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Abstract We describe results on certain types of nonlinear Schrödinger equations,
mainly the cubic equation with or without potential. We are interested in singular
initial conditions and equations with a delta potential in three dimensions. The
existence and uniqueness of solutions are proved in the Colombeau algebra setting
and the notion of compatibility of solutions is explored.

1 Introduction

We will analyze the following equations in three dimensions. First, we consider the
defocusing cubic Schrödinger equation

iut + �u = u|u|2,
u(0) = a,

(1)

and then the cubic equation with the delta potential

iut + �u = u|u|2 + δu,

u(0) = a.
(2)

Equation (1) is extensively studied in the classical sense. Applications of (1) are
connected with many physical contents such as dynamics of Bose gas, optics, and
superfluids.

Well-posedness in Sobolev spaces, and in particular in the energy space H 1(R3),
is developed in [6] and [8]. Also, it was proved in [11] that global solutions exist in
Hs(R3) for s > 4

5 . We are interested in initial data which are more singular.
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Equation (2) is a model for Bose–Einstein condensates where δ is used to
describe a local, short-range potential applied to a condensate. In [17] solutions
in weak Lp spaces in one dimension are considered.

We will analyze Eqs. (1) and (2) within the Colombeau algebra setting and for
that purpose different spaces of distributions will be embedded in the Colombeau
algebra.

We are interested in regularized equations. For instance, the regularized equation
for (2) is of the form

i(uε)t + �uε = uε|uε|2 + φεuε,

uε(0) = aε,

for appropriate nets of functions (uε)ε , (aε)ε , and (φε)ε which we will call moderate
functions.

Important properties that hold for this equation and that will be used are
conservation of charge and energy:

‖uε(t)‖2 = ‖aε‖2,

H(uε(t)) = H(aε),

where H(uε) = 1
2

∫
R

3 |∇uε|2dx + 1
4

∫
R

3 |uε|4dx + 1
2

∫
R

3 φε|uε|2dx is the Hamilto-
nian. Also, for fixed ε > 0 there is well-posedness in Hs(R3) for s ≥ 2.

The chapter is organized as follows. First, we introduce Colombeau algebras and
describe their basic properties and prove theorems which explain how we embed
different spaces of distributions into these algebras. The notion of a solution in
the sense of Colombeau algebras is also introduced and we define the existence
and uniqueness of solutions within this setting. Then we define compatibility
between classical solutions and Colombeau solutions and further prove the existence
and uniqueness of solutions to Eqs. (1) and (2). We conclude the chapter by
analyzing some convergence properties and by giving directions for possible further
investigations.

We shortly describe the notation. By D(R3) we denote the space of smooth
compactly supported functions f : R3 → C equipped with the finest locally convex
topology for which all the inclusions D(K) ↪−→ D(�) are continuous (K is an
arbitrary compact subset of �). Also, Hs = Hs(R3), s ∈ R is the usual Sobolev
space. We say that f (ε) ∼ g(ε) if limε→0

f (ε)
g(ε)

= c > 0. Further, f (ε) � g(ε) if
there exists c > 0 independent of ε such that f (ε) ≤ cg(ε). We also use some well-
known inequalities, namely Hölder, Young, Gronwall, and Gagliardo–Nirenberg
inequalities.

Results presented in this chapter are based on papers [15] and [16].
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2 The Colombeau Algebra

In this section we introduce the algebras of Colombeau (see [12, 13]). We construct
them as factor algebras of the so-called moderate functions modulo a class of ideals
that we call negligible functions, which will be described in the sequel.

In certain examples of partial differential equations with singular coefficients
or singular data we need to multiply distributions. For instance, delta waves occur
in the analysis of semilinear hyperbolic systems with rough initial data. Many
examples of problems (related to elasticity, acoustics, fluid dynamics) where the
multiplication of distributions occurs are given in [14] and [25].

However, multiplication of distributions is connected with many difficulties. The
product of a smooth function and a distribution is well-defined, but if we try to
extend the operation of multiplication to arbitrary distributions we are not able to
preserve the associative property:

0 = (δ(x) · x) · vp
1

x

= δ(x) · (x · vp

1

x
) = δ(x),

where vp 1
x

denotes the Cauchy principal value of 1
x

. One possibility to overcome
this problem is to embed the space of distributions in some algebra so that we can
define a product.

