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Abstract We review some recent results on the dispersive estimates for the
massless Dirac–Coulomb equation in 3D.

1 Introduction

The Cauchy problem for the 3D massless Dirac–Coulomb equation can be written
as follows {

i∂tu = Dνu, u(t, x) : Rt × R
3
x → C

4

u(0, x) = u0(x),
(1)

where

Dν = D − ν

|x|I4 .

F. Cacciafesta (�)
Dipartimento di Matematica, Universitá degli studi di Padova, Padova, Italy
e-mail: cacciafe@math.unipd.it

É. Séré
CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, PSL Research University, Paris,
France
e-mail: sere@ceremade.dauphine.fr

J. Zhang
Department of Mathematics, Beijing Institute of Technology, Beijing, China
e-mail: zhang_junyong@bit.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Georgiev et al. (eds.), Qualitative Properties of Dispersive PDEs,
Springer INdAM Series 52, https://doi.org/10.1007/978-981-19-6434-3_6

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6434-3_6&domain=pdf

 66 3599 a 66 3599 a
 
mailto:cacciafe@math.unipd.it

 66 3973 a 66 3973 a
 
mailto:sere@ceremade.dauphine.fr

 66 4263 a 66 4263 a
 
mailto:zhang_junyong@bit.edu.cn

 647 4612 a 647 4612 a
 
https://doi.org/10.1007/978-981-19-6434-3_6


128 F. Cacciafesta et al.

Here, I4 is the 4-dimensional identity matrix and D, the (massless) Dirac operator,
can be defined as

D = −i

3∑
k=1

αk∂k = −i(α · ∇),

where the 4 × 4 Dirac matrices are given by

αk =
(

0 σk

σk 0

)
, k = 1, 2, 3 (2)

and σj are the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

This system can be thought of as a model describing the dynamics of an electron
subject to the electric field generated by a charge ν located in the origin. The
range of charges ν that make the operator Dν self-adjoint is well understood: Dν is

essentially self-adjoint in the range |ν| ≤
√

3
2 and admits a distinguished self-adjoint

extension in the range
√

3
2 < |ν| ≤ 1 (see [19] and the references therein). From a

spectral theory point of view, we recall that the continuous spectrum of the operator
Dν is the whole real line (as for the case ν = 0); the generalized eigenfunctions are
well known and will in fact play a crucial role in our analysis, as we will see. Since
the Dirac operator is of first order, the Coulomb potential is a “large” perturbation
and, as a consequence, one cannot directly deduce the properties of (1) from the free
case ν = 0 using perturbative arguments.

From a dynamical point of view, the Dirac equation falls within the chapter of
dispersive equations and it is strictly related to the wave equation (and to the Klein-
Gordon one in the massive case) due to the fact that the Dirac matrices satisfy the
anticommutation relations

αjαk + αkαj = 2δjk, j, k = 1, 2, 3,

so that by applying the operator i∂t + D to a solution u of the free Dirac equation
i∂tu − Du = 0 yields

∂ttu − �u = (i∂t + D)(i∂t − D)u = 0 .

As a consequence, u also satisfies a system of decoupled wave equations. Therefore,
most of the results that hold for the free wave flow can be harmlessly translated to
the (free) Dirac case by simply applying the identity above. Here, we mean to focus
on dispersive estimates and, in particular on Strichartz estimates: these estimates
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are a remarkably useful tool in several different contexts (study of local/global
well posedness for nonlinear models, scattering,. . . ). Strichartz estimates for the
solutions to the 3D massless Dirac equation are well known and can be written as
follows

‖e−itDu0‖L
p
t L

q
x

≤ ‖u0‖
Ḣ

1
2 + 1

p − 1
q

(4)

with the notation L
p
t L

q
x = Lp(Rt , L

q(R3
x))4 for the Strichartz spaces, the exponents

(p, q) being wave admissible, i.e.,

2

p
+ 2

q
= 1, 2 ≤ p ≤ ∞, 2 ≤ q < ∞. (5)

