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Abstract The heat equation with inverse-square potential on both half-lines of R
is discussed in the presence of bridging boundary conditions at the origin. The
problem is the lowest energy (zero-momentum) mode of the transmission of the
heat flow across a Grushin-type cylinder, a generalisation of an almost-Riemannian
structure with compact singularity set. This and related models are reviewed, and
the issue is posed of the analysis of the dispersive properties for the heat kernel
generated by the underlying positive self-adjoint operator. Numerical integration is
shown that provides a first insight and relevant qualitative features of the solution at
later times.
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1 Introduction: The Bridging-Heat Equation in 1D

For fixed α ∈ [0, 1) we discuss in this note the following initial value problem in
the unknown u ≡ u(t, x), with t � 0 and x ∈ R \ {0}:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ∂2u

∂x2
+ α(α + 2)

4x2
u = 0 ,

u−
0 (t) = u+

0 (t) where u±
0 (t) := lim

x→0± |x| α
2 u(t, x) ,

u−
1 (t) = −u+

1 (t) where u±
1 (t) := lim

x→0± |x|−(1+ α
2 )(u(t, x) − |x|− α

2 u±
0 (t)) ,

u(0, x) = ϕ(x) where ϕ ∈ L2(R) ,

(1)

seeking for solutions u that, for (almost every) t , belong to L2(R). In the above
formulation (1) the existence of the limits u±

0 and u±
1 is part of the problem. We

shall also consider the special case where the initial datum itself satisfies the very
boundary conditions required at later times.

We are in particular concerned with the well-posedness of the problem and the
dispersive properties of the solution(s).

At the same time, in this note we review the origin and meaning of the problem
(1) in the context of geometric quantum confinement or transmission across the
metric’s singularity for a particle constrained on a degenerate Riemannian manifold
and only subject to the geometry of the constraining manifold, thus “free to evolve”
over that manifold in analogy to a classical particle moving along geodesics.

The latter viewpoint is attracting an increasing amount of interest in recent
years, making it natural to investigate the time-dependent equations arising in such
contexts. Ours here is a ‘pilot’ analysis of a more systematic study that unfolds
ahead of us concerning dispersive and Strichartz estimates, and it has therefore
the purpose of some propaganda and overview of the state of the art and on the
future perspectives. Moreover, here we only deal with the heat evolution, and not
the Schrödinger evolution, as we shall comment in due time.

Prior to outlining the geometric background, let us comment on the structure of
the problem (1). The considered PDE is a heat type equation governed by the second
order, elliptic (Schrödinger) differential operator

− d2

dx2 + Cα

x2 , Cα := α(α + 2)

4x2 (2)

(the precise meaning of the parameter α and its presence through the coefficient Cα

will be clear after discussing the parent geometric model). As such, the complete
description of square-integrable solutions to the associated heat equation is achieved
through a standard PDE analysis, once certain features of (2) are known as a
linear operator on L2(R). For concreteness, a limit-circle/limit-point argument [24,
Theorems X.11] shows that when Cα � 3

4 , i.e., α ∈ (−∞,−3] ∪ [1,+∞), the
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linear operator (2) minimally defined on smooth functions compactly supported
away from x = 0 is actually essentially self-adjoint on L2(R). Denoting its
closure with A, one concludes that A is a self-adjoint operator with strictly positive
spectrum and domain D(A) that explicitly, when Cα > 3

4 , is the Sobolev space
H 2

0 (R). As a straightforward consequence of the abstract theory of differential
equation on Hilbert space [25, Proposition 6.6], one then concludes that the heat
equation d

dt
u = −Au with initial datum ϕ ∈ L2(R) admits a unique solution

in C1(R+
t , L2(Rx)), with u(t, ·) ∈ D(A) at ever later t > 0, explicitly given by

u(t, x) = (e−tAϕ)(x).
In fact, it is worth recalling that the inverse-square potential differential operator

(2) is greatly studied and deeply understood from many standpoints, in particular,
both as far radial space-time (Strichartz) estimates are concerned both in the linear
and non-linear Schrödinger evolution (see, e.g., [10, 20] and the references therein),
and as a Bessel operator on the L2-space of the half-line (see, e.g., [12] and its
precursors in that prolific research line).

Yet, in addition to the differential side, the problem (1) prescribes the solutions
u to satisfy certain boundary conditions at x = 0. The first one, g+

0 (t) = g−
0 (t), can

be interpreted as the continuity of the function, up to the weight |x| α
2 that allows u

to have some degree of singularity at the origin; analogously, the condition g+
1 (t) =

−g−
1 (t) links the right and left derivative at zero, up to certain weights, and taken

directionally from each side. In the regime Cα > 3
4 such conditions are obviously

redundant, but when Cα � 3
4 an ad hoc analysis is needed to recognise that the

prescribed behaviour at the origin expresses another condition of self-adjointness
and positivity. Such an analysis has been carried out in several recent works [8, 16,
18, 19, 21] and is concisely reviewed in Sect. 2. The net result, for the sake of the
present discussion, is the following.

Theorem 1 ([19]) Let α ∈ [0, 1) and let Cα be given by (2).

(i) The space

D :=
{

g ∈ L2(R)

∣
∣
∣
∣

(

− d2

dx2 + Cα

x2

)

g ∈ L2(R)

}

is a dense subspace of L2(R) and for every g ∈ D the following limits exist and
are finite:

g±
0 = lim

x→0± |x| α
2 g±(x) ,

g±
1 = lim

x→0± |x|−(1+ α
2 )

(
g±(x) − g±

0 |x|− α
2
)
.

(3)
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(ii) The operator

D(
AB

α

) = {g ∈ D | g+
0 = g−

0 , g+
1 = −g−

1 } ,

AB
αg = −g′′ + Cα|x|−2g

(4)

is self-adjoint on L2(R) and non-negative. Its spectrum is [0,+∞) and is all
essential and absolutely continuous.