If we denote this algebra by (A(�),+, ·), where � ⊂ R
3 is an open set, then we

would like that the algebra A(�) satisfies following properties:

1. D′(�) is linearly embedded into A(�),
2. there exist differential operators ∂i : A(�) → A(�), i = 1, . . . , n that are linear

and satisfy the Leibniz rule,
3. ∂i |D′ is the usual partial derivative, i = 1, . . . , n,
4. the restriction ·|C∞×C∞ coincides with the pointwise product of functions.

One example of (A(�),+, ·) is the following special Colombeau algebra which
we define in the sequel (for details see [19]). We introduce spaces :

Es (�) := (C∞(�))(0,1],

Es
M(�) := {(uε)ε ∈ Es(�) | ∀K ⊂⊂ � ∀α ∈ N

n
0 ∃N ∈ N with

sup
x∈K

|∂αuε(x)| = O(ε−N), ε → 0},

Ns (�) := {(uε)ε ∈ Es(�) | ∀K ⊂⊂ � ∀α ∈ N
n
0 ∀m ∈ N with

sup
x∈K

|∂αuε(x)| = O(εm), ε → 0}.
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Here K ⊂⊂ � means that K is a compact subset of �. Elements of Es
M(�) are

called moderate functions and elements of Ns(�) are called negligible functions.
The special Colombeau algebra is defined as the quotient space

Gs(�) := Es
M(�)/Ns (�).

In the sequel we assume that n = 3, unless otherwise stated. The embedding of the
space of distributions D′(�) ↪→ Gs(�) is given by

u �→ [(u ∗ ρε)ε],

where ρ ∈ S(R3) is a mollifier which satisfies conditions

∫
ρ(x)dx = 1, (3)

∫
xαρ(x)dx = 0, ∀|α| ≥ 1, (4)

and ρε(x) = ε−3ρ
(x

ε

)
. One can prove that there is no mollifier in D(R3) which

satisfies both (3) and (4). However, ρ ∈ S(R3) can be constructed by taking
the inverse Fourier transform of a function from S(R3) which equals one in a
neighborhood of zero.

Next we define the H 2-based Colombeau algebra as in [24] (for a similar
construction see [23]). This type of algebra is appropriate for the equations that
we consider.

We denote by EC1,H 2([0, T ) × R
3) (respectively, NC1,H 2([0, T ) × R

3)), T > 0
the vector space of nets (uε)ε of functions

uε ∈ C([0, T ),H 2(R3)) ∩ C1([0, T ), L2(R3)), ε ∈ (0, 1),

such that there exists N ∈ N (respectively, for every M ∈ N):

max{ sup
t∈[0,T )

‖uε(t)‖H 2 , sup
t∈[0,T )

‖∂tuε(t)‖2} = O(ε−N), ε → 0

(

respectively,

max{ sup
t∈[0,T )

‖uε(t)‖H 2 , sup
t∈[0,T )

‖∂tuε(t)‖2} = O(εM), ε → 0

)

.

Then we define the quotient space

GC1,H 2([0, T ) × R
3) = EC1,H 2([0, T ) × R

3)/NC1,H 2([0, T ) × R
3)

which is a Colombeau type vector space.
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We also define the space GH 2(R3) in a similar manner:

E2(R3) := (H 2(R3))(0,1],

EH 2(R
3) := {(uε)ε ∈ E2(R3) | ∃N ∈ N ‖uε‖H 2 = O(ε−N), ε → 0},

NH 2(R
3) := {(uε)ε ∈ E2(R3) | ∀m ∈ N ‖uε‖H 2 = O(εm), ε → 0},

GH 2(R
3) := EH 2(R

3)/NH 2(R
3).

Operations of addition, multiplication, and differentiation are defined
component-wise, that is

u + v = [(uε + vε)ε], u · v = [(uε · vε)ε], ∂αu = [(∂αuε)ε].

Differentiation on H 2-based algebra is not a closed operation. If u ∈
GC1,H 2([0, T ) × R

3), then ∂αu for |α| ≤ 2 is represented by (∂αuε)ε which
has moderate growth in L2(R3) and is an element of a quotient vector space
GC,L2([0, T ) × R

3). The vector space GC,L2([0, T ) × R
3) is defined analogously

as GC1,H 2([0, T ) × R
3). Difference is that representatives have bounded growth

only in L2-norm, for any t ∈ [0, T ). It is clear that GC1,H 2([0, T ) × R
3) ⊂

GC,L2([0, T ) × R
3).

