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Abstract The problem of monitoring the (constants in the estimates that quantify
the) dispersive behaviour of the flow generated by a Schrödinger operator is posed
in terms of the scaling parameter that expresses the small size of the support of
the potential, along the scaling limit towards a Hamiltonian of point interaction.
At positive size, dispersive estimates are completely classical, but their dependence
on the short range of the potential is not explicit, and the understanding of such a
dependence would be crucial in connecting the dispersive behaviour of the short-
range Schrödinger operator with the zero-range Hamiltonian. The general set-up of
the problem is discussed, together with preliminary answers, open questions, and
plausible conjectures, in a ‘propaganda’ spirit for this subject.

1 Introduction and Background

In the context of the dispersive properties of the Schrödinger flow generated by
the operator −� + V (x), self-adjointly realised on L2(Rd ) for a given measurable
function V : Rd → R, the explicit dependence on V of (the constants in) dispersive
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and Strichartz estimates is implicit or tacitly ignored, as V is given and does not
represent a relevant parameter, as long as it belongs to a suitable class of potentials
satisfying the required working assumptions. The other standard dependence on V

in the dispersive estimate is the projection onto the absolutely continuous spectrum
of the associated Schrödinger operator: it too is kept at this implicit level.

There are applications, however, where instead an explicit control of the disper-
sion in terms of V would provide crucial information.

The case that concerns us here is when V approximates in a suitable quantitative
sense an actual point-like, ‘impurity type’ perturbation of −�, the well-established
construction where, heuristically speaking, one formally adds to −� a potential
with delta-like profile supported at some x0 ∈ R

d [3]. In this respect, the problem of
comparing the dispersive phenomenon in the limiting case of point-like perturbation
with the approximant case of a perturbation of finite size support acquires relevance
per se and in application to the study of the solution theory of the associated (linear
and) non-linear Schrödinger equations with point-like singular perturbation [1, 9,
16, 18, 27].

In order to place our analysis into context, let us pick for concreteness the three-
dimensional case and, for ε > 0, let us consider the Schrödinger operator

Hε = −� + Vε(x), (1)

where

Vε(x) := η(ε)

ε2
V

(x

ε

)
, x ∈ R

3 , (2)

for given V , and where the following conditions (or more restrictive versions, as
done later) are assumed:

(V1) η : R
+ → R

+ is continuous on R
+, smooth on R

+, and satisfies η(0) =
η(1) = 1 as well as supε>0 η(ε) < +∞;

(V2) V is real-valued, V ∈ R (the Rollnik class), (1 + | · |)V ∈ L1(R3).

Assumption (V1) regulates the ‘distortion’ with respect to the scaling ε−2V (x/ε)

that has the same behaviour as the scaling of the Laplacian under dilation.Moreover,
H1 = −� + V .

Assumption (V2), among other consequences, guarantees the self-adjointness of
Hε in L2(R3) with quadratic form domain H 1(R3): indeed, under such a condition,
Vε is infinitesimally form bounded with respect to −� [31, Theorems X.17 and
X.19]. In fact, for the purposes of the present discussion, it is surely non-restrictive
to consider V ∈ C∞

c (R3,R), and it is this special choice that we will implicitly have
in mind.

The limit ε ↓ 0 yields distinct constructions depending on whether the additional
assumption here below is or is not matched.

(V3) Setting v(x) := √|V (x)| and u(x) := √|V (x)| sign(V (x)), the ‘Birman-
Schwinger’ operator u(−�)−1v on L2(R3), which is compact under assumption
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(V2), admits the simple eigenvalue −1, that is, the equation

u(−�)−1v φ = −φ (3)

has a unique (up to multiples) solution φ ∈ L2(R3) \ {0}, which in fact can be
chosen to be real-valued, and for convenience is normalised as

∫

R
3
sign(V )|φ|2 dx = −1 , (4)

and in addition the function

ψ := (−�)−1vφ (5)

satisfies

ψ ∈ L2
loc(R

3) \ L2(R3) . (6)

