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Abstract An active area of recent research is the study of global existence and
blow up for nonlinear wave equations where time depending mass or damping are
involved. The interaction between linear and nonlinear terms is a crucial point in
determination of global evolution dynamics. When the nonlinear term depends on
the derivatives of the solution, the situation is even more delicate. Indeed, even in
the constant coefficients case, the null conditions strongly relate the symbol of the
linear operator with the form of admissible nonlinear terms which leads to global
existence. Some peculiar operators with time-dependent coefficients lead to a wave
operator in which the time derivative becomes a covariant time derivative. In this
paper we give a blow up result for a class of quasilinear wave equations in which the
nonlinear term is a combination of powers of first and second order time derivatives
and a time-dependent factor. Then we apply this result to scale invariant damped
wave equations with nonlinearity involving the covariant time derivatives.

1 Introduction

We study the following Cauchy Problem:

⎧
⎨

⎩

ztt − �z = (1 + t)γ A(t, x, z, zt , zt t ) ,

z(0, x) = f (x) ,

zt (0, x) = g(x) ,

(1)
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with x ∈ R
3, t ≥ 0 and γ ∈ R. In particular we want to deal with A uniformly

bounded with respect to t and γ < 0.
The importance of this quasilinear wave equation with time-dependent potential

comes from the special scale invariant wave equation. Let μ ∈ R. The equation

ztt − �z = (1 + t)−
μ
2 (p−1)|z|p

is equivalent to

utt − �u + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u = |u|p (2)

after the transformation u(t, x) = (1+ t)
μ
2 z(t, x). Similarly, let α ∈ R, the equation

ztt − �z = (1 + t)α− μ
2 (p−1)|zt |p

is equivalent to

utt − �u + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u = (1 + t)α

∣
∣
∣
∣

(

∂t + μ

2(1 + t)

)

u

∣
∣
∣
∣

p

. (3)

The existence theory for initial value problems associated with (2) has been
intensively studied. The case μ = 2 has been firstly analyzed in [3], for μ �= 2
the interested reader can see [7] and the reference therein. Equation (3), with α = 0,
has been considered only in Girardi-Lucente [4]. The study of the quasilinear scale
invariant wave equation is still incomplete, for example,

utt − �u + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u =

∣
∣
∣
∣
∣

(

∂t + μ

2(1 + t)

)2

u

∣
∣
∣
∣
∣

q

(4)

is equivalent to

ztt − �z = (1 + t)−
μ
2 (q−1)|ztt |q

but, up to our knowledge, no result on this equation is known. This is the inspired
motivation of the present paper.

While studying the more general setting (1), we want to show how a decreasing
potential (1 + t)γ , with γ < 0 interacts with the growth of nonlinear term A in the
variables z, zt , zt t .

On the other hand, applying such result to (3), we can describe the same
phenomenon as an interaction between the potential and linear part of the equation.
More precisely we will have a blow up result under a condition which relate α, p,μ.
We obtain a modified Strauss exponent. In a similar way we deal with (4).
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In this paper, we start proving a blow up result for smooth solutions of (1) in
Sect. 2. Following [5] we use an averaging method. Then, in Sect. 3, we apply such
result to the special scale invariant wave operator. We leave the global existence
counterpart of the paper for a further coming paper, except a very simple case given
in Sect. 4.

Starting from these examples we can come back to the question of the influence
of the lower order terms of the linear operator on the global existence/blow up of
the solution. When these terms depend on time, they may become dominant with
respect to higher order terms and might cause change of the critical exponents.
For this reason, the paper tries to determine null condition for wave equation with
time-dependent coefficients hoping that this analysis shall be useful to obtain global
existence result in the future.