Notice that spaces GC1,H 2([0, T )×R
3) and GH 2(R3) are multiplicative algebras

because H 2(R3) is an algebra (the same holds for Rn when n ≤ 3).
Since δ ∗ ρε = ρε it is clear that (ρε)ε itself is a representative of the delta

distribution. Here ρε is given by (3) and (4).
Next we define a strict delta net because another representative of the delta

distribution is given by this type of net ( cf. [19]).

Definition 1 A strict delta net is a net (φε)0<ε≤1, φε ∈ D(R3) which satisfies

(i) supp(φε) → {0}, ε → 0,
(ii) limε→0

∫
R

3 φε(x)dx = 1,
(iii)

∫ |φε(x)|dx is bounded uniformly in ε.

We can define a strict delta net using ρε as φε(x) = χ( x√
ε
)ρε(x), where χ is a cut-

off function and ρε ∈ S(R3) is a mollifier defined by (3) and (4). More precisely,

χ ∈ D(R3), χ(x) = 1, |x| ≤ 1 and χ(x) = 0, |x| ≥ 2. (5)

Since S(R3) ⊂ Lp(R3) the following estimates for ρε and φε hold:

‖∂αρε‖p
p =

∫

R
3
ε−3p|∂α(ρ(

x

ε
))|pdx =

∫

R
3
ε−3p| 1

ε|α| (∂
αρ)(

x

ε
)|pdx =

∫

R
3
ε−3p+3−|α|p|∂αρ(t)|pdt = cε3(1−p)−|α|p � ε−N,

(6)



96 N. Dugandžija and I. Vojnović

for some N ∈ N, 1 ≤ p < ∞ and for any multi-index α. Moreover, ‖ρε‖∞ =
ε−n max |ρ(x

ε
)| = cε−n, for any ε > 0.

We also use mollifiers of the type ρhε = h3
ερ(xhε), where hε → ∞, ε → 0, for

example, hε = ln ε−1, and these mollifiers satisfy analogous estimates.
Furthermore, we derive estimates for ∂α(χ( x√

ε
)), that is

sup
x∈R3

|ε−|α|/2(∂αχ)(
x√
ε
)| � ε−|α|/2.

Therefore φε(x) = χ( x√
ε
)ρε(x) admits analogous estimates as ρε in the Lp-norm.

Now we prove that we can use a strict delta net to embed delta distribution in
GH 2(R3).

Theorem 1 There exists a strict delta net (φε)0<ε≤1 such that the difference (ρε −
φε)ε is an element of NH 2(R3). Both (ρε)ε and (φε)ε are representatives for the
embedded delta distribution [(ρε)ε] ∈ GH 2(R3).

Proof Let φε(x) = χε(x)ρε(x) = χ( x√
ε
)ρε(x), where χ is given by (5). Since

ρε ∈ S(R3) for any q > 2 it holds that

‖ρε − ρεχε‖2
2 =

∫

R
3
ρ2

ε (x)(1 − χ(
x√
ε
))2dx ≤

∫

|x|>√
ε

ρ2
ε (x)dx

≤
∫

|x|>√
ε

ε−6(1 + |x
ε
|)−2qdx =

∫

|x|>√
ε

ε−6(1 + |x|
ε

)−2q+3+1−(3+1)dx

≤ ε−6 sup
x>

√
ε

(1 + |x|
ε

)−2q+3+1
∫

|x|>√
ε

(1 + |x|
ε

)−(3+1)dx

≤ ε−6εq−(3+1)/2ε3
∫

|y|>1/
√

ε

1

(1 + |y|)3+1 dy

≤ εq−(3+1)/2−3
∫

y∈R3

1

(1 + |y|)3+1
dy.

The above integral is finite and independent of ε. Hence for arbitrary m ∈ N we
choose q = m + 10

2 (then q > 2) and

‖ρε − ρεχε‖2
2 � εm, 0 < ε ≤ 1.

Next we need to bound derivatives ∂α(ρε − ρεχε) in the L2-norm, for |α| = 1 and
|α| = 2. This can be done similarly as in the first part of the proof using that the
function 1 − χ is equal to zero for |x| ≤ √

ε and derivatives of the function 1 − χ

are supported in the set
√

ε ≤ |x| ≤ 2
√

ε. ��
Next we use mollifier ρε given by (3) and (4) to represent functions from H 2(R3)

as an elements of GH 2(R3).
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Theorem 2 Let f ∈ H 2(R3). Then we can embed H 2(R3) into GH 2(R3) such that
f �→ [(f ∗ ρε)ε].
Proof For any |α| ≤ 2 using Young’s inequality we have that