In Theorem 1 we only consider the regime α ∈ [0, 1). The remaining regime
α ∈ [−3, 0) is simply less relevant from the viewpoint of the underlying geometric
model, as will be argued in Sect. 2. And, as discussed above, when α ∈ (−∞,−3)∪
(1,+∞) one applies standard limit-point/limit-circle considerations.

In view of Theorem 1, the initial value problem (1) is immediately interpreted
as the problem for the one-dimensional heat equation governed by the positive and
self-adjoint operator AB

α , and therefore it admits unique solution u(t) = e−tAB
α ϕ,

again by abstract facts of differential equations on Hilbert space [25, Proposition
6.6].

The well-posedness of (1) is therefore fully controlled in C1(R+
t , L2(Rx)) with

u(t, ·) ∈ D(AB
α) at every t > 0.

The superscript ‘B’ in AB
α is to refer to certain ‘bridging’ features of optimal

transmission across the origin, allowing in a precise sense complete communication
between the right and left half-line, induced by AB

α , as compared to a whole family
of similar transmission protocols.

Indeed, in Sect. 2 it will be recapped how initial value problems like (1),
and their counterparts with the Schrödinger equation, describe the heat type
or Schrödinger-type propagation over a particular almost-Riemannian structure,
customarily referred to as a ‘Grushin cylinder’, constituted by an infinite two-
dimensional cylinder with a non-flat metric that becomes suitably singular on a
given orthogonal section. Depending on the magnitude of the metric’s singularity,
which is quantified by the parameter α, the transmission is either inhibited, so that
a function initially supported on one half-cylinder remains confined in that half
at later times, or on the opposite it is allowed, through a precise set of boundary
conditions between the two halves. This can be qualitatively visualised as in Fig. 1
with cylinders that shrink to one point or get flattened in correspondence of the
given singular section. One-dimensional problems like (1) emerge for the evolution
on the lowest energy mode, which corresponds to functions on the cylinder that are
constant along the compact variable. It turns out that in certain regimes of metric’s
singularity (and α ∈ [0, 1) is the physically most significant regime) an infinity of
transmission protocols emerge, each characterised by suitable boundary conditions
of self-adjointness, and each yielding a heat type or Schrödinger-type equation.
Among them, the bridging protocol described by the operator AB

α given by (4)
displays distinguished features of optimal transmission. In practice—see equations
(30)–(31) below—the heat (and Schrödinger) equation of bridging type between the
two half-lines is the one that describes a crossing at x = 0 ‘without spatial filter’
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Fig. 1 Manifold Mα for different α: α < 0 (left), α = 0 (center) and α > 0 (right)

(continuity of the function) and ‘without energy filter’ (the fraction of transmitted
flux does not depend on the incident energy).

The bridging protocol AB
α was first identified in the recent work [8]. The

comparison analysis of the bridging protocol with respect to the whole family of the
other physically meaningful ones was subsequently analysed in [16, 18]. Section 3
reports on the recent literature of closely related models and results. Moreover, in
[7, 8] the bridging and some other protocols were analysed from the perspective of
the conservation of the total heat, or equivalently, the perspective of infinite lifespan
of the stochastic processes generated by such operators (stochastic completeness).

It should be then sufficiently clear at this point that the initial value problem (1)
describes the low-energy transmission of bridging type between the two halves of a
Grushin cylinder with metric singularity at zero. In view of that, beside the already
guaranteed well-posedness, dispersive properties of the solution come to have
great relevance in connection with the underlying physical transmission protocol,
in particular Lp-Lq estimates, smoothing estimates, and space-time (Strichartz)
estimates for the heat semi-group associated with AB

α .
These are the analogue of the well-known estimates for the classical heat

equation ( ∂
∂t

− ∂2

∂x2 )u(t, x) = 0, u(0, x) = ϕ(x), for which one has [26, Section
2.2]

∥
∥u(t, ·) ∥

∥
Lp � t

− 1
2 ( 1

r
− 1

p
)‖ϕ‖Lr 1 � r � p � ∞ ,

∥
∥
∥

∂

∂x
u(t, ·)

∥
∥
∥

Lp
� t

− 1
2 ( 1

r − 1
p +1)‖ϕ‖Lr 1 � r � p � ∞ ,

‖u ‖Lq(R+
t ,L

p
x ) � ‖ϕ‖L2 2 � p < ∞ , q = 4p

p − 2
,

∥
∥
∥

∂

∂x
u

∥
∥
∥

L2(R+
t ,L2

x)
� ‖ϕ‖L2 .

(5)

Establishing the analogue of (5) for the heat type semi-group exp(−tAB
α), and in

fact eventually also for the Schrödinger unitary group exp(−itAB
α), as well as for the

corresponding semi-groups and groups induced by other transmission protocols, and
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more generally on other geometries and classes of almost-Riemannian structures
beyond the Grushin cylinder, appear to be one of most relevant challenges in this
field, with abstract interest per se and impact on applications, of quantum control
concern in the first place.

In this respect we intend with this note to promote the above questions and
advertise them for future investigations, in particular posing them in the rigorous
context of geometric confinement and transmission protocols. Such an overview is
given, as mentioned, in Sects. 2 and 3.

Last, in Sect. 4 we present a glance at numerical computations of the solution
u of (1) when the initial datum is well localised on one half-line. The numerical
evidence is strong on the dynamical formation of the bridging boundary conditions
at x = 0 at later times, and on a general behaviour that is qualitatively comparable
to the classical heat propagation.

In fact, at present no analytic computation is available of the heat (and, in the
future, the Schrödinger) propagator generated by AB

α , and numerics is a first natural
approach to infer meaningful properties to be rigorously proved in forthcoming
investigations.

2 A Concise Review of Geometric Confinement and
Transmission Protocols in a Grushin Cylinder

We have already anticipated that the problem (1) provides the one-dimensional
description for the heat flow across the singularity of a Grushin cylinder, and let
us give in this section a concise overview of the problem from that perspective.