Assumption (V3) is a spectral condition of (simple) zero-energy resonance for
the Schrödinger operator−�+V . In fact, if a non-zero φ exists in L2(R3) satisfying
(3), then [3, Lemma I.1.2.3] ψ = (−�)−1vφ ∈ L2

loc(R
3), ∇ψ ∈ L2(R3), (−� +

V )ψ = 0 in the sense of distributions, and moreover

ψ ∈ L2
loc(R

3) \ L2(R3) ⇔
∫

R
3
vφ dx =

∫

R
3
V ψ dx 	= 0 . (7)

In addition, (V3) is a condition of lack of zero-energy eigenvalue for −�+V : for, if
(−� + V )ψ = 0 for some ψ ∈ H 1(R3), then φ := uψ ∈ L2(R3) \ {0} (otherwise,
−�ψ = −vφ = 0, which is impossible), and u(−�)−1vφ = u(−�)−1V ψ =
−uψ = −φ, but by assumption there is only one such φ (up to multiples) and the
correspondingψ does not belong toL2(R3). Observe also that the lack of eigenvalue
−1 for u(−�)−1v is generic; clearly, a suitable scalar dilation V 
→ aV restores it.
(An additional discussion may be found, e.g., in [17].)

Based on the above-mentioned consequences of (V3), we may further assume:

(V4) For given α ∈ R ∪ {∞}, η and V satisfy

α = − η′(0)∣∣ ∫
R
3 V ψ dx

∣∣2 . (8)

As anticipated, the above assumptions regulate the limit ε ↓ 0. More precisely
(see, e.g., [3, Theorem I.1.2.5]),

• if all (V1)–(V4) hold true, then Hε
ε↓0−−→ −�α,

• if, under (V1)–(V2), (3) has no non-trivial solution in L2(R3), then Hε
ε↓0−−→ −�
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in the norm resolvent sense [30, Section VIII.7], where −�α, for α given by (8),
is the point-like perturbation of the (negative) Laplacian at the origin, namely the
self-adjoint extension in L2(R3) of −�|C∞

c (R3\{0}) with s-wave scattering length

−(4πα)−1 and zero effective range.
The latter is by now a standard construction in various equivalent self-adjoint

extension schemes (see, e.g., [3, Section I.1.1] and [28, Section 3]). Explicitly, for
arbitrary λ > 0 (and λ 	= (4πα)2 if α < 0),

dom(−�α) =

⎧
⎪⎨
⎪⎩

u ∈ L2(R3)

∣∣∣∣∣∣∣

∃ ϕλ ∈ H 2(R3) such that

u = ϕλ + ϕλ(0)

4πα + √
λ

e−|x|√λ

|x|

⎫
⎪⎬
⎪⎭

,

(−�α + λ)u = (−� + λ)ϕλ .

(9)

In particular, α = ∞ selects −�, with self-adjointness domain H 2(R3). One also
has the explicit resolvent difference

(−�α +λ1)−1− (−�+λ1)−1 = (4π(4πα+1))−1
∣∣∣∣
e−|x|√λ

|x|
〉〈

e−|x|√λ

|x|
∣∣∣∣ (10)

(with the customary notation |ψ〉〈ψ| for the orthogonal projection in L2(R3) onto
the linear span of ψ . Concerning the spectrum of −�α ,

σess(−�α) = σac(−�α) = [0,+∞) ,

σsc(−�α) = ∅ ,

σp(−�α) =
{

∅ , if α � 0 ,

{−(4πα)2} if α < 0 .

(11)

The negative eigenvalue, when existing, is non-degenerate.
As a consequence of the above norm resolvent convergence (strong resolvent

convergence would have sufficed), Trotter’s theorem (see, e.g., [30, Theorem
VIII.21] implies

∥∥ e−it (−�+Vε)f − eit�αf
∥∥

L2

ε↓0−−−→ 0 (resonant case) ,

∥∥ e−it (−�+Vε)f − eit�f
∥∥

L2

ε↓0−−−→ 0 (non-resonant case) ,

∀t ∈ R , ∀f ∈ L2(R3) ,

(12)

that is, strong convergence of the unitary groups. Observe that instead norm
operator convergence cannot hold in general (as emerges, e.g., from the proof of
[30, Theorem VIII.20]).



