
Almost Sure Pointwise Convergence of
the Cubic Nonlinear Schrödinger
Equation on T

2

Renato Lucà

Abstract We revisit a result from “Pointwise convergence of the Schrödinger flow,
E. Compaan, R. Lucà, G. Staffilani, International Mathematics Research Notices,
2021 (1), 596–647” regarding the pointwise convergence of solutions to the periodic
cubic nonlinear Schrödinger equation in dimension d = 2.

1 Introduction

We consider the question of pointwise almost everywhere (a.e.) convergence of
solutions to the cubic nonlinear Schrödinger equation (NLS) on T

2, namely

{
i∂tu + �u = ±|u|2u,

u(x, 0) = f (x).
(1)

If f ∈ Hs , for what s do we have that u(x, t) → f (x) as t → 0 for (Lebesgue)
almost every x?

In the linear Euclidean setting, namely when the linear Schrödinger equation
equation is posed on R

d , this question was first posed by Carleson [8]. He proved
Lebesgue (a.e.) convergence eit�f (x) to f (x) for f ∈ Hs(R) with s ≤ 1

4 .
Dahlberg–Kenig [11] showed that this one-dimensional result is sharp, proving the
necessity of the regularity condition s ≥ 1

4 in any dimension. The (considerably
more difficult) higher dimensional problem has been studied by many authors
[1, 4, 10, 12, 16, 20, 22–24, 26, 28, 29, 31, 32, 34]. Recently, Bourgain [5] proved that
s ≥ d

2(d+1)
is necessary (see also [21, 24] for some refinements of this result). This

has been proved to be sharp, up to the endpoint, by Du–Guth–Li [15] on R
2 and by
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Du–Zhang [14] in higher dimensions (the endpoint case is still open in dimensions
d ≥ 2).

In the periodic case, much less is known. When d = 1, Moyua–Vega [27]
proved the sufficiency of s > 1

3 and necessity of s ≥ 1
4 . Their proof, based

on Strichartz estimates, has been extended to dimension d = 2 in [35] and to
higher dimension in [9]. In fact, together with recent improvements in periodic
Strichartz estimates [6], one can show that s > d

d+2 is a sufficient condition for
almost everywhere convergence to initial data. On the other hand, there are several
counterexamples showing that we have the same necessary conditions than that on
R

d [9, 17, 27], namely the necessity of s ≥ d
2(d+1)

; in particular, one can “adapt”

the counterexamples from R
d to the periodic setting. At the moment, in the periodic

case, almost sure convergence when s ∈
[

d
2(d+1)

, d
d+2

]
remains an open question.

In the first part of this chapter, we show how to extend the a.e. convergence
statement

lim
t→0

eit�f (x) = f (x), for a.e. x ∈ T
2 and for all f ∈ Hs(T2), s > 1/2

(2)

to the case of the cubic equation. The following is a special case of Theorem 1.1 in
[9].

Theorem 1 If f ∈ Hs(T2) with s > 1/2 and u is the corresponding solution to (1),
then

lim
t→0

u(x, t) = f (x) for a.e. x ∈ T
2 . (3)

Remark 1 By the proof, it will be clear that any improvement of the amount of
Sobolev regularity that is sufficient for the convergence of the linear Schrödinger
flow on T

2 would imply an analogous improvement in the statement of Theorem 1
as well.

In the second part of this chapter, we consider probabilistic improvements to the
convergence problem. More precisely, we will show that a randomization of the
Fourier coefficients of the initial data guarantees a better pointwise behavior of the
associated linear (and also nonlinear) evolution. To explain why we may expect this,
it is worth mentioning that counterexamples to the linear pointwise convergence
problem in the periodic setting have been constructed in [17] using as building block
for the initial datum the tensor product of Dirichlet kernels

∏
�=1,...,d

∑
k�∈Z, |k�|≤N

eik�·x�, x := (x1, . . . , xd), (4)
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where N � 1 is a large frequency parameter. It is wort recalling that the pointwise
convergence problem is essentially1 equivalent to establish an L2(T2) estimate for
the maximal Schrödinger operator

∥∥∥∥ sup
t∈[0,1]

|eit�f |
∥∥∥∥

L2(T2)

� ‖f ‖Hs(T2). (5)

It has been observed in [17, 27] that (5) behaves particularly bad with data of the
form (4). It is in fact seen to be false for s < n

2(n+1)
, taking N → ∞. The moral is

that if the bad counterexamples are characterized by having a very rigid structure:
the Fourier coefficients in (4) are indeed all equal to 1. This suggest to consider as
“good” initial data the following randomized Fourier series

f ω(x) =
∑
n∈Zd

gω
n

〈n〉 d
2 +α

ein·x , α > 0 , (6)

where gω
n are independent (complex) standard Gaussian variables. The Japanese

brackets are defined as usual as 〈·〉 = (1 + | · |2) 1
2 .

It is easy to see that if we fix t ∈ R, then eit�f ω(x) belongs to
⋂

s<α H s(Td) P-
almost surely (a.s.), where P is the probability measure induced by the sequence
{gω

n }n∈Z. Thus we are working at the Hα− level. In fact, more is true, namely
that eit�f ω(x) belongs to

⋂
s<α Cs(Td), P-a.s.; in particular, eit�f ω is P-a. s. a

continuous function of the x variable. On the other hand, the randomization does
not improve the regularity, in the sense that ‖f ω‖Hα(Td ) = ∞ also holds P-a. s.; see
for example Remark 1.2 in [7] and the introduction of [25].

We have the following improved pointwise (a.e.) convergence result for random-
ized initial data. The following is the first part of Theorem 1.3 in [9].

Proposition 1 Let α > 0, and let f ω of the form (6). We have P-a. s. the following.
For all t ∈ R, the free solution eit�f ω belongs to

⋂
s<α Cs(Td) and

eit�f ω(x) → f ω(x) as t → 0

for every x ∈ T
d and uniformly.

1 It is indeed easy to check that the maximal estimate (5) with s > 1/2 implies (2) (the argument
is the same as used in the proof of Proposition 2). The opposite implication requires the Stein
maximal principle. Strictly speaking, there is an equivalence with a weak L2 estimate. On the
other hand, the weak L2 estimate can be easily promoted to a strong one with an ε-regularity loss.
Thus, since we are not interested in endpoint results, we see that (2) and (5) are indeed equivalent.
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Finally, we want to prove a similar statement for the cubic NLS (1). In fact, it
will be more convenient working with the Wick-ordered version of the equation
(WNLS)

{
i∂tu + �u = N(u),

u(x, 0) = f (x),
(7)

where

N(u) := ±u
(
|u|2 − 2μ

)
, μ :=

⨏
T

2
|u(x, t)|2dx =

⨏
T

2
|f (x)|2dx (8)

(recall that μ is a conserved quantity). Since solutions to WNLS are related to
that of the cubic NLS by multiplication with a factor ei2μt , the study of pointwise
convergence turns out to be equivalent to that of NLS. The following is the second
part of Theorem 1.3 in [9].