‖∂α(f ∗ ρε)‖2 = ‖f ∗ ∂αρε‖2 ≤ ‖f ‖2‖∂αρε‖1 � ε−N

for some N ∈ N, where we use estimates as in (6).
Hence fε = f ∗ ρε defines an element [(fε)ε] ∈ GH 2(R3). We also know that

‖f ∗φε −f ‖2 → 0. Hence the mapping f �→ [(fε)ε] is injective. More concretely,
if v ∈ H 2(R3) is another function embedded in GH 2(R3) using convolution with
ρε , then (vε)ε ∈ [(fε)ε] (here vε = v ∗ ρε) and

v = lim
ε→0

vε = lim
ε→0

(fε + nε) = f

in L2(R3), where vε = fε + nε and (nε)ε ∈ NH 2(R3). Therefore

H 2(R3) ↪→ GH 2(R
3),

what we wanted to prove. ��
Another representative of elements from H 2(R3) is obtained using a strict delta

net.

Theorem 3 Let f ∈ H 2(R3). Then f ∗ ρε − f ∗ φε ∈ NH 2(R3), where φε is a
strict delta net defined by φε = χερε , χε(x) = χ( x√

ε
) and χ is a cut-off function as

in (5).

Proof From Young’s inequality we have that

‖f ∗ (ρε − φε)‖2 � ‖f ‖2‖(1 − χε)ρε‖1.

We can estimate ‖(1 − χε)ρε‖1 � εm for any m ∈ N, ε → 0 similarly as in the
proof of Theorem 1. Also, ∂α(f ∗ (ρε −φε)) = (∂αf ) ∗ (ρε −φε) and therefore the
proof follows. ��

Further we prove that the product of the delta distribution and an element from
GC1,H 2([0, T ) × R

3) remains in GC1,H 2([0, T ) × R
3).

Theorem 4 Let u ∈ GC1,H 2([0, T ) × R
3) and ρε is the representative of δ in

GH 2(R3). Then u · [(ρε)ε] ∈ GC1,H 2([0, T ) × R
3).

Proof Let uε ∈ EC1,H 2([0, T ) × R
3). We have

‖uερε‖2 � ‖ρε‖∞‖uε(t)‖2 � ε−N, ε → 0,
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for any t ∈ [0, T ). Similar estimates can be derived for ∂α(uερε), |α| ≤ 2. In this
case we have expressions of form ∂βuε∂

δρε , |β|, |δ| ≤ 2, which can be bounded by
ε−N , ε → 0, for some N .

Now let (vε)ε be another representative of u and (ρ1
ε )ε be another representative

of δ. Then ρ1
ε = ρε + n1

ε for n1
ε ∈ NH 2(R3) and vε = uε + n2

ε for n2
ε ∈

NC1,H 2([0, T ) × R
3). Then uερε − vερ

1
ε ∈ NC1,H 2([0, T ) × R

3).
Indeed, product of n1

ε and n2
ε is negligible in GC1,H 2([0, T ) × R

3) and also uε ·
n2

ε ∈ NC1,H 2([0, T ) × R
3), ρε · n1

ε ∈ NC1,H 2([0, T ) × R
3), where we use that

H 2(R3) is an algebra. Hence the product is well-defined. ��
We also need to define a restriction of an element u ∈ GC1,H 2([0, T )×R

3) since
the initial condition is a function that depends only on x.

Definition 2 Let u = [(uε)ε] ∈ GC1,H 2([0, T ) × R
3). We define the restriction of

u to {0} × R
3 as the class [(uε(0, ·))ε] ∈ GH 2(R3).

Definition 2 makes sense. Indeed, since uε ∈ C([0, T ),H 2(R3)), the function
uε(0, ·) is in EH 2(R3). Also, if uε ∈ NC1,H 2([0, T ),H 2(R3)), then uε(0, ·) is in
NH 2(R3).

We will also need the definition of an initial condition which is of (ln)j -type.

Definition 3 We say that a ∈ GH 2(R3) is of (ln)j -type, j ∈ (0, 1] if it has a
representative aε ∈ EH 2(R3) such that

‖aε‖2 = O(lnj ε−1), ε → 0.

Note that a function a ∈ H∞(R3) is itself a representative in GH 2(R3) (which will
be proved in Theorem 5 in the sequel). This is an example of a function that is
of (ln)j -type for any j ∈ (0, 1] since its L2–norm is a constant independent of ε.
Similarly holds for a ∈ L2(R3).

