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Hamiltonian KdV-Type Equations

Felice Iandoli

Abstract We prove local in time well-posedness for a class of quasi-linear
Hamiltonian KdV-type equations with periodic boundary conditions, more precisely
we show existence, uniqueness and continuity of the solution map. We improve the
previous result in (Mietka, Ann Math Blaise Pascal 24:83–114, 2017), generalising
the considered class of equations and improving the regularity assumption on the
initial data.

1 Introduction

In this paper u(t, x) is a function of time t ∈ [0, T ), T > 0 and space x ∈ T :=
R/2πZ. F(x, z0, z1) is a polynomial function such that F(x, 0, z1) = F(x, z0, 0) =
∂z0F(x, 0, z1) = ∂z1F(x, z0, 0) = 0. Throughout the paper we shall assume that
there exists a constant c > 0 such that

∂2
z1z1

F(x, z0, z1) ≥ c, (1)

for any x ∈ T, z0, z1 ∈ R. We shall denote the partial derivatives of the function
u by ut , ux, uxx and uxxx , by ∂x, ∂z0 , ∂z1 the partial derivatives of the function
F and by d

dx
the total derivative with respect to the variable x. For instance, we

have d
dx

F (x, u, ux) = ∂xF (x, u, ux) + ∂z0F(x, u, ux)ux + ∂z1F(x, u, ux)uxx. We
consider the equation

ut = d

dx

(
∇uH(x, u, ux)

)
, H(x, u, ux) :=

∫

T

F(x, u, ux)dx, (2)
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where we denoted by ∇uH the L2-gradient of the Hamiltonian function H(x, u, ux)

on the phase space

Hs
0 (T) := {u(x) ∈ Hs(T) :

∫

T

u(x)dx = 0}, (3)

endowed with the non-degenerate symplectic form �(u, v) := ∫
T
(∂−1

x u)vdx (∂−1
x

is the periodic primitive of u with zero average) and with the norm ‖u‖Ḣ s :=∑
j∈Z∗ |uj |2|j |2 (uj are the Fourier coefficients of the periodic function u).
The main result is the following.

Theorem 1 Let s > 4 + 1/2 and assume (1). Then for any u0 ∈ Hs
0 (T) there

exists a time T := T (‖u0‖Hs ) and a unique solution of (2) with initial condition
u(0, x) = u0(x) satisfying u(t, x) ∈ C0([0, T ),H s

0 (T)) ∩ C1([0, T ),H s−3
0 (T)).

Moreover the solution map u0(x) �→ u(t, x) is continuous with respect to the Hs
0

topology for any t in [0, T ).

This theorem improves the previous one in [15] by Mietka. The result in such a
paper holds true if the Hamiltonian function has the form H(u), while here we
allow the explicit dependence on the x variable (non-autonomous equation) and the
dependence on ux . We tried to optimise our result in terms of regularity of the initial
condition, we do not know if the result is improvable. If we apply our method to the
equation considered by Mietka, we find a local well-posedness theorem if the initial
condition belongs to the space Hs

0 with s > 3 + 1/2 (which is natural since the
nonlinearity may contain up to three derivatives of u), while in [15] one requires
s ≥ 4. In our statement we need s > 4 + 1/2 because our equation is more general
and we have the presence of one more derivative in the coefficients with respect to
the equation considered in [15].

The proof of Theorem 1 is an application of a method which has been developed
in [7, 8] and then improved, in terms of regularity of initial condition, in [1]. Here
we follow closely the method in [1] and we use several results proven therein.
Both the schemes, the one used in [15] and in [1, 7, 8], rely on solely energy
method, the second one is slightly more refined because of the use of paradifferential
calculus which allows us to work in fractional Sobolev spaces and to treat more
general nonlinear terms. The main idea is to introduce a convenient energy, which is
equivalent to the Sobolev norm, which commutes with the principal (quasi-linear)
term in the equation (see (40)). In [1, 7, 8] the main difficulty comes from the fact
that, after the paralinearization, one needs to prove a priori estimates on a system
of coupled equations. One needs then to decouple the equations through convenient
changes of coordinates which are used to define the modified energy. In the case of
KdV equation (2), we have a scalar equation with the sub-principal symbol which is
real (and so it defines a self-adjoint operator), see (21), therefore it is impossible
to obtain energy estimates directly. This term may be completely removed (see
Lemma 2) thanks to the Hamiltonian structure. For similar constructions of such
kind of energies one can look also at [1, 6, 8–10].
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The general equation (2) contains the “classical” KdV equation ut+uux+uxxx =
0 and the modified KdV ut + upux + uxxx = 0, p ≥ 2. Obviously, for the last two
equations better results may be obtained, concerning KdV we quote Bona-Smith [2],
Kato [11], Bourgain [3], Kenig-Ponce-Vega [12, 13], Christ-Colliander-Tao [4]. For
the general equation, as the one considered in this paper here, several results have
been proven by Colliander-Keel-Staffilani-Takaoka-Tao [5], Kenig-Ponce-Vega [14]
and the aforementioned Mietka [15].

2 Paradifferential Calculus

In this section we recall some results concerning the paradifferential calculus, we
follow [1]. We introduce the Japanese bracket 〈ξ〉 = √

1 + ξ2. We denote by Ḣ s

the homogeneous Sobolev space defined as Hs modulo constant functions.

Definition 1 Given m, s ∈ R we denote by �m
s the space of functions a(x, ξ)

defined on T×R with values in C, which are C∞ with respect to the variable ξ ∈ R

and such that for any β ∈ N ∪ {0}, there exists a constant Cβ > 0 such that

‖∂β
ξ a(·, ξ)‖Hs ≤ Cβ 〈ξ〉m−β , ∀ξ ∈ R. (4)

We endow the space �m
s with the family of norms

|a|m,s,n := max
β≤n

sup
ξ∈R

‖〈ξ〉β−ma(·, ξ)‖Hs . (5)

Analogously for a given Banach space W we denote by �m
W the space of functions

which verify the (4) with the W -norm instead of Hs , we also denote by |a|m,W,n the
W based seminorms (5) with Hs � W .

We say that a symbol a(x, ξ) is spectrally localised if there exists δ > 0 such
that â(j, ξ) = 0 for any |j | ≥ δ〈ξ〉.