Theorem 2 Let d = 2, α > 0, and let f ω of the form (6). Let u be the solution to
WNLS (7) with initial data f ω. We have P-almost surely:

lim
t→0

u(x, t) = f ω(x) for a.e. x ∈ T
2 . (9)

Thus the same is true for solutions to the cubic NLS.

1.1 Notations and Terminology

For a fixed p ∈ R, we often use the notation p+ := p + ε, p− := p − ε, where ε

is any sufficiently small strictly positive real number. When in the same inequality
we have two such quantities, we use the following notation to compare them. We
write p + · · ·+ := p + ε · (number of +), p − · · · − := p − ε · (number of −). We
will use C > 0 to denote several constants depending only on fixed parameters, like
for instance the dimension d . The value of C may clearly differ from line to line.
Let A,B > 0. We may write A � B if A ≤ CB when C > 0 is such a constant.
We write A � B if B � A and A ∼ B when A � B and A � B. We write A � B

if A ≤ cB for c > 0 sufficiently small (and depending only on fixed parameters)
and A � B if B � A. We denote A ∧ B := min(A,B) and A ∨ B := max(A,B).
We refer to the following inequality:

‖DsPNf ‖Lq � N
s+ d

p
− d

q ‖PNf ‖Lp, 1 ≤ p ≤ q ≤ ∞ ,

simply as Bernstein inequality. Here, PN is the frequency projection on the
annulus ξ ∼ N .
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It is useful to recall that the Strichartz estimates are the main tool to study the
nonlinear Schrödinger flow. We recall the periodic Strichartz estimates from [2, 6]:

‖eit�PNf ‖L
p
x,t (	

d+1) � N
d
2 − d+2

p
+‖PNf ‖L2

x(	d), p ≥ 2

(
d + 2

d

)
. (10)

2 Proof of Theorem 1

Recall that the flow of (1) is locally well defined for initial data in f ∈ Hs(T2)

for s > 0 [2]. The solutions are constructed via a fixed-point argument in the
restriction space X

s,b
δ for δ > 0 sufficiently small (depending polynomially on the

Hs(T2) norm of f ). We recall that

‖F‖
X

s,b
δ

:= inf
G=F on t∈[0,δ] ‖G‖Xs,b ,

where

‖F‖2
Xs,b :=

∫
R

∑
n∈Zd

〈τ + |n|2〉2b〈n〉2s |F̂ (n, τ )|2dτ

and F̂ is the space–time Fourier transform of F .
Let �N

t be the flow associated to the truncated NLS equation

i∂t�
N
t f + ��N

t f = P≤N N(�N
t f ) , (11)

with initial datum �N
0 f := P≤N f . We denote P≤N the frequency projection on the

ball of radius N centered in the origin. We write �tf := �∞
t f for the flow of the

NLS equation with initial datum f = P∞ f . We also denote P>N := P∞ − P≤N

and as already mentioned PN := P≤N − P≤N/2.
A similar well-posedness result holds for the truncated flow, uniformly in N ∈ N.

Of course, at fixed N , since Eq. (11) is finite-dimensional, one can construct a global
flow in an elementary way using the Cauchy theorem for ODE and the conservation
of ‖�N

t f ‖L2(T2) (which holds for all N ∈ N). However, in the following, we will

need (as usual in the study of NLS) a control of �N
t f uniform over N . This is not

elementary and will be ensured by the local well-posedness theory in the restriction
space.

As already recalled, the main tool in the study of the pointwise convergence
properties of the linear Schrödinger equation is the maximal Schrödinger operator

t → sup
0≤t≤δ

|eit�f (x)|, δ > 0.
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Assume indeed that for some δ ∈ (0, 1], one has

∥∥∥∥∥ sup
0≤t≤δ

|eit�f (x)|
∥∥∥∥∥

L2
x(T2)

� ‖f ‖Hs
x (T2) , (12)

and then it is not hard to see that eit�f (x) → f (x) as t → 0 for almost every
(with respect to the Lebesgue measure) x ∈ T

2. The proof is a straightforward
modification of the argument that we will use to prove Proposition 2 below.

In the nonlinear setting, we need a (nonlinear) replacement of (12). A convenient
replacement is the maximal estimate (13).

Proposition 2 Let f ∈ L2(T2) be such that

lim
N→∞

∥∥∥∥∥ sup
0≤t≤δ

|�tf (x) − �N
t f (x)|

∥∥∥∥∥
L2

x(T2)

= 0. (13)

Then �tf (x) → f (x) as t → 0 for almost every x ∈ T
2.

From the proof, it will be clear that in (13) we can replace the L2 norm with a
weak L1 norm. However, it is usually convenient to work in the L2 setting.

Proof To prove Proposition 2, we decompose the difference as follows:

|�tf (x) − f (x)| ≤ |�tf (x) − �N
t f (x)| + |�N

t f (x) − P≤N f (x)| + | P>N f (x)|
(14)

and pass to the limit t → 0. It is elementary to show that the second term on the
right-hand side is zero, namely

lim
t→0

�N
t f (x) = P≤N f (x) ,

for all x ∈ T
2. So we arrive at2

lim sup
t→0

|�tf − f | ≤ lim sup
t→0

|�tf − �N
t f | + | P>N f | .

2 Hereafter, we remove the x variable in the argument of decompositions such as (14) to simplify
the notation.



A.s. pointwise convergence of NLS 67

Let λ > 0. Using the Chebyshev inequality,

|{x ∈ T
2 : lim sup

t→0
|�tf − f | > λ}| ≤ |{x ∈ T

2 : sup
0≤t≤δ

|�tf − �N
t f | > λ/2}|

+ |{x ∈ T
2 : | P>N f | > λ/2}|

� λ−2

⎛
⎝

∥∥∥∥∥ sup
0≤t≤δ

|�tf − �N
t f |

∥∥∥∥∥
2

L2(T2)

+ ‖ P>N f ‖2
L2(T2)

⎞
⎠ ,

where |·| is the Lebesgue measure. On the other hand, we have ‖ P>N f ‖L2(T2) → 0

as N → ∞ (since f ∈ L2(T2)) and

lim
N→∞

∥∥∥∥∥ sup
0≤t≤δ

|�tf − �N
t f |

∥∥∥∥∥
L2(T2)

= 0

by assumption (13). Thus we arrive to

|{x ∈ T
2 : lim sup

t→0
|�tf − f | > λ}| = 0,

and the statement follows taking the union over λ > 0. ��
It is not easy to verify the condition (13) directly. However, we can take

advantage of a simple lemma that allows to embed a suitable restriction space into
the relevant maximal space, namely the space induced by the norm

∥∥∥∥ sup
t∈[0,δ]

|F(x, t)|
∥∥∥∥

L2
x(T2)

, F : (x, t) ∈ T
2 × R → F(x, t) ∈ C.

In other words, we can bound the L2
x(T2) norm of the associated maximal function

x → sup
0≤t≤δ

|F(x, t)|

with an appropriate X
s,b
δ norm of F . In fact, this is a rather general property of the

restriction spaces X
s,b
δ with b > 1

2 . The proof can be found in [30, Lemma 2.9], in
the non-periodic case. The argument adapts to the periodic case as well.