Theorem 5 If a ∈ H∞(R3), then [(a)ε] ∈ GH 2(R3).

Proof We need to show that (aε − a)ε ∈ NH 2(R3), where aε = a ∗ ρε and ρε is
given by (3) and (4).

We follow ideas given in [3]. It holds that

‖aε − a‖2
2 = ‖a ∗ ρε − a‖2

2 =
∫ ∣

∣
∣

∫
(a(x − εy) − a(x))ρ(y)dy

∣
∣
∣
2
dx.

We can apply Taylor’s formula to a up to order m. Since
∫

yαρ(y)dy = 0 for
|α| ≤ m (by (4)) it follows that

‖aε − a‖2
2 =

∫
|

∑

|α|=m+1

∫
(−εy)α)

m!
∫ 1

0
(1 − σ)m∂αa(x − σεy)dσρ(y)dy|2dx
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≤ C(m, q) max
|α|=m+1

∫ ∣
∣
∣
∣

∫
(−εy)α)

m! ρ(y)

∫ 1

0
(1 − σ)m∂αa(x − σεy)dσdy

∣
∣
∣
∣

2

dx

≤ C(m, q) max
|α|=m+1

∫ ∫ ∣
∣
∣
∣
(εy)α)

m! ρ(y)

∫ 1

0
(1 − σ)m∂αa(x − σεy)dσ

∣
∣
∣
∣

2

dxdy

≤ εm+1

m! C(m, q) max|α|=m+1

∫
|yαρ(y)|

∫ ∫ 1

0
|∂αa(y − σεy)|2dσdxdy

≤ cεm+1
∫

|y|m+1|ρ(y)|dy max
|α|=m+1

‖∂αa‖2.

Hence for any m ∈ N and sufficiently small ε we have

‖uε − u‖2 ≤ cεm.

The same estimates hold for ∂α(aε − a), |α| ≤ 2. ��

2.1 Notion of Colombeau Solution

Let us consider the following Schrödinger equation:

iut + �u + g(u) = 0,

u(0) = a,
(7)

where g(u) is given nonlinearity. Next we define the existence of a solution in the
Colombeau sense.

Definition 4 We say that u ∈ GC1,H 2([0, T ) × R
3) is a solution of (7) if for an

initial condition a and its representative aε = a ∗ ρε , there exists a representative
(uε)ε ∈ EC1,H 2([0, T ) × R

3) such that

i(uε)t + �uε + g(uε) = Mε,

uε(0) = aε + nε,
(8)

for some nε ∈ NH 2(R3) and we assume that supt∈[0,T ) ‖Mε‖2 = O(εM), ε → 0,
for any M ∈ N.

If the above statement holds for some uε, then it holds for all representatives of the
class u = [(uε)ε]. We will show that for g(uε) = −(uε|uε|2 + φεuε).
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Let vε = uε + Nε , for some Nε ∈ NC1,H 2(R3). Then

i(vε)t + �vε − (vε|vε|2 + φεvε) = i(uε)t + �uε − uε|uε|2 − φεuε

+ i(Nε)t + �Nε − f (uε,Nε, φε)

= Mε + i(Nε)t + �Nε − f (uε,Nε, φε),

where sup0≤t<T ‖Mε‖2 = O(εM), ε → 0, for any M ∈ N and

f (uε,Nε, φε) = Nεu
2
ε + 2|uε|2Nε + 2uε|Nε|2 + uεN

2
ε + Nε|Nε|2 + φεNε.

Since Nε ∈ NC1,H 2(R3), it holds that ‖i(Nε)t + Nε‖2 = O(εM), ε → 0, for
any M ∈ N. Also, using the Sobolev embedding ‖Nε‖∞ ≤ c‖Nε‖H 2 we see that
sup0≤t<T ‖f (uε,Nε, φε)‖2 = O(εM), ε → 0. Furthermore,

vε(0) = uε(0) + Nε(0) = aε + nε + Nε(0) = aε + N1
ε ,

where N1
ε ∈ NH 2(R3). Therefore vε satisfies all the conditions from Definition 4.

When we want to prove the existence of a solution in the Colombeau sense,
usually we first solve

i(uε)t + �uε + g(uε) = 0,

uε(0) = aε,

where aε = a ∗ ρε and then the previous analysis implies that [(uε)ε] is indeed a
solution.

Definition 5 We say that the solution of (7) is unique if for any two solutions u, v ∈
GC1,H 2 it holds supt∈[0,T ) ‖uε − vε‖2 = O(εM), ε → 0, for any M ∈ N. Here
u = [(uε)ε] and v = [(vε)ε].