Following the paper [29], in the last 20 years a lot of effort has been devoted to
investigating the validity of Strichartz estimates for dispersive equations perturbed
by various potentials, and many strategies and techniques have been developed
and sharpened. It is now well understood that the degree of homogeneity of the
differential operator works somehow as a “threshold” for the validity of Strichartz
estimates, meaning that for subcritical potentials with a faster decay than the critical
one, Strichartz estimates can be recovered with more or less standard perturbative
arguments, while for supercritical potentials with slower decay than the critical one,
some non-dispersive solutions can be explicitly built in some cases. Concerning
the Dirac equation, we refer to [4, 15–18] for dispersive estimates for subcritical
potentials, and [1] for some counterexamples in the supercritical case. Potentials
that exhibit the same homogeneity as the free operator correspond thus the critical
case and typically turn out to represent a delicate and nontrivial problem, as indeed
perturbative arguments are ruled out, and a much deeper understanding of the
structure of the operator is often needed. Let us try to review some literature on the
topic: in [5], [6] the authors proved Strichartz estimates (via Kato-smoothing) for
the Schrödinger and wave equations perturbed by an inverse square potential, and
more generally zero-order perturbations with critical decay (see also [28]). In [20]
(and in subsequent [21, 22]) the authors proved the stronger time-decay estimates
for the Schrödinger equation perturbed by critical electromagnetic potentials,
exploiting a pseudoconformal transform that allows for an explicit representation
of the propagator kernel. Time-decay estimates for the wave equation with critical
magnetic potentials in 2d were later obtained in [23] and later on for various flows in
[24]. Some results are available for the Dirac equation in Aharonov–Bohm potential
that can be somehow thought of as the “magnetic equivalent” to (1); we postpone to
Sect. 2.3 a brief overview of the topic. The massless Dirac–Coulomb equation (1)
falls within this chapter, as it is indeed invariant under the natural scaling

uλ(t, x) = u

(
t

λ
,
x

λ

)
, λ > 0
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(it is thus scaling critical). The aim of this note is to present the dispersive estimates
available for (1): in particular we will see how to prove a family of local smoothing
estimates, and Strichartz estimates with loss of angular derivatives. We stress the
fact that most of our results, with suitable differences, can be stated and proved in
2D as well. We limit ourselves to present here the 3D case that contains the main
difficulties.

1.1 The Setup: Partial Wave Decomposition, Spectral Theory,
and the Hankel Transform Method

In [5] the authors proved Strichartz estimates for solutions to the Schrödinger and
wave equations perturbed with inverse square potentials. The strategy developed in
that paper can be roughly summarized in the following steps:

1. Use spherical harmonics decomposition to reduce the equation to a radial
problem;

2. Use Hankel transform to “diagonalize” the reduced problem and to define
fractional powers of the operator −� + a

|x|2 ;
3. Prove a local smoothing estimate on a fixed spherical space using Hankel

transform properties and the explicit integral representation of the fractional
powers;

4. Sum back: use triangle inequality and L2-orthogonality of spherical harmonics
to obtain the desired estimate for the original dynamics;

5. Deduce Strichartz estimates.

In later years, this strategy proved to be quite flexible and was indeed exploited
in several other papers in various contexts (see, e.g., [6, 8, 9]). The application of
this strategy to system (1) comes with some substantial complications that are the
following:

• The Dirac operator does not commute with the representation {ψ →
ψ(R−1·) , R ∈ SO3} of the rotation group SO3. Instead, it commutes with
a spin 1

2 representation of SU2. This fact prevents from using the standard
spherical harmonics decomposition and forces to rely on the so-called partial
wave decomposition (see [32] Sec. 4.6.5), that we briefly review. First of all, we
use spherical coordinates to write

L2(R3,C4) ∼= L2((0,∞), r2dr) ⊗ L2(S2,C4)

with S2 being the unit sphere. Then, we have the orthogonal decomposition on
S2:

L2(S2,C4) ∼=
⊕
k∈Z∗

⊕
m∈Ik

hk,m .
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Here, Z∗ = Z\{0}, Ik := {−|k| + 1/2,−|k| + 3/2, · · · , |k| − 1/2} ⊂ Z + 1/2
and each subspace hk,m is two-dimensional, with orthonormal basis


+
k,m =

(
i �k,m

0

)
, 
−

k,m =
(

0
�−k,m

)
.