Schrödinger Flow’s Dispersive Estimates in a Regime of Re-scaled Potentials 115

Thus, next to the classical and comprehensive knowledge of dispersive, smooth-
ing, and Strichartz estimates for the Schrödinger unitary propagator e−itHε (we
refer, among others, to the monographs[10, 26, 36, 37] and the multiple references
therein), it is relevant in the present context to monitor the dispersive features of
e−itHε in terms of the scaling parameter ε.

As mentioned, this has at least a two-fold motivation. For one thing, there is
an abstract interest per se in comparing the dispersive estimates of e−itHε and of
eit�α : notably, for the latter, the explicit knowledge [2, 34] of the integral kernel (see
(31) below) actually allows for an explicit derivation of dispersive and Strichartz
estimates [12, 13, 21] (see Remark 2 and (35)–(39)). Furthermore, there is a crucial
relevance in applications to semi-linear Schrödinger equations induced by −�α : for
such equations, whose study, albeit at an early stage, has already produced important
well-posedness results [9, 18, 19, 27], and in particular for their physical relevance
as effective dynamical equations for large Bose gases with impurities, one natural
and open problem is the approximation of the solution u by means of the solution
uε of the corresponding semi-linear equation induced by Hε, a question that would
require Strichartz estimates for e−itHε quantitatively expressed in terms of ε, so as
to monitor the ε ↓ 0 limit.

The purpose of this note is to make propaganda for this and related problems, and
to present a first answer in the prototypical three-dimensional set-up. The same issue
naturally arises and deserves investigation in two dimensions. The one-dimensional
case too is of relevance: that case is somewhat simpler and undermore direct control,
as in one dimension the singular point-perturbed −�α is an actual quadratic form
sum of −� and (a multiple of) the Dirac δ distribution [3, Chapter I.3].

It is worth observing that in the context of dispersive estimates for Schrödinger
operators one is well aware (see, e.g., [35, Section 12.1]) of the very important
difference between the one-dimensional dispersive bounds, whose constants do
exhibit an explicit dependence on the potential via the Jost solutions, as opposed
to the higher dimensional bounds: this general lack of information results, in the
present context, in the quest of the ε-dependence.

2 A Preliminary Overview of Relevant Spectral Properties

It is standard that, under the assumptions (V1)–(V2),Hε has essential spectrum that
is entirely absolutely continuous and amounts to

σess(Hε) = σac(Hε) = [0,+∞) ∀ε > 0 . (13)

Concerning the (necessarily negative) discrete spectrum, an explicit and detailed
discussion is possible, e.g., upon strengthening (V2) as:

(V2′) V is real-valued and ea|·|V ∈ R for some a > 0.



116 V. Georgiev et al.

In fact, it is known that

• [3, Theorem I.1.3.1(a)] assuming (V1)–(V2′), any negative eigenvalue E1 of
H1 = −� + V of multiplicity m gives rise to m (not necessarily distinct)
eigenvalues E

(
)
ε of Hε , 
 ∈ {1, . . . ,m} running to −∞ as ε ↓ 0 as

E(
)
ε = ε−2E1 + O(ε−1) ; (14)

• [3, Theorem I.1.3.1(b)], assuming (V1),(V2′),(V3),(V4), and when α < 0, Hε

has, for any ε > 0 small enough, the non-degenerate negative eigenvalue E
(α)
ε

E(α)
ε = −(4πα)2 + O(ε) . (15)

Last, concerning the nature of the spectral point zero for Hε, two scenarios are
possible under the basic assumptions (V1)–(V2):

• if, eventually in ε as ε ↓ 0, one has η(ε) ≡ 1, then Hε and ε−2H1 are unitarily
equivalent, as operators on L2(R3), via the L2 → L2 dilation isomorphism Uε ,
that is,