Consider a function χ ∈ C∞(R, [0, 1]) such that χ(ξ) = 1 if |ξ | ≤ 1.1 and
χ(ξ) = 0 if |ξ | ≥ 1.9. Let ε ∈ (0, 1) and define moreover χε(ξ) := χ(ξ/ε). Given
a(x, ξ) in �m

s we define the regularised symbol

aχ(x, ξ) :=
∑
j∈Z

â(j, ξ)χε(
j

〈ξ 〉 )e
ijx.

For a symbol a(x, ξ) in �m
s we define its Weyl and Bony-Weyl quantization as

OpW(a(x, ξ))h := 1

(2π)

∑
j∈Z

eijx
∑
k∈Z

â
(
j − k,

j + k

2

)̂
h(k), (6)
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OpBW (a(x, ξ))h := 1

(2π)

∑
j∈Z

eijx
∑
k∈Z

χε

( |j − k|
〈j + k〉

)
â
(
j − k,

j + k

2

)
ĥ(k). (7)

We list below a series of theorems and lemmas that will be used in the paper. All the
statements have been taken from [1]. The first one is a result concerning the action
of a paradifferential operator on Sobolev spaces. This is Theorem 2.4 in [1].

Theorem 2 Let a ∈ �m
s0
, s0 > 1/2 andm ∈ R. ThenOpBW (a) extends as a bounded

operator from Ḣ s−m(T) to Ḣ s(T) for any s ∈ R with estimate

‖OpBW (a)u‖Ḣ s−m � |a|m,s0,4‖u‖Ḣ s , (8)

for any u in Ḣ s(T). Moreover for any ρ ≥ 0 we have for any u ∈ Ḣ s(T)

‖OpBW (a)u‖Ḣ s−m−ρ � |a|m,s0−ρ,4‖u‖Ḣ s . (9)

We now state a result regarding symbolic calculus for the composition of Bony-Weyl
paradifferential operators. In the rest of the section, since there is no possibility of
confusion, we shall denote the total derivative d

dx
as ∂x with the aim of improving

the readability of the formulæ. Given two symbols a and b belonging to �m
s0+ρ and

�m′
s0+ρ , respectively, we define for ρ ∈ (0, 3]

a#ρb =

⎧
⎪⎪⎨
⎪⎪⎩

ab ρ ∈ (0, 1]
ab + 1

2i {a, b} ρ ∈ (1, 2],
ab + 1

2i {a, b} − 1
8 s(a, b) ρ ∈ (2, 3],

(10)

where we denoted by {a, b} := ∂ξ a∂xb − ∂xa∂ξb the Poisson’s bracket between
symbols and s(a, b) := ∂2

xxa∂2
ξξb − 2∂2

xξa∂2
xξb + ∂2

ξξ a∂2
xxb.

Remark 1 According to the notation above we have ab ∈ �m+m′
s0+ρ , {a, b} ∈ �m+m′−1

s0+ρ−1

and s(a, b) ∈ �m+m′−2
s0+ρ−2 . Moreover {a, b} = −{b, a} and s(a, b) = s(b, a).

The following is essentially Theorem 2.5 of [1], we just need some more precise
symbolic calculus since we shall deal with nonlinearities containing three deriva-
tives, while in [1] they have nonlinearities with two derivatives.

Theorem 3 Let a ∈ �m
s0+ρ and b ∈ �m′

s0+ρ with m,m′ ∈ R and ρ ∈ (0, 3]. We have
OpBW (a) ◦ OpBW (b) = OpBW (a#ρb) + R−ρ(a, b), where the linear operator R−ρ

is defined on Ḣ s(T) with values in Ḣ s+ρ−m−m′
, for any s ∈ R and it satisfies

‖R−ρ(a, b)u‖Ḣ s−(m+m′)+ρ

� (|a|m,s0+ρ,N |b|m′,s0,N + |a|m,s0,N |b|m′,s0+ρ,N )‖u‖Ḣ s ,
(11)
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where N ≥ 8.

Proof We prove the statement for ρ ∈ (2, 3], for smaller ρ the reasoning is similar.
Recalling formulæ(7) and (6) we have

OpBW (a)OpBW (b)u = OpW(aχ)OpW(bχ)u

=
∑
j,k,�

âχ (j − k,
j + k

2
)̂bχ (k − �,

k + �

2
)u�e

ijx.

We Taylor expand âχ (j − k,
j+k

2 ) with respect to the second variable in the point
j+�

2 , we have

âχ (j − k,
j+k

2 ) =
âχ (j − k,

j+�
2 ) + k−�

2 ∂ξ âχ (j − k,
j+�

2 ) + (k−�)2

8 âχ (j − k,
j+�

2 )

+ (k−�)3

8

∫ 1

0
(1 − t)2∂3

ξ âχ (j − k,
j+�+t (k−�)

2 )dt.

Analogously we obtain

b̂χ (k − �, k+�
2 ) =

+ k−j
2 ∂ξ b̂χ (k − �,

j+�
2 ) + (k−j)2

8 ∂2
ξ b̂χ (k − �,

j+�
2 )

+ (k−j)3

8

∫ 1

0
(1 − t)2∂3

ξ b̂χ (k − �,
j+�+t (k−j)

2 )dt.

An explicit computation proves that

OpBW (a)OpBW (b) − OpBW (ab + 1
2i − 1

8 s(a, b))u =
4∑

j=1

Ri(a, b)u,

where

R1 := OpW(
aχbχ − (ab)χ + 1

2i ({aχ, bχ } − {a, b}χ) − 1
8 (s(aχ , bχ) − s(a, b)χ)

)
u,

R2 :=
∑

Qb
3

(̂
aχ(j − k,

j+�
2 ) + k−�

2 ∂ξ âχ (j − k,
j+�

2 )

+ (k−�)2

8 âχ (j − k,
j+�

2 )
)
u�e

ijx,

R3 :=
∑

Qa
3 b̂χ (k − �, k+�

2 )u�e
ijx,

R4 := − 1
16iOpW(∂2

x ∂ξ a∂x∂
2
ξ b + ∂2

x ∂ξ b∂x∂
2
ξ a)u + 1

64OpW(∂2
x ∂2

ξ a∂2
x∂2

ξ b)u,
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where we have defined Qa
3 := (k−�)3

8

∫ 1
0 (1 − t)2∂3

ξ âχ (j − k,
j+�+t (k−�)

2 )dt and

analogously Qb
3. We prove that each Ri fulfils the estimate (11). The remainders

R1, R2 and R3 have to be treated as done in the proof of Theorem 2.5 in [1], we
just underline the differences. Concerning R1 it is enough to prove that for any
α ≤ 2 the symbol ∂α