Lemma 1 Let b > 1
2 , and let Y be a Banach space of functions

F : (x, t) ∈ 	d × R → F(x, t) ∈ C .

Let α ∈ R. Assume

‖eiαt eit�f (x)‖Y ≤ C‖f ‖Hs(	d) , (15)
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with a constant C > 0 uniform over α ∈ R. Then

‖F‖Y ≤ C‖F‖Xs,b .

Using Lemma 1 with

‖F‖Y =
∥∥∥∥∥ sup

0≤t≤δ

|F(x, t)|
∥∥∥∥∥

L2
x(T2)

and the fact that the maximal estimate (12) holds for s > 1/2, we have the following:

Lemma 2 Let b > 1
2 and s > 1/2. We have

∥∥∥∥∥ sup
0≤t≤δ

|F(x, t)|
∥∥∥∥∥

L2
x(T2)

� ‖F‖
X

s,b
δ

. (16)

We will combine the following lemma with the embedding from Lemma 2 to
verify the maximal estimate hypothesis of Proposition 2 for the cubic NLS on T

2.

Lemma 3 Let d = 2 and s > 0. Then

‖N(u) − N(v)‖
X

s,− 1
2 ++ �

(
‖u‖2

X
s, 1

2 + + ‖v‖2

X
s, 1

2 +

)
‖u − v‖

X
s, 1

2 + . (17)

In fact, Lemma 3 is a consequence of the following slightly more general statement
(that will be useful later) due to Bourgain [3].

Lemma 4 Let d = 2 and s > 0. Let M1 ≥ M2 ≥ M3 be dyadic scales. Then

‖(PM1 F)(PM2 G)(PM3 H)‖
X

s,− 1
2 ++

� ‖ PM1 F‖
X

s, 1
2 +‖ PM2 G‖

X
0+, 1

2 +‖ PM3 H‖
X

0, 1
2 + . (18)

We denote R0 = ‖f ‖Hs(T2). Hereafter η will be a smooth cut-off of [0, 1]. Taking
δ = δ(R0) < 1 sufficiently small and combining (25), (26), (27), and Lemma 3, one
can show that the map

�(u(x, t)) = η(t)eit� P≤N f (x) − iη(t)

∫ t

0
ei(t−t ′)� P≤N N(u(x, t ′))dt ′ (19)

is a contraction on the ball {u : ‖u‖
X

s, 1
2 +

δ

≤ 2R0}, for all N ∈ 2N ∪ {∞}. This

is a standard argument, so we omit the proof (see for instance [18, Section 3.5.1]).
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Moreover, a similar computation is part of the proof of Theorem 1. However, we
stress that the value of δ is uniform in N ∈ 2N ∪ {∞}. In particular, we have

‖�N
t f ‖

X
s, 1

2 +
δ

≤ 2R0, for all N ∈ 2N ∪ {∞} . (20)

We are now ready to prove Theorem 1.

2.1 Proof of Theorem 1

By Lemma 2, we have

∥∥∥∥∥ sup
0≤t≤δ

|�tf (x) − �N
t f (x)|

∥∥∥∥∥
L2

x(T2)

� ‖�tf − �N
t f ‖

X
s, 1

2 +
δ

.

Thus using Proposition 2, it suffices to show that the right-hand side goes to zero as
N → ∞. For t ∈ [0, δ], we have (see (19))

�tf (x) − �N
t f (x)

= η(t)eit� P>N f (x) − iη(t)

∫ t

0
ei(t−t ′)�

(
N(�t ′f (x)) − P≤N N(�N

t ′ f (x))
)

dt ′.

Then using (25) and (26), we have

‖�tf − �N
t f ‖

X
s, 1

2 +
δ

� ‖ P>N f ‖Hs(T2) + ‖N(�tf ) − P≤N N(�N
t f )‖

X
s,− 1

2 +
δ

.

(21)

To handle the nonlinear contribution, we further decompose

N(�tf ) − P≤N N(�N
t f ) = P≤N

(
N(�tf ) − N(�N

t f )
)

+ P>N N(�tf )

so that

‖�tf − �N
t f ‖

X
s, 1

2 +
δ

� ‖ P>N f ‖Hs(T2) + ‖ P>N N(�tf )‖
X

s,− 1
2 +

δ

(22)

+ ‖ P≤N

(
N(�tf ) − N(�N

t f )
)

‖
X

s,− 1
2 +

δ

.

Then by (27), Lemma 3, and (20), we get

‖ P≤N

(
N(�tf ) − N(�N

t f )
)

‖
X

s,− 1
2 +

δ

� δ0+R2
0‖�tf − �N

t f ‖
X

s, 1
2 +

δ

, (23)
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where we recall R0 = ‖f ‖Hs(T2). Plugging (23) into (22), taking δ = δ(R0) small
enough, and absorbing

δ0+R2
0‖�tf − �N

t f ‖
X

s, 1
2 +

δ

≤ 1

2
‖�tf − �N

t f ‖
X

s, 1
2 +

δ

into the left-hand side, we arrive to

‖�tf − �N
t f ‖

X
s, 1

2 +
δ

� ‖ P>N f ‖Hs(T2) + ‖ P>N N(�tf )‖
X

s,− 1
2 +

δ

. (24)

The right-hand side of (24) goes to zero as N → ∞ since f ∈ Hs(T2) and

N(�tf ) ∈ X
s,− 1

2 +
δ ; in fact, applying Lemma 3 with v = 0 and recalling (20),

we have

‖N(�tf )‖
X

s,− 1
2 +

δ

� ‖�tf ‖3

X
s, 1

2 +
δ

� R3
0 .

This concludes the proof of (3).
We conclude this section by recalling some well-known properties of restriction

spaces that we have used (and that we will use in the rest of the paper). Recall that
η is a smooth cut-off of the unit interval.

Lemma 5 Let s ∈ R. Then

‖η(t)eit�f (x)‖
X

s, 1
2 + � ‖f ‖Hs(	d) , (25)

∥∥∥∥η(t)

∫ t

0
ei(t−t ′)�F (·, t ′)dt ′

∥∥∥∥
X

s, 1
2 +

� ‖F‖
X

s,− 1
2 + , (26)

‖F‖
X

s,− 1
2 +

δ

� δ0+‖F‖
X

s,− 1
2 ++

δ

. (27)

3 Proof of Proposition 1

Here we prove almost surely uniform convergence of the randomized Schrödinger
flow to the initial datum, at the H 0+ level, namely Proposition 1. Thus our goal is
to show that eit�f ω → f ω as t → 0 uniformly over x ∈ T

d and P-almost surely
for data f ω defined as

f ω(x) =
∑
n∈Zd

gω
n

〈n〉 d
2 +α

ein·x, x ∈ T
d , (28)
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where α > 0 and each gω
n is complex and independently drawn from a standard

normal distribution. In fact, the argument we present works for independent gω
n

drawn from any distribution with sufficient decay of the tails (for instance, sub-
Gaussian is enough). This will not be the case in Theorem 2, where we will
need to take advantage of the hypercontractivity of (multilinear forms of ) normal
distributions. However, we only present the standard normal case for definiteness,
also in this section.