U∗
ε HεUε = 1

ε2
H1 , (Uεf )(x) := 1

ε3/2
f

(x

ε

)
; (16)

as a consequence, if the spectral point zero is an eigenvalue or a resonance for
−� + V , so too is it for Hε;

• on the other hand, in general a re-scaling with η(ε) 	= 1 distortion washes out
possible eigenvalues or resonance initially present at zero energy for −� + V ;
therefore, if (eventually in ε) η(ε) = 1+κε for some κ 	= 0, which in fact covers
the remaining generality of the present setup (only the quantity κ = η′(0) enters
(8) above), then eventually in ε zero-energy eigenvalues or resonance are absent
for Hε.

We shall refer to the occurrence where all of (V1)–(V4) hold true as the resonant
regime (at the given parameter α), and to the occurrence where (V1)–(V2) are
matched, and (3) has no solutions in L2(R3) \ {0}, as the non-resonant regime. For
what has been just observed, such a terminology refers to the spectral property of
H1 = −� + V , and not to the spectrum of Hε at zero energy. At each ε, Hε may be
well non-resonant even though H1 is.

3 Dispersive Estimates with ε-Uniform Bound

TheLq → Lp mapping properties of e−itHε depend, as the vast and well-established
literature on Schrödinger flow’s dispersive estimates shows, on the presence or
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absence of zero-energy resonance or zero-energy eigenvalues for Hε , provided that
Vε belongs to certain standard classes of controllable potentials.

In particular [14, 20, 22, 25, 29, 33, 41], |t|−3/2 is the typical decay for the
norm ‖e−itHεP

(ac)
ε ‖L1→L∞ in the absence of both resonance and eigenvalues at zero

energy for Hε, being in fact the exact decay for the corresponding norm relative
to the free Schrödinger propagator eit�, whereas the slower |t|−1/2 is typical for
the same norm in the presence of resonance at zero. Here P

(ac)
ε is the orthogonal

projection onto the absolutely continuous spectral subspace of L2(R3) associated
with Hε (see, e.g., [4, Chapter 4]).

A priori the above norm depends also on ε—an information that, as commented
in Sect. 1, would not be of concern if the scaling limit ε ↓ 0 was not considered.

We show now that the Lq → Lp bound is actually uniform in ε in two
meaningful classes of cases.

To this aim, it is convenient to require additional constraints on the size or on the
decay of V , and precisely:

(Vsmall) V is real-valued and, together with η, it satisfies

‖V ‖R :=
(∫∫

R
3×R

3

|V (x)| |V (y)|
|x − y|2 dx dy

) 1
2

< 4π

(
sup
ε>0

η(ε)

)−1

, (17)

‖V ‖K := sup
x∈R3

∫

R
3

|V (y)|
|x − y| dy < 4π

(
sup
ε>0

η(ε)

)−1

(18)

(i.e., respectively, smallness of the Rollnik norm and the generalised Kato norm);
(Vdecay) V is real-valued and satisfies |V (x)| � 〈x〉−(7+δ) for some δ > 0.

Observe that (Vsmall) automatically excludes zero-energy eigenvalues or resonance
for −� + V (in particular, it excludes (V3)), and (Vdecay) implies (V2).

With the extra decay imposed by (Vdecay) we are surely far from optimality,
but in the present context this is not of concern: recall that already the choice V ∈
C∞

c (R3)would be completely meaningful and non-restrictive, as it gives rise to both

mechanisms Hε
ε↓0−−→ −�α and Hε

ε↓0−−→ −� described in Sect. 1.

Theorem 1 Assume (V1) and (Vsmall). Then there exists a constant C, independent
of ε > 0, such that

∥∥ e−itHεP (ac)
ε f

∥∥
Lp � C|t|−3( 12− 1

p )‖f ‖Lp′
∀p ∈ [2,+∞] , p′ = p

p−1 ,

∀f ∈ Lp′
(R3) ,

∀t ∈ R \ {0} .