2.2 Compatibility

If a ∈ H 2(R3), then there exists a unique solution u ∈ C([0, T ),H 2(R3)) of the
cubic equation (1). We proved that the space H 2(R3) is embedded in the Colombeau
algebraGH 2(R3) (Theorem 2). If there is a unique solution of (1) in GC1,H 2([0, T )×
R

3), then there is its representative (uε)ε which solves

i(uε)t + �uε = uε|uε|2,
uε(0) = a ∗ ρε,
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for a ∈ H 2(R3) (we show that there is a solution to the equation without negligible
functions, so the above claim is justified). Classes [(uε)ε] and [(u ∗ ρε)ε] may
coincide but in general we can prove a weaker version of this equality of classes,
which we give in the next definition (see [19], p. 47).

Definition 6 We say that u ∈ GC1,H 2([0, T ) ×R
3) is associated with a distribution

v(t) ∈ D′(R3) for any t ∈ [0, T ) if there is a representative (uε)ε of u such that
uε → v in D′(R3) for any t ∈ [0, T ) as ε → 0. We denote association by u ≈ v.

However, we are sometimes able to prove ‖u − uε‖2 → 0, ε → 0, for every
t ∈ [0, T ) and this implies [(uε)ε] ≈ u. Therefore we introduce the following
definition.

Definition 7 We say that there is a compatibility between a classical (Sobolev)
solution and the Colombeau solution of the equation

iut + �u + g(u) = 0,

u(0) = a,

if sup[0,T ) ‖uε − u‖2 → 0 as ε → 0, where (uε)ε ∈ EC1,H 2 is a solution of

i(uε)t + �uε + g(uε) = 0

uε(0) = a ∗ ρε.

This definition does not depend on representatives. If uε → u in L2 and vε is
another representative, then

‖vε − u‖2 ≤ ‖vε − uε‖2 + ‖uε − u‖2 → 0, ε → 0.

Note that if a ∈ C1([0, T ),H∞), then a represents itself and the same holds
for the corresponding solution u ∈ C1([0, T ),H∞). Hence in this case we
automatically have compatibility between two solutions.

Looking outside the context of equivalence classes, estimates that we derive can
be useful for discussing different types of convergences. For instance, there is no
classical well-posedness theory for (2), but we can analyze the net of solutions and
get some insights in that direction. Uniqueness in our setting also differs from the
usual notion of uniqueness. Because we define an L2-type of uniqueness, it can
happen that the solution is unique but there are different classes u, v ∈ GC1,H 2 that
solve the equation. Again, if there is convergence in L2 of representatives of u, then
representatives of v also converge to the same limit. Hence notions of compatibility
and uniqueness complement each other.

We state a few examples in which notions of compatibility and association were
used. In [21], Hörmann showed that there is a unique generalized solution to the



102 N. Dugandžija and I. Vojnović

linear Schrödinger equation with generalized coefficients and also that this solution
is associated with the corresponding distributional solution.

In [3], the generalized solution of the Korteweg-de Vries equation is considered
and an interesting result is observed. Namely, for classical initial data, the distribu-
tion associated with the generalized solution is not a weak solution of the equation.

Burger’s equation is studied in [4] and association of the generalized solution
with a classical entropy solution is shown. In [26], hyperbolic conservation laws are
considered in the Colombeau framework and the authors prove that the generalized
solution is associated with the weak entropic solution.

In some cases (such as ours), it is possible to prove more than association. For
example, in [23], the H 2 convergence of regularized solutions is shown. In [24],
weak L2-convergence of the net of solutions is proven.

Non-uniqueness and instability are potential problems in analysis of distribu-
tional solutions (cf. [9, 20]). This is another reason to emphasize the importance of
compatibility.

3 Existence and Uniqueness of a Singular Solution

We consider a regularized equation of type

i(uε)t + �uε = N(uε),

uε(0) = aε,

where (aε)ε is a representative of a ∈ GH 2(R3) and N is the given nonlinearity.
Existence of a unique solution for fixed ε follows from the classical theory of
Sobolev solutions. The main ingredient for existence in Colombeau algebra is
deriving the estimates of the type

‖uε‖H 2 � f (‖aε‖H 2),

for any t ∈ [0, T ), since then (uε)ε defines an element of GC1,H 2([0, T ) × R
3) and

the Definition 4 is satisfied. Note that appropriate bounds for ‖(uε)t‖2 are easily
obtained from the equation itself.

