 66],

Approach based on Gibbs—Appell equations [1, 13, 15, 39], and

Approach based on Kane’s equations [10, 53].

Note that the FE method has been widely used as an efficient approach to model
complex structures. In [3], Augustynek proposed the dynamic modeling for flexible
robot links—Ilike beam with rotary joint, considering the assembly errors. Based on
the FM method, Naganathan [5] presented the nonlinear model to investigate the
effect of elastic deformations of the flexible links, coupling with the kinematics of
joints. In [6], the authors incorporated a Newton—Euler analytical model with the
FM method to model the flexible robot with all revolving joins. It was shown that, in
the FE method, the elastic manner of a flexible robot is assessed through the overlay
of elastic deformation of a rigid body. In [8], based on the Lagrangian approach
and FM method, Usoro proposed the formulations of the mathematical equations for
the dynamic of lightweight flexible links. In another approach, the authors in [10]
developed a recursive formulation in the matrix form for flexible multi-link systems
by combining the FM method with Kane’s equations. The modeling and controlling
of the flexible manipulators with a prismatic joint were also developed in [17, 19].
The consideration of nonlinear behavior in the dynamic of the flexible was presented
in [28] by Du. In this study, the dynamic was modeled in three-dimension by using
the FM method, and the inertial of the link is consolidated at the element’s nodes.
Tokhi [30] developed the experiments to validate the dynamic model of the flexible
system. In [34], the dynamic of flexible link in the parallel foundation was described
by the finite element coupling with Lagrangian equations. By using the FE method
and Kane’s equations, comparing with other methods, Lochan [46] discussed the
advantages of the FE method in the modeling of the flexible robot’s dynamic. In
this research, the main benefits of the FE method were pointed out, including the
ease to handle the nonlinear conditions and complicated boundary conditions and
the independence of the dynamic modeling on the link’s shape.

In [61], the kinematics response of the joints and flexible links were described
with a proposed transformation matrix. Also, the dynamic model was implemented
by introducing a new recursive formulation. In the next developed step, the authors
in [67] attempted to propose the dynamic model and its inverse analysis for a class
of flexible robots, consisting of two-flexible links by using the FM-Lagrangian
approach. The inverse dynamic analysis was then solved by the bisection method.
Another attempt to propose new mathematical equations for flexible robot dynamics
analysis, aiming at simplifying the computation process was presented in [62].
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Based on the Lagrangian formulation, Tokhi [30], Al-Bedoor [31], Mahto [32]
focused on one link—one rotary joint flexible robot, Karagulle [33] considered the
manipulators, configured by two-links and two rotary joints, Al-Bedoor [17] and Pan
[19] emphasized on the robot with one flexible link and one fixed prismatic joint.
Wang [34] accounted for sliding prismatic joints in the architecture of a parallel robot,
and Usoro [8] studied multi-link robot structure. In these researches, the matrix
of each element was calculated based on the elastic deformation at its nodes and
considering the previous joint variables and the elastic deformation of the nominal
articulation. In [5, 6], the calculation of each element’s matrix was derived concerning
the freedom degree of nodes. Global matrices were assembled from the elemental
matrices. In particular, Karagulle [33] assembled directly the global mass matrix,
entry by entry. In the study by My et al. [61, 62], a recursive kinematic and dynamic
formulation has been developed for the multi-link flexible robot with respect to
different joint types.

Itis seen that the FEM Lagrangian approach has been mostly employed in the most
recent works, such as Mahto [32], Karagulle et al. [33], and My et al. [61, 62, 67],
in which the modeling and controlling of the flexible robots have been investigated.
In these recent FEM formulations, a flexible robot consisting of n links is usually
considered.

In Fig. 3, two links of a flexible manipulator are shown. The two links are
connected by a joint i which is representative of different joint types.

For every element i j, the elemental mass matrix was usually written as follows.

lie
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Fig. 3 General schematic of a flexible link’s pair
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where m; is the mass of the element i, and the Jacobian .J;; is calculated as follows

8r0,~ j
Jij = g ()

In Eq. (2), r¢;; is a point on the beam element ij, and g is the vector of the
generalized coordinates. As a consequence, the mass matrix can be cumulatively
calculated as follow.

n;

M:ZZMU 3)

i=1 j=1

In the same approach, the global stiffness matrix for the governing equation can
be calculated as follow.

noon;

K=Y YK, )

i=1 j=1

When the matrices M and K are determined in a symbolic form, the governing
equation for a flexible robot is expressed as follows.

M(q)g+C(q.9)4+Kq+G(g) =F (&)

Note that G represents the gravity effects, the Coriolis and centrifugal matrix C
can be determined by using Christoffel method and F is the forces/torques’ vector.

Besides the FM method, to model the flexible robot arms, the AM method also
has been widely exploited. In this method, the link’s elasticity is modeled by a series
of finite modes, in which spatial model eigenfunctions and time-varying amplitudes
were truncated. Based on Lagrange’s equations, several investigations were carried
out for the formulation of the dynamic equations in [4, 6, 8, 9, 11, 12, 14, 17, 19,
21, 22, 30, 36-38, 68-73]. Also, with the same purpose of dynamic formulation,
Gibbs—Appell’s formulation was applied in the works by Korayem [1] and Khadem
[13] derived, Hamilton’s principle was used in [ 18, 66], and Newton—Euler equations
were adopted in [3, 5, 6, 16, 20, 35, 63-65].

Note that the modeling of the flexible robots has been also mentioned in some
investigations on control law design [74—77]. Matsuno [78] designed the laws to
control the one-link flexible robot based on analyzing the AM—Lagrangian dynamic
model. Bolandi [79] proposed the nonlinear controlling law for tracking the exact tip
of the flexible arm. Based on Hamilton’s equations, Zhang [80] formulated dynamic
equations with the purpose of vibration control for one-link flexible robot. Apart
from the aforementioned works, there have been many studies related to different
aspects of modeling and analyzing flexible robotic systems. The inverse dynamics
of the flexible arm were presented in [37, 48, 65, 81-83], the stiffness modeling
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and characteristics of robot were considered in [84—86], and the experiments were
implemented in [61, 87-89].

3 Conclusion

Though flexible robots have many outstanding advantages in comparison with tradi-
tional rigid robots such as energy-saving, able to operate with a small actuator, and
highly efficient load carrying. The stiffness of flexible robots is a critical issue for
their design and control. The flexibility of the flexible robots increases the computa-
tional complexity of the kinematic and dynamic modeling for the robots, especially
when considering a multi-link flexible robot with different joint types. There has
been a massive amount of research work concerning flexible robots. Various config-
urations of flexible robots are taken into account but mainly focus on robots with a
single-flexible link or two-flexible link. A few attempts consider the multi-link flex-
ible robots. The rotational joint is a basic joint type that is considered in most studies.
A few works are interested in prismatic joints. The combination of the revolute joint
and translational joint in an elastic robot configuration is still problematic to deal
with. The AM method and the FE method are mainly used for the formulation of the
dynamic equation. However, the AM method is suitable for configurations with less
elastic stitches. The FE method has many advantages to formulate the mathematical
equations of the flexible multi-link robot even with different joint types. Besides,
there have been several mathematical approaches for the derivation of the flexible
robot’s dynamic equations. Nevertheless, the Newton—-Euler method, Lagrangian
formulation, Hamilton principle, and Kane equations are widely used for flexible
robot modeling.
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