Fix t ∈ R. We have that P-almost surely

eit�f ω ∈
⋂
s<α

H s(Td ).

This is an immediate consequence of (44) below, taking the union over ε > 0. In
fact, for all t ∈ R, we have P-almost surely

eit�f ω ∈
⋂
s<α

Cs(Td );

thus in particular, eit�f ω are P-almost surely continuous functions of the x variable.
This is a consequence of the higher integrability property (34) below, from which
one can easily deduce uniform convergence as N → ∞ of the sequence P≤Nf ω,
with probability larger than 1 − ε. So the limit f ω is continuous with the same
probability, and the almost sure continuity follows taking the union over ε > 0.

Before completing the proof of Proposition 1, we recall few lemmata. We start
recalling the following well-known concentration bound:

Lemma 6 ([7, Lemma 3.1]) There exists a constant C such that

∥∥∥∥
∑
n∈Zd

gω
n an

∥∥∥∥
Lr

ω

≤ Cr
1
2 ‖an‖�2

n(Zd ) (29)

for all r ≥ 2 and {an} ∈ �2(Zd ).

Using (29) with an = ein·x−i|n|2t 〈n〉− d
2 −α , we obtain for r ≥ 2 that for f ω an in (28)

‖ PNeit�f ω‖Lr
ω

≤ Cr
1
2 N−α , (30)

with a constant uniform in t ∈ R. From this, we also have improved L
p
x estimates

for randomized data.

Lemma 7 Let p ∈ [2,∞). Assume f ω is as in (28). There exist constants C and c,
independent of t ∈ R, such that

P(‖ PNeit�f ω‖L
p
x (Td ) > λ) ≤ Ce−cN2αλ2

. (31)
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Thus

P(‖ PNeit�f ω‖L∞
x (Td ) > λ) ≤ Ce−cN2α−λ2

. (32)

In particular, for any ε > 0 sufficiently small, we have

‖ PNeit�f ω‖L
p
x (Td ) � N−α (− ln ε)1/2 , N ∈ 2Z (33)

and

‖ PNeit�f ω‖L∞
x (Td ) � N−α+ (− ln ε)1/2 , N ∈ 2Z , (34)

with probability at least 1 − ε.

Proof We prove (31), and then (32) follows by Bernstein inequality. By
Minkowski’s inequality and Lemma 6 above, we have for any r ≥ p ≥ 2

(∫
‖ PNeit�f ω‖r

L
p
x (Td )

dP(ω)

) 1
r ≤

∥∥∥‖ PNeit�f ω‖Lr
ω

∥∥∥
L

p
x (Td)

≤ CN−αr
1
2 ,

which is enough to conclude that ‖ PNeit�f ω‖L
p
x (Td) is a sub-Gaussian random

variable satisfying the tail bound (31).
��

Note that using (31)–(32), the triangle inequality

‖P>N(·)‖ ≤
∑

M∈2N:M>N

‖PM(·)‖,

the union bound, and the fact that

∑
M∈2N:M>N

e−cM2αk−2 � e−cN2αk2
,

we see that, for all t ∈ R and α > 0, we have (p < ∞)

P

(
‖eit� P>N f ω‖L

p
x (Td ) > λ

)
� e−cN2αλ2

(35)

P

(
‖eit� P>N f ω‖L∞

x (Td ) > λ
)
� e−cN2α−λ2

. (36)

Remark 2 Proceeding as we did to prove (35)–(36), we also easily see that the
exceptional set where (33)–(34) are not valid can be chosen to be the same for all
N ∈ N, paying an N0+ loss on the right-hand side of the estimates.
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Proceeding as in the proof of Lemma 7, we also obtain improved Strichartz
estimates for randomized data.

Lemma 8 Let p ∈ [2,∞). Assume f ω is as in (28). Then we have

P

(
‖eit� PNf ω‖L

p
x,t (T

d+1) > λ
)

≤ Ce−cN2αλ2
. (37)

Thus

P

(
‖eit� PNf ω‖L∞

x,t (T
d+1) > λ

)
≤ Ce−cN2α−λ2

. (38)

In particular, for any ε > 0 sufficiently small, we have

‖eit� PNf ω‖L
p
x,t (T

d+1) � N−α (− ln ε)1/2 , N ∈ 2Z (39)

and

‖eit� PNf ω‖L∞
x,t (T

d+1) � N−α+ (− ln ε)1/2 , N ∈ 2Z , (40)

with probability at least 1 − ε.

The bounds (37)–(38) imply

P

(
‖eit� P>N f ω‖L

p
x,t (T

d+1) > λ
)
� e−cN2αλ2

(41)

P

(
‖eit� P>N f ω‖L∞

x,t (T
d+1) > λ

)
� e−cN2α−λ2

(42)

exactly as (31)–(32) imply (35)–(36). Also we have an analogous of Remark (2):

Remark 3 The exceptional set where (39)–(40) are not valid can be chosen to be
the same for all N ∈ N, paying an N0+ loss on the right-hand side of the estimates.

Fix t ∈ R. Later we will also need the following bound for the Hs norm of
eit�f ω with s < α. This is a well-known fact that we recall applying again (29)

with an = ein·x−|n|2t 〈n〉− d
2 −α+s , so that we get for r ≥ 2

‖ PN 〈D〉seit�f ω‖Lr
ω

≤ Cr
1
2 Ns−α, s < α .

Here 〈D〉 denotes the Fourier multiplier operator 〈n〉. Proceeding as in the proof of
Lemma 7, we also obtain

P

(
‖〈D〉s PNeit�f ω‖L2

x(Td ) > λ
)

≤ Ce−cN2(α−s)λ2
, s < α, (43)
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and in particular, for any ε > 0 sufficiently small

‖eit�f ω‖Hs
x (Td ) � (− ln ε)1/2 s < α, t ∈ R , (44)

with probability at least 1 − ε. Again the constant is uniform on t ∈ R.
We are now ready to complete the proof of Proposition 1.