Estimates for ‖uε‖H 1 follow from the conservation of energy and the main
difficulty is to bound second order derivatives in the L2 norm. Besides moderate
growth, a usually needs to satisfy additional logarithmic bounds, as we will see in
the sequel.

For the simpler cubic equation without potential we can claim existence in the
Colombeau sense in dimensions n = 2 and n = 3.
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Theorem 6 Let n ∈ {2, 3}, T > 0, a ∈ GH 2(Rn) such that there exists a
representative (aε)ε which satisfies condition

‖aε‖H 2 ≤ hε (9)

with hε ∼ ε−N for n = 2 and hε ∼ N ln ε−1 for n = 3, for some N ∈ N. Then
there exists a solution u ∈ GC1,H 2([0, T ) × R

n) of (1).

The cubic equation in 3D satisfies a growth estimate proved in [5]:

‖uε(t)‖H 2 ≤ c exp(‖aε‖H 2) ∀t ≥ 0. (10)

In [10] it was shown that there is also an estimate of the type:

‖uε(t)‖H 2 ≤ c‖aε‖H 2 ∀t ≥ 0. (11)

Therefore proof of Theorem 6 follows from these bounds.
Proving an analogous theorem for Eq. (2) required deriving new estimates. This

leads us to different conditions for initial data, presented in the following theorem.

Theorem 7 Let a ∈ GH 2(R3) such that there exists a representative (aε)ε which
satisfies the following:

‖aε‖H 3 = O(ε−N), and ‖aε‖H 1 = O(hε) f or some N ∈ N, ε → 0,

(12)

where hε ∼ (ln ε−1)
5
11 . Then for any T > 0 there exists a generalized solution

u ∈ GC1,H 2([0, T ) × R
3) of (2).

We will describe the main ingredients of the proof. In this case, we need estimates
for the following regularized equation:

i(uε)t + �uε = φhεuε + uε|uε|2,
uε(0) = aε.

(13)

For simplicity, we regularize the delta function with the same hε used to bound the
initial condition. Denote by T(t) the usual Schrödinger evolution operator which
satisfies an estimate:

‖T(t)φ‖Lp ≤ (4π |t|)−n( 1
2 − 1

p )‖φ‖Lp′ , ∀φ ∈ Lp′
. (14)

The solution of (13) is given by Duhamel’s formula:

uε(t) = T(t)aε − i

∫ t

0
T(t − s)

(
φhεuε + uε|uε|2

)
ds. (15)

Estimates that we need can be described with the following steps.
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• Differentiate (3)—take the second order derivative in x and apply the L2 norm;
the main expression to bound after this is the following:

‖u2
ε∂

αuε + uε∂
βuε∂

γ uε‖2 + ‖φhε∂
αuε + ∂βφhε∂

γ uε + ∂αφhεuε‖2,

where |α| = 2 and |β| = |γ | = 1.
• We are able to bound each term by a product of a known quantity (‖φhε‖p, ‖uε‖2

or ‖uε‖H 1 ) and ‖∂αuε‖ 10
3

; for this we used Hölder and Gagliardo–Nirenberg

inequality.
• Moreover, we bound ‖∂αuε‖ 10

3
by ‖∂αuε‖ 10

7
using the estimate (14) and further

bound the L
10
7 norm with the L

10
3 norm by Hölder and Gagliardo–Nirenberg

inequality.
• In this way, we are able to use Gronwall’s inequality and bound ‖∂αuε‖ 10

3
and

by that ‖∂αuε‖2 also.

The resulting estimate is exponential in ‖aε‖H 1 but not in higher norms of aε.
Specifically,

sup
[0,T )

‖∂αuε‖2 ≤‖aε‖H 2 + gεf
3
2

ε ‖aε‖
1
2
2 + H(aε)

1
2 g

20
13
ε ‖aε‖

6
13
2

+ ‖∂αφhε‖∞‖aε‖2 + H(aε)
1
2 ‖∂βφhε‖∞ + gε‖φhε‖5, (16)

where

fε = c1(aε, φhε ) · exp(c2(aε, φhε )),

c1(aε, φhε ) = ‖aε‖H 2 + T
2
5 (‖aε‖2‖∂γ φhε‖5 + H(aε)

1
2 ‖φhε‖5),

c2(aε, φhε ) = T
2
5 H(aε)

1
10 ‖aε‖

9
5
2 ;

gε = (‖aε‖H 3 + c4(aε, φhε ))exp(c3(aε, φhε ) · T
2
5 ),

c3(aε, φhε ) = H(aε)
1
10 ‖aε‖

9
5
2 + ‖φhε‖ 5

2
,

c4(aε, φhε ) = H(aε)
1
2 ‖∂βφhε‖5 + ‖aε‖2‖∂αφhε‖5 + ‖aε‖

1
2
2 f

7
2

ε

and H(·) is the Hamiltonian.
Let us now turn to uniqueness of a solution in the sense of Definition 5.