The functions �k,m can be explicitly written in terms of standard spherical
harmonics as

�k,m = 1√|2k + 1|

( √|k − m + 1|Ym−1/2
|k+1/2|−1/2

sgn(−k)
√|k + m + 1|Ym+1/2

|k+1/2|−1/2

)
.

We thus have the unitary isomorphism

L2(R3,C4) ∼=
⊕
k∈Z∗
m∈Ik

L2((0,∞), r2dr) ⊗ hk,m

given by the decomposition

�(x) =
∑
k∈Z∗

∑
m∈Ik

f +
k,m(r)
+

k,m(θ, φ) + f −
k,m(r)
−

k,m(θ, φ) (6)

which holds for any � ∈ L2(R3,C4). The Dirac–Coulomb operator leaves
invariant the partial wave subspaces C∞

c (0,∞) ⊗ hk,m and its action on each
column vector of radial functions fk,m = (f +

k,m, f −
k,m)T is given by the radial

matrix

Dν,k =
( − ν

r
− d

dr
+ 1+k

r
d
dr

− 1−k
r

− ν
r

)
. (7)

This isomorphism allows for the following decomposition of the dynamics of the
Dirac flow: for any k ∈ Z

∗ the choice of an initial condition as

u0,k,m(x) = f +
0,k,m(r)
+

0,k,m(θ, φ) + f −
0,k,m(r)
−

0,k,m(θ, φ)

implies, by Stone Theorem, that the propagator is given by

e−itDν u0,k,m = f +
k,m(r, t)
+

k,m(θ, φ) + f −
k,m(r, t)
−

k,m(θ, φ),

where (
f +

k,m(r, t)

f −
k,m(r, t)

)
= e−itDν,k

(
f +

0,k,m(r)

f −
0,k,m(r)

)
.
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In what follows, we will in fact use the shortened notation

f · 
k,m = f +(r)
+
k,m(θ, φ) + f −(r)
−

k,m(θ, φ) , f (r) = (f +(r), f −(r))T.

(8)

• One cannot use the standard Hankel transform: the generalized eigenstates are
not Bessel functions, moreover positive and negative energy eigenstates are
present and should be dealt with simultaneously. We thus define, for a fixed
k ∈ Z

∗, a “relativistic Hankel transform” of the form

Pkf (E) =
∫ +∞

0
Hk(Er)f (r)r2dr (9)

where E ∈ (0,∞) and, for any ρ > 0, Hk(ρ) =
(

Fk(ρ) Gk(ρ)

Fk(−ρ) Gk(−ρ)

)
.

The functions

ψk(±Er) =
(

Fk(±Er)

Gk(±Er)

)
(10)

are the generalized eigenstates of the self-adjoint operator Dν,k with energies
±E, so that

PkDν,k = Diag(E,−E)Pk . (11)

In other words, the transform Pk “diagonalizes” the operator Dν,k .

Remark 1 The operator Dν,k, its generalized eigenstates ψk(±Er), and the trans-
form Pk are independent of m.