(19)

Proof It is standard to see that the smallness condition (Vsmall) prevents −� + V

to have zero-energy eigenvalues or resonance. The same therefore holds for Hε,
eventually in ε, apart from possible exceptional, isolated values of ε.
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In this regime, and at every fixed ε at which Hε is not zero-resonant, the Lp′ →
Lp boundedness of e−itHε , with boundCε|t|−3( 12− 1

p ), is a classical result (we refer to
[33]) obtained under the condition ‖Vε‖R < 4π bymeans of a Born series expansion
for the resolvent with a subsequent estimate of an arising oscillatory integral: this
results in a geometric series whose convergence is guaranteed by ‖Vε‖K < 4π .

In fact, owing to (V1) and (Vsmall),

‖Vε‖K �
(
sup
ε>0

η(ε)

)
‖V ‖K < 4π ,

‖Vε‖R �
(
sup
ε>0

η(ε)

)
‖V ‖R < 4π ,

(20)

thus matching the needed smallness conditions for Vε.
Moreover, the constant Cε in the Lp′ → Lp bound depends on ‖Vε‖K and

‖Vε‖R, and is therefore uniformly bounded in ε. Estimate (19) is thus established.
��

Theorem 2 Assume (V1) with η ≡ 1, (Vdecay), and (V3), (thereby implying (V4)
with α = 0). In other words, it is assumed that for every ε > 0 Hε acts self-adjointly
on L2(R3) as

Hε = −� + 1

ε2
V

(x

ε

)
(21)

with V satisfying (Vdecay), and it is assumed furthermore that the spectral value
zero is a resonance, but not an eigenvalue for H1—hence, on account of (16), zero
is a resonance but not eigenvalue for Hε for any ε > 0. Then there exists a constant
C, independent of ε, such that

∥∥ e−itHεP (ac)
ε f

∥∥
Lp � C|t|−3( 12− 1

p )‖f ‖
Lp′

∀p ∈ [2, 3) , p′ = p
p−1 ,

∀f ∈ Lp′
(R3) ,

∀t ∈ R \ {0} .

(22)

Remark 1 As commented already,Hε in (21) is zero-energy resonant, without zero-
energy eigenvalues, for every ε > 0. For such a Schrödinger operator, the dispersive
estimate (22), precisely in the regime p ∈ [2, 3), was established in [41, Theorem
1.3(2)] under the milder decay |V (x)| � 〈x〉−β for some β > 11

2 , but with an
implicit dependence of the constant on Vε , that is, on ε. Theorem 2 adds to this
classical picture the novel information that such a bound is uniform in ε. It is also
worth remarking that [41, Theorem 1.3(2)] prescribes, in addition, that a counterpart

to (22) is valid when p = 3 provided that the L3- and L
3
2 -norms are replaced,

respectively, by norms of the Lorenz spaces L3,∞(R3) and L
3
2 ,1(R3).
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Remark 2 The dispersive estimate (22), with the uniformity of the bound in terms
of ε, is compatible with its known counterpart for the limiting propagator eit�α=0—

recall from Sect. 1 that under the assumptions of Theorem 2 one has e−itHε
ε↓0−−→

eit�α=0 strongly in L2(R3) for every fixed t ∈ R. Indeed, it was found in [13, 21]
that

∥∥ eit�αP
(ac)
(α) f

∥∥
Lp � C|t|−3( 12− 1

p )‖f ‖
Lp′

∀p ∈ [2, 3) , p′ = p
p−1 ,

∀f ∈ Lp′
(R3) ,

∀t ∈ R \ {0}
(23)

for every α ∈ R, where now P
(ac)
(α) is the L2-orthogonal projection onto the

absolutely continuous spectrum [0,+∞) of −�α.