ξ aχ∂α
x bχ −∂α

ξ bχ∂α
x aχ is a spectrally localised symbol belonging

to �
m+m′−ρ
L∞ . Following word by word the proof in [1], with d = 1 and α = 2

(instead of α = 1 therein) one may bound |∂α
ξ aχ∂α

x bχ − ∂α
ξ bχ∂α

x aχ |m,W 1,∞,n �
|a|m,W 1,∞,n+2|b|m′,L∞,n+2 + |a|m,L∞,n+2|b|m′,W 1,∞,n+2. The estimate (11) on the
remainder R1 follows from Theorem A.7 in [1]. In order to prove that R3 and R2
satisfy (11), one has to follow the proof of Theorem A.5 in [1] with d = 1, α = 3 and
β ≤ 2 corresponding to the remainder R2(a, b) therein. Concerning the remainder
R4 we have the following: the symbol of the first summand is in the class �m+m′−3

s0

and the second in �m+m′−4
s0

, the estimates follow then by Theorem 2. ��
Lemma 1 (Paraproduct) Fix s0 > 1/2 and let f, g ∈ Hs(T;C) for s ≥ s0. Then

fg = OpBW (f )g + OpBW (g)f + R(f, g) , (12)

where

̂R(f, g)(ξ) = 1

(2π)

∑
η∈Z

a(ξ − η, ξ)f̂ (ξ − η)ĝ(η) ,

|a(v,w)| � (1 + min(|v|, |w|))ρ
(1 + max(|v|, |w|))ρ ,

(13)

for any ρ ≥ 0. For 0 ≤ ρ ≤ s − s0 one has

‖R(f, g)‖Hs+ρ � ‖f ‖Hs ‖g‖Hs . (14)

Proof Notice that

(̂fg)(ξ) =
∑
η∈Z

f̂ (ξ − η)ĝ(η) . (15)

Consider the cut-off function χε and define a new cut-off function � : R → [0, 1]
as

1 = χε

( |ξ − η|
〈ξ + η〉

)
+ χε

( |η|
〈2ξ − η〉

)
+ �(ξ, η) . (16)
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Recalling (15) and (7) we note that

̂(Tf g)(ξ) =
∑
η∈Z

χε

( |ξ − η|
〈ξ + η〉

)
f̂ (ξ − η)ĝ(η) ,

̂(Tgf )(ξ) =
∑
η∈Z

χε

( |η|
〈2ξ − η〉

)
f̂ (ξ − η)ĝ(η) ,

(17)

and

R := R(f, g) , R̂(ξ) :=
∑
η∈Z

�(ξ, η)f̂ (ξ − η)ĝ(η) . (18)

To obtain the second in (17) one has to use the (7) and perform the change of variable
ξ − η � η. By the definition of the cut-off function �(ξ, η) we deduce that, if
�(ξ, η) �= 0 we must have

|ξ − η| ≥ 5ε

4
〈ξ + η〉 and |η| ≥ 5ε

4
〈2ξ − η〉 ⇒ 〈η〉 ∼ 〈ξ − η〉 . (19)

This implies that, setting a(ξ − η, η) := �(ξ, η), we get the (13). The (19) also
implies that 〈ξ〉 � max{〈ξ − η〉, 〈η〉}. Then we have

‖Rh‖2
Hs+ρ �

∑
ξ∈Z

(∑
η∈Z

|a(ξ − η, η)||f̂ (ξ − η)||̂g(η)|〈ξ〉s+ρ
)2

(13)
�

∑
ξ∈Z

( ∑
|ξ−η|≥|η|

〈ξ − η〉s |f̂ (ξ − η)|〈η〉ρ |̂g(η)|
)2

+
∑
ξ∈Z

( ∑
|ξ−η|≤|η|

〈ξ − η〉ρ |f̂ (ξ − η)||̂g(η)||η|s
)2

�
∑

ξ,η∈Z
〈η〉2(s0+ρ) |̂g(η)|2〈ξ − η〉2s |f̂ (ξ − η)|2

+
∑

ξ,η∈Z
〈η〉2s |̂g(η)|2〈ξ − η〉2(s0+ρ)|f̂ (ξ − η)|2

� ‖f ‖2
Hs ‖g‖2

Hs0+ρ + ‖f ‖2
Hs0+ρ ‖g‖2

Hs ,

which implies the (14) for s0 + ρ ≤ s. ��
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3 Paralinearization

Equation (2) is equivalent to

ut + uxxx∂
2
z1z1

F + 2uxx∂
3
z1xz1

F + u2
xx∂

3
z1z1z1

F + 2uxuxx∂
3
z1z1z0

F

+ u2
x∂

3
z1z0z0

F + ux(−∂2
z0z0

F + 2∂3
z1xz0

F) − ∂2
z0x

F + ∂3
z1xxF = 0.

(20)

We have the following.

Theorem 4 Equation (20) is equivalent to

ut + OpBW (A(u))u + R0 = 0, (21)

where

A(u) := ∂2
z1z1

F(iξ)3 + 1
2

d
dx

(
∂2
z1z1

F
)
(iξ)2 + a1(u, ux, uxx, uxxx)(iξ),

with a1 real function andR0 semi-linear remainder. Moreover we have the following
estimates. Let σ ≥ s0 > 1 + 1/2 and consider U,V ∈ Ḣ σ+3

‖R0(U)‖Ḣ σ ≤ C(‖U‖Ḣ s0+3)‖U‖Ḣ σ , ‖R0(U)‖Ḣ σ ≤ C(‖U‖Ḣ s0 )‖U‖Ḣ σ+3 ,

(22)

‖R0(U) − R0(V )‖Ḣ σ ≤ C(‖U‖Ḣ s0+3 + ‖V ‖Ḣ s0+3)‖U − V ‖Ḣ σ

+ C(‖U‖Ḣ σ + ‖V ‖Ḣ σ )‖U − V ‖Ḣ s0+3, (23)

‖R0(U) − R0(V )‖Ḣ s0 ≤ C(‖U‖Ḣ s0+3 + ‖V ‖Ḣ s0+3)‖U − V ‖Ḣ s0 , (24)

where C is a non-decreasing and positive function. Concerning the paradifferential
operator we have for any σ ≥ 0

‖OpBW (A(u)−A(w))v‖Ḣ σ ≤ C(‖u‖Ḣ s0 +‖w‖Ḣ s0 )‖u−w‖Ḣ s0 ‖v‖Ḣ s0+3 . (25)