3.1 Proof of Proposition 1

Invoking the Borel–Cantelli lemma, it is enough to show that

P

(
lim sup

t→0
‖eit�f ω − f ω‖L∞

x (Td ) > 1/k

)
� γk, (45)

for a summable sequence {γk}k∈N. Let us decompose

|eit�f ω − f ω| ≤ |eit� P>N f ω| + |eit� P≤N f ω − P≤N f ω| + | P>N f ω|. (46)

Using (36) (with t = 0) and (42), we see that

‖eit� P>N f ω‖L∞
x,t (T

d+1) + ‖ P>N f ω‖L∞
x (Td ) ≤ 1

2k
(47)

holds for all ω outside an exceptional set of measure � e−cN2αk−2
. We choose N =

Nk via the identity N2α
k = k3, in such a way that e−cN2α

k k−2 = e−ck is summable
(over k ∈ N). Let s∗ > d/2. Since

eit� P≤Nk f ω − P≤Nk f ω =
∑

|n|≤Nk

(e−it |n|2 − 1)ein·x ˆf ω(n),

using Cauchy–Schwarz, the summability of 〈n〉−2s∗
(over n ∈ Z

d ) and (44) with
s = 0, t = 0 (in the last inequality), we get

‖eit� P≤Nk
f ω − P≤Nk

f ω‖L∞
x (Td ) � sup

|n|≤Nk

|e−it |n|2 − 1|
⎛
⎝ ∑

|n|≤Nk

〈n〉2s∗ | ˆf ω(n)|2
⎞
⎠

1/2

� |t |(Nk)
s∗+2‖f ω‖L2 ≤ |t |(Nk)

s∗+2 1

k
, (48)
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for ω outside an exceptional set of probability � e−cN2α
k k−2 = e−ck . From the

previous inequality, looking at t so small that |t|(Nk)
s∗+2 ≤ 1/2, we have

P

(
lim sup

t→0
‖eit� P≤N∗ f ω − P≤N∗ f ω‖L∞

x (Td ) > 1/k

)
� e−ck. (49)

Combining (36)–(36) and recalling the decomposition (46), the proof is concluded.
�

4 Proof of Theorem 2

In this section, we consider the cubic Wick-ordered NLS (8) on T
d (d = 1, 2) as in

the work of Bourgain in [3]. Namely, we look at the nonlinearity

N(u) := ±u
(
|u|2 − 2μ

)
, μ :=

⨏
T

d
|u(x, t)|2dx .

We are interested again in randomized initial data, i.e., f ω is taken to be of the form
(28). Recall (see (44)) that such data is P-almost surely in Hs for all s < α and

‖f ω‖Hs � (− ln ε)1/2 , s < α , (50)

with probability at least 1 − ε, for all ε ∈ (0, 1) sufficiently small. Since we work
with any α > 0, we are considering initial data in H 0+. We approximate Eq. (8) as
in (11), for all N ∈ 2N ∪ {∞}. Recall that �N

t f ω denotes the associated flow, with
initial datum

�N
0 f ω := P≤N f ω =

∑
|n|≤N

gω
n

〈n〉 d
2 +α

ein·x .

We write �tf
ω = �∞

t f ω for the flow of (8) with datum f ω = P∞ f ω.
The relevant choice of σ in the following statement is σ = 1

2− (we will use this
to prove Theorem 2).

Proposition 3 Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 1
2 ), the

following holds. Assume

u = u(I) + u(II), u(I) = eit� P≤N f ω, ‖u(II)‖
X

α+σ, 1
2 + < 1 (51)
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and the same for v. Then

‖N(u)‖
X

α+σ,− 1
2 + � (− ln ε)3/2 (52)

‖N(u) − N(v)‖
X

α+σ,− 1
2 ++ � (− ln ε) ‖u − v‖

X
α+σ, 1

2 + (53)

for initial data of the form (28), with probability at least 1 − ε, for all ε ∈ (0, 1)

sufficiently small. If we take u as in (51) and we instead assume

v = v(I) + u(II), v(I) = eit�f ω, ‖u(II)‖
X

α+σ, 1
2 + < 1 ,

we have

‖N(u) − N(v)‖
X

α+σ,− 1
2 ++ � N−α . (54)

Remark 4 Recall that α indicates the regularity of the initial datum. We are
denoting by σ the amount of smoothing one can prove for the Wick-ordered cubic
nonlinearity N. More precisely, since the initial data (28) belongs to Hα−, one can
interpret this statement as saying that, with arbitrarily large probability, N is σ+
smoother than f ω. Since σ < 1

2 is permissible, we reach 1
2− smoothing for N and,

combining with (26), also for the Duhamel contribution �N
t f ω − eit�P≤Nf ω.

In fact, a stronger statement than 3 has been proved in [13]. Namely that the
reminder can be further decomposed into a sum of two terms. The first one, to which

one we refer as paracontrolled, lies in X
1
2 −, 1

2 + but has a precise random structure.

The second one is a smoother deterministic reminder that lies in X1−, 1
2 +.

Here we only explain how to get Proposition 3 for the first Picard iteration,
namely when 4. Recall that η is a smooth cut-off of the unit interval. Let us fix
α > 0. Using (26), (27), and Proposition 3, one can show that for all δ > 0
sufficiently small, the following holds. For all N ∈ 2N ∪ {∞}, the map

�N(u) := η(t)eit� P≤N f ω − iη(t)

∫ t

0
ei(t−s)� P≤N N(u(·, s)) ds (55)

is a contraction on the set
{

eit� P≤N f ω + g, ‖g‖
X

α+σ, 1
2 +

δ

< 1

}
(56)

equipped with the X
α+σ, 1

2 +
δ norm, outside an exceptional set (we call it a δ-

exceptional set) of initial data of probability smaller than e−δ−γ
, with γ > 0 a given

small constant. Notice that this holds uniformly over N ∈ 2N∪{∞}. Again, this is a
standard routine calculation that we omit (see for instance [18, Section 3.5.1]). We
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only explain how to find the relation between the local existence time δ and the size
of the exceptional set. Given any ε ∈ (0, 1) sufficiently small, using (26), (27), and
Proposition 3, we have

‖�N(u) − η(t)eit� P≤N f ω‖
X

α+σ, 1
2 +

δ

� δ0+ (− ln ε)3/2 ,

for all f ω outside an exceptional set of probability smaller than ε. Letting δ such
that ε = e−δ−γ

with γ > 0 a fixed small constant, we have Cδ0+ (− ln ε)3/2 < 1
for all δ > 0 sufficiently small. Note that the measure e−δ−γ

of the δ-exceptional set
converges to zero as δ → 0. In particular, for ω outside the δ-exceptional set, the
fixed point �N

t f ω of the map (55) belongs to the set (56), namely

‖�N
t f ω − eit� P≤N f ω‖

X
α+σ, 1

2 +
δ

< 1, N ∈ 2N ∪ {∞} . (57)

We are now ready to prove Theorem 2.

4.1 Proof of Theorem 2

It suffices to show that

lim
N→∞

∥∥∥∥∥ sup
0≤t≤δ

|�tf
ω(x) − �N

t f ω(x)|
∥∥∥∥∥

L2
x(T2)

= 0 (58)

for all f ω outside a δ-exceptional set Aδ . Note indeed that (58) implies that given
f ω, we can find P-almost surely, a δω (which depends on ω) such that (58) is
satisfied. Indeed, if we could not do so, this would mean that f ω ∈ ⋂

δ>0 Aδ, and
the probability of this event is zero since P(Aδ) → 0 as δ → 0.