2 Quasilinear Wave Equations

2.1 Statement of the Main Results

Let us consider the following 3D Cauchy Problem:

⎧
⎨

⎩

ztt − �z = (1 + t)γ A(t, x, z, zt , zt t ) , x ∈ R
3, t ≥ 0,

z(0, x) = f (x) ,

zt (0, x) = g(x) ,

(5)

with f, g ∈ C2(R3) having compact support. In the special case, when A =
A(t, x, zt , zt t ) is independent of z we can set

y(t, x) = zt (t, x) ,

so that the problem takes the form

⎧
⎨

⎩

ytt − �y = ∂t ((1 + t)γ B(t, x, y, yt )) ,

y(0, x) = g(x) ,

yt (0, x) = h(x) ,

(6)

with suitable h and B. Some results on (6) can be found in the seminal paper by
Fritz John [5]; in particular, reading that paper we can deduce the following:

Proposition 1 If γ ≥ 0, suppose B ∈ C3 satisfies

B(t, x, y, yt ) ≥ (ay + byt )
2 with a2 + b2 > 0.
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Assume in addition that B(t, x, 0, 0) = 0, g, h are compactly supported, (g, h) �= 0
and

∫

R
3
h(x) − B(0, x, g(x), h(x)) dx ≥ 0 . (7)

Then the smooth maximal solution of (6) blows up: let the T > 0 the largest value
such that y(t, x) ∈ C2([0, T ) × R

3) exists, then T < +∞.

Now we can explain how to relate (5)–(6) in the general case, when A depends
also on z. Indeed, if z is a solution of (5), then we can set y = zt , and find z as an
integral operator z(t, x) = f (x) + ∫ t

0 y(s, x)ds acting on y. In this way

B(t, x, y, yt ) = A

(

t, x, f (x) +
∫ t

0
y(s, x) ds, y, yt

)

(8)

can be interpreted as a non-local nonlinearity depending on t, x, y, yt . The initial
data y(0, x) = g(x) is automatically satisfied. The other data yt(0, x) = h(x)means
that we need

ztt (0, x) = h(x)

so using the equation for z we get

h(x) = �f + A(0, x, f (x), g(x), h(x)) . (9)

Therefore, we can make the reduction from (5) to (6) is we require that for given
f, g Eq. (9) has a unique solution h(x) for any x ∈ R

3.
In particular if A satisfies

A(t, x, 0, 0, ξ) = 0 ∀x ∈ R
3 , ξ ∈ R , t ≥ 0 , (10)

then the information on the support of initial data is preserved, indeed for any x ∈ R
3

such that f (x) = g(x) = 0, we have h(x) = 0.
One can try to see how (6) is related to (5). Indeed, setting

η0 = t, (η1, η2, η3) = x, (η4, η5) = (yt , ytt ),

we obtain

A = γ (1 + t)γ−1B + ∂B

∂η0
+ ∂B

∂η4
ztt ,

provided

∂B

∂η5
= 0 .
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Our next step is to rewrite Fritz John’s result for (5).

Proposition 2 Let T ≥ 0. If γ ≥ 0, suppose A ∈ C3 satisfies

A(t, x, z, zt , zt t ) ≥ (azt + bztt )
2 with a2 + b2 > 0.

Assume in addition (10) and

A(t, x, f (x), 0, 0) = 0 ∀x ∈ R
3 , t ≥ 0 . (11)

Let f, g are compactly supported and (f, g) �= (0, 0) such that (9) has unique
solution h(x) for any x ∈ R

3. Let z(t, x) ∈ C2([0, T ) ×R
3) be the maximal smooth

solution of (5), then it blows up: T < +∞.

We note that it is not necessary to assume (7), indeed it reduces to
∫

R
3 �f (x) dx = 0

which is trivially satisfied.
In the present paper we want to deal with

B(t, x, y, yt ) ≥ a2|y|p + b2|yt |q , p > 1, q > 1, a2 + b2 > 0 . (12)

Our aim is to establish that the smooth solution of (6) blows up for any γ ≥ γ0
with a suitable γ0 = γ0(p, q) ∈ R. In particular we are looking for negative γ0 not
included in [5] even if p = q = 2.

Theorem 1 Let y(t, x) : [0, T ) → R × R
3 be a non-trivial C2 solution of (6) with

g, h ∈ C2(R3) compactly supported with (g, h) �= (0, 0) and

∫

R
3
h(x) − B(0, x, g(x), h(x))dx ≥ 0 . (13)

Suppose that B(t, x, 0, 0) = 0 and that (12) is satisfied. Then we have T < ∞,
provided one of the following:

1. γ ≥ 0 and p ≤ 2 or q ≤ 2;
2. 1 − 2

p
< γ < 0 (except the case a = 0);

3. 1 − 2
q

< γ < 0 (except the case b = 0).