Proof In the following we use the Bony paraproduct (Lemma 1) and Proposition 3
and we obtain (R̃0 is a smoothing remainder satisfying (22), (23) and it possibly
changes from line to line)

uxxx∂
2
z1z1

F = OpBW (uxxx)∂
2
z1z1

F + OpBW (∂2
z1z1

F) ◦ OpBW ((iξ)3)u + R̃0

= OpBW (uxxx) ◦ OpBW (∂3
z1z1z1

F) ◦ OpBW (iξ)u

+ OpBW (∂2
z1z1

F) ◦ OpBW ((iξ)3)u + R̃0

= OpBW (∂2
z1z1

F(iξ)3)u + 3
2OpBW ( d

dx
(∂2

z1z1
F)ξ2)u

+ OpBW (ã1(iξ)) + R̃0,

(26)
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where we have denoted by ã1 a real function depending on x, u, ux, uxx, uxxx .
Analogously we obtain

2uxx∂
3
z1xz1

F = 2OpBW (∂3
z1z1x

F (iξ)2)u + OpBW (ã1(iξ))u + R̃0, (27)

u2
xx∂

3
z1z1z1

F = 2OpBW (uxx∂
3
z1z1z1

F(iξ2))u + OpBW (ã1(iξ))u + R̃0, (28)

2uxuxx∂
3
z1z1z0

F = 2OpBW
(
ux∂

3
z1z1z0

F(iξ)2)u + 2OpBW (ã1(iξ))u + R̃0. (29)

Summing up the previous equations we get

ut + OpBW (∂2
z1z1

F(iξ)3)u + 1
2OpBW ( d

dx
(∂2

z1z1
F)(iξ)2)u

+ OpBW (a1(x, u, ux, uxx, uxxx)iξ)u + R̃0(u) = 0,
(30)

where a1 is real and R0 is a semi-linear remainder satisfying (22) and (23). ��

4 Linear Local Well-Posedness
Proposition 1 Let s0 > 1 + 1/2, � ≥ r > 0, u ∈ C0([0, T ]; H

s0+3
0 ) ∩

C1([0, T ]; H
s0
0 ) such that

‖u‖L∞Ḣ s0+3 + ‖∂tu‖Ḣ s0 ≤ �, ‖u‖L∞Ḣ s0 ≤ r. (31)

Let σ ≥ 0 and t �→ R(t) ∈ C0([0, T ], Ḣ σ ). Then there exists a unique solution
v ∈ C0([0, T ]; Ḣ σ ) ∩ C1([0, T ]; Ḣ σ−3) of the linear inhomogeneous problem

vt + OpBW (∂2
z1z1

F(u, ux)(iξ)3)v + 1
2OpBW ( d

dx
(∂2

z1z1
F(u, ux))(iξ)2)v

+ OpBW (ã1(x, u, ux, uxx, uxxx)(iξ))v + R(t) = 0,

v(0, x) = v0(x).

(32)

Moreover the solution satisfies the estimate

‖v‖L∞Ḣ σ ≤ eC�T (Cr‖v0‖Ḣ σ + C�T ‖R‖L∞Ḣ σ ). (33)
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Consider Eq. (32). We have for any N ∈ N, σ > 1/2 and s ≥ 0

‖ã1(x, u, ux, uxx, uxxx)‖Ḣ σ ≤ C(‖u‖Ḣ σ+3)

‖ d
dx

(∂2
z1z1

F(u, ux))‖Ḣ σ−1 ≤ C(‖u‖Ḣ σ+2)

‖∂2
z1z1

F(u, ux)‖Ḣ σ ≤ C(‖u‖Ḣ σ+1),

|∂2
z1z1

F(u, ux)|ξ |2s |2s,σ,N ≤ CN(‖u‖Ḣ σ+1),

| d
dx

(∂2
z1z1

F(u, ux))(iξ)2|2,σ,N ≤ CN(‖u‖Ḣ σ+2),

|ã1(x, ux, uxx, uxxx)|1,σ,N ≤ CN(‖u‖Ḣ σ+2).

(34)

In the following lemma we prove that, thanks to the Hamiltonian structure, we may
eliminate the symbol of order two by means of a paradifferential change of variable.
This term is the only one which has positive order and that is not skew-self-adjoint.

Lemma 2 Define d(x, u, ux) := 6
√

∂2
z1z1

F(x, u, ux). Then we have

OpBW (d)◦OpBW

(
∂2
z1z1

F(iξ)3 + 1
2

d
dx

(∂2
z1z1

F)(iξ)2
)

◦ OpBW (d−1)v =
OpBW

([
∂2
z1z1

F(iξ)3 + ã1(x, u, ux, uxx, uxxx)(iξ)
])

v + R0,

(35)

where ã1 is a real function and R0 is a semi-linear remainder verifying (22), (23),
(24).

Proof First of all the function d(x, u, ux) is well defined because of hypothesis (1).
We recall formula (10) (and the definition of the Poisson’s bracket after (10)). By
using Theorem 3 with ρ ∈ (1, 2] we obtain that the L.H.S. of Eq. (35) equals

−OpBW (i∂z1z1Fξ3)v − 1

2
OpBW ( d

dx
(∂2

z1z1
F)ξ2)v

+ 3OpBW

(
d−1 · d

dx
d · ∂2

z1z1
F · ξ2

)
v + OpBW (ã1) + R0,

where ã1 is a purely imaginary function and R0 a semi-linear remainder. One can
verify that the symbol of order two equals to zero by direct inspection. ��

We consider symbol

S(x, u, ξ) :=
∂2
z1z1

F(u, ux)(iξ)3 + 1
2

d
dx

(∂2
z1z1

F(u, ux))(iξ)2 + ã1(u, ux, uxx, uxxx)iξ,

(36)
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and we introduce the smoothed version of the homogeneous part of (32), more
precisely

∂t v
ε = OpBW (S(x, u, ux, uxx, uxxx; ξ))vε − ε∂4

xxvε. (37)

Thanks to the parabolic term ε∂4
xxvε for any ε > 0 there exists a unique solution

of the equation, with initial condition in Hσ, (37) which is C0([0, T ], Ḣ σ ) for any
σ ≥ 0, where T depends on ε. This is the content on the following lemma.

Lemma 3 For any initial condition v0 in Ḣ σ with σ ≥ 0, there exists a time Tε > 0
and a unique solution vε (37) belonging to C0([0, Tε); Ḣ σ ).

Proof We consider the operator

�v := e−εt∂4
x v0 +

∫ t

0
e−ε(t−t ′)∂4

x OpBW (S(x, u, ux, uxx, uxxx; ξ))vε(t ′)dt ′.