Grushin cylinders are Riemannian manifolds Mα ≡ (M, gα), with parameter
α ∈ R, where

M± := R
±
x × S

1
y Z := {0} × S

1
y , M := M+ ∪ M− (6)

and with degenerate Riemannian metric

gα := dx ⊗ dx + |x|−2αdy ⊗ dy . (7)

Thus, Mα is a two-dimensional manifold built upon the cylinder R × S
1, with

singularity locus Z and incomplete Riemannian metric both on the right and the
left half-cylinder R± × S

1 meaning that geodesics cross smoothly the singularity
Z at finite times). The values α = −1, α = 0, and α = 1 select, respectively, the
flat cone, the Euclidean cylinder, and the standard ‘Grushin cylinder’ [11, Chapter
11]: in the latter case one has an ‘almost-Riemannian structure’ on R × S

1 =
M+ ∪ Z ∪ M− in the rigorous sense of [3, Sec. 1] or [23, Sect. 7.1]. Actually,
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gα is defined as the unique metric for which the distribution of vector fields globally
defined on R × S

1 as

X1(x, y) := ∂

∂x
, X

(α)
2 (x, y) := |x|α ∂

∂y
(8)

is an orthonormal frame at every (x, y) ∈ R×S
1: in this regard, the Grushin cylinder

(α = 1) is a two-dimensional almost-Riemannian manifold of step two, meaning
that

span
{
X1,X

(1)
2 ,

[
X1,X

(1)
2

]}∣
∣
∣
(x,y)

= R
2 ∀(x, y) ∈ R × S

1 ,

where [X1,X
α
2 ] denotes the Lie brackets of vector fields. In fact, Mα is a hyperbolic

manifold whenever α > 0, with Gaussian (sectional) curvature

Kα(x, y) = −α(α + 1)

x2
. (9)

To each Mα one naturally associates the Riemannian volume form

μα := volgα = √
det gα dx ∧ dy = |x|−α dx ∧ dy , (10)

the Hilbert space

Hα := L2(M, dμα) , (11)

understood as the completion of C∞
c (M) with respect to the scalar product

〈ψ, ϕ〉α :=
∫∫

R×S
1
ψ(x, y) ϕ(x, y)

1

|x|α dx dy , (12)

and the (Riemannian) Laplace–Beltrami operator �μα := divμα ◦ ∇ acting on
functions over Mα . A standard computation (see, e.g., [18, Sect. 2]) yields explicitly

�μα = ∂2

∂x2 + |x|2α ∂2

∂y2 − α

|x|
∂

∂x
. (13)

As a linear operator on Hα one minimally defines �μα on the dense subspace
of L2(M, dμα)-functions that are smooth and compactly supported away from the
metric’s singularity locus Z, thus introducing

Hα := −�μα , D(Hα) := C∞
c (M) . (14)

The Green identity implies that Hα is symmetric and non-negative. One has the
following classification.
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Theorem 2 ([6, 8, 18])

(i) If α ∈ (−∞,−3] ∪ [1,+∞), then the operator Hα is essentially self-adjoint.
(ii) If α ∈ (−3,−1], then Hα is not essentially self-adjoint with deficiency index

2.
(iii) If α ∈ (−1, 1), then Hα is not essentially self-adjoint and it has infinite

deficiency index.

The same holds, separately, for the symmetric operators H±
α minimally defined on

the L2-space of each half-cylinder.
With respect to the Hilbert space orthogonal decomposition

Hα = L2(M, dμα) ∼= L2(M−, dμα) ⊕ L2(M+, dμα) (15)

the operator Hα is reduced as Hα = H−
α ⊕ H+

α , and therefore in the regime
of essential self-adjointness its closure is the reduced, non-negative, self-adjoint

operator Hα = H−
α ⊕ H+

α . This implies that both the Schrödinger equation ∂tu =
−iHαu and the heat equation ∂tu = −Hαu decompose to uncoupled equations on
each half-cylinder, or, better to say, group and semi-group decompose, respectively,

as e−itHα = e−itH−
α ⊕ e−itH+

α and e−tHα = e−tH−
α ⊕ e−tH+

α , with the consequence
that an initial datum supported, say, only on one half, keeps evolving in that half
at each later time. This phenomenon is customarily referred to as ‘heat-geometric
confinement’ and ‘quantum-geometric confinement’, respectively, to emphasise the
sole effect of the geometry (meaning that we are not considering any potential
energy on the manifold, but only the kinetic one), with no coupling boundary
conditions—hence no interaction—declared at Z. Quantum-mechanically, in this
regime of the Grushin metric, a quantum particle constrained on Mα and left ‘free’
to evolve only under the effect of the underlying geometry never happens to cross
the singularity locus Z.

The scenario becomes much more diversified when Hα is not essentially
self-adjoint and therefore admits non-trivial self-adjoint extensions. Our regime
of interest includes α ∈ (0, 1), the sub-case of greatest relevance because it
corresponds to an actual local singularity (and not vanishing) of the metric gα, and
for the purposes of this note we shall only consider such α’s. Qualitatively analogous
results can be established in the remaining non-self-adjoint regime α ∈ (−3, 0).

There is in fact a giant family of inequivalent self-adjoint realisations of Hα

when α ∈ [0, 1), as the deficiency index is infinite. Each one is characterised
by boundary conditions at Z that prescribe a one-sided or two-sided interaction
with the boundary, or more generally a protocol of left↔right transmission. Such
a family includes physically unstable realisations (those that are not lower semi-
bounded), as well as a huge amount of unphysical realisations, such as those with
non-local boundary conditions at Z.