Having in mind the relation between (5) and (6), we can deduce the following
result for (5) .

Theorem 2 Let z(t, x) : [0, T ) → R × R
3 be a non-trivial C2 solution of (5) with

f, g ∈ C2(R3) compactly supported with g �= 0. Assume (10), (11) and that Eq. (9)
has a unique solution h(x) for any x ∈ R

3. Suppose

A(t, x, z, zt , zt t ) ≥ a2|zt |p + b2|ztt |q , p > 1, q > 1, a2 + b2 > 0 . (14)
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Then T < ∞ provided one of the following:

1. γ ≥ 0 and p ≤ 2 or q ≤ 2;
2. 1 − 2

p
< γ < 0 (except the case a = 0);

3. 1 − 2
q

< γ < 0 (except the case b = 0).

Remark 1 Our results do not hold for both p > 2 and q > 2.

2.2 Proof of Theorem 1

We set

v(t, x) =
∫ t

0
y(s, x)ds .

Let R > 0 such that

g, h are compactly supported in BR(0) R > 0 , (15)

hence

y(t, x) is compactly supported in BR+t (0) ,

that is

v(t, x) = 0 for |x| > t + R .

We can deduce that

∂t (vtt − �v) = ytt − �y = ∂t ((1 + t)γ B(t, x, y, yt )) ,

v(0, x) = 0 ,

vt (0, x) = y(0, x) = g(x) ,

(vtt − �v)(0, x) = yt (0, x) = h(x) .

We gain

∂t (vtt − �v − (1 + t)γ B(t, x, y, yt )) = 0 .

So that, for any t > 0 we have

vtt − �v − (1 + t)γ B(t, x, y, yt ) =
= (vtt − �v)(0, x) − B(0, x, g(x), h(x)) = h(x) − B(0, x, g(x), h(x)) .
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Summarizing we have the Cauchy Problem

⎧
⎨

⎩

vtt − �v = (1 + t)γ B(t, x, vt , vtt ) + h(x) − B(0, x, g, h) ,

v(0, x) = 0 ,

vt (0, x) = g(x) .

(16)

Then we arrive at

vtt − �v ≥ (1 + t)γ (a2|vt |p + b2|vtt |q) + h(x) − B(0, x, g, h) . (17)

Let

w(t, x) = vtt (t, x) − �v(t, x) ,

so that

w(t, x) ≥ (1 + t)γ (a2|vt (t, x)|p + b2|vtt (t, x)|q) + h(x) − B(0, x, g(x), h(x)) .

(18)

We consider the spherical means

w̄(t, r) = 1

4π

∫

|ξ |=1
w(t, rξ)dσξ r > 0 .

We have

w̄ ≥ (1 + t)γ B̄ + h(x) − B(0, x, g, h)

and hence

v̄(t, r) = 1

2r

∫ r+t

r−t

ρḡ(ρ)dρ +
∫ ∫

Tr,t

ρ

2r
w̄(ρ, τ )dρdτ, (19)

where (see triangle ABC in Fig. 1)

Tr,t = {(ρ, τ ) | τ + ρ ≤ t + r ; τ − ρ ≤ t − r ; τ ≥ 0}.

Consider

� = {(r, t) | r + R < t < 2r} .
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Fig. 1 Domains of integration for (r, t) ∈ �

Since we are assuming (15), the first term in (19) is zero in �, since ρḡ(ρ) is odd.
For a similar reason we can restrict the integration domain of the second term to the
trapezoid ABED on Fig. 1:

T∗
r,t = {(ρ, τ ) | t − r ≤ τ + ρ ≤ t + r ; τ − ρ ≤ t − r ; τ ≥ 0}.

For any (r, t) ∈ � we get

v̄(t, r) =
∫∫

T∗
r,t

ρ

2r
w̄(ρ, τ )dρdτ

≥
∫∫

T∗
r,t

ρ

2r
(1 + τ )γ B̄dρdτ + 2

∫ R

0

ρ2

2r
h − B(0, x, g, h)(ρ)dρ .