This construction suggests that the functions ψk =
(

Fk

Gk

)
play a crucial role,

and most of the technical issues in our dispersive estimates will consist in proving
suitable estimates for them (or, more precisely, for integrals of products of these
functions, as for formula (15)). We therefore recall their precise definition, as given
in, e.g., [27], formulas (36.1)-(36-20): for fixed values of k ∈ Z

∗ and ρ ∈ R
∗, with

Fk(ρ) =
√

2|�(γ + 1 + iν)|
�(2γ + 1)

eπν/2|2ρ|γ−1 (12)

×Im
{
ei(ρ+ξ)

1F1(γ − iν, 2γ + 1,−2iρ)
}
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and

Gk(ρ) =
√

2|�(γ + 1 + iν)|
�(2γ + 1)

eπν/2|2ρ|γ−1 (13)

×Re
{
ei(ρ+ξ)

1F1(γ − iν, 2γ + 1,−2iρ)
}

,

where 1F1(a, b, z) are confluent hypergeometric functions, γ = √
k2 − ν2 and

e−2iξ = γ−iν
k

is a phase shift.
One of the key tools of our strategy is represented by the following result, that

has been proved in [10]:

Proposition 1 For any k ∈ Z
∗ the following properties hold:

1. Pk is an L2-isometry.
2. PkDν,k = σ3�Pk, where �f (x) := |x|f (x).
3. The inverse transform of Pk is given by

P−1
k f (r) =

∫ +∞

0
H ∗

k (Er)f (E)En−1dE (14)

where H ∗
k =

(
Fk(Er) Fk(−Er)

Gk(Er) Gk(−Er)

)
(notice the misprint in formula (2.18) in

[10]).
4. For every σ ∈ R we can define the fractional operators

Aσ
k f (r) = Pkσ3�

σP−1
k f (r) =

∫ +∞

0
Sσ

k (r, s) · f (s)s2ds, (15)

where the integral kernel Sσ
k (r, s) is the 2 × 2 matrix given by

Sσ
k (r, s) =

∫ +∞

0
Hk(Er) · H ∗

k (Es)E2+σ dE. (16)

Remark 2 When summing on k, property (15) allows to define in a standard way
the fractional powers of the operator |Dν |, which will be used in forthcoming
Theorem 1.

As a consequence of this Proposition, given a function u0 =
∑
k∈Z∗
m∈Ik

f0,k,m · 
k,m

we can decompose the solution to Eq. (1) as follows:

e−itDν u0 =
∑
k∈Z∗
m∈Ik

(e−itDν,kf0,k,m)·
k,m =
∑
k∈Z∗
m∈Ik

P−1
k

[
e−itEσ3

(Pkf0,k,m

)
(E)

]
·
k,m.

(17)
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This decomposition represents the essential starting point of our analysis.

2 Dispersive Estimates

2.1 Local Smoothing

The main result of [10] is the following local smoothing (or Morawetz-type)
estimate:

Theorem 1 ([10]) Let K be a positive integer, and set

h≥K =
⊕

|k|≥K

⊕
m∈Ik

hk,m.

Let u be a solution to (1). Then for any

1/2 < ε <
√

K2 − ν2 + 1/2

and any f ∈ L2((0,∞), r2dr) ⊗ h≥K there exists a constant C = C(ν, ε,K) such
that the following estimate holds

‖|x|−ε|Dν |1/2−εu‖L2
t L

2
x

≤ C‖u0‖L2
x
. (18)

Remark 3 Notice that the range of ε gets wider if we require the initial condition to
be orthogonal to some of the first partial wave subspaces: this also happens for the
Schrödinger and wave equations with inverse square potentials (see [5]).

Remark 4 In order to deduce Strichartz estimates in a “standard” way (by the use of
Duhamel formula and the application of the local smoothing estimate above twice),
it would be necessary to prove (18) for ε = 1/2: this estimate, even if we do not
have a concrete counterexample, is most likely false. The requirement of additional
regularity on the initial condition seems not to help either. Therefore, at this stage,
it does not seem to be possible to obtain (any kind of) Strichartz estimates with this
strategy.