An extensive and fairly explicit classification of physical extensions of Hα was
recently completed in [19].
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Theorem 3 ([19]) Let α ∈ [0, 1). Hα defined in (14) admits, among others, the
following families of self-adjoint extensions with respect to L2(M, dμα):

• Friedrichs extension: Hα,F;

• Family IR: {H [γ ]
α,R | γ ∈ R};

• Family IL: {H [γ ]
α,L | γ ∈ R};

• Family IIa with a ∈ C: {H [γ ]
α,a | γ ∈ R};

• Family III: {H [�]
α | � ≡ (γ1, γ2, γ3, γ4) ∈ R

4}.
Each member of any such family acts precisely as the differential operator −�μα

on a domain of functions f ∈ L2(M, dμα) satisfying the following properties.

(i) Integrability and regularity:

∑

±

∫∫

R
±
x ×S

1
y

∣
∣(�μαf )(x, y)

∣
∣2 dμα(x, y) < +∞ . (16)

(ii) Boundary condition: The limits

f ±
0 (y) = lim

x→0± f (x, y) , (17)

f ±
1 (y) = ±(1 + α)−1 lim

x→0±

( 1

|x|α
∂f (x, y)

∂x

)
(18)

exist and are finite for almost every y ∈ S
1, and depending on the considered

type of extension, and for almost every y ∈ R,

f ±
0 (y) = 0 if f ∈ D(Hα,F) , (19)

{
f −

0 (y) = 0

f +
1 (y) = γf +

0 (y)
if f ∈ D(H

[γ ]
α,R) , (20)

{
f −

1 (y) = γf −
0 (y)

f +
0 (y) = 0

if f ∈ D(H
[γ ]
α,L) , (21)

{
f +

0 (y) = a f −
0 (y)

f −
1 (y) + a f +

1 (y) = γf −
0 (y)

if f ∈ D(H
[γ ]
α,a ) , (22)

{
f −

1 (y) = γ1f
−
0 (y) + (γ2 + iγ3)f

+
0 (y)

f +
1 (y) = (γ2 − iγ3)f

−
0 (y) + γ4f

+
0 (y)

if f ∈ D(H [�]
α ) . (23)

One can further select those extensions that are non-negative and then induce a
heat type flow.
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Theorem 4 ([16])

• The Friedrichs extension Hα,F is non-negative.
• Extensions in the family IR, IL, and IIa , a ∈ C, are non-negative if and only if

γ � 0.
• Extensions in the family III are non-negative if and only if so is the matrix

�̃ :=
(

γ1 γ2 + iγ3

γ2 − iγ3 γ4

)

,

i.e., if and only if γ1 + γ4 > 0 and γ1γ4 � γ 2
2 + γ 2

3 .

A customary quantum-mechanical quantification of the transmission modelled
by each extension is the fraction of Schrödinger flux that gets transmitted vs
reflected when a beam of particles are shot free from infinity towards Z. This
analysis, albeit in a Schrödinger equation framework, elucidates the qualitative
properties of the crossing at x = 0 and was recently done in [16]. Intuitively
speaking, far away from Z the metric tends to become flat and the action −�μα of
each self-adjoint ‘free Hamiltonian’ tends to resemble that of the free Laplacian −�,
plus the correction due to the (|x|−1∂x)-term, on wave functions f (x, y) that are
constant in y. This suggests that at very large distances a quantum particle evolves
free from the effects of the underlying geometry, and one can speak of scattering
states of energy E > 0. The precise shape of the wave function fscatt of such a
scattering state can be easily guessed to be of the form

fscatt(x, y) ∼ |x| α
2 e±ix

√
E as |x| → +∞ . (24)

Indeed, −�μαfscatt ∼ Efscatt + α(2+α)

4|x|2 fscatt, that is, up to a very small O(|x|−2)-
correction, fscatt is a generalised eigenfunction of −�μα with eigenvalue E. All this
can be fully justified on rigorous grounds [16] and leads naturally to the definition of
the ‘transmission coefficient’ and ‘reflection coefficient’ for the scattering, namely
the spatial density of the transmitted flux and the reflected flux, normalised with
respect to the density of the incident flux. Obviously, no scattering across the
singularity occurs for Friedrichs, or type-IR, or type-IL quantum protocols, whereas
in type-IIa scattering one obtains the following (analogous conclusions can be made
for type-III scattering).
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Theorem 5 ([16]) Let α ∈ [0, 1), a ∈ C, γ ∈ R. The transmission coefficient
Tα,a,γ (E) and the reflection coefficient Rα,a,γ (E) at given energy E > 0 for the

Schrödinger transmission protocol governed by H
[γ ]
α,a are given by

Tα,a,γ (E) =
∣
∣
∣
∣
∣

E
1+α

2 (1 + eiπα) �( 1−α
2 ) a

E
1+α

2 �( 1−α
2 )(1 + |a|2) + i γ 21+αei π

2 α�( 3+α
2 )

∣
∣
∣
∣
∣

2

,

Rα,a,γ (E) =
∣
∣
∣
∣
∣

E
1+α

2 �( 1−α
2 ) (1 − |a|2 eiπα) + i γ 21+αei π

2 α�( 3+α
2 )

E
1+α

2 �( 1−α
2 )(1 + |a|2) + i γ 21+αei π

2 α�( 3+α
2 )

∣
∣
∣
∣
∣

2

.