Due to (13), we conclude

v̄(t, r) ≥
∫∫

T∗
r,t

ρ

2r
(1 + τ )γ B̄dρdτ (r, t) ∈ � . (20)

Here we used (18). For any (r, t) ∈ �, we restrict the integration domain to the
parallelogram AFGH on Fig. 1:

Sr,t = {(ρ, τ ) | t − r < ρ < r ; ρ − R < τ < ρ + t − r} ⊂ T∗
r,t .
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Applying Jensen inequality to (17), we arrive at

v̄(t, r) ≥ 1

2r

∫ r

t−r

ρdρ

∫ ρ+t−r

ρ−R

(1 + τ )γ (a2|v̄τ |p + b2|v̄τ τ |q)dτ . (21)

Having in mind the location of the support of v̄(t, r), we can write

v̄(ρ + t − r, ρ) =
∫ ρ+t−r

ρ−R

v̄τ (τ, ρ)dτ (22)

and also

v̄(ρ + t − r, ρ) =
∫ ρ+t−r

ρ−R

(ρ + t − r − τ )v̄ττ (τ, ρ)dτ . (23)

The idea is now to slice � into half-lines:

σc = {(r, t) | t = c + r ; r > c} , � =
⋃

c>R

σc .

Let us denote by α the restriction of v̄ on these half-lines:

α(r) = |v̄(r + c, r)| r > c > R .

Our aim is to prove that

α(r) = 0 for r > c > R , (24)

so that

v̄(t, r) = 0 on � . (25)

Let

β(r) =
∫ r

c

ραp(ρ) dρ +
∫ r

c

ραq(ρ) dρ := β1(r) + β2(r) .

If β(r) = 0, then we get (24).
Assume by contradiction that there exists r0 > 0 such that β(r0) �= 0.
By using (22), we have

a2β1(r) ≤ a2
∫ r

c

ρ

∣
∣
∣
∣

∫ ρ+c

ρ−R

a
− 2

p a
2
p v̄τ (ρ, τ )(1 + τ )γ/p(1 + τ )−γ /pdτ

∣
∣
∣
∣

p

dρ

≤
∫ r

c

ρ

(∫ ρ+c

ρ−R

(1 + τ )−γp′/pdτ

)p′/p (∫ ρ+c

ρ−R

(a2|̄vτ |p(1 + τ )γ dτ

)

dρ .
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Let us recall that p/p′ = p − 1. Setting

�1(r) = sup
ρ∈[c,r]

(∫ ρ+c

ρ−R

(1 + τ )
− γ

p−1 dτ

)p−1

,

Having in mind (21), we can conclude that

a2β1(r) ≤ 2r�1(r)α(r) .

Similarly, we can estimate

b2β2(r) ≤
∫ r

c

ρ

∣
∣
∣
∣

∫ ρ+c

ρ−R

(ρ + c − τ )b
2
q v̄ττ (ρ, τ )(1 + τ )γ/q(1 + τ )−γ /qdτ

∣
∣
∣
∣

q

dρ

≤
∫ r

c

ρ

(∫ ρ+c

ρ−R

(ρ + c − τ )q
′
(1 + τ )−γ q ′/pdτ

)q ′/q

(∫ ρ+c

ρ−R

b2|̄vττ |q(1 + τ )γ dτ

)

dρ .

We can conclude that

b2β2(r) ≤ 2r�2(r)α(r)

with

�2(r) = sup
ρ∈[c,r]

(∫ ρ+c

ρ−R

(ρ + c − τ )q
′
(1 + τ )

− γ
q−1 dτ

)q−1

.

On the other hand

β ′(r) = rαp(r) + rαq(r) ≥ a2pβp(r)

2prp−1�
p

1 (r)
+ b2qβq(r)

2qrq−1�
q

1 (r)
.