Proof of Theorem 2 Let us consider on L2(R3) the wave operators

W±
ε ≡ W±(Hε,−�) := lim

t→±∞ eitHε eit� (24)

(as strong limits in L2(R3)) associated with the pair of self-adjoint operatorsHε and
−�. Standard arguments from scattering theory (see, e.g., [32, Theorem XI.30])
guarantee that such wave operators exist in L2(R3) and are complete, meaning that

ranW±
ε = L2

ac(Hε) := P (ac)
ε L2(R3) . (25)

Owing to their completeness, W+
ε and W−

ε are unitaries from L2(R3) onto L2
ac(Hε)

and they intertwine HεP
(ac)
ε and −�, in particular,

e−itHεP (ac)
ε = W±

ε eit�(W±
ε )∗ ∀t ∈ R . (26)

In analogy to W±
ε let us also consider on L2(R3) the wave operators

W±
(α) ≡ W±(−�α,−�) := lim

t→±∞ e−it�α eit� (27)

(as strong limits in L2(R3)) associated with −�α and −�. Since the difference
of the corresponding resolvents is a rank-one operator (see (10) above), W±

(α) too
exist and are complete, on account of the Kuroda-Birman theorem (see, e.g., [31,
Theorem XI.9].

The intertwining relation (26) allows to deduce the Lp′ → Lp boundedness of
e−itHεP

(ac)
ε directly from the known Lp′ → Lp boundedness of eit�, once one also

knows that W±
ε is bounded on Lp(R3): the latter information is classical, and there

is in fact a vast literature on the Lp-boundedness of W±
ε for sufficiently regular Vε

vanishing at spatial infinity [5–8, 11, 15, 23, 24, 38–40, 42, 43]. This yields

∥∥ e−itHεP (ac)
ε f

∥∥
Lp � C‖W+

ε ‖2Lp→Lp |t|−3( 12− 1
p

)‖f ‖
Lp′ (28)
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for any t ∈ R \ {0}, any p ∈ [2,+∞], and any f ∈ Lp′
(R3).

On the other hand, it was recently proved in [13] that W±
(α) are Lp-bounded only

for p ∈ (1, 3) [13, Theorem 1.1] and that

∀u ∈ Lp(R3) lim
ε↓0 W±

ε u = W±
(α=0)u weakly in Lp(R3) , (29)

[13, Proposition 7.1]. (Strictly speaking for the latter result both (Vdecay) and the
lack of zero-energy eigenvalue, as well as the special form (21) of Hε, were all
required in [13, Proposition 7.1].) The Banach-Steinhaus theorem then allows to
deduce from (29) that

‖W±
ε ‖Lp→Lp � κ < +∞ (30)

uniformly in ε. Plugging (30) into (28) finally yields (22). ��

4 Outlook on Further Scaling Regimes

The preceding discussion shows that there are relevant scaling regimes that remain
uncharted, as far as the ε-dependence of the norm

∥∥ e−itHεP
(ac)
ε

∥∥
Lp′→Lp is con-

cerned:

(A) the special resonant case with Hε given by (21), that is, under assumptions
(V2) (or stronger spatial decay) and (V3), (zero-energy resonance and absence
of zero-energy eigenvalue for −� + V ), and in the dispersive regime p ∈
[3,+∞];

(B) the general resonant regime with Hε given by (1)–(2) under (V1)–(V4), in the
dispersive regime p ∈ [2,+3);

(C) the general resonant regime with Hε given by (1)–(2) under (V1)–(V4), in the
dispersive regime p ∈ [3,+∞].

Apart from the dependence on ε, the norm
∥∥ e−itHεP

(ac)
ε

∥∥
Lp′→Lp is already well

controlled in time in all the above cases (A), (B), and (C).
Each one among (A), (B), (C) presents specific difficulties, which justifies listing

them separately.
Case (B) is conceptually similar to Theorem 2: when p ∈ [2, 3) the wave

operators W±
(α) ≡ W±(−�α,−�) are still Lp-bounded, as established in [13,

Theorem 1.1], which in turns implies the dispersive estimate (23) for−�α, precisely

for p ∈ [2, 3). This, and theL2-strong convergence e−itHε
ε↓0−−→ eit�α for each t ∈ R

suggest that in case (B) the propagator e−itHε should satisfy the same Lp′ → Lp

bound as in (22). In order to mimic the scattering scheme of Theorem 2’s proof, one
would require a version of the key ingredient [13, Proposition 7.1], that is, the same