(25)

They satisfy

Tα,a,γ (E) + Rα,a,γ (E) = 1 , (26)

and when γ = 0 they are independent of E . The scattering is reflection-less
(Rα,a,γ (E) = 0) when

E =
(

21+α γ �( 3+α
2 ) sin π

2 α

�( 1−α
2 )(1 − cos πα)

) 2
1+α

, (27)

provided that α ∈ (0, 1), |a| = 1, and γ > 0. In the high energy limit the scattering
is independent of the extension parameter γ and one has

lim
E→+∞ Tα,a,γ (E) = 2 |a|2(1 + cos πα)

(1 + |a|2)2 ,

lim
E→+∞ Rα,a,γ (E) = 1 + |a|4 − 2|a|2 cos πα

(1 + |a|2)2 ,

(28)

whereas in the low-energy limit, for γ �= 0,

lim
E↓0

Tα,a,γ (E) = 0 ,

lim
E↓0

Rα,a,γ (E) = 1 .
(29)

Upon inspection of the boundary conditions (19)–(23) one sees that the type-IIa
extension H

[γ ]
α,a with a = 1 and γ = 0 imposes the local behaviour

lim
x→0− f (x, y) = lim

x→0+ f (x, y)

lim
x→0−

( 1

|x|α
∂f (x, y)

∂x

)
= lim

x→0+

( 1

|x|α
∂f (x, y)

∂x

)
,

(30)
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namely the distinguished feature of having a domain of functions that are continuous
across the Grushin singularity, together with their weighted derivative. H [0]

α,1 is called

the ‘bridging extension’ of Hα, and for it we shall simply write H B
α . In view of the

results reviewed so far, the transmission modelled by the bridging extension

• has no spatial filter in the sense of (30) (in fact, all type-IIa protocols with a = 1
impose local continuity at Z; quantum-mechanically this is interpreted as a lack
of jump in the particle’s probability density from one side to the other of the
singularity),

• and has no energy filter in the Schrödinger scattering, indeed, H B
α and all type-IIa

protocols with γ = 0 induce a scattering where the fraction of transmitted and
reflected flux does not depend on the incident energy (see (25) above),

T B
α := Tα,1,0(E) = 1

2
(1 + cos πα) ,

RB
α := Rα,1,0(E) = 1

2
(1 − cos πα) ,

(31)

meaning that the singularity does not act as a filter in the energy.

The overall picture surveyed so far poses naturally the question of the analysis
of the heat type flow generated by the positive and self-adjoint realisations of the
Laplace–Beltrami operator on Hα (Theorem 4), as well as the Schrödinger-type
flow generated by self-adjoint realisations (Theorem 3), let alone the study of non-
linear heat and Schrödinger equations on Mα with linear part given by a self-adjoint
Laplace–Beltrami operator. This appears to be a completely uncharted territory of
notable relevance in abstract terms and for applications. The gap between such
future goals and the current knowledge is a lack of informative characterisation of
the heat and Schrödinger propagator’s kernel.

To complete the present review, let us make the connection explicit between
the two-dimensional heat type equation induced by H B

α and the one-dimensional
problem (1).

This is done [8, 19] by means of the canonical Hilbert space unitary isomorphism

Hα

∼=−→ H, where

H := F2UαL2(M, dμα) ∼= 
2(Z, L2(R, dx)) ∼= H− ⊕ H+ ∼=
⊕

k∈Z
h ,

h := L2(R−, dx) ⊕ L2(R+, dx) ∼= L2(R, dx) ,

(32)
recalling that

Hα
∼= L2(M−, dμα) ⊕ L2(M+, dμα) , (33)
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and where the unitary transformations Uα := U−
α ⊕ U+

α and F2 := F−
2 ⊕ F+

2 are
defined, respectively, as

U±
α : L2(R± × S

1, |x|−αdxdy)
∼=−→ L2(R± × S

1, dxdy) ,

f �→ φ := |x|− α
2 f ,

(34)

and

F±
2 : L2(R± × S

1, dxdy)
∼=−→ L2(R±, dx) ⊗ 
2(Z) ,

φ �→ ψ ≡ (ψk)k∈Z ,

ek(y) := eiky

√
2π

, ψk(x) :=
∫ 2π

0
ek(y) φ(x, y) dy , x ∈ R

±

(35)

(thus, φ(x, y) = ∑
k∈Z ψk(x)ek(y) in the L2-convergent sense). This provides, up

to isomorphism, the orthogonal sum decomposition of the Hilbert space of interest
into identical ‘bilateral’ fibres h = L2(R−, dx) ⊕ L2(R+, dx) ∼= L2(R, dx). The
decomposition is discrete, as a consequence of having taken the Fourier transform
F2 only in the compact variable y.

Theorem 6 ([19]) Let α ∈ [0, 1). Through the isomorphism (32) the self-adjoint
bridging operator H B

α on Hα = L2(M, dμα) is unitarily equivalent to the self-
adjoint operatorH B

α onH ∼= 
2(Z, L2(R)), namely

H B
α = (Uα)−1(F2)

−1H B
α F2 Uα , (36)

where

H B
α =

⊕

k∈Z
Aα(k) (37)

and each Aα(k) is the self-adjoint operator on L2(R) given by

D(Aα(k)) =

⎧
⎪⎨

⎪⎩

g = g− ⊕ g+ , g± ∈ L2(R±, dx) such that
( − d2

dx2 + k2|x|2α + α(2+α)

4x2

)
g± ∈ L2(R±, dx)

g−
0 = g+

0 , g−
1 = −g+

1

⎫
⎪⎬

⎪⎭
,

Aα(k)g =
⊕

±

(
− d2

dx2 + k2|x|2α + α(2 + α)

4x2

)
g± ,

(38)
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where g±
0 , g±

1 ∈ C are the existing and finite limits

g±
0 = lim

x→0± |x| α
2 g(x) ,

g±
1 = lim

x→0± |x|−(1+ α
2 )

(
g(x) − g±

0 |x|− α
2
)
.

(39)

In Theorem 6 the existence and finiteness of the limits (39) is guaranteed by the

distributional constraint
(− d2

dx2 +k2|x|2α+ α(2+α)

4x2

)
g± ∈ L2(R±, dx). A completely

analogous unitary equivalence and fibred decomposition like (36)–(37) holds for all
other self-adjoint realisations of the Laplace–Beltrami operator on Grushin cylinder,
as classified in Theorem 3 [19].