We mention the fact that the proof of this result turns out to be quite delicate,
as it forces to provide uniform-in-k estimates for integrals in the form of (16), that
involves products of confluent hypergeometric functions.
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2.2 Strichartz Estimates with Loss of Angular Derivatives

Subsequently, we tried to tackle the problem of proving Strichartz estimates with
loss of angular derivatives without using local smoothing, working directly on
decomposition (17). The steps of the strategy that was inspired by [28] are, roughly
speaking, the following:

1. Use partial wave decomposition and relativistic Hankel transform to decompose
the flow as in (17);

2. Prove Strichartz estimates for fixed k and with unit frequency, that is assuming
that suppPk(fk)(ρ) ⊂ [1, 2];

3. Deduce Strichartz estimates for the complete dynamics using scaling argument
and a dyadic decomposition.

The crucial technical step is (2), and some explicit estimates on the generalized
eigenfunctions ψk are needed. In [28] indeed, the following bound on standard
Bessel functions for λ � 1 plays an essential role:

|Jλ(ρ)| ≤ C ×

⎧⎪⎪⎨
⎪⎪⎩

e−Dλ, 0 < ρ ≤ λ/2,

λ−1/4(|ρ − λ| + λ1/3)−1/4, λ/2 < ρ ≤ 2λ,

ρ−1/2, 2λ < ρ

(19)

(notice that in our context λ has to be thought of as, roughly speaking, the “angular
parameter”), and for some positive constants C and D independent on ρ and λ (for
this estimate see, e.g., [2–31] ). Therefore, it is necessary to provide an analog of
estimate (19) for confluent hypergeometric functions. The main result obtained in
[11] is indeed the following:

Theorem 2 Let ψk(ρ) be a generalized eigenfunction of Dν as given in (10), with
|ν| < 1 and γ := √

k2 − ν2 � 1. Then there exists a constant C independent on γ

such that the following estimates for Fk(ρ) and Gk(ρ) in (10) hold:

|Fk(ρ)|, |Gk(ρ)| ≤ C

⎧⎪⎪⎨
⎪⎪⎩

e−Cγ , 0 < ρ ≤ γ /2,

γ − 3
4
(|γ − ρ| + γ

1
3
)− 1

4 ,
γ
2 ≤ ρ ≤ 2γ,

ρ−1, ρ > 2γ.

(20)

Remark 5 We stress the fact that while the proof of (19) is based on the Van der
Corput method in which the oscillations play a crucial role, the proof of (20) relies
on the construction of a steepest descent path which allows to apply Laplace’s
method. We should also point out that the limits of Fk , Gk as ν → 0 can be
expressed in terms of the Bessel function Jk−1/2. This is consistent with the similar
form of estimates (19) and (20).
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With Theorem 2 at our disposal, developing the strategy presented in the previous
subsection, we are able to prove the following Strichartz estimates

Theorem 3 Let |ν| <
√

15
4 . For any u0 ∈ Ḣ s , the following Strichartz estimates

hold

‖e−itDν u0‖L2
t L

q
r L2

ω
≤ C‖u0‖Ḣ s (21)

provided

4 < q <
3

1 − √
1 − ν2

m, s = 1 − 3

q
. (22)

Remark 6 The upper bound |ν| <
√

15
4 seems to have no physical meaning and it is

a byproduct of our proof; notice anyway that as
√

15
4 >

√
3

2 , this range includes the
set of charges that make the Dirac–Coulomb operator essentially self-adjoint.

Remark 7 We notice that this strategy could be developed in the 2-dimensional case
as well; on the other hand, L2

t -Strichartz estimates do not hold in 2d even for the
free wave equation. Nevertheless, it might be possible to obtain some L

p
t , p > 2,

estimates as done in [12], but this would require a fair amount of additional work,
therefore we prefer to limit the estimates to the 3d case.

2.3 Open Problems and Related Models

As it is seen, the understanding of dispersive dynamics for Eq. (1) is far from being
satisfactory, and many questions need to be answered. Also, there is a number of
related problems and models that would certainly deserve further investigation: here
we list a few of them.