We have ‖e−εt∂4
x v0‖Ḣ σ ≤ ‖v0‖Ḣ σ and ‖ ∫ t

0 e−ε(t−t ′)∂4
x f (t ′, ·)dt ′‖Ḣ σ ≤

t
1
4 ε− 3

4 ‖f ‖Ḣ σ−3 , with these estimates, (34), (31) and Theorem 2 one may apply
a fixed point argument in a suitable subspace of C0([0, Tε); Ḣ σ ) for a suitable time
Tε (going to zero when ε goes to zero). Let us prove the second one of the above
inequalities. We use the Minkowski inequality and the boundedness of the function
α3/2e−α for α ≥ 0, we get

‖
∫ t

0
e−ε(t−t ′)∂4

x f (t ′, ·)dt ′‖Ḣ σ ≤
∫ t

0
‖e−ε(t−t ′)∂4

x f (t ′, ·)‖Ḣ σ dt ′

=
∫ t

0

⎛
⎝∑

ξ∈Z∗
e−2ε(t−t ′)ξ4

ξ2σ |f̂ (t ′, ξ)|2
⎞
⎠

1/2

dt ′

�
∫ t

0
ε− 3

4 (t − t ′)−
3
4 ‖f (t ′, ·)‖Ḣ σ−3dt ′

� t
1
4 ε− 3

4 ‖f ‖L∞Ḣ σ−3 .

��
We show that (37) equation verifies a priori estimates with constants independent

of ε. We have the following.

Proposition 2 Let u be a function as in (31). For any σ ≥ 0 there exist constants
C� and Cr , such that for any ε > 0 the unique solution of (37) verifies

‖vε‖2
Ḣ σ ≤ Cr‖v0‖2

Ḣ σ + C�

∫ t

0
‖vε(τ )‖2

Ḣ σ dτ,∀t ∈ [0, T ]. (38)
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As a consequence we have

‖vε‖Ḣ σ ≤ Cre
T Cθ ‖v0‖Ḣ σ ,∀t ∈ [0, T ]. (39)

We define the modified energy

‖v‖2
σ,u :=

〈
OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d(x, u, ux)) v,OpBW (d(x, u, ux)) v

〉
L2

,

(40)

where 〈·, ·〉 is the standard scalar product on L2(R) and d is defined in Lemma 2,

note that the function (∂2
z1z1

F(x, u, ux))
2
3 σ is well defined for any σ ∈ R thanks to

(1).
In the following we prove that ‖ · ‖σ,u is equivalent to ‖ · ‖Ḣ σ .

Lemma 4 Let s0 > 1/2, σ ≥ 0, r ≥ 0. Then there exists a constant (depending on
r and σ ) such that for any u such that ‖u‖Ḣ s0 ≤ r we have

C−1
r ‖v‖2

Ḣ σ − ‖v‖2
Ḣ−3 ≤ ‖v‖2

σ,u ≤ Cr‖v‖2
Ḣ σ (41)

for any v in Ḣ σ .

Proof Concerning the second inequality in (41), we reason as follows. We have

‖v‖2
σ,u ≤‖OpBW ((∂2

z1z1
F(x, u, ux))

2
3 σ ξ2σ )OpBW (d(x, u, ux))v‖Ḣ−σ

× ‖OpBW (d(x, u, ux))v‖Ḣ σ

≤Cr‖v‖Ḣ σ ,

where in the last inequality we used Theorem 2 and the fact that d is a symbol
of order zero. We focus on the first inequality in (41). Let δ > 0 be such that
s0 − δ = 1/2, then applying Theorem 3 with s0 = δ instead of s0 and ρ = δ, we
have

OpBW ((∂2
z1z1

F(x, u, ux))
1
3 σ ) ◦ OpBW (|ξ |2σ ) ◦ OpBW ((∂2

z1z1
F(x, u, ux))

1
3 σ )

= OpBW (OpBW ((∂2
z1z1

F(x, u, ux))
2
3 σ |ξ |2σ ) + R2σ−δ(u),

(42)
where

‖R2σ−δ(u)f ‖Ḣ σ−2σ+δ ≤ C(r, σ )‖f ‖Ḣ σ .
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Analogously we obtain

OpBW ((∂2
z1z1

F(x, u, ux))
− 1

3 σ ) ◦ OpBW (d−1(x, u, ux, uxx))◦
OpBW ((∂2

z1z1
F(x, u, ux))

1
3 σ ) ◦ OpBW (d(x, u, ux, uxx))

= 1 + R−δ(u),

(43)

where

‖R−δ(u)f ‖Ḣ σ ≤ C(r, σ )‖f ‖Ḣ σ−δ ,

for any f in Ḣ σ−δ . Therefore we have

‖v‖2
Ḣ σ

(43)
�

‖OpBW ((∂2
z1z1

F)−
1
3 σ )OpBW (d)v‖2

Ḣ σ + ‖v‖2
Ḣ σ−δ

≤Cr(‖OpBW (∂2
z1z1

F)
1
3 σ )OpBW (d)v‖2

Ḣ σ + ‖v‖2
Ḣ σ−δ )

(42)= Cr(‖v‖2
u,σ + ‖v‖2

Ḣ σ−δ/2 + ‖v‖2
Ḣ σ−δ ).

Then by using the interpolation inequality ‖f ‖Ḣ θs1+(1−θ)s2 ≤ ‖f ‖θ

Ḣ s1
‖f ‖1−θ

Ḣ s2
which

is valid for any s1 < s2, θ ∈ [0, 1] and f ∈ Ḣ s2 , we get (by means of the Young
inequality ab ≤ p−1ap + q−1bq , with 1/p + 1/q = 1 and p = 2(σ + 3)/δ,

q = 2(σ + 3)/[2(σ + 3) − δ])

‖v‖2
Ḣ σ−δ/2 ≤ (‖v‖2

Ḣ−3 )
δ
2

1
σ+3 (‖v‖2

Ḣ σ )
2(σ+3)−δ

2(σ+3)

≤ δ
2(σ+3)

‖v‖2
Ḣ−3 τ

− 2(σ+3)
δ + 2(σ+3)−δ

2(σ+3)
τ

2(σ+3)−δ
2(σ+3) ‖v‖2

Ḣ σ ,

for any τ > 0. Choosing τ small enough we conclude. ��
We shall need the following (weak) Garding type inequality.