Lp-weak convergence W±
ε

ε↓0−−→ W±
(α) of (29), so as to cover the generic scaling

(1)–(2) for Hε.
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In the dispersive regime p ∈ [3,+∞] of cases (A) and (C), instead, no Lp′ →
Lp boundedness of eit�α is possible: this is ultimately a consequence of the fact that
the linear Schrödinger dynamics develops, at almost every instant t > 0, a |x|−1-
singularity in (eit�αf )(x), clearly not locally Lp-integrable for p � 3. This can
be argued from the explicit form [2, 34] of the integral kernel Kα(x, y; t) of the
propagator eit�α :

Kα(x, y; t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(x, y; t) + 1

|x| |y|
∫ +∞

0
e−4παu(u + |x| + |y|) ×

× K(u + |x| + |y|, 0; t) du ,

if α > 0 ,

K(x, y; t) + 2 i t

|x| |y| K(|x| + |y|, 0; t) , if α = 0 ,

K(x, y; t) + eit (4πα)2�α(x)�α(y)

+ 1

|x| |y|
∫ +∞

0
e−4π |α|u(u − |x| − |y|) ×

× K(u − |x| − |y, 0.t) du ,

if α < 0 ,

(31)

where

K(x, y; t) := e− |x−y|2
4it

(4π it)
3
2

, t > 0 , (32)

and

�α(x) := √−2|α| e−4π |α||x|

|x| . (33)

In fact, the Lp′ → Lp unboundedness of eit�α when p � 3, and the L2-

strong convergence e−itHε
ε↓0−−→ eit�α , prevent the norm

∥∥ e−itHεP
(ac)
ε

∥∥
Lp′→Lp to

be uniformly bounded in ε when p � 3 (cases (A) and (C) above). For, if at an
instant t when the evolution eit�αf of a generic f ∈ ( ⋂

ε P
(ac)
ε L2(R3)

) ∩ Lp′
(R3)

is |x|−1-singular around the origin one had

∥∥ e−itHεf
∥∥

Lp � Cε(t)‖f ‖Lp′ (34)

with Cε(t) � C(t) for some ε-independent C(t) � 0 (eventually as ε ↓ 0), then
from the sequence (fn)n∈N defined by

fn := e−itHεnf , εn := n−1 ,
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which would then be uniformly bounded in Lp(R3), one would have fn → f∗
Lp-weakly as n → ∞, up to extracting a subsequence, for some f∗ ∈ Lp(R3).

Since, on the other hand, fn
n→∞−−−→ eit�αf in L2(R3), one should necessarily

conclude eit�αf = f∗ ∈ Lp(R3). This is, however, incompatible with the |x|−1-
singularity of eit�αf , since p � 3. Necessarily Cε(t) in (34) blows up in ε, that is,∥∥ e−itHεP

(ac)
ε

∥∥
Lp′→Lp becomes singular in ε as ε ↓ 0 and p � 3. Observe that this

argument sheds no light on the blow-up rate of Cε(t) as ε ↓ 0 or on the short-time
and long-time behaviour of Cε(t): actually, such a behaviour depends, at every fixed
ε, on the presence or absence or zero-energy resonance and eigenvalue(s) for Hε.

The above reasoning naturally suggests that the dispersive regime p � 3 for
e−itHε (cases (A) and (C) above) could be meaningfully monitored, as far as the ε

dependence is concerned, in suitably weighted Lp′ → Lp norms—so as to absorb,
informally speaking, the ‘emergent’ |x|−1-singularity.