• A first natural step would be trying to understand whether the estimates reviewed
above hold in the massive case, that is for the operatorDm

ν := Dν +mβ with m >

0: the restriction to m = 0 is quite structural, as indeed the massless equation
exhibits a scaling that can be exploited, as opposed to the case m > 0 (e.g.,
Proposition 1 does not work properly any more when m > 0). Also, when m > 0
it is a well-known fact that the Dirac–Coulomb operator has eigenvalues in the
gap (−m,m), and eigenvalues represent an obstacle to dispersion; this problem
can typically be bypassed by projecting the dynamics onto the absolute spectrum
of the operator (see [26]). Anyway, it is not entirely clear how to deduce estimates
for the massive case from the massless ones; a good starting point might be trying
to adapt the results proved in [14], in which estimates for the Klein-Gordon flow
are deduced from the corresponding ones for the wave flow by some kind of
“shifting argument” for the estimates on the resolvent. This kind of strategy might
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work (with some additional care due to the fact that the presence of a mass “opens
a gap” in the continuous spectrum of the operator) at least to extend the local
smoothing estimate (18) to the massive case.

• The problem of proving Strichartz estimates without angular regularity for
solutions to (1) remains open, and at the moment seems to be out of reach. A
possible approach might be trying to prove time-decay estimates by providing
a suitable representation for the integral kernel of the propagator, essentially
writing it as an integral transform of the Green function (which is explicit, see
[31]). Again, the complexity of the structure of the eigenfunctions will represent
a technical obstruction.

• From a purely mathematical point of view, a model related to the Dirac–Coulomb
equation is the Dirac equation perturbed with Aharonov–Bohm potential: the
massless Dirac Hamiltonian in the Aharonov–Bohm magnetic field is

DA = σ1(i∂1 + A1) + σ2(i∂2 + A2), (23)

where σj are the Pauli matrices and the magnetic potential AB(x) =
(A1(x),A2(x)) is given by

AB : R2 \ {(0, 0)} → R
2, AB(x) = α

(
− x2

|x|2 ,
x1

|x|2
)

, α ∈ R, x = (x1, x2).

(24)

The Cauchy problem associated with the Hamiltonian (23) takes the form

{
i∂tu = DAu, u(t, x) : Rt × R

2
x → C

2

u(0, x) = u0(x).
(25)

We refer to [8] and the references therein for further details on the model. As it
is seen, equation i∂tu = DAu is still scaling-invariant, and in this sense we can
consider system (25) similar to (1). On the other hand, the study of dispersive
estimates for system (25) turns out to be remarkably simpler, and this is due to the
fact that the generalized eigenfunctions of the operator DA only involve standard
Bessel functions (see, e.g., [25]), which are much simpler to deal with, and for
which several very precise estimates are available. Therefore, mainly relying on
the crucial estimate (19), generalized Strichartz estimates with loss of angular
derivatives were obtained in [12]. In this case, it seems simpler to recover the full
set of Strichartz estimates (without any loss): this could be done by following
the strategy developed in [24], in which the propagator for the Schrödinger
and wave/Klein-Gordon equations with scaling critical magnetic perturbations
is explicitly built using the corresponding eigenfunctions. This strategy seems to
be adaptable to deal with the Dirac case, with additional care due to the much
richer structure of the equation: this is a current work in progress.
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• Lastly, we mention the fact that scaling critical perturbations appear in a
somehow natural way when studying the dynamical Dirac equation on curved
spaces: in [7]-[3], the authors have proved, respectively, local and global in
time weighted Strichartz estimates for the Dirac dynamics in some spherically
symmetric spaces. The main tool in those papers consists in exploiting the
spherical structure of the manifolds and to introduce suitably chosen weighted
spinors, in order to translate the free dynamics on the curved space into a
dynamics on the Minkowski space with a (scaling critical) potential perturbation,
and then to rely on existing theory for the latter. Therefore, a better understanding
of dispersive estimates for the Dirac equation with a Coulomb (or, more in
general, scaling critical) perturbation would also allow to improve the estimates
on non-flat manifolds with spherical symmetry.
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