Once we have (58) with δ = δω, we have P-almost surely

lim
t→0

�ω
t f ω(x) − f ω(x) = 0, for a.e. x ∈ T

2 ,

as claimed, simply invoking Proposition 2.
In order to prove (58), we decompose

|�tf
ω − �N

t f ω| ≤ |eit� P>N f ω| + |�tf
ω − eit�f ω − (�N

t f ω − eit� P≤N f ω)| .
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Thus, recalling the decay of the high-frequency linear term given by (36), it remains
to show that

lim
N→∞

∥∥∥∥∥ sup
0≤t≤δ

|�tf
ω − eit�f ω − (�N

t f ω − eit� P≤N f ω)|
∥∥∥∥∥

L2(T2)

= 0 , (59)

for all f ω outside a δ-exceptional set.
For any α > 0, we can choose σ sufficiently close to 1

2 that

1

2
< α + σ . (60)

Thus, using the Xs,b space embedding from Lemma 2, it suffices to prove

lim
N→∞

∥∥∥w − wN
∥∥∥

X
α+σ, 1

2 +
δ

= 0 , (61)

where

wN := �N
t f − eit� P≤N f ω, w := w∞ .

Notice that by (57), we have

‖wN‖
X

α+σ, 1
2 +

δ

< 1, N ∈ 2N ∪ {∞} .

Since for t ∈ [0, δ], we have

w − wN = −iη(t)

∫ t ′

0
ei(t−t ′)�

(
N(�t ′f

ω) − P≤N N(�N
t ′ f

ω)
)

dt ′ , (62)

using (26), (27), we get

‖w − wN‖
X

α+σ, 1
2 +

δ

� δ0+‖N(�tf ) − P≤N N(�N
t f )‖

X
α+σ,− 1

2 ++
δ

. (63)

We decompose

N(�tf ) − P≤N N(�N
t f ) = (64)

P≤N

(
N(eit� P≤N f ω + w) − N(eit� P≤N f ω + wN)

)
+ Remainders ,

where

Remainders := P≤N

(
N(eit�f ω + w) − N(eit� P≤N f ω + w)

)
+ P>N N(�tf ) .
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Notice that by (52), (54), we have

‖Remainders‖
X

α+σ,− 1
2 ++

δ

→ 0 as N → ∞ , (65)

with probability at least 1 − ε. Using (53), we can estimate

‖ P≤N

(
N(eit� P≤N f ω + w) − N(eit� P≤N f ω+ wN)) ‖

X
α+σ,− 1

2 ++
δ

(66)

� (− ln ε)

∥∥∥w − wN
∥∥∥

X
α+σ, 1

2 +
δ

,

and (63), (64), (66) give

∥∥∥w − wN
∥∥∥

X
α+σ, 1

2 +
δ

� δ0+ (− ln ε)

∥∥∥w − wN
∥∥∥

X
α+σ, 1

2 +
δ

+ ‖Remainders‖
X

α+σ,− 1
2 ++

δ

(67)

with probability at least 1 − ε. Since with our choice of ε = e−δ−γ
, we have

Cδ0+ (− ln ε)3/2 < 1, we can absorb the first term on the right-hand side into the
left-hand side, and we still have that (65) holds outside a δ-exceptional set. Thus
letting N → ∞, the proof of (9) is complete.

�
Remark 5 It is worthy to remark that, comparing with for instance [3], the
procedure that allows to promote a statement valid on a δ-exceptional set Aδ for
arbitrarily small δ > 0 to a statement that is valid with probability = 1 is far easier.
In particular, it does not involve any control on the evolution of the (Gaussian)
measure induced by the random Fourier series. This is because we are considering a
property that has to be verified only at time t = 0 a.s., instead that in a time interval
containing t = 0, as in [3].

We now give some hints on the proof of the smoothing estimates given in
Proposition 3.

4.2 Proof of Proposition 3

Again it is worthy to recall that an even stronger statement than 3 has been proved
in [13]. Here we show how to handle the first Picard iterate. Notice that the Wick-
ordered nonlinearity can be written as

N(u(x, ·)) =
∑

n2 �=n1,n3

û(n1)̂u(n2)̂u(n3)e
i(n1−n2+n3)·x −

∑
n

û(n)|̂u(n)|2ein·x,

(68)
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where we are looking at the nonlinear term for fixed time and û(·) denotes the space
Fourier coefficients. Looking at a similar expansion for the difference N(u)−N(v),
it is easy to see that we can deduce (3) from a slightly more general Lemma 9 given
below. It implies the desired statement

uj (nj ) = u(nj ), v(nj ), or u(nj ) − v(nj ) .

�
We will give a proof of the following Lemma in the fully random case Jj = I for

j = 1, 2, 3,, which corresponds to the study of the first Picard iterate. Comparing
with 9 (and [13]), there is a simplification coming from the fact that our f ω is
slightly more regular, namely we consider α > 0 instead of α = 0.

Lemma 9 Let d = 1, 2 and α > 0. Let N ∈ 2N ∪ {∞}. For all σ ∈ [0, 1
2 ), the

following holds. Assume for j = 1, 2, 3

uj (I) = eit� P≤N f ω, ‖uj (II)‖
X

α+σ, 1
2 + < 1. (69)

Let Jj ∈ {I, II }, j = 1, 2, 3. Then, for all ε ∈ (0, 1) sufficiently small, we have the
following:

‖N(u1(J1), u2(J2), u3(J3))‖
X

α+σ,− 1
2 + � (− ln ε)3/2 , (70)

and more precisely,

‖N(u1(II), u2(J2), u3(J3))‖
X

α+σ,− 1
2 ++ � (− ln ε) ‖u1(II)‖

X
α+σ, 1

2 + , (71)

‖N(u1(J1), u2(II), u3(J3))‖
X

α+σ,− 1
2 ++ � (− ln ε) ‖u2(II)‖

X
α+σ, 1

2 + , (72)

with probability at least 1 − ε. Moreover, if in (69) we replace for some j = j∗ the
projection operator P≤N by P>N , then the estimate (70) with Jj∗ = I holds with an
extra factor N−α on the right-hand side.

Remark 6 Saying that these estimates hold with probability at least 1 − ε means,
more precisely, that they hold for all ω outside an exceptional set of probability ≤ ε.
Moreover, this set can be chosen to be independent on N ∈ 2N ∪ {∞}.
Remark 7 Notice that by the symmetry n1 ↔ n3 the estimate (71) implies an
analogous estimate for u3(II).

Here we only consider the case Jj = I for j = 1, 2, 3, namely the case in which
all the contributions are a linear random evolution. We prove the bound (70) relative
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to this case and to N = ∞. Moreover, we split the nonlinearity as a difference of
two terms (see (68))

N1(u1(J1), u2(J2), u3(J3)) =
∑

n2 �=n1,n3

̂u1(J1)(n1)̂u2(J2)(n2)̂u3(J3)(n3)e
i(n1−n2+n3)·x ,

N2(u1(J1), u2(J2), u3(J3)) =
∑

n

̂u1(J1)(n)̂u2(J2)(n)̂u3(J2)(n)ein·x ,

and we prove (70) only for N1, which is the most challenging contribution. The
proof for N2 is indeed elementary.