We can deduce that β is increasing and for r > r0 we get

(β(r0))
1−p ≥ (p − 1)a2p

2p

∫ r

r0

1

ξp−1�
p

1 (ξ)
dξ

and

(β(r0))
1−q ≥ (q − 1)b2q

2q

∫ r

r0

1

ξq−1�
q
2 (ξ)

dξ .
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In order to have contradiction, it remains to find (p, q, γ ) such that

∫ +∞

r0

1

ξp−1�
p
1 (ξ)

dξ = +∞ or
∫ +∞

r0

1

ξq−1�
q
2 (ξ)

dξ = +∞ . (26)

In the case b = 0 and a �= 0 we only require that the first integral is divergent. In
the case a = 0 and b �= 0 we only require that the second integral is divergent.

We observe that there exist s1 ∈ [−R, c] and s2 ∈ [−R, c] such that
(∫ ρ+c

ρ−R

(1 + τ )
− γ

p−1 dτ

)p−1

= (1 + s1 + ρ)−γ

and

(∫ ρ+c

ρ−R

(ρ + c − τ )q
′
(1 + τ )

− γ
q−1 dτ

)q−1

= (c − s2)
q ′

(1 + s2 + ρ)−γ .

For γ > 0 we find �1(r) ≤ 1. It follows that (26) is satisfied for any p ≤ 2.
Similarly, for γ > 0 we find �2(r) ≤ 1 and (26) is satisfied for any q ≤ 2. If γ < 0,
then (26) is equivalent to

∫ +∞

r0

1

ξp−1−γp
dξ = +∞ or

∫ +∞

r0

1

ξq−1−γ q
dξ = +∞ .

Again for b = 0 and a �= 0 we only require that the first integral is divergent. In the
case a = 0 and b �= 0 we only require that the second integral is divergent. We can
conclude that (26) is satisfied in one of the following cases

1. γ > 0 and p ≤ 2 or q ≤ 2;
2. 1 − 2

p
< γ < 0 (except the case a = 0);

3. 1 − 2
q

< γ < 0 (except the case b = 0).

Coming back to the proof of the blow up of the solution of (5), through the
solution of (16) and (6), from v̄ = 0 on � we can deduce that

y(x, t) = 0 for x ∈ R
3, t > R .

First we notice that combining (25) with (20) we have B̄ = 0 on T ∗
r,t with (r, t) ∈ �.

But this trapezoids cover the region {(ρ, t) | ρ + t > R}, hence, being B ≥ 0 we
have B = 0 in the region |x| + t > 0. This implies

a2|vt |p + b2|vtt |q = 0 for |x| + t > 0 , t > 0 .
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We can deduce

vt (x, t) = 0 , vtt (x, t) = 0 , for |x| + t > 0 , t > 0 .

Recalling that y(x, t) = vt (x, t) we get

yt(x, t) = 0 , for |x| + t > 0 , t > 0 . (27)

In turn this implies that

y(x, t) = y(x, t + R) = 0 , for x ∈ R
3 , t > 0 .

This gives the conclusion. Indeed, this and (27) are impossible for (g, h) �= (0, 0) .

2.3 Proof of Theorem 2

We assume that z(t, x) : [0, T ) → R × R
3 is a non-trivial C2 solution of (5) with

f, g ∈ C2(R3) compactly supported with g �= 0. Make the substitution v(x, t) =
z(t, x) − f (x). The function h is determined as the unique solution of (9). Then we
can write h(x) = vtt (0, x) and moreover we have

⎧
⎨

⎩

vtt − �v = (1 + t)γ B(t, x, vt , vtt ) + �f ,

v(0, x) = 0 ,

vt (0, x) = g(x) ,

(28)

with B(t, x, vt , vtt ) = A(t, x, v + f, vt , vtt ). It is not necessary to assume (13)
since �f has vanishing mean. Assumption (14) guarantees that v satisfies (21) and
we arrive at the same absurd as before. We can conclude that blow up holds.

3 Applications

A trivial application of Theorem 1 is the blow up of compactly supported classical
solution of

ytt − �y = ∂t

(
(1 + t)γ |y|p)

,

provided initial data (g, h) ∈ C3 × C2 satisfies

∫

h(x) dx ≥
∫

|g(x)|p dx
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and p ≤ 2 with γ > 1− 2/p or p = 2 and γ ≥ 0. This example is deeply different
from the results in [5]. Indeed the right side can be written as

∂t

(
(1 + t)γ |y|p) = γ (1 + t)γ−1|y|p + p(1 + t)γ |y|p−2yyt

and we do not know any sign assumption on y and yt , so that John’s result is not
directly available.