Lemma 5 (Weak Garding) Let d as in Lemma 2 and c > 0 as in (1) and define
g := ∂2

z2z2
F , we have the following inequalities

〈OpBW (d)OpBW (g
2
3 σ ξ2σ )OpBW (d)OpBW (ξ4)w,w〉L2 ≥ cσ

2 ‖w‖Ḣ σ+2 − K‖w‖Ḣ σ ,

〈OpBW (ξ4)OpBW (d)OpBW (g
2
3 σ ξ2σ )OpBW (d)w,w〉L2 ≥ cσ

2 ‖w‖Ḣ σ+2 − K‖w‖Ḣ σ ,

for any w in Ḣ σ+2 and where K > 0 depends on � in (31) and cσ := c
1
3 + 2

3 σ .
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Proof We prove the first inequality, the second one is similar. By using Theorem 3
with ρ = 1 we get

OpBW (d)OpBW (g
2
3 σ ξ2σ )OpBW (d)OpBW (ξ4)w

= OpBW (d2g
2
3 σ ξ2σ ξ4)w + R2σ+3w

= OpBW (g
1
3 + 2

3 σ ξ2σ ξ4)w + R2σ+3w,

where ‖R2σ+3w‖Ḣ−σ−2 ≤ C�‖w‖Ḣ σ+1 . Now we set

p(x, ξ) =
√

g
1
3 + 2

3 σ ξ2σ+4 − cσ
2 ξ2σ+4, |ξ | ≥ 1, cσ = c

1
3 + 2

3 σ . (44)

We have

0 ≤ ‖OpBW (p)w‖L2 = 〈OpBW (p)OpBW (p)w,w〉L2

= 〈OpBW (g
1
3 + 2

3 σ ξ2σ+4)w,w〉L2

− cσ
2 ‖w‖2

Ḣ σ+2 + 〈R̃2σ+3w,w〉,

where R̃2σ+3 verifies the same estimate as R2σ+3 and where we used Theorem 3
with ρ = 1. Summing up we obtain

〈OpBW (d)OpBW (g
2
3 σ ξ2σ )OpBW (d)OpBW (ξ4)w,w〉L2 ≥

cσ
2 ‖w‖2

Ḣ σ+2 − 2C�‖w‖Ḣ σ+1 ‖w‖Ḣ σ+2 .

We need to estimate from above the last summand, for any ε, η > 0 we have

‖w‖Ḣ σ+1 ‖w‖Ḣ σ+2 ≤ ε‖w‖2
Ḣ σ+2 + Cε‖w‖Ḣ σ ‖w‖Ḣ σ+2

≤ ε‖w‖2
Ḣ σ+2 + Cε(η‖w‖2

Ḣ σ+2 + η−1‖w‖2
Ḣ σ ),

we conclude by choosing ε and η in such a way that 2C�(ε + Cεη) ≤ cσ /4. ��
We are in position to prove Proposition 2.

Proof of Proposition 2 We take the derivative with respect to t of the modified
energy (40) along the solution vε of Eq. (37). We have

d
dt

‖vε‖σ,u =〈OpBW

(
d
dt

(∂2
z1z1

F)
2
3 σ ξ2σ

)
OpBW (d) vε,OpBW (d) vε〉L2 (45)

+〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW

(
d
dt
d
)
vε,OpBW (d) vε〉L2 (46)

+〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) d

dt
vε,OpBW (d) vε〉L2 (47)
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+〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) vε,OpBW

(
d
dt
d
)
vε〉L2 (48)

+〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) vε,OpBW (d) d

dt
vε〉L2 . (49)

The most important term, where we have to see a cancellation, is the one given by
(47)+(49). Using Eq. (37) we deduce that (47)+(49) equals to

〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) vε,OpBW (d) OpBW (S)vε〉L2 (50)

+〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) OpBW (S)vε,OpBW (d) vε〉L2 (51)

−ε〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) OpBW (ξ4)vε,OpBW (d) vε〉L2 (52)

−ε〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) vε,OpBW (d) OpBW (ξ4)vε〉L2, (53)

where S has been defined in (36). For the moment we consider just the first two
summands (50)+(51) in the above equation. We note that by using Theorem 3 with
ρ = 3 we obtain

OpBW (d−1)OpBW (d)vε = vε + R−3(u)vε,

where R−3 verifies (11) with ρ = 3. We plug this identity in (50)+(51) and we
note that the contribution coming from R−3 is bounded by Cr‖vε‖2

Ḣ σ thanks to
Theorems 3, 2, to the Cauchy Schwartz inequality and to the assumption (31). We
are left with

〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) vε,OpBW (d)

× OpBW (S)OpBW (d−1)OpBW (d)vε〉L2+
〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ2σ

)
OpBW (d) OpBW (S)

× OpBW (d−1)OpBW (d)vε,OpBW (d) vε〉L2 .

At this point we are ready to use Lemma 2 and we obtain that the previous quantity
equals

〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ 2σ

)
OpBW (d) vε,OpBW

(
∂2
z1z1

F(iξ)3 + ã1(iξ)
)

OpBW (d)vε 〉L2+

〈OpBW

(
(∂2

z1z1
F)

2
3 σ ξ 2σ

)
OpBW

(
∂2
z1z1

F(iξ)3 + ã1(iξ)
)

OpBW(d)vε ,OpBW (d) vε〉L2 .
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By using the skew self-adjoint character of the operators, we deduce that the main
term to estimate is the commutator

[
OpBW

(
(∂2

z1z1
F)

2
3 σ ξ 2σ

)
,OpBW

(
∂2
z1z1

F(iξ)3 + ã1(iξ)
) ]

OpBW (d)vε . (54)

We start from the first summand. By using Theorem 3 and Remark 1 with ρ = 3 we
obtain that

C :=
[
OpBW

(
(∂2

z1z1
F)

2
3 σ ξ 2σ

)
,OpBW

(
∂2
z1z1

F(iξ)3
) ]

OpBW (d)vε =
1

i
OpBW

({
(∂2

z1z1
F)

2
3 σ ξ 2σ , ∂2

z1z1
F(iξ)3

})
OpBW(d)vε + R0(u)OpBW (d)vε .

By direct inspection we see that the Poisson bracket above equals to 0. Recalling
that d is a symbol of order 0, by using also Theorem 2 and the assumption (31), we
may obtain the bound 〈C,OpBW(d)vε〉 ≤ Cr‖vε‖2

Ḣ σ . The second summand, i.e. the
one coming from ã1(iξ) in (54), may be treated in a similar way: one uses Theorem 3
with ρ = 1, at the first order the contribution is equal to zero, then the remainder
is a bounded operator from Ḣ 2σ to Ḣ 0 and one concludes as before, by using also
the duality inequality 〈f, g〉L2 ≤ ‖f ‖Ḣ−σ ‖g‖Ḣ σ , bounding everything by Cr‖vε‖2

Ḣ σ .
This concludes the analysis of (50)+(51).