Each Aα(k) is the k-th transversal momentum mode of the operator H B
α

on cylinder, in the sense of the isomorphism (32), namely with respect to the
momentum conjugate to the y-variable. By compactness, these are discrete modes
and, as seen from (38), the boundary condition at x = 0 has the same form
(g−

0 = g+
0 , g−

1 = −g+
1 ) in each mode, and moreover it does not couple distinct

modes. Because of this structure, the bridging operator H B
α is said to be ‘uniformly

fibred’, and in fact all other extensions classified in Theorem 3 are uniformly fibred
too [19]. Uniformly fibred extensions generate a heat or Schrödinger flow that is
reduced into the discrete modes k.

A careful spectral analysis [16] shows that for each (uniformly fibred) extension
from Theorem 3, the transversal momentum modes are energetically increasingly
ordered in the sense of increasing |k|, meaning in particular that the zero-th mode
is the lowest energy one, and that for the bridging operator all modes have only
non-negative, essential, absolutely continuous spectrum.

Comparing (38) with (4) one recognises that Aα(0) = AB
α . This and the

considerations made in Sect. 1 finally show that the heat flow generated by the
bridging operator H B

α starting with a function finit on the cylinder which belongs
to the zero-th transversal momentum mode and therefore is constant in y, say,
finit(x, y) = ϕ(x), produces at times t > 0 and evoluted function

f (t; x, y) = u(t, x) (40)

(still belonging to the zero mode) where u solves the one-dimensional initial value
problem (1) with initial datum ϕ.

3 Related Settings: Grushin Planes and Almost-Riemannian
Manifolds

The subject of geometric quantum confinement away from the metric’s singularity,
and transmission across it, for quantum particles or for the heat flow on degenerate
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Riemannian manifolds is experiencing a fast growth in the recent years. Such
themes are particularly active with reference to Grushin structures on cylinder,
cone, and plane [4–9, 18, 21], as well as, more generally, on two-dimensional
orientable compact almost-Riemannian manifolds of step two [6], d-dimensional
regular almost-Riemannian and sub-Riemannian manifolds [15, 23].

Of significant relevance is the counterpart model to the Grushin-type cylinder, but
in the lack of compact variable. This leads to related almost-Riemannian structures
called ‘Grushin-type planes’. In complete analogy to Sect. 2, these are Riemannian
manifolds Mα ≡ (M, gα), for some α ∈ R, where now

M± := R
±
x × Ry Z := {0} × Ry , M := M+ ∪ M− (41)

and again with degenerate Riemannian metric

gα := dx ⊗ dx + |x|−2αdy ⊗ dy . (42)

The standard ‘Grushin plane’ corresponds to α = 1. Also for a Grushin-type plane
one builds the Hilbert space Hα, defined as in (11), and the Laplace–Beltrami
differential operator �μα := divμα ◦ ∇, explicitly given again by the analogue
of (13), and minimally realised as the analogue of (14) on smooth functions
compactly supported within each open half-plane. This yields the densely defined,
non-negative, symmetric operator Hα , and poses the problem of self-adjointness of
Hα, in order to analyse the generated heat or Schrödinger flow.

Theorem 7 ([15, 18, 21, 22])

(i) If α ∈ [−1, 1), then Hα is not essentially self-adjoint in Hα and has infinite
deficiency index.

(ii) If α ∈ (−∞,−1) ∪ [1,+∞), then Hα is essentially self-adjoint and therefore
the Grushin-type plane Mα induces geometric quantum confinement.

The above regime of essential self-adjointness was implicitly established in
[15] as an adaptation of the previous perturbative analysis [23] devised for the
compactified version of the manifold; the complete identification of essential self-
adjointness and lack thereof was subsequently obtained in [18, 21, 22] within
a non-perturbative, novel scheme of constant-fibre direct integral decomposition
of the Hilbert space Hα = L2(M, dμα) that generalises the direct integral
decomposition (32)–(35) one performs in the compact case. This replaces uniformly
fibred extensions on cylinder of the form (37) discussed above, namely

⊕

k∈Z
Aα(k) ,
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Aα(k) acting self-adjointly on the fibre Hilbert space h = L2(R), with uniformly
fibred direct integral extensions

∫ ⊕

R

Aα(ξ) dξ ,

where the fibre operator Aα(ξ) on h now depends on the continuous Fourier mode
ξ , dual to the non-compact variable y.

It is worth observing that the regime of self-adjointness for α-Grushin cylinders
and planes differ when α ∈ (−3,−1) (compare Theorems 2 and 7). This is due
to the different nature of the direct sum and direct integral decompositions: indeed,
when α ∈ (−3,−1), the only Fourier mode that is not self-adjoint is the zero-th
one, which brings a non-trivial contribution to the sum, but not to the integral. As a
consequence, when α ∈ (−3,−1) the zero mode of a generic function ψ ≡ ψ(x, y)

hitting Z in the cylinder, namely the average on S
1

ψ0(x) = 1√
2π

∫

S
1
ψ(x, y) dy ,

does cross the singularity, whereas the zero mode of ψ on the plane, namely

ψ0(x) = 1√
2π

∫

R

ψ(x, y) dy ,

does not cross the singularity. The case α = −1 is different as well between cylinder
and plane: indeed, the non-self-adjoint Fourier modes are ξ ∈ (−1, 1) for the plane,
and k = 0 for the cylinder, thus yielding deficiency index of Hα equal to infinity for
the plane, and equal to 2 for the cylinder.

As a matter of fact, the lack of compactness makes the systematic identification
of non-trivial self-adjoint extensions of Hα considerably harder and so far no explicit
classification is available that mirrors Theorem 3 for the plane.

Beside the above concrete cylindrical and planar settings, the deep connection
between geometry and self-adjointness is investigated for the problem of geometric
confinement on more general almost-Riemannian structures. This includes ‘two-step
two-dimensional almost-Riemannian structures’, characterised by an orthonormal
frame for the metric in the vicinity of the singularity locus Z of the form [3]

X1(x, y) = ∂

∂x
, X2(x, y) = xeφ(x,y) ∂

∂y
(43)

(to be compared to (8) with α = 1). The essential self-adjointness of the
corresponding minimally defined Laplace–Beltrami in the case of compactified Z
was established in [6].