Now we turn to other applications of Theorem 2. Our starting point is a scale
invariant damping wave equations that can be reduced to (5) by means of a suitable
transformation. Let us consider the covariant time derivative

∂(μ),t = ∂t + μ

2(1 + t)
μ ≥ 0.

We can write

utt + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u = ∂(μ),t ∂(μ),tu − �u (29)

and hence a meaningful nonlinear term for this equation is
∣
∣∂(μ),tu

∣
∣p. On the other

hand, the relation between this covariant derivative and the standard derivative is
given by the transformation u = (1 + t)−

μ
2 z, indeed ∂(μ),tu = (1 + t)−

μ
2 ∂tz. For

this reason the equation

utt − �u + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u = (1 + t)α

(
a2

∣
∣∂(μ),tu

∣
∣p + b2

∣
∣∂(μ),t ∂(μ),tu

∣
∣q

)

(30)

becomes

ztt − �z = a2(1 + t)α− μ
2 (p−1)|zt |p + b2(1 + t)α− μ

2 (q−1)|ztt |q (31)

and this is a special case of (5) with

γ = α − μ

2
(max{p, q} − 1).

In (30) the linear zero-order term can be seen as a positive time-dependentmass only
for μ ≥ 2. As seen in the Introduction, many papers deal with the scale invariant
damping wave equation

utt + μ

1 + t
ut + μ(μ − 2)

4(1 + t)2
u = F(t, u, ut , utt ) (32)

for F = |u|p. The case F(ut ) = |ut | has been analyzed in [8]. With the choice of
a different nonlinear term in (30), we add another step to understand the interplay
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between the lower order terms of the wave equation and some admissible nonlinear
terms.

Let us start considering (30) with b = 0.

Corollary 1 Let us consider the Cauchy problem

⎧
⎪⎨

⎪⎩

utt − �u + μ
1+t

ut + μ(μ−2)
4(1+t )2

u = (1 + t)α
∣
∣
∣

(
∂t + μ

2(1+t )

)
u

∣
∣
∣
p

, x ∈ R
3, t ≥ 0,

u(0, x) = f (x) ,

ut (0, x) = g(x) .

Let u(t, x) : [0, T ) → R be the correspondingmaximal solution with f, g ∈ C2(R3)

compactly supported. Let 1 < p < 2 and

α > 1 − 2

p
+ μ

2
(p − 1) , (33)

or p = 2 and α ≥ μ
2 . Then T < +∞.

Proof After the transformation z = (1 + t)−
μ
2 u the previous Cauchy problem

becomes

⎧
⎨

⎩

ztt − �z = (1 + t)α− μ
2 (p−1)|zt |p , x ∈ R

3, t ≥ 0 ,

z(0, x) = f (x) ,

zt (0, x) = −μ
2 f (x) + g(x) .

SinceA(t, x, z, zt , zt t ) = |zt |p satisfies (10) and (11), setting h(x) = �f +|g(x)|p,
the result is a direct application of Theorem 2. �
Remark 2 In [4] the case α = 0, μ > 0 f = 0 is considered. A blow up result for
radial solution is established, provided

p < min

{

1 + 2

μ
, 1 + 2

2k + μ

}

, (34)

where k > 0 is such that g(|x|) � (1 + |x|)−k. A similar result for the semilinear
case is contained in [2]. Let us compare our result with the one in [4]. Though we are
considering smooth solution with compact support, our result improves [4], since we
do not assume radial solution and we can also treat some μ < 0, for example, for
p = 2. Moreover our admissible exponents satisfy

μ

2
p2 +

(
1 − μ

2

)
p − 2 < 0

and 1 < p < 2. At least for 0 < μ < 3/2 this range is larger than (34).
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Remark 3 The expression (33) shows also the interaction between the potential, the
linear operator (29) and nonlinear term.More precisely, following [1], if we describe
as Strauss-type exponent a positive solution of an equation like

βp2 + (δ − β)p − 2 = 0 , β > 0, δ > β

then for β = μ
2 and δ = 1 − α our result provides a subcritical blow up behavior.