Concerning (52)+(53) we use Lemma 5 and the fact that

(52) + (53) ≤ −εcσ ‖vε‖Ḣ σ+2 + 2K‖vε‖Ḣ σ ≤ 2K‖vε‖Ḣ σ ,

with K depending on � and cσ = c
1
3 + 2

3 σ , recall (1).
We are left with (45), (46) and (48). These terms are simpler, one just has to use

the duality inequality recalled above, then Theorem 2 and the fact that

| d
dt
d(x, u, ux)|0,σ,4, | d

dt
(∂2

z1z1
F)

2
3 σ |0,0,4 ≤ C�‖u‖Ḣ σ ,

where we have used the first one of the assumptions (31).
We eventually obtained d

dt
‖vε‖2

σ,u ≤ C�‖vε‖2
Ḣ σ , integrating over the time

interval [0, t) we obtain

‖vε‖2
σ,u(t) ≤ ‖vε(0)‖2

σ,u(0) + C�

∫ t

0
‖vε(τ)‖2

Ḣ σ dτ

≤ Cr‖vε(0)‖2
Ḣ σ + C�

∫ t

0
‖vε(τ)‖2

Ḣ σ dτ.

We now use (41) and the fact that ‖∂t v
ε‖Ḣ−3 ≤ C�‖vε‖Ḣ 0 ≤ C�‖vε‖Ḣ σ since

σ ≥ 0. ��
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We may now prove Proposition 1.

Proof of Proposition 1 Let v0 be in Ḣ σ , we consider the smoothed initial condition

vε
0 = χ(|D|ε 1

8 )v0 = F−1(χ(|ξ |ε 1
8 )̂v0(ξ)),

for a C∞
0 cut-off function supported on (−2, 2) and equal to one on [−1, 1]. Let

vε the solution of (37) with initial condition vε
0. By Lemma 3 vε is a continuous

function with values in Ḣ σ for a short time Tε . By Proposition 2 the Ḣ σ norm of
the solution vε is bounded from above by a constant depending only on ‖v0‖Ḣ σ ,
r and � in (31). Therefore if we proved that � in the proof of Lemma 3 was a
contraction on the ball of radius M in C0([0, T ); Ḣ σ ) with M big enough with
respect to ‖v0‖Ḣ σ , r and �, then we have that there exists a time T > 0 depending
only on ‖v0‖Ḣ σ , r and � such that the solution verifies sup[0,Tε)

‖vε‖Ḣ σ ≤ M/2 for
any Tε ≤ T . For this reason we may iterate the proof of Lemma 3 on the interval
[Tε, 2Tε] etc. . . We conclude that there exists a common time of existence T > 0
for each solution vε such that sup[0,Tε)

‖vε‖Ḣ σ ≤ M with M depending on ‖v0‖Ḣ σ ,
� and r in (31).

We show that vε is a Cauchy sequence in C([0, T ); Ḣ σ ). Let 0 < δ ≤ ε and set
z = vε −vδ , then we have ∂tz = OpBW (S)z− ε∂4

x z+∂4
x vε(δ− ε). By Lemma 3 we

have that the flow �ε of ∂tz1 = OpBW (S)z1 − ε∂4
x z1 exists and by Proposition 2, it

has estimates independent of ε. By Duhamel formulation we have

z(t, x) = �ε(t)(v
ε
0(x) − vδ

0(x)) + (δ − ε)�ε(t)

∫ t

0
�ε(s)

−1∂4
xvε(s, x)ds.

By the estimate (39) (on the flow �ε) and the Minkowski inequality we get
‖z(t, x)‖Ḣ σ ≤ (ε − δ)C‖∂4

x vε‖Ḣ σ , for a constant depending on � and r in (31).
Applying again (39) on the function vε we get ‖z(t, x)‖Ḣ σ ≤ C(ε − δ)‖vε

0‖Ḣ σ+4

for another constant C depending on r and �. At this point we may use that

‖χ(|D|ε 1
8 )v0‖Ḣ σ+4 ≤ ε− 1

2 ‖v0‖Ḣ σ . Since 0 < δ < ε we have that ‖z(t, x)‖Ḣ σ ≤
C̃ε

1
2 ‖v0‖Ḣ σ , hence z(t, x) is a Cauchy sequence in Ḣ σ and converges to a solution

of (37) with ε = 0 and initial condition v0 ∈ Ḣ σ .
The flow �(t) of Eq. (32) with R(t) = 0 is well defined as a bounded operator

form Ḣ σ to Ḣ σ and satisfies the estimate

‖�(t)v0‖Ḣ σ ≤ Cre
C�t‖v0‖Ḣ σ .

One concludes by using the Duhamel formulation of (32). ��
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5 Nonlinear Local Well-Posedness

To build the solutions of the nonlinear problem (32), we shall consider a classical
quasi-linear iterative scheme, we follow the approach in [1, 7, 8, 15]. Set

A(u) := OpBW

(
∂2
z1z1

F(iξ)3 + 1
2

d
dx

(∂2
z1z1

F)(iξ)2 + ã1(x, u, ux, uxx, uxxx)(iξ)
)

and define

P1 : ∂tu1 = A(u0)u1;
Pn : ∂tun = A(un−1)un + R(un−1), n ≥ 2.

The proof of the main Theorem 1 is a consequence of the next lemma. Owing to
such a lemma one can follow closely the proof of Lemma 4.8 and Proposition 4.1
in [1] or the proof of Theorem 1.2 in [8](this is the classical Bona-Smith technique
[2], but we followed the notation of [1, 8]). We do not reproduce here such a proof.

Lemma 6 Let s > 1
2 + 4. Set r := ‖u0‖Ḣ s0 and s0 > 1 + 1/2. There exists a time

T := T (‖u0‖Ḣ s0+3) such that for any n ∈ N the following statements are true.

(S0)n: There exists a unique solution un of the problemPn belonging to the space
C0([0, T ); Ḣ s) ∩ C1([0, T ); Ḣ s−3).