From a related perspective, the already observed circumstance that Grushin-
type cylinders or planes are, classically, geodesically incomplete, but can induce,
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quantum-mechanically, geometric confinement (a condition that occurs more gen-
erally for regular almost-Riemannian manifold with compact singular set), poses an
intriguing problem as far as semi-classical analysis is concerned. Indeed, reinstating
Planck’s constant in the Schrödinger equation

i∂tψ + ε2�μαψ = 0 , ε > 0 (44)

(in the regime of α in which the minimally defined �μα is unambiguously realised
self-adjointly), semi-classics show, informally speaking, that as ε ↓ 0 solutions
get concentrated and evolve around geodesics. Therefore, the above-mentioned
classical/quantum discrepancy makes the semi-classical analysis necessarily break
down in the limit.

Such a discordance between classical and quantum picture can be at least par-
tially resolved by appealing to different quantisation procedures on the considered
Riemannian manifold, in practice considering corrections of the Laplace–Beltrami
operator that have a suitable interpretation of free kinetic energy, much in the orig-
inal spirit of [13]. Most of coordinate-invariant quantisation procedures (including
path integral quantisation, covariant Weyl quantisation, geometric quantisation, and
finite-dimensional approximation to Wiener measures) modify �μα with a term that
depends on the scalar curvature Rα (which, in two dimensions, is twice the Gaussian
curvature Kα). This produces a replacement in (44), in two dimensions, of −�μα

with the ‘curvature Laplacian’

− �μα + cKα (45)

for suitable c � 0. In the recent work [5] it was indeed shown, for generic two-
step two-dimensional almost-Riemannian manifolds with compact singular set, that
irrespective of c ∈ (0, 1

2 ) the above correction washes essential self-adjointness
out, yielding a quantum picture where the Schrödinger particle does reach the
singularity much as the classical particle does. (At the expenses of some further
technicalities, the whole regime c > 0 can be covered as well.) For concreteness, in
the Grushin cylinder the effect of the curvature correction is evidently understood
as a compensation between K = − 2

x2 (see (9) above) and the singular term 3
4x2

of the (unitary equivalent) Laplace–Beltrami operator. Still, the classical/quantum
discrepancy discussed so far remains unexplained in more general settings.

Concerning, instead, the heat flow, a satisfactory interpretation of the heat-
confinement in the Grushin cylinder is known in terms of Brownian motions
[7] and random walks [2]: roughly speaking, random particles are lost in the
infinite-area strip around Z: the latter, in practice, acts as a barrier. Clearly,
whereas curvature Laplacians are meaningful in the above context of inducing a
non-confining (transmitting) Schrödinger flow on two-step two-dimensional almost-
Riemannian manifolds (including the Grushin cylinders), thus making quantum
and classical picture more alike and well connected by semi-classics, this has no
direct meaning instead in application to the heat flow on Riemannian or almost-
Riemannian manifolds. Indeed, as long as one regards the heat equation on manifold
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as a limit of a space-time discretised random walk, the stochastic process’ generator
is the Laplace–Beltrami operator.

Generalisations of [6] have been established in [15, 23] from two-step two-
dimensional almost-Riemannian structures to any dimensions, any step, and even
to sub-Riemannian geometries, provided that certain geometrical assumptions on
the singular set are taken. The main difficulty is the treatment of the ‘tangency’
(or ‘characteristic’) points: these are points belonging to the singularity of the
metric structure where the vector distribution is tangent to the singularity. They
are never present in Grushin cylinder or two-step almost-Riemannian structures but
may appear, for example, in three-step structures, such as, for instance,

X1(x, y) = ∂

∂x
, X2(x, y) = (y − x2)

∂

∂y
, (x, y) ∈ R

2 , (46)

where the singularity is the parabola y = x2 and the origin (0, 0) is a tangency point.
Virtually nothing is known on the heat or the quantum confinement on such singular
structures, including the simplest example (46) (see [14] for further remarks).
First preliminary results in this respect were recently obtained in [4], where the
interpretation of almost-Riemannian structures as special Lie manifolds permits to
study some closure properties of singular perturbations of the Laplace–Beltrami
operator even in the presence of tangency points. This opens new perspectives of
treating several types of different singularities in sub-Riemannian geometry within
the same unifying theory.

4 A Numerical Glance at the Bridging-Heat Evolution

In this final section we present and comment on qualitative features of the solution
to the one-dimensional problem (1), obtained by numerical integration, also in
comparison with the initial value problem for the classical heat equation on R.

As already argued, it is the determination of the (integral kernel of) the heat
propagator exp(−tAB

α), t > 0, to be hard analytically, and this is due to the presence
of boundary conditions for the solution at x = 0 and any positive time.

Numerics then represent a first, valuable way to access relevant aspects of the
transmission of the heat flow between positive and negative half-line with bridging
boundary conditions, and one may envisage that a systematic comparison will be
launched numerically between analogous heat flows with different transmission
protocols among those surveyed in Sect. 2. Ours, here, is only an initial numerical
glance at the bridging-heat evolution to provide some insight and anticipate future
investigations.

Our numerical approach consists in approximating the solution u = e−tAB
α ϕ to

the problem (1) by means of an approximated version of both the spatial convolution
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integral between propagator’s kernel and ϕ, and the complex line integral that turns
the resolvent of AB

α into its semi-group.
More precisely, let us write

u(t, x) = (e−tAB
α ϕ)(x) =

∫

R

KB
α(t; x, y)ϕ(x) dx, (47)

where KB
α(·, ·) is the integral kernel of the bridging-heat propagator. In turn, let us

exploit the relation

e−tAB
α = L −1((AB

α − (·)1)−1)(t)

= 1

2π i

∫

�

e−zt
(
(AB

α − z1)−1) dz , t > 0 ,
(48)

as an identity between bounded operators on L2(R) and with the integral understood
in the Riemann sense in the strong operator topology, � being a straight line in C

orthogonal to the real axis in the open left half-plane, and L −1 denoting the inverse
Laplace transform (the non-negativity of AB

α has led here to the choice Rez < 0).
(48) connects the resolvent of AB

α at the complex point z with the semi-group at time
t > 0, and in terms of the integral kernels (AB

α − z1)−1(x, y) of the resolvent and
KB

α(t; x, y) of the propagator it reads

KB
α (t; x, y) = 1

2π i

∫ −1+i·∞

−1−i·∞
e−zt

(
(AB

α − z1)−1)(x, y) dz , t > 0 . (49)

The combinations of (47) and (49) produce the solution u and the two integrations
contained therein may be computed numerically with standard packages.