The word subcritical refers to a critical Strauss-type exponent.

The analogous result for (30) with a = 0 is the following

Corollary 2 Let us consider the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

utt − �u + μ
1+t

ut + μ(μ−2)
4(1+t )2

u = (1 + t)α
∣
∣
∣
∣

(
∂t + μ

2(1+t )

)2
u

∣
∣
∣
∣

q

, x ∈ R
3, t ≥ 0,

u(0, x) = f (x) ,

ut (0, x) = g(x) .

Let u(t, x) : [0, T ) → R be the correspondingmaximal solution with f, g ∈ C2(R3)

compactly supported. Let 1 < q < 2 and

α > 1 − 2

q
+ μ

2
(q − 1) , (35)

or q = 2 and α ≥ μ
2 . Then T < +∞.

In a similar way we can treat combined nonlinearity involving time-covariant
derivatives. We get a blow up result for classical solution of (30) with smooth and
compactly supported initial data for μ ≤ 0, p ≤ 2 or q ≤ 2 or μ > 0 and

α >
μ

2
(max{p, q} − 1) + 1 − 2

max{p, q} .

Since (30) is equivalent to (31) we expected such interaction between p and q .
Theorem 2 is very general. Firstly, it gives the possibility to consider second order

time derivatives in the nonlinear term. Moreover we are requiring the positivity of
the entire nonlinear term, not of any terms which appears in A. For example, take

�z = N(z)

with N = A1 written as

A1 = α1(1 + t)γ1 |zt |p1 + α2(1 + t)γ2 |zt |p2 ,
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with αi > 0, pi ∈ (1, 2) and 1 − 2
pi

< γi . Then any classical solution z blows up.
But also we have blow up if N = A1 + A0 or N = A1 + A2 or N = A1 + A0 + A2
being

A0 = α0(1 + t)γ0 |z|p0 α0 ≥ 0, p0 > 1, γ0 ∈ R

and

A2 = |zt |� + |ztt |m − zt zt t
1

�
+ 1

m
= 1

which is positive due to Young inequality.
Finally this idea can be applied for other scale invariant operators. For example,

we can consider

utt − �u + 2b(t)ut + (b′ + b2)u = (∂t + b(t))(∂t + b(t))u

hence one can put ∂(b),t = (∂t + b(t)) and study

∂(b),t∂(b),tu − �u = |∂(b),tu|p + |∂(b),t∂(b),tu|q .

Let

B(t) =
∫ t

0
b(s)ds ,

since ∂(b),t)(exp(−B(t))u) = exp(−B(t))∂tu, setting u = exp(−B(t))z previous
equation becomes

ztt − �z = exp((1 − p)B(t))|zt |p + exp((1 − q)B(t))|ztt |q .

Suitable assumptions on b gives the possibility to apply Theorem 2. For example,
negative b(t) leads to the case without potential, while

b(t) ≤ C

1 + t

leads to Corollary 1.

4 An Existence Result

First of all, we assert that one can generalize our result, when the nonlinear term in
(1) depends also on space-derivatives of the solutions. We leave detailed discussion
for a future work, but we shall give a simple example of a suitable variant of (32)
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so that small data global existence result holds. The example can be considered as a
complementary case to our blow up results in Corollary 1 with p = 2 and α = μ

2 .
More precisely, we consider the Cauchy problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt − �u + μ
1+t

ut + μ(μ−2)
4(1+t )2

u = (1 + t)
μ
2

(∣
∣
∣

(
∂t + μ

2(1+t )

)
u

∣
∣
∣
2 − |∇u|2

)

,

u(0, x) = f (x) ,

ut (0, x) = g(x) ,

being x ∈ R
3, t ≥ 0. As usual it becomes

⎧
⎨

⎩

ztt − �z = (|zt |2 − |∇z|2) , x ∈ R
3, t ≥ 0

z(0, x) = f (x) ,

zt (0, x) = −μ
2 f (x) + g(x) .

.

Then we can use the Nirenberg transform, see Klainerman in [6]:

w = 1 − e−z .

We getwtt −�w = 0 that gives global existence. We underline that also in this case
μ < 0 is admissible.
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