To prove, (70) will be useful to recall that the space–time Fourier transform of
eit�f ω is

̂eit�f ω(n, τ ) = gω

〈n〉 d
2 +α

δ(τ + |n|2) ,

where δ is the delta function. So a direct computation gives

‖eit�f ω‖2

X
0+, 1

2 + =
∑
n

|gω
n |2

〈n〉d+2α− ,

which, recalling
∫ |gω

n |2dω = 1, immediately implies

‖‖eit�f ω‖
X

0+, 1
2 +‖2

L2
ω

=
∑
n

1

〈n〉d+2α− < ∞ .

Since we can expand the LHS as a bilinear form in the Gaussian variables gω
n , we

get by Gaussian hypercontractivity

‖‖eit�f ω‖
X

0+, 1
2 +‖2

L
q
ω

=
∑
n

1

〈n〉d+2α− < Cq < ∞ .

Proceeding essentially as in the Proof of Lemmas 7–8 (recall also Remarks 2–
RemarkUniform1Bis), this allows to prove a pointwise bound

‖eit�f ω‖
X

0+, 1
2 + �

√
ln

(
1

ε

)
, (73)

with probability larger than 1 − Cε for all sufficiently small ε > 0.
Let N,N1, N2, N3 be dyadic scales. We denote with Ñ the maximum between

N1, N2, N3. First we perform a reduction to remove frequencies that are far from the
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paraboloid. More precisely, we denote with PA the space–time Fourier projection
into the set A, and our goal is to reduce

∑
N1,N2,N3

‖N1
(
PN1 u1(I), PN2 u2(I), PN3 u3(I)

) ‖2

X
α+σ,− 1

2 ++ (74)

=
∑

N,N1,N2,N3

N2α+2σ‖ PN N1
(
PN1 u1(I), PN2 u2(I), PN3 u3(I)

) ‖2

X
0,− 1

2 ++

to

∑
N,N1,N2,N3

N2α+2σ ‖ PN P{
〈τ+|n|2〉≤Ñ

1+ 1
10

} N1
(
PN1 u1(I ) PN2 u2(I ) PN3 u3(I )

) ‖2

X
0,− 1

2 ++ .

(75)

To obtain this reduction, it is sufficient to show that projection of the nonlinearity
onto the complementary set is appropriately bounded, i.e., that

∑
N,N1,N2,N3

N2α+2σ ‖ PN P{
〈τ+|n|2〉>Ñ

11
10

} N1
(
PN1 u1(I ), PN2 u2(I ), PN3 u3(I )

) ‖2

X
0,− 1

2 ++

(76)

� (− ln ε)3

with probability at least 1 − ε. To do so, we abbreviate

NN1,N2,N3
1 (·) := N1

(
PN1 u1(I), PN2 u2(I), PN3 u3(I)

)
,

and we bound

∑
N1,N2,N3

N2α+2σ ‖ PN P{
〈τ+|n|2〉>Ñ

11
10

} NN1,N2,N3
1 ‖2

X
0,− 1

2 ++ (77)

∼ N2α+2σ
∑

N1,N2,N3
n∼N

∫ χ{〈τ+|n|2〉>Ñ
11
10 }

〈τ + |n|2〉1−−

∣∣∣∣ ̂NN1,N2,N3
1 (·)(n, τ )

∣∣∣∣
2

dτ

� N2α+2σ−1− 1
10 +3(0+)

∑
N1,N2,N3

n∼N

∫ ∣∣∣∣ ̂NN1,N2,N3
1 (·)(n, τ )

∣∣∣∣
2

dτ

∼ N2α− 1
20

∑
N1,N2,N3

‖ PN NN1,N2,N3
1 ‖2

L2
x,t

,

recalling that σ < 1/2 (here in fact we may have more smoothing than 1
2−). We

have used the fact that at least one of the frequency scales Nj has to be comparable to
N ; otherwise, the contribution is zero by orthogonality, and so particular, we have
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N � Ñ (recall that Ñ = max(N1, N2, N3)). In order to continue the estimate,
we assume for definiteness that N1 ∼ N . The other possible case is N2 ∼ N

(since everything is symmetric under n1 ↔ n3), and one can indeed immediately
check that the estimate (78) below is still valid in this case, with obvious changes.
Thus we have using Hölder’s inequality, the improved Strichartz inequality (40) for
randomized functions (for the L∞ norm of u1(I)), and the Strichartz inequality (10)
(for the L4 norms of u2(I) and u3(I)), we obtain

‖ PN NN1,N2,N3
1 ‖2

L2
x,t

(78)

≤ ‖ PN1 u1(I)‖2
L∞

x,t
‖ PN2 u2(I)‖2

L4
x,t

‖ PN3 u3(I)‖2
L4

x,t
.

� (− ln ε)N−2α
1 ‖ PN2 u2(I)‖2

L4
x,t

‖ PN3 w3(I)‖2
L4

x,t
,

� (− ln ε)N−2α‖ PN2 u2(I)‖2

X
0+, 1

2 +‖ PN3 u3(I)‖2

X
0+, 1

2 +,

this holds on a set of probability larger than 1 − ε, and this set may be chosen to be
independent on N1 ∈ N∪ {∞} (see Remark 3) and thus on N ∈ N∪ {∞}. Plugging
(78) into (77), summing over the Nj , and using (73), we arrive to the needed bound

LHS of (76) � (− ln ε)
∑
N,N1

N− 1
20 ‖u2(I)‖2

X
0+, 1

2 +‖u3(I)‖2

X
0+, 1

2 +

� (− ln ε)3
∑
N,N1

N− 1
40 N

− 1
40

1 � (− ln ε)3 .

Note that in (78), we could also use a weaker bound replacing the L4 norm with the
L∞ and that in the fully random case Jj = I for all j is controlled invoking (40)
for all j = 1, 2, 3. However, the L4 bound is more robust since it works also in the
other cases, where the contributions are not all random (namely if some Jj is of the
form II ).

So we have reduced to (75). We have

PN P{
〈τ+|n|2〉≤Ñ

11
10

} NN1,N2,N3
1 (·) (79)

= PN P{
〈τ+|n|2〉≤Ñ

11
10

}
⎛
⎝ ∑

|nj |∼Nj

eix·(n1−n2+n3)e−it (|n1|2−|n2|2+|n3|2)

⎞
⎠

× gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α
.
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Thus we see that (75) satisfies the desired inequalities (70) as long as we can bound

N2α+2σ

∥∥∥∥
∑

N1,N2,N3

PN P{
〈τ+|n|2〉≤Ñ

11
10

}
⎛
⎝ ∑

|nj |∼Nj

eix·(n1−n2+n3)e−it (|n1|2−|n2|2+|n3|2)
⎞
⎠

(80)

× gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∥∥∥∥
2

X
0,− 1

2 ++
� (− ln ε)3 N0− ,

on a set of probability larger than 1 − ε.
Since

F
(
eix·(n1−n2+n3)e−it (|n1|2−|n2|2+|n3|2))(n, τ ) (81)