We assume that there is another solution v ∈ GC1,H 2([0, T ) × R
3). Then, a

representative vε of v solves

i(vε)t + �vε = N(vε) + nε,

vε(0) = aε + mε,
(17)
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where N is again the given nonlinearity, nε ∈ NC,L2 and mε ∈ NH 2 . Then the
difference wε = uε − vε satisfies an appropriate equation from which we derive the
following estimate

‖wε‖2 � εM exp(‖uε‖2∞ + ‖uε‖∞‖vε‖∞),

for any M ∈ N and any t ∈ [0, T ). This estimate is obtained by energy methods and
it holds for both (1) and (2).

To complete the proof, we need to control the infinity norm of a solution by an
appropriate H 2 norm of the initial condition. If we use the Sobolev embedding,
we see that we have already achieved this for the solution of (13), but vε solves a
slightly more complicated (inhomogeneous) Eq. (17). For this reason, we have to
derive analogous estimates for ‖vε‖H 2 and also to ask for a more strict condition on
nε . This leads us to a modified version of uniqueness.

Definition 8 Let u, v ∈ GC1,H 2(R3) be two classes such that for each class there
exists a representative that solves

i∂tuε + �uε = N(uε) + nε,

uε(0) = aε + mε,
(18)

where nε ∈ NC1,H 2([0, T ) × R
3) and mε ∈ NH 2(R3) (similarly for v). If

sup[0,T ) ‖uε − vε‖2 = O(εM), ε → 0 for any M ∈ N, then we say that the solution
is unique.

Now we can formulate the following theorem.

Theorem 8 If ‖aε‖H 3 ∼ lns lnq ε−1, where s = 5
7 , q = 1

24 , the solution of (1) is
unique in the sense of Definition 8. If ‖aε‖H 3 ∼ lns lnq ε−1, where s = 7

25 , q = 1
500

the solution of (2) is unique in the sense of Definition 8.

As mentioned, the proofs are now essentially the same for both equations, but
with estimates for ‖vε‖H 2 being slightly different depending on the equation.

4 Convergence Properties

We prove compatibility for the cubic equation (1) (notion presented in Sect. 2).
If a ∈ H 2(R3) there is a unique solution u ∈ H 2(R3). Such function a can be
embedded in GH 2(R3) by convolution with a mollifier. For an appropriate mollifier
ρε , the norm ‖a ∗ ρε‖H 3 satisfies all the necessary estimates of Theorems 6 and 8.
Hence for a ∈ H 2(R3) there is a unique solution [(uε)ε] ∈ GC1,H 2(R3). We already
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used that the cubic equation satisfies an estimate proved by Bourgain which applied
to the regularized equation is in the form

‖uε(t)‖H 2 ≤ c exp(‖a ∗ ρε‖H 2) ∀t ≥ 0. (19)

The expression ‖a ∗ ρε‖H 2 is bounded uniformly in ε due to Young’s inequality.
Using this fact, energy methods and Gronwall inequality, we prove that

‖uε − u‖2 → 0

and hence the Sobolev and the Colombeau solution are compatible.
Regarding Eq. (2), some possible future directions are to compare our approach

with other settings, like the one given in [17] where the authors consider solutions
in weak Lp spaces. Also, we would like to consider the Hartree equation

iut + �u = (w ∗ |u|2)u + δu,

u(0) = a,
(20)

in the Colombeau setting. More precisely it would be interesting to study NLS
(nonlinear Schrödinger equations) in which the linear part is characterized by a
Schrödinger operator with point-interaction. These operators provide an alternative
way to model a zero-range potential. They are well-studied by means of classical
techniques (see, e.g., [2]), and also within the framework of generalized functions
(cf. [27]). The associated nonlinear problem has recently attracted attention—see,
e.g., [1, 7, 22] and [18]. In these papers NLS with point interactions have been
analyzed by classical techniques, and it would be interesting to exploit also the
Colombeau approach based on generalized functions.
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