Of course, for (47) and (49) to be implementable one needs to know the (integral
kernel of) the resolvent (AB

α − z1)−1. This is a not so hard knowledge to achieve
from the underlying structure (4) of the operator AB

α , once it is interpreted as a
self-adjoint extension of the differential operator (2) minimally defined on smooth
functions compactly supported on R away from the origin. For this status of
extension operator, one can appeal to the general Kreı̆n-Višik-Birman theory of self-
adjoint extensions of lower semi-bounded and densely defined symmetric operators
on Hilbert space [17], and obtain (AB

α − z1)−1 fairly explicitly.
The net result of this computation gives the following expression for the integral

kernel of (AB
α − z1)−1. With respect to the canonical decomposition

L2(R, dx)
∼=−→ L2(R+, dx) ⊕ L2(R−, dx) , u �→

(
u+
u−

)

(50)



160 M. Gallone et al.

(that is, u±(x) := u(x) for x ≷ 0), consider the unitary transformation

U : L2(R+, dx) ⊕ L2(R−, dx)
∼=−→ L2(R+, dx) ⊕ L2(R+, dx) ,

U

(
u+
u−

)

(x) =
(

u+(x)

u−(−x)

)

, x > 0 ,

(51)

and set RB
α(z) := U(AB

α − z1)−1U−1. Then

(AB
α − z1)−1 = U−1 RB

α(z) U (52)

and the integral kernel of RB
α(z) is given by

RB
α(z)(x, y) = Gα,z(x, y)

(
1 0
0 1

)

− iπ

8
cos

(πα

2

)
ei πα

2

(
1 1
1 1

)

Pα,z(x)Pα,z(y) ,

x > 0 , y > 0 ,

(53)

where, in terms of the Bessel functions of first and second kind Jν and Yν [1,
equations (9.1.10)-(9.1.2)],

Pα,z(x) = √
x J 1+α

2
(x

√
z) + i

√
x Y 1+α

2
(x

√
z)

Qα,z(x) = 2
√

x J 1+α
2

(x
√

z)
(Im

√
z > 0) , (54)

and

Gα,z(x, y) = − iπ

4

{
Pα,z(x) Qα,z(y) , if 0 < y < x ,

Qα,z(x) Pα,z(y) , if 0 < x < y .
(55)

When formulas (47), (49), (52), and (53) are implemented numerically we obtain
a scenario exemplified in Figs. 2, 3, 4, and 5 below.

For concreteness, the bridging-heat evolution is considered, namely the solution
u ≡ u(t, x) to (1), of an initial datum ϕ essentially supported on the right
half-line. An initial Gaussian is seen to evolve at later times with the typical heat-
flow flattening of the solution, with the immediate formation of the characteristic
bridging behaviour at x = 0 (Fig. 2).

Notably, if ϕ is additionally shot with an initial non-zero momentum towards the
singularity, its evolution displays an oscillation given by the superposition of an in-
going wave and a component that bounces backwards (Fig. 3), as compared with the
evolution at the same time of the same Gaussian with no initial momentum.

It is also pretty transparent that the bridging-heat flow has a regularising effect at
every t > 0, as observed with the evolution of an initial step function (Fig. 4).
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0.8

1

Fig. 2 Solution u(t, x) to the heat-bridging initial value problem (1) with Gaussian initial datum
ϕ(x) = e−(x−2)2

(red curve). Plot of |u(t, ·)| at t = 0.5 (magenta dotted line) and t = 2 (blue
dotted line)

0 2 4- 2 x

0.111.00000

0.20 2

0.30 3

0.40 4

Fig. 3 Comparison at time t = 1.5 between the solution to the heat-bridging initial value problem
(1) with zero-momentum Gaussian initial datum ϕ(x) = e−(x−2)2

(magenta dotted curve) and with
non-zero momentum Gaussian initial datum ϕ2(x) = e−3ixe−(x−2)2

towards left. Both plots are
of |u(t, ·)|. The evolution of the Gaussian initially shot towards left displays in-going + outgoing
oscillation

We have also further evidence of a qualitatively similar behaviour of the free
heat flow and the bridging-heat flow, but of course for the characteristic boundary
condition of bridging type at the origin (Fig. 5).

Whereas, as said, this provides only a first glance at the qualitative properties
of the bridging-heat evolution on two connected half-lines, the evidences collected
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0.40 4

0.60 6

0.80 8

11

Fig. 4 Solution u(t, x) to the heat-bridging initial value problem (1) with initial datum ϕ(x) given
by the characteristic function of the interval [ 1

2 , 3
2 ] (red curve). Plot of |u(t, ·)| at t = 0.5 (blue

dotted line)

0 2 4- 2 x

0.1

0.2

0.3

0.4

Fig. 5 Comparison at time t = 1.5 between the solution to the heat-bridging initial value problem
(1) with Gaussian initial datum ϕ(x) = e−(x−2)2

(blue dotted curve) and the solution to the
ordinary heat equation on R (green curve)

here are encouraging and further corroborate the quest for the analytic identification
of counterpart Lp-Lq estimates, smoothing estimates, and space-time (Strichartz)
estimates for the bridging-heat flow, as compared to (5) for the classical heat flow.
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