=
∑

n1−n2+n3=n

δ(τ + |n1|2 − |n2|2 + |n3|2) ,

where F is the space–time Fourier transform and δ is the delta function, we
reduce (80) to showing that

N2α+2σ
∑

N1,N2,N3

∑
|n|∼N

∫ χ{〈τ+|n|2〉≤Ñ
11
10 }

〈τ + |n|2〉1−−

×

∣∣∣∣∣∣∣∣∣∣∣

∑
|nj |∼Nj , n2 �=n1,n3

n=n1−n2+n3
τ+|n1|2−|n2|2+|n3|2=0

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

dτ � (− ln ε)3 N0−, (82)

with probability at least 1 − ε. Letting

μ := |n|2 + τ = |n|2 − |n1|2 + |n2|2 − |n3|2

(the second identity holds over the integration set, since we have a factor

δ(τ + |n1|2 − |n2|2 + |n3|2)
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in the integrand) and recalling that N � Ñ , this follows by

N2α+2σ
∑

N1,N2,N3

∑
|n|∼N

∫ χ{〈μ〉≤Ñ
11
10 }

〈μ〉1−−

×

∣∣∣∣∣∣∣∣∣∣∣

∑
|nj |∼Nj , n2 �=n1,n3

n=n1−n2+n3
−|n|2+|n1|2−|n2|2+|n3|2=μ

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

dτ � (− ln ε)3 N0−,

(83)

with probability at least 1 − ε. Using Hölder inequality in dμ, we reduce to prove
(here we use the symmetry μ ↔ −μ)

N2α+2σ Ñ0+ ∑
N1,N2,N3

sup

|μ|�Ñ
11
10

∑
|n|∼N

×

∣∣∣∣∣∣∣∣∣∣∣

∑
|nj |∼Nj , n2 �=n1,n3

n=n1−n2+n3
μ=|n|2−|n1|2+|n2|2−|n3|2

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣∣∣∣∣∣

2

� (− ln ε)3 N0−, (84)

with probability at least 1 − ε. We rewrite (84) as

N2α+2σ Ñ0+ ∑
N1,N2,N3

sup

|μ|�Ñ
11
10

∑
|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣
2

� (− ln ε)3 N0− , (85)

where for fixed n,μ we have denoted

Rn(n1, n2, n3) :=
{
(n1, n2, n3) ∈ (Z2)3 : |nj | ∼ Nj , j = 1, 2, 3, (86)

n2 �= n1, n3, n1 − n2 + n3 = n, μ = |n|2 − |n1|2 + |n2|2 − |n3|2
}

.
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The set Rn(·) depends on μ also (like all the sets we will define below). However,
we omit this dependence to simplify the notation. Notice that in the definition of
Rn(·) the condition

|n|2 − |n1|2 + |n2|2 − |n3|2 = μ

can be equivalently replaced by

2(n1 − n2) · (n3 − n2) = μ .

We also note that we have reduced to a case in which at least one of the frequencies
N1, N3 is comparable to Ñ . Indeed, if both N1 � Ñ and N3 � Ñ , we must have

N2 = Ñ and μ ∼ N2, which contradicts the fact that μ � N
11
10 . Since the roles

of N1 and N3 are symmetric (they are always the size of the indices of the Fourier
coefficients of u1, u3), hereafter we assume that

N1 ∼ Ñ � N.

To estimate, (85) will be also useful to introduce the set

S(n1, n2, n3) :=
{
(n1, n2, n3) ∈ (Z2)3 : |nj | ∼ Nj , j = 1, 2, 3, (87)

n2 �= n1, n3, μ = 2(n1 − n2) · (n3 − n2)
}

.

We recall that the Gaussian variables contract in the following way:

∫
gω

n gω
n′dP(ω) = 0,

∫
gω

n gω
n′dP(ω) =

{
0 if n �= n′
1 if n = n′ . (88)

Along with the fact that the sum is restricted over n1, n3 �= n2 and symmetric under
n1 ↔ n3, we get

∫ ∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣
2

dP(ω) (89)

= 2
∑

Rn(n1,n2,n3)

1

〈n1〉2α+2

1

〈n2〉2α+2

1

〈n3〉2α+2
= 2

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3 .

In other words, the L2(dω) norm of the Gaussian trilinear form is controlled
by square root of the right-hand side of (89). Using the hypercontractivity of
the Gaussians (see [19, 33]), we can promote this to an Lq(dω) bound, with a
multiplicative factor that is factor q3/2. Then using Minkowski integral inequality
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and Bernstein inequality (as we did in Sect. 3), this also gives to us a (uniform)
pointwise bound

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣
2

(90)

� (− ln ε)3N0+
1

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3 ,

with an extra N0+
1 loss, that is valid for ω outside an exceptional set of probability

≤ ε (again, proceeding as in Sect. 3, we see that this exceptional set can be chosen
to be independent on N , as required).

We finally distinguish two last possibilities. First restrict the summation over
(n1, n2, n3) ∈ Rn(n1, n2, n3) such that n1 �= n3 (with a small abuse of notation, we
do not introduce additional notation for this restriction). In this case, we get, with
probability > 1 − ε, the following estimate

∑
|n|∼N

∣∣∣∣∣∣
∑

Rn(n1,n2,n3)

gω
n1

〈n1〉1+α

gω
n2

〈n2〉1+α

gω
n3

〈n3〉1+α

∣∣∣∣∣∣
2

(91)

� (− ln ε)3
∑

|n|∼N

∑
Rn(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

� (− ln ε)3
∑

S(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

∼ (− ln ε)3
∑

S(n1,n2,n3)

N−2α−2
1 N−2α−2

2 N−2α−2
3

� (− ln ε)3N−2α−2
1 N−2α−2

2 N−2α−2
3 #S(n1, n2, n3)

� (− ln ε)3N−2α−1
1 N−2α

2 N−2α
3 ,

where we used that if n1 �= n3, then

#S(n1, n2, n3) � N1N
2
2 N2

3 ;

this is because once we have fixed n2, n3 in N2
2 N2

3 possible ways, we remain with
at most N1 choices for n1 by the relation μ = 2(n1 −n2) · (n3 −n2). This fact has a
clear geometric interpretation, namely that this relation forces the (two-dimensional)
lattice point n1 to belong to the portion of a line that lies inside a ball of radius � N1
(and there are � N1 such lattice points n1).

The second possibility is that we sum over (n1, n2, n3) ∈ Rn(n1, n2, n3) such
that n1 = n3. In this case restriction, μ = 2|n1 − n2|2 implies that once we have
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chosen n2 in N2
2 possible ways, we remain with � μ0+ � N0++

1 choices for n1 =
n3 (since a circle of radius μ contains � μ0+ lattice points). This gives an even
better bound than the one above.

Thus, summing the (91) over N2, N3 and recalling that N1 ∼ Ñ � N , we have
bounded, with probability > 1 − ε, the expression (85) by

N2α+2σN0+
1

∑
N1

N−2α−1
1 � (− ln ε)3N2σ−1+0+

1 � (− ln ε)3N0− ,

where we used σ < 1
2 .
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