(S1)n: There exists a constant Cr ≥ 1 such that if � = 4 Cr‖u0‖Ḣ s0+3 and
M = 4Cr‖u0‖Ḣ s , for any 1 ≤ m ≤ n, for any 1 ≤ m ≤ n we have

‖um‖L∞Ḣ s0 ≤ Cr , (55)

‖um‖L∞Ḣ s0+3 ≤ �, ‖∂tum‖L∞Ḣ s0 ≤ Cr�, (56)

‖um‖L∞Ḣ s ≤ M, ‖∂tum‖L∞Ḣ s ≤ CrM. (57)

(S2)n: For any 1 ≤ m ≤ n we have

‖u1‖L∞Ḣ s0 ≤ Cr , ‖um − um−1‖L∞Ḣ s0 ≤ 2−mCr , m ≥ 2. (58)

Proof We proceed by induction over n. We prove (S0)1, by using Proposition 1
with R(t) = 0, u � u0 and v � u1; we obtain a solution u1 which is defined
on every interval [0, T ) and verifies the estimate ‖u1‖L∞

T Ḣ σ ≤ eT ‖u0‖Ḣσ Cr‖u0‖Ḣ σ ,
σ ≥ 0 with Cr > 0 given by Proposition 1. (S1)1 is a consequence of the previous
estimate applied with σ = s0 for (55) and (56), with σ = s for (57). In order
to obtain the seconds in (56) and (57), one has to fix T ≤ 1/‖u0‖Ḣ s0 and use the
equation for u1 together with Theorem 2 and one finds M which depends on ‖u0‖Ḣ s

and � which depends on ‖u0‖Ḣ s0 and on a constant Cr depending only on ‖u0‖Ḣ s0 .
(S2)1 is trivial.
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We assume that (SJ )n−1 holds true for any J = 0, 1, 2 and we prove that (SJ )n.
Owing to (S0)n−1 and (S1)n−1, the (S0)n is a direct consequence of Proposi-

tion 1. Let us prove (55) with m = n. By using (33) applied to the problem solved
by un, the estimate (22) with σ = s0, (55) with m = n − 1 and (S0)n−1, we
obtain ‖un‖L∞Ḣ s0 ≤ eC�T (Cr‖u0‖Ḣ s0 + CrC�T ), the thesis follows by choosing
eC�T C�T < 1/4 and Cr ≥ ‖u0‖Ḣ s0 /4Cr .

We prove the first in (56). Applying (33) with σ = s0 + 3 and v � un, u �
un−1, the estimate on the remainder (22) and using (S1)n−1 we obtain ‖un‖Ḣ s0+3 ≤
eC�T Cr‖u0‖Ḣ s0+3 + �C�T eC�T , fixing T small enough such that T C� ≤ 1 and
T C�eC�T ≤ 1/4, the thesis follows from the definition � := 4Cr‖u0‖Ḣ s0 . The
second in (56) may be proven by using the equation for un and the second in (22)

‖∂tun‖Ḣ s0 ≤ ‖A(un−1)un‖Ḣ s0 + ‖R(un−1)‖Ḣ s0 ≤ C(‖un−1‖Ḣ s0 )‖un‖Ḣ s0+3 ≤ Cr�.

The (57) is similar. We prove (S2)n, we write the equation solved by vn = un −un−1

∂t vn = A(un−1)vn + fn, fn = [
A(un−1) − A(un−2)

]
un−1 + R(un−1) − R(un−2).

By using (23), (25) and the (S2)n−1 we may prove that ‖fn‖Ḣ s0 ≤ C�‖vn−1‖Ḣ s0 . We
apply again Proposition 1 with σ = s0 and we find ‖vn‖Ḣ s0 ≤ C�T eC�T ‖vn−1‖Ḣ s0 ,
as T has been chosen small enough we conclude the proof. ��

Acknowledgments The author has been supported by ERC grant ANADEL 757996. The author
thanks the anonymous referee for the care he put in reading the paper.

References

1. Berti, M., Maspero, A., Murgante, F.: Local well posedness of the Euler-Korteweg equations
on T

d . J. Dyn. Differ. Equ. 33, 1475–1513 (2021)
2. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos.

Trans. Roy. Soc. London Ser. A 278, 555–604 (1975)
3. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applica-

tions to nonlinear evolution equation II: The KdV equation. Geom. Fun. Anal. 3, 209–262
(1993)

4. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-
posedness for canonical defocusing equations Am. J. Math. 125, 1235–1293 (2003)

5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for
KdV and modified KdV on R and T. J. Am. Math. Soc. 16, 7-5-749 (2003)

6. Feola, R., Grebert, B., Iandoli, F.: Long time solutions for quasi-linear Hamiltonian perturba-
tions of Schrödinger and Klein-Gordon equations on tori. Anal. PDE (to appear)

7. Feola, R., Iandoli, F.: Local well-posedness for quasi-linear NLS with large Cauchy data on
the circle. Annales de l’Institut Henri Poincare (C) Analyse non linéaire 36(1), 119–164 (2018)

8. Feola, R., Iandoli, F.: Local well-posedness for the Hamiltonian quasi-linear Schrödinger
equation on tori. J. Math. Pures Appl. 147, 243–281 (2022)

9. Feola, R., Iandoli, F., Murgante, F.: Long-time stability of the quantum hydrodynamic system
on irrational tori. Math. Ing. 4(3), 1–24 (2022)



186 F. Iandoli

10. Ionescu, A.D., Pusateri, F.: Long-time existence for multi-dimensional periodic water waves.
Geom. Funct. Anal. 29, 811–870 (2019)

11. Kato, T.: Spectral theory and differential equations. In: Everitt, W. N. (eds.), Lecture Notes in
Mathematics, volume 448, chapter “Quasi-Linear Equations Evolutions, with Applications to
Partial Differential Equations”. Springer, Berlin, Heidelberg (1975)

12. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for the Korteweg-de Vries equation in
Sobolev spaces of negative indices. Duke Math. J. 71, 1–21 (1993)

13. Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation J.
Am. Math. Soc. 9, 573–603 (1996)

14. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized
Korteweg-de Vries equation via the contraction principle Commun. Pure Appl. Math. 46, 527–
620 (1993)

15. Mietka, C.: On the well-posedness of a quasi-linear Korteweg-de Vries equation. Ann. Math.
Blaise Pascal 24, 83–114 (2017)


	On the Cauchy Problem for Quasi-Linear Hamiltonian KdV-Type Equations
	1 Introduction
	2 Paradifferential Calculus
	3 Paralinearization
	4 Linear Local Well-Posedness
	5 Nonlinear Local Well-Posedness
	References