Weighted L1 → L∞ dispersive estimates for −�α were originally established
in [12, Theorem 1], directly from (31), in a form that, interpolated with the trivial
L2-bound, reads (see [21, Proposition 4])

∥∥w
−(1− 2

p
)
eit�αP

(ac)
(α) f

∥∥
Lp � C|t|−3( 12− 1

p
)∥∥w

2
p′ −1

f
∥∥

Lp′ , p ∈ [2,+∞]
(35)

when α 	= 0, and

∥∥w
−(1− 2

p
)
eit�α=0f

∥∥
Lp � C|t|−( 12− 1

p
)∥∥w

2
p′ −1

f
∥∥

Lp′ , p ∈ [2,+∞] (36)

in the case α = 0, with weight

w(x) := 1 + 1

|x| . (37)

In fact −�α has a zero-energy resonance when α = 0, and the slower time-decay
(36) totally resembles what happens for actual Schrödinger operators with threshold
resonances. From a more refined manipulation of (31) the weight-less version (23)
in the range p ∈ [2, 3)was later obtained in [21, Proposition 5] (and subsequently in
[13, Corollary 1.3]), which, by interpolation with the weighted L1 → L∞ estimate
above, allows to improve the powers of the weights in (35)–(36) in the regime p ∈
[3,+∞] to almost optimal ones, respectively ([21, Corollary 1]),

∥∥w
−(1− 3−δ

p )
eit�αP

(ac)
(α) f

∥∥
Lp � C|t|−3( 12− 1

p )
∥∥w

1− 3−δ
p f

∥∥
Lp′ ,

α 	= 0 ,

p ∈ [3,+∞]
(38)



Schrödinger Flow’s Dispersive Estimates in a Regime of Re-scaled Potentials 123

and

∥∥w
−(1− 3−δ

p )
eit�0f

∥∥
Lp � C|t|− 1

2+ δ
p
∥∥w

1− 3−δ
p f

∥∥
Lp′ , p ∈ [3,+∞] (39)

for arbitrarily small δ > 0.
It is natural to expect that the wave operators W±

(α) ≡ W±(−�α,−�), α ∈
R\{0}, can be extended as continuousmaps fromLp′

(R3, w−1
p dx) toLp(R3, wpdx)

for p ∈ (3,+∞) (the ‘endpoint’ case p = +∞ is typically more subtle), where

wp(x) := w(x)−p+3+δ =
(
1 + 1

|x|
)−p+3+δ

(40)

for some delta δ > 0 (that can be chosen arbitrarily small). Observe that |x|−1 ∈
Lp(R3, wpdx), i.e., the weight wp cancels out the local singularity generated by
the point interaction. We also point out that we do not expect the boundedness of
the wave operators in the zero-energy resonant case α = 0, as this would lead to

weighted Lp′ − Lp estimates with a time-decay |t|−3( 12− 1
p
) instead of the resonant

time-decay |t|− 1
2+ δ

p .
It is also conceivable, under assumptions (V1), (Vdecay), (V3), and (V4) with

α 	= 0, that the wave operators W±
ε ≡ W±(Hε,−�) can be extended as bounded

maps from Lp′
(R3, w−1

p dx) to Lp(R3, wpdx), and that W±
ε converges to W±

(α), as

ε ↓ 0, in the weak topology of B(Lp′
(R3, w−1

p dx; Lp(R3, wpdx)).
All the ingredients above would allow to prove, by adapting the proof of

Theorem 2, that under assumptions (V1), (Vdecay), (V3), and (V4) with α 	= 0,
weighted dispersive estimates analogous to (38) (with p ∈ [3,∞)) hold true also
for Hε with an ε-independent constant.

In addition, by combining the above ε-uniform weighted dispersive estimates, a
space-time re-scaling argument and suitable weighted resolvent bounds, it should
be possible to provide (almost) optimal bounds for the blow-up rate as ε ↓ 0 of the
weight-less Lp′ − Lp estimates for Hε , in the regime p ≥ 3.

As already mentioned, the explicit dependence on the potential V in the
dispersive estimates forH = −�+V cannot be in general directly deduced from the
standard proofs, for these rely on the spectral behaviour of H at zero energy, which
is unstable evenwith respect small perturbation of V in the Rollnik and (generalised)
Kato norms.

Understanding the technical mechanisms at the basis of such an explicit depen-
dence deserves further investigation, and the prototypical case of re-scaled potentials
may serve as a starting point in this direction.
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